cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

l2t.c (20269B)


      1/*
      2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
      3 *
      4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
      5 *
      6 * This software is available to you under a choice of one of two
      7 * licenses.  You may choose to be licensed under the terms of the GNU
      8 * General Public License (GPL) Version 2, available from the file
      9 * COPYING in the main directory of this source tree, or the
     10 * OpenIB.org BSD license below:
     11 *
     12 *     Redistribution and use in source and binary forms, with or
     13 *     without modification, are permitted provided that the following
     14 *     conditions are met:
     15 *
     16 *      - Redistributions of source code must retain the above
     17 *        copyright notice, this list of conditions and the following
     18 *        disclaimer.
     19 *
     20 *      - Redistributions in binary form must reproduce the above
     21 *        copyright notice, this list of conditions and the following
     22 *        disclaimer in the documentation and/or other materials
     23 *        provided with the distribution.
     24 *
     25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     32 * SOFTWARE.
     33 */
     34
     35#include <linux/skbuff.h>
     36#include <linux/netdevice.h>
     37#include <linux/if.h>
     38#include <linux/if_vlan.h>
     39#include <linux/jhash.h>
     40#include <linux/module.h>
     41#include <linux/debugfs.h>
     42#include <linux/seq_file.h>
     43#include <net/neighbour.h>
     44#include "cxgb4.h"
     45#include "l2t.h"
     46#include "t4_msg.h"
     47#include "t4fw_api.h"
     48#include "t4_regs.h"
     49#include "t4_values.h"
     50
     51/* identifies sync vs async L2T_WRITE_REQs */
     52#define SYNC_WR_S    12
     53#define SYNC_WR_V(x) ((x) << SYNC_WR_S)
     54#define SYNC_WR_F    SYNC_WR_V(1)
     55
     56struct l2t_data {
     57	unsigned int l2t_start;     /* start index of our piece of the L2T */
     58	unsigned int l2t_size;      /* number of entries in l2tab */
     59	rwlock_t lock;
     60	atomic_t nfree;             /* number of free entries */
     61	struct l2t_entry *rover;    /* starting point for next allocation */
     62	struct l2t_entry l2tab[];  /* MUST BE LAST */
     63};
     64
     65static inline unsigned int vlan_prio(const struct l2t_entry *e)
     66{
     67	return e->vlan >> VLAN_PRIO_SHIFT;
     68}
     69
     70static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
     71{
     72	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
     73		atomic_dec(&d->nfree);
     74}
     75
     76/*
     77 * To avoid having to check address families we do not allow v4 and v6
     78 * neighbors to be on the same hash chain.  We keep v4 entries in the first
     79 * half of available hash buckets and v6 in the second.  We need at least two
     80 * entries in our L2T for this scheme to work.
     81 */
     82enum {
     83	L2T_MIN_HASH_BUCKETS = 2,
     84};
     85
     86static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
     87				    int ifindex)
     88{
     89	unsigned int l2t_size_half = d->l2t_size / 2;
     90
     91	return jhash_2words(*key, ifindex, 0) % l2t_size_half;
     92}
     93
     94static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
     95				     int ifindex)
     96{
     97	unsigned int l2t_size_half = d->l2t_size / 2;
     98	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
     99
    100	return (l2t_size_half +
    101		(jhash_2words(xor, ifindex, 0) % l2t_size_half));
    102}
    103
    104static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
    105			      int addr_len, int ifindex)
    106{
    107	return addr_len == 4 ? arp_hash(d, addr, ifindex) :
    108			       ipv6_hash(d, addr, ifindex);
    109}
    110
    111/*
    112 * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
    113 * whether the L2T entry and the address are of the same address family.
    114 * Callers ensure an address is only checked against L2T entries of the same
    115 * family, something made trivial by the separation of IP and IPv6 hash chains
    116 * mentioned above.  Returns 0 if there's a match,
    117 */
    118static int addreq(const struct l2t_entry *e, const u32 *addr)
    119{
    120	if (e->v6)
    121		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
    122		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
    123	return e->addr[0] ^ addr[0];
    124}
    125
    126static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
    127{
    128	neigh_hold(n);
    129	if (e->neigh)
    130		neigh_release(e->neigh);
    131	e->neigh = n;
    132}
    133
    134/*
    135 * Write an L2T entry.  Must be called with the entry locked.
    136 * The write may be synchronous or asynchronous.
    137 */
    138static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
    139{
    140	struct l2t_data *d = adap->l2t;
    141	unsigned int l2t_idx = e->idx + d->l2t_start;
    142	struct sk_buff *skb;
    143	struct cpl_l2t_write_req *req;
    144
    145	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
    146	if (!skb)
    147		return -ENOMEM;
    148
    149	req = __skb_put(skb, sizeof(*req));
    150	INIT_TP_WR(req, 0);
    151
    152	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
    153					l2t_idx | (sync ? SYNC_WR_F : 0) |
    154					TID_QID_V(adap->sge.fw_evtq.abs_id)));
    155	req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
    156	req->l2t_idx = htons(l2t_idx);
    157	req->vlan = htons(e->vlan);
    158	if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
    159		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
    160	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
    161
    162	t4_mgmt_tx(adap, skb);
    163
    164	if (sync && e->state != L2T_STATE_SWITCHING)
    165		e->state = L2T_STATE_SYNC_WRITE;
    166	return 0;
    167}
    168
    169/*
    170 * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
    171 * entry locked.
    172 */
    173static void send_pending(struct adapter *adap, struct l2t_entry *e)
    174{
    175	struct sk_buff *skb;
    176
    177	while ((skb = __skb_dequeue(&e->arpq)) != NULL)
    178		t4_ofld_send(adap, skb);
    179}
    180
    181/*
    182 * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
    183 * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
    184 * index it refers to.
    185 */
    186void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
    187{
    188	struct l2t_data *d = adap->l2t;
    189	unsigned int tid = GET_TID(rpl);
    190	unsigned int l2t_idx = tid % L2T_SIZE;
    191
    192	if (unlikely(rpl->status != CPL_ERR_NONE)) {
    193		dev_err(adap->pdev_dev,
    194			"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
    195			rpl->status, l2t_idx);
    196		return;
    197	}
    198
    199	if (tid & SYNC_WR_F) {
    200		struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
    201
    202		spin_lock(&e->lock);
    203		if (e->state != L2T_STATE_SWITCHING) {
    204			send_pending(adap, e);
    205			e->state = (e->neigh->nud_state & NUD_STALE) ?
    206					L2T_STATE_STALE : L2T_STATE_VALID;
    207		}
    208		spin_unlock(&e->lock);
    209	}
    210}
    211
    212/*
    213 * Add a packet to an L2T entry's queue of packets awaiting resolution.
    214 * Must be called with the entry's lock held.
    215 */
    216static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
    217{
    218	__skb_queue_tail(&e->arpq, skb);
    219}
    220
    221int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
    222		   struct l2t_entry *e)
    223{
    224	struct adapter *adap = netdev2adap(dev);
    225
    226again:
    227	switch (e->state) {
    228	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
    229		neigh_event_send(e->neigh, NULL);
    230		spin_lock_bh(&e->lock);
    231		if (e->state == L2T_STATE_STALE)
    232			e->state = L2T_STATE_VALID;
    233		spin_unlock_bh(&e->lock);
    234		fallthrough;
    235	case L2T_STATE_VALID:     /* fast-path, send the packet on */
    236		return t4_ofld_send(adap, skb);
    237	case L2T_STATE_RESOLVING:
    238	case L2T_STATE_SYNC_WRITE:
    239		spin_lock_bh(&e->lock);
    240		if (e->state != L2T_STATE_SYNC_WRITE &&
    241		    e->state != L2T_STATE_RESOLVING) {
    242			spin_unlock_bh(&e->lock);
    243			goto again;
    244		}
    245		arpq_enqueue(e, skb);
    246		spin_unlock_bh(&e->lock);
    247
    248		if (e->state == L2T_STATE_RESOLVING &&
    249		    !neigh_event_send(e->neigh, NULL)) {
    250			spin_lock_bh(&e->lock);
    251			if (e->state == L2T_STATE_RESOLVING &&
    252			    !skb_queue_empty(&e->arpq))
    253				write_l2e(adap, e, 1);
    254			spin_unlock_bh(&e->lock);
    255		}
    256	}
    257	return 0;
    258}
    259EXPORT_SYMBOL(cxgb4_l2t_send);
    260
    261/*
    262 * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
    263 */
    264static struct l2t_entry *alloc_l2e(struct l2t_data *d)
    265{
    266	struct l2t_entry *end, *e, **p;
    267
    268	if (!atomic_read(&d->nfree))
    269		return NULL;
    270
    271	/* there's definitely a free entry */
    272	for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
    273		if (atomic_read(&e->refcnt) == 0)
    274			goto found;
    275
    276	for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
    277		;
    278found:
    279	d->rover = e + 1;
    280	atomic_dec(&d->nfree);
    281
    282	/*
    283	 * The entry we found may be an inactive entry that is
    284	 * presently in the hash table.  We need to remove it.
    285	 */
    286	if (e->state < L2T_STATE_SWITCHING)
    287		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
    288			if (*p == e) {
    289				*p = e->next;
    290				e->next = NULL;
    291				break;
    292			}
    293
    294	e->state = L2T_STATE_UNUSED;
    295	return e;
    296}
    297
    298static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
    299					   u8 port, u8 *dmac)
    300{
    301	struct l2t_entry *end, *e, **p;
    302	struct l2t_entry *first_free = NULL;
    303
    304	for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
    305		if (atomic_read(&e->refcnt) == 0) {
    306			if (!first_free)
    307				first_free = e;
    308		} else {
    309			if (e->state == L2T_STATE_SWITCHING) {
    310				if (ether_addr_equal(e->dmac, dmac) &&
    311				    (e->vlan == vlan) && (e->lport == port))
    312					goto exists;
    313			}
    314		}
    315	}
    316
    317	if (first_free) {
    318		e = first_free;
    319		goto found;
    320	}
    321
    322	return NULL;
    323
    324found:
    325	/* The entry we found may be an inactive entry that is
    326	 * presently in the hash table.  We need to remove it.
    327	 */
    328	if (e->state < L2T_STATE_SWITCHING)
    329		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
    330			if (*p == e) {
    331				*p = e->next;
    332				e->next = NULL;
    333				break;
    334			}
    335	e->state = L2T_STATE_UNUSED;
    336
    337exists:
    338	return e;
    339}
    340
    341/* Called when an L2T entry has no more users.  The entry is left in the hash
    342 * table since it is likely to be reused but we also bump nfree to indicate
    343 * that the entry can be reallocated for a different neighbor.  We also drop
    344 * the existing neighbor reference in case the neighbor is going away and is
    345 * waiting on our reference.
    346 *
    347 * Because entries can be reallocated to other neighbors once their ref count
    348 * drops to 0 we need to take the entry's lock to avoid races with a new
    349 * incarnation.
    350 */
    351static void _t4_l2e_free(struct l2t_entry *e)
    352{
    353	struct l2t_data *d;
    354
    355	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
    356		if (e->neigh) {
    357			neigh_release(e->neigh);
    358			e->neigh = NULL;
    359		}
    360		__skb_queue_purge(&e->arpq);
    361	}
    362
    363	d = container_of(e, struct l2t_data, l2tab[e->idx]);
    364	atomic_inc(&d->nfree);
    365}
    366
    367/* Locked version of _t4_l2e_free */
    368static void t4_l2e_free(struct l2t_entry *e)
    369{
    370	struct l2t_data *d;
    371
    372	spin_lock_bh(&e->lock);
    373	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
    374		if (e->neigh) {
    375			neigh_release(e->neigh);
    376			e->neigh = NULL;
    377		}
    378		__skb_queue_purge(&e->arpq);
    379	}
    380	spin_unlock_bh(&e->lock);
    381
    382	d = container_of(e, struct l2t_data, l2tab[e->idx]);
    383	atomic_inc(&d->nfree);
    384}
    385
    386void cxgb4_l2t_release(struct l2t_entry *e)
    387{
    388	if (atomic_dec_and_test(&e->refcnt))
    389		t4_l2e_free(e);
    390}
    391EXPORT_SYMBOL(cxgb4_l2t_release);
    392
    393/*
    394 * Update an L2T entry that was previously used for the same next hop as neigh.
    395 * Must be called with softirqs disabled.
    396 */
    397static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
    398{
    399	unsigned int nud_state;
    400
    401	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
    402	if (neigh != e->neigh)
    403		neigh_replace(e, neigh);
    404	nud_state = neigh->nud_state;
    405	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
    406	    !(nud_state & NUD_VALID))
    407		e->state = L2T_STATE_RESOLVING;
    408	else if (nud_state & NUD_CONNECTED)
    409		e->state = L2T_STATE_VALID;
    410	else
    411		e->state = L2T_STATE_STALE;
    412	spin_unlock(&e->lock);
    413}
    414
    415struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
    416				const struct net_device *physdev,
    417				unsigned int priority)
    418{
    419	u8 lport;
    420	u16 vlan;
    421	struct l2t_entry *e;
    422	unsigned int addr_len = neigh->tbl->key_len;
    423	u32 *addr = (u32 *)neigh->primary_key;
    424	int ifidx = neigh->dev->ifindex;
    425	int hash = addr_hash(d, addr, addr_len, ifidx);
    426
    427	if (neigh->dev->flags & IFF_LOOPBACK)
    428		lport = netdev2pinfo(physdev)->tx_chan + 4;
    429	else
    430		lport = netdev2pinfo(physdev)->lport;
    431
    432	if (is_vlan_dev(neigh->dev)) {
    433		vlan = vlan_dev_vlan_id(neigh->dev);
    434		vlan |= vlan_dev_get_egress_qos_mask(neigh->dev, priority);
    435	} else {
    436		vlan = VLAN_NONE;
    437	}
    438
    439	write_lock_bh(&d->lock);
    440	for (e = d->l2tab[hash].first; e; e = e->next)
    441		if (!addreq(e, addr) && e->ifindex == ifidx &&
    442		    e->vlan == vlan && e->lport == lport) {
    443			l2t_hold(d, e);
    444			if (atomic_read(&e->refcnt) == 1)
    445				reuse_entry(e, neigh);
    446			goto done;
    447		}
    448
    449	/* Need to allocate a new entry */
    450	e = alloc_l2e(d);
    451	if (e) {
    452		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
    453		e->state = L2T_STATE_RESOLVING;
    454		if (neigh->dev->flags & IFF_LOOPBACK)
    455			memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
    456		memcpy(e->addr, addr, addr_len);
    457		e->ifindex = ifidx;
    458		e->hash = hash;
    459		e->lport = lport;
    460		e->v6 = addr_len == 16;
    461		atomic_set(&e->refcnt, 1);
    462		neigh_replace(e, neigh);
    463		e->vlan = vlan;
    464		e->next = d->l2tab[hash].first;
    465		d->l2tab[hash].first = e;
    466		spin_unlock(&e->lock);
    467	}
    468done:
    469	write_unlock_bh(&d->lock);
    470	return e;
    471}
    472EXPORT_SYMBOL(cxgb4_l2t_get);
    473
    474u64 cxgb4_select_ntuple(struct net_device *dev,
    475			const struct l2t_entry *l2t)
    476{
    477	struct adapter *adap = netdev2adap(dev);
    478	struct tp_params *tp = &adap->params.tp;
    479	u64 ntuple = 0;
    480
    481	/* Initialize each of the fields which we care about which are present
    482	 * in the Compressed Filter Tuple.
    483	 */
    484	if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
    485		ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
    486
    487	if (tp->port_shift >= 0)
    488		ntuple |= (u64)l2t->lport << tp->port_shift;
    489
    490	if (tp->protocol_shift >= 0)
    491		ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
    492
    493	if (tp->vnic_shift >= 0 && (tp->ingress_config & VNIC_F)) {
    494		struct port_info *pi = (struct port_info *)netdev_priv(dev);
    495
    496		ntuple |= (u64)(FT_VNID_ID_VF_V(pi->vin) |
    497				FT_VNID_ID_PF_V(adap->pf) |
    498				FT_VNID_ID_VLD_V(pi->vivld)) << tp->vnic_shift;
    499	}
    500
    501	return ntuple;
    502}
    503EXPORT_SYMBOL(cxgb4_select_ntuple);
    504
    505/*
    506 * Called when the host's neighbor layer makes a change to some entry that is
    507 * loaded into the HW L2 table.
    508 */
    509void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
    510{
    511	unsigned int addr_len = neigh->tbl->key_len;
    512	u32 *addr = (u32 *) neigh->primary_key;
    513	int hash, ifidx = neigh->dev->ifindex;
    514	struct sk_buff_head *arpq = NULL;
    515	struct l2t_data *d = adap->l2t;
    516	struct l2t_entry *e;
    517
    518	hash = addr_hash(d, addr, addr_len, ifidx);
    519	read_lock_bh(&d->lock);
    520	for (e = d->l2tab[hash].first; e; e = e->next)
    521		if (!addreq(e, addr) && e->ifindex == ifidx) {
    522			spin_lock(&e->lock);
    523			if (atomic_read(&e->refcnt))
    524				goto found;
    525			spin_unlock(&e->lock);
    526			break;
    527		}
    528	read_unlock_bh(&d->lock);
    529	return;
    530
    531 found:
    532	read_unlock(&d->lock);
    533
    534	if (neigh != e->neigh)
    535		neigh_replace(e, neigh);
    536
    537	if (e->state == L2T_STATE_RESOLVING) {
    538		if (neigh->nud_state & NUD_FAILED) {
    539			arpq = &e->arpq;
    540		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
    541			   !skb_queue_empty(&e->arpq)) {
    542			write_l2e(adap, e, 1);
    543		}
    544	} else {
    545		e->state = neigh->nud_state & NUD_CONNECTED ?
    546			L2T_STATE_VALID : L2T_STATE_STALE;
    547		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
    548			write_l2e(adap, e, 0);
    549	}
    550
    551	if (arpq) {
    552		struct sk_buff *skb;
    553
    554		/* Called when address resolution fails for an L2T
    555		 * entry to handle packets on the arpq head. If a
    556		 * packet specifies a failure handler it is invoked,
    557		 * otherwise the packet is sent to the device.
    558		 */
    559		while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
    560			const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
    561
    562			spin_unlock(&e->lock);
    563			if (cb->arp_err_handler)
    564				cb->arp_err_handler(cb->handle, skb);
    565			else
    566				t4_ofld_send(adap, skb);
    567			spin_lock(&e->lock);
    568		}
    569	}
    570	spin_unlock_bh(&e->lock);
    571}
    572
    573/* Allocate an L2T entry for use by a switching rule.  Such need to be
    574 * explicitly freed and while busy they are not on any hash chain, so normal
    575 * address resolution updates do not see them.
    576 */
    577struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
    578					 u8 port, u8 *eth_addr)
    579{
    580	struct l2t_data *d = adap->l2t;
    581	struct l2t_entry *e;
    582	int ret;
    583
    584	write_lock_bh(&d->lock);
    585	e = find_or_alloc_l2e(d, vlan, port, eth_addr);
    586	if (e) {
    587		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
    588		if (!atomic_read(&e->refcnt)) {
    589			e->state = L2T_STATE_SWITCHING;
    590			e->vlan = vlan;
    591			e->lport = port;
    592			ether_addr_copy(e->dmac, eth_addr);
    593			atomic_set(&e->refcnt, 1);
    594			ret = write_l2e(adap, e, 0);
    595			if (ret < 0) {
    596				_t4_l2e_free(e);
    597				spin_unlock(&e->lock);
    598				write_unlock_bh(&d->lock);
    599				return NULL;
    600			}
    601		} else {
    602			atomic_inc(&e->refcnt);
    603		}
    604
    605		spin_unlock(&e->lock);
    606	}
    607	write_unlock_bh(&d->lock);
    608	return e;
    609}
    610
    611/**
    612 * cxgb4_l2t_alloc_switching - Allocates an L2T entry for switch filters
    613 * @dev: net_device pointer
    614 * @vlan: VLAN Id
    615 * @port: Associated port
    616 * @dmac: Destination MAC address to add to L2T
    617 * Returns pointer to the allocated l2t entry
    618 *
    619 * Allocates an L2T entry for use by switching rule of a filter
    620 */
    621struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
    622					    u8 port, u8 *dmac)
    623{
    624	struct adapter *adap = netdev2adap(dev);
    625
    626	return t4_l2t_alloc_switching(adap, vlan, port, dmac);
    627}
    628EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
    629
    630struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
    631{
    632	unsigned int l2t_size;
    633	int i;
    634	struct l2t_data *d;
    635
    636	if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
    637		return NULL;
    638	l2t_size = l2t_end - l2t_start + 1;
    639	if (l2t_size < L2T_MIN_HASH_BUCKETS)
    640		return NULL;
    641
    642	d = kvzalloc(struct_size(d, l2tab, l2t_size), GFP_KERNEL);
    643	if (!d)
    644		return NULL;
    645
    646	d->l2t_start = l2t_start;
    647	d->l2t_size = l2t_size;
    648
    649	d->rover = d->l2tab;
    650	atomic_set(&d->nfree, l2t_size);
    651	rwlock_init(&d->lock);
    652
    653	for (i = 0; i < d->l2t_size; ++i) {
    654		d->l2tab[i].idx = i;
    655		d->l2tab[i].state = L2T_STATE_UNUSED;
    656		spin_lock_init(&d->l2tab[i].lock);
    657		atomic_set(&d->l2tab[i].refcnt, 0);
    658		skb_queue_head_init(&d->l2tab[i].arpq);
    659	}
    660	return d;
    661}
    662
    663static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
    664{
    665	struct l2t_data *d = seq->private;
    666
    667	return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
    668}
    669
    670static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
    671{
    672	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
    673}
    674
    675static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    676{
    677	v = l2t_get_idx(seq, *pos);
    678	++(*pos);
    679	return v;
    680}
    681
    682static void l2t_seq_stop(struct seq_file *seq, void *v)
    683{
    684}
    685
    686static char l2e_state(const struct l2t_entry *e)
    687{
    688	switch (e->state) {
    689	case L2T_STATE_VALID: return 'V';
    690	case L2T_STATE_STALE: return 'S';
    691	case L2T_STATE_SYNC_WRITE: return 'W';
    692	case L2T_STATE_RESOLVING:
    693		return skb_queue_empty(&e->arpq) ? 'R' : 'A';
    694	case L2T_STATE_SWITCHING: return 'X';
    695	default:
    696		return 'U';
    697	}
    698}
    699
    700bool cxgb4_check_l2t_valid(struct l2t_entry *e)
    701{
    702	bool valid;
    703
    704	spin_lock(&e->lock);
    705	valid = (e->state == L2T_STATE_VALID);
    706	spin_unlock(&e->lock);
    707	return valid;
    708}
    709EXPORT_SYMBOL(cxgb4_check_l2t_valid);
    710
    711static int l2t_seq_show(struct seq_file *seq, void *v)
    712{
    713	if (v == SEQ_START_TOKEN)
    714		seq_puts(seq, " Idx IP address                "
    715			 "Ethernet address  VLAN/P LP State Users Port\n");
    716	else {
    717		char ip[60];
    718		struct l2t_data *d = seq->private;
    719		struct l2t_entry *e = v;
    720
    721		spin_lock_bh(&e->lock);
    722		if (e->state == L2T_STATE_SWITCHING)
    723			ip[0] = '\0';
    724		else
    725			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
    726		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
    727			   e->idx + d->l2t_start, ip, e->dmac,
    728			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
    729			   l2e_state(e), atomic_read(&e->refcnt),
    730			   e->neigh ? e->neigh->dev->name : "");
    731		spin_unlock_bh(&e->lock);
    732	}
    733	return 0;
    734}
    735
    736static const struct seq_operations l2t_seq_ops = {
    737	.start = l2t_seq_start,
    738	.next = l2t_seq_next,
    739	.stop = l2t_seq_stop,
    740	.show = l2t_seq_show
    741};
    742
    743static int l2t_seq_open(struct inode *inode, struct file *file)
    744{
    745	int rc = seq_open(file, &l2t_seq_ops);
    746
    747	if (!rc) {
    748		struct adapter *adap = inode->i_private;
    749		struct seq_file *seq = file->private_data;
    750
    751		seq->private = adap->l2t;
    752	}
    753	return rc;
    754}
    755
    756const struct file_operations t4_l2t_fops = {
    757	.owner = THIS_MODULE,
    758	.open = l2t_seq_open,
    759	.read = seq_read,
    760	.llseek = seq_lseek,
    761	.release = seq_release,
    762};