cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sge.c (151417B)


      1/*
      2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
      3 *
      4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
      5 *
      6 * This software is available to you under a choice of one of two
      7 * licenses.  You may choose to be licensed under the terms of the GNU
      8 * General Public License (GPL) Version 2, available from the file
      9 * COPYING in the main directory of this source tree, or the
     10 * OpenIB.org BSD license below:
     11 *
     12 *     Redistribution and use in source and binary forms, with or
     13 *     without modification, are permitted provided that the following
     14 *     conditions are met:
     15 *
     16 *      - Redistributions of source code must retain the above
     17 *        copyright notice, this list of conditions and the following
     18 *        disclaimer.
     19 *
     20 *      - Redistributions in binary form must reproduce the above
     21 *        copyright notice, this list of conditions and the following
     22 *        disclaimer in the documentation and/or other materials
     23 *        provided with the distribution.
     24 *
     25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     32 * SOFTWARE.
     33 */
     34
     35#include <linux/skbuff.h>
     36#include <linux/netdevice.h>
     37#include <linux/etherdevice.h>
     38#include <linux/if_vlan.h>
     39#include <linux/ip.h>
     40#include <linux/dma-mapping.h>
     41#include <linux/jiffies.h>
     42#include <linux/prefetch.h>
     43#include <linux/export.h>
     44#include <net/xfrm.h>
     45#include <net/ipv6.h>
     46#include <net/tcp.h>
     47#include <net/busy_poll.h>
     48#ifdef CONFIG_CHELSIO_T4_FCOE
     49#include <scsi/fc/fc_fcoe.h>
     50#endif /* CONFIG_CHELSIO_T4_FCOE */
     51#include "cxgb4.h"
     52#include "t4_regs.h"
     53#include "t4_values.h"
     54#include "t4_msg.h"
     55#include "t4fw_api.h"
     56#include "cxgb4_ptp.h"
     57#include "cxgb4_uld.h"
     58#include "cxgb4_tc_mqprio.h"
     59#include "sched.h"
     60
     61/*
     62 * Rx buffer size.  We use largish buffers if possible but settle for single
     63 * pages under memory shortage.
     64 */
     65#if PAGE_SHIFT >= 16
     66# define FL_PG_ORDER 0
     67#else
     68# define FL_PG_ORDER (16 - PAGE_SHIFT)
     69#endif
     70
     71/* RX_PULL_LEN should be <= RX_COPY_THRES */
     72#define RX_COPY_THRES    256
     73#define RX_PULL_LEN      128
     74
     75/*
     76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
     77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
     78 */
     79#define RX_PKT_SKB_LEN   512
     80
     81/*
     82 * Max number of Tx descriptors we clean up at a time.  Should be modest as
     83 * freeing skbs isn't cheap and it happens while holding locks.  We just need
     84 * to free packets faster than they arrive, we eventually catch up and keep
     85 * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
     86 * also match the CIDX Flush Threshold.
     87 */
     88#define MAX_TX_RECLAIM 32
     89
     90/*
     91 * Max number of Rx buffers we replenish at a time.  Again keep this modest,
     92 * allocating buffers isn't cheap either.
     93 */
     94#define MAX_RX_REFILL 16U
     95
     96/*
     97 * Period of the Rx queue check timer.  This timer is infrequent as it has
     98 * something to do only when the system experiences severe memory shortage.
     99 */
    100#define RX_QCHECK_PERIOD (HZ / 2)
    101
    102/*
    103 * Period of the Tx queue check timer.
    104 */
    105#define TX_QCHECK_PERIOD (HZ / 2)
    106
    107/*
    108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
    109 */
    110#define MAX_TIMER_TX_RECLAIM 100
    111
    112/*
    113 * Timer index used when backing off due to memory shortage.
    114 */
    115#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
    116
    117/*
    118 * Suspension threshold for non-Ethernet Tx queues.  We require enough room
    119 * for a full sized WR.
    120 */
    121#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
    122
    123/*
    124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
    125 * into a WR.
    126 */
    127#define MAX_IMM_TX_PKT_LEN 256
    128
    129/*
    130 * Max size of a WR sent through a control Tx queue.
    131 */
    132#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
    133
    134struct rx_sw_desc {                /* SW state per Rx descriptor */
    135	struct page *page;
    136	dma_addr_t dma_addr;
    137};
    138
    139/*
    140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
    141 * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
    142 * We could easily support more but there doesn't seem to be much need for
    143 * that ...
    144 */
    145#define FL_MTU_SMALL 1500
    146#define FL_MTU_LARGE 9000
    147
    148static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
    149					  unsigned int mtu)
    150{
    151	struct sge *s = &adapter->sge;
    152
    153	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
    154}
    155
    156#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
    157#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
    158
    159/*
    160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
    161 * these to specify the buffer size as an index into the SGE Free List Buffer
    162 * Size register array.  We also use bit 4, when the buffer has been unmapped
    163 * for DMA, but this is of course never sent to the hardware and is only used
    164 * to prevent double unmappings.  All of the above requires that the Free List
    165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
    166 * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
    167 * Free List Buffer alignment is 32 bytes, this works out for us ...
    168 */
    169enum {
    170	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
    171	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
    172	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
    173
    174	/*
    175	 * XXX We shouldn't depend on being able to use these indices.
    176	 * XXX Especially when some other Master PF has initialized the
    177	 * XXX adapter or we use the Firmware Configuration File.  We
    178	 * XXX should really search through the Host Buffer Size register
    179	 * XXX array for the appropriately sized buffer indices.
    180	 */
    181	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
    182	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
    183
    184	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
    185	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
    186};
    187
    188static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
    189#define MIN_NAPI_WORK  1
    190
    191static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
    192{
    193	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
    194}
    195
    196static inline bool is_buf_mapped(const struct rx_sw_desc *d)
    197{
    198	return !(d->dma_addr & RX_UNMAPPED_BUF);
    199}
    200
    201/**
    202 *	txq_avail - return the number of available slots in a Tx queue
    203 *	@q: the Tx queue
    204 *
    205 *	Returns the number of descriptors in a Tx queue available to write new
    206 *	packets.
    207 */
    208static inline unsigned int txq_avail(const struct sge_txq *q)
    209{
    210	return q->size - 1 - q->in_use;
    211}
    212
    213/**
    214 *	fl_cap - return the capacity of a free-buffer list
    215 *	@fl: the FL
    216 *
    217 *	Returns the capacity of a free-buffer list.  The capacity is less than
    218 *	the size because one descriptor needs to be left unpopulated, otherwise
    219 *	HW will think the FL is empty.
    220 */
    221static inline unsigned int fl_cap(const struct sge_fl *fl)
    222{
    223	return fl->size - 8;   /* 1 descriptor = 8 buffers */
    224}
    225
    226/**
    227 *	fl_starving - return whether a Free List is starving.
    228 *	@adapter: pointer to the adapter
    229 *	@fl: the Free List
    230 *
    231 *	Tests specified Free List to see whether the number of buffers
    232 *	available to the hardware has falled below our "starvation"
    233 *	threshold.
    234 */
    235static inline bool fl_starving(const struct adapter *adapter,
    236			       const struct sge_fl *fl)
    237{
    238	const struct sge *s = &adapter->sge;
    239
    240	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
    241}
    242
    243int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
    244		  dma_addr_t *addr)
    245{
    246	const skb_frag_t *fp, *end;
    247	const struct skb_shared_info *si;
    248
    249	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
    250	if (dma_mapping_error(dev, *addr))
    251		goto out_err;
    252
    253	si = skb_shinfo(skb);
    254	end = &si->frags[si->nr_frags];
    255
    256	for (fp = si->frags; fp < end; fp++) {
    257		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
    258					   DMA_TO_DEVICE);
    259		if (dma_mapping_error(dev, *addr))
    260			goto unwind;
    261	}
    262	return 0;
    263
    264unwind:
    265	while (fp-- > si->frags)
    266		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
    267
    268	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
    269out_err:
    270	return -ENOMEM;
    271}
    272EXPORT_SYMBOL(cxgb4_map_skb);
    273
    274static void unmap_skb(struct device *dev, const struct sk_buff *skb,
    275		      const dma_addr_t *addr)
    276{
    277	const skb_frag_t *fp, *end;
    278	const struct skb_shared_info *si;
    279
    280	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
    281
    282	si = skb_shinfo(skb);
    283	end = &si->frags[si->nr_frags];
    284	for (fp = si->frags; fp < end; fp++)
    285		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
    286}
    287
    288#ifdef CONFIG_NEED_DMA_MAP_STATE
    289/**
    290 *	deferred_unmap_destructor - unmap a packet when it is freed
    291 *	@skb: the packet
    292 *
    293 *	This is the packet destructor used for Tx packets that need to remain
    294 *	mapped until they are freed rather than until their Tx descriptors are
    295 *	freed.
    296 */
    297static void deferred_unmap_destructor(struct sk_buff *skb)
    298{
    299	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
    300}
    301#endif
    302
    303/**
    304 *	free_tx_desc - reclaims Tx descriptors and their buffers
    305 *	@adap: the adapter
    306 *	@q: the Tx queue to reclaim descriptors from
    307 *	@n: the number of descriptors to reclaim
    308 *	@unmap: whether the buffers should be unmapped for DMA
    309 *
    310 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
    311 *	Tx buffers.  Called with the Tx queue lock held.
    312 */
    313void free_tx_desc(struct adapter *adap, struct sge_txq *q,
    314		  unsigned int n, bool unmap)
    315{
    316	unsigned int cidx = q->cidx;
    317	struct tx_sw_desc *d;
    318
    319	d = &q->sdesc[cidx];
    320	while (n--) {
    321		if (d->skb) {                       /* an SGL is present */
    322			if (unmap && d->addr[0]) {
    323				unmap_skb(adap->pdev_dev, d->skb, d->addr);
    324				memset(d->addr, 0, sizeof(d->addr));
    325			}
    326			dev_consume_skb_any(d->skb);
    327			d->skb = NULL;
    328		}
    329		++d;
    330		if (++cidx == q->size) {
    331			cidx = 0;
    332			d = q->sdesc;
    333		}
    334	}
    335	q->cidx = cidx;
    336}
    337
    338/*
    339 * Return the number of reclaimable descriptors in a Tx queue.
    340 */
    341static inline int reclaimable(const struct sge_txq *q)
    342{
    343	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
    344	hw_cidx -= q->cidx;
    345	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
    346}
    347
    348/**
    349 *	reclaim_completed_tx - reclaims completed TX Descriptors
    350 *	@adap: the adapter
    351 *	@q: the Tx queue to reclaim completed descriptors from
    352 *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
    353 *	@unmap: whether the buffers should be unmapped for DMA
    354 *
    355 *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
    356 *	and frees the associated buffers if possible.  If @max == -1, then
    357 *	we'll use a defaiult maximum.  Called with the TX Queue locked.
    358 */
    359static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
    360				       int maxreclaim, bool unmap)
    361{
    362	int reclaim = reclaimable(q);
    363
    364	if (reclaim) {
    365		/*
    366		 * Limit the amount of clean up work we do at a time to keep
    367		 * the Tx lock hold time O(1).
    368		 */
    369		if (maxreclaim < 0)
    370			maxreclaim = MAX_TX_RECLAIM;
    371		if (reclaim > maxreclaim)
    372			reclaim = maxreclaim;
    373
    374		free_tx_desc(adap, q, reclaim, unmap);
    375		q->in_use -= reclaim;
    376	}
    377
    378	return reclaim;
    379}
    380
    381/**
    382 *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
    383 *	@adap: the adapter
    384 *	@q: the Tx queue to reclaim completed descriptors from
    385 *	@unmap: whether the buffers should be unmapped for DMA
    386 *
    387 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
    388 *	and frees the associated buffers if possible.  Called with the Tx
    389 *	queue locked.
    390 */
    391void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
    392				bool unmap)
    393{
    394	(void)reclaim_completed_tx(adap, q, -1, unmap);
    395}
    396EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
    397
    398static inline int get_buf_size(struct adapter *adapter,
    399			       const struct rx_sw_desc *d)
    400{
    401	struct sge *s = &adapter->sge;
    402	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
    403	int buf_size;
    404
    405	switch (rx_buf_size_idx) {
    406	case RX_SMALL_PG_BUF:
    407		buf_size = PAGE_SIZE;
    408		break;
    409
    410	case RX_LARGE_PG_BUF:
    411		buf_size = PAGE_SIZE << s->fl_pg_order;
    412		break;
    413
    414	case RX_SMALL_MTU_BUF:
    415		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
    416		break;
    417
    418	case RX_LARGE_MTU_BUF:
    419		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
    420		break;
    421
    422	default:
    423		BUG();
    424	}
    425
    426	return buf_size;
    427}
    428
    429/**
    430 *	free_rx_bufs - free the Rx buffers on an SGE free list
    431 *	@adap: the adapter
    432 *	@q: the SGE free list to free buffers from
    433 *	@n: how many buffers to free
    434 *
    435 *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
    436 *	buffers must be made inaccessible to HW before calling this function.
    437 */
    438static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
    439{
    440	while (n--) {
    441		struct rx_sw_desc *d = &q->sdesc[q->cidx];
    442
    443		if (is_buf_mapped(d))
    444			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
    445				       get_buf_size(adap, d),
    446				       DMA_FROM_DEVICE);
    447		put_page(d->page);
    448		d->page = NULL;
    449		if (++q->cidx == q->size)
    450			q->cidx = 0;
    451		q->avail--;
    452	}
    453}
    454
    455/**
    456 *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
    457 *	@adap: the adapter
    458 *	@q: the SGE free list
    459 *
    460 *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
    461 *	buffer must be made inaccessible to HW before calling this function.
    462 *
    463 *	This is similar to @free_rx_bufs above but does not free the buffer.
    464 *	Do note that the FL still loses any further access to the buffer.
    465 */
    466static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
    467{
    468	struct rx_sw_desc *d = &q->sdesc[q->cidx];
    469
    470	if (is_buf_mapped(d))
    471		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
    472			       get_buf_size(adap, d), DMA_FROM_DEVICE);
    473	d->page = NULL;
    474	if (++q->cidx == q->size)
    475		q->cidx = 0;
    476	q->avail--;
    477}
    478
    479static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
    480{
    481	if (q->pend_cred >= 8) {
    482		u32 val = adap->params.arch.sge_fl_db;
    483
    484		if (is_t4(adap->params.chip))
    485			val |= PIDX_V(q->pend_cred / 8);
    486		else
    487			val |= PIDX_T5_V(q->pend_cred / 8);
    488
    489		/* Make sure all memory writes to the Free List queue are
    490		 * committed before we tell the hardware about them.
    491		 */
    492		wmb();
    493
    494		/* If we don't have access to the new User Doorbell (T5+), use
    495		 * the old doorbell mechanism; otherwise use the new BAR2
    496		 * mechanism.
    497		 */
    498		if (unlikely(q->bar2_addr == NULL)) {
    499			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
    500				     val | QID_V(q->cntxt_id));
    501		} else {
    502			writel(val | QID_V(q->bar2_qid),
    503			       q->bar2_addr + SGE_UDB_KDOORBELL);
    504
    505			/* This Write memory Barrier will force the write to
    506			 * the User Doorbell area to be flushed.
    507			 */
    508			wmb();
    509		}
    510		q->pend_cred &= 7;
    511	}
    512}
    513
    514static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
    515				  dma_addr_t mapping)
    516{
    517	sd->page = pg;
    518	sd->dma_addr = mapping;      /* includes size low bits */
    519}
    520
    521/**
    522 *	refill_fl - refill an SGE Rx buffer ring
    523 *	@adap: the adapter
    524 *	@q: the ring to refill
    525 *	@n: the number of new buffers to allocate
    526 *	@gfp: the gfp flags for the allocations
    527 *
    528 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
    529 *	allocated with the supplied gfp flags.  The caller must assure that
    530 *	@n does not exceed the queue's capacity.  If afterwards the queue is
    531 *	found critically low mark it as starving in the bitmap of starving FLs.
    532 *
    533 *	Returns the number of buffers allocated.
    534 */
    535static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
    536			      gfp_t gfp)
    537{
    538	struct sge *s = &adap->sge;
    539	struct page *pg;
    540	dma_addr_t mapping;
    541	unsigned int cred = q->avail;
    542	__be64 *d = &q->desc[q->pidx];
    543	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
    544	int node;
    545
    546#ifdef CONFIG_DEBUG_FS
    547	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
    548		goto out;
    549#endif
    550
    551	gfp |= __GFP_NOWARN;
    552	node = dev_to_node(adap->pdev_dev);
    553
    554	if (s->fl_pg_order == 0)
    555		goto alloc_small_pages;
    556
    557	/*
    558	 * Prefer large buffers
    559	 */
    560	while (n) {
    561		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
    562		if (unlikely(!pg)) {
    563			q->large_alloc_failed++;
    564			break;       /* fall back to single pages */
    565		}
    566
    567		mapping = dma_map_page(adap->pdev_dev, pg, 0,
    568				       PAGE_SIZE << s->fl_pg_order,
    569				       DMA_FROM_DEVICE);
    570		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
    571			__free_pages(pg, s->fl_pg_order);
    572			q->mapping_err++;
    573			goto out;   /* do not try small pages for this error */
    574		}
    575		mapping |= RX_LARGE_PG_BUF;
    576		*d++ = cpu_to_be64(mapping);
    577
    578		set_rx_sw_desc(sd, pg, mapping);
    579		sd++;
    580
    581		q->avail++;
    582		if (++q->pidx == q->size) {
    583			q->pidx = 0;
    584			sd = q->sdesc;
    585			d = q->desc;
    586		}
    587		n--;
    588	}
    589
    590alloc_small_pages:
    591	while (n--) {
    592		pg = alloc_pages_node(node, gfp, 0);
    593		if (unlikely(!pg)) {
    594			q->alloc_failed++;
    595			break;
    596		}
    597
    598		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
    599				       DMA_FROM_DEVICE);
    600		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
    601			put_page(pg);
    602			q->mapping_err++;
    603			goto out;
    604		}
    605		*d++ = cpu_to_be64(mapping);
    606
    607		set_rx_sw_desc(sd, pg, mapping);
    608		sd++;
    609
    610		q->avail++;
    611		if (++q->pidx == q->size) {
    612			q->pidx = 0;
    613			sd = q->sdesc;
    614			d = q->desc;
    615		}
    616	}
    617
    618out:	cred = q->avail - cred;
    619	q->pend_cred += cred;
    620	ring_fl_db(adap, q);
    621
    622	if (unlikely(fl_starving(adap, q))) {
    623		smp_wmb();
    624		q->low++;
    625		set_bit(q->cntxt_id - adap->sge.egr_start,
    626			adap->sge.starving_fl);
    627	}
    628
    629	return cred;
    630}
    631
    632static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
    633{
    634	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
    635		  GFP_ATOMIC);
    636}
    637
    638/**
    639 *	alloc_ring - allocate resources for an SGE descriptor ring
    640 *	@dev: the PCI device's core device
    641 *	@nelem: the number of descriptors
    642 *	@elem_size: the size of each descriptor
    643 *	@sw_size: the size of the SW state associated with each ring element
    644 *	@phys: the physical address of the allocated ring
    645 *	@metadata: address of the array holding the SW state for the ring
    646 *	@stat_size: extra space in HW ring for status information
    647 *	@node: preferred node for memory allocations
    648 *
    649 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
    650 *	free buffer lists, or response queues.  Each SGE ring requires
    651 *	space for its HW descriptors plus, optionally, space for the SW state
    652 *	associated with each HW entry (the metadata).  The function returns
    653 *	three values: the virtual address for the HW ring (the return value
    654 *	of the function), the bus address of the HW ring, and the address
    655 *	of the SW ring.
    656 */
    657static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
    658			size_t sw_size, dma_addr_t *phys, void *metadata,
    659			size_t stat_size, int node)
    660{
    661	size_t len = nelem * elem_size + stat_size;
    662	void *s = NULL;
    663	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
    664
    665	if (!p)
    666		return NULL;
    667	if (sw_size) {
    668		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
    669
    670		if (!s) {
    671			dma_free_coherent(dev, len, p, *phys);
    672			return NULL;
    673		}
    674	}
    675	if (metadata)
    676		*(void **)metadata = s;
    677	return p;
    678}
    679
    680/**
    681 *	sgl_len - calculates the size of an SGL of the given capacity
    682 *	@n: the number of SGL entries
    683 *
    684 *	Calculates the number of flits needed for a scatter/gather list that
    685 *	can hold the given number of entries.
    686 */
    687static inline unsigned int sgl_len(unsigned int n)
    688{
    689	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
    690	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
    691	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
    692	 * repeated sequences of { Length[i], Length[i+1], Address[i],
    693	 * Address[i+1] } (this ensures that all addresses are on 64-bit
    694	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
    695	 * Address[N+1] is omitted.
    696	 *
    697	 * The following calculation incorporates all of the above.  It's
    698	 * somewhat hard to follow but, briefly: the "+2" accounts for the
    699	 * first two flits which include the DSGL header, Length0 and
    700	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
    701	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
    702	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
    703	 * (n-1) is odd ...
    704	 */
    705	n--;
    706	return (3 * n) / 2 + (n & 1) + 2;
    707}
    708
    709/**
    710 *	flits_to_desc - returns the num of Tx descriptors for the given flits
    711 *	@n: the number of flits
    712 *
    713 *	Returns the number of Tx descriptors needed for the supplied number
    714 *	of flits.
    715 */
    716static inline unsigned int flits_to_desc(unsigned int n)
    717{
    718	BUG_ON(n > SGE_MAX_WR_LEN / 8);
    719	return DIV_ROUND_UP(n, 8);
    720}
    721
    722/**
    723 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
    724 *	@skb: the packet
    725 *	@chip_ver: chip version
    726 *
    727 *	Returns whether an Ethernet packet is small enough to fit as
    728 *	immediate data. Return value corresponds to headroom required.
    729 */
    730static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
    731{
    732	int hdrlen = 0;
    733
    734	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
    735	    chip_ver > CHELSIO_T5) {
    736		hdrlen = sizeof(struct cpl_tx_tnl_lso);
    737		hdrlen += sizeof(struct cpl_tx_pkt_core);
    738	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
    739		return 0;
    740	} else {
    741		hdrlen = skb_shinfo(skb)->gso_size ?
    742			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
    743		hdrlen += sizeof(struct cpl_tx_pkt);
    744	}
    745	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
    746		return hdrlen;
    747	return 0;
    748}
    749
    750/**
    751 *	calc_tx_flits - calculate the number of flits for a packet Tx WR
    752 *	@skb: the packet
    753 *	@chip_ver: chip version
    754 *
    755 *	Returns the number of flits needed for a Tx WR for the given Ethernet
    756 *	packet, including the needed WR and CPL headers.
    757 */
    758static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
    759					 unsigned int chip_ver)
    760{
    761	unsigned int flits;
    762	int hdrlen = is_eth_imm(skb, chip_ver);
    763
    764	/* If the skb is small enough, we can pump it out as a work request
    765	 * with only immediate data.  In that case we just have to have the
    766	 * TX Packet header plus the skb data in the Work Request.
    767	 */
    768
    769	if (hdrlen)
    770		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
    771
    772	/* Otherwise, we're going to have to construct a Scatter gather list
    773	 * of the skb body and fragments.  We also include the flits necessary
    774	 * for the TX Packet Work Request and CPL.  We always have a firmware
    775	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
    776	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
    777	 * message or, if we're doing a Large Send Offload, an LSO CPL message
    778	 * with an embedded TX Packet Write CPL message.
    779	 */
    780	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
    781	if (skb_shinfo(skb)->gso_size) {
    782		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
    783			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
    784				 sizeof(struct cpl_tx_tnl_lso);
    785		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
    786			u32 pkt_hdrlen;
    787
    788			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
    789						     skb_headlen(skb));
    790			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
    791				 round_up(pkt_hdrlen, 16);
    792		} else {
    793			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
    794				 sizeof(struct cpl_tx_pkt_lso_core);
    795		}
    796
    797		hdrlen += sizeof(struct cpl_tx_pkt_core);
    798		flits += (hdrlen / sizeof(__be64));
    799	} else {
    800		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
    801			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
    802	}
    803	return flits;
    804}
    805
    806/**
    807 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
    808 *	@skb: the packet
    809 *	@chip_ver: chip version
    810 *
    811 *	Returns the number of Tx descriptors needed for the given Ethernet
    812 *	packet, including the needed WR and CPL headers.
    813 */
    814static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
    815					 unsigned int chip_ver)
    816{
    817	return flits_to_desc(calc_tx_flits(skb, chip_ver));
    818}
    819
    820/**
    821 *	cxgb4_write_sgl - populate a scatter/gather list for a packet
    822 *	@skb: the packet
    823 *	@q: the Tx queue we are writing into
    824 *	@sgl: starting location for writing the SGL
    825 *	@end: points right after the end of the SGL
    826 *	@start: start offset into skb main-body data to include in the SGL
    827 *	@addr: the list of bus addresses for the SGL elements
    828 *
    829 *	Generates a gather list for the buffers that make up a packet.
    830 *	The caller must provide adequate space for the SGL that will be written.
    831 *	The SGL includes all of the packet's page fragments and the data in its
    832 *	main body except for the first @start bytes.  @sgl must be 16-byte
    833 *	aligned and within a Tx descriptor with available space.  @end points
    834 *	right after the end of the SGL but does not account for any potential
    835 *	wrap around, i.e., @end > @sgl.
    836 */
    837void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
    838		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
    839		     const dma_addr_t *addr)
    840{
    841	unsigned int i, len;
    842	struct ulptx_sge_pair *to;
    843	const struct skb_shared_info *si = skb_shinfo(skb);
    844	unsigned int nfrags = si->nr_frags;
    845	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
    846
    847	len = skb_headlen(skb) - start;
    848	if (likely(len)) {
    849		sgl->len0 = htonl(len);
    850		sgl->addr0 = cpu_to_be64(addr[0] + start);
    851		nfrags++;
    852	} else {
    853		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
    854		sgl->addr0 = cpu_to_be64(addr[1]);
    855	}
    856
    857	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
    858			      ULPTX_NSGE_V(nfrags));
    859	if (likely(--nfrags == 0))
    860		return;
    861	/*
    862	 * Most of the complexity below deals with the possibility we hit the
    863	 * end of the queue in the middle of writing the SGL.  For this case
    864	 * only we create the SGL in a temporary buffer and then copy it.
    865	 */
    866	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
    867
    868	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
    869		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
    870		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
    871		to->addr[0] = cpu_to_be64(addr[i]);
    872		to->addr[1] = cpu_to_be64(addr[++i]);
    873	}
    874	if (nfrags) {
    875		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
    876		to->len[1] = cpu_to_be32(0);
    877		to->addr[0] = cpu_to_be64(addr[i + 1]);
    878	}
    879	if (unlikely((u8 *)end > (u8 *)q->stat)) {
    880		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
    881
    882		if (likely(part0))
    883			memcpy(sgl->sge, buf, part0);
    884		part1 = (u8 *)end - (u8 *)q->stat;
    885		memcpy(q->desc, (u8 *)buf + part0, part1);
    886		end = (void *)q->desc + part1;
    887	}
    888	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
    889		*end = 0;
    890}
    891EXPORT_SYMBOL(cxgb4_write_sgl);
    892
    893/*	cxgb4_write_partial_sgl - populate SGL for partial packet
    894 *	@skb: the packet
    895 *	@q: the Tx queue we are writing into
    896 *	@sgl: starting location for writing the SGL
    897 *	@end: points right after the end of the SGL
    898 *	@addr: the list of bus addresses for the SGL elements
    899 *	@start: start offset in the SKB where partial data starts
    900 *	@len: length of data from @start to send out
    901 *
    902 *	This API will handle sending out partial data of a skb if required.
    903 *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
    904 *	and @len will decide how much data after @start offset to send out.
    905 */
    906void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
    907			     struct ulptx_sgl *sgl, u64 *end,
    908			     const dma_addr_t *addr, u32 start, u32 len)
    909{
    910	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
    911	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
    912	struct skb_shared_info *si = skb_shinfo(skb);
    913	u8 i = 0, frag_idx = 0, nfrags = 0;
    914	skb_frag_t *frag;
    915
    916	/* Fill the first SGL either from linear data or from partial
    917	 * frag based on @start.
    918	 */
    919	if (unlikely(start < skb_linear_data_len)) {
    920		frag_size = min(len, skb_linear_data_len - start);
    921		sgl->len0 = htonl(frag_size);
    922		sgl->addr0 = cpu_to_be64(addr[0] + start);
    923		len -= frag_size;
    924		nfrags++;
    925	} else {
    926		start -= skb_linear_data_len;
    927		frag = &si->frags[frag_idx];
    928		frag_size = skb_frag_size(frag);
    929		/* find the first frag */
    930		while (start >= frag_size) {
    931			start -= frag_size;
    932			frag_idx++;
    933			frag = &si->frags[frag_idx];
    934			frag_size = skb_frag_size(frag);
    935		}
    936
    937		frag_size = min(len, skb_frag_size(frag) - start);
    938		sgl->len0 = cpu_to_be32(frag_size);
    939		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
    940		len -= frag_size;
    941		nfrags++;
    942		frag_idx++;
    943	}
    944
    945	/* If the entire partial data fit in one SGL, then send it out
    946	 * now.
    947	 */
    948	if (!len)
    949		goto done;
    950
    951	/* Most of the complexity below deals with the possibility we hit the
    952	 * end of the queue in the middle of writing the SGL.  For this case
    953	 * only we create the SGL in a temporary buffer and then copy it.
    954	 */
    955	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
    956
    957	/* If the skb couldn't fit in first SGL completely, fill the
    958	 * rest of the frags in subsequent SGLs. Note that each SGL
    959	 * pair can store 2 frags.
    960	 */
    961	while (len) {
    962		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
    963		to->len[i & 1] = cpu_to_be32(frag_size);
    964		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
    965		if (i && (i & 1))
    966			to++;
    967		nfrags++;
    968		frag_idx++;
    969		i++;
    970		len -= frag_size;
    971	}
    972
    973	/* If we ended in an odd boundary, then set the second SGL's
    974	 * length in the pair to 0.
    975	 */
    976	if (i & 1)
    977		to->len[1] = cpu_to_be32(0);
    978
    979	/* Copy from temporary buffer to Tx ring, in case we hit the
    980	 * end of the queue in the middle of writing the SGL.
    981	 */
    982	if (unlikely((u8 *)end > (u8 *)q->stat)) {
    983		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
    984
    985		if (likely(part0))
    986			memcpy(sgl->sge, buf, part0);
    987		part1 = (u8 *)end - (u8 *)q->stat;
    988		memcpy(q->desc, (u8 *)buf + part0, part1);
    989		end = (void *)q->desc + part1;
    990	}
    991
    992	/* 0-pad to multiple of 16 */
    993	if ((uintptr_t)end & 8)
    994		*end = 0;
    995done:
    996	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
    997			ULPTX_NSGE_V(nfrags));
    998}
    999EXPORT_SYMBOL(cxgb4_write_partial_sgl);
   1000
   1001/* This function copies 64 byte coalesced work request to
   1002 * memory mapped BAR2 space. For coalesced WR SGE fetches
   1003 * data from the FIFO instead of from Host.
   1004 */
   1005static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
   1006{
   1007	int count = 8;
   1008
   1009	while (count) {
   1010		writeq(*src, dst);
   1011		src++;
   1012		dst++;
   1013		count--;
   1014	}
   1015}
   1016
   1017/**
   1018 *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
   1019 *	@adap: the adapter
   1020 *	@q: the Tx queue
   1021 *	@n: number of new descriptors to give to HW
   1022 *
   1023 *	Ring the doorbel for a Tx queue.
   1024 */
   1025inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
   1026{
   1027	/* Make sure that all writes to the TX Descriptors are committed
   1028	 * before we tell the hardware about them.
   1029	 */
   1030	wmb();
   1031
   1032	/* If we don't have access to the new User Doorbell (T5+), use the old
   1033	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
   1034	 */
   1035	if (unlikely(q->bar2_addr == NULL)) {
   1036		u32 val = PIDX_V(n);
   1037		unsigned long flags;
   1038
   1039		/* For T4 we need to participate in the Doorbell Recovery
   1040		 * mechanism.
   1041		 */
   1042		spin_lock_irqsave(&q->db_lock, flags);
   1043		if (!q->db_disabled)
   1044			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
   1045				     QID_V(q->cntxt_id) | val);
   1046		else
   1047			q->db_pidx_inc += n;
   1048		q->db_pidx = q->pidx;
   1049		spin_unlock_irqrestore(&q->db_lock, flags);
   1050	} else {
   1051		u32 val = PIDX_T5_V(n);
   1052
   1053		/* T4 and later chips share the same PIDX field offset within
   1054		 * the doorbell, but T5 and later shrank the field in order to
   1055		 * gain a bit for Doorbell Priority.  The field was absurdly
   1056		 * large in the first place (14 bits) so we just use the T5
   1057		 * and later limits and warn if a Queue ID is too large.
   1058		 */
   1059		WARN_ON(val & DBPRIO_F);
   1060
   1061		/* If we're only writing a single TX Descriptor and we can use
   1062		 * Inferred QID registers, we can use the Write Combining
   1063		 * Gather Buffer; otherwise we use the simple doorbell.
   1064		 */
   1065		if (n == 1 && q->bar2_qid == 0) {
   1066			int index = (q->pidx
   1067				     ? (q->pidx - 1)
   1068				     : (q->size - 1));
   1069			u64 *wr = (u64 *)&q->desc[index];
   1070
   1071			cxgb_pio_copy((u64 __iomem *)
   1072				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
   1073				      wr);
   1074		} else {
   1075			writel(val | QID_V(q->bar2_qid),
   1076			       q->bar2_addr + SGE_UDB_KDOORBELL);
   1077		}
   1078
   1079		/* This Write Memory Barrier will force the write to the User
   1080		 * Doorbell area to be flushed.  This is needed to prevent
   1081		 * writes on different CPUs for the same queue from hitting
   1082		 * the adapter out of order.  This is required when some Work
   1083		 * Requests take the Write Combine Gather Buffer path (user
   1084		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
   1085		 * take the traditional path where we simply increment the
   1086		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
   1087		 * hardware DMA read the actual Work Request.
   1088		 */
   1089		wmb();
   1090	}
   1091}
   1092EXPORT_SYMBOL(cxgb4_ring_tx_db);
   1093
   1094/**
   1095 *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
   1096 *	@skb: the packet
   1097 *	@q: the Tx queue where the packet will be inlined
   1098 *	@pos: starting position in the Tx queue where to inline the packet
   1099 *
   1100 *	Inline a packet's contents directly into Tx descriptors, starting at
   1101 *	the given position within the Tx DMA ring.
   1102 *	Most of the complexity of this operation is dealing with wrap arounds
   1103 *	in the middle of the packet we want to inline.
   1104 */
   1105void cxgb4_inline_tx_skb(const struct sk_buff *skb,
   1106			 const struct sge_txq *q, void *pos)
   1107{
   1108	int left = (void *)q->stat - pos;
   1109	u64 *p;
   1110
   1111	if (likely(skb->len <= left)) {
   1112		if (likely(!skb->data_len))
   1113			skb_copy_from_linear_data(skb, pos, skb->len);
   1114		else
   1115			skb_copy_bits(skb, 0, pos, skb->len);
   1116		pos += skb->len;
   1117	} else {
   1118		skb_copy_bits(skb, 0, pos, left);
   1119		skb_copy_bits(skb, left, q->desc, skb->len - left);
   1120		pos = (void *)q->desc + (skb->len - left);
   1121	}
   1122
   1123	/* 0-pad to multiple of 16 */
   1124	p = PTR_ALIGN(pos, 8);
   1125	if ((uintptr_t)p & 8)
   1126		*p = 0;
   1127}
   1128EXPORT_SYMBOL(cxgb4_inline_tx_skb);
   1129
   1130static void *inline_tx_skb_header(const struct sk_buff *skb,
   1131				  const struct sge_txq *q,  void *pos,
   1132				  int length)
   1133{
   1134	u64 *p;
   1135	int left = (void *)q->stat - pos;
   1136
   1137	if (likely(length <= left)) {
   1138		memcpy(pos, skb->data, length);
   1139		pos += length;
   1140	} else {
   1141		memcpy(pos, skb->data, left);
   1142		memcpy(q->desc, skb->data + left, length - left);
   1143		pos = (void *)q->desc + (length - left);
   1144	}
   1145	/* 0-pad to multiple of 16 */
   1146	p = PTR_ALIGN(pos, 8);
   1147	if ((uintptr_t)p & 8) {
   1148		*p = 0;
   1149		return p + 1;
   1150	}
   1151	return p;
   1152}
   1153
   1154/*
   1155 * Figure out what HW csum a packet wants and return the appropriate control
   1156 * bits.
   1157 */
   1158static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
   1159{
   1160	int csum_type;
   1161	bool inner_hdr_csum = false;
   1162	u16 proto, ver;
   1163
   1164	if (skb->encapsulation &&
   1165	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
   1166		inner_hdr_csum = true;
   1167
   1168	if (inner_hdr_csum) {
   1169		ver = inner_ip_hdr(skb)->version;
   1170		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
   1171			inner_ipv6_hdr(skb)->nexthdr;
   1172	} else {
   1173		ver = ip_hdr(skb)->version;
   1174		proto = (ver == 4) ? ip_hdr(skb)->protocol :
   1175			ipv6_hdr(skb)->nexthdr;
   1176	}
   1177
   1178	if (ver == 4) {
   1179		if (proto == IPPROTO_TCP)
   1180			csum_type = TX_CSUM_TCPIP;
   1181		else if (proto == IPPROTO_UDP)
   1182			csum_type = TX_CSUM_UDPIP;
   1183		else {
   1184nocsum:			/*
   1185			 * unknown protocol, disable HW csum
   1186			 * and hope a bad packet is detected
   1187			 */
   1188			return TXPKT_L4CSUM_DIS_F;
   1189		}
   1190	} else {
   1191		/*
   1192		 * this doesn't work with extension headers
   1193		 */
   1194		if (proto == IPPROTO_TCP)
   1195			csum_type = TX_CSUM_TCPIP6;
   1196		else if (proto == IPPROTO_UDP)
   1197			csum_type = TX_CSUM_UDPIP6;
   1198		else
   1199			goto nocsum;
   1200	}
   1201
   1202	if (likely(csum_type >= TX_CSUM_TCPIP)) {
   1203		int eth_hdr_len, l4_len;
   1204		u64 hdr_len;
   1205
   1206		if (inner_hdr_csum) {
   1207			/* This allows checksum offload for all encapsulated
   1208			 * packets like GRE etc..
   1209			 */
   1210			l4_len = skb_inner_network_header_len(skb);
   1211			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
   1212		} else {
   1213			l4_len = skb_network_header_len(skb);
   1214			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
   1215		}
   1216		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
   1217
   1218		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
   1219			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
   1220		else
   1221			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
   1222		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
   1223	} else {
   1224		int start = skb_transport_offset(skb);
   1225
   1226		return TXPKT_CSUM_TYPE_V(csum_type) |
   1227			TXPKT_CSUM_START_V(start) |
   1228			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
   1229	}
   1230}
   1231
   1232static void eth_txq_stop(struct sge_eth_txq *q)
   1233{
   1234	netif_tx_stop_queue(q->txq);
   1235	q->q.stops++;
   1236}
   1237
   1238static inline void txq_advance(struct sge_txq *q, unsigned int n)
   1239{
   1240	q->in_use += n;
   1241	q->pidx += n;
   1242	if (q->pidx >= q->size)
   1243		q->pidx -= q->size;
   1244}
   1245
   1246#ifdef CONFIG_CHELSIO_T4_FCOE
   1247static inline int
   1248cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
   1249		  const struct port_info *pi, u64 *cntrl)
   1250{
   1251	const struct cxgb_fcoe *fcoe = &pi->fcoe;
   1252
   1253	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
   1254		return 0;
   1255
   1256	if (skb->protocol != htons(ETH_P_FCOE))
   1257		return 0;
   1258
   1259	skb_reset_mac_header(skb);
   1260	skb->mac_len = sizeof(struct ethhdr);
   1261
   1262	skb_set_network_header(skb, skb->mac_len);
   1263	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
   1264
   1265	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
   1266		return -ENOTSUPP;
   1267
   1268	/* FC CRC offload */
   1269	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
   1270		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
   1271		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
   1272		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
   1273		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
   1274	return 0;
   1275}
   1276#endif /* CONFIG_CHELSIO_T4_FCOE */
   1277
   1278/* Returns tunnel type if hardware supports offloading of the same.
   1279 * It is called only for T5 and onwards.
   1280 */
   1281enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
   1282{
   1283	u8 l4_hdr = 0;
   1284	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
   1285	struct port_info *pi = netdev_priv(skb->dev);
   1286	struct adapter *adapter = pi->adapter;
   1287
   1288	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
   1289	    skb->inner_protocol != htons(ETH_P_TEB))
   1290		return tnl_type;
   1291
   1292	switch (vlan_get_protocol(skb)) {
   1293	case htons(ETH_P_IP):
   1294		l4_hdr = ip_hdr(skb)->protocol;
   1295		break;
   1296	case htons(ETH_P_IPV6):
   1297		l4_hdr = ipv6_hdr(skb)->nexthdr;
   1298		break;
   1299	default:
   1300		return tnl_type;
   1301	}
   1302
   1303	switch (l4_hdr) {
   1304	case IPPROTO_UDP:
   1305		if (adapter->vxlan_port == udp_hdr(skb)->dest)
   1306			tnl_type = TX_TNL_TYPE_VXLAN;
   1307		else if (adapter->geneve_port == udp_hdr(skb)->dest)
   1308			tnl_type = TX_TNL_TYPE_GENEVE;
   1309		break;
   1310	default:
   1311		return tnl_type;
   1312	}
   1313
   1314	return tnl_type;
   1315}
   1316
   1317static inline void t6_fill_tnl_lso(struct sk_buff *skb,
   1318				   struct cpl_tx_tnl_lso *tnl_lso,
   1319				   enum cpl_tx_tnl_lso_type tnl_type)
   1320{
   1321	u32 val;
   1322	int in_eth_xtra_len;
   1323	int l3hdr_len = skb_network_header_len(skb);
   1324	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
   1325	const struct skb_shared_info *ssi = skb_shinfo(skb);
   1326	bool v6 = (ip_hdr(skb)->version == 6);
   1327
   1328	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
   1329	      CPL_TX_TNL_LSO_FIRST_F |
   1330	      CPL_TX_TNL_LSO_LAST_F |
   1331	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
   1332	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
   1333	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
   1334	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
   1335	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
   1336	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
   1337	tnl_lso->op_to_IpIdSplitOut = htonl(val);
   1338
   1339	tnl_lso->IpIdOffsetOut = 0;
   1340
   1341	/* Get the tunnel header length */
   1342	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
   1343	in_eth_xtra_len = skb_inner_network_header(skb) -
   1344			  skb_inner_mac_header(skb) - ETH_HLEN;
   1345
   1346	switch (tnl_type) {
   1347	case TX_TNL_TYPE_VXLAN:
   1348	case TX_TNL_TYPE_GENEVE:
   1349		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
   1350			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
   1351			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
   1352		break;
   1353	default:
   1354		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
   1355		break;
   1356	}
   1357
   1358	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
   1359		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
   1360		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
   1361
   1362	tnl_lso->r1 = 0;
   1363
   1364	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
   1365	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
   1366	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
   1367	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
   1368	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
   1369
   1370	tnl_lso->IpIdOffset = htons(0);
   1371
   1372	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
   1373	tnl_lso->TCPSeqOffset = htonl(0);
   1374	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
   1375}
   1376
   1377static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
   1378				 struct cpl_tx_pkt_lso_core *lso)
   1379{
   1380	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
   1381	int l3hdr_len = skb_network_header_len(skb);
   1382	const struct skb_shared_info *ssi;
   1383	bool ipv6 = false;
   1384
   1385	ssi = skb_shinfo(skb);
   1386	if (ssi->gso_type & SKB_GSO_TCPV6)
   1387		ipv6 = true;
   1388
   1389	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
   1390			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
   1391			      LSO_IPV6_V(ipv6) |
   1392			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
   1393			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
   1394			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
   1395	lso->ipid_ofst = htons(0);
   1396	lso->mss = htons(ssi->gso_size);
   1397	lso->seqno_offset = htonl(0);
   1398	if (is_t4(adap->params.chip))
   1399		lso->len = htonl(skb->len);
   1400	else
   1401		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
   1402
   1403	return (void *)(lso + 1);
   1404}
   1405
   1406/**
   1407 *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
   1408 *	@adap: the adapter
   1409 *	@eq: the Ethernet TX Queue
   1410 *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
   1411 *
   1412 *	We're typically called here to update the state of an Ethernet TX
   1413 *	Queue with respect to the hardware's progress in consuming the TX
   1414 *	Work Requests that we've put on that Egress Queue.  This happens
   1415 *	when we get Egress Queue Update messages and also prophylactically
   1416 *	in regular timer-based Ethernet TX Queue maintenance.
   1417 */
   1418int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
   1419				 int maxreclaim)
   1420{
   1421	unsigned int reclaimed, hw_cidx;
   1422	struct sge_txq *q = &eq->q;
   1423	int hw_in_use;
   1424
   1425	if (!q->in_use || !__netif_tx_trylock(eq->txq))
   1426		return 0;
   1427
   1428	/* Reclaim pending completed TX Descriptors. */
   1429	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
   1430
   1431	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
   1432	hw_in_use = q->pidx - hw_cidx;
   1433	if (hw_in_use < 0)
   1434		hw_in_use += q->size;
   1435
   1436	/* If the TX Queue is currently stopped and there's now more than half
   1437	 * the queue available, restart it.  Otherwise bail out since the rest
   1438	 * of what we want do here is with the possibility of shipping any
   1439	 * currently buffered Coalesced TX Work Request.
   1440	 */
   1441	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
   1442		netif_tx_wake_queue(eq->txq);
   1443		eq->q.restarts++;
   1444	}
   1445
   1446	__netif_tx_unlock(eq->txq);
   1447	return reclaimed;
   1448}
   1449
   1450static inline int cxgb4_validate_skb(struct sk_buff *skb,
   1451				     struct net_device *dev,
   1452				     u32 min_pkt_len)
   1453{
   1454	u32 max_pkt_len;
   1455
   1456	/* The chip min packet length is 10 octets but some firmware
   1457	 * commands have a minimum packet length requirement. So, play
   1458	 * safe and reject anything shorter than @min_pkt_len.
   1459	 */
   1460	if (unlikely(skb->len < min_pkt_len))
   1461		return -EINVAL;
   1462
   1463	/* Discard the packet if the length is greater than mtu */
   1464	max_pkt_len = ETH_HLEN + dev->mtu;
   1465
   1466	if (skb_vlan_tagged(skb))
   1467		max_pkt_len += VLAN_HLEN;
   1468
   1469	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
   1470		return -EINVAL;
   1471
   1472	return 0;
   1473}
   1474
   1475static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
   1476			     u32 hdr_len)
   1477{
   1478	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
   1479	wr->u.udpseg.ethlen = skb_network_offset(skb);
   1480	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
   1481	wr->u.udpseg.udplen = sizeof(struct udphdr);
   1482	wr->u.udpseg.rtplen = 0;
   1483	wr->u.udpseg.r4 = 0;
   1484	if (skb_shinfo(skb)->gso_size)
   1485		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
   1486	else
   1487		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
   1488	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
   1489	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
   1490
   1491	return (void *)(wr + 1);
   1492}
   1493
   1494/**
   1495 *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
   1496 *	@skb: the packet
   1497 *	@dev: the egress net device
   1498 *
   1499 *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
   1500 */
   1501static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
   1502{
   1503	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
   1504	bool ptp_enabled = is_ptp_enabled(skb, dev);
   1505	unsigned int last_desc, flits, ndesc;
   1506	u32 wr_mid, ctrl0, op, sgl_off = 0;
   1507	const struct skb_shared_info *ssi;
   1508	int len, qidx, credits, ret, left;
   1509	struct tx_sw_desc *sgl_sdesc;
   1510	struct fw_eth_tx_eo_wr *eowr;
   1511	struct fw_eth_tx_pkt_wr *wr;
   1512	struct cpl_tx_pkt_core *cpl;
   1513	const struct port_info *pi;
   1514	bool immediate = false;
   1515	u64 cntrl, *end, *sgl;
   1516	struct sge_eth_txq *q;
   1517	unsigned int chip_ver;
   1518	struct adapter *adap;
   1519
   1520	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
   1521	if (ret)
   1522		goto out_free;
   1523
   1524	pi = netdev_priv(dev);
   1525	adap = pi->adapter;
   1526	ssi = skb_shinfo(skb);
   1527#if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
   1528	if (xfrm_offload(skb) && !ssi->gso_size)
   1529		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
   1530#endif /* CHELSIO_IPSEC_INLINE */
   1531
   1532#if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
   1533	if (cxgb4_is_ktls_skb(skb) &&
   1534	    (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb))))
   1535		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
   1536#endif /* CHELSIO_TLS_DEVICE */
   1537
   1538	qidx = skb_get_queue_mapping(skb);
   1539	if (ptp_enabled) {
   1540		if (!(adap->ptp_tx_skb)) {
   1541			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
   1542			adap->ptp_tx_skb = skb_get(skb);
   1543		} else {
   1544			goto out_free;
   1545		}
   1546		q = &adap->sge.ptptxq;
   1547	} else {
   1548		q = &adap->sge.ethtxq[qidx + pi->first_qset];
   1549	}
   1550	skb_tx_timestamp(skb);
   1551
   1552	reclaim_completed_tx(adap, &q->q, -1, true);
   1553	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
   1554
   1555#ifdef CONFIG_CHELSIO_T4_FCOE
   1556	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
   1557	if (unlikely(ret == -EOPNOTSUPP))
   1558		goto out_free;
   1559#endif /* CONFIG_CHELSIO_T4_FCOE */
   1560
   1561	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
   1562	flits = calc_tx_flits(skb, chip_ver);
   1563	ndesc = flits_to_desc(flits);
   1564	credits = txq_avail(&q->q) - ndesc;
   1565
   1566	if (unlikely(credits < 0)) {
   1567		eth_txq_stop(q);
   1568		dev_err(adap->pdev_dev,
   1569			"%s: Tx ring %u full while queue awake!\n",
   1570			dev->name, qidx);
   1571		return NETDEV_TX_BUSY;
   1572	}
   1573
   1574	if (is_eth_imm(skb, chip_ver))
   1575		immediate = true;
   1576
   1577	if (skb->encapsulation && chip_ver > CHELSIO_T5)
   1578		tnl_type = cxgb_encap_offload_supported(skb);
   1579
   1580	last_desc = q->q.pidx + ndesc - 1;
   1581	if (last_desc >= q->q.size)
   1582		last_desc -= q->q.size;
   1583	sgl_sdesc = &q->q.sdesc[last_desc];
   1584
   1585	if (!immediate &&
   1586	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
   1587		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
   1588		q->mapping_err++;
   1589		goto out_free;
   1590	}
   1591
   1592	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
   1593	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
   1594		/* After we're done injecting the Work Request for this
   1595		 * packet, we'll be below our "stop threshold" so stop the TX
   1596		 * Queue now and schedule a request for an SGE Egress Queue
   1597		 * Update message. The queue will get started later on when
   1598		 * the firmware processes this Work Request and sends us an
   1599		 * Egress Queue Status Update message indicating that space
   1600		 * has opened up.
   1601		 */
   1602		eth_txq_stop(q);
   1603		if (chip_ver > CHELSIO_T5)
   1604			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
   1605	}
   1606
   1607	wr = (void *)&q->q.desc[q->q.pidx];
   1608	eowr = (void *)&q->q.desc[q->q.pidx];
   1609	wr->equiq_to_len16 = htonl(wr_mid);
   1610	wr->r3 = cpu_to_be64(0);
   1611	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
   1612		end = (u64 *)eowr + flits;
   1613	else
   1614		end = (u64 *)wr + flits;
   1615
   1616	len = immediate ? skb->len : 0;
   1617	len += sizeof(*cpl);
   1618	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
   1619		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
   1620		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
   1621
   1622		if (tnl_type)
   1623			len += sizeof(*tnl_lso);
   1624		else
   1625			len += sizeof(*lso);
   1626
   1627		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
   1628				       FW_WR_IMMDLEN_V(len));
   1629		if (tnl_type) {
   1630			struct iphdr *iph = ip_hdr(skb);
   1631
   1632			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
   1633			cpl = (void *)(tnl_lso + 1);
   1634			/* Driver is expected to compute partial checksum that
   1635			 * does not include the IP Total Length.
   1636			 */
   1637			if (iph->version == 4) {
   1638				iph->check = 0;
   1639				iph->tot_len = 0;
   1640				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
   1641			}
   1642			if (skb->ip_summed == CHECKSUM_PARTIAL)
   1643				cntrl = hwcsum(adap->params.chip, skb);
   1644		} else {
   1645			cpl = write_tso_wr(adap, skb, lso);
   1646			cntrl = hwcsum(adap->params.chip, skb);
   1647		}
   1648		sgl = (u64 *)(cpl + 1); /* sgl start here */
   1649		q->tso++;
   1650		q->tx_cso += ssi->gso_segs;
   1651	} else if (ssi->gso_size) {
   1652		u64 *start;
   1653		u32 hdrlen;
   1654
   1655		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
   1656		len += hdrlen;
   1657		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
   1658					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
   1659		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
   1660		cntrl = hwcsum(adap->params.chip, skb);
   1661
   1662		start = (u64 *)(cpl + 1);
   1663		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
   1664						  hdrlen);
   1665		if (unlikely(start > sgl)) {
   1666			left = (u8 *)end - (u8 *)q->q.stat;
   1667			end = (void *)q->q.desc + left;
   1668		}
   1669		sgl_off = hdrlen;
   1670		q->uso++;
   1671		q->tx_cso += ssi->gso_segs;
   1672	} else {
   1673		if (ptp_enabled)
   1674			op = FW_PTP_TX_PKT_WR;
   1675		else
   1676			op = FW_ETH_TX_PKT_WR;
   1677		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
   1678				       FW_WR_IMMDLEN_V(len));
   1679		cpl = (void *)(wr + 1);
   1680		sgl = (u64 *)(cpl + 1);
   1681		if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1682			cntrl = hwcsum(adap->params.chip, skb) |
   1683				TXPKT_IPCSUM_DIS_F;
   1684			q->tx_cso++;
   1685		}
   1686	}
   1687
   1688	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
   1689		/* If current position is already at the end of the
   1690		 * txq, reset the current to point to start of the queue
   1691		 * and update the end ptr as well.
   1692		 */
   1693		left = (u8 *)end - (u8 *)q->q.stat;
   1694		end = (void *)q->q.desc + left;
   1695		sgl = (void *)q->q.desc;
   1696	}
   1697
   1698	if (skb_vlan_tag_present(skb)) {
   1699		q->vlan_ins++;
   1700		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
   1701#ifdef CONFIG_CHELSIO_T4_FCOE
   1702		if (skb->protocol == htons(ETH_P_FCOE))
   1703			cntrl |= TXPKT_VLAN_V(
   1704				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
   1705#endif /* CONFIG_CHELSIO_T4_FCOE */
   1706	}
   1707
   1708	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
   1709		TXPKT_PF_V(adap->pf);
   1710	if (ptp_enabled)
   1711		ctrl0 |= TXPKT_TSTAMP_F;
   1712#ifdef CONFIG_CHELSIO_T4_DCB
   1713	if (is_t4(adap->params.chip))
   1714		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
   1715	else
   1716		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
   1717#endif
   1718	cpl->ctrl0 = htonl(ctrl0);
   1719	cpl->pack = htons(0);
   1720	cpl->len = htons(skb->len);
   1721	cpl->ctrl1 = cpu_to_be64(cntrl);
   1722
   1723	if (immediate) {
   1724		cxgb4_inline_tx_skb(skb, &q->q, sgl);
   1725		dev_consume_skb_any(skb);
   1726	} else {
   1727		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
   1728				sgl_sdesc->addr);
   1729		skb_orphan(skb);
   1730		sgl_sdesc->skb = skb;
   1731	}
   1732
   1733	txq_advance(&q->q, ndesc);
   1734
   1735	cxgb4_ring_tx_db(adap, &q->q, ndesc);
   1736	return NETDEV_TX_OK;
   1737
   1738out_free:
   1739	dev_kfree_skb_any(skb);
   1740	return NETDEV_TX_OK;
   1741}
   1742
   1743/* Constants ... */
   1744enum {
   1745	/* Egress Queue sizes, producer and consumer indices are all in units
   1746	 * of Egress Context Units bytes.  Note that as far as the hardware is
   1747	 * concerned, the free list is an Egress Queue (the host produces free
   1748	 * buffers which the hardware consumes) and free list entries are
   1749	 * 64-bit PCI DMA addresses.
   1750	 */
   1751	EQ_UNIT = SGE_EQ_IDXSIZE,
   1752	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
   1753	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
   1754
   1755	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
   1756			       sizeof(struct cpl_tx_pkt_lso_core) +
   1757			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
   1758};
   1759
   1760/**
   1761 *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
   1762 *	@skb: the packet
   1763 *
   1764 *	Returns whether an Ethernet packet is small enough to fit completely as
   1765 *	immediate data.
   1766 */
   1767static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
   1768{
   1769	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
   1770	 * which does not accommodate immediate data.  We could dike out all
   1771	 * of the support code for immediate data but that would tie our hands
   1772	 * too much if we ever want to enhace the firmware.  It would also
   1773	 * create more differences between the PF and VF Drivers.
   1774	 */
   1775	return false;
   1776}
   1777
   1778/**
   1779 *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
   1780 *	@skb: the packet
   1781 *
   1782 *	Returns the number of flits needed for a TX Work Request for the
   1783 *	given Ethernet packet, including the needed WR and CPL headers.
   1784 */
   1785static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
   1786{
   1787	unsigned int flits;
   1788
   1789	/* If the skb is small enough, we can pump it out as a work request
   1790	 * with only immediate data.  In that case we just have to have the
   1791	 * TX Packet header plus the skb data in the Work Request.
   1792	 */
   1793	if (t4vf_is_eth_imm(skb))
   1794		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
   1795				    sizeof(__be64));
   1796
   1797	/* Otherwise, we're going to have to construct a Scatter gather list
   1798	 * of the skb body and fragments.  We also include the flits necessary
   1799	 * for the TX Packet Work Request and CPL.  We always have a firmware
   1800	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
   1801	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
   1802	 * message or, if we're doing a Large Send Offload, an LSO CPL message
   1803	 * with an embedded TX Packet Write CPL message.
   1804	 */
   1805	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
   1806	if (skb_shinfo(skb)->gso_size)
   1807		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
   1808			  sizeof(struct cpl_tx_pkt_lso_core) +
   1809			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
   1810	else
   1811		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
   1812			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
   1813	return flits;
   1814}
   1815
   1816/**
   1817 *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
   1818 *	@skb: the packet
   1819 *	@dev: the egress net device
   1820 *
   1821 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
   1822 */
   1823static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
   1824				     struct net_device *dev)
   1825{
   1826	unsigned int last_desc, flits, ndesc;
   1827	const struct skb_shared_info *ssi;
   1828	struct fw_eth_tx_pkt_vm_wr *wr;
   1829	struct tx_sw_desc *sgl_sdesc;
   1830	struct cpl_tx_pkt_core *cpl;
   1831	const struct port_info *pi;
   1832	struct sge_eth_txq *txq;
   1833	struct adapter *adapter;
   1834	int qidx, credits, ret;
   1835	size_t fw_hdr_copy_len;
   1836	unsigned int chip_ver;
   1837	u64 cntrl, *end;
   1838	u32 wr_mid;
   1839
   1840	/* The chip minimum packet length is 10 octets but the firmware
   1841	 * command that we are using requires that we copy the Ethernet header
   1842	 * (including the VLAN tag) into the header so we reject anything
   1843	 * smaller than that ...
   1844	 */
   1845	BUILD_BUG_ON(sizeof(wr->firmware) !=
   1846		     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
   1847		      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
   1848	fw_hdr_copy_len = sizeof(wr->firmware);
   1849	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
   1850	if (ret)
   1851		goto out_free;
   1852
   1853	/* Figure out which TX Queue we're going to use. */
   1854	pi = netdev_priv(dev);
   1855	adapter = pi->adapter;
   1856	qidx = skb_get_queue_mapping(skb);
   1857	WARN_ON(qidx >= pi->nqsets);
   1858	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
   1859
   1860	/* Take this opportunity to reclaim any TX Descriptors whose DMA
   1861	 * transfers have completed.
   1862	 */
   1863	reclaim_completed_tx(adapter, &txq->q, -1, true);
   1864
   1865	/* Calculate the number of flits and TX Descriptors we're going to
   1866	 * need along with how many TX Descriptors will be left over after
   1867	 * we inject our Work Request.
   1868	 */
   1869	flits = t4vf_calc_tx_flits(skb);
   1870	ndesc = flits_to_desc(flits);
   1871	credits = txq_avail(&txq->q) - ndesc;
   1872
   1873	if (unlikely(credits < 0)) {
   1874		/* Not enough room for this packet's Work Request.  Stop the
   1875		 * TX Queue and return a "busy" condition.  The queue will get
   1876		 * started later on when the firmware informs us that space
   1877		 * has opened up.
   1878		 */
   1879		eth_txq_stop(txq);
   1880		dev_err(adapter->pdev_dev,
   1881			"%s: TX ring %u full while queue awake!\n",
   1882			dev->name, qidx);
   1883		return NETDEV_TX_BUSY;
   1884	}
   1885
   1886	last_desc = txq->q.pidx + ndesc - 1;
   1887	if (last_desc >= txq->q.size)
   1888		last_desc -= txq->q.size;
   1889	sgl_sdesc = &txq->q.sdesc[last_desc];
   1890
   1891	if (!t4vf_is_eth_imm(skb) &&
   1892	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
   1893				   sgl_sdesc->addr) < 0)) {
   1894		/* We need to map the skb into PCI DMA space (because it can't
   1895		 * be in-lined directly into the Work Request) and the mapping
   1896		 * operation failed.  Record the error and drop the packet.
   1897		 */
   1898		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
   1899		txq->mapping_err++;
   1900		goto out_free;
   1901	}
   1902
   1903	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
   1904	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
   1905	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
   1906		/* After we're done injecting the Work Request for this
   1907		 * packet, we'll be below our "stop threshold" so stop the TX
   1908		 * Queue now and schedule a request for an SGE Egress Queue
   1909		 * Update message.  The queue will get started later on when
   1910		 * the firmware processes this Work Request and sends us an
   1911		 * Egress Queue Status Update message indicating that space
   1912		 * has opened up.
   1913		 */
   1914		eth_txq_stop(txq);
   1915		if (chip_ver > CHELSIO_T5)
   1916			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
   1917	}
   1918
   1919	/* Start filling in our Work Request.  Note that we do _not_ handle
   1920	 * the WR Header wrapping around the TX Descriptor Ring.  If our
   1921	 * maximum header size ever exceeds one TX Descriptor, we'll need to
   1922	 * do something else here.
   1923	 */
   1924	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
   1925	wr = (void *)&txq->q.desc[txq->q.pidx];
   1926	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
   1927	wr->r3[0] = cpu_to_be32(0);
   1928	wr->r3[1] = cpu_to_be32(0);
   1929	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
   1930	end = (u64 *)wr + flits;
   1931
   1932	/* If this is a Large Send Offload packet we'll put in an LSO CPL
   1933	 * message with an encapsulated TX Packet CPL message.  Otherwise we
   1934	 * just use a TX Packet CPL message.
   1935	 */
   1936	ssi = skb_shinfo(skb);
   1937	if (ssi->gso_size) {
   1938		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
   1939		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
   1940		int l3hdr_len = skb_network_header_len(skb);
   1941		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
   1942
   1943		wr->op_immdlen =
   1944			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
   1945				    FW_WR_IMMDLEN_V(sizeof(*lso) +
   1946						    sizeof(*cpl)));
   1947		 /* Fill in the LSO CPL message. */
   1948		lso->lso_ctrl =
   1949			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
   1950				    LSO_FIRST_SLICE_F |
   1951				    LSO_LAST_SLICE_F |
   1952				    LSO_IPV6_V(v6) |
   1953				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
   1954				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
   1955				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
   1956		lso->ipid_ofst = cpu_to_be16(0);
   1957		lso->mss = cpu_to_be16(ssi->gso_size);
   1958		lso->seqno_offset = cpu_to_be32(0);
   1959		if (is_t4(adapter->params.chip))
   1960			lso->len = cpu_to_be32(skb->len);
   1961		else
   1962			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
   1963
   1964		/* Set up TX Packet CPL pointer, control word and perform
   1965		 * accounting.
   1966		 */
   1967		cpl = (void *)(lso + 1);
   1968
   1969		if (chip_ver <= CHELSIO_T5)
   1970			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
   1971		else
   1972			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
   1973
   1974		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
   1975					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
   1976			 TXPKT_IPHDR_LEN_V(l3hdr_len);
   1977		txq->tso++;
   1978		txq->tx_cso += ssi->gso_segs;
   1979	} else {
   1980		int len;
   1981
   1982		len = (t4vf_is_eth_imm(skb)
   1983		       ? skb->len + sizeof(*cpl)
   1984		       : sizeof(*cpl));
   1985		wr->op_immdlen =
   1986			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
   1987				    FW_WR_IMMDLEN_V(len));
   1988
   1989		/* Set up TX Packet CPL pointer, control word and perform
   1990		 * accounting.
   1991		 */
   1992		cpl = (void *)(wr + 1);
   1993		if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1994			cntrl = hwcsum(adapter->params.chip, skb) |
   1995				TXPKT_IPCSUM_DIS_F;
   1996			txq->tx_cso++;
   1997		} else {
   1998			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
   1999		}
   2000	}
   2001
   2002	/* If there's a VLAN tag present, add that to the list of things to
   2003	 * do in this Work Request.
   2004	 */
   2005	if (skb_vlan_tag_present(skb)) {
   2006		txq->vlan_ins++;
   2007		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
   2008	}
   2009
   2010	 /* Fill in the TX Packet CPL message header. */
   2011	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
   2012				 TXPKT_INTF_V(pi->port_id) |
   2013				 TXPKT_PF_V(0));
   2014	cpl->pack = cpu_to_be16(0);
   2015	cpl->len = cpu_to_be16(skb->len);
   2016	cpl->ctrl1 = cpu_to_be64(cntrl);
   2017
   2018	/* Fill in the body of the TX Packet CPL message with either in-lined
   2019	 * data or a Scatter/Gather List.
   2020	 */
   2021	if (t4vf_is_eth_imm(skb)) {
   2022		/* In-line the packet's data and free the skb since we don't
   2023		 * need it any longer.
   2024		 */
   2025		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
   2026		dev_consume_skb_any(skb);
   2027	} else {
   2028		/* Write the skb's Scatter/Gather list into the TX Packet CPL
   2029		 * message and retain a pointer to the skb so we can free it
   2030		 * later when its DMA completes.  (We store the skb pointer
   2031		 * in the Software Descriptor corresponding to the last TX
   2032		 * Descriptor used by the Work Request.)
   2033		 *
   2034		 * The retained skb will be freed when the corresponding TX
   2035		 * Descriptors are reclaimed after their DMAs complete.
   2036		 * However, this could take quite a while since, in general,
   2037		 * the hardware is set up to be lazy about sending DMA
   2038		 * completion notifications to us and we mostly perform TX
   2039		 * reclaims in the transmit routine.
   2040		 *
   2041		 * This is good for performamce but means that we rely on new
   2042		 * TX packets arriving to run the destructors of completed
   2043		 * packets, which open up space in their sockets' send queues.
   2044		 * Sometimes we do not get such new packets causing TX to
   2045		 * stall.  A single UDP transmitter is a good example of this
   2046		 * situation.  We have a clean up timer that periodically
   2047		 * reclaims completed packets but it doesn't run often enough
   2048		 * (nor do we want it to) to prevent lengthy stalls.  A
   2049		 * solution to this problem is to run the destructor early,
   2050		 * after the packet is queued but before it's DMAd.  A con is
   2051		 * that we lie to socket memory accounting, but the amount of
   2052		 * extra memory is reasonable (limited by the number of TX
   2053		 * descriptors), the packets do actually get freed quickly by
   2054		 * new packets almost always, and for protocols like TCP that
   2055		 * wait for acks to really free up the data the extra memory
   2056		 * is even less.  On the positive side we run the destructors
   2057		 * on the sending CPU rather than on a potentially different
   2058		 * completing CPU, usually a good thing.
   2059		 *
   2060		 * Run the destructor before telling the DMA engine about the
   2061		 * packet to make sure it doesn't complete and get freed
   2062		 * prematurely.
   2063		 */
   2064		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
   2065		struct sge_txq *tq = &txq->q;
   2066
   2067		/* If the Work Request header was an exact multiple of our TX
   2068		 * Descriptor length, then it's possible that the starting SGL
   2069		 * pointer lines up exactly with the end of our TX Descriptor
   2070		 * ring.  If that's the case, wrap around to the beginning
   2071		 * here ...
   2072		 */
   2073		if (unlikely((void *)sgl == (void *)tq->stat)) {
   2074			sgl = (void *)tq->desc;
   2075			end = (void *)((void *)tq->desc +
   2076				       ((void *)end - (void *)tq->stat));
   2077		}
   2078
   2079		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
   2080		skb_orphan(skb);
   2081		sgl_sdesc->skb = skb;
   2082	}
   2083
   2084	/* Advance our internal TX Queue state, tell the hardware about
   2085	 * the new TX descriptors and return success.
   2086	 */
   2087	txq_advance(&txq->q, ndesc);
   2088
   2089	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
   2090	return NETDEV_TX_OK;
   2091
   2092out_free:
   2093	/* An error of some sort happened.  Free the TX skb and tell the
   2094	 * OS that we've "dealt" with the packet ...
   2095	 */
   2096	dev_kfree_skb_any(skb);
   2097	return NETDEV_TX_OK;
   2098}
   2099
   2100/**
   2101 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
   2102 * @q: the SGE control Tx queue
   2103 *
   2104 * This is a variant of cxgb4_reclaim_completed_tx() that is used
   2105 * for Tx queues that send only immediate data (presently just
   2106 * the control queues) and	thus do not have any sk_buffs to release.
   2107 */
   2108static inline void reclaim_completed_tx_imm(struct sge_txq *q)
   2109{
   2110	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
   2111	int reclaim = hw_cidx - q->cidx;
   2112
   2113	if (reclaim < 0)
   2114		reclaim += q->size;
   2115
   2116	q->in_use -= reclaim;
   2117	q->cidx = hw_cidx;
   2118}
   2119
   2120static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
   2121{
   2122	u32 val = *idx + n;
   2123
   2124	if (val >= max)
   2125		val -= max;
   2126
   2127	*idx = val;
   2128}
   2129
   2130void cxgb4_eosw_txq_free_desc(struct adapter *adap,
   2131			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
   2132{
   2133	struct tx_sw_desc *d;
   2134
   2135	d = &eosw_txq->desc[eosw_txq->last_cidx];
   2136	while (ndesc--) {
   2137		if (d->skb) {
   2138			if (d->addr[0]) {
   2139				unmap_skb(adap->pdev_dev, d->skb, d->addr);
   2140				memset(d->addr, 0, sizeof(d->addr));
   2141			}
   2142			dev_consume_skb_any(d->skb);
   2143			d->skb = NULL;
   2144		}
   2145		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
   2146				       eosw_txq->ndesc);
   2147		d = &eosw_txq->desc[eosw_txq->last_cidx];
   2148	}
   2149}
   2150
   2151static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
   2152{
   2153	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
   2154	eosw_txq->inuse += n;
   2155}
   2156
   2157static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
   2158				   struct sk_buff *skb)
   2159{
   2160	if (eosw_txq->inuse == eosw_txq->ndesc)
   2161		return -ENOMEM;
   2162
   2163	eosw_txq->desc[eosw_txq->pidx].skb = skb;
   2164	return 0;
   2165}
   2166
   2167static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
   2168{
   2169	return eosw_txq->desc[eosw_txq->last_pidx].skb;
   2170}
   2171
   2172static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
   2173				       struct sk_buff *skb, u32 hdr_len)
   2174{
   2175	u8 flits, nsgl = 0;
   2176	u32 wrlen;
   2177
   2178	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
   2179	if (skb_shinfo(skb)->gso_size &&
   2180	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
   2181		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
   2182
   2183	wrlen += roundup(hdr_len, 16);
   2184
   2185	/* Packet headers + WR + CPLs */
   2186	flits = DIV_ROUND_UP(wrlen, 8);
   2187
   2188	if (skb_shinfo(skb)->nr_frags > 0) {
   2189		if (skb_headlen(skb) - hdr_len)
   2190			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
   2191		else
   2192			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
   2193	} else if (skb->len - hdr_len) {
   2194		nsgl = sgl_len(1);
   2195	}
   2196
   2197	return flits + nsgl;
   2198}
   2199
   2200static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
   2201			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
   2202			 u32 hdr_len, u32 wrlen)
   2203{
   2204	const struct skb_shared_info *ssi = skb_shinfo(skb);
   2205	struct cpl_tx_pkt_core *cpl;
   2206	u32 immd_len, wrlen16;
   2207	bool compl = false;
   2208	u8 ver, proto;
   2209
   2210	ver = ip_hdr(skb)->version;
   2211	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
   2212
   2213	wrlen16 = DIV_ROUND_UP(wrlen, 16);
   2214	immd_len = sizeof(struct cpl_tx_pkt_core);
   2215	if (skb_shinfo(skb)->gso_size &&
   2216	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
   2217		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
   2218	immd_len += hdr_len;
   2219
   2220	if (!eosw_txq->ncompl ||
   2221	    (eosw_txq->last_compl + wrlen16) >=
   2222	    (adap->params.ofldq_wr_cred / 2)) {
   2223		compl = true;
   2224		eosw_txq->ncompl++;
   2225		eosw_txq->last_compl = 0;
   2226	}
   2227
   2228	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
   2229				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
   2230				     FW_WR_COMPL_V(compl));
   2231	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
   2232					 FW_WR_FLOWID_V(eosw_txq->hwtid));
   2233	wr->r3 = 0;
   2234	if (proto == IPPROTO_UDP) {
   2235		cpl = write_eo_udp_wr(skb, wr, hdr_len);
   2236	} else {
   2237		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
   2238		wr->u.tcpseg.ethlen = skb_network_offset(skb);
   2239		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
   2240		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
   2241		wr->u.tcpseg.tsclk_tsoff = 0;
   2242		wr->u.tcpseg.r4 = 0;
   2243		wr->u.tcpseg.r5 = 0;
   2244		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
   2245
   2246		if (ssi->gso_size) {
   2247			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
   2248
   2249			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
   2250			cpl = write_tso_wr(adap, skb, lso);
   2251		} else {
   2252			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
   2253			cpl = (void *)(wr + 1);
   2254		}
   2255	}
   2256
   2257	eosw_txq->cred -= wrlen16;
   2258	eosw_txq->last_compl += wrlen16;
   2259	return cpl;
   2260}
   2261
   2262static int ethofld_hard_xmit(struct net_device *dev,
   2263			     struct sge_eosw_txq *eosw_txq)
   2264{
   2265	struct port_info *pi = netdev2pinfo(dev);
   2266	struct adapter *adap = netdev2adap(dev);
   2267	u32 wrlen, wrlen16, hdr_len, data_len;
   2268	enum sge_eosw_state next_state;
   2269	u64 cntrl, *start, *end, *sgl;
   2270	struct sge_eohw_txq *eohw_txq;
   2271	struct cpl_tx_pkt_core *cpl;
   2272	struct fw_eth_tx_eo_wr *wr;
   2273	bool skip_eotx_wr = false;
   2274	struct tx_sw_desc *d;
   2275	struct sk_buff *skb;
   2276	int left, ret = 0;
   2277	u8 flits, ndesc;
   2278
   2279	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
   2280	spin_lock(&eohw_txq->lock);
   2281	reclaim_completed_tx_imm(&eohw_txq->q);
   2282
   2283	d = &eosw_txq->desc[eosw_txq->last_pidx];
   2284	skb = d->skb;
   2285	skb_tx_timestamp(skb);
   2286
   2287	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
   2288	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
   2289		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
   2290		hdr_len = skb->len;
   2291		data_len = 0;
   2292		flits = DIV_ROUND_UP(hdr_len, 8);
   2293		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
   2294			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
   2295		else
   2296			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
   2297		skip_eotx_wr = true;
   2298	} else {
   2299		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
   2300		data_len = skb->len - hdr_len;
   2301		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
   2302	}
   2303	ndesc = flits_to_desc(flits);
   2304	wrlen = flits * 8;
   2305	wrlen16 = DIV_ROUND_UP(wrlen, 16);
   2306
   2307	left = txq_avail(&eohw_txq->q) - ndesc;
   2308
   2309	/* If there are no descriptors left in hardware queues or no
   2310	 * CPL credits left in software queues, then wait for them
   2311	 * to come back and retry again. Note that we always request
   2312	 * for credits update via interrupt for every half credits
   2313	 * consumed. So, the interrupt will eventually restore the
   2314	 * credits and invoke the Tx path again.
   2315	 */
   2316	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
   2317		ret = -ENOMEM;
   2318		goto out_unlock;
   2319	}
   2320
   2321	if (unlikely(skip_eotx_wr)) {
   2322		start = (u64 *)wr;
   2323		eosw_txq->state = next_state;
   2324		eosw_txq->cred -= wrlen16;
   2325		eosw_txq->ncompl++;
   2326		eosw_txq->last_compl = 0;
   2327		goto write_wr_headers;
   2328	}
   2329
   2330	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
   2331	cntrl = hwcsum(adap->params.chip, skb);
   2332	if (skb_vlan_tag_present(skb))
   2333		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
   2334
   2335	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
   2336				 TXPKT_INTF_V(pi->tx_chan) |
   2337				 TXPKT_PF_V(adap->pf));
   2338	cpl->pack = 0;
   2339	cpl->len = cpu_to_be16(skb->len);
   2340	cpl->ctrl1 = cpu_to_be64(cntrl);
   2341
   2342	start = (u64 *)(cpl + 1);
   2343
   2344write_wr_headers:
   2345	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
   2346					  hdr_len);
   2347	if (data_len) {
   2348		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
   2349		if (unlikely(ret)) {
   2350			memset(d->addr, 0, sizeof(d->addr));
   2351			eohw_txq->mapping_err++;
   2352			goto out_unlock;
   2353		}
   2354
   2355		end = (u64 *)wr + flits;
   2356		if (unlikely(start > sgl)) {
   2357			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
   2358			end = (void *)eohw_txq->q.desc + left;
   2359		}
   2360
   2361		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
   2362			/* If current position is already at the end of the
   2363			 * txq, reset the current to point to start of the queue
   2364			 * and update the end ptr as well.
   2365			 */
   2366			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
   2367
   2368			end = (void *)eohw_txq->q.desc + left;
   2369			sgl = (void *)eohw_txq->q.desc;
   2370		}
   2371
   2372		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
   2373				d->addr);
   2374	}
   2375
   2376	if (skb_shinfo(skb)->gso_size) {
   2377		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
   2378			eohw_txq->uso++;
   2379		else
   2380			eohw_txq->tso++;
   2381		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
   2382	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
   2383		eohw_txq->tx_cso++;
   2384	}
   2385
   2386	if (skb_vlan_tag_present(skb))
   2387		eohw_txq->vlan_ins++;
   2388
   2389	txq_advance(&eohw_txq->q, ndesc);
   2390	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
   2391	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
   2392
   2393out_unlock:
   2394	spin_unlock(&eohw_txq->lock);
   2395	return ret;
   2396}
   2397
   2398static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
   2399{
   2400	struct sk_buff *skb;
   2401	int pktcount, ret;
   2402
   2403	switch (eosw_txq->state) {
   2404	case CXGB4_EO_STATE_ACTIVE:
   2405	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
   2406	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
   2407		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
   2408		if (pktcount < 0)
   2409			pktcount += eosw_txq->ndesc;
   2410		break;
   2411	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
   2412	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
   2413	case CXGB4_EO_STATE_CLOSED:
   2414	default:
   2415		return;
   2416	}
   2417
   2418	while (pktcount--) {
   2419		skb = eosw_txq_peek(eosw_txq);
   2420		if (!skb) {
   2421			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
   2422					       eosw_txq->ndesc);
   2423			continue;
   2424		}
   2425
   2426		ret = ethofld_hard_xmit(dev, eosw_txq);
   2427		if (ret)
   2428			break;
   2429	}
   2430}
   2431
   2432static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
   2433				      struct net_device *dev)
   2434{
   2435	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
   2436	struct port_info *pi = netdev2pinfo(dev);
   2437	struct adapter *adap = netdev2adap(dev);
   2438	struct sge_eosw_txq *eosw_txq;
   2439	u32 qid;
   2440	int ret;
   2441
   2442	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
   2443	if (ret)
   2444		goto out_free;
   2445
   2446	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
   2447	qid = skb_get_queue_mapping(skb) - pi->nqsets;
   2448	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
   2449	spin_lock_bh(&eosw_txq->lock);
   2450	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
   2451		goto out_unlock;
   2452
   2453	ret = eosw_txq_enqueue(eosw_txq, skb);
   2454	if (ret)
   2455		goto out_unlock;
   2456
   2457	/* SKB is queued for processing until credits are available.
   2458	 * So, call the destructor now and we'll free the skb later
   2459	 * after it has been successfully transmitted.
   2460	 */
   2461	skb_orphan(skb);
   2462
   2463	eosw_txq_advance(eosw_txq, 1);
   2464	ethofld_xmit(dev, eosw_txq);
   2465	spin_unlock_bh(&eosw_txq->lock);
   2466	return NETDEV_TX_OK;
   2467
   2468out_unlock:
   2469	spin_unlock_bh(&eosw_txq->lock);
   2470out_free:
   2471	dev_kfree_skb_any(skb);
   2472	return NETDEV_TX_OK;
   2473}
   2474
   2475netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
   2476{
   2477	struct port_info *pi = netdev_priv(dev);
   2478	u16 qid = skb_get_queue_mapping(skb);
   2479
   2480	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
   2481		return cxgb4_vf_eth_xmit(skb, dev);
   2482
   2483	if (unlikely(qid >= pi->nqsets))
   2484		return cxgb4_ethofld_xmit(skb, dev);
   2485
   2486	if (is_ptp_enabled(skb, dev)) {
   2487		struct adapter *adap = netdev2adap(dev);
   2488		netdev_tx_t ret;
   2489
   2490		spin_lock(&adap->ptp_lock);
   2491		ret = cxgb4_eth_xmit(skb, dev);
   2492		spin_unlock(&adap->ptp_lock);
   2493		return ret;
   2494	}
   2495
   2496	return cxgb4_eth_xmit(skb, dev);
   2497}
   2498
   2499static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
   2500{
   2501	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
   2502	int pidx = eosw_txq->pidx;
   2503	struct sk_buff *skb;
   2504
   2505	if (!pktcount)
   2506		return;
   2507
   2508	if (pktcount < 0)
   2509		pktcount += eosw_txq->ndesc;
   2510
   2511	while (pktcount--) {
   2512		pidx--;
   2513		if (pidx < 0)
   2514			pidx += eosw_txq->ndesc;
   2515
   2516		skb = eosw_txq->desc[pidx].skb;
   2517		if (skb) {
   2518			dev_consume_skb_any(skb);
   2519			eosw_txq->desc[pidx].skb = NULL;
   2520			eosw_txq->inuse--;
   2521		}
   2522	}
   2523
   2524	eosw_txq->pidx = eosw_txq->last_pidx + 1;
   2525}
   2526
   2527/**
   2528 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
   2529 * @dev: netdevice
   2530 * @eotid: ETHOFLD tid to bind/unbind
   2531 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
   2532 *
   2533 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
   2534 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
   2535 * a traffic class.
   2536 */
   2537int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
   2538{
   2539	struct port_info *pi = netdev2pinfo(dev);
   2540	struct adapter *adap = netdev2adap(dev);
   2541	enum sge_eosw_state next_state;
   2542	struct sge_eosw_txq *eosw_txq;
   2543	u32 len, len16, nparams = 6;
   2544	struct fw_flowc_wr *flowc;
   2545	struct eotid_entry *entry;
   2546	struct sge_ofld_rxq *rxq;
   2547	struct sk_buff *skb;
   2548	int ret = 0;
   2549
   2550	len = struct_size(flowc, mnemval, nparams);
   2551	len16 = DIV_ROUND_UP(len, 16);
   2552
   2553	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
   2554	if (!entry)
   2555		return -ENOMEM;
   2556
   2557	eosw_txq = (struct sge_eosw_txq *)entry->data;
   2558	if (!eosw_txq)
   2559		return -ENOMEM;
   2560
   2561	if (!(adap->flags & CXGB4_FW_OK)) {
   2562		/* Don't stall caller when access to FW is lost */
   2563		complete(&eosw_txq->completion);
   2564		return -EIO;
   2565	}
   2566
   2567	skb = alloc_skb(len, GFP_KERNEL);
   2568	if (!skb)
   2569		return -ENOMEM;
   2570
   2571	spin_lock_bh(&eosw_txq->lock);
   2572	if (tc != FW_SCHED_CLS_NONE) {
   2573		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
   2574			goto out_free_skb;
   2575
   2576		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
   2577	} else {
   2578		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
   2579			goto out_free_skb;
   2580
   2581		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
   2582	}
   2583
   2584	flowc = __skb_put(skb, len);
   2585	memset(flowc, 0, len);
   2586
   2587	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
   2588	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
   2589					  FW_WR_FLOWID_V(eosw_txq->hwtid));
   2590	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
   2591					   FW_FLOWC_WR_NPARAMS_V(nparams) |
   2592					   FW_WR_COMPL_V(1));
   2593	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
   2594	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
   2595	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
   2596	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
   2597	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
   2598	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
   2599	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
   2600	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
   2601	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
   2602	flowc->mnemval[4].val = cpu_to_be32(tc);
   2603	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
   2604	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
   2605					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
   2606					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
   2607
   2608	/* Free up any pending skbs to ensure there's room for
   2609	 * termination FLOWC.
   2610	 */
   2611	if (tc == FW_SCHED_CLS_NONE)
   2612		eosw_txq_flush_pending_skbs(eosw_txq);
   2613
   2614	ret = eosw_txq_enqueue(eosw_txq, skb);
   2615	if (ret)
   2616		goto out_free_skb;
   2617
   2618	eosw_txq->state = next_state;
   2619	eosw_txq->flowc_idx = eosw_txq->pidx;
   2620	eosw_txq_advance(eosw_txq, 1);
   2621	ethofld_xmit(dev, eosw_txq);
   2622
   2623	spin_unlock_bh(&eosw_txq->lock);
   2624	return 0;
   2625
   2626out_free_skb:
   2627	dev_consume_skb_any(skb);
   2628	spin_unlock_bh(&eosw_txq->lock);
   2629	return ret;
   2630}
   2631
   2632/**
   2633 *	is_imm - check whether a packet can be sent as immediate data
   2634 *	@skb: the packet
   2635 *
   2636 *	Returns true if a packet can be sent as a WR with immediate data.
   2637 */
   2638static inline int is_imm(const struct sk_buff *skb)
   2639{
   2640	return skb->len <= MAX_CTRL_WR_LEN;
   2641}
   2642
   2643/**
   2644 *	ctrlq_check_stop - check if a control queue is full and should stop
   2645 *	@q: the queue
   2646 *	@wr: most recent WR written to the queue
   2647 *
   2648 *	Check if a control queue has become full and should be stopped.
   2649 *	We clean up control queue descriptors very lazily, only when we are out.
   2650 *	If the queue is still full after reclaiming any completed descriptors
   2651 *	we suspend it and have the last WR wake it up.
   2652 */
   2653static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
   2654{
   2655	reclaim_completed_tx_imm(&q->q);
   2656	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
   2657		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
   2658		q->q.stops++;
   2659		q->full = 1;
   2660	}
   2661}
   2662
   2663#define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
   2664
   2665int cxgb4_selftest_lb_pkt(struct net_device *netdev)
   2666{
   2667	struct port_info *pi = netdev_priv(netdev);
   2668	struct adapter *adap = pi->adapter;
   2669	struct cxgb4_ethtool_lb_test *lb;
   2670	int ret, i = 0, pkt_len, credits;
   2671	struct fw_eth_tx_pkt_wr *wr;
   2672	struct cpl_tx_pkt_core *cpl;
   2673	u32 ctrl0, ndesc, flits;
   2674	struct sge_eth_txq *q;
   2675	u8 *sgl;
   2676
   2677	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
   2678
   2679	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
   2680			     sizeof(__be64));
   2681	ndesc = flits_to_desc(flits);
   2682
   2683	lb = &pi->ethtool_lb;
   2684	lb->loopback = 1;
   2685
   2686	q = &adap->sge.ethtxq[pi->first_qset];
   2687	__netif_tx_lock(q->txq, smp_processor_id());
   2688
   2689	reclaim_completed_tx(adap, &q->q, -1, true);
   2690	credits = txq_avail(&q->q) - ndesc;
   2691	if (unlikely(credits < 0)) {
   2692		__netif_tx_unlock(q->txq);
   2693		return -ENOMEM;
   2694	}
   2695
   2696	wr = (void *)&q->q.desc[q->q.pidx];
   2697	memset(wr, 0, sizeof(struct tx_desc));
   2698
   2699	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
   2700			       FW_WR_IMMDLEN_V(pkt_len +
   2701			       sizeof(*cpl)));
   2702	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
   2703	wr->r3 = cpu_to_be64(0);
   2704
   2705	cpl = (void *)(wr + 1);
   2706	sgl = (u8 *)(cpl + 1);
   2707
   2708	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
   2709		TXPKT_INTF_V(pi->tx_chan + 4);
   2710
   2711	cpl->ctrl0 = htonl(ctrl0);
   2712	cpl->pack = htons(0);
   2713	cpl->len = htons(pkt_len);
   2714	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
   2715
   2716	eth_broadcast_addr(sgl);
   2717	i += ETH_ALEN;
   2718	ether_addr_copy(&sgl[i], netdev->dev_addr);
   2719	i += ETH_ALEN;
   2720
   2721	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
   2722		 CXGB4_SELFTEST_LB_STR);
   2723
   2724	init_completion(&lb->completion);
   2725	txq_advance(&q->q, ndesc);
   2726	cxgb4_ring_tx_db(adap, &q->q, ndesc);
   2727	__netif_tx_unlock(q->txq);
   2728
   2729	/* wait for the pkt to return */
   2730	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
   2731	if (!ret)
   2732		ret = -ETIMEDOUT;
   2733	else
   2734		ret = lb->result;
   2735
   2736	lb->loopback = 0;
   2737
   2738	return ret;
   2739}
   2740
   2741/**
   2742 *	ctrl_xmit - send a packet through an SGE control Tx queue
   2743 *	@q: the control queue
   2744 *	@skb: the packet
   2745 *
   2746 *	Send a packet through an SGE control Tx queue.  Packets sent through
   2747 *	a control queue must fit entirely as immediate data.
   2748 */
   2749static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
   2750{
   2751	unsigned int ndesc;
   2752	struct fw_wr_hdr *wr;
   2753
   2754	if (unlikely(!is_imm(skb))) {
   2755		WARN_ON(1);
   2756		dev_kfree_skb(skb);
   2757		return NET_XMIT_DROP;
   2758	}
   2759
   2760	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
   2761	spin_lock(&q->sendq.lock);
   2762
   2763	if (unlikely(q->full)) {
   2764		skb->priority = ndesc;                  /* save for restart */
   2765		__skb_queue_tail(&q->sendq, skb);
   2766		spin_unlock(&q->sendq.lock);
   2767		return NET_XMIT_CN;
   2768	}
   2769
   2770	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
   2771	cxgb4_inline_tx_skb(skb, &q->q, wr);
   2772
   2773	txq_advance(&q->q, ndesc);
   2774	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
   2775		ctrlq_check_stop(q, wr);
   2776
   2777	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
   2778	spin_unlock(&q->sendq.lock);
   2779
   2780	kfree_skb(skb);
   2781	return NET_XMIT_SUCCESS;
   2782}
   2783
   2784/**
   2785 *	restart_ctrlq - restart a suspended control queue
   2786 *	@t: pointer to the tasklet associated with this handler
   2787 *
   2788 *	Resumes transmission on a suspended Tx control queue.
   2789 */
   2790static void restart_ctrlq(struct tasklet_struct *t)
   2791{
   2792	struct sk_buff *skb;
   2793	unsigned int written = 0;
   2794	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
   2795
   2796	spin_lock(&q->sendq.lock);
   2797	reclaim_completed_tx_imm(&q->q);
   2798	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
   2799
   2800	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
   2801		struct fw_wr_hdr *wr;
   2802		unsigned int ndesc = skb->priority;     /* previously saved */
   2803
   2804		written += ndesc;
   2805		/* Write descriptors and free skbs outside the lock to limit
   2806		 * wait times.  q->full is still set so new skbs will be queued.
   2807		 */
   2808		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
   2809		txq_advance(&q->q, ndesc);
   2810		spin_unlock(&q->sendq.lock);
   2811
   2812		cxgb4_inline_tx_skb(skb, &q->q, wr);
   2813		kfree_skb(skb);
   2814
   2815		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
   2816			unsigned long old = q->q.stops;
   2817
   2818			ctrlq_check_stop(q, wr);
   2819			if (q->q.stops != old) {          /* suspended anew */
   2820				spin_lock(&q->sendq.lock);
   2821				goto ringdb;
   2822			}
   2823		}
   2824		if (written > 16) {
   2825			cxgb4_ring_tx_db(q->adap, &q->q, written);
   2826			written = 0;
   2827		}
   2828		spin_lock(&q->sendq.lock);
   2829	}
   2830	q->full = 0;
   2831ringdb:
   2832	if (written)
   2833		cxgb4_ring_tx_db(q->adap, &q->q, written);
   2834	spin_unlock(&q->sendq.lock);
   2835}
   2836
   2837/**
   2838 *	t4_mgmt_tx - send a management message
   2839 *	@adap: the adapter
   2840 *	@skb: the packet containing the management message
   2841 *
   2842 *	Send a management message through control queue 0.
   2843 */
   2844int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
   2845{
   2846	int ret;
   2847
   2848	local_bh_disable();
   2849	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
   2850	local_bh_enable();
   2851	return ret;
   2852}
   2853
   2854/**
   2855 *	is_ofld_imm - check whether a packet can be sent as immediate data
   2856 *	@skb: the packet
   2857 *
   2858 *	Returns true if a packet can be sent as an offload WR with immediate
   2859 *	data.
   2860 *	FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
   2861 *      However, FW_ULPTX_WR commands have a 256 byte immediate only
   2862 *      payload limit.
   2863 */
   2864static inline int is_ofld_imm(const struct sk_buff *skb)
   2865{
   2866	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
   2867	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
   2868
   2869	if (unlikely(opcode == FW_ULPTX_WR))
   2870		return skb->len <= MAX_IMM_ULPTX_WR_LEN;
   2871	else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
   2872		return skb->len <= SGE_MAX_WR_LEN;
   2873	else
   2874		return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
   2875}
   2876
   2877/**
   2878 *	calc_tx_flits_ofld - calculate # of flits for an offload packet
   2879 *	@skb: the packet
   2880 *
   2881 *	Returns the number of flits needed for the given offload packet.
   2882 *	These packets are already fully constructed and no additional headers
   2883 *	will be added.
   2884 */
   2885static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
   2886{
   2887	unsigned int flits, cnt;
   2888
   2889	if (is_ofld_imm(skb))
   2890		return DIV_ROUND_UP(skb->len, 8);
   2891
   2892	flits = skb_transport_offset(skb) / 8U;   /* headers */
   2893	cnt = skb_shinfo(skb)->nr_frags;
   2894	if (skb_tail_pointer(skb) != skb_transport_header(skb))
   2895		cnt++;
   2896	return flits + sgl_len(cnt);
   2897}
   2898
   2899/**
   2900 *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
   2901 *	@q: the queue to stop
   2902 *
   2903 *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
   2904 *	inability to map packets.  A periodic timer attempts to restart
   2905 *	queues so marked.
   2906 */
   2907static void txq_stop_maperr(struct sge_uld_txq *q)
   2908{
   2909	q->mapping_err++;
   2910	q->q.stops++;
   2911	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
   2912		q->adap->sge.txq_maperr);
   2913}
   2914
   2915/**
   2916 *	ofldtxq_stop - stop an offload Tx queue that has become full
   2917 *	@q: the queue to stop
   2918 *	@wr: the Work Request causing the queue to become full
   2919 *
   2920 *	Stops an offload Tx queue that has become full and modifies the packet
   2921 *	being written to request a wakeup.
   2922 */
   2923static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
   2924{
   2925	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
   2926	q->q.stops++;
   2927	q->full = 1;
   2928}
   2929
   2930/**
   2931 *	service_ofldq - service/restart a suspended offload queue
   2932 *	@q: the offload queue
   2933 *
   2934 *	Services an offload Tx queue by moving packets from its Pending Send
   2935 *	Queue to the Hardware TX ring.  The function starts and ends with the
   2936 *	Send Queue locked, but drops the lock while putting the skb at the
   2937 *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
   2938 *	allows more skbs to be added to the Send Queue by other threads.
   2939 *	The packet being processed at the head of the Pending Send Queue is
   2940 *	left on the queue in case we experience DMA Mapping errors, etc.
   2941 *	and need to give up and restart later.
   2942 *
   2943 *	service_ofldq() can be thought of as a task which opportunistically
   2944 *	uses other threads execution contexts.  We use the Offload Queue
   2945 *	boolean "service_ofldq_running" to make sure that only one instance
   2946 *	is ever running at a time ...
   2947 */
   2948static void service_ofldq(struct sge_uld_txq *q)
   2949	__must_hold(&q->sendq.lock)
   2950{
   2951	u64 *pos, *before, *end;
   2952	int credits;
   2953	struct sk_buff *skb;
   2954	struct sge_txq *txq;
   2955	unsigned int left;
   2956	unsigned int written = 0;
   2957	unsigned int flits, ndesc;
   2958
   2959	/* If another thread is currently in service_ofldq() processing the
   2960	 * Pending Send Queue then there's nothing to do. Otherwise, flag
   2961	 * that we're doing the work and continue.  Examining/modifying
   2962	 * the Offload Queue boolean "service_ofldq_running" must be done
   2963	 * while holding the Pending Send Queue Lock.
   2964	 */
   2965	if (q->service_ofldq_running)
   2966		return;
   2967	q->service_ofldq_running = true;
   2968
   2969	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
   2970		/* We drop the lock while we're working with the skb at the
   2971		 * head of the Pending Send Queue.  This allows more skbs to
   2972		 * be added to the Pending Send Queue while we're working on
   2973		 * this one.  We don't need to lock to guard the TX Ring
   2974		 * updates because only one thread of execution is ever
   2975		 * allowed into service_ofldq() at a time.
   2976		 */
   2977		spin_unlock(&q->sendq.lock);
   2978
   2979		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
   2980
   2981		flits = skb->priority;                /* previously saved */
   2982		ndesc = flits_to_desc(flits);
   2983		credits = txq_avail(&q->q) - ndesc;
   2984		BUG_ON(credits < 0);
   2985		if (unlikely(credits < TXQ_STOP_THRES))
   2986			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
   2987
   2988		pos = (u64 *)&q->q.desc[q->q.pidx];
   2989		if (is_ofld_imm(skb))
   2990			cxgb4_inline_tx_skb(skb, &q->q, pos);
   2991		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
   2992				       (dma_addr_t *)skb->head)) {
   2993			txq_stop_maperr(q);
   2994			spin_lock(&q->sendq.lock);
   2995			break;
   2996		} else {
   2997			int last_desc, hdr_len = skb_transport_offset(skb);
   2998
   2999			/* The WR headers  may not fit within one descriptor.
   3000			 * So we need to deal with wrap-around here.
   3001			 */
   3002			before = (u64 *)pos;
   3003			end = (u64 *)pos + flits;
   3004			txq = &q->q;
   3005			pos = (void *)inline_tx_skb_header(skb, &q->q,
   3006							   (void *)pos,
   3007							   hdr_len);
   3008			if (before > (u64 *)pos) {
   3009				left = (u8 *)end - (u8 *)txq->stat;
   3010				end = (void *)txq->desc + left;
   3011			}
   3012
   3013			/* If current position is already at the end of the
   3014			 * ofld queue, reset the current to point to
   3015			 * start of the queue and update the end ptr as well.
   3016			 */
   3017			if (pos == (u64 *)txq->stat) {
   3018				left = (u8 *)end - (u8 *)txq->stat;
   3019				end = (void *)txq->desc + left;
   3020				pos = (void *)txq->desc;
   3021			}
   3022
   3023			cxgb4_write_sgl(skb, &q->q, (void *)pos,
   3024					end, hdr_len,
   3025					(dma_addr_t *)skb->head);
   3026#ifdef CONFIG_NEED_DMA_MAP_STATE
   3027			skb->dev = q->adap->port[0];
   3028			skb->destructor = deferred_unmap_destructor;
   3029#endif
   3030			last_desc = q->q.pidx + ndesc - 1;
   3031			if (last_desc >= q->q.size)
   3032				last_desc -= q->q.size;
   3033			q->q.sdesc[last_desc].skb = skb;
   3034		}
   3035
   3036		txq_advance(&q->q, ndesc);
   3037		written += ndesc;
   3038		if (unlikely(written > 32)) {
   3039			cxgb4_ring_tx_db(q->adap, &q->q, written);
   3040			written = 0;
   3041		}
   3042
   3043		/* Reacquire the Pending Send Queue Lock so we can unlink the
   3044		 * skb we've just successfully transferred to the TX Ring and
   3045		 * loop for the next skb which may be at the head of the
   3046		 * Pending Send Queue.
   3047		 */
   3048		spin_lock(&q->sendq.lock);
   3049		__skb_unlink(skb, &q->sendq);
   3050		if (is_ofld_imm(skb))
   3051			kfree_skb(skb);
   3052	}
   3053	if (likely(written))
   3054		cxgb4_ring_tx_db(q->adap, &q->q, written);
   3055
   3056	/*Indicate that no thread is processing the Pending Send Queue
   3057	 * currently.
   3058	 */
   3059	q->service_ofldq_running = false;
   3060}
   3061
   3062/**
   3063 *	ofld_xmit - send a packet through an offload queue
   3064 *	@q: the Tx offload queue
   3065 *	@skb: the packet
   3066 *
   3067 *	Send an offload packet through an SGE offload queue.
   3068 */
   3069static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
   3070{
   3071	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
   3072	spin_lock(&q->sendq.lock);
   3073
   3074	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
   3075	 * that results in this new skb being the only one on the queue, start
   3076	 * servicing it.  If there are other skbs already on the list, then
   3077	 * either the queue is currently being processed or it's been stopped
   3078	 * for some reason and it'll be restarted at a later time.  Restart
   3079	 * paths are triggered by events like experiencing a DMA Mapping Error
   3080	 * or filling the Hardware TX Ring.
   3081	 */
   3082	__skb_queue_tail(&q->sendq, skb);
   3083	if (q->sendq.qlen == 1)
   3084		service_ofldq(q);
   3085
   3086	spin_unlock(&q->sendq.lock);
   3087	return NET_XMIT_SUCCESS;
   3088}
   3089
   3090/**
   3091 *	restart_ofldq - restart a suspended offload queue
   3092 *	@t: pointer to the tasklet associated with this handler
   3093 *
   3094 *	Resumes transmission on a suspended Tx offload queue.
   3095 */
   3096static void restart_ofldq(struct tasklet_struct *t)
   3097{
   3098	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
   3099
   3100	spin_lock(&q->sendq.lock);
   3101	q->full = 0;            /* the queue actually is completely empty now */
   3102	service_ofldq(q);
   3103	spin_unlock(&q->sendq.lock);
   3104}
   3105
   3106/**
   3107 *	skb_txq - return the Tx queue an offload packet should use
   3108 *	@skb: the packet
   3109 *
   3110 *	Returns the Tx queue an offload packet should use as indicated by bits
   3111 *	1-15 in the packet's queue_mapping.
   3112 */
   3113static inline unsigned int skb_txq(const struct sk_buff *skb)
   3114{
   3115	return skb->queue_mapping >> 1;
   3116}
   3117
   3118/**
   3119 *	is_ctrl_pkt - return whether an offload packet is a control packet
   3120 *	@skb: the packet
   3121 *
   3122 *	Returns whether an offload packet should use an OFLD or a CTRL
   3123 *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
   3124 */
   3125static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
   3126{
   3127	return skb->queue_mapping & 1;
   3128}
   3129
   3130static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
   3131			   unsigned int tx_uld_type)
   3132{
   3133	struct sge_uld_txq_info *txq_info;
   3134	struct sge_uld_txq *txq;
   3135	unsigned int idx = skb_txq(skb);
   3136
   3137	if (unlikely(is_ctrl_pkt(skb))) {
   3138		/* Single ctrl queue is a requirement for LE workaround path */
   3139		if (adap->tids.nsftids)
   3140			idx = 0;
   3141		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
   3142	}
   3143
   3144	txq_info = adap->sge.uld_txq_info[tx_uld_type];
   3145	if (unlikely(!txq_info)) {
   3146		WARN_ON(true);
   3147		kfree_skb(skb);
   3148		return NET_XMIT_DROP;
   3149	}
   3150
   3151	txq = &txq_info->uldtxq[idx];
   3152	return ofld_xmit(txq, skb);
   3153}
   3154
   3155/**
   3156 *	t4_ofld_send - send an offload packet
   3157 *	@adap: the adapter
   3158 *	@skb: the packet
   3159 *
   3160 *	Sends an offload packet.  We use the packet queue_mapping to select the
   3161 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
   3162 *	should be sent as regular or control, bits 1-15 select the queue.
   3163 */
   3164int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
   3165{
   3166	int ret;
   3167
   3168	local_bh_disable();
   3169	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
   3170	local_bh_enable();
   3171	return ret;
   3172}
   3173
   3174/**
   3175 *	cxgb4_ofld_send - send an offload packet
   3176 *	@dev: the net device
   3177 *	@skb: the packet
   3178 *
   3179 *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
   3180 *	intended for ULDs.
   3181 */
   3182int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
   3183{
   3184	return t4_ofld_send(netdev2adap(dev), skb);
   3185}
   3186EXPORT_SYMBOL(cxgb4_ofld_send);
   3187
   3188static void *inline_tx_header(const void *src,
   3189			      const struct sge_txq *q,
   3190			      void *pos, int length)
   3191{
   3192	int left = (void *)q->stat - pos;
   3193	u64 *p;
   3194
   3195	if (likely(length <= left)) {
   3196		memcpy(pos, src, length);
   3197		pos += length;
   3198	} else {
   3199		memcpy(pos, src, left);
   3200		memcpy(q->desc, src + left, length - left);
   3201		pos = (void *)q->desc + (length - left);
   3202	}
   3203	/* 0-pad to multiple of 16 */
   3204	p = PTR_ALIGN(pos, 8);
   3205	if ((uintptr_t)p & 8) {
   3206		*p = 0;
   3207		return p + 1;
   3208	}
   3209	return p;
   3210}
   3211
   3212/**
   3213 *      ofld_xmit_direct - copy a WR into offload queue
   3214 *      @q: the Tx offload queue
   3215 *      @src: location of WR
   3216 *      @len: WR length
   3217 *
   3218 *      Copy an immediate WR into an uncontended SGE offload queue.
   3219 */
   3220static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
   3221			    unsigned int len)
   3222{
   3223	unsigned int ndesc;
   3224	int credits;
   3225	u64 *pos;
   3226
   3227	/* Use the lower limit as the cut-off */
   3228	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
   3229		WARN_ON(1);
   3230		return NET_XMIT_DROP;
   3231	}
   3232
   3233	/* Don't return NET_XMIT_CN here as the current
   3234	 * implementation doesn't queue the request
   3235	 * using an skb when the following conditions not met
   3236	 */
   3237	if (!spin_trylock(&q->sendq.lock))
   3238		return NET_XMIT_DROP;
   3239
   3240	if (q->full || !skb_queue_empty(&q->sendq) ||
   3241	    q->service_ofldq_running) {
   3242		spin_unlock(&q->sendq.lock);
   3243		return NET_XMIT_DROP;
   3244	}
   3245	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
   3246	credits = txq_avail(&q->q) - ndesc;
   3247	pos = (u64 *)&q->q.desc[q->q.pidx];
   3248
   3249	/* ofldtxq_stop modifies WR header in-situ */
   3250	inline_tx_header(src, &q->q, pos, len);
   3251	if (unlikely(credits < TXQ_STOP_THRES))
   3252		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
   3253	txq_advance(&q->q, ndesc);
   3254	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
   3255
   3256	spin_unlock(&q->sendq.lock);
   3257	return NET_XMIT_SUCCESS;
   3258}
   3259
   3260int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
   3261		       const void *src, unsigned int len)
   3262{
   3263	struct sge_uld_txq_info *txq_info;
   3264	struct sge_uld_txq *txq;
   3265	struct adapter *adap;
   3266	int ret;
   3267
   3268	adap = netdev2adap(dev);
   3269
   3270	local_bh_disable();
   3271	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
   3272	if (unlikely(!txq_info)) {
   3273		WARN_ON(true);
   3274		local_bh_enable();
   3275		return NET_XMIT_DROP;
   3276	}
   3277	txq = &txq_info->uldtxq[idx];
   3278
   3279	ret = ofld_xmit_direct(txq, src, len);
   3280	local_bh_enable();
   3281	return net_xmit_eval(ret);
   3282}
   3283EXPORT_SYMBOL(cxgb4_immdata_send);
   3284
   3285/**
   3286 *	t4_crypto_send - send crypto packet
   3287 *	@adap: the adapter
   3288 *	@skb: the packet
   3289 *
   3290 *	Sends crypto packet.  We use the packet queue_mapping to select the
   3291 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
   3292 *	should be sent as regular or control, bits 1-15 select the queue.
   3293 */
   3294static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
   3295{
   3296	int ret;
   3297
   3298	local_bh_disable();
   3299	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
   3300	local_bh_enable();
   3301	return ret;
   3302}
   3303
   3304/**
   3305 *	cxgb4_crypto_send - send crypto packet
   3306 *	@dev: the net device
   3307 *	@skb: the packet
   3308 *
   3309 *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
   3310 *	intended for ULDs.
   3311 */
   3312int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
   3313{
   3314	return t4_crypto_send(netdev2adap(dev), skb);
   3315}
   3316EXPORT_SYMBOL(cxgb4_crypto_send);
   3317
   3318static inline void copy_frags(struct sk_buff *skb,
   3319			      const struct pkt_gl *gl, unsigned int offset)
   3320{
   3321	int i;
   3322
   3323	/* usually there's just one frag */
   3324	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
   3325			     gl->frags[0].offset + offset,
   3326			     gl->frags[0].size - offset);
   3327	skb_shinfo(skb)->nr_frags = gl->nfrags;
   3328	for (i = 1; i < gl->nfrags; i++)
   3329		__skb_fill_page_desc(skb, i, gl->frags[i].page,
   3330				     gl->frags[i].offset,
   3331				     gl->frags[i].size);
   3332
   3333	/* get a reference to the last page, we don't own it */
   3334	get_page(gl->frags[gl->nfrags - 1].page);
   3335}
   3336
   3337/**
   3338 *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
   3339 *	@gl: the gather list
   3340 *	@skb_len: size of sk_buff main body if it carries fragments
   3341 *	@pull_len: amount of data to move to the sk_buff's main body
   3342 *
   3343 *	Builds an sk_buff from the given packet gather list.  Returns the
   3344 *	sk_buff or %NULL if sk_buff allocation failed.
   3345 */
   3346struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
   3347				   unsigned int skb_len, unsigned int pull_len)
   3348{
   3349	struct sk_buff *skb;
   3350
   3351	/*
   3352	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
   3353	 * size, which is expected since buffers are at least PAGE_SIZEd.
   3354	 * In this case packets up to RX_COPY_THRES have only one fragment.
   3355	 */
   3356	if (gl->tot_len <= RX_COPY_THRES) {
   3357		skb = dev_alloc_skb(gl->tot_len);
   3358		if (unlikely(!skb))
   3359			goto out;
   3360		__skb_put(skb, gl->tot_len);
   3361		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
   3362	} else {
   3363		skb = dev_alloc_skb(skb_len);
   3364		if (unlikely(!skb))
   3365			goto out;
   3366		__skb_put(skb, pull_len);
   3367		skb_copy_to_linear_data(skb, gl->va, pull_len);
   3368
   3369		copy_frags(skb, gl, pull_len);
   3370		skb->len = gl->tot_len;
   3371		skb->data_len = skb->len - pull_len;
   3372		skb->truesize += skb->data_len;
   3373	}
   3374out:	return skb;
   3375}
   3376EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
   3377
   3378/**
   3379 *	t4_pktgl_free - free a packet gather list
   3380 *	@gl: the gather list
   3381 *
   3382 *	Releases the pages of a packet gather list.  We do not own the last
   3383 *	page on the list and do not free it.
   3384 */
   3385static void t4_pktgl_free(const struct pkt_gl *gl)
   3386{
   3387	int n;
   3388	const struct page_frag *p;
   3389
   3390	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
   3391		put_page(p->page);
   3392}
   3393
   3394/*
   3395 * Process an MPS trace packet.  Give it an unused protocol number so it won't
   3396 * be delivered to anyone and send it to the stack for capture.
   3397 */
   3398static noinline int handle_trace_pkt(struct adapter *adap,
   3399				     const struct pkt_gl *gl)
   3400{
   3401	struct sk_buff *skb;
   3402
   3403	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
   3404	if (unlikely(!skb)) {
   3405		t4_pktgl_free(gl);
   3406		return 0;
   3407	}
   3408
   3409	if (is_t4(adap->params.chip))
   3410		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
   3411	else
   3412		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
   3413
   3414	skb_reset_mac_header(skb);
   3415	skb->protocol = htons(0xffff);
   3416	skb->dev = adap->port[0];
   3417	netif_receive_skb(skb);
   3418	return 0;
   3419}
   3420
   3421/**
   3422 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
   3423 * @adap: the adapter
   3424 * @hwtstamps: time stamp structure to update
   3425 * @sgetstamp: 60bit iqe timestamp
   3426 *
   3427 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
   3428 * which is in Core Clock ticks into ktime_t and assign it
   3429 **/
   3430static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
   3431				     struct skb_shared_hwtstamps *hwtstamps,
   3432				     u64 sgetstamp)
   3433{
   3434	u64 ns;
   3435	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
   3436
   3437	ns = div_u64(tmp, adap->params.vpd.cclk);
   3438
   3439	memset(hwtstamps, 0, sizeof(*hwtstamps));
   3440	hwtstamps->hwtstamp = ns_to_ktime(ns);
   3441}
   3442
   3443static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
   3444		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
   3445{
   3446	struct adapter *adapter = rxq->rspq.adap;
   3447	struct sge *s = &adapter->sge;
   3448	struct port_info *pi;
   3449	int ret;
   3450	struct sk_buff *skb;
   3451
   3452	skb = napi_get_frags(&rxq->rspq.napi);
   3453	if (unlikely(!skb)) {
   3454		t4_pktgl_free(gl);
   3455		rxq->stats.rx_drops++;
   3456		return;
   3457	}
   3458
   3459	copy_frags(skb, gl, s->pktshift);
   3460	if (tnl_hdr_len)
   3461		skb->csum_level = 1;
   3462	skb->len = gl->tot_len - s->pktshift;
   3463	skb->data_len = skb->len;
   3464	skb->truesize += skb->data_len;
   3465	skb->ip_summed = CHECKSUM_UNNECESSARY;
   3466	skb_record_rx_queue(skb, rxq->rspq.idx);
   3467	pi = netdev_priv(skb->dev);
   3468	if (pi->rxtstamp)
   3469		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
   3470					 gl->sgetstamp);
   3471	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
   3472		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
   3473			     PKT_HASH_TYPE_L3);
   3474
   3475	if (unlikely(pkt->vlan_ex)) {
   3476		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
   3477		rxq->stats.vlan_ex++;
   3478	}
   3479	ret = napi_gro_frags(&rxq->rspq.napi);
   3480	if (ret == GRO_HELD)
   3481		rxq->stats.lro_pkts++;
   3482	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
   3483		rxq->stats.lro_merged++;
   3484	rxq->stats.pkts++;
   3485	rxq->stats.rx_cso++;
   3486}
   3487
   3488enum {
   3489	RX_NON_PTP_PKT = 0,
   3490	RX_PTP_PKT_SUC = 1,
   3491	RX_PTP_PKT_ERR = 2
   3492};
   3493
   3494/**
   3495 *     t4_systim_to_hwstamp - read hardware time stamp
   3496 *     @adapter: the adapter
   3497 *     @skb: the packet
   3498 *
   3499 *     Read Time Stamp from MPS packet and insert in skb which
   3500 *     is forwarded to PTP application
   3501 */
   3502static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
   3503					 struct sk_buff *skb)
   3504{
   3505	struct skb_shared_hwtstamps *hwtstamps;
   3506	struct cpl_rx_mps_pkt *cpl = NULL;
   3507	unsigned char *data;
   3508	int offset;
   3509
   3510	cpl = (struct cpl_rx_mps_pkt *)skb->data;
   3511	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
   3512	     X_CPL_RX_MPS_PKT_TYPE_PTP))
   3513		return RX_PTP_PKT_ERR;
   3514
   3515	data = skb->data + sizeof(*cpl);
   3516	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
   3517	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
   3518	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
   3519		return RX_PTP_PKT_ERR;
   3520
   3521	hwtstamps = skb_hwtstamps(skb);
   3522	memset(hwtstamps, 0, sizeof(*hwtstamps));
   3523	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
   3524
   3525	return RX_PTP_PKT_SUC;
   3526}
   3527
   3528/**
   3529 *     t4_rx_hststamp - Recv PTP Event Message
   3530 *     @adapter: the adapter
   3531 *     @rsp: the response queue descriptor holding the RX_PKT message
   3532 *     @rxq: the response queue holding the RX_PKT message
   3533 *     @skb: the packet
   3534 *
   3535 *     PTP enabled and MPS packet, read HW timestamp
   3536 */
   3537static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
   3538			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
   3539{
   3540	int ret;
   3541
   3542	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
   3543		     !is_t4(adapter->params.chip))) {
   3544		ret = t4_systim_to_hwstamp(adapter, skb);
   3545		if (ret == RX_PTP_PKT_ERR) {
   3546			kfree_skb(skb);
   3547			rxq->stats.rx_drops++;
   3548		}
   3549		return ret;
   3550	}
   3551	return RX_NON_PTP_PKT;
   3552}
   3553
   3554/**
   3555 *      t4_tx_hststamp - Loopback PTP Transmit Event Message
   3556 *      @adapter: the adapter
   3557 *      @skb: the packet
   3558 *      @dev: the ingress net device
   3559 *
   3560 *      Read hardware timestamp for the loopback PTP Tx event message
   3561 */
   3562static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
   3563			  struct net_device *dev)
   3564{
   3565	struct port_info *pi = netdev_priv(dev);
   3566
   3567	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
   3568		cxgb4_ptp_read_hwstamp(adapter, pi);
   3569		kfree_skb(skb);
   3570		return 0;
   3571	}
   3572	return 1;
   3573}
   3574
   3575/**
   3576 *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
   3577 *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
   3578 *	@rsp: Response Entry pointer into Response Queue
   3579 *	@gl: Gather List pointer
   3580 *
   3581 *	For adapters which support the SGE Doorbell Queue Timer facility,
   3582 *	we configure the Ethernet TX Queues to send CIDX Updates to the
   3583 *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
   3584 *	messages.  This adds a small load to PCIe Link RX bandwidth and,
   3585 *	potentially, higher CPU Interrupt load, but allows us to respond
   3586 *	much more quickly to the CIDX Updates.  This is important for
   3587 *	Upper Layer Software which isn't willing to have a large amount
   3588 *	of TX Data outstanding before receiving DMA Completions.
   3589 */
   3590static void t4_tx_completion_handler(struct sge_rspq *rspq,
   3591				     const __be64 *rsp,
   3592				     const struct pkt_gl *gl)
   3593{
   3594	u8 opcode = ((const struct rss_header *)rsp)->opcode;
   3595	struct port_info *pi = netdev_priv(rspq->netdev);
   3596	struct adapter *adapter = rspq->adap;
   3597	struct sge *s = &adapter->sge;
   3598	struct sge_eth_txq *txq;
   3599
   3600	/* skip RSS header */
   3601	rsp++;
   3602
   3603	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
   3604	 */
   3605	if (unlikely(opcode == CPL_FW4_MSG &&
   3606		     ((const struct cpl_fw4_msg *)rsp)->type ==
   3607							FW_TYPE_RSSCPL)) {
   3608		rsp++;
   3609		opcode = ((const struct rss_header *)rsp)->opcode;
   3610		rsp++;
   3611	}
   3612
   3613	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
   3614		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
   3615			__func__, opcode);
   3616		return;
   3617	}
   3618
   3619	txq = &s->ethtxq[pi->first_qset + rspq->idx];
   3620
   3621	/* We've got the Hardware Consumer Index Update in the Egress Update
   3622	 * message. These Egress Update messages will be our sole CIDX Updates
   3623	 * we get since we don't want to chew up PCIe bandwidth for both Ingress
   3624	 * Messages and Status Page writes.  However, The code which manages
   3625	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
   3626	 * stored in the Status Page at the end of the TX Queue.  It's easiest
   3627	 * to simply copy the CIDX Update value from the Egress Update message
   3628	 * to the Status Page.  Also note that no Endian issues need to be
   3629	 * considered here since both are Big Endian and we're just copying
   3630	 * bytes consistently ...
   3631	 */
   3632	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
   3633		struct cpl_sge_egr_update *egr;
   3634
   3635		egr = (struct cpl_sge_egr_update *)rsp;
   3636		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
   3637	}
   3638
   3639	t4_sge_eth_txq_egress_update(adapter, txq, -1);
   3640}
   3641
   3642static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
   3643{
   3644	struct adapter *adap = pi->adapter;
   3645	struct cxgb4_ethtool_lb_test *lb;
   3646	struct sge *s = &adap->sge;
   3647	struct net_device *netdev;
   3648	u8 *data;
   3649	int i;
   3650
   3651	netdev = adap->port[pi->port_id];
   3652	lb = &pi->ethtool_lb;
   3653	data = si->va + s->pktshift;
   3654
   3655	i = ETH_ALEN;
   3656	if (!ether_addr_equal(data + i, netdev->dev_addr))
   3657		return -1;
   3658
   3659	i += ETH_ALEN;
   3660	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
   3661		lb->result = -EIO;
   3662
   3663	complete(&lb->completion);
   3664	return 0;
   3665}
   3666
   3667/**
   3668 *	t4_ethrx_handler - process an ingress ethernet packet
   3669 *	@q: the response queue that received the packet
   3670 *	@rsp: the response queue descriptor holding the RX_PKT message
   3671 *	@si: the gather list of packet fragments
   3672 *
   3673 *	Process an ingress ethernet packet and deliver it to the stack.
   3674 */
   3675int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
   3676		     const struct pkt_gl *si)
   3677{
   3678	bool csum_ok;
   3679	struct sk_buff *skb;
   3680	const struct cpl_rx_pkt *pkt;
   3681	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
   3682	struct adapter *adapter = q->adap;
   3683	struct sge *s = &q->adap->sge;
   3684	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
   3685			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
   3686	u16 err_vec, tnl_hdr_len = 0;
   3687	struct port_info *pi;
   3688	int ret = 0;
   3689
   3690	pi = netdev_priv(q->netdev);
   3691	/* If we're looking at TX Queue CIDX Update, handle that separately
   3692	 * and return.
   3693	 */
   3694	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
   3695		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
   3696		t4_tx_completion_handler(q, rsp, si);
   3697		return 0;
   3698	}
   3699
   3700	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
   3701		return handle_trace_pkt(q->adap, si);
   3702
   3703	pkt = (const struct cpl_rx_pkt *)rsp;
   3704	/* Compressed error vector is enabled for T6 only */
   3705	if (q->adap->params.tp.rx_pkt_encap) {
   3706		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
   3707		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
   3708	} else {
   3709		err_vec = be16_to_cpu(pkt->err_vec);
   3710	}
   3711
   3712	csum_ok = pkt->csum_calc && !err_vec &&
   3713		  (q->netdev->features & NETIF_F_RXCSUM);
   3714
   3715	if (err_vec)
   3716		rxq->stats.bad_rx_pkts++;
   3717
   3718	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
   3719		ret = cxgb4_validate_lb_pkt(pi, si);
   3720		if (!ret)
   3721			return 0;
   3722	}
   3723
   3724	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
   3725	     tnl_hdr_len) &&
   3726	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
   3727		do_gro(rxq, si, pkt, tnl_hdr_len);
   3728		return 0;
   3729	}
   3730
   3731	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
   3732	if (unlikely(!skb)) {
   3733		t4_pktgl_free(si);
   3734		rxq->stats.rx_drops++;
   3735		return 0;
   3736	}
   3737
   3738	/* Handle PTP Event Rx packet */
   3739	if (unlikely(pi->ptp_enable)) {
   3740		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
   3741		if (ret == RX_PTP_PKT_ERR)
   3742			return 0;
   3743	}
   3744	if (likely(!ret))
   3745		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
   3746
   3747	/* Handle the PTP Event Tx Loopback packet */
   3748	if (unlikely(pi->ptp_enable && !ret &&
   3749		     (pkt->l2info & htonl(RXF_UDP_F)) &&
   3750		     cxgb4_ptp_is_ptp_rx(skb))) {
   3751		if (!t4_tx_hststamp(adapter, skb, q->netdev))
   3752			return 0;
   3753	}
   3754
   3755	skb->protocol = eth_type_trans(skb, q->netdev);
   3756	skb_record_rx_queue(skb, q->idx);
   3757	if (skb->dev->features & NETIF_F_RXHASH)
   3758		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
   3759			     PKT_HASH_TYPE_L3);
   3760
   3761	rxq->stats.pkts++;
   3762
   3763	if (pi->rxtstamp)
   3764		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
   3765					 si->sgetstamp);
   3766	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
   3767		if (!pkt->ip_frag) {
   3768			skb->ip_summed = CHECKSUM_UNNECESSARY;
   3769			rxq->stats.rx_cso++;
   3770		} else if (pkt->l2info & htonl(RXF_IP_F)) {
   3771			__sum16 c = (__force __sum16)pkt->csum;
   3772			skb->csum = csum_unfold(c);
   3773
   3774			if (tnl_hdr_len) {
   3775				skb->ip_summed = CHECKSUM_UNNECESSARY;
   3776				skb->csum_level = 1;
   3777			} else {
   3778				skb->ip_summed = CHECKSUM_COMPLETE;
   3779			}
   3780			rxq->stats.rx_cso++;
   3781		}
   3782	} else {
   3783		skb_checksum_none_assert(skb);
   3784#ifdef CONFIG_CHELSIO_T4_FCOE
   3785#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
   3786			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
   3787
   3788		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
   3789			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
   3790			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
   3791				if (q->adap->params.tp.rx_pkt_encap)
   3792					csum_ok = err_vec &
   3793						  T6_COMPR_RXERR_SUM_F;
   3794				else
   3795					csum_ok = err_vec & RXERR_CSUM_F;
   3796				if (!csum_ok)
   3797					skb->ip_summed = CHECKSUM_UNNECESSARY;
   3798			}
   3799		}
   3800
   3801#undef CPL_RX_PKT_FLAGS
   3802#endif /* CONFIG_CHELSIO_T4_FCOE */
   3803	}
   3804
   3805	if (unlikely(pkt->vlan_ex)) {
   3806		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
   3807		rxq->stats.vlan_ex++;
   3808	}
   3809	skb_mark_napi_id(skb, &q->napi);
   3810	netif_receive_skb(skb);
   3811	return 0;
   3812}
   3813
   3814/**
   3815 *	restore_rx_bufs - put back a packet's Rx buffers
   3816 *	@si: the packet gather list
   3817 *	@q: the SGE free list
   3818 *	@frags: number of FL buffers to restore
   3819 *
   3820 *	Puts back on an FL the Rx buffers associated with @si.  The buffers
   3821 *	have already been unmapped and are left unmapped, we mark them so to
   3822 *	prevent further unmapping attempts.
   3823 *
   3824 *	This function undoes a series of @unmap_rx_buf calls when we find out
   3825 *	that the current packet can't be processed right away afterall and we
   3826 *	need to come back to it later.  This is a very rare event and there's
   3827 *	no effort to make this particularly efficient.
   3828 */
   3829static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
   3830			    int frags)
   3831{
   3832	struct rx_sw_desc *d;
   3833
   3834	while (frags--) {
   3835		if (q->cidx == 0)
   3836			q->cidx = q->size - 1;
   3837		else
   3838			q->cidx--;
   3839		d = &q->sdesc[q->cidx];
   3840		d->page = si->frags[frags].page;
   3841		d->dma_addr |= RX_UNMAPPED_BUF;
   3842		q->avail++;
   3843	}
   3844}
   3845
   3846/**
   3847 *	is_new_response - check if a response is newly written
   3848 *	@r: the response descriptor
   3849 *	@q: the response queue
   3850 *
   3851 *	Returns true if a response descriptor contains a yet unprocessed
   3852 *	response.
   3853 */
   3854static inline bool is_new_response(const struct rsp_ctrl *r,
   3855				   const struct sge_rspq *q)
   3856{
   3857	return (r->type_gen >> RSPD_GEN_S) == q->gen;
   3858}
   3859
   3860/**
   3861 *	rspq_next - advance to the next entry in a response queue
   3862 *	@q: the queue
   3863 *
   3864 *	Updates the state of a response queue to advance it to the next entry.
   3865 */
   3866static inline void rspq_next(struct sge_rspq *q)
   3867{
   3868	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
   3869	if (unlikely(++q->cidx == q->size)) {
   3870		q->cidx = 0;
   3871		q->gen ^= 1;
   3872		q->cur_desc = q->desc;
   3873	}
   3874}
   3875
   3876/**
   3877 *	process_responses - process responses from an SGE response queue
   3878 *	@q: the ingress queue to process
   3879 *	@budget: how many responses can be processed in this round
   3880 *
   3881 *	Process responses from an SGE response queue up to the supplied budget.
   3882 *	Responses include received packets as well as control messages from FW
   3883 *	or HW.
   3884 *
   3885 *	Additionally choose the interrupt holdoff time for the next interrupt
   3886 *	on this queue.  If the system is under memory shortage use a fairly
   3887 *	long delay to help recovery.
   3888 */
   3889static int process_responses(struct sge_rspq *q, int budget)
   3890{
   3891	int ret, rsp_type;
   3892	int budget_left = budget;
   3893	const struct rsp_ctrl *rc;
   3894	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
   3895	struct adapter *adapter = q->adap;
   3896	struct sge *s = &adapter->sge;
   3897
   3898	while (likely(budget_left)) {
   3899		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
   3900		if (!is_new_response(rc, q)) {
   3901			if (q->flush_handler)
   3902				q->flush_handler(q);
   3903			break;
   3904		}
   3905
   3906		dma_rmb();
   3907		rsp_type = RSPD_TYPE_G(rc->type_gen);
   3908		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
   3909			struct page_frag *fp;
   3910			struct pkt_gl si;
   3911			const struct rx_sw_desc *rsd;
   3912			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
   3913
   3914			if (len & RSPD_NEWBUF_F) {
   3915				if (likely(q->offset > 0)) {
   3916					free_rx_bufs(q->adap, &rxq->fl, 1);
   3917					q->offset = 0;
   3918				}
   3919				len = RSPD_LEN_G(len);
   3920			}
   3921			si.tot_len = len;
   3922
   3923			/* gather packet fragments */
   3924			for (frags = 0, fp = si.frags; ; frags++, fp++) {
   3925				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
   3926				bufsz = get_buf_size(adapter, rsd);
   3927				fp->page = rsd->page;
   3928				fp->offset = q->offset;
   3929				fp->size = min(bufsz, len);
   3930				len -= fp->size;
   3931				if (!len)
   3932					break;
   3933				unmap_rx_buf(q->adap, &rxq->fl);
   3934			}
   3935
   3936			si.sgetstamp = SGE_TIMESTAMP_G(
   3937					be64_to_cpu(rc->last_flit));
   3938			/*
   3939			 * Last buffer remains mapped so explicitly make it
   3940			 * coherent for CPU access.
   3941			 */
   3942			dma_sync_single_for_cpu(q->adap->pdev_dev,
   3943						get_buf_addr(rsd),
   3944						fp->size, DMA_FROM_DEVICE);
   3945
   3946			si.va = page_address(si.frags[0].page) +
   3947				si.frags[0].offset;
   3948			prefetch(si.va);
   3949
   3950			si.nfrags = frags + 1;
   3951			ret = q->handler(q, q->cur_desc, &si);
   3952			if (likely(ret == 0))
   3953				q->offset += ALIGN(fp->size, s->fl_align);
   3954			else
   3955				restore_rx_bufs(&si, &rxq->fl, frags);
   3956		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
   3957			ret = q->handler(q, q->cur_desc, NULL);
   3958		} else {
   3959			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
   3960		}
   3961
   3962		if (unlikely(ret)) {
   3963			/* couldn't process descriptor, back off for recovery */
   3964			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
   3965			break;
   3966		}
   3967
   3968		rspq_next(q);
   3969		budget_left--;
   3970	}
   3971
   3972	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
   3973		__refill_fl(q->adap, &rxq->fl);
   3974	return budget - budget_left;
   3975}
   3976
   3977/**
   3978 *	napi_rx_handler - the NAPI handler for Rx processing
   3979 *	@napi: the napi instance
   3980 *	@budget: how many packets we can process in this round
   3981 *
   3982 *	Handler for new data events when using NAPI.  This does not need any
   3983 *	locking or protection from interrupts as data interrupts are off at
   3984 *	this point and other adapter interrupts do not interfere (the latter
   3985 *	in not a concern at all with MSI-X as non-data interrupts then have
   3986 *	a separate handler).
   3987 */
   3988static int napi_rx_handler(struct napi_struct *napi, int budget)
   3989{
   3990	unsigned int params;
   3991	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
   3992	int work_done;
   3993	u32 val;
   3994
   3995	work_done = process_responses(q, budget);
   3996	if (likely(work_done < budget)) {
   3997		int timer_index;
   3998
   3999		napi_complete_done(napi, work_done);
   4000		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
   4001
   4002		if (q->adaptive_rx) {
   4003			if (work_done > max(timer_pkt_quota[timer_index],
   4004					    MIN_NAPI_WORK))
   4005				timer_index = (timer_index + 1);
   4006			else
   4007				timer_index = timer_index - 1;
   4008
   4009			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
   4010			q->next_intr_params =
   4011					QINTR_TIMER_IDX_V(timer_index) |
   4012					QINTR_CNT_EN_V(0);
   4013			params = q->next_intr_params;
   4014		} else {
   4015			params = q->next_intr_params;
   4016			q->next_intr_params = q->intr_params;
   4017		}
   4018	} else
   4019		params = QINTR_TIMER_IDX_V(7);
   4020
   4021	val = CIDXINC_V(work_done) | SEINTARM_V(params);
   4022
   4023	/* If we don't have access to the new User GTS (T5+), use the old
   4024	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
   4025	 */
   4026	if (unlikely(q->bar2_addr == NULL)) {
   4027		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
   4028			     val | INGRESSQID_V((u32)q->cntxt_id));
   4029	} else {
   4030		writel(val | INGRESSQID_V(q->bar2_qid),
   4031		       q->bar2_addr + SGE_UDB_GTS);
   4032		wmb();
   4033	}
   4034	return work_done;
   4035}
   4036
   4037void cxgb4_ethofld_restart(struct tasklet_struct *t)
   4038{
   4039	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
   4040						     qresume_tsk);
   4041	int pktcount;
   4042
   4043	spin_lock(&eosw_txq->lock);
   4044	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
   4045	if (pktcount < 0)
   4046		pktcount += eosw_txq->ndesc;
   4047
   4048	if (pktcount) {
   4049		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
   4050					 eosw_txq, pktcount);
   4051		eosw_txq->inuse -= pktcount;
   4052	}
   4053
   4054	/* There may be some packets waiting for completions. So,
   4055	 * attempt to send these packets now.
   4056	 */
   4057	ethofld_xmit(eosw_txq->netdev, eosw_txq);
   4058	spin_unlock(&eosw_txq->lock);
   4059}
   4060
   4061/* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
   4062 * @q: the response queue that received the packet
   4063 * @rsp: the response queue descriptor holding the CPL message
   4064 * @si: the gather list of packet fragments
   4065 *
   4066 * Process a ETHOFLD Tx completion. Increment the cidx here, but
   4067 * free up the descriptors in a tasklet later.
   4068 */
   4069int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
   4070			     const struct pkt_gl *si)
   4071{
   4072	u8 opcode = ((const struct rss_header *)rsp)->opcode;
   4073
   4074	/* skip RSS header */
   4075	rsp++;
   4076
   4077	if (opcode == CPL_FW4_ACK) {
   4078		const struct cpl_fw4_ack *cpl;
   4079		struct sge_eosw_txq *eosw_txq;
   4080		struct eotid_entry *entry;
   4081		struct sk_buff *skb;
   4082		u32 hdr_len, eotid;
   4083		u8 flits, wrlen16;
   4084		int credits;
   4085
   4086		cpl = (const struct cpl_fw4_ack *)rsp;
   4087		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
   4088			q->adap->tids.eotid_base;
   4089		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
   4090		if (!entry)
   4091			goto out_done;
   4092
   4093		eosw_txq = (struct sge_eosw_txq *)entry->data;
   4094		if (!eosw_txq)
   4095			goto out_done;
   4096
   4097		spin_lock(&eosw_txq->lock);
   4098		credits = cpl->credits;
   4099		while (credits > 0) {
   4100			skb = eosw_txq->desc[eosw_txq->cidx].skb;
   4101			if (!skb)
   4102				break;
   4103
   4104			if (unlikely((eosw_txq->state ==
   4105				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
   4106				      eosw_txq->state ==
   4107				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
   4108				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
   4109				flits = DIV_ROUND_UP(skb->len, 8);
   4110				if (eosw_txq->state ==
   4111				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
   4112					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
   4113				else
   4114					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
   4115				complete(&eosw_txq->completion);
   4116			} else {
   4117				hdr_len = eth_get_headlen(eosw_txq->netdev,
   4118							  skb->data,
   4119							  skb_headlen(skb));
   4120				flits = ethofld_calc_tx_flits(q->adap, skb,
   4121							      hdr_len);
   4122			}
   4123			eosw_txq_advance_index(&eosw_txq->cidx, 1,
   4124					       eosw_txq->ndesc);
   4125			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
   4126			credits -= wrlen16;
   4127		}
   4128
   4129		eosw_txq->cred += cpl->credits;
   4130		eosw_txq->ncompl--;
   4131
   4132		spin_unlock(&eosw_txq->lock);
   4133
   4134		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
   4135		 * if there were packets waiting for completion.
   4136		 */
   4137		tasklet_schedule(&eosw_txq->qresume_tsk);
   4138	}
   4139
   4140out_done:
   4141	return 0;
   4142}
   4143
   4144/*
   4145 * The MSI-X interrupt handler for an SGE response queue.
   4146 */
   4147irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
   4148{
   4149	struct sge_rspq *q = cookie;
   4150
   4151	napi_schedule(&q->napi);
   4152	return IRQ_HANDLED;
   4153}
   4154
   4155/*
   4156 * Process the indirect interrupt entries in the interrupt queue and kick off
   4157 * NAPI for each queue that has generated an entry.
   4158 */
   4159static unsigned int process_intrq(struct adapter *adap)
   4160{
   4161	unsigned int credits;
   4162	const struct rsp_ctrl *rc;
   4163	struct sge_rspq *q = &adap->sge.intrq;
   4164	u32 val;
   4165
   4166	spin_lock(&adap->sge.intrq_lock);
   4167	for (credits = 0; ; credits++) {
   4168		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
   4169		if (!is_new_response(rc, q))
   4170			break;
   4171
   4172		dma_rmb();
   4173		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
   4174			unsigned int qid = ntohl(rc->pldbuflen_qid);
   4175
   4176			qid -= adap->sge.ingr_start;
   4177			napi_schedule(&adap->sge.ingr_map[qid]->napi);
   4178		}
   4179
   4180		rspq_next(q);
   4181	}
   4182
   4183	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
   4184
   4185	/* If we don't have access to the new User GTS (T5+), use the old
   4186	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
   4187	 */
   4188	if (unlikely(q->bar2_addr == NULL)) {
   4189		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
   4190			     val | INGRESSQID_V(q->cntxt_id));
   4191	} else {
   4192		writel(val | INGRESSQID_V(q->bar2_qid),
   4193		       q->bar2_addr + SGE_UDB_GTS);
   4194		wmb();
   4195	}
   4196	spin_unlock(&adap->sge.intrq_lock);
   4197	return credits;
   4198}
   4199
   4200/*
   4201 * The MSI interrupt handler, which handles data events from SGE response queues
   4202 * as well as error and other async events as they all use the same MSI vector.
   4203 */
   4204static irqreturn_t t4_intr_msi(int irq, void *cookie)
   4205{
   4206	struct adapter *adap = cookie;
   4207
   4208	if (adap->flags & CXGB4_MASTER_PF)
   4209		t4_slow_intr_handler(adap);
   4210	process_intrq(adap);
   4211	return IRQ_HANDLED;
   4212}
   4213
   4214/*
   4215 * Interrupt handler for legacy INTx interrupts.
   4216 * Handles data events from SGE response queues as well as error and other
   4217 * async events as they all use the same interrupt line.
   4218 */
   4219static irqreturn_t t4_intr_intx(int irq, void *cookie)
   4220{
   4221	struct adapter *adap = cookie;
   4222
   4223	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
   4224	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
   4225	    process_intrq(adap))
   4226		return IRQ_HANDLED;
   4227	return IRQ_NONE;             /* probably shared interrupt */
   4228}
   4229
   4230/**
   4231 *	t4_intr_handler - select the top-level interrupt handler
   4232 *	@adap: the adapter
   4233 *
   4234 *	Selects the top-level interrupt handler based on the type of interrupts
   4235 *	(MSI-X, MSI, or INTx).
   4236 */
   4237irq_handler_t t4_intr_handler(struct adapter *adap)
   4238{
   4239	if (adap->flags & CXGB4_USING_MSIX)
   4240		return t4_sge_intr_msix;
   4241	if (adap->flags & CXGB4_USING_MSI)
   4242		return t4_intr_msi;
   4243	return t4_intr_intx;
   4244}
   4245
   4246static void sge_rx_timer_cb(struct timer_list *t)
   4247{
   4248	unsigned long m;
   4249	unsigned int i;
   4250	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
   4251	struct sge *s = &adap->sge;
   4252
   4253	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
   4254		for (m = s->starving_fl[i]; m; m &= m - 1) {
   4255			struct sge_eth_rxq *rxq;
   4256			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
   4257			struct sge_fl *fl = s->egr_map[id];
   4258
   4259			clear_bit(id, s->starving_fl);
   4260			smp_mb__after_atomic();
   4261
   4262			if (fl_starving(adap, fl)) {
   4263				rxq = container_of(fl, struct sge_eth_rxq, fl);
   4264				if (napi_reschedule(&rxq->rspq.napi))
   4265					fl->starving++;
   4266				else
   4267					set_bit(id, s->starving_fl);
   4268			}
   4269		}
   4270	/* The remainder of the SGE RX Timer Callback routine is dedicated to
   4271	 * global Master PF activities like checking for chip ingress stalls,
   4272	 * etc.
   4273	 */
   4274	if (!(adap->flags & CXGB4_MASTER_PF))
   4275		goto done;
   4276
   4277	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
   4278
   4279done:
   4280	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
   4281}
   4282
   4283static void sge_tx_timer_cb(struct timer_list *t)
   4284{
   4285	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
   4286	struct sge *s = &adap->sge;
   4287	unsigned long m, period;
   4288	unsigned int i, budget;
   4289
   4290	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
   4291		for (m = s->txq_maperr[i]; m; m &= m - 1) {
   4292			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
   4293			struct sge_uld_txq *txq = s->egr_map[id];
   4294
   4295			clear_bit(id, s->txq_maperr);
   4296			tasklet_schedule(&txq->qresume_tsk);
   4297		}
   4298
   4299	if (!is_t4(adap->params.chip)) {
   4300		struct sge_eth_txq *q = &s->ptptxq;
   4301		int avail;
   4302
   4303		spin_lock(&adap->ptp_lock);
   4304		avail = reclaimable(&q->q);
   4305
   4306		if (avail) {
   4307			free_tx_desc(adap, &q->q, avail, false);
   4308			q->q.in_use -= avail;
   4309		}
   4310		spin_unlock(&adap->ptp_lock);
   4311	}
   4312
   4313	budget = MAX_TIMER_TX_RECLAIM;
   4314	i = s->ethtxq_rover;
   4315	do {
   4316		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
   4317						       budget);
   4318		if (!budget)
   4319			break;
   4320
   4321		if (++i >= s->ethqsets)
   4322			i = 0;
   4323	} while (i != s->ethtxq_rover);
   4324	s->ethtxq_rover = i;
   4325
   4326	if (budget == 0) {
   4327		/* If we found too many reclaimable packets schedule a timer
   4328		 * in the near future to continue where we left off.
   4329		 */
   4330		period = 2;
   4331	} else {
   4332		/* We reclaimed all reclaimable TX Descriptors, so reschedule
   4333		 * at the normal period.
   4334		 */
   4335		period = TX_QCHECK_PERIOD;
   4336	}
   4337
   4338	mod_timer(&s->tx_timer, jiffies + period);
   4339}
   4340
   4341/**
   4342 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
   4343 *	@adapter: the adapter
   4344 *	@qid: the SGE Queue ID
   4345 *	@qtype: the SGE Queue Type (Egress or Ingress)
   4346 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
   4347 *
   4348 *	Returns the BAR2 address for the SGE Queue Registers associated with
   4349 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
   4350 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
   4351 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
   4352 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
   4353 */
   4354static void __iomem *bar2_address(struct adapter *adapter,
   4355				  unsigned int qid,
   4356				  enum t4_bar2_qtype qtype,
   4357				  unsigned int *pbar2_qid)
   4358{
   4359	u64 bar2_qoffset;
   4360	int ret;
   4361
   4362	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
   4363				&bar2_qoffset, pbar2_qid);
   4364	if (ret)
   4365		return NULL;
   4366
   4367	return adapter->bar2 + bar2_qoffset;
   4368}
   4369
   4370/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
   4371 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
   4372 */
   4373int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
   4374		     struct net_device *dev, int intr_idx,
   4375		     struct sge_fl *fl, rspq_handler_t hnd,
   4376		     rspq_flush_handler_t flush_hnd, int cong)
   4377{
   4378	int ret, flsz = 0;
   4379	struct fw_iq_cmd c;
   4380	struct sge *s = &adap->sge;
   4381	struct port_info *pi = netdev_priv(dev);
   4382	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
   4383
   4384	/* Size needs to be multiple of 16, including status entry. */
   4385	iq->size = roundup(iq->size, 16);
   4386
   4387	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
   4388			      &iq->phys_addr, NULL, 0,
   4389			      dev_to_node(adap->pdev_dev));
   4390	if (!iq->desc)
   4391		return -ENOMEM;
   4392
   4393	memset(&c, 0, sizeof(c));
   4394	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
   4395			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
   4396			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
   4397	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
   4398				 FW_LEN16(c));
   4399	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
   4400		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
   4401		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
   4402		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
   4403		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
   4404							-intr_idx - 1));
   4405	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
   4406		FW_IQ_CMD_IQGTSMODE_F |
   4407		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
   4408		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
   4409	c.iqsize = htons(iq->size);
   4410	c.iqaddr = cpu_to_be64(iq->phys_addr);
   4411	if (cong >= 0)
   4412		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
   4413				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
   4414							:  FW_IQ_IQTYPE_OFLD));
   4415
   4416	if (fl) {
   4417		unsigned int chip_ver =
   4418			CHELSIO_CHIP_VERSION(adap->params.chip);
   4419
   4420		/* Allocate the ring for the hardware free list (with space
   4421		 * for its status page) along with the associated software
   4422		 * descriptor ring.  The free list size needs to be a multiple
   4423		 * of the Egress Queue Unit and at least 2 Egress Units larger
   4424		 * than the SGE's Egress Congrestion Threshold
   4425		 * (fl_starve_thres - 1).
   4426		 */
   4427		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
   4428			fl->size = s->fl_starve_thres - 1 + 2 * 8;
   4429		fl->size = roundup(fl->size, 8);
   4430		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
   4431				      sizeof(struct rx_sw_desc), &fl->addr,
   4432				      &fl->sdesc, s->stat_len,
   4433				      dev_to_node(adap->pdev_dev));
   4434		if (!fl->desc)
   4435			goto fl_nomem;
   4436
   4437		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
   4438		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
   4439					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
   4440					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
   4441					     FW_IQ_CMD_FL0PADEN_F);
   4442		if (cong >= 0)
   4443			c.iqns_to_fl0congen |=
   4444				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
   4445				      FW_IQ_CMD_FL0CONGCIF_F |
   4446				      FW_IQ_CMD_FL0CONGEN_F);
   4447		/* In T6, for egress queue type FL there is internal overhead
   4448		 * of 16B for header going into FLM module.  Hence the maximum
   4449		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
   4450		 * doesn't coalesce fetch requests if more than 64 bytes of
   4451		 * Free List pointers are provided, so we use a 128-byte Fetch
   4452		 * Burst Minimum there (T6 implements coalescing so we can use
   4453		 * the smaller 64-byte value there).
   4454		 */
   4455		c.fl0dcaen_to_fl0cidxfthresh =
   4456			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
   4457						   FETCHBURSTMIN_128B_X :
   4458						   FETCHBURSTMIN_64B_T6_X) |
   4459			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
   4460						   FETCHBURSTMAX_512B_X :
   4461						   FETCHBURSTMAX_256B_X));
   4462		c.fl0size = htons(flsz);
   4463		c.fl0addr = cpu_to_be64(fl->addr);
   4464	}
   4465
   4466	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
   4467	if (ret)
   4468		goto err;
   4469
   4470	netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
   4471	iq->cur_desc = iq->desc;
   4472	iq->cidx = 0;
   4473	iq->gen = 1;
   4474	iq->next_intr_params = iq->intr_params;
   4475	iq->cntxt_id = ntohs(c.iqid);
   4476	iq->abs_id = ntohs(c.physiqid);
   4477	iq->bar2_addr = bar2_address(adap,
   4478				     iq->cntxt_id,
   4479				     T4_BAR2_QTYPE_INGRESS,
   4480				     &iq->bar2_qid);
   4481	iq->size--;                           /* subtract status entry */
   4482	iq->netdev = dev;
   4483	iq->handler = hnd;
   4484	iq->flush_handler = flush_hnd;
   4485
   4486	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
   4487	skb_queue_head_init(&iq->lro_mgr.lroq);
   4488
   4489	/* set offset to -1 to distinguish ingress queues without FL */
   4490	iq->offset = fl ? 0 : -1;
   4491
   4492	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
   4493
   4494	if (fl) {
   4495		fl->cntxt_id = ntohs(c.fl0id);
   4496		fl->avail = fl->pend_cred = 0;
   4497		fl->pidx = fl->cidx = 0;
   4498		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
   4499		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
   4500
   4501		/* Note, we must initialize the BAR2 Free List User Doorbell
   4502		 * information before refilling the Free List!
   4503		 */
   4504		fl->bar2_addr = bar2_address(adap,
   4505					     fl->cntxt_id,
   4506					     T4_BAR2_QTYPE_EGRESS,
   4507					     &fl->bar2_qid);
   4508		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
   4509	}
   4510
   4511	/* For T5 and later we attempt to set up the Congestion Manager values
   4512	 * of the new RX Ethernet Queue.  This should really be handled by
   4513	 * firmware because it's more complex than any host driver wants to
   4514	 * get involved with and it's different per chip and this is almost
   4515	 * certainly wrong.  Firmware would be wrong as well, but it would be
   4516	 * a lot easier to fix in one place ...  For now we do something very
   4517	 * simple (and hopefully less wrong).
   4518	 */
   4519	if (!is_t4(adap->params.chip) && cong >= 0) {
   4520		u32 param, val, ch_map = 0;
   4521		int i;
   4522		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
   4523
   4524		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
   4525			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
   4526			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
   4527		if (cong == 0) {
   4528			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
   4529		} else {
   4530			val =
   4531			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
   4532			for (i = 0; i < 4; i++) {
   4533				if (cong & (1 << i))
   4534					ch_map |= 1 << (i << cng_ch_bits_log);
   4535			}
   4536			val |= CONMCTXT_CNGCHMAP_V(ch_map);
   4537		}
   4538		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
   4539				    &param, &val);
   4540		if (ret)
   4541			dev_warn(adap->pdev_dev, "Failed to set Congestion"
   4542				 " Manager Context for Ingress Queue %d: %d\n",
   4543				 iq->cntxt_id, -ret);
   4544	}
   4545
   4546	return 0;
   4547
   4548fl_nomem:
   4549	ret = -ENOMEM;
   4550err:
   4551	if (iq->desc) {
   4552		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
   4553				  iq->desc, iq->phys_addr);
   4554		iq->desc = NULL;
   4555	}
   4556	if (fl && fl->desc) {
   4557		kfree(fl->sdesc);
   4558		fl->sdesc = NULL;
   4559		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
   4560				  fl->desc, fl->addr);
   4561		fl->desc = NULL;
   4562	}
   4563	return ret;
   4564}
   4565
   4566static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
   4567{
   4568	q->cntxt_id = id;
   4569	q->bar2_addr = bar2_address(adap,
   4570				    q->cntxt_id,
   4571				    T4_BAR2_QTYPE_EGRESS,
   4572				    &q->bar2_qid);
   4573	q->in_use = 0;
   4574	q->cidx = q->pidx = 0;
   4575	q->stops = q->restarts = 0;
   4576	q->stat = (void *)&q->desc[q->size];
   4577	spin_lock_init(&q->db_lock);
   4578	adap->sge.egr_map[id - adap->sge.egr_start] = q;
   4579}
   4580
   4581/**
   4582 *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
   4583 *	@adap: the adapter
   4584 *	@txq: the SGE Ethernet TX Queue to initialize
   4585 *	@dev: the Linux Network Device
   4586 *	@netdevq: the corresponding Linux TX Queue
   4587 *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
   4588 *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
   4589 */
   4590int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
   4591			 struct net_device *dev, struct netdev_queue *netdevq,
   4592			 unsigned int iqid, u8 dbqt)
   4593{
   4594	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
   4595	struct port_info *pi = netdev_priv(dev);
   4596	struct sge *s = &adap->sge;
   4597	struct fw_eq_eth_cmd c;
   4598	int ret, nentries;
   4599
   4600	/* Add status entries */
   4601	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
   4602
   4603	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
   4604			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
   4605			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
   4606			netdev_queue_numa_node_read(netdevq));
   4607	if (!txq->q.desc)
   4608		return -ENOMEM;
   4609
   4610	memset(&c, 0, sizeof(c));
   4611	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
   4612			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
   4613			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
   4614			    FW_EQ_ETH_CMD_VFN_V(0));
   4615	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
   4616				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
   4617
   4618	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
   4619	 * mechanism, we use Ingress Queue messages for Hardware Consumer
   4620	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
   4621	 * write the CIDX Updates into the Status Page at the end of the
   4622	 * TX Queue.
   4623	 */
   4624	c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
   4625				      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
   4626				      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
   4627				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
   4628
   4629	c.fetchszm_to_iqid =
   4630		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
   4631						 HOSTFCMODE_INGRESS_QUEUE_X :
   4632						 HOSTFCMODE_STATUS_PAGE_X) |
   4633		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
   4634		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
   4635
   4636	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
   4637	c.dcaen_to_eqsize =
   4638		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
   4639					    ? FETCHBURSTMIN_64B_X
   4640					    : FETCHBURSTMIN_64B_T6_X) |
   4641		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
   4642		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
   4643		      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
   4644		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
   4645
   4646	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
   4647
   4648	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
   4649	 * currently configured Timer Index.  THis can be changed later via an
   4650	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
   4651	 * Doorbell Queue mode is currently automatically enabled in the
   4652	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
   4653	 */
   4654	if (dbqt)
   4655		c.timeren_timerix =
   4656			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
   4657				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
   4658
   4659	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
   4660	if (ret) {
   4661		kfree(txq->q.sdesc);
   4662		txq->q.sdesc = NULL;
   4663		dma_free_coherent(adap->pdev_dev,
   4664				  nentries * sizeof(struct tx_desc),
   4665				  txq->q.desc, txq->q.phys_addr);
   4666		txq->q.desc = NULL;
   4667		return ret;
   4668	}
   4669
   4670	txq->q.q_type = CXGB4_TXQ_ETH;
   4671	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
   4672	txq->txq = netdevq;
   4673	txq->tso = 0;
   4674	txq->uso = 0;
   4675	txq->tx_cso = 0;
   4676	txq->vlan_ins = 0;
   4677	txq->mapping_err = 0;
   4678	txq->dbqt = dbqt;
   4679
   4680	return 0;
   4681}
   4682
   4683int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
   4684			  struct net_device *dev, unsigned int iqid,
   4685			  unsigned int cmplqid)
   4686{
   4687	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
   4688	struct port_info *pi = netdev_priv(dev);
   4689	struct sge *s = &adap->sge;
   4690	struct fw_eq_ctrl_cmd c;
   4691	int ret, nentries;
   4692
   4693	/* Add status entries */
   4694	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
   4695
   4696	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
   4697				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
   4698				 NULL, 0, dev_to_node(adap->pdev_dev));
   4699	if (!txq->q.desc)
   4700		return -ENOMEM;
   4701
   4702	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
   4703			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
   4704			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
   4705			    FW_EQ_CTRL_CMD_VFN_V(0));
   4706	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
   4707				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
   4708	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
   4709	c.physeqid_pkd = htonl(0);
   4710	c.fetchszm_to_iqid =
   4711		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
   4712		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
   4713		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
   4714	c.dcaen_to_eqsize =
   4715		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
   4716					     ? FETCHBURSTMIN_64B_X
   4717					     : FETCHBURSTMIN_64B_T6_X) |
   4718		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
   4719		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
   4720		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
   4721	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
   4722
   4723	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
   4724	if (ret) {
   4725		dma_free_coherent(adap->pdev_dev,
   4726				  nentries * sizeof(struct tx_desc),
   4727				  txq->q.desc, txq->q.phys_addr);
   4728		txq->q.desc = NULL;
   4729		return ret;
   4730	}
   4731
   4732	txq->q.q_type = CXGB4_TXQ_CTRL;
   4733	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
   4734	txq->adap = adap;
   4735	skb_queue_head_init(&txq->sendq);
   4736	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
   4737	txq->full = 0;
   4738	return 0;
   4739}
   4740
   4741int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
   4742			unsigned int cmplqid)
   4743{
   4744	u32 param, val;
   4745
   4746	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
   4747		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
   4748		 FW_PARAMS_PARAM_YZ_V(eqid));
   4749	val = cmplqid;
   4750	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
   4751}
   4752
   4753static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
   4754				 struct net_device *dev, u32 cmd, u32 iqid)
   4755{
   4756	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
   4757	struct port_info *pi = netdev_priv(dev);
   4758	struct sge *s = &adap->sge;
   4759	struct fw_eq_ofld_cmd c;
   4760	u32 fb_min, nentries;
   4761	int ret;
   4762
   4763	/* Add status entries */
   4764	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
   4765	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
   4766			     sizeof(struct tx_sw_desc), &q->phys_addr,
   4767			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
   4768	if (!q->desc)
   4769		return -ENOMEM;
   4770
   4771	if (chip_ver <= CHELSIO_T5)
   4772		fb_min = FETCHBURSTMIN_64B_X;
   4773	else
   4774		fb_min = FETCHBURSTMIN_64B_T6_X;
   4775
   4776	memset(&c, 0, sizeof(c));
   4777	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
   4778			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
   4779			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
   4780			    FW_EQ_OFLD_CMD_VFN_V(0));
   4781	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
   4782				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
   4783	c.fetchszm_to_iqid =
   4784		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
   4785		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
   4786		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
   4787	c.dcaen_to_eqsize =
   4788		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
   4789		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
   4790		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
   4791		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
   4792	c.eqaddr = cpu_to_be64(q->phys_addr);
   4793
   4794	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
   4795	if (ret) {
   4796		kfree(q->sdesc);
   4797		q->sdesc = NULL;
   4798		dma_free_coherent(adap->pdev_dev,
   4799				  nentries * sizeof(struct tx_desc),
   4800				  q->desc, q->phys_addr);
   4801		q->desc = NULL;
   4802		return ret;
   4803	}
   4804
   4805	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
   4806	return 0;
   4807}
   4808
   4809int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
   4810			 struct net_device *dev, unsigned int iqid,
   4811			 unsigned int uld_type)
   4812{
   4813	u32 cmd = FW_EQ_OFLD_CMD;
   4814	int ret;
   4815
   4816	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
   4817		cmd = FW_EQ_CTRL_CMD;
   4818
   4819	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
   4820	if (ret)
   4821		return ret;
   4822
   4823	txq->q.q_type = CXGB4_TXQ_ULD;
   4824	txq->adap = adap;
   4825	skb_queue_head_init(&txq->sendq);
   4826	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
   4827	txq->full = 0;
   4828	txq->mapping_err = 0;
   4829	return 0;
   4830}
   4831
   4832int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
   4833			     struct net_device *dev, u32 iqid)
   4834{
   4835	int ret;
   4836
   4837	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
   4838	if (ret)
   4839		return ret;
   4840
   4841	txq->q.q_type = CXGB4_TXQ_ULD;
   4842	spin_lock_init(&txq->lock);
   4843	txq->adap = adap;
   4844	txq->tso = 0;
   4845	txq->uso = 0;
   4846	txq->tx_cso = 0;
   4847	txq->vlan_ins = 0;
   4848	txq->mapping_err = 0;
   4849	return 0;
   4850}
   4851
   4852void free_txq(struct adapter *adap, struct sge_txq *q)
   4853{
   4854	struct sge *s = &adap->sge;
   4855
   4856	dma_free_coherent(adap->pdev_dev,
   4857			  q->size * sizeof(struct tx_desc) + s->stat_len,
   4858			  q->desc, q->phys_addr);
   4859	q->cntxt_id = 0;
   4860	q->sdesc = NULL;
   4861	q->desc = NULL;
   4862}
   4863
   4864void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
   4865		  struct sge_fl *fl)
   4866{
   4867	struct sge *s = &adap->sge;
   4868	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
   4869
   4870	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
   4871	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
   4872		   rq->cntxt_id, fl_id, 0xffff);
   4873	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
   4874			  rq->desc, rq->phys_addr);
   4875	netif_napi_del(&rq->napi);
   4876	rq->netdev = NULL;
   4877	rq->cntxt_id = rq->abs_id = 0;
   4878	rq->desc = NULL;
   4879
   4880	if (fl) {
   4881		free_rx_bufs(adap, fl, fl->avail);
   4882		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
   4883				  fl->desc, fl->addr);
   4884		kfree(fl->sdesc);
   4885		fl->sdesc = NULL;
   4886		fl->cntxt_id = 0;
   4887		fl->desc = NULL;
   4888	}
   4889}
   4890
   4891/**
   4892 *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
   4893 *      @adap: the adapter
   4894 *      @n: number of queues
   4895 *      @q: pointer to first queue
   4896 *
   4897 *      Release the resources of a consecutive block of offload Rx queues.
   4898 */
   4899void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
   4900{
   4901	for ( ; n; n--, q++)
   4902		if (q->rspq.desc)
   4903			free_rspq_fl(adap, &q->rspq,
   4904				     q->fl.size ? &q->fl : NULL);
   4905}
   4906
   4907void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
   4908{
   4909	if (txq->q.desc) {
   4910		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
   4911				txq->q.cntxt_id);
   4912		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
   4913		kfree(txq->q.sdesc);
   4914		free_txq(adap, &txq->q);
   4915	}
   4916}
   4917
   4918/**
   4919 *	t4_free_sge_resources - free SGE resources
   4920 *	@adap: the adapter
   4921 *
   4922 *	Frees resources used by the SGE queue sets.
   4923 */
   4924void t4_free_sge_resources(struct adapter *adap)
   4925{
   4926	int i;
   4927	struct sge_eth_rxq *eq;
   4928	struct sge_eth_txq *etq;
   4929
   4930	/* stop all Rx queues in order to start them draining */
   4931	for (i = 0; i < adap->sge.ethqsets; i++) {
   4932		eq = &adap->sge.ethrxq[i];
   4933		if (eq->rspq.desc)
   4934			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
   4935				   FW_IQ_TYPE_FL_INT_CAP,
   4936				   eq->rspq.cntxt_id,
   4937				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
   4938				   0xffff);
   4939	}
   4940
   4941	/* clean up Ethernet Tx/Rx queues */
   4942	for (i = 0; i < adap->sge.ethqsets; i++) {
   4943		eq = &adap->sge.ethrxq[i];
   4944		if (eq->rspq.desc)
   4945			free_rspq_fl(adap, &eq->rspq,
   4946				     eq->fl.size ? &eq->fl : NULL);
   4947		if (eq->msix) {
   4948			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
   4949			eq->msix = NULL;
   4950		}
   4951
   4952		etq = &adap->sge.ethtxq[i];
   4953		if (etq->q.desc) {
   4954			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
   4955				       etq->q.cntxt_id);
   4956			__netif_tx_lock_bh(etq->txq);
   4957			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
   4958			__netif_tx_unlock_bh(etq->txq);
   4959			kfree(etq->q.sdesc);
   4960			free_txq(adap, &etq->q);
   4961		}
   4962	}
   4963
   4964	/* clean up control Tx queues */
   4965	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
   4966		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
   4967
   4968		if (cq->q.desc) {
   4969			tasklet_kill(&cq->qresume_tsk);
   4970			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
   4971					cq->q.cntxt_id);
   4972			__skb_queue_purge(&cq->sendq);
   4973			free_txq(adap, &cq->q);
   4974		}
   4975	}
   4976
   4977	if (adap->sge.fw_evtq.desc) {
   4978		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
   4979		if (adap->sge.fwevtq_msix_idx >= 0)
   4980			cxgb4_free_msix_idx_in_bmap(adap,
   4981						    adap->sge.fwevtq_msix_idx);
   4982	}
   4983
   4984	if (adap->sge.nd_msix_idx >= 0)
   4985		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
   4986
   4987	if (adap->sge.intrq.desc)
   4988		free_rspq_fl(adap, &adap->sge.intrq, NULL);
   4989
   4990	if (!is_t4(adap->params.chip)) {
   4991		etq = &adap->sge.ptptxq;
   4992		if (etq->q.desc) {
   4993			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
   4994				       etq->q.cntxt_id);
   4995			spin_lock_bh(&adap->ptp_lock);
   4996			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
   4997			spin_unlock_bh(&adap->ptp_lock);
   4998			kfree(etq->q.sdesc);
   4999			free_txq(adap, &etq->q);
   5000		}
   5001	}
   5002
   5003	/* clear the reverse egress queue map */
   5004	memset(adap->sge.egr_map, 0,
   5005	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
   5006}
   5007
   5008void t4_sge_start(struct adapter *adap)
   5009{
   5010	adap->sge.ethtxq_rover = 0;
   5011	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
   5012	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
   5013}
   5014
   5015/**
   5016 *	t4_sge_stop - disable SGE operation
   5017 *	@adap: the adapter
   5018 *
   5019 *	Stop tasklets and timers associated with the DMA engine.  Note that
   5020 *	this is effective only if measures have been taken to disable any HW
   5021 *	events that may restart them.
   5022 */
   5023void t4_sge_stop(struct adapter *adap)
   5024{
   5025	int i;
   5026	struct sge *s = &adap->sge;
   5027
   5028	if (s->rx_timer.function)
   5029		del_timer_sync(&s->rx_timer);
   5030	if (s->tx_timer.function)
   5031		del_timer_sync(&s->tx_timer);
   5032
   5033	if (is_offload(adap)) {
   5034		struct sge_uld_txq_info *txq_info;
   5035
   5036		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
   5037		if (txq_info) {
   5038			struct sge_uld_txq *txq = txq_info->uldtxq;
   5039
   5040			for_each_ofldtxq(&adap->sge, i) {
   5041				if (txq->q.desc)
   5042					tasklet_kill(&txq->qresume_tsk);
   5043			}
   5044		}
   5045	}
   5046
   5047	if (is_pci_uld(adap)) {
   5048		struct sge_uld_txq_info *txq_info;
   5049
   5050		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
   5051		if (txq_info) {
   5052			struct sge_uld_txq *txq = txq_info->uldtxq;
   5053
   5054			for_each_ofldtxq(&adap->sge, i) {
   5055				if (txq->q.desc)
   5056					tasklet_kill(&txq->qresume_tsk);
   5057			}
   5058		}
   5059	}
   5060
   5061	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
   5062		struct sge_ctrl_txq *cq = &s->ctrlq[i];
   5063
   5064		if (cq->q.desc)
   5065			tasklet_kill(&cq->qresume_tsk);
   5066	}
   5067}
   5068
   5069/**
   5070 *	t4_sge_init_soft - grab core SGE values needed by SGE code
   5071 *	@adap: the adapter
   5072 *
   5073 *	We need to grab the SGE operating parameters that we need to have
   5074 *	in order to do our job and make sure we can live with them.
   5075 */
   5076
   5077static int t4_sge_init_soft(struct adapter *adap)
   5078{
   5079	struct sge *s = &adap->sge;
   5080	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
   5081	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
   5082	u32 ingress_rx_threshold;
   5083
   5084	/*
   5085	 * Verify that CPL messages are going to the Ingress Queue for
   5086	 * process_responses() and that only packet data is going to the
   5087	 * Free Lists.
   5088	 */
   5089	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
   5090	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
   5091		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
   5092		return -EINVAL;
   5093	}
   5094
   5095	/*
   5096	 * Validate the Host Buffer Register Array indices that we want to
   5097	 * use ...
   5098	 *
   5099	 * XXX Note that we should really read through the Host Buffer Size
   5100	 * XXX register array and find the indices of the Buffer Sizes which
   5101	 * XXX meet our needs!
   5102	 */
   5103	#define READ_FL_BUF(x) \
   5104		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
   5105
   5106	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
   5107	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
   5108	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
   5109	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
   5110
   5111	/* We only bother using the Large Page logic if the Large Page Buffer
   5112	 * is larger than our Page Size Buffer.
   5113	 */
   5114	if (fl_large_pg <= fl_small_pg)
   5115		fl_large_pg = 0;
   5116
   5117	#undef READ_FL_BUF
   5118
   5119	/* The Page Size Buffer must be exactly equal to our Page Size and the
   5120	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
   5121	 */
   5122	if (fl_small_pg != PAGE_SIZE ||
   5123	    (fl_large_pg & (fl_large_pg-1)) != 0) {
   5124		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
   5125			fl_small_pg, fl_large_pg);
   5126		return -EINVAL;
   5127	}
   5128	if (fl_large_pg)
   5129		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
   5130
   5131	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
   5132	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
   5133		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
   5134			fl_small_mtu, fl_large_mtu);
   5135		return -EINVAL;
   5136	}
   5137
   5138	/*
   5139	 * Retrieve our RX interrupt holdoff timer values and counter
   5140	 * threshold values from the SGE parameters.
   5141	 */
   5142	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
   5143	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
   5144	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
   5145	s->timer_val[0] = core_ticks_to_us(adap,
   5146		TIMERVALUE0_G(timer_value_0_and_1));
   5147	s->timer_val[1] = core_ticks_to_us(adap,
   5148		TIMERVALUE1_G(timer_value_0_and_1));
   5149	s->timer_val[2] = core_ticks_to_us(adap,
   5150		TIMERVALUE2_G(timer_value_2_and_3));
   5151	s->timer_val[3] = core_ticks_to_us(adap,
   5152		TIMERVALUE3_G(timer_value_2_and_3));
   5153	s->timer_val[4] = core_ticks_to_us(adap,
   5154		TIMERVALUE4_G(timer_value_4_and_5));
   5155	s->timer_val[5] = core_ticks_to_us(adap,
   5156		TIMERVALUE5_G(timer_value_4_and_5));
   5157
   5158	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
   5159	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
   5160	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
   5161	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
   5162	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
   5163
   5164	return 0;
   5165}
   5166
   5167/**
   5168 *     t4_sge_init - initialize SGE
   5169 *     @adap: the adapter
   5170 *
   5171 *     Perform low-level SGE code initialization needed every time after a
   5172 *     chip reset.
   5173 */
   5174int t4_sge_init(struct adapter *adap)
   5175{
   5176	struct sge *s = &adap->sge;
   5177	u32 sge_control, sge_conm_ctrl;
   5178	int ret, egress_threshold;
   5179
   5180	/*
   5181	 * Ingress Padding Boundary and Egress Status Page Size are set up by
   5182	 * t4_fixup_host_params().
   5183	 */
   5184	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
   5185	s->pktshift = PKTSHIFT_G(sge_control);
   5186	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
   5187
   5188	s->fl_align = t4_fl_pkt_align(adap);
   5189	ret = t4_sge_init_soft(adap);
   5190	if (ret < 0)
   5191		return ret;
   5192
   5193	/*
   5194	 * A FL with <= fl_starve_thres buffers is starving and a periodic
   5195	 * timer will attempt to refill it.  This needs to be larger than the
   5196	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
   5197	 * stuck waiting for new packets while the SGE is waiting for us to
   5198	 * give it more Free List entries.  (Note that the SGE's Egress
   5199	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
   5200	 * there was only a single field to control this.  For T5 there's the
   5201	 * original field which now only applies to Unpacked Mode Free List
   5202	 * buffers and a new field which only applies to Packed Mode Free List
   5203	 * buffers.
   5204	 */
   5205	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
   5206	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
   5207	case CHELSIO_T4:
   5208		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
   5209		break;
   5210	case CHELSIO_T5:
   5211		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
   5212		break;
   5213	case CHELSIO_T6:
   5214		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
   5215		break;
   5216	default:
   5217		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
   5218			CHELSIO_CHIP_VERSION(adap->params.chip));
   5219		return -EINVAL;
   5220	}
   5221	s->fl_starve_thres = 2*egress_threshold + 1;
   5222
   5223	t4_idma_monitor_init(adap, &s->idma_monitor);
   5224
   5225	/* Set up timers used for recuring callbacks to process RX and TX
   5226	 * administrative tasks.
   5227	 */
   5228	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
   5229	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
   5230
   5231	spin_lock_init(&s->intrq_lock);
   5232
   5233	return 0;
   5234}