t4_hw.c (314294B)
1/* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35#include <linux/delay.h> 36#include "cxgb4.h" 37#include "t4_regs.h" 38#include "t4_values.h" 39#include "t4fw_api.h" 40#include "t4fw_version.h" 41 42/** 43 * t4_wait_op_done_val - wait until an operation is completed 44 * @adapter: the adapter performing the operation 45 * @reg: the register to check for completion 46 * @mask: a single-bit field within @reg that indicates completion 47 * @polarity: the value of the field when the operation is completed 48 * @attempts: number of check iterations 49 * @delay: delay in usecs between iterations 50 * @valp: where to store the value of the register at completion time 51 * 52 * Wait until an operation is completed by checking a bit in a register 53 * up to @attempts times. If @valp is not NULL the value of the register 54 * at the time it indicated completion is stored there. Returns 0 if the 55 * operation completes and -EAGAIN otherwise. 56 */ 57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 58 int polarity, int attempts, int delay, u32 *valp) 59{ 60 while (1) { 61 u32 val = t4_read_reg(adapter, reg); 62 63 if (!!(val & mask) == polarity) { 64 if (valp) 65 *valp = val; 66 return 0; 67 } 68 if (--attempts == 0) 69 return -EAGAIN; 70 if (delay) 71 udelay(delay); 72 } 73} 74 75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 76 int polarity, int attempts, int delay) 77{ 78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 79 delay, NULL); 80} 81 82/** 83 * t4_set_reg_field - set a register field to a value 84 * @adapter: the adapter to program 85 * @addr: the register address 86 * @mask: specifies the portion of the register to modify 87 * @val: the new value for the register field 88 * 89 * Sets a register field specified by the supplied mask to the 90 * given value. 91 */ 92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 93 u32 val) 94{ 95 u32 v = t4_read_reg(adapter, addr) & ~mask; 96 97 t4_write_reg(adapter, addr, v | val); 98 (void) t4_read_reg(adapter, addr); /* flush */ 99} 100 101/** 102 * t4_read_indirect - read indirectly addressed registers 103 * @adap: the adapter 104 * @addr_reg: register holding the indirect address 105 * @data_reg: register holding the value of the indirect register 106 * @vals: where the read register values are stored 107 * @nregs: how many indirect registers to read 108 * @start_idx: index of first indirect register to read 109 * 110 * Reads registers that are accessed indirectly through an address/data 111 * register pair. 112 */ 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 114 unsigned int data_reg, u32 *vals, 115 unsigned int nregs, unsigned int start_idx) 116{ 117 while (nregs--) { 118 t4_write_reg(adap, addr_reg, start_idx); 119 *vals++ = t4_read_reg(adap, data_reg); 120 start_idx++; 121 } 122} 123 124/** 125 * t4_write_indirect - write indirectly addressed registers 126 * @adap: the adapter 127 * @addr_reg: register holding the indirect addresses 128 * @data_reg: register holding the value for the indirect registers 129 * @vals: values to write 130 * @nregs: how many indirect registers to write 131 * @start_idx: address of first indirect register to write 132 * 133 * Writes a sequential block of registers that are accessed indirectly 134 * through an address/data register pair. 135 */ 136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 137 unsigned int data_reg, const u32 *vals, 138 unsigned int nregs, unsigned int start_idx) 139{ 140 while (nregs--) { 141 t4_write_reg(adap, addr_reg, start_idx++); 142 t4_write_reg(adap, data_reg, *vals++); 143 } 144} 145 146/* 147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 148 * mechanism. This guarantees that we get the real value even if we're 149 * operating within a Virtual Machine and the Hypervisor is trapping our 150 * Configuration Space accesses. 151 */ 152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) 153{ 154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg); 155 156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 157 req |= ENABLE_F; 158 else 159 req |= T6_ENABLE_F; 160 161 if (is_t4(adap->params.chip)) 162 req |= LOCALCFG_F; 163 164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req); 165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A); 166 167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 168 * Configuration Space read. (None of the other fields matter when 169 * ENABLE is 0 so a simple register write is easier than a 170 * read-modify-write via t4_set_reg_field().) 171 */ 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0); 173} 174 175/* 176 * t4_report_fw_error - report firmware error 177 * @adap: the adapter 178 * 179 * The adapter firmware can indicate error conditions to the host. 180 * If the firmware has indicated an error, print out the reason for 181 * the firmware error. 182 */ 183static void t4_report_fw_error(struct adapter *adap) 184{ 185 static const char *const reason[] = { 186 "Crash", /* PCIE_FW_EVAL_CRASH */ 187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 193 "Reserved", /* reserved */ 194 }; 195 u32 pcie_fw; 196 197 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 198 if (pcie_fw & PCIE_FW_ERR_F) { 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", 200 reason[PCIE_FW_EVAL_G(pcie_fw)]); 201 adap->flags &= ~CXGB4_FW_OK; 202 } 203} 204 205/* 206 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 207 */ 208static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 209 u32 mbox_addr) 210{ 211 for ( ; nflit; nflit--, mbox_addr += 8) 212 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 213} 214 215/* 216 * Handle a FW assertion reported in a mailbox. 217 */ 218static void fw_asrt(struct adapter *adap, u32 mbox_addr) 219{ 220 struct fw_debug_cmd asrt; 221 222 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); 223 dev_alert(adap->pdev_dev, 224 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 225 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line), 226 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y)); 227} 228 229/** 230 * t4_record_mbox - record a Firmware Mailbox Command/Reply in the log 231 * @adapter: the adapter 232 * @cmd: the Firmware Mailbox Command or Reply 233 * @size: command length in bytes 234 * @access: the time (ms) needed to access the Firmware Mailbox 235 * @execute: the time (ms) the command spent being executed 236 */ 237static void t4_record_mbox(struct adapter *adapter, 238 const __be64 *cmd, unsigned int size, 239 int access, int execute) 240{ 241 struct mbox_cmd_log *log = adapter->mbox_log; 242 struct mbox_cmd *entry; 243 int i; 244 245 entry = mbox_cmd_log_entry(log, log->cursor++); 246 if (log->cursor == log->size) 247 log->cursor = 0; 248 249 for (i = 0; i < size / 8; i++) 250 entry->cmd[i] = be64_to_cpu(cmd[i]); 251 while (i < MBOX_LEN / 8) 252 entry->cmd[i++] = 0; 253 entry->timestamp = jiffies; 254 entry->seqno = log->seqno++; 255 entry->access = access; 256 entry->execute = execute; 257} 258 259/** 260 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 261 * @adap: the adapter 262 * @mbox: index of the mailbox to use 263 * @cmd: the command to write 264 * @size: command length in bytes 265 * @rpl: where to optionally store the reply 266 * @sleep_ok: if true we may sleep while awaiting command completion 267 * @timeout: time to wait for command to finish before timing out 268 * 269 * Sends the given command to FW through the selected mailbox and waits 270 * for the FW to execute the command. If @rpl is not %NULL it is used to 271 * store the FW's reply to the command. The command and its optional 272 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms 273 * to respond. @sleep_ok determines whether we may sleep while awaiting 274 * the response. If sleeping is allowed we use progressive backoff 275 * otherwise we spin. 276 * 277 * The return value is 0 on success or a negative errno on failure. A 278 * failure can happen either because we are not able to execute the 279 * command or FW executes it but signals an error. In the latter case 280 * the return value is the error code indicated by FW (negated). 281 */ 282int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 283 int size, void *rpl, bool sleep_ok, int timeout) 284{ 285 static const int delay[] = { 286 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 287 }; 288 289 struct mbox_list entry; 290 u16 access = 0; 291 u16 execute = 0; 292 u32 v; 293 u64 res; 294 int i, ms, delay_idx, ret; 295 const __be64 *p = cmd; 296 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A); 297 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A); 298 __be64 cmd_rpl[MBOX_LEN / 8]; 299 u32 pcie_fw; 300 301 if ((size & 15) || size > MBOX_LEN) 302 return -EINVAL; 303 304 /* 305 * If the device is off-line, as in EEH, commands will time out. 306 * Fail them early so we don't waste time waiting. 307 */ 308 if (adap->pdev->error_state != pci_channel_io_normal) 309 return -EIO; 310 311 /* If we have a negative timeout, that implies that we can't sleep. */ 312 if (timeout < 0) { 313 sleep_ok = false; 314 timeout = -timeout; 315 } 316 317 /* Queue ourselves onto the mailbox access list. When our entry is at 318 * the front of the list, we have rights to access the mailbox. So we 319 * wait [for a while] till we're at the front [or bail out with an 320 * EBUSY] ... 321 */ 322 spin_lock_bh(&adap->mbox_lock); 323 list_add_tail(&entry.list, &adap->mlist.list); 324 spin_unlock_bh(&adap->mbox_lock); 325 326 delay_idx = 0; 327 ms = delay[0]; 328 329 for (i = 0; ; i += ms) { 330 /* If we've waited too long, return a busy indication. This 331 * really ought to be based on our initial position in the 332 * mailbox access list but this is a start. We very rarely 333 * contend on access to the mailbox ... 334 */ 335 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 336 if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) { 337 spin_lock_bh(&adap->mbox_lock); 338 list_del(&entry.list); 339 spin_unlock_bh(&adap->mbox_lock); 340 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY; 341 t4_record_mbox(adap, cmd, size, access, ret); 342 return ret; 343 } 344 345 /* If we're at the head, break out and start the mailbox 346 * protocol. 347 */ 348 if (list_first_entry(&adap->mlist.list, struct mbox_list, 349 list) == &entry) 350 break; 351 352 /* Delay for a bit before checking again ... */ 353 if (sleep_ok) { 354 ms = delay[delay_idx]; /* last element may repeat */ 355 if (delay_idx < ARRAY_SIZE(delay) - 1) 356 delay_idx++; 357 msleep(ms); 358 } else { 359 mdelay(ms); 360 } 361 } 362 363 /* Loop trying to get ownership of the mailbox. Return an error 364 * if we can't gain ownership. 365 */ 366 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 367 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) 368 v = MBOWNER_G(t4_read_reg(adap, ctl_reg)); 369 if (v != MBOX_OWNER_DRV) { 370 spin_lock_bh(&adap->mbox_lock); 371 list_del(&entry.list); 372 spin_unlock_bh(&adap->mbox_lock); 373 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; 374 t4_record_mbox(adap, cmd, size, access, ret); 375 return ret; 376 } 377 378 /* Copy in the new mailbox command and send it on its way ... */ 379 t4_record_mbox(adap, cmd, size, access, 0); 380 for (i = 0; i < size; i += 8) 381 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); 382 383 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); 384 t4_read_reg(adap, ctl_reg); /* flush write */ 385 386 delay_idx = 0; 387 ms = delay[0]; 388 389 for (i = 0; 390 !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) && 391 i < timeout; 392 i += ms) { 393 if (sleep_ok) { 394 ms = delay[delay_idx]; /* last element may repeat */ 395 if (delay_idx < ARRAY_SIZE(delay) - 1) 396 delay_idx++; 397 msleep(ms); 398 } else 399 mdelay(ms); 400 401 v = t4_read_reg(adap, ctl_reg); 402 if (MBOWNER_G(v) == MBOX_OWNER_DRV) { 403 if (!(v & MBMSGVALID_F)) { 404 t4_write_reg(adap, ctl_reg, 0); 405 continue; 406 } 407 408 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg); 409 res = be64_to_cpu(cmd_rpl[0]); 410 411 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { 412 fw_asrt(adap, data_reg); 413 res = FW_CMD_RETVAL_V(EIO); 414 } else if (rpl) { 415 memcpy(rpl, cmd_rpl, size); 416 } 417 418 t4_write_reg(adap, ctl_reg, 0); 419 420 execute = i + ms; 421 t4_record_mbox(adap, cmd_rpl, 422 MBOX_LEN, access, execute); 423 spin_lock_bh(&adap->mbox_lock); 424 list_del(&entry.list); 425 spin_unlock_bh(&adap->mbox_lock); 426 return -FW_CMD_RETVAL_G((int)res); 427 } 428 } 429 430 ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT; 431 t4_record_mbox(adap, cmd, size, access, ret); 432 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", 433 *(const u8 *)cmd, mbox); 434 t4_report_fw_error(adap); 435 spin_lock_bh(&adap->mbox_lock); 436 list_del(&entry.list); 437 spin_unlock_bh(&adap->mbox_lock); 438 t4_fatal_err(adap); 439 return ret; 440} 441 442int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 443 void *rpl, bool sleep_ok) 444{ 445 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok, 446 FW_CMD_MAX_TIMEOUT); 447} 448 449static int t4_edc_err_read(struct adapter *adap, int idx) 450{ 451 u32 edc_ecc_err_addr_reg; 452 u32 rdata_reg; 453 454 if (is_t4(adap->params.chip)) { 455 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 456 return 0; 457 } 458 if (idx != 0 && idx != 1) { 459 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 460 return 0; 461 } 462 463 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx); 464 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx); 465 466 CH_WARN(adap, 467 "edc%d err addr 0x%x: 0x%x.\n", 468 idx, edc_ecc_err_addr_reg, 469 t4_read_reg(adap, edc_ecc_err_addr_reg)); 470 CH_WARN(adap, 471 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 472 rdata_reg, 473 (unsigned long long)t4_read_reg64(adap, rdata_reg), 474 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8), 475 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16), 476 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24), 477 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32), 478 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40), 479 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48), 480 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56), 481 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64)); 482 483 return 0; 484} 485 486/** 487 * t4_memory_rw_init - Get memory window relative offset, base, and size. 488 * @adap: the adapter 489 * @win: PCI-E Memory Window to use 490 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC 491 * @mem_off: memory relative offset with respect to @mtype. 492 * @mem_base: configured memory base address. 493 * @mem_aperture: configured memory window aperture. 494 * 495 * Get the configured memory window's relative offset, base, and size. 496 */ 497int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off, 498 u32 *mem_base, u32 *mem_aperture) 499{ 500 u32 edc_size, mc_size, mem_reg; 501 502 /* Offset into the region of memory which is being accessed 503 * MEM_EDC0 = 0 504 * MEM_EDC1 = 1 505 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller 506 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5) 507 * MEM_HMA = 4 508 */ 509 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); 510 if (mtype == MEM_HMA) { 511 *mem_off = 2 * (edc_size * 1024 * 1024); 512 } else if (mtype != MEM_MC1) { 513 *mem_off = (mtype * (edc_size * 1024 * 1024)); 514 } else { 515 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, 516 MA_EXT_MEMORY0_BAR_A)); 517 *mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; 518 } 519 520 /* Each PCI-E Memory Window is programmed with a window size -- or 521 * "aperture" -- which controls the granularity of its mapping onto 522 * adapter memory. We need to grab that aperture in order to know 523 * how to use the specified window. The window is also programmed 524 * with the base address of the Memory Window in BAR0's address 525 * space. For T4 this is an absolute PCI-E Bus Address. For T5 526 * the address is relative to BAR0. 527 */ 528 mem_reg = t4_read_reg(adap, 529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 530 win)); 531 /* a dead adapter will return 0xffffffff for PIO reads */ 532 if (mem_reg == 0xffffffff) 533 return -ENXIO; 534 535 *mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X); 536 *mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X; 537 if (is_t4(adap->params.chip)) 538 *mem_base -= adap->t4_bar0; 539 540 return 0; 541} 542 543/** 544 * t4_memory_update_win - Move memory window to specified address. 545 * @adap: the adapter 546 * @win: PCI-E Memory Window to use 547 * @addr: location to move. 548 * 549 * Move memory window to specified address. 550 */ 551void t4_memory_update_win(struct adapter *adap, int win, u32 addr) 552{ 553 t4_write_reg(adap, 554 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win), 555 addr); 556 /* Read it back to ensure that changes propagate before we 557 * attempt to use the new value. 558 */ 559 t4_read_reg(adap, 560 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win)); 561} 562 563/** 564 * t4_memory_rw_residual - Read/Write residual data. 565 * @adap: the adapter 566 * @off: relative offset within residual to start read/write. 567 * @addr: address within indicated memory type. 568 * @buf: host memory buffer 569 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 570 * 571 * Read/Write residual data less than 32-bits. 572 */ 573void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf, 574 int dir) 575{ 576 union { 577 u32 word; 578 char byte[4]; 579 } last; 580 unsigned char *bp; 581 int i; 582 583 if (dir == T4_MEMORY_READ) { 584 last.word = le32_to_cpu((__force __le32) 585 t4_read_reg(adap, addr)); 586 for (bp = (unsigned char *)buf, i = off; i < 4; i++) 587 bp[i] = last.byte[i]; 588 } else { 589 last.word = *buf; 590 for (i = off; i < 4; i++) 591 last.byte[i] = 0; 592 t4_write_reg(adap, addr, 593 (__force u32)cpu_to_le32(last.word)); 594 } 595} 596 597/** 598 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window 599 * @adap: the adapter 600 * @win: PCI-E Memory Window to use 601 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 602 * @addr: address within indicated memory type 603 * @len: amount of memory to transfer 604 * @hbuf: host memory buffer 605 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) 606 * 607 * Reads/writes an [almost] arbitrary memory region in the firmware: the 608 * firmware memory address and host buffer must be aligned on 32-bit 609 * boundaries; the length may be arbitrary. The memory is transferred as 610 * a raw byte sequence from/to the firmware's memory. If this memory 611 * contains data structures which contain multi-byte integers, it's the 612 * caller's responsibility to perform appropriate byte order conversions. 613 */ 614int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, 615 u32 len, void *hbuf, int dir) 616{ 617 u32 pos, offset, resid, memoffset; 618 u32 win_pf, mem_aperture, mem_base; 619 u32 *buf; 620 int ret; 621 622 /* Argument sanity checks ... 623 */ 624 if (addr & 0x3 || (uintptr_t)hbuf & 0x3) 625 return -EINVAL; 626 buf = (u32 *)hbuf; 627 628 /* It's convenient to be able to handle lengths which aren't a 629 * multiple of 32-bits because we often end up transferring files to 630 * the firmware. So we'll handle that by normalizing the length here 631 * and then handling any residual transfer at the end. 632 */ 633 resid = len & 0x3; 634 len -= resid; 635 636 ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, 637 &mem_aperture); 638 if (ret) 639 return ret; 640 641 /* Determine the PCIE_MEM_ACCESS_OFFSET */ 642 addr = addr + memoffset; 643 644 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); 645 646 /* Calculate our initial PCI-E Memory Window Position and Offset into 647 * that Window. 648 */ 649 pos = addr & ~(mem_aperture - 1); 650 offset = addr - pos; 651 652 /* Set up initial PCI-E Memory Window to cover the start of our 653 * transfer. 654 */ 655 t4_memory_update_win(adap, win, pos | win_pf); 656 657 /* Transfer data to/from the adapter as long as there's an integral 658 * number of 32-bit transfers to complete. 659 * 660 * A note on Endianness issues: 661 * 662 * The "register" reads and writes below from/to the PCI-E Memory 663 * Window invoke the standard adapter Big-Endian to PCI-E Link 664 * Little-Endian "swizzel." As a result, if we have the following 665 * data in adapter memory: 666 * 667 * Memory: ... | b0 | b1 | b2 | b3 | ... 668 * Address: i+0 i+1 i+2 i+3 669 * 670 * Then a read of the adapter memory via the PCI-E Memory Window 671 * will yield: 672 * 673 * x = readl(i) 674 * 31 0 675 * [ b3 | b2 | b1 | b0 ] 676 * 677 * If this value is stored into local memory on a Little-Endian system 678 * it will show up correctly in local memory as: 679 * 680 * ( ..., b0, b1, b2, b3, ... ) 681 * 682 * But on a Big-Endian system, the store will show up in memory 683 * incorrectly swizzled as: 684 * 685 * ( ..., b3, b2, b1, b0, ... ) 686 * 687 * So we need to account for this in the reads and writes to the 688 * PCI-E Memory Window below by undoing the register read/write 689 * swizzels. 690 */ 691 while (len > 0) { 692 if (dir == T4_MEMORY_READ) 693 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap, 694 mem_base + offset)); 695 else 696 t4_write_reg(adap, mem_base + offset, 697 (__force u32)cpu_to_le32(*buf++)); 698 offset += sizeof(__be32); 699 len -= sizeof(__be32); 700 701 /* If we've reached the end of our current window aperture, 702 * move the PCI-E Memory Window on to the next. Note that 703 * doing this here after "len" may be 0 allows us to set up 704 * the PCI-E Memory Window for a possible final residual 705 * transfer below ... 706 */ 707 if (offset == mem_aperture) { 708 pos += mem_aperture; 709 offset = 0; 710 t4_memory_update_win(adap, win, pos | win_pf); 711 } 712 } 713 714 /* If the original transfer had a length which wasn't a multiple of 715 * 32-bits, now's where we need to finish off the transfer of the 716 * residual amount. The PCI-E Memory Window has already been moved 717 * above (if necessary) to cover this final transfer. 718 */ 719 if (resid) 720 t4_memory_rw_residual(adap, resid, mem_base + offset, 721 (u8 *)buf, dir); 722 723 return 0; 724} 725 726/* Return the specified PCI-E Configuration Space register from our Physical 727 * Function. We try first via a Firmware LDST Command since we prefer to let 728 * the firmware own all of these registers, but if that fails we go for it 729 * directly ourselves. 730 */ 731u32 t4_read_pcie_cfg4(struct adapter *adap, int reg) 732{ 733 u32 val, ldst_addrspace; 734 735 /* If fw_attach != 0, construct and send the Firmware LDST Command to 736 * retrieve the specified PCI-E Configuration Space register. 737 */ 738 struct fw_ldst_cmd ldst_cmd; 739 int ret; 740 741 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 742 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE); 743 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 744 FW_CMD_REQUEST_F | 745 FW_CMD_READ_F | 746 ldst_addrspace); 747 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 748 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1); 749 ldst_cmd.u.pcie.ctrl_to_fn = 750 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf)); 751 ldst_cmd.u.pcie.r = reg; 752 753 /* If the LDST Command succeeds, return the result, otherwise 754 * fall through to reading it directly ourselves ... 755 */ 756 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 757 &ldst_cmd); 758 if (ret == 0) 759 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]); 760 else 761 /* Read the desired Configuration Space register via the PCI-E 762 * Backdoor mechanism. 763 */ 764 t4_hw_pci_read_cfg4(adap, reg, &val); 765 return val; 766} 767 768/* Get the window based on base passed to it. 769 * Window aperture is currently unhandled, but there is no use case for it 770 * right now 771 */ 772static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask, 773 u32 memwin_base) 774{ 775 u32 ret; 776 777 if (is_t4(adap->params.chip)) { 778 u32 bar0; 779 780 /* Truncation intentional: we only read the bottom 32-bits of 781 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor 782 * mechanism to read BAR0 instead of using 783 * pci_resource_start() because we could be operating from 784 * within a Virtual Machine which is trapping our accesses to 785 * our Configuration Space and we need to set up the PCI-E 786 * Memory Window decoders with the actual addresses which will 787 * be coming across the PCI-E link. 788 */ 789 bar0 = t4_read_pcie_cfg4(adap, pci_base); 790 bar0 &= pci_mask; 791 adap->t4_bar0 = bar0; 792 793 ret = bar0 + memwin_base; 794 } else { 795 /* For T5, only relative offset inside the PCIe BAR is passed */ 796 ret = memwin_base; 797 } 798 return ret; 799} 800 801/* Get the default utility window (win0) used by everyone */ 802u32 t4_get_util_window(struct adapter *adap) 803{ 804 return t4_get_window(adap, PCI_BASE_ADDRESS_0, 805 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE); 806} 807 808/* Set up memory window for accessing adapter memory ranges. (Read 809 * back MA register to ensure that changes propagate before we attempt 810 * to use the new values.) 811 */ 812void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window) 813{ 814 t4_write_reg(adap, 815 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window), 816 memwin_base | BIR_V(0) | 817 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X)); 818 t4_read_reg(adap, 819 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window)); 820} 821 822/** 823 * t4_get_regs_len - return the size of the chips register set 824 * @adapter: the adapter 825 * 826 * Returns the size of the chip's BAR0 register space. 827 */ 828unsigned int t4_get_regs_len(struct adapter *adapter) 829{ 830 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 831 832 switch (chip_version) { 833 case CHELSIO_T4: 834 return T4_REGMAP_SIZE; 835 836 case CHELSIO_T5: 837 case CHELSIO_T6: 838 return T5_REGMAP_SIZE; 839 } 840 841 dev_err(adapter->pdev_dev, 842 "Unsupported chip version %d\n", chip_version); 843 return 0; 844} 845 846/** 847 * t4_get_regs - read chip registers into provided buffer 848 * @adap: the adapter 849 * @buf: register buffer 850 * @buf_size: size (in bytes) of register buffer 851 * 852 * If the provided register buffer isn't large enough for the chip's 853 * full register range, the register dump will be truncated to the 854 * register buffer's size. 855 */ 856void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size) 857{ 858 static const unsigned int t4_reg_ranges[] = { 859 0x1008, 0x1108, 860 0x1180, 0x1184, 861 0x1190, 0x1194, 862 0x11a0, 0x11a4, 863 0x11b0, 0x11b4, 864 0x11fc, 0x123c, 865 0x1300, 0x173c, 866 0x1800, 0x18fc, 867 0x3000, 0x30d8, 868 0x30e0, 0x30e4, 869 0x30ec, 0x5910, 870 0x5920, 0x5924, 871 0x5960, 0x5960, 872 0x5968, 0x5968, 873 0x5970, 0x5970, 874 0x5978, 0x5978, 875 0x5980, 0x5980, 876 0x5988, 0x5988, 877 0x5990, 0x5990, 878 0x5998, 0x5998, 879 0x59a0, 0x59d4, 880 0x5a00, 0x5ae0, 881 0x5ae8, 0x5ae8, 882 0x5af0, 0x5af0, 883 0x5af8, 0x5af8, 884 0x6000, 0x6098, 885 0x6100, 0x6150, 886 0x6200, 0x6208, 887 0x6240, 0x6248, 888 0x6280, 0x62b0, 889 0x62c0, 0x6338, 890 0x6370, 0x638c, 891 0x6400, 0x643c, 892 0x6500, 0x6524, 893 0x6a00, 0x6a04, 894 0x6a14, 0x6a38, 895 0x6a60, 0x6a70, 896 0x6a78, 0x6a78, 897 0x6b00, 0x6b0c, 898 0x6b1c, 0x6b84, 899 0x6bf0, 0x6bf8, 900 0x6c00, 0x6c0c, 901 0x6c1c, 0x6c84, 902 0x6cf0, 0x6cf8, 903 0x6d00, 0x6d0c, 904 0x6d1c, 0x6d84, 905 0x6df0, 0x6df8, 906 0x6e00, 0x6e0c, 907 0x6e1c, 0x6e84, 908 0x6ef0, 0x6ef8, 909 0x6f00, 0x6f0c, 910 0x6f1c, 0x6f84, 911 0x6ff0, 0x6ff8, 912 0x7000, 0x700c, 913 0x701c, 0x7084, 914 0x70f0, 0x70f8, 915 0x7100, 0x710c, 916 0x711c, 0x7184, 917 0x71f0, 0x71f8, 918 0x7200, 0x720c, 919 0x721c, 0x7284, 920 0x72f0, 0x72f8, 921 0x7300, 0x730c, 922 0x731c, 0x7384, 923 0x73f0, 0x73f8, 924 0x7400, 0x7450, 925 0x7500, 0x7530, 926 0x7600, 0x760c, 927 0x7614, 0x761c, 928 0x7680, 0x76cc, 929 0x7700, 0x7798, 930 0x77c0, 0x77fc, 931 0x7900, 0x79fc, 932 0x7b00, 0x7b58, 933 0x7b60, 0x7b84, 934 0x7b8c, 0x7c38, 935 0x7d00, 0x7d38, 936 0x7d40, 0x7d80, 937 0x7d8c, 0x7ddc, 938 0x7de4, 0x7e04, 939 0x7e10, 0x7e1c, 940 0x7e24, 0x7e38, 941 0x7e40, 0x7e44, 942 0x7e4c, 0x7e78, 943 0x7e80, 0x7ea4, 944 0x7eac, 0x7edc, 945 0x7ee8, 0x7efc, 946 0x8dc0, 0x8e04, 947 0x8e10, 0x8e1c, 948 0x8e30, 0x8e78, 949 0x8ea0, 0x8eb8, 950 0x8ec0, 0x8f6c, 951 0x8fc0, 0x9008, 952 0x9010, 0x9058, 953 0x9060, 0x9060, 954 0x9068, 0x9074, 955 0x90fc, 0x90fc, 956 0x9400, 0x9408, 957 0x9410, 0x9458, 958 0x9600, 0x9600, 959 0x9608, 0x9638, 960 0x9640, 0x96bc, 961 0x9800, 0x9808, 962 0x9820, 0x983c, 963 0x9850, 0x9864, 964 0x9c00, 0x9c6c, 965 0x9c80, 0x9cec, 966 0x9d00, 0x9d6c, 967 0x9d80, 0x9dec, 968 0x9e00, 0x9e6c, 969 0x9e80, 0x9eec, 970 0x9f00, 0x9f6c, 971 0x9f80, 0x9fec, 972 0xd004, 0xd004, 973 0xd010, 0xd03c, 974 0xdfc0, 0xdfe0, 975 0xe000, 0xea7c, 976 0xf000, 0x11110, 977 0x11118, 0x11190, 978 0x19040, 0x1906c, 979 0x19078, 0x19080, 980 0x1908c, 0x190e4, 981 0x190f0, 0x190f8, 982 0x19100, 0x19110, 983 0x19120, 0x19124, 984 0x19150, 0x19194, 985 0x1919c, 0x191b0, 986 0x191d0, 0x191e8, 987 0x19238, 0x1924c, 988 0x193f8, 0x1943c, 989 0x1944c, 0x19474, 990 0x19490, 0x194e0, 991 0x194f0, 0x194f8, 992 0x19800, 0x19c08, 993 0x19c10, 0x19c90, 994 0x19ca0, 0x19ce4, 995 0x19cf0, 0x19d40, 996 0x19d50, 0x19d94, 997 0x19da0, 0x19de8, 998 0x19df0, 0x19e40, 999 0x19e50, 0x19e90, 1000 0x19ea0, 0x19f4c, 1001 0x1a000, 0x1a004, 1002 0x1a010, 0x1a06c, 1003 0x1a0b0, 0x1a0e4, 1004 0x1a0ec, 0x1a0f4, 1005 0x1a100, 0x1a108, 1006 0x1a114, 0x1a120, 1007 0x1a128, 0x1a130, 1008 0x1a138, 0x1a138, 1009 0x1a190, 0x1a1c4, 1010 0x1a1fc, 0x1a1fc, 1011 0x1e040, 0x1e04c, 1012 0x1e284, 0x1e28c, 1013 0x1e2c0, 0x1e2c0, 1014 0x1e2e0, 0x1e2e0, 1015 0x1e300, 0x1e384, 1016 0x1e3c0, 0x1e3c8, 1017 0x1e440, 0x1e44c, 1018 0x1e684, 0x1e68c, 1019 0x1e6c0, 0x1e6c0, 1020 0x1e6e0, 0x1e6e0, 1021 0x1e700, 0x1e784, 1022 0x1e7c0, 0x1e7c8, 1023 0x1e840, 0x1e84c, 1024 0x1ea84, 0x1ea8c, 1025 0x1eac0, 0x1eac0, 1026 0x1eae0, 0x1eae0, 1027 0x1eb00, 0x1eb84, 1028 0x1ebc0, 0x1ebc8, 1029 0x1ec40, 0x1ec4c, 1030 0x1ee84, 0x1ee8c, 1031 0x1eec0, 0x1eec0, 1032 0x1eee0, 0x1eee0, 1033 0x1ef00, 0x1ef84, 1034 0x1efc0, 0x1efc8, 1035 0x1f040, 0x1f04c, 1036 0x1f284, 0x1f28c, 1037 0x1f2c0, 0x1f2c0, 1038 0x1f2e0, 0x1f2e0, 1039 0x1f300, 0x1f384, 1040 0x1f3c0, 0x1f3c8, 1041 0x1f440, 0x1f44c, 1042 0x1f684, 0x1f68c, 1043 0x1f6c0, 0x1f6c0, 1044 0x1f6e0, 0x1f6e0, 1045 0x1f700, 0x1f784, 1046 0x1f7c0, 0x1f7c8, 1047 0x1f840, 0x1f84c, 1048 0x1fa84, 0x1fa8c, 1049 0x1fac0, 0x1fac0, 1050 0x1fae0, 0x1fae0, 1051 0x1fb00, 0x1fb84, 1052 0x1fbc0, 0x1fbc8, 1053 0x1fc40, 0x1fc4c, 1054 0x1fe84, 0x1fe8c, 1055 0x1fec0, 0x1fec0, 1056 0x1fee0, 0x1fee0, 1057 0x1ff00, 0x1ff84, 1058 0x1ffc0, 0x1ffc8, 1059 0x20000, 0x2002c, 1060 0x20100, 0x2013c, 1061 0x20190, 0x201a0, 1062 0x201a8, 0x201b8, 1063 0x201c4, 0x201c8, 1064 0x20200, 0x20318, 1065 0x20400, 0x204b4, 1066 0x204c0, 0x20528, 1067 0x20540, 0x20614, 1068 0x21000, 0x21040, 1069 0x2104c, 0x21060, 1070 0x210c0, 0x210ec, 1071 0x21200, 0x21268, 1072 0x21270, 0x21284, 1073 0x212fc, 0x21388, 1074 0x21400, 0x21404, 1075 0x21500, 0x21500, 1076 0x21510, 0x21518, 1077 0x2152c, 0x21530, 1078 0x2153c, 0x2153c, 1079 0x21550, 0x21554, 1080 0x21600, 0x21600, 1081 0x21608, 0x2161c, 1082 0x21624, 0x21628, 1083 0x21630, 0x21634, 1084 0x2163c, 0x2163c, 1085 0x21700, 0x2171c, 1086 0x21780, 0x2178c, 1087 0x21800, 0x21818, 1088 0x21820, 0x21828, 1089 0x21830, 0x21848, 1090 0x21850, 0x21854, 1091 0x21860, 0x21868, 1092 0x21870, 0x21870, 1093 0x21878, 0x21898, 1094 0x218a0, 0x218a8, 1095 0x218b0, 0x218c8, 1096 0x218d0, 0x218d4, 1097 0x218e0, 0x218e8, 1098 0x218f0, 0x218f0, 1099 0x218f8, 0x21a18, 1100 0x21a20, 0x21a28, 1101 0x21a30, 0x21a48, 1102 0x21a50, 0x21a54, 1103 0x21a60, 0x21a68, 1104 0x21a70, 0x21a70, 1105 0x21a78, 0x21a98, 1106 0x21aa0, 0x21aa8, 1107 0x21ab0, 0x21ac8, 1108 0x21ad0, 0x21ad4, 1109 0x21ae0, 0x21ae8, 1110 0x21af0, 0x21af0, 1111 0x21af8, 0x21c18, 1112 0x21c20, 0x21c20, 1113 0x21c28, 0x21c30, 1114 0x21c38, 0x21c38, 1115 0x21c80, 0x21c98, 1116 0x21ca0, 0x21ca8, 1117 0x21cb0, 0x21cc8, 1118 0x21cd0, 0x21cd4, 1119 0x21ce0, 0x21ce8, 1120 0x21cf0, 0x21cf0, 1121 0x21cf8, 0x21d7c, 1122 0x21e00, 0x21e04, 1123 0x22000, 0x2202c, 1124 0x22100, 0x2213c, 1125 0x22190, 0x221a0, 1126 0x221a8, 0x221b8, 1127 0x221c4, 0x221c8, 1128 0x22200, 0x22318, 1129 0x22400, 0x224b4, 1130 0x224c0, 0x22528, 1131 0x22540, 0x22614, 1132 0x23000, 0x23040, 1133 0x2304c, 0x23060, 1134 0x230c0, 0x230ec, 1135 0x23200, 0x23268, 1136 0x23270, 0x23284, 1137 0x232fc, 0x23388, 1138 0x23400, 0x23404, 1139 0x23500, 0x23500, 1140 0x23510, 0x23518, 1141 0x2352c, 0x23530, 1142 0x2353c, 0x2353c, 1143 0x23550, 0x23554, 1144 0x23600, 0x23600, 1145 0x23608, 0x2361c, 1146 0x23624, 0x23628, 1147 0x23630, 0x23634, 1148 0x2363c, 0x2363c, 1149 0x23700, 0x2371c, 1150 0x23780, 0x2378c, 1151 0x23800, 0x23818, 1152 0x23820, 0x23828, 1153 0x23830, 0x23848, 1154 0x23850, 0x23854, 1155 0x23860, 0x23868, 1156 0x23870, 0x23870, 1157 0x23878, 0x23898, 1158 0x238a0, 0x238a8, 1159 0x238b0, 0x238c8, 1160 0x238d0, 0x238d4, 1161 0x238e0, 0x238e8, 1162 0x238f0, 0x238f0, 1163 0x238f8, 0x23a18, 1164 0x23a20, 0x23a28, 1165 0x23a30, 0x23a48, 1166 0x23a50, 0x23a54, 1167 0x23a60, 0x23a68, 1168 0x23a70, 0x23a70, 1169 0x23a78, 0x23a98, 1170 0x23aa0, 0x23aa8, 1171 0x23ab0, 0x23ac8, 1172 0x23ad0, 0x23ad4, 1173 0x23ae0, 0x23ae8, 1174 0x23af0, 0x23af0, 1175 0x23af8, 0x23c18, 1176 0x23c20, 0x23c20, 1177 0x23c28, 0x23c30, 1178 0x23c38, 0x23c38, 1179 0x23c80, 0x23c98, 1180 0x23ca0, 0x23ca8, 1181 0x23cb0, 0x23cc8, 1182 0x23cd0, 0x23cd4, 1183 0x23ce0, 0x23ce8, 1184 0x23cf0, 0x23cf0, 1185 0x23cf8, 0x23d7c, 1186 0x23e00, 0x23e04, 1187 0x24000, 0x2402c, 1188 0x24100, 0x2413c, 1189 0x24190, 0x241a0, 1190 0x241a8, 0x241b8, 1191 0x241c4, 0x241c8, 1192 0x24200, 0x24318, 1193 0x24400, 0x244b4, 1194 0x244c0, 0x24528, 1195 0x24540, 0x24614, 1196 0x25000, 0x25040, 1197 0x2504c, 0x25060, 1198 0x250c0, 0x250ec, 1199 0x25200, 0x25268, 1200 0x25270, 0x25284, 1201 0x252fc, 0x25388, 1202 0x25400, 0x25404, 1203 0x25500, 0x25500, 1204 0x25510, 0x25518, 1205 0x2552c, 0x25530, 1206 0x2553c, 0x2553c, 1207 0x25550, 0x25554, 1208 0x25600, 0x25600, 1209 0x25608, 0x2561c, 1210 0x25624, 0x25628, 1211 0x25630, 0x25634, 1212 0x2563c, 0x2563c, 1213 0x25700, 0x2571c, 1214 0x25780, 0x2578c, 1215 0x25800, 0x25818, 1216 0x25820, 0x25828, 1217 0x25830, 0x25848, 1218 0x25850, 0x25854, 1219 0x25860, 0x25868, 1220 0x25870, 0x25870, 1221 0x25878, 0x25898, 1222 0x258a0, 0x258a8, 1223 0x258b0, 0x258c8, 1224 0x258d0, 0x258d4, 1225 0x258e0, 0x258e8, 1226 0x258f0, 0x258f0, 1227 0x258f8, 0x25a18, 1228 0x25a20, 0x25a28, 1229 0x25a30, 0x25a48, 1230 0x25a50, 0x25a54, 1231 0x25a60, 0x25a68, 1232 0x25a70, 0x25a70, 1233 0x25a78, 0x25a98, 1234 0x25aa0, 0x25aa8, 1235 0x25ab0, 0x25ac8, 1236 0x25ad0, 0x25ad4, 1237 0x25ae0, 0x25ae8, 1238 0x25af0, 0x25af0, 1239 0x25af8, 0x25c18, 1240 0x25c20, 0x25c20, 1241 0x25c28, 0x25c30, 1242 0x25c38, 0x25c38, 1243 0x25c80, 0x25c98, 1244 0x25ca0, 0x25ca8, 1245 0x25cb0, 0x25cc8, 1246 0x25cd0, 0x25cd4, 1247 0x25ce0, 0x25ce8, 1248 0x25cf0, 0x25cf0, 1249 0x25cf8, 0x25d7c, 1250 0x25e00, 0x25e04, 1251 0x26000, 0x2602c, 1252 0x26100, 0x2613c, 1253 0x26190, 0x261a0, 1254 0x261a8, 0x261b8, 1255 0x261c4, 0x261c8, 1256 0x26200, 0x26318, 1257 0x26400, 0x264b4, 1258 0x264c0, 0x26528, 1259 0x26540, 0x26614, 1260 0x27000, 0x27040, 1261 0x2704c, 0x27060, 1262 0x270c0, 0x270ec, 1263 0x27200, 0x27268, 1264 0x27270, 0x27284, 1265 0x272fc, 0x27388, 1266 0x27400, 0x27404, 1267 0x27500, 0x27500, 1268 0x27510, 0x27518, 1269 0x2752c, 0x27530, 1270 0x2753c, 0x2753c, 1271 0x27550, 0x27554, 1272 0x27600, 0x27600, 1273 0x27608, 0x2761c, 1274 0x27624, 0x27628, 1275 0x27630, 0x27634, 1276 0x2763c, 0x2763c, 1277 0x27700, 0x2771c, 1278 0x27780, 0x2778c, 1279 0x27800, 0x27818, 1280 0x27820, 0x27828, 1281 0x27830, 0x27848, 1282 0x27850, 0x27854, 1283 0x27860, 0x27868, 1284 0x27870, 0x27870, 1285 0x27878, 0x27898, 1286 0x278a0, 0x278a8, 1287 0x278b0, 0x278c8, 1288 0x278d0, 0x278d4, 1289 0x278e0, 0x278e8, 1290 0x278f0, 0x278f0, 1291 0x278f8, 0x27a18, 1292 0x27a20, 0x27a28, 1293 0x27a30, 0x27a48, 1294 0x27a50, 0x27a54, 1295 0x27a60, 0x27a68, 1296 0x27a70, 0x27a70, 1297 0x27a78, 0x27a98, 1298 0x27aa0, 0x27aa8, 1299 0x27ab0, 0x27ac8, 1300 0x27ad0, 0x27ad4, 1301 0x27ae0, 0x27ae8, 1302 0x27af0, 0x27af0, 1303 0x27af8, 0x27c18, 1304 0x27c20, 0x27c20, 1305 0x27c28, 0x27c30, 1306 0x27c38, 0x27c38, 1307 0x27c80, 0x27c98, 1308 0x27ca0, 0x27ca8, 1309 0x27cb0, 0x27cc8, 1310 0x27cd0, 0x27cd4, 1311 0x27ce0, 0x27ce8, 1312 0x27cf0, 0x27cf0, 1313 0x27cf8, 0x27d7c, 1314 0x27e00, 0x27e04, 1315 }; 1316 1317 static const unsigned int t5_reg_ranges[] = { 1318 0x1008, 0x10c0, 1319 0x10cc, 0x10f8, 1320 0x1100, 0x1100, 1321 0x110c, 0x1148, 1322 0x1180, 0x1184, 1323 0x1190, 0x1194, 1324 0x11a0, 0x11a4, 1325 0x11b0, 0x11b4, 1326 0x11fc, 0x123c, 1327 0x1280, 0x173c, 1328 0x1800, 0x18fc, 1329 0x3000, 0x3028, 1330 0x3060, 0x30b0, 1331 0x30b8, 0x30d8, 1332 0x30e0, 0x30fc, 1333 0x3140, 0x357c, 1334 0x35a8, 0x35cc, 1335 0x35ec, 0x35ec, 1336 0x3600, 0x5624, 1337 0x56cc, 0x56ec, 1338 0x56f4, 0x5720, 1339 0x5728, 0x575c, 1340 0x580c, 0x5814, 1341 0x5890, 0x589c, 1342 0x58a4, 0x58ac, 1343 0x58b8, 0x58bc, 1344 0x5940, 0x59c8, 1345 0x59d0, 0x59dc, 1346 0x59fc, 0x5a18, 1347 0x5a60, 0x5a70, 1348 0x5a80, 0x5a9c, 1349 0x5b94, 0x5bfc, 1350 0x6000, 0x6020, 1351 0x6028, 0x6040, 1352 0x6058, 0x609c, 1353 0x60a8, 0x614c, 1354 0x7700, 0x7798, 1355 0x77c0, 0x78fc, 1356 0x7b00, 0x7b58, 1357 0x7b60, 0x7b84, 1358 0x7b8c, 0x7c54, 1359 0x7d00, 0x7d38, 1360 0x7d40, 0x7d80, 1361 0x7d8c, 0x7ddc, 1362 0x7de4, 0x7e04, 1363 0x7e10, 0x7e1c, 1364 0x7e24, 0x7e38, 1365 0x7e40, 0x7e44, 1366 0x7e4c, 0x7e78, 1367 0x7e80, 0x7edc, 1368 0x7ee8, 0x7efc, 1369 0x8dc0, 0x8de0, 1370 0x8df8, 0x8e04, 1371 0x8e10, 0x8e84, 1372 0x8ea0, 0x8f84, 1373 0x8fc0, 0x9058, 1374 0x9060, 0x9060, 1375 0x9068, 0x90f8, 1376 0x9400, 0x9408, 1377 0x9410, 0x9470, 1378 0x9600, 0x9600, 1379 0x9608, 0x9638, 1380 0x9640, 0x96f4, 1381 0x9800, 0x9808, 1382 0x9810, 0x9864, 1383 0x9c00, 0x9c6c, 1384 0x9c80, 0x9cec, 1385 0x9d00, 0x9d6c, 1386 0x9d80, 0x9dec, 1387 0x9e00, 0x9e6c, 1388 0x9e80, 0x9eec, 1389 0x9f00, 0x9f6c, 1390 0x9f80, 0xa020, 1391 0xd000, 0xd004, 1392 0xd010, 0xd03c, 1393 0xdfc0, 0xdfe0, 1394 0xe000, 0x1106c, 1395 0x11074, 0x11088, 1396 0x1109c, 0x1117c, 1397 0x11190, 0x11204, 1398 0x19040, 0x1906c, 1399 0x19078, 0x19080, 1400 0x1908c, 0x190e8, 1401 0x190f0, 0x190f8, 1402 0x19100, 0x19110, 1403 0x19120, 0x19124, 1404 0x19150, 0x19194, 1405 0x1919c, 0x191b0, 1406 0x191d0, 0x191e8, 1407 0x19238, 0x19290, 1408 0x193f8, 0x19428, 1409 0x19430, 0x19444, 1410 0x1944c, 0x1946c, 1411 0x19474, 0x19474, 1412 0x19490, 0x194cc, 1413 0x194f0, 0x194f8, 1414 0x19c00, 0x19c08, 1415 0x19c10, 0x19c60, 1416 0x19c94, 0x19ce4, 1417 0x19cf0, 0x19d40, 1418 0x19d50, 0x19d94, 1419 0x19da0, 0x19de8, 1420 0x19df0, 0x19e10, 1421 0x19e50, 0x19e90, 1422 0x19ea0, 0x19f24, 1423 0x19f34, 0x19f34, 1424 0x19f40, 0x19f50, 1425 0x19f90, 0x19fb4, 1426 0x19fc4, 0x19fe4, 1427 0x1a000, 0x1a004, 1428 0x1a010, 0x1a06c, 1429 0x1a0b0, 0x1a0e4, 1430 0x1a0ec, 0x1a0f8, 1431 0x1a100, 0x1a108, 1432 0x1a114, 0x1a130, 1433 0x1a138, 0x1a1c4, 1434 0x1a1fc, 0x1a1fc, 1435 0x1e008, 0x1e00c, 1436 0x1e040, 0x1e044, 1437 0x1e04c, 0x1e04c, 1438 0x1e284, 0x1e290, 1439 0x1e2c0, 0x1e2c0, 1440 0x1e2e0, 0x1e2e0, 1441 0x1e300, 0x1e384, 1442 0x1e3c0, 0x1e3c8, 1443 0x1e408, 0x1e40c, 1444 0x1e440, 0x1e444, 1445 0x1e44c, 0x1e44c, 1446 0x1e684, 0x1e690, 1447 0x1e6c0, 0x1e6c0, 1448 0x1e6e0, 0x1e6e0, 1449 0x1e700, 0x1e784, 1450 0x1e7c0, 0x1e7c8, 1451 0x1e808, 0x1e80c, 1452 0x1e840, 0x1e844, 1453 0x1e84c, 0x1e84c, 1454 0x1ea84, 0x1ea90, 1455 0x1eac0, 0x1eac0, 1456 0x1eae0, 0x1eae0, 1457 0x1eb00, 0x1eb84, 1458 0x1ebc0, 0x1ebc8, 1459 0x1ec08, 0x1ec0c, 1460 0x1ec40, 0x1ec44, 1461 0x1ec4c, 0x1ec4c, 1462 0x1ee84, 0x1ee90, 1463 0x1eec0, 0x1eec0, 1464 0x1eee0, 0x1eee0, 1465 0x1ef00, 0x1ef84, 1466 0x1efc0, 0x1efc8, 1467 0x1f008, 0x1f00c, 1468 0x1f040, 0x1f044, 1469 0x1f04c, 0x1f04c, 1470 0x1f284, 0x1f290, 1471 0x1f2c0, 0x1f2c0, 1472 0x1f2e0, 0x1f2e0, 1473 0x1f300, 0x1f384, 1474 0x1f3c0, 0x1f3c8, 1475 0x1f408, 0x1f40c, 1476 0x1f440, 0x1f444, 1477 0x1f44c, 0x1f44c, 1478 0x1f684, 0x1f690, 1479 0x1f6c0, 0x1f6c0, 1480 0x1f6e0, 0x1f6e0, 1481 0x1f700, 0x1f784, 1482 0x1f7c0, 0x1f7c8, 1483 0x1f808, 0x1f80c, 1484 0x1f840, 0x1f844, 1485 0x1f84c, 0x1f84c, 1486 0x1fa84, 0x1fa90, 1487 0x1fac0, 0x1fac0, 1488 0x1fae0, 0x1fae0, 1489 0x1fb00, 0x1fb84, 1490 0x1fbc0, 0x1fbc8, 1491 0x1fc08, 0x1fc0c, 1492 0x1fc40, 0x1fc44, 1493 0x1fc4c, 0x1fc4c, 1494 0x1fe84, 0x1fe90, 1495 0x1fec0, 0x1fec0, 1496 0x1fee0, 0x1fee0, 1497 0x1ff00, 0x1ff84, 1498 0x1ffc0, 0x1ffc8, 1499 0x30000, 0x30030, 1500 0x30100, 0x30144, 1501 0x30190, 0x301a0, 1502 0x301a8, 0x301b8, 1503 0x301c4, 0x301c8, 1504 0x301d0, 0x301d0, 1505 0x30200, 0x30318, 1506 0x30400, 0x304b4, 1507 0x304c0, 0x3052c, 1508 0x30540, 0x3061c, 1509 0x30800, 0x30828, 1510 0x30834, 0x30834, 1511 0x308c0, 0x30908, 1512 0x30910, 0x309ac, 1513 0x30a00, 0x30a14, 1514 0x30a1c, 0x30a2c, 1515 0x30a44, 0x30a50, 1516 0x30a74, 0x30a74, 1517 0x30a7c, 0x30afc, 1518 0x30b08, 0x30c24, 1519 0x30d00, 0x30d00, 1520 0x30d08, 0x30d14, 1521 0x30d1c, 0x30d20, 1522 0x30d3c, 0x30d3c, 1523 0x30d48, 0x30d50, 1524 0x31200, 0x3120c, 1525 0x31220, 0x31220, 1526 0x31240, 0x31240, 1527 0x31600, 0x3160c, 1528 0x31a00, 0x31a1c, 1529 0x31e00, 0x31e20, 1530 0x31e38, 0x31e3c, 1531 0x31e80, 0x31e80, 1532 0x31e88, 0x31ea8, 1533 0x31eb0, 0x31eb4, 1534 0x31ec8, 0x31ed4, 1535 0x31fb8, 0x32004, 1536 0x32200, 0x32200, 1537 0x32208, 0x32240, 1538 0x32248, 0x32280, 1539 0x32288, 0x322c0, 1540 0x322c8, 0x322fc, 1541 0x32600, 0x32630, 1542 0x32a00, 0x32abc, 1543 0x32b00, 0x32b10, 1544 0x32b20, 0x32b30, 1545 0x32b40, 0x32b50, 1546 0x32b60, 0x32b70, 1547 0x33000, 0x33028, 1548 0x33030, 0x33048, 1549 0x33060, 0x33068, 1550 0x33070, 0x3309c, 1551 0x330f0, 0x33128, 1552 0x33130, 0x33148, 1553 0x33160, 0x33168, 1554 0x33170, 0x3319c, 1555 0x331f0, 0x33238, 1556 0x33240, 0x33240, 1557 0x33248, 0x33250, 1558 0x3325c, 0x33264, 1559 0x33270, 0x332b8, 1560 0x332c0, 0x332e4, 1561 0x332f8, 0x33338, 1562 0x33340, 0x33340, 1563 0x33348, 0x33350, 1564 0x3335c, 0x33364, 1565 0x33370, 0x333b8, 1566 0x333c0, 0x333e4, 1567 0x333f8, 0x33428, 1568 0x33430, 0x33448, 1569 0x33460, 0x33468, 1570 0x33470, 0x3349c, 1571 0x334f0, 0x33528, 1572 0x33530, 0x33548, 1573 0x33560, 0x33568, 1574 0x33570, 0x3359c, 1575 0x335f0, 0x33638, 1576 0x33640, 0x33640, 1577 0x33648, 0x33650, 1578 0x3365c, 0x33664, 1579 0x33670, 0x336b8, 1580 0x336c0, 0x336e4, 1581 0x336f8, 0x33738, 1582 0x33740, 0x33740, 1583 0x33748, 0x33750, 1584 0x3375c, 0x33764, 1585 0x33770, 0x337b8, 1586 0x337c0, 0x337e4, 1587 0x337f8, 0x337fc, 1588 0x33814, 0x33814, 1589 0x3382c, 0x3382c, 1590 0x33880, 0x3388c, 1591 0x338e8, 0x338ec, 1592 0x33900, 0x33928, 1593 0x33930, 0x33948, 1594 0x33960, 0x33968, 1595 0x33970, 0x3399c, 1596 0x339f0, 0x33a38, 1597 0x33a40, 0x33a40, 1598 0x33a48, 0x33a50, 1599 0x33a5c, 0x33a64, 1600 0x33a70, 0x33ab8, 1601 0x33ac0, 0x33ae4, 1602 0x33af8, 0x33b10, 1603 0x33b28, 0x33b28, 1604 0x33b3c, 0x33b50, 1605 0x33bf0, 0x33c10, 1606 0x33c28, 0x33c28, 1607 0x33c3c, 0x33c50, 1608 0x33cf0, 0x33cfc, 1609 0x34000, 0x34030, 1610 0x34100, 0x34144, 1611 0x34190, 0x341a0, 1612 0x341a8, 0x341b8, 1613 0x341c4, 0x341c8, 1614 0x341d0, 0x341d0, 1615 0x34200, 0x34318, 1616 0x34400, 0x344b4, 1617 0x344c0, 0x3452c, 1618 0x34540, 0x3461c, 1619 0x34800, 0x34828, 1620 0x34834, 0x34834, 1621 0x348c0, 0x34908, 1622 0x34910, 0x349ac, 1623 0x34a00, 0x34a14, 1624 0x34a1c, 0x34a2c, 1625 0x34a44, 0x34a50, 1626 0x34a74, 0x34a74, 1627 0x34a7c, 0x34afc, 1628 0x34b08, 0x34c24, 1629 0x34d00, 0x34d00, 1630 0x34d08, 0x34d14, 1631 0x34d1c, 0x34d20, 1632 0x34d3c, 0x34d3c, 1633 0x34d48, 0x34d50, 1634 0x35200, 0x3520c, 1635 0x35220, 0x35220, 1636 0x35240, 0x35240, 1637 0x35600, 0x3560c, 1638 0x35a00, 0x35a1c, 1639 0x35e00, 0x35e20, 1640 0x35e38, 0x35e3c, 1641 0x35e80, 0x35e80, 1642 0x35e88, 0x35ea8, 1643 0x35eb0, 0x35eb4, 1644 0x35ec8, 0x35ed4, 1645 0x35fb8, 0x36004, 1646 0x36200, 0x36200, 1647 0x36208, 0x36240, 1648 0x36248, 0x36280, 1649 0x36288, 0x362c0, 1650 0x362c8, 0x362fc, 1651 0x36600, 0x36630, 1652 0x36a00, 0x36abc, 1653 0x36b00, 0x36b10, 1654 0x36b20, 0x36b30, 1655 0x36b40, 0x36b50, 1656 0x36b60, 0x36b70, 1657 0x37000, 0x37028, 1658 0x37030, 0x37048, 1659 0x37060, 0x37068, 1660 0x37070, 0x3709c, 1661 0x370f0, 0x37128, 1662 0x37130, 0x37148, 1663 0x37160, 0x37168, 1664 0x37170, 0x3719c, 1665 0x371f0, 0x37238, 1666 0x37240, 0x37240, 1667 0x37248, 0x37250, 1668 0x3725c, 0x37264, 1669 0x37270, 0x372b8, 1670 0x372c0, 0x372e4, 1671 0x372f8, 0x37338, 1672 0x37340, 0x37340, 1673 0x37348, 0x37350, 1674 0x3735c, 0x37364, 1675 0x37370, 0x373b8, 1676 0x373c0, 0x373e4, 1677 0x373f8, 0x37428, 1678 0x37430, 0x37448, 1679 0x37460, 0x37468, 1680 0x37470, 0x3749c, 1681 0x374f0, 0x37528, 1682 0x37530, 0x37548, 1683 0x37560, 0x37568, 1684 0x37570, 0x3759c, 1685 0x375f0, 0x37638, 1686 0x37640, 0x37640, 1687 0x37648, 0x37650, 1688 0x3765c, 0x37664, 1689 0x37670, 0x376b8, 1690 0x376c0, 0x376e4, 1691 0x376f8, 0x37738, 1692 0x37740, 0x37740, 1693 0x37748, 0x37750, 1694 0x3775c, 0x37764, 1695 0x37770, 0x377b8, 1696 0x377c0, 0x377e4, 1697 0x377f8, 0x377fc, 1698 0x37814, 0x37814, 1699 0x3782c, 0x3782c, 1700 0x37880, 0x3788c, 1701 0x378e8, 0x378ec, 1702 0x37900, 0x37928, 1703 0x37930, 0x37948, 1704 0x37960, 0x37968, 1705 0x37970, 0x3799c, 1706 0x379f0, 0x37a38, 1707 0x37a40, 0x37a40, 1708 0x37a48, 0x37a50, 1709 0x37a5c, 0x37a64, 1710 0x37a70, 0x37ab8, 1711 0x37ac0, 0x37ae4, 1712 0x37af8, 0x37b10, 1713 0x37b28, 0x37b28, 1714 0x37b3c, 0x37b50, 1715 0x37bf0, 0x37c10, 1716 0x37c28, 0x37c28, 1717 0x37c3c, 0x37c50, 1718 0x37cf0, 0x37cfc, 1719 0x38000, 0x38030, 1720 0x38100, 0x38144, 1721 0x38190, 0x381a0, 1722 0x381a8, 0x381b8, 1723 0x381c4, 0x381c8, 1724 0x381d0, 0x381d0, 1725 0x38200, 0x38318, 1726 0x38400, 0x384b4, 1727 0x384c0, 0x3852c, 1728 0x38540, 0x3861c, 1729 0x38800, 0x38828, 1730 0x38834, 0x38834, 1731 0x388c0, 0x38908, 1732 0x38910, 0x389ac, 1733 0x38a00, 0x38a14, 1734 0x38a1c, 0x38a2c, 1735 0x38a44, 0x38a50, 1736 0x38a74, 0x38a74, 1737 0x38a7c, 0x38afc, 1738 0x38b08, 0x38c24, 1739 0x38d00, 0x38d00, 1740 0x38d08, 0x38d14, 1741 0x38d1c, 0x38d20, 1742 0x38d3c, 0x38d3c, 1743 0x38d48, 0x38d50, 1744 0x39200, 0x3920c, 1745 0x39220, 0x39220, 1746 0x39240, 0x39240, 1747 0x39600, 0x3960c, 1748 0x39a00, 0x39a1c, 1749 0x39e00, 0x39e20, 1750 0x39e38, 0x39e3c, 1751 0x39e80, 0x39e80, 1752 0x39e88, 0x39ea8, 1753 0x39eb0, 0x39eb4, 1754 0x39ec8, 0x39ed4, 1755 0x39fb8, 0x3a004, 1756 0x3a200, 0x3a200, 1757 0x3a208, 0x3a240, 1758 0x3a248, 0x3a280, 1759 0x3a288, 0x3a2c0, 1760 0x3a2c8, 0x3a2fc, 1761 0x3a600, 0x3a630, 1762 0x3aa00, 0x3aabc, 1763 0x3ab00, 0x3ab10, 1764 0x3ab20, 0x3ab30, 1765 0x3ab40, 0x3ab50, 1766 0x3ab60, 0x3ab70, 1767 0x3b000, 0x3b028, 1768 0x3b030, 0x3b048, 1769 0x3b060, 0x3b068, 1770 0x3b070, 0x3b09c, 1771 0x3b0f0, 0x3b128, 1772 0x3b130, 0x3b148, 1773 0x3b160, 0x3b168, 1774 0x3b170, 0x3b19c, 1775 0x3b1f0, 0x3b238, 1776 0x3b240, 0x3b240, 1777 0x3b248, 0x3b250, 1778 0x3b25c, 0x3b264, 1779 0x3b270, 0x3b2b8, 1780 0x3b2c0, 0x3b2e4, 1781 0x3b2f8, 0x3b338, 1782 0x3b340, 0x3b340, 1783 0x3b348, 0x3b350, 1784 0x3b35c, 0x3b364, 1785 0x3b370, 0x3b3b8, 1786 0x3b3c0, 0x3b3e4, 1787 0x3b3f8, 0x3b428, 1788 0x3b430, 0x3b448, 1789 0x3b460, 0x3b468, 1790 0x3b470, 0x3b49c, 1791 0x3b4f0, 0x3b528, 1792 0x3b530, 0x3b548, 1793 0x3b560, 0x3b568, 1794 0x3b570, 0x3b59c, 1795 0x3b5f0, 0x3b638, 1796 0x3b640, 0x3b640, 1797 0x3b648, 0x3b650, 1798 0x3b65c, 0x3b664, 1799 0x3b670, 0x3b6b8, 1800 0x3b6c0, 0x3b6e4, 1801 0x3b6f8, 0x3b738, 1802 0x3b740, 0x3b740, 1803 0x3b748, 0x3b750, 1804 0x3b75c, 0x3b764, 1805 0x3b770, 0x3b7b8, 1806 0x3b7c0, 0x3b7e4, 1807 0x3b7f8, 0x3b7fc, 1808 0x3b814, 0x3b814, 1809 0x3b82c, 0x3b82c, 1810 0x3b880, 0x3b88c, 1811 0x3b8e8, 0x3b8ec, 1812 0x3b900, 0x3b928, 1813 0x3b930, 0x3b948, 1814 0x3b960, 0x3b968, 1815 0x3b970, 0x3b99c, 1816 0x3b9f0, 0x3ba38, 1817 0x3ba40, 0x3ba40, 1818 0x3ba48, 0x3ba50, 1819 0x3ba5c, 0x3ba64, 1820 0x3ba70, 0x3bab8, 1821 0x3bac0, 0x3bae4, 1822 0x3baf8, 0x3bb10, 1823 0x3bb28, 0x3bb28, 1824 0x3bb3c, 0x3bb50, 1825 0x3bbf0, 0x3bc10, 1826 0x3bc28, 0x3bc28, 1827 0x3bc3c, 0x3bc50, 1828 0x3bcf0, 0x3bcfc, 1829 0x3c000, 0x3c030, 1830 0x3c100, 0x3c144, 1831 0x3c190, 0x3c1a0, 1832 0x3c1a8, 0x3c1b8, 1833 0x3c1c4, 0x3c1c8, 1834 0x3c1d0, 0x3c1d0, 1835 0x3c200, 0x3c318, 1836 0x3c400, 0x3c4b4, 1837 0x3c4c0, 0x3c52c, 1838 0x3c540, 0x3c61c, 1839 0x3c800, 0x3c828, 1840 0x3c834, 0x3c834, 1841 0x3c8c0, 0x3c908, 1842 0x3c910, 0x3c9ac, 1843 0x3ca00, 0x3ca14, 1844 0x3ca1c, 0x3ca2c, 1845 0x3ca44, 0x3ca50, 1846 0x3ca74, 0x3ca74, 1847 0x3ca7c, 0x3cafc, 1848 0x3cb08, 0x3cc24, 1849 0x3cd00, 0x3cd00, 1850 0x3cd08, 0x3cd14, 1851 0x3cd1c, 0x3cd20, 1852 0x3cd3c, 0x3cd3c, 1853 0x3cd48, 0x3cd50, 1854 0x3d200, 0x3d20c, 1855 0x3d220, 0x3d220, 1856 0x3d240, 0x3d240, 1857 0x3d600, 0x3d60c, 1858 0x3da00, 0x3da1c, 1859 0x3de00, 0x3de20, 1860 0x3de38, 0x3de3c, 1861 0x3de80, 0x3de80, 1862 0x3de88, 0x3dea8, 1863 0x3deb0, 0x3deb4, 1864 0x3dec8, 0x3ded4, 1865 0x3dfb8, 0x3e004, 1866 0x3e200, 0x3e200, 1867 0x3e208, 0x3e240, 1868 0x3e248, 0x3e280, 1869 0x3e288, 0x3e2c0, 1870 0x3e2c8, 0x3e2fc, 1871 0x3e600, 0x3e630, 1872 0x3ea00, 0x3eabc, 1873 0x3eb00, 0x3eb10, 1874 0x3eb20, 0x3eb30, 1875 0x3eb40, 0x3eb50, 1876 0x3eb60, 0x3eb70, 1877 0x3f000, 0x3f028, 1878 0x3f030, 0x3f048, 1879 0x3f060, 0x3f068, 1880 0x3f070, 0x3f09c, 1881 0x3f0f0, 0x3f128, 1882 0x3f130, 0x3f148, 1883 0x3f160, 0x3f168, 1884 0x3f170, 0x3f19c, 1885 0x3f1f0, 0x3f238, 1886 0x3f240, 0x3f240, 1887 0x3f248, 0x3f250, 1888 0x3f25c, 0x3f264, 1889 0x3f270, 0x3f2b8, 1890 0x3f2c0, 0x3f2e4, 1891 0x3f2f8, 0x3f338, 1892 0x3f340, 0x3f340, 1893 0x3f348, 0x3f350, 1894 0x3f35c, 0x3f364, 1895 0x3f370, 0x3f3b8, 1896 0x3f3c0, 0x3f3e4, 1897 0x3f3f8, 0x3f428, 1898 0x3f430, 0x3f448, 1899 0x3f460, 0x3f468, 1900 0x3f470, 0x3f49c, 1901 0x3f4f0, 0x3f528, 1902 0x3f530, 0x3f548, 1903 0x3f560, 0x3f568, 1904 0x3f570, 0x3f59c, 1905 0x3f5f0, 0x3f638, 1906 0x3f640, 0x3f640, 1907 0x3f648, 0x3f650, 1908 0x3f65c, 0x3f664, 1909 0x3f670, 0x3f6b8, 1910 0x3f6c0, 0x3f6e4, 1911 0x3f6f8, 0x3f738, 1912 0x3f740, 0x3f740, 1913 0x3f748, 0x3f750, 1914 0x3f75c, 0x3f764, 1915 0x3f770, 0x3f7b8, 1916 0x3f7c0, 0x3f7e4, 1917 0x3f7f8, 0x3f7fc, 1918 0x3f814, 0x3f814, 1919 0x3f82c, 0x3f82c, 1920 0x3f880, 0x3f88c, 1921 0x3f8e8, 0x3f8ec, 1922 0x3f900, 0x3f928, 1923 0x3f930, 0x3f948, 1924 0x3f960, 0x3f968, 1925 0x3f970, 0x3f99c, 1926 0x3f9f0, 0x3fa38, 1927 0x3fa40, 0x3fa40, 1928 0x3fa48, 0x3fa50, 1929 0x3fa5c, 0x3fa64, 1930 0x3fa70, 0x3fab8, 1931 0x3fac0, 0x3fae4, 1932 0x3faf8, 0x3fb10, 1933 0x3fb28, 0x3fb28, 1934 0x3fb3c, 0x3fb50, 1935 0x3fbf0, 0x3fc10, 1936 0x3fc28, 0x3fc28, 1937 0x3fc3c, 0x3fc50, 1938 0x3fcf0, 0x3fcfc, 1939 0x40000, 0x4000c, 1940 0x40040, 0x40050, 1941 0x40060, 0x40068, 1942 0x4007c, 0x4008c, 1943 0x40094, 0x400b0, 1944 0x400c0, 0x40144, 1945 0x40180, 0x4018c, 1946 0x40200, 0x40254, 1947 0x40260, 0x40264, 1948 0x40270, 0x40288, 1949 0x40290, 0x40298, 1950 0x402ac, 0x402c8, 1951 0x402d0, 0x402e0, 1952 0x402f0, 0x402f0, 1953 0x40300, 0x4033c, 1954 0x403f8, 0x403fc, 1955 0x41304, 0x413c4, 1956 0x41400, 0x4140c, 1957 0x41414, 0x4141c, 1958 0x41480, 0x414d0, 1959 0x44000, 0x44054, 1960 0x4405c, 0x44078, 1961 0x440c0, 0x44174, 1962 0x44180, 0x441ac, 1963 0x441b4, 0x441b8, 1964 0x441c0, 0x44254, 1965 0x4425c, 0x44278, 1966 0x442c0, 0x44374, 1967 0x44380, 0x443ac, 1968 0x443b4, 0x443b8, 1969 0x443c0, 0x44454, 1970 0x4445c, 0x44478, 1971 0x444c0, 0x44574, 1972 0x44580, 0x445ac, 1973 0x445b4, 0x445b8, 1974 0x445c0, 0x44654, 1975 0x4465c, 0x44678, 1976 0x446c0, 0x44774, 1977 0x44780, 0x447ac, 1978 0x447b4, 0x447b8, 1979 0x447c0, 0x44854, 1980 0x4485c, 0x44878, 1981 0x448c0, 0x44974, 1982 0x44980, 0x449ac, 1983 0x449b4, 0x449b8, 1984 0x449c0, 0x449fc, 1985 0x45000, 0x45004, 1986 0x45010, 0x45030, 1987 0x45040, 0x45060, 1988 0x45068, 0x45068, 1989 0x45080, 0x45084, 1990 0x450a0, 0x450b0, 1991 0x45200, 0x45204, 1992 0x45210, 0x45230, 1993 0x45240, 0x45260, 1994 0x45268, 0x45268, 1995 0x45280, 0x45284, 1996 0x452a0, 0x452b0, 1997 0x460c0, 0x460e4, 1998 0x47000, 0x4703c, 1999 0x47044, 0x4708c, 2000 0x47200, 0x47250, 2001 0x47400, 0x47408, 2002 0x47414, 0x47420, 2003 0x47600, 0x47618, 2004 0x47800, 0x47814, 2005 0x48000, 0x4800c, 2006 0x48040, 0x48050, 2007 0x48060, 0x48068, 2008 0x4807c, 0x4808c, 2009 0x48094, 0x480b0, 2010 0x480c0, 0x48144, 2011 0x48180, 0x4818c, 2012 0x48200, 0x48254, 2013 0x48260, 0x48264, 2014 0x48270, 0x48288, 2015 0x48290, 0x48298, 2016 0x482ac, 0x482c8, 2017 0x482d0, 0x482e0, 2018 0x482f0, 0x482f0, 2019 0x48300, 0x4833c, 2020 0x483f8, 0x483fc, 2021 0x49304, 0x493c4, 2022 0x49400, 0x4940c, 2023 0x49414, 0x4941c, 2024 0x49480, 0x494d0, 2025 0x4c000, 0x4c054, 2026 0x4c05c, 0x4c078, 2027 0x4c0c0, 0x4c174, 2028 0x4c180, 0x4c1ac, 2029 0x4c1b4, 0x4c1b8, 2030 0x4c1c0, 0x4c254, 2031 0x4c25c, 0x4c278, 2032 0x4c2c0, 0x4c374, 2033 0x4c380, 0x4c3ac, 2034 0x4c3b4, 0x4c3b8, 2035 0x4c3c0, 0x4c454, 2036 0x4c45c, 0x4c478, 2037 0x4c4c0, 0x4c574, 2038 0x4c580, 0x4c5ac, 2039 0x4c5b4, 0x4c5b8, 2040 0x4c5c0, 0x4c654, 2041 0x4c65c, 0x4c678, 2042 0x4c6c0, 0x4c774, 2043 0x4c780, 0x4c7ac, 2044 0x4c7b4, 0x4c7b8, 2045 0x4c7c0, 0x4c854, 2046 0x4c85c, 0x4c878, 2047 0x4c8c0, 0x4c974, 2048 0x4c980, 0x4c9ac, 2049 0x4c9b4, 0x4c9b8, 2050 0x4c9c0, 0x4c9fc, 2051 0x4d000, 0x4d004, 2052 0x4d010, 0x4d030, 2053 0x4d040, 0x4d060, 2054 0x4d068, 0x4d068, 2055 0x4d080, 0x4d084, 2056 0x4d0a0, 0x4d0b0, 2057 0x4d200, 0x4d204, 2058 0x4d210, 0x4d230, 2059 0x4d240, 0x4d260, 2060 0x4d268, 0x4d268, 2061 0x4d280, 0x4d284, 2062 0x4d2a0, 0x4d2b0, 2063 0x4e0c0, 0x4e0e4, 2064 0x4f000, 0x4f03c, 2065 0x4f044, 0x4f08c, 2066 0x4f200, 0x4f250, 2067 0x4f400, 0x4f408, 2068 0x4f414, 0x4f420, 2069 0x4f600, 0x4f618, 2070 0x4f800, 0x4f814, 2071 0x50000, 0x50084, 2072 0x50090, 0x500cc, 2073 0x50400, 0x50400, 2074 0x50800, 0x50884, 2075 0x50890, 0x508cc, 2076 0x50c00, 0x50c00, 2077 0x51000, 0x5101c, 2078 0x51300, 0x51308, 2079 }; 2080 2081 static const unsigned int t6_reg_ranges[] = { 2082 0x1008, 0x101c, 2083 0x1024, 0x10a8, 2084 0x10b4, 0x10f8, 2085 0x1100, 0x1114, 2086 0x111c, 0x112c, 2087 0x1138, 0x113c, 2088 0x1144, 0x114c, 2089 0x1180, 0x1184, 2090 0x1190, 0x1194, 2091 0x11a0, 0x11a4, 2092 0x11b0, 0x11b4, 2093 0x11fc, 0x123c, 2094 0x1254, 0x1274, 2095 0x1280, 0x133c, 2096 0x1800, 0x18fc, 2097 0x3000, 0x302c, 2098 0x3060, 0x30b0, 2099 0x30b8, 0x30d8, 2100 0x30e0, 0x30fc, 2101 0x3140, 0x357c, 2102 0x35a8, 0x35cc, 2103 0x35ec, 0x35ec, 2104 0x3600, 0x5624, 2105 0x56cc, 0x56ec, 2106 0x56f4, 0x5720, 2107 0x5728, 0x575c, 2108 0x580c, 0x5814, 2109 0x5890, 0x589c, 2110 0x58a4, 0x58ac, 2111 0x58b8, 0x58bc, 2112 0x5940, 0x595c, 2113 0x5980, 0x598c, 2114 0x59b0, 0x59c8, 2115 0x59d0, 0x59dc, 2116 0x59fc, 0x5a18, 2117 0x5a60, 0x5a6c, 2118 0x5a80, 0x5a8c, 2119 0x5a94, 0x5a9c, 2120 0x5b94, 0x5bfc, 2121 0x5c10, 0x5e48, 2122 0x5e50, 0x5e94, 2123 0x5ea0, 0x5eb0, 2124 0x5ec0, 0x5ec0, 2125 0x5ec8, 0x5ed0, 2126 0x5ee0, 0x5ee0, 2127 0x5ef0, 0x5ef0, 2128 0x5f00, 0x5f00, 2129 0x6000, 0x6020, 2130 0x6028, 0x6040, 2131 0x6058, 0x609c, 2132 0x60a8, 0x619c, 2133 0x7700, 0x7798, 2134 0x77c0, 0x7880, 2135 0x78cc, 0x78fc, 2136 0x7b00, 0x7b58, 2137 0x7b60, 0x7b84, 2138 0x7b8c, 0x7c54, 2139 0x7d00, 0x7d38, 2140 0x7d40, 0x7d84, 2141 0x7d8c, 0x7ddc, 2142 0x7de4, 0x7e04, 2143 0x7e10, 0x7e1c, 2144 0x7e24, 0x7e38, 2145 0x7e40, 0x7e44, 2146 0x7e4c, 0x7e78, 2147 0x7e80, 0x7edc, 2148 0x7ee8, 0x7efc, 2149 0x8dc0, 0x8de4, 2150 0x8df8, 0x8e04, 2151 0x8e10, 0x8e84, 2152 0x8ea0, 0x8f88, 2153 0x8fb8, 0x9058, 2154 0x9060, 0x9060, 2155 0x9068, 0x90f8, 2156 0x9100, 0x9124, 2157 0x9400, 0x9470, 2158 0x9600, 0x9600, 2159 0x9608, 0x9638, 2160 0x9640, 0x9704, 2161 0x9710, 0x971c, 2162 0x9800, 0x9808, 2163 0x9810, 0x9864, 2164 0x9c00, 0x9c6c, 2165 0x9c80, 0x9cec, 2166 0x9d00, 0x9d6c, 2167 0x9d80, 0x9dec, 2168 0x9e00, 0x9e6c, 2169 0x9e80, 0x9eec, 2170 0x9f00, 0x9f6c, 2171 0x9f80, 0xa020, 2172 0xd000, 0xd03c, 2173 0xd100, 0xd118, 2174 0xd200, 0xd214, 2175 0xd220, 0xd234, 2176 0xd240, 0xd254, 2177 0xd260, 0xd274, 2178 0xd280, 0xd294, 2179 0xd2a0, 0xd2b4, 2180 0xd2c0, 0xd2d4, 2181 0xd2e0, 0xd2f4, 2182 0xd300, 0xd31c, 2183 0xdfc0, 0xdfe0, 2184 0xe000, 0xf008, 2185 0xf010, 0xf018, 2186 0xf020, 0xf028, 2187 0x11000, 0x11014, 2188 0x11048, 0x1106c, 2189 0x11074, 0x11088, 2190 0x11098, 0x11120, 2191 0x1112c, 0x1117c, 2192 0x11190, 0x112e0, 2193 0x11300, 0x1130c, 2194 0x12000, 0x1206c, 2195 0x19040, 0x1906c, 2196 0x19078, 0x19080, 2197 0x1908c, 0x190e8, 2198 0x190f0, 0x190f8, 2199 0x19100, 0x19110, 2200 0x19120, 0x19124, 2201 0x19150, 0x19194, 2202 0x1919c, 0x191b0, 2203 0x191d0, 0x191e8, 2204 0x19238, 0x19290, 2205 0x192a4, 0x192b0, 2206 0x192bc, 0x192bc, 2207 0x19348, 0x1934c, 2208 0x193f8, 0x19418, 2209 0x19420, 0x19428, 2210 0x19430, 0x19444, 2211 0x1944c, 0x1946c, 2212 0x19474, 0x19474, 2213 0x19490, 0x194cc, 2214 0x194f0, 0x194f8, 2215 0x19c00, 0x19c48, 2216 0x19c50, 0x19c80, 2217 0x19c94, 0x19c98, 2218 0x19ca0, 0x19cbc, 2219 0x19ce4, 0x19ce4, 2220 0x19cf0, 0x19cf8, 2221 0x19d00, 0x19d28, 2222 0x19d50, 0x19d78, 2223 0x19d94, 0x19d98, 2224 0x19da0, 0x19dc8, 2225 0x19df0, 0x19e10, 2226 0x19e50, 0x19e6c, 2227 0x19ea0, 0x19ebc, 2228 0x19ec4, 0x19ef4, 2229 0x19f04, 0x19f2c, 2230 0x19f34, 0x19f34, 2231 0x19f40, 0x19f50, 2232 0x19f90, 0x19fac, 2233 0x19fc4, 0x19fc8, 2234 0x19fd0, 0x19fe4, 2235 0x1a000, 0x1a004, 2236 0x1a010, 0x1a06c, 2237 0x1a0b0, 0x1a0e4, 2238 0x1a0ec, 0x1a0f8, 2239 0x1a100, 0x1a108, 2240 0x1a114, 0x1a130, 2241 0x1a138, 0x1a1c4, 2242 0x1a1fc, 0x1a1fc, 2243 0x1e008, 0x1e00c, 2244 0x1e040, 0x1e044, 2245 0x1e04c, 0x1e04c, 2246 0x1e284, 0x1e290, 2247 0x1e2c0, 0x1e2c0, 2248 0x1e2e0, 0x1e2e0, 2249 0x1e300, 0x1e384, 2250 0x1e3c0, 0x1e3c8, 2251 0x1e408, 0x1e40c, 2252 0x1e440, 0x1e444, 2253 0x1e44c, 0x1e44c, 2254 0x1e684, 0x1e690, 2255 0x1e6c0, 0x1e6c0, 2256 0x1e6e0, 0x1e6e0, 2257 0x1e700, 0x1e784, 2258 0x1e7c0, 0x1e7c8, 2259 0x1e808, 0x1e80c, 2260 0x1e840, 0x1e844, 2261 0x1e84c, 0x1e84c, 2262 0x1ea84, 0x1ea90, 2263 0x1eac0, 0x1eac0, 2264 0x1eae0, 0x1eae0, 2265 0x1eb00, 0x1eb84, 2266 0x1ebc0, 0x1ebc8, 2267 0x1ec08, 0x1ec0c, 2268 0x1ec40, 0x1ec44, 2269 0x1ec4c, 0x1ec4c, 2270 0x1ee84, 0x1ee90, 2271 0x1eec0, 0x1eec0, 2272 0x1eee0, 0x1eee0, 2273 0x1ef00, 0x1ef84, 2274 0x1efc0, 0x1efc8, 2275 0x1f008, 0x1f00c, 2276 0x1f040, 0x1f044, 2277 0x1f04c, 0x1f04c, 2278 0x1f284, 0x1f290, 2279 0x1f2c0, 0x1f2c0, 2280 0x1f2e0, 0x1f2e0, 2281 0x1f300, 0x1f384, 2282 0x1f3c0, 0x1f3c8, 2283 0x1f408, 0x1f40c, 2284 0x1f440, 0x1f444, 2285 0x1f44c, 0x1f44c, 2286 0x1f684, 0x1f690, 2287 0x1f6c0, 0x1f6c0, 2288 0x1f6e0, 0x1f6e0, 2289 0x1f700, 0x1f784, 2290 0x1f7c0, 0x1f7c8, 2291 0x1f808, 0x1f80c, 2292 0x1f840, 0x1f844, 2293 0x1f84c, 0x1f84c, 2294 0x1fa84, 0x1fa90, 2295 0x1fac0, 0x1fac0, 2296 0x1fae0, 0x1fae0, 2297 0x1fb00, 0x1fb84, 2298 0x1fbc0, 0x1fbc8, 2299 0x1fc08, 0x1fc0c, 2300 0x1fc40, 0x1fc44, 2301 0x1fc4c, 0x1fc4c, 2302 0x1fe84, 0x1fe90, 2303 0x1fec0, 0x1fec0, 2304 0x1fee0, 0x1fee0, 2305 0x1ff00, 0x1ff84, 2306 0x1ffc0, 0x1ffc8, 2307 0x30000, 0x30030, 2308 0x30100, 0x30168, 2309 0x30190, 0x301a0, 2310 0x301a8, 0x301b8, 2311 0x301c4, 0x301c8, 2312 0x301d0, 0x301d0, 2313 0x30200, 0x30320, 2314 0x30400, 0x304b4, 2315 0x304c0, 0x3052c, 2316 0x30540, 0x3061c, 2317 0x30800, 0x308a0, 2318 0x308c0, 0x30908, 2319 0x30910, 0x309b8, 2320 0x30a00, 0x30a04, 2321 0x30a0c, 0x30a14, 2322 0x30a1c, 0x30a2c, 2323 0x30a44, 0x30a50, 2324 0x30a74, 0x30a74, 2325 0x30a7c, 0x30afc, 2326 0x30b08, 0x30c24, 2327 0x30d00, 0x30d14, 2328 0x30d1c, 0x30d3c, 2329 0x30d44, 0x30d4c, 2330 0x30d54, 0x30d74, 2331 0x30d7c, 0x30d7c, 2332 0x30de0, 0x30de0, 2333 0x30e00, 0x30ed4, 2334 0x30f00, 0x30fa4, 2335 0x30fc0, 0x30fc4, 2336 0x31000, 0x31004, 2337 0x31080, 0x310fc, 2338 0x31208, 0x31220, 2339 0x3123c, 0x31254, 2340 0x31300, 0x31300, 2341 0x31308, 0x3131c, 2342 0x31338, 0x3133c, 2343 0x31380, 0x31380, 2344 0x31388, 0x313a8, 2345 0x313b4, 0x313b4, 2346 0x31400, 0x31420, 2347 0x31438, 0x3143c, 2348 0x31480, 0x31480, 2349 0x314a8, 0x314a8, 2350 0x314b0, 0x314b4, 2351 0x314c8, 0x314d4, 2352 0x31a40, 0x31a4c, 2353 0x31af0, 0x31b20, 2354 0x31b38, 0x31b3c, 2355 0x31b80, 0x31b80, 2356 0x31ba8, 0x31ba8, 2357 0x31bb0, 0x31bb4, 2358 0x31bc8, 0x31bd4, 2359 0x32140, 0x3218c, 2360 0x321f0, 0x321f4, 2361 0x32200, 0x32200, 2362 0x32218, 0x32218, 2363 0x32400, 0x32400, 2364 0x32408, 0x3241c, 2365 0x32618, 0x32620, 2366 0x32664, 0x32664, 2367 0x326a8, 0x326a8, 2368 0x326ec, 0x326ec, 2369 0x32a00, 0x32abc, 2370 0x32b00, 0x32b18, 2371 0x32b20, 0x32b38, 2372 0x32b40, 0x32b58, 2373 0x32b60, 0x32b78, 2374 0x32c00, 0x32c00, 2375 0x32c08, 0x32c3c, 2376 0x33000, 0x3302c, 2377 0x33034, 0x33050, 2378 0x33058, 0x33058, 2379 0x33060, 0x3308c, 2380 0x3309c, 0x330ac, 2381 0x330c0, 0x330c0, 2382 0x330c8, 0x330d0, 2383 0x330d8, 0x330e0, 2384 0x330ec, 0x3312c, 2385 0x33134, 0x33150, 2386 0x33158, 0x33158, 2387 0x33160, 0x3318c, 2388 0x3319c, 0x331ac, 2389 0x331c0, 0x331c0, 2390 0x331c8, 0x331d0, 2391 0x331d8, 0x331e0, 2392 0x331ec, 0x33290, 2393 0x33298, 0x332c4, 2394 0x332e4, 0x33390, 2395 0x33398, 0x333c4, 2396 0x333e4, 0x3342c, 2397 0x33434, 0x33450, 2398 0x33458, 0x33458, 2399 0x33460, 0x3348c, 2400 0x3349c, 0x334ac, 2401 0x334c0, 0x334c0, 2402 0x334c8, 0x334d0, 2403 0x334d8, 0x334e0, 2404 0x334ec, 0x3352c, 2405 0x33534, 0x33550, 2406 0x33558, 0x33558, 2407 0x33560, 0x3358c, 2408 0x3359c, 0x335ac, 2409 0x335c0, 0x335c0, 2410 0x335c8, 0x335d0, 2411 0x335d8, 0x335e0, 2412 0x335ec, 0x33690, 2413 0x33698, 0x336c4, 2414 0x336e4, 0x33790, 2415 0x33798, 0x337c4, 2416 0x337e4, 0x337fc, 2417 0x33814, 0x33814, 2418 0x33854, 0x33868, 2419 0x33880, 0x3388c, 2420 0x338c0, 0x338d0, 2421 0x338e8, 0x338ec, 2422 0x33900, 0x3392c, 2423 0x33934, 0x33950, 2424 0x33958, 0x33958, 2425 0x33960, 0x3398c, 2426 0x3399c, 0x339ac, 2427 0x339c0, 0x339c0, 2428 0x339c8, 0x339d0, 2429 0x339d8, 0x339e0, 2430 0x339ec, 0x33a90, 2431 0x33a98, 0x33ac4, 2432 0x33ae4, 0x33b10, 2433 0x33b24, 0x33b28, 2434 0x33b38, 0x33b50, 2435 0x33bf0, 0x33c10, 2436 0x33c24, 0x33c28, 2437 0x33c38, 0x33c50, 2438 0x33cf0, 0x33cfc, 2439 0x34000, 0x34030, 2440 0x34100, 0x34168, 2441 0x34190, 0x341a0, 2442 0x341a8, 0x341b8, 2443 0x341c4, 0x341c8, 2444 0x341d0, 0x341d0, 2445 0x34200, 0x34320, 2446 0x34400, 0x344b4, 2447 0x344c0, 0x3452c, 2448 0x34540, 0x3461c, 2449 0x34800, 0x348a0, 2450 0x348c0, 0x34908, 2451 0x34910, 0x349b8, 2452 0x34a00, 0x34a04, 2453 0x34a0c, 0x34a14, 2454 0x34a1c, 0x34a2c, 2455 0x34a44, 0x34a50, 2456 0x34a74, 0x34a74, 2457 0x34a7c, 0x34afc, 2458 0x34b08, 0x34c24, 2459 0x34d00, 0x34d14, 2460 0x34d1c, 0x34d3c, 2461 0x34d44, 0x34d4c, 2462 0x34d54, 0x34d74, 2463 0x34d7c, 0x34d7c, 2464 0x34de0, 0x34de0, 2465 0x34e00, 0x34ed4, 2466 0x34f00, 0x34fa4, 2467 0x34fc0, 0x34fc4, 2468 0x35000, 0x35004, 2469 0x35080, 0x350fc, 2470 0x35208, 0x35220, 2471 0x3523c, 0x35254, 2472 0x35300, 0x35300, 2473 0x35308, 0x3531c, 2474 0x35338, 0x3533c, 2475 0x35380, 0x35380, 2476 0x35388, 0x353a8, 2477 0x353b4, 0x353b4, 2478 0x35400, 0x35420, 2479 0x35438, 0x3543c, 2480 0x35480, 0x35480, 2481 0x354a8, 0x354a8, 2482 0x354b0, 0x354b4, 2483 0x354c8, 0x354d4, 2484 0x35a40, 0x35a4c, 2485 0x35af0, 0x35b20, 2486 0x35b38, 0x35b3c, 2487 0x35b80, 0x35b80, 2488 0x35ba8, 0x35ba8, 2489 0x35bb0, 0x35bb4, 2490 0x35bc8, 0x35bd4, 2491 0x36140, 0x3618c, 2492 0x361f0, 0x361f4, 2493 0x36200, 0x36200, 2494 0x36218, 0x36218, 2495 0x36400, 0x36400, 2496 0x36408, 0x3641c, 2497 0x36618, 0x36620, 2498 0x36664, 0x36664, 2499 0x366a8, 0x366a8, 2500 0x366ec, 0x366ec, 2501 0x36a00, 0x36abc, 2502 0x36b00, 0x36b18, 2503 0x36b20, 0x36b38, 2504 0x36b40, 0x36b58, 2505 0x36b60, 0x36b78, 2506 0x36c00, 0x36c00, 2507 0x36c08, 0x36c3c, 2508 0x37000, 0x3702c, 2509 0x37034, 0x37050, 2510 0x37058, 0x37058, 2511 0x37060, 0x3708c, 2512 0x3709c, 0x370ac, 2513 0x370c0, 0x370c0, 2514 0x370c8, 0x370d0, 2515 0x370d8, 0x370e0, 2516 0x370ec, 0x3712c, 2517 0x37134, 0x37150, 2518 0x37158, 0x37158, 2519 0x37160, 0x3718c, 2520 0x3719c, 0x371ac, 2521 0x371c0, 0x371c0, 2522 0x371c8, 0x371d0, 2523 0x371d8, 0x371e0, 2524 0x371ec, 0x37290, 2525 0x37298, 0x372c4, 2526 0x372e4, 0x37390, 2527 0x37398, 0x373c4, 2528 0x373e4, 0x3742c, 2529 0x37434, 0x37450, 2530 0x37458, 0x37458, 2531 0x37460, 0x3748c, 2532 0x3749c, 0x374ac, 2533 0x374c0, 0x374c0, 2534 0x374c8, 0x374d0, 2535 0x374d8, 0x374e0, 2536 0x374ec, 0x3752c, 2537 0x37534, 0x37550, 2538 0x37558, 0x37558, 2539 0x37560, 0x3758c, 2540 0x3759c, 0x375ac, 2541 0x375c0, 0x375c0, 2542 0x375c8, 0x375d0, 2543 0x375d8, 0x375e0, 2544 0x375ec, 0x37690, 2545 0x37698, 0x376c4, 2546 0x376e4, 0x37790, 2547 0x37798, 0x377c4, 2548 0x377e4, 0x377fc, 2549 0x37814, 0x37814, 2550 0x37854, 0x37868, 2551 0x37880, 0x3788c, 2552 0x378c0, 0x378d0, 2553 0x378e8, 0x378ec, 2554 0x37900, 0x3792c, 2555 0x37934, 0x37950, 2556 0x37958, 0x37958, 2557 0x37960, 0x3798c, 2558 0x3799c, 0x379ac, 2559 0x379c0, 0x379c0, 2560 0x379c8, 0x379d0, 2561 0x379d8, 0x379e0, 2562 0x379ec, 0x37a90, 2563 0x37a98, 0x37ac4, 2564 0x37ae4, 0x37b10, 2565 0x37b24, 0x37b28, 2566 0x37b38, 0x37b50, 2567 0x37bf0, 0x37c10, 2568 0x37c24, 0x37c28, 2569 0x37c38, 0x37c50, 2570 0x37cf0, 0x37cfc, 2571 0x40040, 0x40040, 2572 0x40080, 0x40084, 2573 0x40100, 0x40100, 2574 0x40140, 0x401bc, 2575 0x40200, 0x40214, 2576 0x40228, 0x40228, 2577 0x40240, 0x40258, 2578 0x40280, 0x40280, 2579 0x40304, 0x40304, 2580 0x40330, 0x4033c, 2581 0x41304, 0x413c8, 2582 0x413d0, 0x413dc, 2583 0x413f0, 0x413f0, 2584 0x41400, 0x4140c, 2585 0x41414, 0x4141c, 2586 0x41480, 0x414d0, 2587 0x44000, 0x4407c, 2588 0x440c0, 0x441ac, 2589 0x441b4, 0x4427c, 2590 0x442c0, 0x443ac, 2591 0x443b4, 0x4447c, 2592 0x444c0, 0x445ac, 2593 0x445b4, 0x4467c, 2594 0x446c0, 0x447ac, 2595 0x447b4, 0x4487c, 2596 0x448c0, 0x449ac, 2597 0x449b4, 0x44a7c, 2598 0x44ac0, 0x44bac, 2599 0x44bb4, 0x44c7c, 2600 0x44cc0, 0x44dac, 2601 0x44db4, 0x44e7c, 2602 0x44ec0, 0x44fac, 2603 0x44fb4, 0x4507c, 2604 0x450c0, 0x451ac, 2605 0x451b4, 0x451fc, 2606 0x45800, 0x45804, 2607 0x45810, 0x45830, 2608 0x45840, 0x45860, 2609 0x45868, 0x45868, 2610 0x45880, 0x45884, 2611 0x458a0, 0x458b0, 2612 0x45a00, 0x45a04, 2613 0x45a10, 0x45a30, 2614 0x45a40, 0x45a60, 2615 0x45a68, 0x45a68, 2616 0x45a80, 0x45a84, 2617 0x45aa0, 0x45ab0, 2618 0x460c0, 0x460e4, 2619 0x47000, 0x4703c, 2620 0x47044, 0x4708c, 2621 0x47200, 0x47250, 2622 0x47400, 0x47408, 2623 0x47414, 0x47420, 2624 0x47600, 0x47618, 2625 0x47800, 0x47814, 2626 0x47820, 0x4782c, 2627 0x50000, 0x50084, 2628 0x50090, 0x500cc, 2629 0x50300, 0x50384, 2630 0x50400, 0x50400, 2631 0x50800, 0x50884, 2632 0x50890, 0x508cc, 2633 0x50b00, 0x50b84, 2634 0x50c00, 0x50c00, 2635 0x51000, 0x51020, 2636 0x51028, 0x510b0, 2637 0x51300, 0x51324, 2638 }; 2639 2640 u32 *buf_end = (u32 *)((char *)buf + buf_size); 2641 const unsigned int *reg_ranges; 2642 int reg_ranges_size, range; 2643 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 2644 2645 /* Select the right set of register ranges to dump depending on the 2646 * adapter chip type. 2647 */ 2648 switch (chip_version) { 2649 case CHELSIO_T4: 2650 reg_ranges = t4_reg_ranges; 2651 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2652 break; 2653 2654 case CHELSIO_T5: 2655 reg_ranges = t5_reg_ranges; 2656 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2657 break; 2658 2659 case CHELSIO_T6: 2660 reg_ranges = t6_reg_ranges; 2661 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2662 break; 2663 2664 default: 2665 dev_err(adap->pdev_dev, 2666 "Unsupported chip version %d\n", chip_version); 2667 return; 2668 } 2669 2670 /* Clear the register buffer and insert the appropriate register 2671 * values selected by the above register ranges. 2672 */ 2673 memset(buf, 0, buf_size); 2674 for (range = 0; range < reg_ranges_size; range += 2) { 2675 unsigned int reg = reg_ranges[range]; 2676 unsigned int last_reg = reg_ranges[range + 1]; 2677 u32 *bufp = (u32 *)((char *)buf + reg); 2678 2679 /* Iterate across the register range filling in the register 2680 * buffer but don't write past the end of the register buffer. 2681 */ 2682 while (reg <= last_reg && bufp < buf_end) { 2683 *bufp++ = t4_read_reg(adap, reg); 2684 reg += sizeof(u32); 2685 } 2686 } 2687} 2688 2689#define EEPROM_STAT_ADDR 0x7bfc 2690#define VPD_BASE 0x400 2691#define VPD_BASE_OLD 0 2692#define VPD_LEN 1024 2693 2694/** 2695 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2696 * @phys_addr: the physical EEPROM address 2697 * @fn: the PCI function number 2698 * @sz: size of function-specific area 2699 * 2700 * Translate a physical EEPROM address to virtual. The first 1K is 2701 * accessed through virtual addresses starting at 31K, the rest is 2702 * accessed through virtual addresses starting at 0. 2703 * 2704 * The mapping is as follows: 2705 * [0..1K) -> [31K..32K) 2706 * [1K..1K+A) -> [31K-A..31K) 2707 * [1K+A..ES) -> [0..ES-A-1K) 2708 * 2709 * where A = @fn * @sz, and ES = EEPROM size. 2710 */ 2711int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2712{ 2713 fn *= sz; 2714 if (phys_addr < 1024) 2715 return phys_addr + (31 << 10); 2716 if (phys_addr < 1024 + fn) 2717 return 31744 - fn + phys_addr - 1024; 2718 if (phys_addr < EEPROMSIZE) 2719 return phys_addr - 1024 - fn; 2720 return -EINVAL; 2721} 2722 2723/** 2724 * t4_seeprom_wp - enable/disable EEPROM write protection 2725 * @adapter: the adapter 2726 * @enable: whether to enable or disable write protection 2727 * 2728 * Enables or disables write protection on the serial EEPROM. 2729 */ 2730int t4_seeprom_wp(struct adapter *adapter, bool enable) 2731{ 2732 unsigned int v = enable ? 0xc : 0; 2733 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); 2734 return ret < 0 ? ret : 0; 2735} 2736 2737/** 2738 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM 2739 * @adapter: adapter to read 2740 * @p: where to store the parameters 2741 * 2742 * Reads card parameters stored in VPD EEPROM. 2743 */ 2744int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p) 2745{ 2746 unsigned int id_len, pn_len, sn_len, na_len; 2747 int id, sn, pn, na, addr, ret = 0; 2748 u8 *vpd, base_val = 0; 2749 2750 vpd = vmalloc(VPD_LEN); 2751 if (!vpd) 2752 return -ENOMEM; 2753 2754 /* Card information normally starts at VPD_BASE but early cards had 2755 * it at 0. 2756 */ 2757 ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val); 2758 if (ret < 0) 2759 goto out; 2760 2761 addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD; 2762 2763 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); 2764 if (ret < 0) 2765 goto out; 2766 2767 ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len); 2768 if (ret < 0) 2769 goto out; 2770 id = ret; 2771 2772 ret = pci_vpd_check_csum(vpd, VPD_LEN); 2773 if (ret) { 2774 dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n"); 2775 ret = -EINVAL; 2776 goto out; 2777 } 2778 2779 ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, 2780 PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len); 2781 if (ret < 0) 2782 goto out; 2783 sn = ret; 2784 2785 ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, 2786 PCI_VPD_RO_KEYWORD_PARTNO, &pn_len); 2787 if (ret < 0) 2788 goto out; 2789 pn = ret; 2790 2791 ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len); 2792 if (ret < 0) 2793 goto out; 2794 na = ret; 2795 2796 memcpy(p->id, vpd + id, min_t(unsigned int, id_len, ID_LEN)); 2797 strim(p->id); 2798 memcpy(p->sn, vpd + sn, min_t(unsigned int, sn_len, SERNUM_LEN)); 2799 strim(p->sn); 2800 memcpy(p->pn, vpd + pn, min_t(unsigned int, pn_len, PN_LEN)); 2801 strim(p->pn); 2802 memcpy(p->na, vpd + na, min_t(unsigned int, na_len, MACADDR_LEN)); 2803 strim(p->na); 2804 2805out: 2806 vfree(vpd); 2807 if (ret < 0) { 2808 dev_err(adapter->pdev_dev, "error reading VPD\n"); 2809 return ret; 2810 } 2811 2812 return 0; 2813} 2814 2815/** 2816 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock 2817 * @adapter: adapter to read 2818 * @p: where to store the parameters 2819 * 2820 * Reads card parameters stored in VPD EEPROM and retrieves the Core 2821 * Clock. This can only be called after a connection to the firmware 2822 * is established. 2823 */ 2824int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p) 2825{ 2826 u32 cclk_param, cclk_val; 2827 int ret; 2828 2829 /* Grab the raw VPD parameters. 2830 */ 2831 ret = t4_get_raw_vpd_params(adapter, p); 2832 if (ret) 2833 return ret; 2834 2835 /* Ask firmware for the Core Clock since it knows how to translate the 2836 * Reference Clock ('V2') VPD field into a Core Clock value ... 2837 */ 2838 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 2839 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); 2840 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 2841 1, &cclk_param, &cclk_val); 2842 2843 if (ret) 2844 return ret; 2845 p->cclk = cclk_val; 2846 2847 return 0; 2848} 2849 2850/** 2851 * t4_get_pfres - retrieve VF resource limits 2852 * @adapter: the adapter 2853 * 2854 * Retrieves configured resource limits and capabilities for a physical 2855 * function. The results are stored in @adapter->pfres. 2856 */ 2857int t4_get_pfres(struct adapter *adapter) 2858{ 2859 struct pf_resources *pfres = &adapter->params.pfres; 2860 struct fw_pfvf_cmd cmd, rpl; 2861 int v; 2862 u32 word; 2863 2864 /* Execute PFVF Read command to get VF resource limits; bail out early 2865 * with error on command failure. 2866 */ 2867 memset(&cmd, 0, sizeof(cmd)); 2868 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | 2869 FW_CMD_REQUEST_F | 2870 FW_CMD_READ_F | 2871 FW_PFVF_CMD_PFN_V(adapter->pf) | 2872 FW_PFVF_CMD_VFN_V(0)); 2873 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 2874 v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl); 2875 if (v != FW_SUCCESS) 2876 return v; 2877 2878 /* Extract PF resource limits and return success. 2879 */ 2880 word = be32_to_cpu(rpl.niqflint_niq); 2881 pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); 2882 pfres->niq = FW_PFVF_CMD_NIQ_G(word); 2883 2884 word = be32_to_cpu(rpl.type_to_neq); 2885 pfres->neq = FW_PFVF_CMD_NEQ_G(word); 2886 pfres->pmask = FW_PFVF_CMD_PMASK_G(word); 2887 2888 word = be32_to_cpu(rpl.tc_to_nexactf); 2889 pfres->tc = FW_PFVF_CMD_TC_G(word); 2890 pfres->nvi = FW_PFVF_CMD_NVI_G(word); 2891 pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); 2892 2893 word = be32_to_cpu(rpl.r_caps_to_nethctrl); 2894 pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); 2895 pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); 2896 pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); 2897 2898 return 0; 2899} 2900 2901/* serial flash and firmware constants */ 2902enum { 2903 SF_ATTEMPTS = 10, /* max retries for SF operations */ 2904 2905 /* flash command opcodes */ 2906 SF_PROG_PAGE = 2, /* program page */ 2907 SF_WR_DISABLE = 4, /* disable writes */ 2908 SF_RD_STATUS = 5, /* read status register */ 2909 SF_WR_ENABLE = 6, /* enable writes */ 2910 SF_RD_DATA_FAST = 0xb, /* read flash */ 2911 SF_RD_ID = 0x9f, /* read ID */ 2912 SF_ERASE_SECTOR = 0xd8, /* erase sector */ 2913}; 2914 2915/** 2916 * sf1_read - read data from the serial flash 2917 * @adapter: the adapter 2918 * @byte_cnt: number of bytes to read 2919 * @cont: whether another operation will be chained 2920 * @lock: whether to lock SF for PL access only 2921 * @valp: where to store the read data 2922 * 2923 * Reads up to 4 bytes of data from the serial flash. The location of 2924 * the read needs to be specified prior to calling this by issuing the 2925 * appropriate commands to the serial flash. 2926 */ 2927static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 2928 int lock, u32 *valp) 2929{ 2930 int ret; 2931 2932 if (!byte_cnt || byte_cnt > 4) 2933 return -EINVAL; 2934 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2935 return -EBUSY; 2936 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2937 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1)); 2938 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2939 if (!ret) 2940 *valp = t4_read_reg(adapter, SF_DATA_A); 2941 return ret; 2942} 2943 2944/** 2945 * sf1_write - write data to the serial flash 2946 * @adapter: the adapter 2947 * @byte_cnt: number of bytes to write 2948 * @cont: whether another operation will be chained 2949 * @lock: whether to lock SF for PL access only 2950 * @val: value to write 2951 * 2952 * Writes up to 4 bytes of data to the serial flash. The location of 2953 * the write needs to be specified prior to calling this by issuing the 2954 * appropriate commands to the serial flash. 2955 */ 2956static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 2957 int lock, u32 val) 2958{ 2959 if (!byte_cnt || byte_cnt > 4) 2960 return -EINVAL; 2961 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F) 2962 return -EBUSY; 2963 t4_write_reg(adapter, SF_DATA_A, val); 2964 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) | 2965 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1)); 2966 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5); 2967} 2968 2969/** 2970 * flash_wait_op - wait for a flash operation to complete 2971 * @adapter: the adapter 2972 * @attempts: max number of polls of the status register 2973 * @delay: delay between polls in ms 2974 * 2975 * Wait for a flash operation to complete by polling the status register. 2976 */ 2977static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 2978{ 2979 int ret; 2980 u32 status; 2981 2982 while (1) { 2983 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 2984 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 2985 return ret; 2986 if (!(status & 1)) 2987 return 0; 2988 if (--attempts == 0) 2989 return -EAGAIN; 2990 if (delay) 2991 msleep(delay); 2992 } 2993} 2994 2995/** 2996 * t4_read_flash - read words from serial flash 2997 * @adapter: the adapter 2998 * @addr: the start address for the read 2999 * @nwords: how many 32-bit words to read 3000 * @data: where to store the read data 3001 * @byte_oriented: whether to store data as bytes or as words 3002 * 3003 * Read the specified number of 32-bit words from the serial flash. 3004 * If @byte_oriented is set the read data is stored as a byte array 3005 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3006 * natural endianness. 3007 */ 3008int t4_read_flash(struct adapter *adapter, unsigned int addr, 3009 unsigned int nwords, u32 *data, int byte_oriented) 3010{ 3011 int ret; 3012 3013 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3014 return -EINVAL; 3015 3016 addr = swab32(addr) | SF_RD_DATA_FAST; 3017 3018 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3019 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3020 return ret; 3021 3022 for ( ; nwords; nwords--, data++) { 3023 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3024 if (nwords == 1) 3025 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3026 if (ret) 3027 return ret; 3028 if (byte_oriented) 3029 *data = (__force __u32)(cpu_to_be32(*data)); 3030 } 3031 return 0; 3032} 3033 3034/** 3035 * t4_write_flash - write up to a page of data to the serial flash 3036 * @adapter: the adapter 3037 * @addr: the start address to write 3038 * @n: length of data to write in bytes 3039 * @data: the data to write 3040 * @byte_oriented: whether to store data as bytes or as words 3041 * 3042 * Writes up to a page of data (256 bytes) to the serial flash starting 3043 * at the given address. All the data must be written to the same page. 3044 * If @byte_oriented is set the write data is stored as byte stream 3045 * (i.e. matches what on disk), otherwise in big-endian. 3046 */ 3047static int t4_write_flash(struct adapter *adapter, unsigned int addr, 3048 unsigned int n, const u8 *data, bool byte_oriented) 3049{ 3050 unsigned int i, c, left, val, offset = addr & 0xff; 3051 u32 buf[64]; 3052 int ret; 3053 3054 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3055 return -EINVAL; 3056 3057 val = swab32(addr) | SF_PROG_PAGE; 3058 3059 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3060 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3061 goto unlock; 3062 3063 for (left = n; left; left -= c, data += c) { 3064 c = min(left, 4U); 3065 for (val = 0, i = 0; i < c; ++i) { 3066 if (byte_oriented) 3067 val = (val << 8) + data[i]; 3068 else 3069 val = (val << 8) + data[c - i - 1]; 3070 } 3071 3072 ret = sf1_write(adapter, c, c != left, 1, val); 3073 if (ret) 3074 goto unlock; 3075 } 3076 ret = flash_wait_op(adapter, 8, 1); 3077 if (ret) 3078 goto unlock; 3079 3080 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3081 3082 /* Read the page to verify the write succeeded */ 3083 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3084 byte_oriented); 3085 if (ret) 3086 return ret; 3087 3088 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3089 dev_err(adapter->pdev_dev, 3090 "failed to correctly write the flash page at %#x\n", 3091 addr); 3092 return -EIO; 3093 } 3094 return 0; 3095 3096unlock: 3097 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3098 return ret; 3099} 3100 3101/** 3102 * t4_get_fw_version - read the firmware version 3103 * @adapter: the adapter 3104 * @vers: where to place the version 3105 * 3106 * Reads the FW version from flash. 3107 */ 3108int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3109{ 3110 return t4_read_flash(adapter, FLASH_FW_START + 3111 offsetof(struct fw_hdr, fw_ver), 1, 3112 vers, 0); 3113} 3114 3115/** 3116 * t4_get_bs_version - read the firmware bootstrap version 3117 * @adapter: the adapter 3118 * @vers: where to place the version 3119 * 3120 * Reads the FW Bootstrap version from flash. 3121 */ 3122int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3123{ 3124 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3125 offsetof(struct fw_hdr, fw_ver), 1, 3126 vers, 0); 3127} 3128 3129/** 3130 * t4_get_tp_version - read the TP microcode version 3131 * @adapter: the adapter 3132 * @vers: where to place the version 3133 * 3134 * Reads the TP microcode version from flash. 3135 */ 3136int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3137{ 3138 return t4_read_flash(adapter, FLASH_FW_START + 3139 offsetof(struct fw_hdr, tp_microcode_ver), 3140 1, vers, 0); 3141} 3142 3143/** 3144 * t4_get_exprom_version - return the Expansion ROM version (if any) 3145 * @adap: the adapter 3146 * @vers: where to place the version 3147 * 3148 * Reads the Expansion ROM header from FLASH and returns the version 3149 * number (if present) through the @vers return value pointer. We return 3150 * this in the Firmware Version Format since it's convenient. Return 3151 * 0 on success, -ENOENT if no Expansion ROM is present. 3152 */ 3153int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3154{ 3155 struct exprom_header { 3156 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3157 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3158 } *hdr; 3159 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3160 sizeof(u32))]; 3161 int ret; 3162 3163 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3164 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3165 0); 3166 if (ret) 3167 return ret; 3168 3169 hdr = (struct exprom_header *)exprom_header_buf; 3170 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3171 return -ENOENT; 3172 3173 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) | 3174 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) | 3175 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) | 3176 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3])); 3177 return 0; 3178} 3179 3180/** 3181 * t4_get_vpd_version - return the VPD version 3182 * @adapter: the adapter 3183 * @vers: where to place the version 3184 * 3185 * Reads the VPD via the Firmware interface (thus this can only be called 3186 * once we're ready to issue Firmware commands). The format of the 3187 * VPD version is adapter specific. Returns 0 on success, an error on 3188 * failure. 3189 * 3190 * Note that early versions of the Firmware didn't include the ability 3191 * to retrieve the VPD version, so we zero-out the return-value parameter 3192 * in that case to avoid leaving it with garbage in it. 3193 * 3194 * Also note that the Firmware will return its cached copy of the VPD 3195 * Revision ID, not the actual Revision ID as written in the Serial 3196 * EEPROM. This is only an issue if a new VPD has been written and the 3197 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3198 * to defer calling this routine till after a FW_RESET_CMD has been issued 3199 * if the Host Driver will be performing a full adapter initialization. 3200 */ 3201int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3202{ 3203 u32 vpdrev_param; 3204 int ret; 3205 3206 vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3207 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV)); 3208 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3209 1, &vpdrev_param, vers); 3210 if (ret) 3211 *vers = 0; 3212 return ret; 3213} 3214 3215/** 3216 * t4_get_scfg_version - return the Serial Configuration version 3217 * @adapter: the adapter 3218 * @vers: where to place the version 3219 * 3220 * Reads the Serial Configuration Version via the Firmware interface 3221 * (thus this can only be called once we're ready to issue Firmware 3222 * commands). The format of the Serial Configuration version is 3223 * adapter specific. Returns 0 on success, an error on failure. 3224 * 3225 * Note that early versions of the Firmware didn't include the ability 3226 * to retrieve the Serial Configuration version, so we zero-out the 3227 * return-value parameter in that case to avoid leaving it with 3228 * garbage in it. 3229 * 3230 * Also note that the Firmware will return its cached copy of the Serial 3231 * Initialization Revision ID, not the actual Revision ID as written in 3232 * the Serial EEPROM. This is only an issue if a new VPD has been written 3233 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3234 * it's best to defer calling this routine till after a FW_RESET_CMD has 3235 * been issued if the Host Driver will be performing a full adapter 3236 * initialization. 3237 */ 3238int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3239{ 3240 u32 scfgrev_param; 3241 int ret; 3242 3243 scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3244 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV)); 3245 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3246 1, &scfgrev_param, vers); 3247 if (ret) 3248 *vers = 0; 3249 return ret; 3250} 3251 3252/** 3253 * t4_get_version_info - extract various chip/firmware version information 3254 * @adapter: the adapter 3255 * 3256 * Reads various chip/firmware version numbers and stores them into the 3257 * adapter Adapter Parameters structure. If any of the efforts fails 3258 * the first failure will be returned, but all of the version numbers 3259 * will be read. 3260 */ 3261int t4_get_version_info(struct adapter *adapter) 3262{ 3263 int ret = 0; 3264 3265 #define FIRST_RET(__getvinfo) \ 3266 do { \ 3267 int __ret = __getvinfo; \ 3268 if (__ret && !ret) \ 3269 ret = __ret; \ 3270 } while (0) 3271 3272 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3273 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3274 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3275 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3276 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3277 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3278 3279 #undef FIRST_RET 3280 return ret; 3281} 3282 3283/** 3284 * t4_dump_version_info - dump all of the adapter configuration IDs 3285 * @adapter: the adapter 3286 * 3287 * Dumps all of the various bits of adapter configuration version/revision 3288 * IDs information. This is typically called at some point after 3289 * t4_get_version_info() has been called. 3290 */ 3291void t4_dump_version_info(struct adapter *adapter) 3292{ 3293 /* Device information */ 3294 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n", 3295 adapter->params.vpd.id, 3296 CHELSIO_CHIP_RELEASE(adapter->params.chip)); 3297 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n", 3298 adapter->params.vpd.sn, adapter->params.vpd.pn); 3299 3300 /* Firmware Version */ 3301 if (!adapter->params.fw_vers) 3302 dev_warn(adapter->pdev_dev, "No firmware loaded\n"); 3303 else 3304 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n", 3305 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers), 3306 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers), 3307 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers), 3308 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers)); 3309 3310 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap 3311 * Firmware, so dev_info() is more appropriate here.) 3312 */ 3313 if (!adapter->params.bs_vers) 3314 dev_info(adapter->pdev_dev, "No bootstrap loaded\n"); 3315 else 3316 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n", 3317 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers), 3318 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers), 3319 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers), 3320 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers)); 3321 3322 /* TP Microcode Version */ 3323 if (!adapter->params.tp_vers) 3324 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n"); 3325 else 3326 dev_info(adapter->pdev_dev, 3327 "TP Microcode version: %u.%u.%u.%u\n", 3328 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers), 3329 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers), 3330 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers), 3331 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers)); 3332 3333 /* Expansion ROM version */ 3334 if (!adapter->params.er_vers) 3335 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n"); 3336 else 3337 dev_info(adapter->pdev_dev, 3338 "Expansion ROM version: %u.%u.%u.%u\n", 3339 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers), 3340 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers), 3341 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers), 3342 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers)); 3343 3344 /* Serial Configuration version */ 3345 dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n", 3346 adapter->params.scfg_vers); 3347 3348 /* VPD Version */ 3349 dev_info(adapter->pdev_dev, "VPD version: %#x\n", 3350 adapter->params.vpd_vers); 3351} 3352 3353/** 3354 * t4_check_fw_version - check if the FW is supported with this driver 3355 * @adap: the adapter 3356 * 3357 * Checks if an adapter's FW is compatible with the driver. Returns 0 3358 * if there's exact match, a negative error if the version could not be 3359 * read or there's a major version mismatch 3360 */ 3361int t4_check_fw_version(struct adapter *adap) 3362{ 3363 int i, ret, major, minor, micro; 3364 int exp_major, exp_minor, exp_micro; 3365 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 3366 3367 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3368 /* Try multiple times before returning error */ 3369 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++) 3370 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3371 3372 if (ret) 3373 return ret; 3374 3375 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers); 3376 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers); 3377 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers); 3378 3379 switch (chip_version) { 3380 case CHELSIO_T4: 3381 exp_major = T4FW_MIN_VERSION_MAJOR; 3382 exp_minor = T4FW_MIN_VERSION_MINOR; 3383 exp_micro = T4FW_MIN_VERSION_MICRO; 3384 break; 3385 case CHELSIO_T5: 3386 exp_major = T5FW_MIN_VERSION_MAJOR; 3387 exp_minor = T5FW_MIN_VERSION_MINOR; 3388 exp_micro = T5FW_MIN_VERSION_MICRO; 3389 break; 3390 case CHELSIO_T6: 3391 exp_major = T6FW_MIN_VERSION_MAJOR; 3392 exp_minor = T6FW_MIN_VERSION_MINOR; 3393 exp_micro = T6FW_MIN_VERSION_MICRO; 3394 break; 3395 default: 3396 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n", 3397 adap->chip); 3398 return -EINVAL; 3399 } 3400 3401 if (major < exp_major || (major == exp_major && minor < exp_minor) || 3402 (major == exp_major && minor == exp_minor && micro < exp_micro)) { 3403 dev_err(adap->pdev_dev, 3404 "Card has firmware version %u.%u.%u, minimum " 3405 "supported firmware is %u.%u.%u.\n", major, minor, 3406 micro, exp_major, exp_minor, exp_micro); 3407 return -EFAULT; 3408 } 3409 return 0; 3410} 3411 3412/* Is the given firmware API compatible with the one the driver was compiled 3413 * with? 3414 */ 3415static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) 3416{ 3417 3418 /* short circuit if it's the exact same firmware version */ 3419 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3420 return 1; 3421 3422#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3423 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3424 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) 3425 return 1; 3426#undef SAME_INTF 3427 3428 return 0; 3429} 3430 3431/* The firmware in the filesystem is usable, but should it be installed? 3432 * This routine explains itself in detail if it indicates the filesystem 3433 * firmware should be installed. 3434 */ 3435static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, 3436 int k, int c) 3437{ 3438 const char *reason; 3439 3440 if (!card_fw_usable) { 3441 reason = "incompatible or unusable"; 3442 goto install; 3443 } 3444 3445 if (k > c) { 3446 reason = "older than the version supported with this driver"; 3447 goto install; 3448 } 3449 3450 return 0; 3451 3452install: 3453 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " 3454 "installing firmware %u.%u.%u.%u on card.\n", 3455 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3456 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, 3457 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3458 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3459 3460 return 1; 3461} 3462 3463int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, 3464 const u8 *fw_data, unsigned int fw_size, 3465 struct fw_hdr *card_fw, enum dev_state state, 3466 int *reset) 3467{ 3468 int ret, card_fw_usable, fs_fw_usable; 3469 const struct fw_hdr *fs_fw; 3470 const struct fw_hdr *drv_fw; 3471 3472 drv_fw = &fw_info->fw_hdr; 3473 3474 /* Read the header of the firmware on the card */ 3475 ret = t4_read_flash(adap, FLASH_FW_START, 3476 sizeof(*card_fw) / sizeof(uint32_t), 3477 (uint32_t *)card_fw, 1); 3478 if (ret == 0) { 3479 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); 3480 } else { 3481 dev_err(adap->pdev_dev, 3482 "Unable to read card's firmware header: %d\n", ret); 3483 card_fw_usable = 0; 3484 } 3485 3486 if (fw_data != NULL) { 3487 fs_fw = (const void *)fw_data; 3488 fs_fw_usable = fw_compatible(drv_fw, fs_fw); 3489 } else { 3490 fs_fw = NULL; 3491 fs_fw_usable = 0; 3492 } 3493 3494 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && 3495 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { 3496 /* Common case: the firmware on the card is an exact match and 3497 * the filesystem one is an exact match too, or the filesystem 3498 * one is absent/incompatible. 3499 */ 3500 } else if (fs_fw_usable && state == DEV_STATE_UNINIT && 3501 should_install_fs_fw(adap, card_fw_usable, 3502 be32_to_cpu(fs_fw->fw_ver), 3503 be32_to_cpu(card_fw->fw_ver))) { 3504 ret = t4_fw_upgrade(adap, adap->mbox, fw_data, 3505 fw_size, 0); 3506 if (ret != 0) { 3507 dev_err(adap->pdev_dev, 3508 "failed to install firmware: %d\n", ret); 3509 goto bye; 3510 } 3511 3512 /* Installed successfully, update the cached header too. */ 3513 *card_fw = *fs_fw; 3514 card_fw_usable = 1; 3515 *reset = 0; /* already reset as part of load_fw */ 3516 } 3517 3518 if (!card_fw_usable) { 3519 uint32_t d, c, k; 3520 3521 d = be32_to_cpu(drv_fw->fw_ver); 3522 c = be32_to_cpu(card_fw->fw_ver); 3523 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; 3524 3525 dev_err(adap->pdev_dev, "Cannot find a usable firmware: " 3526 "chip state %d, " 3527 "driver compiled with %d.%d.%d.%d, " 3528 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", 3529 state, 3530 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), 3531 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), 3532 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), 3533 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), 3534 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), 3535 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); 3536 ret = -EINVAL; 3537 goto bye; 3538 } 3539 3540 /* We're using whatever's on the card and it's known to be good. */ 3541 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); 3542 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); 3543 3544bye: 3545 return ret; 3546} 3547 3548/** 3549 * t4_flash_erase_sectors - erase a range of flash sectors 3550 * @adapter: the adapter 3551 * @start: the first sector to erase 3552 * @end: the last sector to erase 3553 * 3554 * Erases the sectors in the given inclusive range. 3555 */ 3556static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3557{ 3558 int ret = 0; 3559 3560 if (end >= adapter->params.sf_nsec) 3561 return -EINVAL; 3562 3563 while (start <= end) { 3564 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3565 (ret = sf1_write(adapter, 4, 0, 1, 3566 SF_ERASE_SECTOR | (start << 8))) != 0 || 3567 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3568 dev_err(adapter->pdev_dev, 3569 "erase of flash sector %d failed, error %d\n", 3570 start, ret); 3571 break; 3572 } 3573 start++; 3574 } 3575 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */ 3576 return ret; 3577} 3578 3579/** 3580 * t4_flash_cfg_addr - return the address of the flash configuration file 3581 * @adapter: the adapter 3582 * 3583 * Return the address within the flash where the Firmware Configuration 3584 * File is stored. 3585 */ 3586unsigned int t4_flash_cfg_addr(struct adapter *adapter) 3587{ 3588 if (adapter->params.sf_size == 0x100000) 3589 return FLASH_FPGA_CFG_START; 3590 else 3591 return FLASH_CFG_START; 3592} 3593 3594/* Return TRUE if the specified firmware matches the adapter. I.e. T4 3595 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3596 * and emit an error message for mismatched firmware to save our caller the 3597 * effort ... 3598 */ 3599static bool t4_fw_matches_chip(const struct adapter *adap, 3600 const struct fw_hdr *hdr) 3601{ 3602 /* The expression below will return FALSE for any unsupported adapter 3603 * which will keep us "honest" in the future ... 3604 */ 3605 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) || 3606 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) || 3607 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6)) 3608 return true; 3609 3610 dev_err(adap->pdev_dev, 3611 "FW image (%d) is not suitable for this adapter (%d)\n", 3612 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip)); 3613 return false; 3614} 3615 3616/** 3617 * t4_load_fw - download firmware 3618 * @adap: the adapter 3619 * @fw_data: the firmware image to write 3620 * @size: image size 3621 * 3622 * Write the supplied firmware image to the card's serial flash. 3623 */ 3624int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3625{ 3626 u32 csum; 3627 int ret, addr; 3628 unsigned int i; 3629 u8 first_page[SF_PAGE_SIZE]; 3630 const __be32 *p = (const __be32 *)fw_data; 3631 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3632 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3633 unsigned int fw_start_sec = FLASH_FW_START_SEC; 3634 unsigned int fw_size = FLASH_FW_MAX_SIZE; 3635 unsigned int fw_start = FLASH_FW_START; 3636 3637 if (!size) { 3638 dev_err(adap->pdev_dev, "FW image has no data\n"); 3639 return -EINVAL; 3640 } 3641 if (size & 511) { 3642 dev_err(adap->pdev_dev, 3643 "FW image size not multiple of 512 bytes\n"); 3644 return -EINVAL; 3645 } 3646 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) { 3647 dev_err(adap->pdev_dev, 3648 "FW image size differs from size in FW header\n"); 3649 return -EINVAL; 3650 } 3651 if (size > fw_size) { 3652 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", 3653 fw_size); 3654 return -EFBIG; 3655 } 3656 if (!t4_fw_matches_chip(adap, hdr)) 3657 return -EINVAL; 3658 3659 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3660 csum += be32_to_cpu(p[i]); 3661 3662 if (csum != 0xffffffff) { 3663 dev_err(adap->pdev_dev, 3664 "corrupted firmware image, checksum %#x\n", csum); 3665 return -EINVAL; 3666 } 3667 3668 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3669 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3670 if (ret) 3671 goto out; 3672 3673 /* 3674 * We write the correct version at the end so the driver can see a bad 3675 * version if the FW write fails. Start by writing a copy of the 3676 * first page with a bad version. 3677 */ 3678 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3679 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3680 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true); 3681 if (ret) 3682 goto out; 3683 3684 addr = fw_start; 3685 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3686 addr += SF_PAGE_SIZE; 3687 fw_data += SF_PAGE_SIZE; 3688 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true); 3689 if (ret) 3690 goto out; 3691 } 3692 3693 ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver), 3694 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 3695 true); 3696out: 3697 if (ret) 3698 dev_err(adap->pdev_dev, "firmware download failed, error %d\n", 3699 ret); 3700 else 3701 ret = t4_get_fw_version(adap, &adap->params.fw_vers); 3702 return ret; 3703} 3704 3705/** 3706 * t4_phy_fw_ver - return current PHY firmware version 3707 * @adap: the adapter 3708 * @phy_fw_ver: return value buffer for PHY firmware version 3709 * 3710 * Returns the current version of external PHY firmware on the 3711 * adapter. 3712 */ 3713int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver) 3714{ 3715 u32 param, val; 3716 int ret; 3717 3718 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3719 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3720 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3721 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION)); 3722 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 3723 ¶m, &val); 3724 if (ret) 3725 return ret; 3726 *phy_fw_ver = val; 3727 return 0; 3728} 3729 3730/** 3731 * t4_load_phy_fw - download port PHY firmware 3732 * @adap: the adapter 3733 * @win: the PCI-E Memory Window index to use for t4_memory_rw() 3734 * @phy_fw_version: function to check PHY firmware versions 3735 * @phy_fw_data: the PHY firmware image to write 3736 * @phy_fw_size: image size 3737 * 3738 * Transfer the specified PHY firmware to the adapter. If a non-NULL 3739 * @phy_fw_version is supplied, then it will be used to determine if 3740 * it's necessary to perform the transfer by comparing the version 3741 * of any existing adapter PHY firmware with that of the passed in 3742 * PHY firmware image. 3743 * 3744 * A negative error number will be returned if an error occurs. If 3745 * version number support is available and there's no need to upgrade 3746 * the firmware, 0 will be returned. If firmware is successfully 3747 * transferred to the adapter, 1 will be returned. 3748 * 3749 * NOTE: some adapters only have local RAM to store the PHY firmware. As 3750 * a result, a RESET of the adapter would cause that RAM to lose its 3751 * contents. Thus, loading PHY firmware on such adapters must happen 3752 * after any FW_RESET_CMDs ... 3753 */ 3754int t4_load_phy_fw(struct adapter *adap, int win, 3755 int (*phy_fw_version)(const u8 *, size_t), 3756 const u8 *phy_fw_data, size_t phy_fw_size) 3757{ 3758 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0; 3759 unsigned long mtype = 0, maddr = 0; 3760 u32 param, val; 3761 int ret; 3762 3763 /* If we have version number support, then check to see if the adapter 3764 * already has up-to-date PHY firmware loaded. 3765 */ 3766 if (phy_fw_version) { 3767 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size); 3768 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3769 if (ret < 0) 3770 return ret; 3771 3772 if (cur_phy_fw_ver >= new_phy_fw_vers) { 3773 CH_WARN(adap, "PHY Firmware already up-to-date, " 3774 "version %#x\n", cur_phy_fw_ver); 3775 return 0; 3776 } 3777 } 3778 3779 /* Ask the firmware where it wants us to copy the PHY firmware image. 3780 * The size of the file requires a special version of the READ command 3781 * which will pass the file size via the values field in PARAMS_CMD and 3782 * retrieve the return value from firmware and place it in the same 3783 * buffer values 3784 */ 3785 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3786 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3787 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3788 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3789 val = phy_fw_size; 3790 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1, 3791 ¶m, &val, 1, true); 3792 if (ret < 0) 3793 return ret; 3794 mtype = val >> 8; 3795 maddr = (val & 0xff) << 16; 3796 3797 /* Copy the supplied PHY Firmware image to the adapter memory location 3798 * allocated by the adapter firmware. 3799 */ 3800 spin_lock_bh(&adap->win0_lock); 3801 ret = t4_memory_rw(adap, win, mtype, maddr, 3802 phy_fw_size, (__be32 *)phy_fw_data, 3803 T4_MEMORY_WRITE); 3804 spin_unlock_bh(&adap->win0_lock); 3805 if (ret) 3806 return ret; 3807 3808 /* Tell the firmware that the PHY firmware image has been written to 3809 * RAM and it can now start copying it over to the PHYs. The chip 3810 * firmware will RESET the affected PHYs as part of this operation 3811 * leaving them running the new PHY firmware image. 3812 */ 3813 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3814 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) | 3815 FW_PARAMS_PARAM_Y_V(adap->params.portvec) | 3816 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD)); 3817 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, 3818 ¶m, &val, 30000); 3819 3820 /* If we have version number support, then check to see that the new 3821 * firmware got loaded properly. 3822 */ 3823 if (phy_fw_version) { 3824 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver); 3825 if (ret < 0) 3826 return ret; 3827 3828 if (cur_phy_fw_ver != new_phy_fw_vers) { 3829 CH_WARN(adap, "PHY Firmware did not update: " 3830 "version on adapter %#x, " 3831 "version flashed %#x\n", 3832 cur_phy_fw_ver, new_phy_fw_vers); 3833 return -ENXIO; 3834 } 3835 } 3836 3837 return 1; 3838} 3839 3840/** 3841 * t4_fwcache - firmware cache operation 3842 * @adap: the adapter 3843 * @op : the operation (flush or flush and invalidate) 3844 */ 3845int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3846{ 3847 struct fw_params_cmd c; 3848 3849 memset(&c, 0, sizeof(c)); 3850 c.op_to_vfn = 3851 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 3852 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 3853 FW_PARAMS_CMD_PFN_V(adap->pf) | 3854 FW_PARAMS_CMD_VFN_V(0)); 3855 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3856 c.param[0].mnem = 3857 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 3858 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE)); 3859 c.param[0].val = cpu_to_be32(op); 3860 3861 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3862} 3863 3864void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3865 unsigned int *pif_req_wrptr, 3866 unsigned int *pif_rsp_wrptr) 3867{ 3868 int i, j; 3869 u32 cfg, val, req, rsp; 3870 3871 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3872 if (cfg & LADBGEN_F) 3873 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3874 3875 val = t4_read_reg(adap, CIM_DEBUGSTS_A); 3876 req = POLADBGWRPTR_G(val); 3877 rsp = PILADBGWRPTR_G(val); 3878 if (pif_req_wrptr) 3879 *pif_req_wrptr = req; 3880 if (pif_rsp_wrptr) 3881 *pif_rsp_wrptr = rsp; 3882 3883 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3884 for (j = 0; j < 6; j++) { 3885 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) | 3886 PILADBGRDPTR_V(rsp)); 3887 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A); 3888 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A); 3889 req++; 3890 rsp++; 3891 } 3892 req = (req + 2) & POLADBGRDPTR_M; 3893 rsp = (rsp + 2) & PILADBGRDPTR_M; 3894 } 3895 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3896} 3897 3898void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3899{ 3900 u32 cfg; 3901 int i, j, idx; 3902 3903 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A); 3904 if (cfg & LADBGEN_F) 3905 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F); 3906 3907 for (i = 0; i < CIM_MALA_SIZE; i++) { 3908 for (j = 0; j < 5; j++) { 3909 idx = 8 * i + j; 3910 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) | 3911 PILADBGRDPTR_V(idx)); 3912 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A); 3913 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A); 3914 } 3915 } 3916 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg); 3917} 3918 3919void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3920{ 3921 unsigned int i, j; 3922 3923 for (i = 0; i < 8; i++) { 3924 u32 *p = la_buf + i; 3925 3926 t4_write_reg(adap, ULP_RX_LA_CTL_A, i); 3927 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A); 3928 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j); 3929 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3930 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A); 3931 } 3932} 3933 3934/* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port 3935 * Capabilities which we control with separate controls -- see, for instance, 3936 * Pause Frames and Forward Error Correction. In order to determine what the 3937 * full set of Advertised Port Capabilities are, the base Advertised Port 3938 * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised 3939 * Port Capabilities associated with those other controls. See 3940 * t4_link_acaps() for how this is done. 3941 */ 3942#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ 3943 FW_PORT_CAP32_ANEG) 3944 3945/** 3946 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3947 * @caps16: a 16-bit Port Capabilities value 3948 * 3949 * Returns the equivalent 32-bit Port Capabilities value. 3950 */ 3951static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) 3952{ 3953 fw_port_cap32_t caps32 = 0; 3954 3955 #define CAP16_TO_CAP32(__cap) \ 3956 do { \ 3957 if (caps16 & FW_PORT_CAP_##__cap) \ 3958 caps32 |= FW_PORT_CAP32_##__cap; \ 3959 } while (0) 3960 3961 CAP16_TO_CAP32(SPEED_100M); 3962 CAP16_TO_CAP32(SPEED_1G); 3963 CAP16_TO_CAP32(SPEED_25G); 3964 CAP16_TO_CAP32(SPEED_10G); 3965 CAP16_TO_CAP32(SPEED_40G); 3966 CAP16_TO_CAP32(SPEED_100G); 3967 CAP16_TO_CAP32(FC_RX); 3968 CAP16_TO_CAP32(FC_TX); 3969 CAP16_TO_CAP32(ANEG); 3970 CAP16_TO_CAP32(FORCE_PAUSE); 3971 CAP16_TO_CAP32(MDIAUTO); 3972 CAP16_TO_CAP32(MDISTRAIGHT); 3973 CAP16_TO_CAP32(FEC_RS); 3974 CAP16_TO_CAP32(FEC_BASER_RS); 3975 CAP16_TO_CAP32(802_3_PAUSE); 3976 CAP16_TO_CAP32(802_3_ASM_DIR); 3977 3978 #undef CAP16_TO_CAP32 3979 3980 return caps32; 3981} 3982 3983/** 3984 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3985 * @caps32: a 32-bit Port Capabilities value 3986 * 3987 * Returns the equivalent 16-bit Port Capabilities value. Note that 3988 * not all 32-bit Port Capabilities can be represented in the 16-bit 3989 * Port Capabilities and some fields/values may not make it. 3990 */ 3991static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) 3992{ 3993 fw_port_cap16_t caps16 = 0; 3994 3995 #define CAP32_TO_CAP16(__cap) \ 3996 do { \ 3997 if (caps32 & FW_PORT_CAP32_##__cap) \ 3998 caps16 |= FW_PORT_CAP_##__cap; \ 3999 } while (0) 4000 4001 CAP32_TO_CAP16(SPEED_100M); 4002 CAP32_TO_CAP16(SPEED_1G); 4003 CAP32_TO_CAP16(SPEED_10G); 4004 CAP32_TO_CAP16(SPEED_25G); 4005 CAP32_TO_CAP16(SPEED_40G); 4006 CAP32_TO_CAP16(SPEED_100G); 4007 CAP32_TO_CAP16(FC_RX); 4008 CAP32_TO_CAP16(FC_TX); 4009 CAP32_TO_CAP16(802_3_PAUSE); 4010 CAP32_TO_CAP16(802_3_ASM_DIR); 4011 CAP32_TO_CAP16(ANEG); 4012 CAP32_TO_CAP16(FORCE_PAUSE); 4013 CAP32_TO_CAP16(MDIAUTO); 4014 CAP32_TO_CAP16(MDISTRAIGHT); 4015 CAP32_TO_CAP16(FEC_RS); 4016 CAP32_TO_CAP16(FEC_BASER_RS); 4017 4018 #undef CAP32_TO_CAP16 4019 4020 return caps16; 4021} 4022 4023/* Translate Firmware Port Capabilities Pause specification to Common Code */ 4024static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) 4025{ 4026 enum cc_pause cc_pause = 0; 4027 4028 if (fw_pause & FW_PORT_CAP32_FC_RX) 4029 cc_pause |= PAUSE_RX; 4030 if (fw_pause & FW_PORT_CAP32_FC_TX) 4031 cc_pause |= PAUSE_TX; 4032 4033 return cc_pause; 4034} 4035 4036/* Translate Common Code Pause specification into Firmware Port Capabilities */ 4037static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) 4038{ 4039 /* Translate orthogonal RX/TX Pause Controls for L1 Configure 4040 * commands, etc. 4041 */ 4042 fw_port_cap32_t fw_pause = 0; 4043 4044 if (cc_pause & PAUSE_RX) 4045 fw_pause |= FW_PORT_CAP32_FC_RX; 4046 if (cc_pause & PAUSE_TX) 4047 fw_pause |= FW_PORT_CAP32_FC_TX; 4048 if (!(cc_pause & PAUSE_AUTONEG)) 4049 fw_pause |= FW_PORT_CAP32_FORCE_PAUSE; 4050 4051 /* Translate orthogonal Pause controls into IEEE 802.3 Pause, 4052 * Asymmetrical Pause for use in reporting to upper layer OS code, etc. 4053 * Note that these bits are ignored in L1 Configure commands. 4054 */ 4055 if (cc_pause & PAUSE_RX) { 4056 if (cc_pause & PAUSE_TX) 4057 fw_pause |= FW_PORT_CAP32_802_3_PAUSE; 4058 else 4059 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR | 4060 FW_PORT_CAP32_802_3_PAUSE; 4061 } else if (cc_pause & PAUSE_TX) { 4062 fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR; 4063 } 4064 4065 return fw_pause; 4066} 4067 4068/* Translate Firmware Forward Error Correction specification to Common Code */ 4069static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) 4070{ 4071 enum cc_fec cc_fec = 0; 4072 4073 if (fw_fec & FW_PORT_CAP32_FEC_RS) 4074 cc_fec |= FEC_RS; 4075 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) 4076 cc_fec |= FEC_BASER_RS; 4077 4078 return cc_fec; 4079} 4080 4081/* Translate Common Code Forward Error Correction specification to Firmware */ 4082static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) 4083{ 4084 fw_port_cap32_t fw_fec = 0; 4085 4086 if (cc_fec & FEC_RS) 4087 fw_fec |= FW_PORT_CAP32_FEC_RS; 4088 if (cc_fec & FEC_BASER_RS) 4089 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; 4090 4091 return fw_fec; 4092} 4093 4094/** 4095 * t4_link_acaps - compute Link Advertised Port Capabilities 4096 * @adapter: the adapter 4097 * @port: the Port ID 4098 * @lc: the Port's Link Configuration 4099 * 4100 * Synthesize the Advertised Port Capabilities we'll be using based on 4101 * the base Advertised Port Capabilities (which have been filtered by 4102 * ADVERT_MASK) plus the individual controls for things like Pause 4103 * Frames, Forward Error Correction, MDI, etc. 4104 */ 4105fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port, 4106 struct link_config *lc) 4107{ 4108 fw_port_cap32_t fw_fc, fw_fec, acaps; 4109 unsigned int fw_mdi; 4110 char cc_fec; 4111 4112 fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps); 4113 4114 /* Convert driver coding of Pause Frame Flow Control settings into the 4115 * Firmware's API. 4116 */ 4117 fw_fc = cc_to_fwcap_pause(lc->requested_fc); 4118 4119 /* Convert Common Code Forward Error Control settings into the 4120 * Firmware's API. If the current Requested FEC has "Automatic" 4121 * (IEEE 802.3) specified, then we use whatever the Firmware 4122 * sent us as part of its IEEE 802.3-based interpretation of 4123 * the Transceiver Module EPROM FEC parameters. Otherwise we 4124 * use whatever is in the current Requested FEC settings. 4125 */ 4126 if (lc->requested_fec & FEC_AUTO) 4127 cc_fec = fwcap_to_cc_fec(lc->def_acaps); 4128 else 4129 cc_fec = lc->requested_fec; 4130 fw_fec = cc_to_fwcap_fec(cc_fec); 4131 4132 /* Figure out what our Requested Port Capabilities are going to be. 4133 * Note parallel structure in t4_handle_get_port_info() and 4134 * init_link_config(). 4135 */ 4136 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 4137 acaps = lc->acaps | fw_fc | fw_fec; 4138 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4139 lc->fec = cc_fec; 4140 } else if (lc->autoneg == AUTONEG_DISABLE) { 4141 acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi; 4142 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; 4143 lc->fec = cc_fec; 4144 } else { 4145 acaps = lc->acaps | fw_fc | fw_fec | fw_mdi; 4146 } 4147 4148 /* Some Requested Port Capabilities are trivially wrong if they exceed 4149 * the Physical Port Capabilities. We can check that here and provide 4150 * moderately useful feedback in the system log. 4151 * 4152 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so 4153 * we need to exclude this from this check in order to maintain 4154 * compatibility ... 4155 */ 4156 if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) { 4157 dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n", 4158 acaps, lc->pcaps); 4159 return -EINVAL; 4160 } 4161 4162 return acaps; 4163} 4164 4165/** 4166 * t4_link_l1cfg_core - apply link configuration to MAC/PHY 4167 * @adapter: the adapter 4168 * @mbox: the Firmware Mailbox to use 4169 * @port: the Port ID 4170 * @lc: the Port's Link Configuration 4171 * @sleep_ok: if true we may sleep while awaiting command completion 4172 * @timeout: time to wait for command to finish before timing out 4173 * (negative implies @sleep_ok=false) 4174 * 4175 * Set up a port's MAC and PHY according to a desired link configuration. 4176 * - If the PHY can auto-negotiate first decide what to advertise, then 4177 * enable/disable auto-negotiation as desired, and reset. 4178 * - If the PHY does not auto-negotiate just reset it. 4179 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 4180 * otherwise do it later based on the outcome of auto-negotiation. 4181 */ 4182int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox, 4183 unsigned int port, struct link_config *lc, 4184 u8 sleep_ok, int timeout) 4185{ 4186 unsigned int fw_caps = adapter->params.fw_caps_support; 4187 struct fw_port_cmd cmd; 4188 fw_port_cap32_t rcap; 4189 int ret; 4190 4191 if (!(lc->pcaps & FW_PORT_CAP32_ANEG) && 4192 lc->autoneg == AUTONEG_ENABLE) { 4193 return -EINVAL; 4194 } 4195 4196 /* Compute our Requested Port Capabilities and send that on to the 4197 * Firmware. 4198 */ 4199 rcap = t4_link_acaps(adapter, port, lc); 4200 memset(&cmd, 0, sizeof(cmd)); 4201 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4202 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4203 FW_PORT_CMD_PORTID_V(port)); 4204 cmd.action_to_len16 = 4205 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4206 ? FW_PORT_ACTION_L1_CFG 4207 : FW_PORT_ACTION_L1_CFG32) | 4208 FW_LEN16(cmd)); 4209 if (fw_caps == FW_CAPS16) 4210 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4211 else 4212 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4213 4214 ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL, 4215 sleep_ok, timeout); 4216 4217 /* Unfortunately, even if the Requested Port Capabilities "fit" within 4218 * the Physical Port Capabilities, some combinations of features may 4219 * still not be legal. For example, 40Gb/s and Reed-Solomon Forward 4220 * Error Correction. So if the Firmware rejects the L1 Configure 4221 * request, flag that here. 4222 */ 4223 if (ret) { 4224 dev_err(adapter->pdev_dev, 4225 "Requested Port Capabilities %#x rejected, error %d\n", 4226 rcap, -ret); 4227 return ret; 4228 } 4229 return 0; 4230} 4231 4232/** 4233 * t4_restart_aneg - restart autonegotiation 4234 * @adap: the adapter 4235 * @mbox: mbox to use for the FW command 4236 * @port: the port id 4237 * 4238 * Restarts autonegotiation for the selected port. 4239 */ 4240int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4241{ 4242 unsigned int fw_caps = adap->params.fw_caps_support; 4243 struct fw_port_cmd c; 4244 4245 memset(&c, 0, sizeof(c)); 4246 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 4247 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 4248 FW_PORT_CMD_PORTID_V(port)); 4249 c.action_to_len16 = 4250 cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 4251 ? FW_PORT_ACTION_L1_CFG 4252 : FW_PORT_ACTION_L1_CFG32) | 4253 FW_LEN16(c)); 4254 if (fw_caps == FW_CAPS16) 4255 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4256 else 4257 c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG); 4258 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4259} 4260 4261typedef void (*int_handler_t)(struct adapter *adap); 4262 4263struct intr_info { 4264 unsigned int mask; /* bits to check in interrupt status */ 4265 const char *msg; /* message to print or NULL */ 4266 short stat_idx; /* stat counter to increment or -1 */ 4267 unsigned short fatal; /* whether the condition reported is fatal */ 4268 int_handler_t int_handler; /* platform-specific int handler */ 4269}; 4270 4271/** 4272 * t4_handle_intr_status - table driven interrupt handler 4273 * @adapter: the adapter that generated the interrupt 4274 * @reg: the interrupt status register to process 4275 * @acts: table of interrupt actions 4276 * 4277 * A table driven interrupt handler that applies a set of masks to an 4278 * interrupt status word and performs the corresponding actions if the 4279 * interrupts described by the mask have occurred. The actions include 4280 * optionally emitting a warning or alert message. The table is terminated 4281 * by an entry specifying mask 0. Returns the number of fatal interrupt 4282 * conditions. 4283 */ 4284static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, 4285 const struct intr_info *acts) 4286{ 4287 int fatal = 0; 4288 unsigned int mask = 0; 4289 unsigned int status = t4_read_reg(adapter, reg); 4290 4291 for ( ; acts->mask; ++acts) { 4292 if (!(status & acts->mask)) 4293 continue; 4294 if (acts->fatal) { 4295 fatal++; 4296 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4297 status & acts->mask); 4298 } else if (acts->msg && printk_ratelimit()) 4299 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, 4300 status & acts->mask); 4301 if (acts->int_handler) 4302 acts->int_handler(adapter); 4303 mask |= acts->mask; 4304 } 4305 status &= mask; 4306 if (status) /* clear processed interrupts */ 4307 t4_write_reg(adapter, reg, status); 4308 return fatal; 4309} 4310 4311/* 4312 * Interrupt handler for the PCIE module. 4313 */ 4314static void pcie_intr_handler(struct adapter *adapter) 4315{ 4316 static const struct intr_info sysbus_intr_info[] = { 4317 { RNPP_F, "RXNP array parity error", -1, 1 }, 4318 { RPCP_F, "RXPC array parity error", -1, 1 }, 4319 { RCIP_F, "RXCIF array parity error", -1, 1 }, 4320 { RCCP_F, "Rx completions control array parity error", -1, 1 }, 4321 { RFTP_F, "RXFT array parity error", -1, 1 }, 4322 { 0 } 4323 }; 4324 static const struct intr_info pcie_port_intr_info[] = { 4325 { TPCP_F, "TXPC array parity error", -1, 1 }, 4326 { TNPP_F, "TXNP array parity error", -1, 1 }, 4327 { TFTP_F, "TXFT array parity error", -1, 1 }, 4328 { TCAP_F, "TXCA array parity error", -1, 1 }, 4329 { TCIP_F, "TXCIF array parity error", -1, 1 }, 4330 { RCAP_F, "RXCA array parity error", -1, 1 }, 4331 { OTDD_F, "outbound request TLP discarded", -1, 1 }, 4332 { RDPE_F, "Rx data parity error", -1, 1 }, 4333 { TDUE_F, "Tx uncorrectable data error", -1, 1 }, 4334 { 0 } 4335 }; 4336 static const struct intr_info pcie_intr_info[] = { 4337 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 }, 4338 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 }, 4339 { MSIDATAPERR_F, "MSI data parity error", -1, 1 }, 4340 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4341 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4342 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4343 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4344 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 }, 4345 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 }, 4346 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4347 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 }, 4348 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4349 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4350 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 }, 4351 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4352 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4353 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4354 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4355 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4356 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4357 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4358 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 }, 4359 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 }, 4360 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4361 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 }, 4362 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 }, 4363 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 }, 4364 { PCIESINT_F, "PCI core secondary fault", -1, 1 }, 4365 { PCIEPINT_F, "PCI core primary fault", -1, 1 }, 4366 { UNXSPLCPLERR_F, "PCI unexpected split completion error", 4367 -1, 0 }, 4368 { 0 } 4369 }; 4370 4371 static struct intr_info t5_pcie_intr_info[] = { 4372 { MSTGRPPERR_F, "Master Response Read Queue parity error", 4373 -1, 1 }, 4374 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 }, 4375 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 }, 4376 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 }, 4377 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 }, 4378 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 }, 4379 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 }, 4380 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error", 4381 -1, 1 }, 4382 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error", 4383 -1, 1 }, 4384 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 }, 4385 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 }, 4386 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 }, 4387 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 }, 4388 { DREQWRPERR_F, "PCI DMA channel write request parity error", 4389 -1, 1 }, 4390 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 }, 4391 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 }, 4392 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 }, 4393 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 }, 4394 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 }, 4395 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 }, 4396 { FIDPERR_F, "PCI FID parity error", -1, 1 }, 4397 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 }, 4398 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 }, 4399 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 }, 4400 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error", 4401 -1, 1 }, 4402 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error", 4403 -1, 1 }, 4404 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 }, 4405 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 }, 4406 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 }, 4407 { READRSPERR_F, "Outbound read error", -1, 0 }, 4408 { 0 } 4409 }; 4410 4411 int fat; 4412 4413 if (is_t4(adapter->params.chip)) 4414 fat = t4_handle_intr_status(adapter, 4415 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A, 4416 sysbus_intr_info) + 4417 t4_handle_intr_status(adapter, 4418 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A, 4419 pcie_port_intr_info) + 4420 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4421 pcie_intr_info); 4422 else 4423 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A, 4424 t5_pcie_intr_info); 4425 4426 if (fat) 4427 t4_fatal_err(adapter); 4428} 4429 4430/* 4431 * TP interrupt handler. 4432 */ 4433static void tp_intr_handler(struct adapter *adapter) 4434{ 4435 static const struct intr_info tp_intr_info[] = { 4436 { 0x3fffffff, "TP parity error", -1, 1 }, 4437 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, 4438 { 0 } 4439 }; 4440 4441 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info)) 4442 t4_fatal_err(adapter); 4443} 4444 4445/* 4446 * SGE interrupt handler. 4447 */ 4448static void sge_intr_handler(struct adapter *adapter) 4449{ 4450 u32 v = 0, perr; 4451 u32 err; 4452 4453 static const struct intr_info sge_intr_info[] = { 4454 { ERR_CPL_EXCEED_IQE_SIZE_F, 4455 "SGE received CPL exceeding IQE size", -1, 1 }, 4456 { ERR_INVALID_CIDX_INC_F, 4457 "SGE GTS CIDX increment too large", -1, 0 }, 4458 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, 4459 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full }, 4460 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, 4461 "SGE IQID > 1023 received CPL for FL", -1, 0 }, 4462 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 4463 0 }, 4464 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 4465 0 }, 4466 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 4467 0 }, 4468 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 4469 0 }, 4470 { ERR_ING_CTXT_PRIO_F, 4471 "SGE too many priority ingress contexts", -1, 0 }, 4472 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, 4473 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, 4474 { 0 } 4475 }; 4476 4477 static struct intr_info t4t5_sge_intr_info[] = { 4478 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped }, 4479 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full }, 4480 { ERR_EGR_CTXT_PRIO_F, 4481 "SGE too many priority egress contexts", -1, 0 }, 4482 { 0 } 4483 }; 4484 4485 perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A); 4486 if (perr) { 4487 v |= perr; 4488 dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n", 4489 perr); 4490 } 4491 4492 perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A); 4493 if (perr) { 4494 v |= perr; 4495 dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n", 4496 perr); 4497 } 4498 4499 if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) { 4500 perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A); 4501 /* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */ 4502 perr &= ~ERR_T_RXCRC_F; 4503 if (perr) { 4504 v |= perr; 4505 dev_alert(adapter->pdev_dev, 4506 "SGE Cause5 Parity Error %#x\n", perr); 4507 } 4508 } 4509 4510 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info); 4511 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 4512 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, 4513 t4t5_sge_intr_info); 4514 4515 err = t4_read_reg(adapter, SGE_ERROR_STATS_A); 4516 if (err & ERROR_QID_VALID_F) { 4517 dev_err(adapter->pdev_dev, "SGE error for queue %u\n", 4518 ERROR_QID_G(err)); 4519 if (err & UNCAPTURED_ERROR_F) 4520 dev_err(adapter->pdev_dev, 4521 "SGE UNCAPTURED_ERROR set (clearing)\n"); 4522 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F | 4523 UNCAPTURED_ERROR_F); 4524 } 4525 4526 if (v != 0) 4527 t4_fatal_err(adapter); 4528} 4529 4530#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ 4531 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) 4532#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ 4533 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) 4534 4535/* 4536 * CIM interrupt handler. 4537 */ 4538static void cim_intr_handler(struct adapter *adapter) 4539{ 4540 static const struct intr_info cim_intr_info[] = { 4541 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, 4542 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, 4543 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, 4544 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, 4545 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, 4546 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, 4547 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, 4548 { TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 }, 4549 { 0 } 4550 }; 4551 static const struct intr_info cim_upintr_info[] = { 4552 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, 4553 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, 4554 { ILLWRINT_F, "CIM illegal write", -1, 1 }, 4555 { ILLRDINT_F, "CIM illegal read", -1, 1 }, 4556 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, 4557 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, 4558 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, 4559 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, 4560 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, 4561 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, 4562 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, 4563 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, 4564 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, 4565 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, 4566 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, 4567 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, 4568 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, 4569 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, 4570 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, 4571 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, 4572 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, 4573 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, 4574 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, 4575 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, 4576 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, 4577 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, 4578 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, 4579 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, 4580 { 0 } 4581 }; 4582 4583 u32 val, fw_err; 4584 int fat; 4585 4586 fw_err = t4_read_reg(adapter, PCIE_FW_A); 4587 if (fw_err & PCIE_FW_ERR_F) 4588 t4_report_fw_error(adapter); 4589 4590 /* When the Firmware detects an internal error which normally 4591 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt 4592 * in order to make sure the Host sees the Firmware Crash. So 4593 * if we have a Timer0 interrupt and don't see a Firmware Crash, 4594 * ignore the Timer0 interrupt. 4595 */ 4596 4597 val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A); 4598 if (val & TIMER0INT_F) 4599 if (!(fw_err & PCIE_FW_ERR_F) || 4600 (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH)) 4601 t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A, 4602 TIMER0INT_F); 4603 4604 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A, 4605 cim_intr_info) + 4606 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A, 4607 cim_upintr_info); 4608 if (fat) 4609 t4_fatal_err(adapter); 4610} 4611 4612/* 4613 * ULP RX interrupt handler. 4614 */ 4615static void ulprx_intr_handler(struct adapter *adapter) 4616{ 4617 static const struct intr_info ulprx_intr_info[] = { 4618 { 0x1800000, "ULPRX context error", -1, 1 }, 4619 { 0x7fffff, "ULPRX parity error", -1, 1 }, 4620 { 0 } 4621 }; 4622 4623 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) 4624 t4_fatal_err(adapter); 4625} 4626 4627/* 4628 * ULP TX interrupt handler. 4629 */ 4630static void ulptx_intr_handler(struct adapter *adapter) 4631{ 4632 static const struct intr_info ulptx_intr_info[] = { 4633 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 4634 0 }, 4635 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 4636 0 }, 4637 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 4638 0 }, 4639 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 4640 0 }, 4641 { 0xfffffff, "ULPTX parity error", -1, 1 }, 4642 { 0 } 4643 }; 4644 4645 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) 4646 t4_fatal_err(adapter); 4647} 4648 4649/* 4650 * PM TX interrupt handler. 4651 */ 4652static void pmtx_intr_handler(struct adapter *adapter) 4653{ 4654 static const struct intr_info pmtx_intr_info[] = { 4655 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, 4656 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, 4657 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, 4658 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, 4659 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 }, 4660 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, 4661 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", 4662 -1, 1 }, 4663 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, 4664 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, 4665 { 0 } 4666 }; 4667 4668 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info)) 4669 t4_fatal_err(adapter); 4670} 4671 4672/* 4673 * PM RX interrupt handler. 4674 */ 4675static void pmrx_intr_handler(struct adapter *adapter) 4676{ 4677 static const struct intr_info pmrx_intr_info[] = { 4678 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, 4679 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 }, 4680 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, 4681 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", 4682 -1, 1 }, 4683 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, 4684 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, 4685 { 0 } 4686 }; 4687 4688 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info)) 4689 t4_fatal_err(adapter); 4690} 4691 4692/* 4693 * CPL switch interrupt handler. 4694 */ 4695static void cplsw_intr_handler(struct adapter *adapter) 4696{ 4697 static const struct intr_info cplsw_intr_info[] = { 4698 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, 4699 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, 4700 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, 4701 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, 4702 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, 4703 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, 4704 { 0 } 4705 }; 4706 4707 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info)) 4708 t4_fatal_err(adapter); 4709} 4710 4711/* 4712 * LE interrupt handler. 4713 */ 4714static void le_intr_handler(struct adapter *adap) 4715{ 4716 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip); 4717 static const struct intr_info le_intr_info[] = { 4718 { LIPMISS_F, "LE LIP miss", -1, 0 }, 4719 { LIP0_F, "LE 0 LIP error", -1, 0 }, 4720 { PARITYERR_F, "LE parity error", -1, 1 }, 4721 { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4722 { REQQPARERR_F, "LE request queue parity error", -1, 1 }, 4723 { 0 } 4724 }; 4725 4726 static struct intr_info t6_le_intr_info[] = { 4727 { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, 4728 { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, 4729 { CMDTIDERR_F, "LE cmd tid error", -1, 1 }, 4730 { TCAMINTPERR_F, "LE parity error", -1, 1 }, 4731 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, 4732 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, 4733 { HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 }, 4734 { 0 } 4735 }; 4736 4737 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A, 4738 (chip <= CHELSIO_T5) ? 4739 le_intr_info : t6_le_intr_info)) 4740 t4_fatal_err(adap); 4741} 4742 4743/* 4744 * MPS interrupt handler. 4745 */ 4746static void mps_intr_handler(struct adapter *adapter) 4747{ 4748 static const struct intr_info mps_rx_intr_info[] = { 4749 { 0xffffff, "MPS Rx parity error", -1, 1 }, 4750 { 0 } 4751 }; 4752 static const struct intr_info mps_tx_intr_info[] = { 4753 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4754 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4755 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4756 -1, 1 }, 4757 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4758 -1, 1 }, 4759 { BUBBLE_F, "MPS Tx underflow", -1, 1 }, 4760 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4761 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4762 { 0 } 4763 }; 4764 static const struct intr_info t6_mps_tx_intr_info[] = { 4765 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, 4766 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, 4767 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", 4768 -1, 1 }, 4769 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", 4770 -1, 1 }, 4771 /* MPS Tx Bubble is normal for T6 */ 4772 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, 4773 { FRMERR_F, "MPS Tx framing error", -1, 1 }, 4774 { 0 } 4775 }; 4776 static const struct intr_info mps_trc_intr_info[] = { 4777 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, 4778 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", 4779 -1, 1 }, 4780 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, 4781 { 0 } 4782 }; 4783 static const struct intr_info mps_stat_sram_intr_info[] = { 4784 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, 4785 { 0 } 4786 }; 4787 static const struct intr_info mps_stat_tx_intr_info[] = { 4788 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, 4789 { 0 } 4790 }; 4791 static const struct intr_info mps_stat_rx_intr_info[] = { 4792 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, 4793 { 0 } 4794 }; 4795 static const struct intr_info mps_cls_intr_info[] = { 4796 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, 4797 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, 4798 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, 4799 { 0 } 4800 }; 4801 4802 int fat; 4803 4804 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A, 4805 mps_rx_intr_info) + 4806 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A, 4807 is_t6(adapter->params.chip) 4808 ? t6_mps_tx_intr_info 4809 : mps_tx_intr_info) + 4810 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A, 4811 mps_trc_intr_info) + 4812 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A, 4813 mps_stat_sram_intr_info) + 4814 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, 4815 mps_stat_tx_intr_info) + 4816 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, 4817 mps_stat_rx_intr_info) + 4818 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A, 4819 mps_cls_intr_info); 4820 4821 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0); 4822 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */ 4823 if (fat) 4824 t4_fatal_err(adapter); 4825} 4826 4827#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ 4828 ECC_UE_INT_CAUSE_F) 4829 4830/* 4831 * EDC/MC interrupt handler. 4832 */ 4833static void mem_intr_handler(struct adapter *adapter, int idx) 4834{ 4835 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; 4836 4837 unsigned int addr, cnt_addr, v; 4838 4839 if (idx <= MEM_EDC1) { 4840 addr = EDC_REG(EDC_INT_CAUSE_A, idx); 4841 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); 4842 } else if (idx == MEM_MC) { 4843 if (is_t4(adapter->params.chip)) { 4844 addr = MC_INT_CAUSE_A; 4845 cnt_addr = MC_ECC_STATUS_A; 4846 } else { 4847 addr = MC_P_INT_CAUSE_A; 4848 cnt_addr = MC_P_ECC_STATUS_A; 4849 } 4850 } else { 4851 addr = MC_REG(MC_P_INT_CAUSE_A, 1); 4852 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1); 4853 } 4854 4855 v = t4_read_reg(adapter, addr) & MEM_INT_MASK; 4856 if (v & PERR_INT_CAUSE_F) 4857 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", 4858 name[idx]); 4859 if (v & ECC_CE_INT_CAUSE_F) { 4860 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr)); 4861 4862 t4_edc_err_read(adapter, idx); 4863 4864 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M)); 4865 if (printk_ratelimit()) 4866 dev_warn(adapter->pdev_dev, 4867 "%u %s correctable ECC data error%s\n", 4868 cnt, name[idx], cnt > 1 ? "s" : ""); 4869 } 4870 if (v & ECC_UE_INT_CAUSE_F) 4871 dev_alert(adapter->pdev_dev, 4872 "%s uncorrectable ECC data error\n", name[idx]); 4873 4874 t4_write_reg(adapter, addr, v); 4875 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) 4876 t4_fatal_err(adapter); 4877} 4878 4879/* 4880 * MA interrupt handler. 4881 */ 4882static void ma_intr_handler(struct adapter *adap) 4883{ 4884 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A); 4885 4886 if (status & MEM_PERR_INT_CAUSE_F) { 4887 dev_alert(adap->pdev_dev, 4888 "MA parity error, parity status %#x\n", 4889 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A)); 4890 if (is_t5(adap->params.chip)) 4891 dev_alert(adap->pdev_dev, 4892 "MA parity error, parity status %#x\n", 4893 t4_read_reg(adap, 4894 MA_PARITY_ERROR_STATUS2_A)); 4895 } 4896 if (status & MEM_WRAP_INT_CAUSE_F) { 4897 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A); 4898 dev_alert(adap->pdev_dev, "MA address wrap-around error by " 4899 "client %u to address %#x\n", 4900 MEM_WRAP_CLIENT_NUM_G(v), 4901 MEM_WRAP_ADDRESS_G(v) << 4); 4902 } 4903 t4_write_reg(adap, MA_INT_CAUSE_A, status); 4904 t4_fatal_err(adap); 4905} 4906 4907/* 4908 * SMB interrupt handler. 4909 */ 4910static void smb_intr_handler(struct adapter *adap) 4911{ 4912 static const struct intr_info smb_intr_info[] = { 4913 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, 4914 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, 4915 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, 4916 { 0 } 4917 }; 4918 4919 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info)) 4920 t4_fatal_err(adap); 4921} 4922 4923/* 4924 * NC-SI interrupt handler. 4925 */ 4926static void ncsi_intr_handler(struct adapter *adap) 4927{ 4928 static const struct intr_info ncsi_intr_info[] = { 4929 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, 4930 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, 4931 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, 4932 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, 4933 { 0 } 4934 }; 4935 4936 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info)) 4937 t4_fatal_err(adap); 4938} 4939 4940/* 4941 * XGMAC interrupt handler. 4942 */ 4943static void xgmac_intr_handler(struct adapter *adap, int port) 4944{ 4945 u32 v, int_cause_reg; 4946 4947 if (is_t4(adap->params.chip)) 4948 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A); 4949 else 4950 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A); 4951 4952 v = t4_read_reg(adap, int_cause_reg); 4953 4954 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; 4955 if (!v) 4956 return; 4957 4958 if (v & TXFIFO_PRTY_ERR_F) 4959 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", 4960 port); 4961 if (v & RXFIFO_PRTY_ERR_F) 4962 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", 4963 port); 4964 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v); 4965 t4_fatal_err(adap); 4966} 4967 4968/* 4969 * PL interrupt handler. 4970 */ 4971static void pl_intr_handler(struct adapter *adap) 4972{ 4973 static const struct intr_info pl_intr_info[] = { 4974 { FATALPERR_F, "T4 fatal parity error", -1, 1 }, 4975 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, 4976 { 0 } 4977 }; 4978 4979 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info)) 4980 t4_fatal_err(adap); 4981} 4982 4983#define PF_INTR_MASK (PFSW_F) 4984#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \ 4985 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \ 4986 CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F) 4987 4988/** 4989 * t4_slow_intr_handler - control path interrupt handler 4990 * @adapter: the adapter 4991 * 4992 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 4993 * The designation 'slow' is because it involves register reads, while 4994 * data interrupts typically don't involve any MMIOs. 4995 */ 4996int t4_slow_intr_handler(struct adapter *adapter) 4997{ 4998 /* There are rare cases where a PL_INT_CAUSE bit may end up getting 4999 * set when the corresponding PL_INT_ENABLE bit isn't set. It's 5000 * easiest just to mask that case here. 5001 */ 5002 u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A); 5003 u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A); 5004 u32 cause = raw_cause & enable; 5005 5006 if (!(cause & GLBL_INTR_MASK)) 5007 return 0; 5008 if (cause & CIM_F) 5009 cim_intr_handler(adapter); 5010 if (cause & MPS_F) 5011 mps_intr_handler(adapter); 5012 if (cause & NCSI_F) 5013 ncsi_intr_handler(adapter); 5014 if (cause & PL_F) 5015 pl_intr_handler(adapter); 5016 if (cause & SMB_F) 5017 smb_intr_handler(adapter); 5018 if (cause & XGMAC0_F) 5019 xgmac_intr_handler(adapter, 0); 5020 if (cause & XGMAC1_F) 5021 xgmac_intr_handler(adapter, 1); 5022 if (cause & XGMAC_KR0_F) 5023 xgmac_intr_handler(adapter, 2); 5024 if (cause & XGMAC_KR1_F) 5025 xgmac_intr_handler(adapter, 3); 5026 if (cause & PCIE_F) 5027 pcie_intr_handler(adapter); 5028 if (cause & MC_F) 5029 mem_intr_handler(adapter, MEM_MC); 5030 if (is_t5(adapter->params.chip) && (cause & MC1_F)) 5031 mem_intr_handler(adapter, MEM_MC1); 5032 if (cause & EDC0_F) 5033 mem_intr_handler(adapter, MEM_EDC0); 5034 if (cause & EDC1_F) 5035 mem_intr_handler(adapter, MEM_EDC1); 5036 if (cause & LE_F) 5037 le_intr_handler(adapter); 5038 if (cause & TP_F) 5039 tp_intr_handler(adapter); 5040 if (cause & MA_F) 5041 ma_intr_handler(adapter); 5042 if (cause & PM_TX_F) 5043 pmtx_intr_handler(adapter); 5044 if (cause & PM_RX_F) 5045 pmrx_intr_handler(adapter); 5046 if (cause & ULP_RX_F) 5047 ulprx_intr_handler(adapter); 5048 if (cause & CPL_SWITCH_F) 5049 cplsw_intr_handler(adapter); 5050 if (cause & SGE_F) 5051 sge_intr_handler(adapter); 5052 if (cause & ULP_TX_F) 5053 ulptx_intr_handler(adapter); 5054 5055 /* Clear the interrupts just processed for which we are the master. */ 5056 t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK); 5057 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */ 5058 return 1; 5059} 5060 5061/** 5062 * t4_intr_enable - enable interrupts 5063 * @adapter: the adapter whose interrupts should be enabled 5064 * 5065 * Enable PF-specific interrupts for the calling function and the top-level 5066 * interrupt concentrator for global interrupts. Interrupts are already 5067 * enabled at each module, here we just enable the roots of the interrupt 5068 * hierarchies. 5069 * 5070 * Note: this function should be called only when the driver manages 5071 * non PF-specific interrupts from the various HW modules. Only one PCI 5072 * function at a time should be doing this. 5073 */ 5074void t4_intr_enable(struct adapter *adapter) 5075{ 5076 u32 val = 0; 5077 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5078 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5079 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5080 5081 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) 5082 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F; 5083 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F | 5084 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | 5085 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F | 5086 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | 5087 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | 5088 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | 5089 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val); 5090 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK); 5091 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf); 5092} 5093 5094/** 5095 * t4_intr_disable - disable interrupts 5096 * @adapter: the adapter whose interrupts should be disabled 5097 * 5098 * Disable interrupts. We only disable the top-level interrupt 5099 * concentrators. The caller must be a PCI function managing global 5100 * interrupts. 5101 */ 5102void t4_intr_disable(struct adapter *adapter) 5103{ 5104 u32 whoami, pf; 5105 5106 if (pci_channel_offline(adapter->pdev)) 5107 return; 5108 5109 whoami = t4_read_reg(adapter, PL_WHOAMI_A); 5110 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? 5111 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami); 5112 5113 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0); 5114 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0); 5115} 5116 5117unsigned int t4_chip_rss_size(struct adapter *adap) 5118{ 5119 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 5120 return RSS_NENTRIES; 5121 else 5122 return T6_RSS_NENTRIES; 5123} 5124 5125/** 5126 * t4_config_rss_range - configure a portion of the RSS mapping table 5127 * @adapter: the adapter 5128 * @mbox: mbox to use for the FW command 5129 * @viid: virtual interface whose RSS subtable is to be written 5130 * @start: start entry in the table to write 5131 * @n: how many table entries to write 5132 * @rspq: values for the response queue lookup table 5133 * @nrspq: number of values in @rspq 5134 * 5135 * Programs the selected part of the VI's RSS mapping table with the 5136 * provided values. If @nrspq < @n the supplied values are used repeatedly 5137 * until the full table range is populated. 5138 * 5139 * The caller must ensure the values in @rspq are in the range allowed for 5140 * @viid. 5141 */ 5142int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5143 int start, int n, const u16 *rspq, unsigned int nrspq) 5144{ 5145 int ret; 5146 const u16 *rsp = rspq; 5147 const u16 *rsp_end = rspq + nrspq; 5148 struct fw_rss_ind_tbl_cmd cmd; 5149 5150 memset(&cmd, 0, sizeof(cmd)); 5151 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | 5152 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5153 FW_RSS_IND_TBL_CMD_VIID_V(viid)); 5154 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5155 5156 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ 5157 while (n > 0) { 5158 int nq = min(n, 32); 5159 __be32 *qp = &cmd.iq0_to_iq2; 5160 5161 cmd.niqid = cpu_to_be16(nq); 5162 cmd.startidx = cpu_to_be16(start); 5163 5164 start += nq; 5165 n -= nq; 5166 5167 while (nq > 0) { 5168 unsigned int v; 5169 5170 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); 5171 if (++rsp >= rsp_end) 5172 rsp = rspq; 5173 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); 5174 if (++rsp >= rsp_end) 5175 rsp = rspq; 5176 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); 5177 if (++rsp >= rsp_end) 5178 rsp = rspq; 5179 5180 *qp++ = cpu_to_be32(v); 5181 nq -= 3; 5182 } 5183 5184 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5185 if (ret) 5186 return ret; 5187 } 5188 return 0; 5189} 5190 5191/** 5192 * t4_config_glbl_rss - configure the global RSS mode 5193 * @adapter: the adapter 5194 * @mbox: mbox to use for the FW command 5195 * @mode: global RSS mode 5196 * @flags: mode-specific flags 5197 * 5198 * Sets the global RSS mode. 5199 */ 5200int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5201 unsigned int flags) 5202{ 5203 struct fw_rss_glb_config_cmd c; 5204 5205 memset(&c, 0, sizeof(c)); 5206 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | 5207 FW_CMD_REQUEST_F | FW_CMD_WRITE_F); 5208 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5209 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5210 c.u.manual.mode_pkd = 5211 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5212 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5213 c.u.basicvirtual.mode_pkd = 5214 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); 5215 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5216 } else 5217 return -EINVAL; 5218 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5219} 5220 5221/** 5222 * t4_config_vi_rss - configure per VI RSS settings 5223 * @adapter: the adapter 5224 * @mbox: mbox to use for the FW command 5225 * @viid: the VI id 5226 * @flags: RSS flags 5227 * @defq: id of the default RSS queue for the VI. 5228 * 5229 * Configures VI-specific RSS properties. 5230 */ 5231int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5232 unsigned int flags, unsigned int defq) 5233{ 5234 struct fw_rss_vi_config_cmd c; 5235 5236 memset(&c, 0, sizeof(c)); 5237 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 5238 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 5239 FW_RSS_VI_CONFIG_CMD_VIID_V(viid)); 5240 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5241 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5242 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq)); 5243 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5244} 5245 5246/* Read an RSS table row */ 5247static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5248{ 5249 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row); 5250 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1, 5251 5, 0, val); 5252} 5253 5254/** 5255 * t4_read_rss - read the contents of the RSS mapping table 5256 * @adapter: the adapter 5257 * @map: holds the contents of the RSS mapping table 5258 * 5259 * Reads the contents of the RSS hash->queue mapping table. 5260 */ 5261int t4_read_rss(struct adapter *adapter, u16 *map) 5262{ 5263 int i, ret, nentries; 5264 u32 val; 5265 5266 nentries = t4_chip_rss_size(adapter); 5267 for (i = 0; i < nentries / 2; ++i) { 5268 ret = rd_rss_row(adapter, i, &val); 5269 if (ret) 5270 return ret; 5271 *map++ = LKPTBLQUEUE0_G(val); 5272 *map++ = LKPTBLQUEUE1_G(val); 5273 } 5274 return 0; 5275} 5276 5277static unsigned int t4_use_ldst(struct adapter *adap) 5278{ 5279 return (adap->flags & CXGB4_FW_OK) && !adap->use_bd; 5280} 5281 5282/** 5283 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5284 * @adap: the adapter 5285 * @cmd: TP fw ldst address space type 5286 * @vals: where the indirect register values are stored/written 5287 * @nregs: how many indirect registers to read/write 5288 * @start_index: index of first indirect register to read/write 5289 * @rw: Read (1) or Write (0) 5290 * @sleep_ok: if true we may sleep while awaiting command completion 5291 * 5292 * Access TP indirect registers through LDST 5293 */ 5294static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5295 unsigned int nregs, unsigned int start_index, 5296 unsigned int rw, bool sleep_ok) 5297{ 5298 int ret = 0; 5299 unsigned int i; 5300 struct fw_ldst_cmd c; 5301 5302 for (i = 0; i < nregs; i++) { 5303 memset(&c, 0, sizeof(c)); 5304 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 5305 FW_CMD_REQUEST_F | 5306 (rw ? FW_CMD_READ_F : 5307 FW_CMD_WRITE_F) | 5308 FW_LDST_CMD_ADDRSPACE_V(cmd)); 5309 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5310 5311 c.u.addrval.addr = cpu_to_be32(start_index + i); 5312 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5313 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5314 sleep_ok); 5315 if (ret) 5316 return ret; 5317 5318 if (rw) 5319 vals[i] = be32_to_cpu(c.u.addrval.val); 5320 } 5321 return 0; 5322} 5323 5324/** 5325 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5326 * @adap: the adapter 5327 * @reg_addr: Address Register 5328 * @reg_data: Data register 5329 * @buff: where the indirect register values are stored/written 5330 * @nregs: how many indirect registers to read/write 5331 * @start_index: index of first indirect register to read/write 5332 * @rw: READ(1) or WRITE(0) 5333 * @sleep_ok: if true we may sleep while awaiting command completion 5334 * 5335 * Read/Write TP indirect registers through LDST if possible. 5336 * Else, use backdoor access 5337 **/ 5338static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5339 u32 *buff, u32 nregs, u32 start_index, int rw, 5340 bool sleep_ok) 5341{ 5342 int rc = -EINVAL; 5343 int cmd; 5344 5345 switch (reg_addr) { 5346 case TP_PIO_ADDR_A: 5347 cmd = FW_LDST_ADDRSPC_TP_PIO; 5348 break; 5349 case TP_TM_PIO_ADDR_A: 5350 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5351 break; 5352 case TP_MIB_INDEX_A: 5353 cmd = FW_LDST_ADDRSPC_TP_MIB; 5354 break; 5355 default: 5356 goto indirect_access; 5357 } 5358 5359 if (t4_use_ldst(adap)) 5360 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5361 sleep_ok); 5362 5363indirect_access: 5364 5365 if (rc) { 5366 if (rw) 5367 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5368 start_index); 5369 else 5370 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5371 start_index); 5372 } 5373} 5374 5375/** 5376 * t4_tp_pio_read - Read TP PIO registers 5377 * @adap: the adapter 5378 * @buff: where the indirect register values are written 5379 * @nregs: how many indirect registers to read 5380 * @start_index: index of first indirect register to read 5381 * @sleep_ok: if true we may sleep while awaiting command completion 5382 * 5383 * Read TP PIO Registers 5384 **/ 5385void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5386 u32 start_index, bool sleep_ok) 5387{ 5388 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5389 start_index, 1, sleep_ok); 5390} 5391 5392/** 5393 * t4_tp_pio_write - Write TP PIO registers 5394 * @adap: the adapter 5395 * @buff: where the indirect register values are stored 5396 * @nregs: how many indirect registers to write 5397 * @start_index: index of first indirect register to write 5398 * @sleep_ok: if true we may sleep while awaiting command completion 5399 * 5400 * Write TP PIO Registers 5401 **/ 5402static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs, 5403 u32 start_index, bool sleep_ok) 5404{ 5405 t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs, 5406 start_index, 0, sleep_ok); 5407} 5408 5409/** 5410 * t4_tp_tm_pio_read - Read TP TM PIO registers 5411 * @adap: the adapter 5412 * @buff: where the indirect register values are written 5413 * @nregs: how many indirect registers to read 5414 * @start_index: index of first indirect register to read 5415 * @sleep_ok: if true we may sleep while awaiting command completion 5416 * 5417 * Read TP TM PIO Registers 5418 **/ 5419void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5420 u32 start_index, bool sleep_ok) 5421{ 5422 t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff, 5423 nregs, start_index, 1, sleep_ok); 5424} 5425 5426/** 5427 * t4_tp_mib_read - Read TP MIB registers 5428 * @adap: the adapter 5429 * @buff: where the indirect register values are written 5430 * @nregs: how many indirect registers to read 5431 * @start_index: index of first indirect register to read 5432 * @sleep_ok: if true we may sleep while awaiting command completion 5433 * 5434 * Read TP MIB Registers 5435 **/ 5436void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5437 bool sleep_ok) 5438{ 5439 t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs, 5440 start_index, 1, sleep_ok); 5441} 5442 5443/** 5444 * t4_read_rss_key - read the global RSS key 5445 * @adap: the adapter 5446 * @key: 10-entry array holding the 320-bit RSS key 5447 * @sleep_ok: if true we may sleep while awaiting command completion 5448 * 5449 * Reads the global 320-bit RSS key. 5450 */ 5451void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5452{ 5453 t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5454} 5455 5456/** 5457 * t4_write_rss_key - program one of the RSS keys 5458 * @adap: the adapter 5459 * @key: 10-entry array holding the 320-bit RSS key 5460 * @idx: which RSS key to write 5461 * @sleep_ok: if true we may sleep while awaiting command completion 5462 * 5463 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5464 * 0..15 the corresponding entry in the RSS key table is written, 5465 * otherwise the global RSS key is written. 5466 */ 5467void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5468 bool sleep_ok) 5469{ 5470 u8 rss_key_addr_cnt = 16; 5471 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A); 5472 5473 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5474 * allows access to key addresses 16-63 by using KeyWrAddrX 5475 * as index[5:4](upper 2) into key table 5476 */ 5477 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) && 5478 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3)) 5479 rss_key_addr_cnt = 32; 5480 5481 t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok); 5482 5483 if (idx >= 0 && idx < rss_key_addr_cnt) { 5484 if (rss_key_addr_cnt > 16) 5485 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5486 KEYWRADDRX_V(idx >> 4) | 5487 T6_VFWRADDR_V(idx) | KEYWREN_F); 5488 else 5489 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A, 5490 KEYWRADDR_V(idx) | KEYWREN_F); 5491 } 5492} 5493 5494/** 5495 * t4_read_rss_pf_config - read PF RSS Configuration Table 5496 * @adapter: the adapter 5497 * @index: the entry in the PF RSS table to read 5498 * @valp: where to store the returned value 5499 * @sleep_ok: if true we may sleep while awaiting command completion 5500 * 5501 * Reads the PF RSS Configuration Table at the specified index and returns 5502 * the value found there. 5503 */ 5504void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5505 u32 *valp, bool sleep_ok) 5506{ 5507 t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok); 5508} 5509 5510/** 5511 * t4_read_rss_vf_config - read VF RSS Configuration Table 5512 * @adapter: the adapter 5513 * @index: the entry in the VF RSS table to read 5514 * @vfl: where to store the returned VFL 5515 * @vfh: where to store the returned VFH 5516 * @sleep_ok: if true we may sleep while awaiting command completion 5517 * 5518 * Reads the VF RSS Configuration Table at the specified index and returns 5519 * the (VFL, VFH) values found there. 5520 */ 5521void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5522 u32 *vfl, u32 *vfh, bool sleep_ok) 5523{ 5524 u32 vrt, mask, data; 5525 5526 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 5527 mask = VFWRADDR_V(VFWRADDR_M); 5528 data = VFWRADDR_V(index); 5529 } else { 5530 mask = T6_VFWRADDR_V(T6_VFWRADDR_M); 5531 data = T6_VFWRADDR_V(index); 5532 } 5533 5534 /* Request that the index'th VF Table values be read into VFL/VFH. 5535 */ 5536 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A); 5537 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask); 5538 vrt |= data | VFRDEN_F; 5539 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt); 5540 5541 /* Grab the VFL/VFH values ... 5542 */ 5543 t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok); 5544 t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok); 5545} 5546 5547/** 5548 * t4_read_rss_pf_map - read PF RSS Map 5549 * @adapter: the adapter 5550 * @sleep_ok: if true we may sleep while awaiting command completion 5551 * 5552 * Reads the PF RSS Map register and returns its value. 5553 */ 5554u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5555{ 5556 u32 pfmap; 5557 5558 t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok); 5559 return pfmap; 5560} 5561 5562/** 5563 * t4_read_rss_pf_mask - read PF RSS Mask 5564 * @adapter: the adapter 5565 * @sleep_ok: if true we may sleep while awaiting command completion 5566 * 5567 * Reads the PF RSS Mask register and returns its value. 5568 */ 5569u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5570{ 5571 u32 pfmask; 5572 5573 t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok); 5574 return pfmask; 5575} 5576 5577/** 5578 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 5579 * @adap: the adapter 5580 * @v4: holds the TCP/IP counter values 5581 * @v6: holds the TCP/IPv6 counter values 5582 * @sleep_ok: if true we may sleep while awaiting command completion 5583 * 5584 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 5585 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 5586 */ 5587void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 5588 struct tp_tcp_stats *v6, bool sleep_ok) 5589{ 5590 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1]; 5591 5592#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A) 5593#define STAT(x) val[STAT_IDX(x)] 5594#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 5595 5596 if (v4) { 5597 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5598 TP_MIB_TCP_OUT_RST_A, sleep_ok); 5599 v4->tcp_out_rsts = STAT(OUT_RST); 5600 v4->tcp_in_segs = STAT64(IN_SEG); 5601 v4->tcp_out_segs = STAT64(OUT_SEG); 5602 v4->tcp_retrans_segs = STAT64(RXT_SEG); 5603 } 5604 if (v6) { 5605 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 5606 TP_MIB_TCP_V6OUT_RST_A, sleep_ok); 5607 v6->tcp_out_rsts = STAT(OUT_RST); 5608 v6->tcp_in_segs = STAT64(IN_SEG); 5609 v6->tcp_out_segs = STAT64(OUT_SEG); 5610 v6->tcp_retrans_segs = STAT64(RXT_SEG); 5611 } 5612#undef STAT64 5613#undef STAT 5614#undef STAT_IDX 5615} 5616 5617/** 5618 * t4_tp_get_err_stats - read TP's error MIB counters 5619 * @adap: the adapter 5620 * @st: holds the counter values 5621 * @sleep_ok: if true we may sleep while awaiting command completion 5622 * 5623 * Returns the values of TP's error counters. 5624 */ 5625void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 5626 bool sleep_ok) 5627{ 5628 int nchan = adap->params.arch.nchan; 5629 5630 t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A, 5631 sleep_ok); 5632 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A, 5633 sleep_ok); 5634 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A, 5635 sleep_ok); 5636 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 5637 TP_MIB_TNL_CNG_DROP_0_A, sleep_ok); 5638 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 5639 TP_MIB_OFD_CHN_DROP_0_A, sleep_ok); 5640 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A, 5641 sleep_ok); 5642 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 5643 TP_MIB_OFD_VLN_DROP_0_A, sleep_ok); 5644 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 5645 TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok); 5646 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A, 5647 sleep_ok); 5648} 5649 5650/** 5651 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 5652 * @adap: the adapter 5653 * @st: holds the counter values 5654 * @sleep_ok: if true we may sleep while awaiting command completion 5655 * 5656 * Returns the values of TP's CPL counters. 5657 */ 5658void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 5659 bool sleep_ok) 5660{ 5661 int nchan = adap->params.arch.nchan; 5662 5663 t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok); 5664 5665 t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok); 5666} 5667 5668/** 5669 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 5670 * @adap: the adapter 5671 * @st: holds the counter values 5672 * @sleep_ok: if true we may sleep while awaiting command completion 5673 * 5674 * Returns the values of TP's RDMA counters. 5675 */ 5676void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 5677 bool sleep_ok) 5678{ 5679 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A, 5680 sleep_ok); 5681} 5682 5683/** 5684 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 5685 * @adap: the adapter 5686 * @idx: the port index 5687 * @st: holds the counter values 5688 * @sleep_ok: if true we may sleep while awaiting command completion 5689 * 5690 * Returns the values of TP's FCoE counters for the selected port. 5691 */ 5692void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 5693 struct tp_fcoe_stats *st, bool sleep_ok) 5694{ 5695 u32 val[2]; 5696 5697 t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx, 5698 sleep_ok); 5699 5700 t4_tp_mib_read(adap, &st->frames_drop, 1, 5701 TP_MIB_FCOE_DROP_0_A + idx, sleep_ok); 5702 5703 t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx, 5704 sleep_ok); 5705 5706 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 5707} 5708 5709/** 5710 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 5711 * @adap: the adapter 5712 * @st: holds the counter values 5713 * @sleep_ok: if true we may sleep while awaiting command completion 5714 * 5715 * Returns the values of TP's counters for non-TCP directly-placed packets. 5716 */ 5717void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 5718 bool sleep_ok) 5719{ 5720 u32 val[4]; 5721 5722 t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok); 5723 st->frames = val[0]; 5724 st->drops = val[1]; 5725 st->octets = ((u64)val[2] << 32) | val[3]; 5726} 5727 5728/** 5729 * t4_read_mtu_tbl - returns the values in the HW path MTU table 5730 * @adap: the adapter 5731 * @mtus: where to store the MTU values 5732 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 5733 * 5734 * Reads the HW path MTU table. 5735 */ 5736void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 5737{ 5738 u32 v; 5739 int i; 5740 5741 for (i = 0; i < NMTUS; ++i) { 5742 t4_write_reg(adap, TP_MTU_TABLE_A, 5743 MTUINDEX_V(0xff) | MTUVALUE_V(i)); 5744 v = t4_read_reg(adap, TP_MTU_TABLE_A); 5745 mtus[i] = MTUVALUE_G(v); 5746 if (mtu_log) 5747 mtu_log[i] = MTUWIDTH_G(v); 5748 } 5749} 5750 5751/** 5752 * t4_read_cong_tbl - reads the congestion control table 5753 * @adap: the adapter 5754 * @incr: where to store the alpha values 5755 * 5756 * Reads the additive increments programmed into the HW congestion 5757 * control table. 5758 */ 5759void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 5760{ 5761 unsigned int mtu, w; 5762 5763 for (mtu = 0; mtu < NMTUS; ++mtu) 5764 for (w = 0; w < NCCTRL_WIN; ++w) { 5765 t4_write_reg(adap, TP_CCTRL_TABLE_A, 5766 ROWINDEX_V(0xffff) | (mtu << 5) | w); 5767 incr[mtu][w] = (u16)t4_read_reg(adap, 5768 TP_CCTRL_TABLE_A) & 0x1fff; 5769 } 5770} 5771 5772/** 5773 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 5774 * @adap: the adapter 5775 * @addr: the indirect TP register address 5776 * @mask: specifies the field within the register to modify 5777 * @val: new value for the field 5778 * 5779 * Sets a field of an indirect TP register to the given value. 5780 */ 5781void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 5782 unsigned int mask, unsigned int val) 5783{ 5784 t4_write_reg(adap, TP_PIO_ADDR_A, addr); 5785 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask; 5786 t4_write_reg(adap, TP_PIO_DATA_A, val); 5787} 5788 5789/** 5790 * init_cong_ctrl - initialize congestion control parameters 5791 * @a: the alpha values for congestion control 5792 * @b: the beta values for congestion control 5793 * 5794 * Initialize the congestion control parameters. 5795 */ 5796static void init_cong_ctrl(unsigned short *a, unsigned short *b) 5797{ 5798 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 5799 a[9] = 2; 5800 a[10] = 3; 5801 a[11] = 4; 5802 a[12] = 5; 5803 a[13] = 6; 5804 a[14] = 7; 5805 a[15] = 8; 5806 a[16] = 9; 5807 a[17] = 10; 5808 a[18] = 14; 5809 a[19] = 17; 5810 a[20] = 21; 5811 a[21] = 25; 5812 a[22] = 30; 5813 a[23] = 35; 5814 a[24] = 45; 5815 a[25] = 60; 5816 a[26] = 80; 5817 a[27] = 100; 5818 a[28] = 200; 5819 a[29] = 300; 5820 a[30] = 400; 5821 a[31] = 500; 5822 5823 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 5824 b[9] = b[10] = 1; 5825 b[11] = b[12] = 2; 5826 b[13] = b[14] = b[15] = b[16] = 3; 5827 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 5828 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 5829 b[28] = b[29] = 6; 5830 b[30] = b[31] = 7; 5831} 5832 5833/* The minimum additive increment value for the congestion control table */ 5834#define CC_MIN_INCR 2U 5835 5836/** 5837 * t4_load_mtus - write the MTU and congestion control HW tables 5838 * @adap: the adapter 5839 * @mtus: the values for the MTU table 5840 * @alpha: the values for the congestion control alpha parameter 5841 * @beta: the values for the congestion control beta parameter 5842 * 5843 * Write the HW MTU table with the supplied MTUs and the high-speed 5844 * congestion control table with the supplied alpha, beta, and MTUs. 5845 * We write the two tables together because the additive increments 5846 * depend on the MTUs. 5847 */ 5848void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 5849 const unsigned short *alpha, const unsigned short *beta) 5850{ 5851 static const unsigned int avg_pkts[NCCTRL_WIN] = { 5852 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 5853 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 5854 28672, 40960, 57344, 81920, 114688, 163840, 229376 5855 }; 5856 5857 unsigned int i, w; 5858 5859 for (i = 0; i < NMTUS; ++i) { 5860 unsigned int mtu = mtus[i]; 5861 unsigned int log2 = fls(mtu); 5862 5863 if (!(mtu & ((1 << log2) >> 2))) /* round */ 5864 log2--; 5865 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) | 5866 MTUWIDTH_V(log2) | MTUVALUE_V(mtu)); 5867 5868 for (w = 0; w < NCCTRL_WIN; ++w) { 5869 unsigned int inc; 5870 5871 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 5872 CC_MIN_INCR); 5873 5874 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) | 5875 (w << 16) | (beta[w] << 13) | inc); 5876 } 5877 } 5878} 5879 5880/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core 5881 * clocks. The formula is 5882 * 5883 * bytes/s = bytes256 * 256 * ClkFreq / 4096 5884 * 5885 * which is equivalent to 5886 * 5887 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 5888 */ 5889static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 5890{ 5891 u64 v = bytes256 * adap->params.vpd.cclk; 5892 5893 return v * 62 + v / 2; 5894} 5895 5896/** 5897 * t4_get_chan_txrate - get the current per channel Tx rates 5898 * @adap: the adapter 5899 * @nic_rate: rates for NIC traffic 5900 * @ofld_rate: rates for offloaded traffic 5901 * 5902 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 5903 * for each channel. 5904 */ 5905void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 5906{ 5907 u32 v; 5908 5909 v = t4_read_reg(adap, TP_TX_TRATE_A); 5910 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v)); 5911 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v)); 5912 if (adap->params.arch.nchan == NCHAN) { 5913 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v)); 5914 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v)); 5915 } 5916 5917 v = t4_read_reg(adap, TP_TX_ORATE_A); 5918 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v)); 5919 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v)); 5920 if (adap->params.arch.nchan == NCHAN) { 5921 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v)); 5922 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v)); 5923 } 5924} 5925 5926/** 5927 * t4_set_trace_filter - configure one of the tracing filters 5928 * @adap: the adapter 5929 * @tp: the desired trace filter parameters 5930 * @idx: which filter to configure 5931 * @enable: whether to enable or disable the filter 5932 * 5933 * Configures one of the tracing filters available in HW. If @enable is 5934 * %0 @tp is not examined and may be %NULL. The user is responsible to 5935 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register 5936 */ 5937int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 5938 int idx, int enable) 5939{ 5940 int i, ofst = idx * 4; 5941 u32 data_reg, mask_reg, cfg; 5942 5943 if (!enable) { 5944 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5945 return 0; 5946 } 5947 5948 cfg = t4_read_reg(adap, MPS_TRC_CFG_A); 5949 if (cfg & TRCMULTIFILTER_F) { 5950 /* If multiple tracers are enabled, then maximum 5951 * capture size is 2.5KB (FIFO size of a single channel) 5952 * minus 2 flits for CPL_TRACE_PKT header. 5953 */ 5954 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 5955 return -EINVAL; 5956 } else { 5957 /* If multiple tracers are disabled, to avoid deadlocks 5958 * maximum packet capture size of 9600 bytes is recommended. 5959 * Also in this mode, only trace0 can be enabled and running. 5960 */ 5961 if (tp->snap_len > 9600 || idx) 5962 return -EINVAL; 5963 } 5964 5965 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 || 5966 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M || 5967 tp->min_len > TFMINPKTSIZE_M) 5968 return -EINVAL; 5969 5970 /* stop the tracer we'll be changing */ 5971 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0); 5972 5973 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A); 5974 data_reg = MPS_TRC_FILTER0_MATCH_A + idx; 5975 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx; 5976 5977 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 5978 t4_write_reg(adap, data_reg, tp->data[i]); 5979 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 5980 } 5981 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst, 5982 TFCAPTUREMAX_V(tp->snap_len) | 5983 TFMINPKTSIZE_V(tp->min_len)); 5984 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 5985 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) | 5986 (is_t4(adap->params.chip) ? 5987 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) : 5988 T5_TFPORT_V(tp->port) | T5_TFEN_F | 5989 T5_TFINVERTMATCH_V(tp->invert))); 5990 5991 return 0; 5992} 5993 5994/** 5995 * t4_get_trace_filter - query one of the tracing filters 5996 * @adap: the adapter 5997 * @tp: the current trace filter parameters 5998 * @idx: which trace filter to query 5999 * @enabled: non-zero if the filter is enabled 6000 * 6001 * Returns the current settings of one of the HW tracing filters. 6002 */ 6003void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6004 int *enabled) 6005{ 6006 u32 ctla, ctlb; 6007 int i, ofst = idx * 4; 6008 u32 data_reg, mask_reg; 6009 6010 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst); 6011 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst); 6012 6013 if (is_t4(adap->params.chip)) { 6014 *enabled = !!(ctla & TFEN_F); 6015 tp->port = TFPORT_G(ctla); 6016 tp->invert = !!(ctla & TFINVERTMATCH_F); 6017 } else { 6018 *enabled = !!(ctla & T5_TFEN_F); 6019 tp->port = T5_TFPORT_G(ctla); 6020 tp->invert = !!(ctla & T5_TFINVERTMATCH_F); 6021 } 6022 tp->snap_len = TFCAPTUREMAX_G(ctlb); 6023 tp->min_len = TFMINPKTSIZE_G(ctlb); 6024 tp->skip_ofst = TFOFFSET_G(ctla); 6025 tp->skip_len = TFLENGTH_G(ctla); 6026 6027 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx; 6028 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst; 6029 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst; 6030 6031 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6032 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6033 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6034 } 6035} 6036 6037/** 6038 * t4_pmtx_get_stats - returns the HW stats from PMTX 6039 * @adap: the adapter 6040 * @cnt: where to store the count statistics 6041 * @cycles: where to store the cycle statistics 6042 * 6043 * Returns performance statistics from PMTX. 6044 */ 6045void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6046{ 6047 int i; 6048 u32 data[2]; 6049 6050 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6051 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1); 6052 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A); 6053 if (is_t4(adap->params.chip)) { 6054 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A); 6055 } else { 6056 t4_read_indirect(adap, PM_TX_DBG_CTRL_A, 6057 PM_TX_DBG_DATA_A, data, 2, 6058 PM_TX_DBG_STAT_MSB_A); 6059 cycles[i] = (((u64)data[0] << 32) | data[1]); 6060 } 6061 } 6062} 6063 6064/** 6065 * t4_pmrx_get_stats - returns the HW stats from PMRX 6066 * @adap: the adapter 6067 * @cnt: where to store the count statistics 6068 * @cycles: where to store the cycle statistics 6069 * 6070 * Returns performance statistics from PMRX. 6071 */ 6072void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6073{ 6074 int i; 6075 u32 data[2]; 6076 6077 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) { 6078 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1); 6079 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A); 6080 if (is_t4(adap->params.chip)) { 6081 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A); 6082 } else { 6083 t4_read_indirect(adap, PM_RX_DBG_CTRL_A, 6084 PM_RX_DBG_DATA_A, data, 2, 6085 PM_RX_DBG_STAT_MSB_A); 6086 cycles[i] = (((u64)data[0] << 32) | data[1]); 6087 } 6088 } 6089} 6090 6091/** 6092 * compute_mps_bg_map - compute the MPS Buffer Group Map for a Port 6093 * @adapter: the adapter 6094 * @pidx: the port index 6095 * 6096 * Computes and returns a bitmap indicating which MPS buffer groups are 6097 * associated with the given Port. Bit i is set if buffer group i is 6098 * used by the Port. 6099 */ 6100static inline unsigned int compute_mps_bg_map(struct adapter *adapter, 6101 int pidx) 6102{ 6103 unsigned int chip_version, nports; 6104 6105 chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6106 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6107 6108 switch (chip_version) { 6109 case CHELSIO_T4: 6110 case CHELSIO_T5: 6111 switch (nports) { 6112 case 1: return 0xf; 6113 case 2: return 3 << (2 * pidx); 6114 case 4: return 1 << pidx; 6115 } 6116 break; 6117 6118 case CHELSIO_T6: 6119 switch (nports) { 6120 case 2: return 1 << (2 * pidx); 6121 } 6122 break; 6123 } 6124 6125 dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n", 6126 chip_version, nports); 6127 6128 return 0; 6129} 6130 6131/** 6132 * t4_get_mps_bg_map - return the buffer groups associated with a port 6133 * @adapter: the adapter 6134 * @pidx: the port index 6135 * 6136 * Returns a bitmap indicating which MPS buffer groups are associated 6137 * with the given Port. Bit i is set if buffer group i is used by the 6138 * Port. 6139 */ 6140unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx) 6141{ 6142 u8 *mps_bg_map; 6143 unsigned int nports; 6144 6145 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6146 if (pidx >= nports) { 6147 CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n", 6148 pidx, nports); 6149 return 0; 6150 } 6151 6152 /* If we've already retrieved/computed this, just return the result. 6153 */ 6154 mps_bg_map = adapter->params.mps_bg_map; 6155 if (mps_bg_map[pidx]) 6156 return mps_bg_map[pidx]; 6157 6158 /* Newer Firmware can tell us what the MPS Buffer Group Map is. 6159 * If we're talking to such Firmware, let it tell us. If the new 6160 * API isn't supported, revert back to old hardcoded way. The value 6161 * obtained from Firmware is encoded in below format: 6162 * 6163 * val = (( MPSBGMAP[Port 3] << 24 ) | 6164 * ( MPSBGMAP[Port 2] << 16 ) | 6165 * ( MPSBGMAP[Port 1] << 8 ) | 6166 * ( MPSBGMAP[Port 0] << 0 )) 6167 */ 6168 if (adapter->flags & CXGB4_FW_OK) { 6169 u32 param, val; 6170 int ret; 6171 6172 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6173 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP)); 6174 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6175 0, 1, ¶m, &val); 6176 if (!ret) { 6177 int p; 6178 6179 /* Store the BG Map for all of the Ports in order to 6180 * avoid more calls to the Firmware in the future. 6181 */ 6182 for (p = 0; p < MAX_NPORTS; p++, val >>= 8) 6183 mps_bg_map[p] = val & 0xff; 6184 6185 return mps_bg_map[pidx]; 6186 } 6187 } 6188 6189 /* Either we're not talking to the Firmware or we're dealing with 6190 * older Firmware which doesn't support the new API to get the MPS 6191 * Buffer Group Map. Fall back to computing it ourselves. 6192 */ 6193 mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx); 6194 return mps_bg_map[pidx]; 6195} 6196 6197/** 6198 * t4_get_tp_e2c_map - return the E2C channel map associated with a port 6199 * @adapter: the adapter 6200 * @pidx: the port index 6201 */ 6202static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx) 6203{ 6204 unsigned int nports; 6205 u32 param, val = 0; 6206 int ret; 6207 6208 nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A)); 6209 if (pidx >= nports) { 6210 CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n", 6211 pidx, nports); 6212 return 0; 6213 } 6214 6215 /* FW version >= 1.16.44.0 can determine E2C channel map using 6216 * FW_PARAMS_PARAM_DEV_TPCHMAP API. 6217 */ 6218 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6219 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6220 ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf, 6221 0, 1, ¶m, &val); 6222 if (!ret) 6223 return (val >> (8 * pidx)) & 0xff; 6224 6225 return 0; 6226} 6227 6228/** 6229 * t4_get_tp_ch_map - return TP ingress channels associated with a port 6230 * @adap: the adapter 6231 * @pidx: the port index 6232 * 6233 * Returns a bitmap indicating which TP Ingress Channels are associated 6234 * with a given Port. Bit i is set if TP Ingress Channel i is used by 6235 * the Port. 6236 */ 6237unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx) 6238{ 6239 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip); 6240 unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A)); 6241 6242 if (pidx >= nports) { 6243 dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n", 6244 pidx, nports); 6245 return 0; 6246 } 6247 6248 switch (chip_version) { 6249 case CHELSIO_T4: 6250 case CHELSIO_T5: 6251 /* Note that this happens to be the same values as the MPS 6252 * Buffer Group Map for these Chips. But we replicate the code 6253 * here because they're really separate concepts. 6254 */ 6255 switch (nports) { 6256 case 1: return 0xf; 6257 case 2: return 3 << (2 * pidx); 6258 case 4: return 1 << pidx; 6259 } 6260 break; 6261 6262 case CHELSIO_T6: 6263 switch (nports) { 6264 case 1: 6265 case 2: return 1 << pidx; 6266 } 6267 break; 6268 } 6269 6270 dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n", 6271 chip_version, nports); 6272 return 0; 6273} 6274 6275/** 6276 * t4_get_port_type_description - return Port Type string description 6277 * @port_type: firmware Port Type enumeration 6278 */ 6279const char *t4_get_port_type_description(enum fw_port_type port_type) 6280{ 6281 static const char *const port_type_description[] = { 6282 "Fiber_XFI", 6283 "Fiber_XAUI", 6284 "BT_SGMII", 6285 "BT_XFI", 6286 "BT_XAUI", 6287 "KX4", 6288 "CX4", 6289 "KX", 6290 "KR", 6291 "SFP", 6292 "BP_AP", 6293 "BP4_AP", 6294 "QSFP_10G", 6295 "QSA", 6296 "QSFP", 6297 "BP40_BA", 6298 "KR4_100G", 6299 "CR4_QSFP", 6300 "CR_QSFP", 6301 "CR2_QSFP", 6302 "SFP28", 6303 "KR_SFP28", 6304 "KR_XLAUI" 6305 }; 6306 6307 if (port_type < ARRAY_SIZE(port_type_description)) 6308 return port_type_description[port_type]; 6309 return "UNKNOWN"; 6310} 6311 6312/** 6313 * t4_get_port_stats_offset - collect port stats relative to a previous 6314 * snapshot 6315 * @adap: The adapter 6316 * @idx: The port 6317 * @stats: Current stats to fill 6318 * @offset: Previous stats snapshot 6319 */ 6320void t4_get_port_stats_offset(struct adapter *adap, int idx, 6321 struct port_stats *stats, 6322 struct port_stats *offset) 6323{ 6324 u64 *s, *o; 6325 int i; 6326 6327 t4_get_port_stats(adap, idx, stats); 6328 for (i = 0, s = (u64 *)stats, o = (u64 *)offset; 6329 i < (sizeof(struct port_stats) / sizeof(u64)); 6330 i++, s++, o++) 6331 *s -= *o; 6332} 6333 6334/** 6335 * t4_get_port_stats - collect port statistics 6336 * @adap: the adapter 6337 * @idx: the port index 6338 * @p: the stats structure to fill 6339 * 6340 * Collect statistics related to the given port from HW. 6341 */ 6342void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6343{ 6344 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6345 u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A); 6346 6347#define GET_STAT(name) \ 6348 t4_read_reg64(adap, \ 6349 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ 6350 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) 6351#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6352 6353 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6354 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6355 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6356 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6357 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6358 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6359 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6360 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6361 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6362 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6363 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6364 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6365 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6366 p->tx_drop = GET_STAT(TX_PORT_DROP); 6367 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6368 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6369 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6370 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6371 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6372 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6373 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6374 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6375 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6376 6377 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6378 if (stat_ctl & COUNTPAUSESTATTX_F) 6379 p->tx_frames_64 -= p->tx_pause; 6380 if (stat_ctl & COUNTPAUSEMCTX_F) 6381 p->tx_mcast_frames -= p->tx_pause; 6382 } 6383 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6384 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6385 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6386 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6387 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6388 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6389 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6390 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6391 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6392 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6393 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6394 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6395 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6396 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6397 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6398 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6399 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6400 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6401 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6402 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6403 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6404 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6405 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6406 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6407 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6408 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6409 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6410 6411 if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) { 6412 if (stat_ctl & COUNTPAUSESTATRX_F) 6413 p->rx_frames_64 -= p->rx_pause; 6414 if (stat_ctl & COUNTPAUSEMCRX_F) 6415 p->rx_mcast_frames -= p->rx_pause; 6416 } 6417 6418 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6419 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6420 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6421 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6422 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6423 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6424 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6425 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6426 6427#undef GET_STAT 6428#undef GET_STAT_COM 6429} 6430 6431/** 6432 * t4_get_lb_stats - collect loopback port statistics 6433 * @adap: the adapter 6434 * @idx: the loopback port index 6435 * @p: the stats structure to fill 6436 * 6437 * Return HW statistics for the given loopback port. 6438 */ 6439void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6440{ 6441 u32 bgmap = t4_get_mps_bg_map(adap, idx); 6442 6443#define GET_STAT(name) \ 6444 t4_read_reg64(adap, \ 6445 (is_t4(adap->params.chip) ? \ 6446 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6447 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L))) 6448#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) 6449 6450 p->octets = GET_STAT(BYTES); 6451 p->frames = GET_STAT(FRAMES); 6452 p->bcast_frames = GET_STAT(BCAST); 6453 p->mcast_frames = GET_STAT(MCAST); 6454 p->ucast_frames = GET_STAT(UCAST); 6455 p->error_frames = GET_STAT(ERROR); 6456 6457 p->frames_64 = GET_STAT(64B); 6458 p->frames_65_127 = GET_STAT(65B_127B); 6459 p->frames_128_255 = GET_STAT(128B_255B); 6460 p->frames_256_511 = GET_STAT(256B_511B); 6461 p->frames_512_1023 = GET_STAT(512B_1023B); 6462 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6463 p->frames_1519_max = GET_STAT(1519B_MAX); 6464 p->drop = GET_STAT(DROP_FRAMES); 6465 6466 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6467 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6468 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6469 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6470 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6471 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6472 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6473 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6474 6475#undef GET_STAT 6476#undef GET_STAT_COM 6477} 6478 6479/* t4_mk_filtdelwr - create a delete filter WR 6480 * @ftid: the filter ID 6481 * @wr: the filter work request to populate 6482 * @qid: ingress queue to receive the delete notification 6483 * 6484 * Creates a filter work request to delete the supplied filter. If @qid is 6485 * negative the delete notification is suppressed. 6486 */ 6487void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 6488{ 6489 memset(wr, 0, sizeof(*wr)); 6490 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR)); 6491 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16)); 6492 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) | 6493 FW_FILTER_WR_NOREPLY_V(qid < 0)); 6494 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F); 6495 if (qid >= 0) 6496 wr->rx_chan_rx_rpl_iq = 6497 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid)); 6498} 6499 6500#define INIT_CMD(var, cmd, rd_wr) do { \ 6501 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \ 6502 FW_CMD_REQUEST_F | \ 6503 FW_CMD_##rd_wr##_F); \ 6504 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 6505} while (0) 6506 6507int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 6508 u32 addr, u32 val) 6509{ 6510 u32 ldst_addrspace; 6511 struct fw_ldst_cmd c; 6512 6513 memset(&c, 0, sizeof(c)); 6514 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE); 6515 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6516 FW_CMD_REQUEST_F | 6517 FW_CMD_WRITE_F | 6518 ldst_addrspace); 6519 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6520 c.u.addrval.addr = cpu_to_be32(addr); 6521 c.u.addrval.val = cpu_to_be32(val); 6522 6523 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6524} 6525 6526/** 6527 * t4_mdio_rd - read a PHY register through MDIO 6528 * @adap: the adapter 6529 * @mbox: mailbox to use for the FW command 6530 * @phy_addr: the PHY address 6531 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6532 * @reg: the register to read 6533 * @valp: where to store the value 6534 * 6535 * Issues a FW command through the given mailbox to read a PHY register. 6536 */ 6537int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6538 unsigned int mmd, unsigned int reg, u16 *valp) 6539{ 6540 int ret; 6541 u32 ldst_addrspace; 6542 struct fw_ldst_cmd c; 6543 6544 memset(&c, 0, sizeof(c)); 6545 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6546 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6547 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6548 ldst_addrspace); 6549 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6550 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6551 FW_LDST_CMD_MMD_V(mmd)); 6552 c.u.mdio.raddr = cpu_to_be16(reg); 6553 6554 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6555 if (ret == 0) 6556 *valp = be16_to_cpu(c.u.mdio.rval); 6557 return ret; 6558} 6559 6560/** 6561 * t4_mdio_wr - write a PHY register through MDIO 6562 * @adap: the adapter 6563 * @mbox: mailbox to use for the FW command 6564 * @phy_addr: the PHY address 6565 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 6566 * @reg: the register to write 6567 * @val: value to write 6568 * 6569 * Issues a FW command through the given mailbox to write a PHY register. 6570 */ 6571int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 6572 unsigned int mmd, unsigned int reg, u16 val) 6573{ 6574 u32 ldst_addrspace; 6575 struct fw_ldst_cmd c; 6576 6577 memset(&c, 0, sizeof(c)); 6578 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO); 6579 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6580 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 6581 ldst_addrspace); 6582 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6583 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) | 6584 FW_LDST_CMD_MMD_V(mmd)); 6585 c.u.mdio.raddr = cpu_to_be16(reg); 6586 c.u.mdio.rval = cpu_to_be16(val); 6587 6588 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6589} 6590 6591/** 6592 * t4_sge_decode_idma_state - decode the idma state 6593 * @adapter: the adapter 6594 * @state: the state idma is stuck in 6595 */ 6596void t4_sge_decode_idma_state(struct adapter *adapter, int state) 6597{ 6598 static const char * const t4_decode[] = { 6599 "IDMA_IDLE", 6600 "IDMA_PUSH_MORE_CPL_FIFO", 6601 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6602 "Not used", 6603 "IDMA_PHYSADDR_SEND_PCIEHDR", 6604 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6605 "IDMA_PHYSADDR_SEND_PAYLOAD", 6606 "IDMA_SEND_FIFO_TO_IMSG", 6607 "IDMA_FL_REQ_DATA_FL_PREP", 6608 "IDMA_FL_REQ_DATA_FL", 6609 "IDMA_FL_DROP", 6610 "IDMA_FL_H_REQ_HEADER_FL", 6611 "IDMA_FL_H_SEND_PCIEHDR", 6612 "IDMA_FL_H_PUSH_CPL_FIFO", 6613 "IDMA_FL_H_SEND_CPL", 6614 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6615 "IDMA_FL_H_SEND_IP_HDR", 6616 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6617 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6618 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6619 "IDMA_FL_D_SEND_PCIEHDR", 6620 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6621 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6622 "IDMA_FL_SEND_PCIEHDR", 6623 "IDMA_FL_PUSH_CPL_FIFO", 6624 "IDMA_FL_SEND_CPL", 6625 "IDMA_FL_SEND_PAYLOAD_FIRST", 6626 "IDMA_FL_SEND_PAYLOAD", 6627 "IDMA_FL_REQ_NEXT_DATA_FL", 6628 "IDMA_FL_SEND_NEXT_PCIEHDR", 6629 "IDMA_FL_SEND_PADDING", 6630 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6631 "IDMA_FL_SEND_FIFO_TO_IMSG", 6632 "IDMA_FL_REQ_DATAFL_DONE", 6633 "IDMA_FL_REQ_HEADERFL_DONE", 6634 }; 6635 static const char * const t5_decode[] = { 6636 "IDMA_IDLE", 6637 "IDMA_ALMOST_IDLE", 6638 "IDMA_PUSH_MORE_CPL_FIFO", 6639 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6640 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6641 "IDMA_PHYSADDR_SEND_PCIEHDR", 6642 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6643 "IDMA_PHYSADDR_SEND_PAYLOAD", 6644 "IDMA_SEND_FIFO_TO_IMSG", 6645 "IDMA_FL_REQ_DATA_FL", 6646 "IDMA_FL_DROP", 6647 "IDMA_FL_DROP_SEND_INC", 6648 "IDMA_FL_H_REQ_HEADER_FL", 6649 "IDMA_FL_H_SEND_PCIEHDR", 6650 "IDMA_FL_H_PUSH_CPL_FIFO", 6651 "IDMA_FL_H_SEND_CPL", 6652 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6653 "IDMA_FL_H_SEND_IP_HDR", 6654 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6655 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6656 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6657 "IDMA_FL_D_SEND_PCIEHDR", 6658 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6659 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6660 "IDMA_FL_SEND_PCIEHDR", 6661 "IDMA_FL_PUSH_CPL_FIFO", 6662 "IDMA_FL_SEND_CPL", 6663 "IDMA_FL_SEND_PAYLOAD_FIRST", 6664 "IDMA_FL_SEND_PAYLOAD", 6665 "IDMA_FL_REQ_NEXT_DATA_FL", 6666 "IDMA_FL_SEND_NEXT_PCIEHDR", 6667 "IDMA_FL_SEND_PADDING", 6668 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6669 }; 6670 static const char * const t6_decode[] = { 6671 "IDMA_IDLE", 6672 "IDMA_PUSH_MORE_CPL_FIFO", 6673 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 6674 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 6675 "IDMA_PHYSADDR_SEND_PCIEHDR", 6676 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 6677 "IDMA_PHYSADDR_SEND_PAYLOAD", 6678 "IDMA_FL_REQ_DATA_FL", 6679 "IDMA_FL_DROP", 6680 "IDMA_FL_DROP_SEND_INC", 6681 "IDMA_FL_H_REQ_HEADER_FL", 6682 "IDMA_FL_H_SEND_PCIEHDR", 6683 "IDMA_FL_H_PUSH_CPL_FIFO", 6684 "IDMA_FL_H_SEND_CPL", 6685 "IDMA_FL_H_SEND_IP_HDR_FIRST", 6686 "IDMA_FL_H_SEND_IP_HDR", 6687 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 6688 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 6689 "IDMA_FL_H_SEND_IP_HDR_PADDING", 6690 "IDMA_FL_D_SEND_PCIEHDR", 6691 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 6692 "IDMA_FL_D_REQ_NEXT_DATA_FL", 6693 "IDMA_FL_SEND_PCIEHDR", 6694 "IDMA_FL_PUSH_CPL_FIFO", 6695 "IDMA_FL_SEND_CPL", 6696 "IDMA_FL_SEND_PAYLOAD_FIRST", 6697 "IDMA_FL_SEND_PAYLOAD", 6698 "IDMA_FL_REQ_NEXT_DATA_FL", 6699 "IDMA_FL_SEND_NEXT_PCIEHDR", 6700 "IDMA_FL_SEND_PADDING", 6701 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 6702 }; 6703 static const u32 sge_regs[] = { 6704 SGE_DEBUG_DATA_LOW_INDEX_2_A, 6705 SGE_DEBUG_DATA_LOW_INDEX_3_A, 6706 SGE_DEBUG_DATA_HIGH_INDEX_10_A, 6707 }; 6708 const char **sge_idma_decode; 6709 int sge_idma_decode_nstates; 6710 int i; 6711 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip); 6712 6713 /* Select the right set of decode strings to dump depending on the 6714 * adapter chip type. 6715 */ 6716 switch (chip_version) { 6717 case CHELSIO_T4: 6718 sge_idma_decode = (const char **)t4_decode; 6719 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6720 break; 6721 6722 case CHELSIO_T5: 6723 sge_idma_decode = (const char **)t5_decode; 6724 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6725 break; 6726 6727 case CHELSIO_T6: 6728 sge_idma_decode = (const char **)t6_decode; 6729 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 6730 break; 6731 6732 default: 6733 dev_err(adapter->pdev_dev, 6734 "Unsupported chip version %d\n", chip_version); 6735 return; 6736 } 6737 6738 if (is_t4(adapter->params.chip)) { 6739 sge_idma_decode = (const char **)t4_decode; 6740 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 6741 } else { 6742 sge_idma_decode = (const char **)t5_decode; 6743 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 6744 } 6745 6746 if (state < sge_idma_decode_nstates) 6747 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 6748 else 6749 CH_WARN(adapter, "idma state %d unknown\n", state); 6750 6751 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 6752 CH_WARN(adapter, "SGE register %#x value %#x\n", 6753 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 6754} 6755 6756/** 6757 * t4_sge_ctxt_flush - flush the SGE context cache 6758 * @adap: the adapter 6759 * @mbox: mailbox to use for the FW command 6760 * @ctxt_type: Egress or Ingress 6761 * 6762 * Issues a FW command through the given mailbox to flush the 6763 * SGE context cache. 6764 */ 6765int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 6766{ 6767 int ret; 6768 u32 ldst_addrspace; 6769 struct fw_ldst_cmd c; 6770 6771 memset(&c, 0, sizeof(c)); 6772 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ? 6773 FW_LDST_ADDRSPC_SGE_EGRC : 6774 FW_LDST_ADDRSPC_SGE_INGC); 6775 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 6776 FW_CMD_REQUEST_F | FW_CMD_READ_F | 6777 ldst_addrspace); 6778 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 6779 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F); 6780 6781 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6782 return ret; 6783} 6784 6785/** 6786 * t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values 6787 * @adap: the adapter 6788 * @ndbqtimers: size of the provided SGE Doorbell Queue Timer table 6789 * @dbqtimers: SGE Doorbell Queue Timer table 6790 * 6791 * Reads the SGE Doorbell Queue Timer values into the provided table. 6792 * Returns 0 on success (Firmware and Hardware support this feature), 6793 * an error on failure. 6794 */ 6795int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers, 6796 u16 *dbqtimers) 6797{ 6798 int ret, dbqtimerix; 6799 6800 ret = 0; 6801 dbqtimerix = 0; 6802 while (dbqtimerix < ndbqtimers) { 6803 int nparams, param; 6804 u32 params[7], vals[7]; 6805 6806 nparams = ndbqtimers - dbqtimerix; 6807 if (nparams > ARRAY_SIZE(params)) 6808 nparams = ARRAY_SIZE(params); 6809 6810 for (param = 0; param < nparams; param++) 6811 params[param] = 6812 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 6813 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) | 6814 FW_PARAMS_PARAM_Y_V(dbqtimerix + param)); 6815 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6816 nparams, params, vals); 6817 if (ret) 6818 break; 6819 6820 for (param = 0; param < nparams; param++) 6821 dbqtimers[dbqtimerix++] = vals[param]; 6822 } 6823 return ret; 6824} 6825 6826/** 6827 * t4_fw_hello - establish communication with FW 6828 * @adap: the adapter 6829 * @mbox: mailbox to use for the FW command 6830 * @evt_mbox: mailbox to receive async FW events 6831 * @master: specifies the caller's willingness to be the device master 6832 * @state: returns the current device state (if non-NULL) 6833 * 6834 * Issues a command to establish communication with FW. Returns either 6835 * an error (negative integer) or the mailbox of the Master PF. 6836 */ 6837int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 6838 enum dev_master master, enum dev_state *state) 6839{ 6840 int ret; 6841 struct fw_hello_cmd c; 6842 u32 v; 6843 unsigned int master_mbox; 6844 int retries = FW_CMD_HELLO_RETRIES; 6845 6846retry: 6847 memset(&c, 0, sizeof(c)); 6848 INIT_CMD(c, HELLO, WRITE); 6849 c.err_to_clearinit = cpu_to_be32( 6850 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | 6851 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | 6852 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? 6853 mbox : FW_HELLO_CMD_MBMASTER_M) | 6854 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | 6855 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | 6856 FW_HELLO_CMD_CLEARINIT_F); 6857 6858 /* 6859 * Issue the HELLO command to the firmware. If it's not successful 6860 * but indicates that we got a "busy" or "timeout" condition, retry 6861 * the HELLO until we exhaust our retry limit. If we do exceed our 6862 * retry limit, check to see if the firmware left us any error 6863 * information and report that if so. 6864 */ 6865 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 6866 if (ret < 0) { 6867 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 6868 goto retry; 6869 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F) 6870 t4_report_fw_error(adap); 6871 return ret; 6872 } 6873 6874 v = be32_to_cpu(c.err_to_clearinit); 6875 master_mbox = FW_HELLO_CMD_MBMASTER_G(v); 6876 if (state) { 6877 if (v & FW_HELLO_CMD_ERR_F) 6878 *state = DEV_STATE_ERR; 6879 else if (v & FW_HELLO_CMD_INIT_F) 6880 *state = DEV_STATE_INIT; 6881 else 6882 *state = DEV_STATE_UNINIT; 6883 } 6884 6885 /* 6886 * If we're not the Master PF then we need to wait around for the 6887 * Master PF Driver to finish setting up the adapter. 6888 * 6889 * Note that we also do this wait if we're a non-Master-capable PF and 6890 * there is no current Master PF; a Master PF may show up momentarily 6891 * and we wouldn't want to fail pointlessly. (This can happen when an 6892 * OS loads lots of different drivers rapidly at the same time). In 6893 * this case, the Master PF returned by the firmware will be 6894 * PCIE_FW_MASTER_M so the test below will work ... 6895 */ 6896 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && 6897 master_mbox != mbox) { 6898 int waiting = FW_CMD_HELLO_TIMEOUT; 6899 6900 /* 6901 * Wait for the firmware to either indicate an error or 6902 * initialized state. If we see either of these we bail out 6903 * and report the issue to the caller. If we exhaust the 6904 * "hello timeout" and we haven't exhausted our retries, try 6905 * again. Otherwise bail with a timeout error. 6906 */ 6907 for (;;) { 6908 u32 pcie_fw; 6909 6910 msleep(50); 6911 waiting -= 50; 6912 6913 /* 6914 * If neither Error nor Initialized are indicated 6915 * by the firmware keep waiting till we exhaust our 6916 * timeout ... and then retry if we haven't exhausted 6917 * our retries ... 6918 */ 6919 pcie_fw = t4_read_reg(adap, PCIE_FW_A); 6920 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { 6921 if (waiting <= 0) { 6922 if (retries-- > 0) 6923 goto retry; 6924 6925 return -ETIMEDOUT; 6926 } 6927 continue; 6928 } 6929 6930 /* 6931 * We either have an Error or Initialized condition 6932 * report errors preferentially. 6933 */ 6934 if (state) { 6935 if (pcie_fw & PCIE_FW_ERR_F) 6936 *state = DEV_STATE_ERR; 6937 else if (pcie_fw & PCIE_FW_INIT_F) 6938 *state = DEV_STATE_INIT; 6939 } 6940 6941 /* 6942 * If we arrived before a Master PF was selected and 6943 * there's not a valid Master PF, grab its identity 6944 * for our caller. 6945 */ 6946 if (master_mbox == PCIE_FW_MASTER_M && 6947 (pcie_fw & PCIE_FW_MASTER_VLD_F)) 6948 master_mbox = PCIE_FW_MASTER_G(pcie_fw); 6949 break; 6950 } 6951 } 6952 6953 return master_mbox; 6954} 6955 6956/** 6957 * t4_fw_bye - end communication with FW 6958 * @adap: the adapter 6959 * @mbox: mailbox to use for the FW command 6960 * 6961 * Issues a command to terminate communication with FW. 6962 */ 6963int t4_fw_bye(struct adapter *adap, unsigned int mbox) 6964{ 6965 struct fw_bye_cmd c; 6966 6967 memset(&c, 0, sizeof(c)); 6968 INIT_CMD(c, BYE, WRITE); 6969 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6970} 6971 6972/** 6973 * t4_early_init - ask FW to initialize the device 6974 * @adap: the adapter 6975 * @mbox: mailbox to use for the FW command 6976 * 6977 * Issues a command to FW to partially initialize the device. This 6978 * performs initialization that generally doesn't depend on user input. 6979 */ 6980int t4_early_init(struct adapter *adap, unsigned int mbox) 6981{ 6982 struct fw_initialize_cmd c; 6983 6984 memset(&c, 0, sizeof(c)); 6985 INIT_CMD(c, INITIALIZE, WRITE); 6986 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 6987} 6988 6989/** 6990 * t4_fw_reset - issue a reset to FW 6991 * @adap: the adapter 6992 * @mbox: mailbox to use for the FW command 6993 * @reset: specifies the type of reset to perform 6994 * 6995 * Issues a reset command of the specified type to FW. 6996 */ 6997int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 6998{ 6999 struct fw_reset_cmd c; 7000 7001 memset(&c, 0, sizeof(c)); 7002 INIT_CMD(c, RESET, WRITE); 7003 c.val = cpu_to_be32(reset); 7004 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7005} 7006 7007/** 7008 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7009 * @adap: the adapter 7010 * @mbox: mailbox to use for the FW RESET command (if desired) 7011 * @force: force uP into RESET even if FW RESET command fails 7012 * 7013 * Issues a RESET command to firmware (if desired) with a HALT indication 7014 * and then puts the microprocessor into RESET state. The RESET command 7015 * will only be issued if a legitimate mailbox is provided (mbox <= 7016 * PCIE_FW_MASTER_M). 7017 * 7018 * This is generally used in order for the host to safely manipulate the 7019 * adapter without fear of conflicting with whatever the firmware might 7020 * be doing. The only way out of this state is to RESTART the firmware 7021 * ... 7022 */ 7023static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7024{ 7025 int ret = 0; 7026 7027 /* 7028 * If a legitimate mailbox is provided, issue a RESET command 7029 * with a HALT indication. 7030 */ 7031 if (mbox <= PCIE_FW_MASTER_M) { 7032 struct fw_reset_cmd c; 7033 7034 memset(&c, 0, sizeof(c)); 7035 INIT_CMD(c, RESET, WRITE); 7036 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F); 7037 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F); 7038 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7039 } 7040 7041 /* 7042 * Normally we won't complete the operation if the firmware RESET 7043 * command fails but if our caller insists we'll go ahead and put the 7044 * uP into RESET. This can be useful if the firmware is hung or even 7045 * missing ... We'll have to take the risk of putting the uP into 7046 * RESET without the cooperation of firmware in that case. 7047 * 7048 * We also force the firmware's HALT flag to be on in case we bypassed 7049 * the firmware RESET command above or we're dealing with old firmware 7050 * which doesn't have the HALT capability. This will serve as a flag 7051 * for the incoming firmware to know that it's coming out of a HALT 7052 * rather than a RESET ... if it's new enough to understand that ... 7053 */ 7054 if (ret == 0 || force) { 7055 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); 7056 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 7057 PCIE_FW_HALT_F); 7058 } 7059 7060 /* 7061 * And we always return the result of the firmware RESET command 7062 * even when we force the uP into RESET ... 7063 */ 7064 return ret; 7065} 7066 7067/** 7068 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7069 * @adap: the adapter 7070 * @mbox: mailbox to use for the FW command 7071 * @reset: if we want to do a RESET to restart things 7072 * 7073 * Restart firmware previously halted by t4_fw_halt(). On successful 7074 * return the previous PF Master remains as the new PF Master and there 7075 * is no need to issue a new HELLO command, etc. 7076 * 7077 * We do this in two ways: 7078 * 7079 * 1. If we're dealing with newer firmware we'll simply want to take 7080 * the chip's microprocessor out of RESET. This will cause the 7081 * firmware to start up from its start vector. And then we'll loop 7082 * until the firmware indicates it's started again (PCIE_FW.HALT 7083 * reset to 0) or we timeout. 7084 * 7085 * 2. If we're dealing with older firmware then we'll need to RESET 7086 * the chip since older firmware won't recognize the PCIE_FW.HALT 7087 * flag and automatically RESET itself on startup. 7088 */ 7089static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) 7090{ 7091 if (reset) { 7092 /* 7093 * Since we're directing the RESET instead of the firmware 7094 * doing it automatically, we need to clear the PCIE_FW.HALT 7095 * bit. 7096 */ 7097 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0); 7098 7099 /* 7100 * If we've been given a valid mailbox, first try to get the 7101 * firmware to do the RESET. If that works, great and we can 7102 * return success. Otherwise, if we haven't been given a 7103 * valid mailbox or the RESET command failed, fall back to 7104 * hitting the chip with a hammer. 7105 */ 7106 if (mbox <= PCIE_FW_MASTER_M) { 7107 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7108 msleep(100); 7109 if (t4_fw_reset(adap, mbox, 7110 PIORST_F | PIORSTMODE_F) == 0) 7111 return 0; 7112 } 7113 7114 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F); 7115 msleep(2000); 7116 } else { 7117 int ms; 7118 7119 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0); 7120 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7121 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F)) 7122 return 0; 7123 msleep(100); 7124 ms += 100; 7125 } 7126 return -ETIMEDOUT; 7127 } 7128 return 0; 7129} 7130 7131/** 7132 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7133 * @adap: the adapter 7134 * @mbox: mailbox to use for the FW RESET command (if desired) 7135 * @fw_data: the firmware image to write 7136 * @size: image size 7137 * @force: force upgrade even if firmware doesn't cooperate 7138 * 7139 * Perform all of the steps necessary for upgrading an adapter's 7140 * firmware image. Normally this requires the cooperation of the 7141 * existing firmware in order to halt all existing activities 7142 * but if an invalid mailbox token is passed in we skip that step 7143 * (though we'll still put the adapter microprocessor into RESET in 7144 * that case). 7145 * 7146 * On successful return the new firmware will have been loaded and 7147 * the adapter will have been fully RESET losing all previous setup 7148 * state. On unsuccessful return the adapter may be completely hosed ... 7149 * positive errno indicates that the adapter is ~probably~ intact, a 7150 * negative errno indicates that things are looking bad ... 7151 */ 7152int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7153 const u8 *fw_data, unsigned int size, int force) 7154{ 7155 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7156 int reset, ret; 7157 7158 if (!t4_fw_matches_chip(adap, fw_hdr)) 7159 return -EINVAL; 7160 7161 /* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag 7162 * set wont be sent when we are flashing FW. 7163 */ 7164 adap->flags &= ~CXGB4_FW_OK; 7165 7166 ret = t4_fw_halt(adap, mbox, force); 7167 if (ret < 0 && !force) 7168 goto out; 7169 7170 ret = t4_load_fw(adap, fw_data, size); 7171 if (ret < 0) 7172 goto out; 7173 7174 /* 7175 * If there was a Firmware Configuration File stored in FLASH, 7176 * there's a good chance that it won't be compatible with the new 7177 * Firmware. In order to prevent difficult to diagnose adapter 7178 * initialization issues, we clear out the Firmware Configuration File 7179 * portion of the FLASH . The user will need to re-FLASH a new 7180 * Firmware Configuration File which is compatible with the new 7181 * Firmware if that's desired. 7182 */ 7183 (void)t4_load_cfg(adap, NULL, 0); 7184 7185 /* 7186 * Older versions of the firmware don't understand the new 7187 * PCIE_FW.HALT flag and so won't know to perform a RESET when they 7188 * restart. So for newly loaded older firmware we'll have to do the 7189 * RESET for it so it starts up on a clean slate. We can tell if 7190 * the newly loaded firmware will handle this right by checking 7191 * its header flags to see if it advertises the capability. 7192 */ 7193 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); 7194 ret = t4_fw_restart(adap, mbox, reset); 7195 7196 /* Grab potentially new Firmware Device Log parameters so we can see 7197 * how healthy the new Firmware is. It's okay to contact the new 7198 * Firmware for these parameters even though, as far as it's 7199 * concerned, we've never said "HELLO" to it ... 7200 */ 7201 (void)t4_init_devlog_params(adap); 7202out: 7203 adap->flags |= CXGB4_FW_OK; 7204 return ret; 7205} 7206 7207/** 7208 * t4_fl_pkt_align - return the fl packet alignment 7209 * @adap: the adapter 7210 * 7211 * T4 has a single field to specify the packing and padding boundary. 7212 * T5 onwards has separate fields for this and hence the alignment for 7213 * next packet offset is maximum of these two. 7214 * 7215 */ 7216int t4_fl_pkt_align(struct adapter *adap) 7217{ 7218 u32 sge_control, sge_control2; 7219 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; 7220 7221 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 7222 7223 /* T4 uses a single control field to specify both the PCIe Padding and 7224 * Packing Boundary. T5 introduced the ability to specify these 7225 * separately. The actual Ingress Packet Data alignment boundary 7226 * within Packed Buffer Mode is the maximum of these two 7227 * specifications. (Note that it makes no real practical sense to 7228 * have the Padding Boundary be larger than the Packing Boundary but you 7229 * could set the chip up that way and, in fact, legacy T4 code would 7230 * end doing this because it would initialize the Padding Boundary and 7231 * leave the Packing Boundary initialized to 0 (16 bytes).) 7232 * Padding Boundary values in T6 starts from 8B, 7233 * where as it is 32B for T4 and T5. 7234 */ 7235 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) 7236 ingpad_shift = INGPADBOUNDARY_SHIFT_X; 7237 else 7238 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; 7239 7240 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); 7241 7242 fl_align = ingpadboundary; 7243 if (!is_t4(adap->params.chip)) { 7244 /* T5 has a weird interpretation of one of the PCIe Packing 7245 * Boundary values. No idea why ... 7246 */ 7247 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A); 7248 ingpackboundary = INGPACKBOUNDARY_G(sge_control2); 7249 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 7250 ingpackboundary = 16; 7251 else 7252 ingpackboundary = 1 << (ingpackboundary + 7253 INGPACKBOUNDARY_SHIFT_X); 7254 7255 fl_align = max(ingpadboundary, ingpackboundary); 7256 } 7257 return fl_align; 7258} 7259 7260/** 7261 * t4_fixup_host_params - fix up host-dependent parameters 7262 * @adap: the adapter 7263 * @page_size: the host's Base Page Size 7264 * @cache_line_size: the host's Cache Line Size 7265 * 7266 * Various registers in T4 contain values which are dependent on the 7267 * host's Base Page and Cache Line Sizes. This function will fix all of 7268 * those registers with the appropriate values as passed in ... 7269 */ 7270int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, 7271 unsigned int cache_line_size) 7272{ 7273 unsigned int page_shift = fls(page_size) - 1; 7274 unsigned int sge_hps = page_shift - 10; 7275 unsigned int stat_len = cache_line_size > 64 ? 128 : 64; 7276 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; 7277 unsigned int fl_align_log = fls(fl_align) - 1; 7278 7279 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A, 7280 HOSTPAGESIZEPF0_V(sge_hps) | 7281 HOSTPAGESIZEPF1_V(sge_hps) | 7282 HOSTPAGESIZEPF2_V(sge_hps) | 7283 HOSTPAGESIZEPF3_V(sge_hps) | 7284 HOSTPAGESIZEPF4_V(sge_hps) | 7285 HOSTPAGESIZEPF5_V(sge_hps) | 7286 HOSTPAGESIZEPF6_V(sge_hps) | 7287 HOSTPAGESIZEPF7_V(sge_hps)); 7288 7289 if (is_t4(adap->params.chip)) { 7290 t4_set_reg_field(adap, SGE_CONTROL_A, 7291 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7292 EGRSTATUSPAGESIZE_F, 7293 INGPADBOUNDARY_V(fl_align_log - 7294 INGPADBOUNDARY_SHIFT_X) | 7295 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7296 } else { 7297 unsigned int pack_align; 7298 unsigned int ingpad, ingpack; 7299 7300 /* T5 introduced the separation of the Free List Padding and 7301 * Packing Boundaries. Thus, we can select a smaller Padding 7302 * Boundary to avoid uselessly chewing up PCIe Link and Memory 7303 * Bandwidth, and use a Packing Boundary which is large enough 7304 * to avoid false sharing between CPUs, etc. 7305 * 7306 * For the PCI Link, the smaller the Padding Boundary the 7307 * better. For the Memory Controller, a smaller Padding 7308 * Boundary is better until we cross under the Memory Line 7309 * Size (the minimum unit of transfer to/from Memory). If we 7310 * have a Padding Boundary which is smaller than the Memory 7311 * Line Size, that'll involve a Read-Modify-Write cycle on the 7312 * Memory Controller which is never good. 7313 */ 7314 7315 /* We want the Packing Boundary to be based on the Cache Line 7316 * Size in order to help avoid False Sharing performance 7317 * issues between CPUs, etc. We also want the Packing 7318 * Boundary to incorporate the PCI-E Maximum Payload Size. We 7319 * get best performance when the Packing Boundary is a 7320 * multiple of the Maximum Payload Size. 7321 */ 7322 pack_align = fl_align; 7323 if (pci_is_pcie(adap->pdev)) { 7324 unsigned int mps, mps_log; 7325 u16 devctl; 7326 7327 /* The PCIe Device Control Maximum Payload Size field 7328 * [bits 7:5] encodes sizes as powers of 2 starting at 7329 * 128 bytes. 7330 */ 7331 pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL, 7332 &devctl); 7333 mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7; 7334 mps = 1 << mps_log; 7335 if (mps > pack_align) 7336 pack_align = mps; 7337 } 7338 7339 /* N.B. T5/T6 have a crazy special interpretation of the "0" 7340 * value for the Packing Boundary. This corresponds to 16 7341 * bytes instead of the expected 32 bytes. So if we want 32 7342 * bytes, the best we can really do is 64 bytes ... 7343 */ 7344 if (pack_align <= 16) { 7345 ingpack = INGPACKBOUNDARY_16B_X; 7346 fl_align = 16; 7347 } else if (pack_align == 32) { 7348 ingpack = INGPACKBOUNDARY_64B_X; 7349 fl_align = 64; 7350 } else { 7351 unsigned int pack_align_log = fls(pack_align) - 1; 7352 7353 ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X; 7354 fl_align = pack_align; 7355 } 7356 7357 /* Use the smallest Ingress Padding which isn't smaller than 7358 * the Memory Controller Read/Write Size. We'll take that as 7359 * being 8 bytes since we don't know of any system with a 7360 * wider Memory Controller Bus Width. 7361 */ 7362 if (is_t5(adap->params.chip)) 7363 ingpad = INGPADBOUNDARY_32B_X; 7364 else 7365 ingpad = T6_INGPADBOUNDARY_8B_X; 7366 7367 t4_set_reg_field(adap, SGE_CONTROL_A, 7368 INGPADBOUNDARY_V(INGPADBOUNDARY_M) | 7369 EGRSTATUSPAGESIZE_F, 7370 INGPADBOUNDARY_V(ingpad) | 7371 EGRSTATUSPAGESIZE_V(stat_len != 64)); 7372 t4_set_reg_field(adap, SGE_CONTROL2_A, 7373 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), 7374 INGPACKBOUNDARY_V(ingpack)); 7375 } 7376 /* 7377 * Adjust various SGE Free List Host Buffer Sizes. 7378 * 7379 * This is something of a crock since we're using fixed indices into 7380 * the array which are also known by the sge.c code and the T4 7381 * Firmware Configuration File. We need to come up with a much better 7382 * approach to managing this array. For now, the first four entries 7383 * are: 7384 * 7385 * 0: Host Page Size 7386 * 1: 64KB 7387 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) 7388 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) 7389 * 7390 * For the single-MTU buffers in unpacked mode we need to include 7391 * space for the SGE Control Packet Shift, 14 byte Ethernet header, 7392 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet 7393 * Padding boundary. All of these are accommodated in the Factory 7394 * Default Firmware Configuration File but we need to adjust it for 7395 * this host's cache line size. 7396 */ 7397 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size); 7398 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A, 7399 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1) 7400 & ~(fl_align-1)); 7401 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A, 7402 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1) 7403 & ~(fl_align-1)); 7404 7405 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12)); 7406 7407 return 0; 7408} 7409 7410/** 7411 * t4_fw_initialize - ask FW to initialize the device 7412 * @adap: the adapter 7413 * @mbox: mailbox to use for the FW command 7414 * 7415 * Issues a command to FW to partially initialize the device. This 7416 * performs initialization that generally doesn't depend on user input. 7417 */ 7418int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7419{ 7420 struct fw_initialize_cmd c; 7421 7422 memset(&c, 0, sizeof(c)); 7423 INIT_CMD(c, INITIALIZE, WRITE); 7424 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7425} 7426 7427/** 7428 * t4_query_params_rw - query FW or device parameters 7429 * @adap: the adapter 7430 * @mbox: mailbox to use for the FW command 7431 * @pf: the PF 7432 * @vf: the VF 7433 * @nparams: the number of parameters 7434 * @params: the parameter names 7435 * @val: the parameter values 7436 * @rw: Write and read flag 7437 * @sleep_ok: if true, we may sleep awaiting mbox cmd completion 7438 * 7439 * Reads the value of FW or device parameters. Up to 7 parameters can be 7440 * queried at once. 7441 */ 7442int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7443 unsigned int vf, unsigned int nparams, const u32 *params, 7444 u32 *val, int rw, bool sleep_ok) 7445{ 7446 int i, ret; 7447 struct fw_params_cmd c; 7448 __be32 *p = &c.param[0].mnem; 7449 7450 if (nparams > 7) 7451 return -EINVAL; 7452 7453 memset(&c, 0, sizeof(c)); 7454 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7455 FW_CMD_REQUEST_F | FW_CMD_READ_F | 7456 FW_PARAMS_CMD_PFN_V(pf) | 7457 FW_PARAMS_CMD_VFN_V(vf)); 7458 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7459 7460 for (i = 0; i < nparams; i++) { 7461 *p++ = cpu_to_be32(*params++); 7462 if (rw) 7463 *p = cpu_to_be32(*(val + i)); 7464 p++; 7465 } 7466 7467 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7468 if (ret == 0) 7469 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7470 *val++ = be32_to_cpu(*p); 7471 return ret; 7472} 7473 7474int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7475 unsigned int vf, unsigned int nparams, const u32 *params, 7476 u32 *val) 7477{ 7478 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7479 true); 7480} 7481 7482int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf, 7483 unsigned int vf, unsigned int nparams, const u32 *params, 7484 u32 *val) 7485{ 7486 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0, 7487 false); 7488} 7489 7490/** 7491 * t4_set_params_timeout - sets FW or device parameters 7492 * @adap: the adapter 7493 * @mbox: mailbox to use for the FW command 7494 * @pf: the PF 7495 * @vf: the VF 7496 * @nparams: the number of parameters 7497 * @params: the parameter names 7498 * @val: the parameter values 7499 * @timeout: the timeout time 7500 * 7501 * Sets the value of FW or device parameters. Up to 7 parameters can be 7502 * specified at once. 7503 */ 7504int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7505 unsigned int pf, unsigned int vf, 7506 unsigned int nparams, const u32 *params, 7507 const u32 *val, int timeout) 7508{ 7509 struct fw_params_cmd c; 7510 __be32 *p = &c.param[0].mnem; 7511 7512 if (nparams > 7) 7513 return -EINVAL; 7514 7515 memset(&c, 0, sizeof(c)); 7516 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | 7517 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7518 FW_PARAMS_CMD_PFN_V(pf) | 7519 FW_PARAMS_CMD_VFN_V(vf)); 7520 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7521 7522 while (nparams--) { 7523 *p++ = cpu_to_be32(*params++); 7524 *p++ = cpu_to_be32(*val++); 7525 } 7526 7527 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7528} 7529 7530/** 7531 * t4_set_params - sets FW or device parameters 7532 * @adap: the adapter 7533 * @mbox: mailbox to use for the FW command 7534 * @pf: the PF 7535 * @vf: the VF 7536 * @nparams: the number of parameters 7537 * @params: the parameter names 7538 * @val: the parameter values 7539 * 7540 * Sets the value of FW or device parameters. Up to 7 parameters can be 7541 * specified at once. 7542 */ 7543int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7544 unsigned int vf, unsigned int nparams, const u32 *params, 7545 const u32 *val) 7546{ 7547 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7548 FW_CMD_MAX_TIMEOUT); 7549} 7550 7551/** 7552 * t4_cfg_pfvf - configure PF/VF resource limits 7553 * @adap: the adapter 7554 * @mbox: mailbox to use for the FW command 7555 * @pf: the PF being configured 7556 * @vf: the VF being configured 7557 * @txq: the max number of egress queues 7558 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7559 * @rxqi: the max number of interrupt-capable ingress queues 7560 * @rxq: the max number of interruptless ingress queues 7561 * @tc: the PCI traffic class 7562 * @vi: the max number of virtual interfaces 7563 * @cmask: the channel access rights mask for the PF/VF 7564 * @pmask: the port access rights mask for the PF/VF 7565 * @nexact: the maximum number of exact MPS filters 7566 * @rcaps: read capabilities 7567 * @wxcaps: write/execute capabilities 7568 * 7569 * Configures resource limits and capabilities for a physical or virtual 7570 * function. 7571 */ 7572int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7573 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7574 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7575 unsigned int vi, unsigned int cmask, unsigned int pmask, 7576 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7577{ 7578 struct fw_pfvf_cmd c; 7579 7580 memset(&c, 0, sizeof(c)); 7581 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | 7582 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | 7583 FW_PFVF_CMD_VFN_V(vf)); 7584 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7585 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) | 7586 FW_PFVF_CMD_NIQ_V(rxq)); 7587 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) | 7588 FW_PFVF_CMD_PMASK_V(pmask) | 7589 FW_PFVF_CMD_NEQ_V(txq)); 7590 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) | 7591 FW_PFVF_CMD_NVI_V(vi) | 7592 FW_PFVF_CMD_NEXACTF_V(nexact)); 7593 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) | 7594 FW_PFVF_CMD_WX_CAPS_V(wxcaps) | 7595 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); 7596 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7597} 7598 7599/** 7600 * t4_alloc_vi - allocate a virtual interface 7601 * @adap: the adapter 7602 * @mbox: mailbox to use for the FW command 7603 * @port: physical port associated with the VI 7604 * @pf: the PF owning the VI 7605 * @vf: the VF owning the VI 7606 * @nmac: number of MAC addresses needed (1 to 5) 7607 * @mac: the MAC addresses of the VI 7608 * @rss_size: size of RSS table slice associated with this VI 7609 * @vivld: the destination to store the VI Valid value. 7610 * @vin: the destination to store the VIN value. 7611 * 7612 * Allocates a virtual interface for the given physical port. If @mac is 7613 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7614 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7615 * stored consecutively so the space needed is @nmac * 6 bytes. 7616 * Returns a negative error number or the non-negative VI id. 7617 */ 7618int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7619 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7620 unsigned int *rss_size, u8 *vivld, u8 *vin) 7621{ 7622 int ret; 7623 struct fw_vi_cmd c; 7624 7625 memset(&c, 0, sizeof(c)); 7626 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | 7627 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 7628 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); 7629 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); 7630 c.portid_pkd = FW_VI_CMD_PORTID_V(port); 7631 c.nmac = nmac - 1; 7632 7633 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7634 if (ret) 7635 return ret; 7636 7637 if (mac) { 7638 memcpy(mac, c.mac, sizeof(c.mac)); 7639 switch (nmac) { 7640 case 5: 7641 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7642 fallthrough; 7643 case 4: 7644 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7645 fallthrough; 7646 case 3: 7647 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7648 fallthrough; 7649 case 2: 7650 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7651 } 7652 } 7653 if (rss_size) 7654 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd)); 7655 7656 if (vivld) 7657 *vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16)); 7658 7659 if (vin) 7660 *vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16)); 7661 7662 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid)); 7663} 7664 7665/** 7666 * t4_free_vi - free a virtual interface 7667 * @adap: the adapter 7668 * @mbox: mailbox to use for the FW command 7669 * @pf: the PF owning the VI 7670 * @vf: the VF owning the VI 7671 * @viid: virtual interface identifiler 7672 * 7673 * Free a previously allocated virtual interface. 7674 */ 7675int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7676 unsigned int vf, unsigned int viid) 7677{ 7678 struct fw_vi_cmd c; 7679 7680 memset(&c, 0, sizeof(c)); 7681 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | 7682 FW_CMD_REQUEST_F | 7683 FW_CMD_EXEC_F | 7684 FW_VI_CMD_PFN_V(pf) | 7685 FW_VI_CMD_VFN_V(vf)); 7686 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c)); 7687 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); 7688 7689 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7690} 7691 7692/** 7693 * t4_set_rxmode - set Rx properties of a virtual interface 7694 * @adap: the adapter 7695 * @mbox: mailbox to use for the FW command 7696 * @viid: the VI id 7697 * @viid_mirror: the mirror VI id 7698 * @mtu: the new MTU or -1 7699 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7700 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7701 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7702 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7703 * @sleep_ok: if true we may sleep while awaiting command completion 7704 * 7705 * Sets Rx properties of a virtual interface. 7706 */ 7707int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7708 unsigned int viid_mirror, int mtu, int promisc, int all_multi, 7709 int bcast, int vlanex, bool sleep_ok) 7710{ 7711 struct fw_vi_rxmode_cmd c, c_mirror; 7712 int ret; 7713 7714 /* convert to FW values */ 7715 if (mtu < 0) 7716 mtu = FW_RXMODE_MTU_NO_CHG; 7717 if (promisc < 0) 7718 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; 7719 if (all_multi < 0) 7720 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; 7721 if (bcast < 0) 7722 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; 7723 if (vlanex < 0) 7724 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; 7725 7726 memset(&c, 0, sizeof(c)); 7727 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7728 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7729 FW_VI_RXMODE_CMD_VIID_V(viid)); 7730 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7731 c.mtu_to_vlanexen = 7732 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | 7733 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | 7734 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | 7735 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | 7736 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); 7737 7738 if (viid_mirror) { 7739 memcpy(&c_mirror, &c, sizeof(c_mirror)); 7740 c_mirror.op_to_viid = 7741 cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | 7742 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7743 FW_VI_RXMODE_CMD_VIID_V(viid_mirror)); 7744 } 7745 7746 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7747 if (ret) 7748 return ret; 7749 7750 if (viid_mirror) 7751 ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror), 7752 NULL, sleep_ok); 7753 7754 return ret; 7755} 7756 7757/** 7758 * t4_free_encap_mac_filt - frees MPS entry at given index 7759 * @adap: the adapter 7760 * @viid: the VI id 7761 * @idx: index of MPS entry to be freed 7762 * @sleep_ok: call is allowed to sleep 7763 * 7764 * Frees the MPS entry at supplied index 7765 * 7766 * Returns a negative error number or zero on success 7767 */ 7768int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 7769 int idx, bool sleep_ok) 7770{ 7771 struct fw_vi_mac_exact *p; 7772 struct fw_vi_mac_cmd c; 7773 int ret = 0; 7774 u32 exact; 7775 7776 memset(&c, 0, sizeof(c)); 7777 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7778 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7779 FW_CMD_EXEC_V(0) | 7780 FW_VI_MAC_CMD_VIID_V(viid)); 7781 exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC); 7782 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7783 exact | 7784 FW_CMD_LEN16_V(1)); 7785 p = c.u.exact; 7786 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7787 FW_VI_MAC_CMD_IDX_V(idx)); 7788 eth_zero_addr(p->macaddr); 7789 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7790 return ret; 7791} 7792 7793/** 7794 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 7795 * @adap: the adapter 7796 * @viid: the VI id 7797 * @addr: the MAC address 7798 * @mask: the mask 7799 * @idx: index of the entry in mps tcam 7800 * @lookup_type: MAC address for inner (1) or outer (0) header 7801 * @port_id: the port index 7802 * @sleep_ok: call is allowed to sleep 7803 * 7804 * Removes the mac entry at the specified index using raw mac interface. 7805 * 7806 * Returns a negative error number on failure. 7807 */ 7808int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 7809 const u8 *addr, const u8 *mask, unsigned int idx, 7810 u8 lookup_type, u8 port_id, bool sleep_ok) 7811{ 7812 struct fw_vi_mac_cmd c; 7813 struct fw_vi_mac_raw *p = &c.u.raw; 7814 u32 val; 7815 7816 memset(&c, 0, sizeof(c)); 7817 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7818 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7819 FW_CMD_EXEC_V(0) | 7820 FW_VI_MAC_CMD_VIID_V(viid)); 7821 val = FW_CMD_LEN16_V(1) | 7822 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7823 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 7824 FW_CMD_LEN16_V(val)); 7825 7826 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) | 7827 FW_VI_MAC_ID_BASED_FREE); 7828 7829 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7830 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7831 DATAPORTNUM_V(port_id)); 7832 /* Lookup mask and port mask */ 7833 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7834 DATAPORTNUM_V(DATAPORTNUM_M)); 7835 7836 /* Copy the address and the mask */ 7837 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7838 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7839 7840 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7841} 7842 7843/** 7844 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 7845 * @adap: the adapter 7846 * @viid: the VI id 7847 * @addr: the MAC address 7848 * @mask: the mask 7849 * @vni: the VNI id for the tunnel protocol 7850 * @vni_mask: mask for the VNI id 7851 * @dip_hit: to enable DIP match for the MPS entry 7852 * @lookup_type: MAC address for inner (1) or outer (0) header 7853 * @sleep_ok: call is allowed to sleep 7854 * 7855 * Allocates an MPS entry with specified MAC address and VNI value. 7856 * 7857 * Returns a negative error number or the allocated index for this mac. 7858 */ 7859int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 7860 const u8 *addr, const u8 *mask, unsigned int vni, 7861 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 7862 bool sleep_ok) 7863{ 7864 struct fw_vi_mac_cmd c; 7865 struct fw_vi_mac_vni *p = c.u.exact_vni; 7866 int ret = 0; 7867 u32 val; 7868 7869 memset(&c, 0, sizeof(c)); 7870 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7871 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7872 FW_VI_MAC_CMD_VIID_V(viid)); 7873 val = FW_CMD_LEN16_V(1) | 7874 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI); 7875 c.freemacs_to_len16 = cpu_to_be32(val); 7876 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 7877 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); 7878 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 7879 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 7880 7881 p->lookup_type_to_vni = 7882 cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) | 7883 FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) | 7884 FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type)); 7885 p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask)); 7886 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7887 if (ret == 0) 7888 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 7889 return ret; 7890} 7891 7892/** 7893 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 7894 * @adap: the adapter 7895 * @viid: the VI id 7896 * @addr: the MAC address 7897 * @mask: the mask 7898 * @idx: index at which to add this entry 7899 * @lookup_type: MAC address for inner (1) or outer (0) header 7900 * @port_id: the port index 7901 * @sleep_ok: call is allowed to sleep 7902 * 7903 * Adds the mac entry at the specified index using raw mac interface. 7904 * 7905 * Returns a negative error number or the allocated index for this mac. 7906 */ 7907int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 7908 const u8 *addr, const u8 *mask, unsigned int idx, 7909 u8 lookup_type, u8 port_id, bool sleep_ok) 7910{ 7911 int ret = 0; 7912 struct fw_vi_mac_cmd c; 7913 struct fw_vi_mac_raw *p = &c.u.raw; 7914 u32 val; 7915 7916 memset(&c, 0, sizeof(c)); 7917 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7918 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 7919 FW_VI_MAC_CMD_VIID_V(viid)); 7920 val = FW_CMD_LEN16_V(1) | 7921 FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW); 7922 c.freemacs_to_len16 = cpu_to_be32(val); 7923 7924 /* Specify that this is an inner mac address */ 7925 p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx)); 7926 7927 /* Lookup Type. Outer header: 0, Inner header: 1 */ 7928 p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) | 7929 DATAPORTNUM_V(port_id)); 7930 /* Lookup mask and port mask */ 7931 p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) | 7932 DATAPORTNUM_V(DATAPORTNUM_M)); 7933 7934 /* Copy the address and the mask */ 7935 memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN); 7936 memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN); 7937 7938 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 7939 if (ret == 0) { 7940 ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd)); 7941 if (ret != idx) 7942 ret = -ENOMEM; 7943 } 7944 7945 return ret; 7946} 7947 7948/** 7949 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7950 * @adap: the adapter 7951 * @mbox: mailbox to use for the FW command 7952 * @viid: the VI id 7953 * @free: if true any existing filters for this VI id are first removed 7954 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7955 * @addr: the MAC address(es) 7956 * @idx: where to store the index of each allocated filter 7957 * @hash: pointer to hash address filter bitmap 7958 * @sleep_ok: call is allowed to sleep 7959 * 7960 * Allocates an exact-match filter for each of the supplied addresses and 7961 * sets it to the corresponding address. If @idx is not %NULL it should 7962 * have at least @naddr entries, each of which will be set to the index of 7963 * the filter allocated for the corresponding MAC address. If a filter 7964 * could not be allocated for an address its index is set to 0xffff. 7965 * If @hash is not %NULL addresses that fail to allocate an exact filter 7966 * are hashed and update the hash filter bitmap pointed at by @hash. 7967 * 7968 * Returns a negative error number or the number of filters allocated. 7969 */ 7970int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7971 unsigned int viid, bool free, unsigned int naddr, 7972 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7973{ 7974 int offset, ret = 0; 7975 struct fw_vi_mac_cmd c; 7976 unsigned int nfilters = 0; 7977 unsigned int max_naddr = adap->params.arch.mps_tcam_size; 7978 unsigned int rem = naddr; 7979 7980 if (naddr > max_naddr) 7981 return -EINVAL; 7982 7983 for (offset = 0; offset < naddr ; /**/) { 7984 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ? 7985 rem : ARRAY_SIZE(c.u.exact)); 7986 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7987 u.exact[fw_naddr]), 16); 7988 struct fw_vi_mac_exact *p; 7989 int i; 7990 7991 memset(&c, 0, sizeof(c)); 7992 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 7993 FW_CMD_REQUEST_F | 7994 FW_CMD_WRITE_F | 7995 FW_CMD_EXEC_V(free) | 7996 FW_VI_MAC_CMD_VIID_V(viid)); 7997 c.freemacs_to_len16 = 7998 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | 7999 FW_CMD_LEN16_V(len16)); 8000 8001 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8002 p->valid_to_idx = 8003 cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8004 FW_VI_MAC_CMD_IDX_V( 8005 FW_VI_MAC_ADD_MAC)); 8006 memcpy(p->macaddr, addr[offset + i], 8007 sizeof(p->macaddr)); 8008 } 8009 8010 /* It's okay if we run out of space in our MAC address arena. 8011 * Some of the addresses we submit may get stored so we need 8012 * to run through the reply to see what the results were ... 8013 */ 8014 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8015 if (ret && ret != -FW_ENOMEM) 8016 break; 8017 8018 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8019 u16 index = FW_VI_MAC_CMD_IDX_G( 8020 be16_to_cpu(p->valid_to_idx)); 8021 8022 if (idx) 8023 idx[offset + i] = (index >= max_naddr ? 8024 0xffff : index); 8025 if (index < max_naddr) 8026 nfilters++; 8027 else if (hash) 8028 *hash |= (1ULL << 8029 hash_mac_addr(addr[offset + i])); 8030 } 8031 8032 free = false; 8033 offset += fw_naddr; 8034 rem -= fw_naddr; 8035 } 8036 8037 if (ret == 0 || ret == -FW_ENOMEM) 8038 ret = nfilters; 8039 return ret; 8040} 8041 8042/** 8043 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8044 * @adap: the adapter 8045 * @mbox: mailbox to use for the FW command 8046 * @viid: the VI id 8047 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8048 * @addr: the MAC address(es) 8049 * @sleep_ok: call is allowed to sleep 8050 * 8051 * Frees the exact-match filter for each of the supplied addresses 8052 * 8053 * Returns a negative error number or the number of filters freed. 8054 */ 8055int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8056 unsigned int viid, unsigned int naddr, 8057 const u8 **addr, bool sleep_ok) 8058{ 8059 int offset, ret = 0; 8060 struct fw_vi_mac_cmd c; 8061 unsigned int nfilters = 0; 8062 unsigned int max_naddr = is_t4(adap->params.chip) ? 8063 NUM_MPS_CLS_SRAM_L_INSTANCES : 8064 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 8065 unsigned int rem = naddr; 8066 8067 if (naddr > max_naddr) 8068 return -EINVAL; 8069 8070 for (offset = 0; offset < (int)naddr ; /**/) { 8071 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8072 ? rem 8073 : ARRAY_SIZE(c.u.exact)); 8074 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8075 u.exact[fw_naddr]), 16); 8076 struct fw_vi_mac_exact *p; 8077 int i; 8078 8079 memset(&c, 0, sizeof(c)); 8080 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8081 FW_CMD_REQUEST_F | 8082 FW_CMD_WRITE_F | 8083 FW_CMD_EXEC_V(0) | 8084 FW_VI_MAC_CMD_VIID_V(viid)); 8085 c.freemacs_to_len16 = 8086 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | 8087 FW_CMD_LEN16_V(len16)); 8088 8089 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8090 p->valid_to_idx = cpu_to_be16( 8091 FW_VI_MAC_CMD_VALID_F | 8092 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); 8093 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8094 } 8095 8096 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8097 if (ret) 8098 break; 8099 8100 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8101 u16 index = FW_VI_MAC_CMD_IDX_G( 8102 be16_to_cpu(p->valid_to_idx)); 8103 8104 if (index < max_naddr) 8105 nfilters++; 8106 } 8107 8108 offset += fw_naddr; 8109 rem -= fw_naddr; 8110 } 8111 8112 if (ret == 0) 8113 ret = nfilters; 8114 return ret; 8115} 8116 8117/** 8118 * t4_change_mac - modifies the exact-match filter for a MAC address 8119 * @adap: the adapter 8120 * @mbox: mailbox to use for the FW command 8121 * @viid: the VI id 8122 * @idx: index of existing filter for old value of MAC address, or -1 8123 * @addr: the new MAC address value 8124 * @persist: whether a new MAC allocation should be persistent 8125 * @smt_idx: the destination to store the new SMT index. 8126 * 8127 * Modifies an exact-match filter and sets it to the new MAC address. 8128 * Note that in general it is not possible to modify the value of a given 8129 * filter so the generic way to modify an address filter is to free the one 8130 * being used by the old address value and allocate a new filter for the 8131 * new address value. @idx can be -1 if the address is a new addition. 8132 * 8133 * Returns a negative error number or the index of the filter with the new 8134 * MAC value. 8135 */ 8136int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8137 int idx, const u8 *addr, bool persist, u8 *smt_idx) 8138{ 8139 int ret, mode; 8140 struct fw_vi_mac_cmd c; 8141 struct fw_vi_mac_exact *p = c.u.exact; 8142 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size; 8143 8144 if (idx < 0) /* new allocation */ 8145 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8146 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8147 8148 memset(&c, 0, sizeof(c)); 8149 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8150 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8151 FW_VI_MAC_CMD_VIID_V(viid)); 8152 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1)); 8153 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | 8154 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | 8155 FW_VI_MAC_CMD_IDX_V(idx)); 8156 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8157 8158 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8159 if (ret == 0) { 8160 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); 8161 if (ret >= max_mac_addr) 8162 ret = -ENOMEM; 8163 if (smt_idx) { 8164 if (adap->params.viid_smt_extn_support) { 8165 *smt_idx = FW_VI_MAC_CMD_SMTID_G 8166 (be32_to_cpu(c.op_to_viid)); 8167 } else { 8168 /* In T4/T5, SMT contains 256 SMAC entries 8169 * organized in 128 rows of 2 entries each. 8170 * In T6, SMT contains 256 SMAC entries in 8171 * 256 rows. 8172 */ 8173 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= 8174 CHELSIO_T5) 8175 *smt_idx = (viid & FW_VIID_VIN_M) << 1; 8176 else 8177 *smt_idx = (viid & FW_VIID_VIN_M); 8178 } 8179 } 8180 } 8181 return ret; 8182} 8183 8184/** 8185 * t4_set_addr_hash - program the MAC inexact-match hash filter 8186 * @adap: the adapter 8187 * @mbox: mailbox to use for the FW command 8188 * @viid: the VI id 8189 * @ucast: whether the hash filter should also match unicast addresses 8190 * @vec: the value to be written to the hash filter 8191 * @sleep_ok: call is allowed to sleep 8192 * 8193 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8194 */ 8195int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8196 bool ucast, u64 vec, bool sleep_ok) 8197{ 8198 struct fw_vi_mac_cmd c; 8199 8200 memset(&c, 0, sizeof(c)); 8201 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | 8202 FW_CMD_REQUEST_F | FW_CMD_WRITE_F | 8203 FW_VI_ENABLE_CMD_VIID_V(viid)); 8204 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | 8205 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | 8206 FW_CMD_LEN16_V(1)); 8207 c.u.hash.hashvec = cpu_to_be64(vec); 8208 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8209} 8210 8211/** 8212 * t4_enable_vi_params - enable/disable a virtual interface 8213 * @adap: the adapter 8214 * @mbox: mailbox to use for the FW command 8215 * @viid: the VI id 8216 * @rx_en: 1=enable Rx, 0=disable Rx 8217 * @tx_en: 1=enable Tx, 0=disable Tx 8218 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8219 * 8220 * Enables/disables a virtual interface. Note that setting DCB Enable 8221 * only makes sense when enabling a Virtual Interface ... 8222 */ 8223int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8224 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8225{ 8226 struct fw_vi_enable_cmd c; 8227 8228 memset(&c, 0, sizeof(c)); 8229 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8230 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8231 FW_VI_ENABLE_CMD_VIID_V(viid)); 8232 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | 8233 FW_VI_ENABLE_CMD_EEN_V(tx_en) | 8234 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) | 8235 FW_LEN16(c)); 8236 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8237} 8238 8239/** 8240 * t4_enable_vi - enable/disable a virtual interface 8241 * @adap: the adapter 8242 * @mbox: mailbox to use for the FW command 8243 * @viid: the VI id 8244 * @rx_en: 1=enable Rx, 0=disable Rx 8245 * @tx_en: 1=enable Tx, 0=disable Tx 8246 * 8247 * Enables/disables a virtual interface. 8248 */ 8249int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8250 bool rx_en, bool tx_en) 8251{ 8252 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8253} 8254 8255/** 8256 * t4_enable_pi_params - enable/disable a Port's Virtual Interface 8257 * @adap: the adapter 8258 * @mbox: mailbox to use for the FW command 8259 * @pi: the Port Information structure 8260 * @rx_en: 1=enable Rx, 0=disable Rx 8261 * @tx_en: 1=enable Tx, 0=disable Tx 8262 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8263 * 8264 * Enables/disables a Port's Virtual Interface. Note that setting DCB 8265 * Enable only makes sense when enabling a Virtual Interface ... 8266 * If the Virtual Interface enable/disable operation is successful, 8267 * we notify the OS-specific code of a potential Link Status change 8268 * via the OS Contract API t4_os_link_changed(). 8269 */ 8270int t4_enable_pi_params(struct adapter *adap, unsigned int mbox, 8271 struct port_info *pi, 8272 bool rx_en, bool tx_en, bool dcb_en) 8273{ 8274 int ret = t4_enable_vi_params(adap, mbox, pi->viid, 8275 rx_en, tx_en, dcb_en); 8276 if (ret) 8277 return ret; 8278 t4_os_link_changed(adap, pi->port_id, 8279 rx_en && tx_en && pi->link_cfg.link_ok); 8280 return 0; 8281} 8282 8283/** 8284 * t4_identify_port - identify a VI's port by blinking its LED 8285 * @adap: the adapter 8286 * @mbox: mailbox to use for the FW command 8287 * @viid: the VI id 8288 * @nblinks: how many times to blink LED at 2.5 Hz 8289 * 8290 * Identifies a VI's port by blinking its LED. 8291 */ 8292int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8293 unsigned int nblinks) 8294{ 8295 struct fw_vi_enable_cmd c; 8296 8297 memset(&c, 0, sizeof(c)); 8298 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | 8299 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8300 FW_VI_ENABLE_CMD_VIID_V(viid)); 8301 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); 8302 c.blinkdur = cpu_to_be16(nblinks); 8303 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8304} 8305 8306/** 8307 * t4_iq_stop - stop an ingress queue and its FLs 8308 * @adap: the adapter 8309 * @mbox: mailbox to use for the FW command 8310 * @pf: the PF owning the queues 8311 * @vf: the VF owning the queues 8312 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8313 * @iqid: ingress queue id 8314 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8315 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8316 * 8317 * Stops an ingress queue and its associated FLs, if any. This causes 8318 * any current or future data/messages destined for these queues to be 8319 * tossed. 8320 */ 8321int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8322 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8323 unsigned int fl0id, unsigned int fl1id) 8324{ 8325 struct fw_iq_cmd c; 8326 8327 memset(&c, 0, sizeof(c)); 8328 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8329 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8330 FW_IQ_CMD_VFN_V(vf)); 8331 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c)); 8332 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8333 c.iqid = cpu_to_be16(iqid); 8334 c.fl0id = cpu_to_be16(fl0id); 8335 c.fl1id = cpu_to_be16(fl1id); 8336 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8337} 8338 8339/** 8340 * t4_iq_free - free an ingress queue and its FLs 8341 * @adap: the adapter 8342 * @mbox: mailbox to use for the FW command 8343 * @pf: the PF owning the queues 8344 * @vf: the VF owning the queues 8345 * @iqtype: the ingress queue type 8346 * @iqid: ingress queue id 8347 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8348 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8349 * 8350 * Frees an ingress queue and its associated FLs, if any. 8351 */ 8352int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8353 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8354 unsigned int fl0id, unsigned int fl1id) 8355{ 8356 struct fw_iq_cmd c; 8357 8358 memset(&c, 0, sizeof(c)); 8359 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 8360 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | 8361 FW_IQ_CMD_VFN_V(vf)); 8362 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c)); 8363 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); 8364 c.iqid = cpu_to_be16(iqid); 8365 c.fl0id = cpu_to_be16(fl0id); 8366 c.fl1id = cpu_to_be16(fl1id); 8367 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8368} 8369 8370/** 8371 * t4_eth_eq_free - free an Ethernet egress queue 8372 * @adap: the adapter 8373 * @mbox: mailbox to use for the FW command 8374 * @pf: the PF owning the queue 8375 * @vf: the VF owning the queue 8376 * @eqid: egress queue id 8377 * 8378 * Frees an Ethernet egress queue. 8379 */ 8380int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8381 unsigned int vf, unsigned int eqid) 8382{ 8383 struct fw_eq_eth_cmd c; 8384 8385 memset(&c, 0, sizeof(c)); 8386 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | 8387 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8388 FW_EQ_ETH_CMD_PFN_V(pf) | 8389 FW_EQ_ETH_CMD_VFN_V(vf)); 8390 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); 8391 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); 8392 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8393} 8394 8395/** 8396 * t4_ctrl_eq_free - free a control egress queue 8397 * @adap: the adapter 8398 * @mbox: mailbox to use for the FW command 8399 * @pf: the PF owning the queue 8400 * @vf: the VF owning the queue 8401 * @eqid: egress queue id 8402 * 8403 * Frees a control egress queue. 8404 */ 8405int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8406 unsigned int vf, unsigned int eqid) 8407{ 8408 struct fw_eq_ctrl_cmd c; 8409 8410 memset(&c, 0, sizeof(c)); 8411 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | 8412 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8413 FW_EQ_CTRL_CMD_PFN_V(pf) | 8414 FW_EQ_CTRL_CMD_VFN_V(vf)); 8415 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); 8416 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid)); 8417 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8418} 8419 8420/** 8421 * t4_ofld_eq_free - free an offload egress queue 8422 * @adap: the adapter 8423 * @mbox: mailbox to use for the FW command 8424 * @pf: the PF owning the queue 8425 * @vf: the VF owning the queue 8426 * @eqid: egress queue id 8427 * 8428 * Frees a control egress queue. 8429 */ 8430int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8431 unsigned int vf, unsigned int eqid) 8432{ 8433 struct fw_eq_ofld_cmd c; 8434 8435 memset(&c, 0, sizeof(c)); 8436 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | 8437 FW_CMD_REQUEST_F | FW_CMD_EXEC_F | 8438 FW_EQ_OFLD_CMD_PFN_V(pf) | 8439 FW_EQ_OFLD_CMD_VFN_V(vf)); 8440 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); 8441 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid)); 8442 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8443} 8444 8445/** 8446 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8447 * @link_down_rc: Link Down Reason Code 8448 * 8449 * Returns a string representation of the Link Down Reason Code. 8450 */ 8451static const char *t4_link_down_rc_str(unsigned char link_down_rc) 8452{ 8453 static const char * const reason[] = { 8454 "Link Down", 8455 "Remote Fault", 8456 "Auto-negotiation Failure", 8457 "Reserved", 8458 "Insufficient Airflow", 8459 "Unable To Determine Reason", 8460 "No RX Signal Detected", 8461 "Reserved", 8462 }; 8463 8464 if (link_down_rc >= ARRAY_SIZE(reason)) 8465 return "Bad Reason Code"; 8466 8467 return reason[link_down_rc]; 8468} 8469 8470/* Return the highest speed set in the port capabilities, in Mb/s. */ 8471static unsigned int fwcap_to_speed(fw_port_cap32_t caps) 8472{ 8473 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8474 do { \ 8475 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8476 return __speed; \ 8477 } while (0) 8478 8479 TEST_SPEED_RETURN(400G, 400000); 8480 TEST_SPEED_RETURN(200G, 200000); 8481 TEST_SPEED_RETURN(100G, 100000); 8482 TEST_SPEED_RETURN(50G, 50000); 8483 TEST_SPEED_RETURN(40G, 40000); 8484 TEST_SPEED_RETURN(25G, 25000); 8485 TEST_SPEED_RETURN(10G, 10000); 8486 TEST_SPEED_RETURN(1G, 1000); 8487 TEST_SPEED_RETURN(100M, 100); 8488 8489 #undef TEST_SPEED_RETURN 8490 8491 return 0; 8492} 8493 8494/** 8495 * fwcap_to_fwspeed - return highest speed in Port Capabilities 8496 * @acaps: advertised Port Capabilities 8497 * 8498 * Get the highest speed for the port from the advertised Port 8499 * Capabilities. It will be either the highest speed from the list of 8500 * speeds or whatever user has set using ethtool. 8501 */ 8502static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) 8503{ 8504 #define TEST_SPEED_RETURN(__caps_speed) \ 8505 do { \ 8506 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8507 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8508 } while (0) 8509 8510 TEST_SPEED_RETURN(400G); 8511 TEST_SPEED_RETURN(200G); 8512 TEST_SPEED_RETURN(100G); 8513 TEST_SPEED_RETURN(50G); 8514 TEST_SPEED_RETURN(40G); 8515 TEST_SPEED_RETURN(25G); 8516 TEST_SPEED_RETURN(10G); 8517 TEST_SPEED_RETURN(1G); 8518 TEST_SPEED_RETURN(100M); 8519 8520 #undef TEST_SPEED_RETURN 8521 8522 return 0; 8523} 8524 8525/** 8526 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8527 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8528 * 8529 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8530 * 32-bit Port Capabilities value. 8531 */ 8532static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) 8533{ 8534 fw_port_cap32_t linkattr = 0; 8535 8536 /* Unfortunately the format of the Link Status in the old 8537 * 16-bit Port Information message isn't the same as the 8538 * 16-bit Port Capabilities bitfield used everywhere else ... 8539 */ 8540 if (lstatus & FW_PORT_CMD_RXPAUSE_F) 8541 linkattr |= FW_PORT_CAP32_FC_RX; 8542 if (lstatus & FW_PORT_CMD_TXPAUSE_F) 8543 linkattr |= FW_PORT_CAP32_FC_TX; 8544 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) 8545 linkattr |= FW_PORT_CAP32_SPEED_100M; 8546 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) 8547 linkattr |= FW_PORT_CAP32_SPEED_1G; 8548 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) 8549 linkattr |= FW_PORT_CAP32_SPEED_10G; 8550 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) 8551 linkattr |= FW_PORT_CAP32_SPEED_25G; 8552 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) 8553 linkattr |= FW_PORT_CAP32_SPEED_40G; 8554 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) 8555 linkattr |= FW_PORT_CAP32_SPEED_100G; 8556 8557 return linkattr; 8558} 8559 8560/** 8561 * t4_handle_get_port_info - process a FW reply message 8562 * @pi: the port info 8563 * @rpl: start of the FW message 8564 * 8565 * Processes a GET_PORT_INFO FW reply message. 8566 */ 8567void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl) 8568{ 8569 const struct fw_port_cmd *cmd = (const void *)rpl; 8570 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; 8571 struct link_config *lc = &pi->link_cfg; 8572 struct adapter *adapter = pi->adapter; 8573 unsigned int speed, fc, fec, adv_fc; 8574 enum fw_port_module_type mod_type; 8575 int action, link_ok, linkdnrc; 8576 enum fw_port_type port_type; 8577 8578 /* Extract the various fields from the Port Information message. 8579 */ 8580 action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); 8581 switch (action) { 8582 case FW_PORT_ACTION_GET_PORT_INFO: { 8583 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); 8584 8585 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; 8586 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); 8587 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 8588 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); 8589 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); 8590 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); 8591 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); 8592 linkattr = lstatus_to_fwcap(lstatus); 8593 break; 8594 } 8595 8596 case FW_PORT_ACTION_GET_PORT_INFO32: { 8597 u32 lstatus32; 8598 8599 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); 8600 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; 8601 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); 8602 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 8603 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); 8604 pcaps = be32_to_cpu(cmd->u.info32.pcaps32); 8605 acaps = be32_to_cpu(cmd->u.info32.acaps32); 8606 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); 8607 linkattr = be32_to_cpu(cmd->u.info32.linkattr32); 8608 break; 8609 } 8610 8611 default: 8612 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", 8613 be32_to_cpu(cmd->action_to_len16)); 8614 return; 8615 } 8616 8617 fec = fwcap_to_cc_fec(acaps); 8618 adv_fc = fwcap_to_cc_pause(acaps); 8619 fc = fwcap_to_cc_pause(linkattr); 8620 speed = fwcap_to_speed(linkattr); 8621 8622 /* Reset state for communicating new Transceiver Module status and 8623 * whether the OS-dependent layer wants us to redo the current 8624 * "sticky" L1 Configure Link Parameters. 8625 */ 8626 lc->new_module = false; 8627 lc->redo_l1cfg = false; 8628 8629 if (mod_type != pi->mod_type) { 8630 /* With the newer SFP28 and QSFP28 Transceiver Module Types, 8631 * various fundamental Port Capabilities which used to be 8632 * immutable can now change radically. We can now have 8633 * Speeds, Auto-Negotiation, Forward Error Correction, etc. 8634 * all change based on what Transceiver Module is inserted. 8635 * So we need to record the Physical "Port" Capabilities on 8636 * every Transceiver Module change. 8637 */ 8638 lc->pcaps = pcaps; 8639 8640 /* When a new Transceiver Module is inserted, the Firmware 8641 * will examine its i2c EPROM to determine its type and 8642 * general operating parameters including things like Forward 8643 * Error Control, etc. Various IEEE 802.3 standards dictate 8644 * how to interpret these i2c values to determine default 8645 * "sutomatic" settings. We record these for future use when 8646 * the user explicitly requests these standards-based values. 8647 */ 8648 lc->def_acaps = acaps; 8649 8650 /* Some versions of the early T6 Firmware "cheated" when 8651 * handling different Transceiver Modules by changing the 8652 * underlaying Port Type reported to the Host Drivers. As 8653 * such we need to capture whatever Port Type the Firmware 8654 * sends us and record it in case it's different from what we 8655 * were told earlier. Unfortunately, since Firmware is 8656 * forever, we'll need to keep this code here forever, but in 8657 * later T6 Firmware it should just be an assignment of the 8658 * same value already recorded. 8659 */ 8660 pi->port_type = port_type; 8661 8662 /* Record new Module Type information. 8663 */ 8664 pi->mod_type = mod_type; 8665 8666 /* Let the OS-dependent layer know if we have a new 8667 * Transceiver Module inserted. 8668 */ 8669 lc->new_module = t4_is_inserted_mod_type(mod_type); 8670 8671 t4_os_portmod_changed(adapter, pi->port_id); 8672 } 8673 8674 if (link_ok != lc->link_ok || speed != lc->speed || 8675 fc != lc->fc || adv_fc != lc->advertised_fc || 8676 fec != lc->fec) { 8677 /* something changed */ 8678 if (!link_ok && lc->link_ok) { 8679 lc->link_down_rc = linkdnrc; 8680 dev_warn_ratelimited(adapter->pdev_dev, 8681 "Port %d link down, reason: %s\n", 8682 pi->tx_chan, 8683 t4_link_down_rc_str(linkdnrc)); 8684 } 8685 lc->link_ok = link_ok; 8686 lc->speed = speed; 8687 lc->advertised_fc = adv_fc; 8688 lc->fc = fc; 8689 lc->fec = fec; 8690 8691 lc->lpacaps = lpacaps; 8692 lc->acaps = acaps & ADVERT_MASK; 8693 8694 /* If we're not physically capable of Auto-Negotiation, note 8695 * this as Auto-Negotiation disabled. Otherwise, we track 8696 * what Auto-Negotiation settings we have. Note parallel 8697 * structure in t4_link_l1cfg_core() and init_link_config(). 8698 */ 8699 if (!(lc->acaps & FW_PORT_CAP32_ANEG)) { 8700 lc->autoneg = AUTONEG_DISABLE; 8701 } else if (lc->acaps & FW_PORT_CAP32_ANEG) { 8702 lc->autoneg = AUTONEG_ENABLE; 8703 } else { 8704 /* When Autoneg is disabled, user needs to set 8705 * single speed. 8706 * Similar to cxgb4_ethtool.c: set_link_ksettings 8707 */ 8708 lc->acaps = 0; 8709 lc->speed_caps = fwcap_to_fwspeed(acaps); 8710 lc->autoneg = AUTONEG_DISABLE; 8711 } 8712 8713 t4_os_link_changed(adapter, pi->port_id, link_ok); 8714 } 8715 8716 /* If we have a new Transceiver Module and the OS-dependent code has 8717 * told us that it wants us to redo whatever "sticky" L1 Configuration 8718 * Link Parameters are set, do that now. 8719 */ 8720 if (lc->new_module && lc->redo_l1cfg) { 8721 struct link_config old_lc; 8722 int ret; 8723 8724 /* Save the current L1 Configuration and restore it if an 8725 * error occurs. We probably should fix the l1_cfg*() 8726 * routines not to change the link_config when an error 8727 * occurs ... 8728 */ 8729 old_lc = *lc; 8730 ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc); 8731 if (ret) { 8732 *lc = old_lc; 8733 dev_warn(adapter->pdev_dev, 8734 "Attempt to update new Transceiver Module settings failed\n"); 8735 } 8736 } 8737 lc->new_module = false; 8738 lc->redo_l1cfg = false; 8739} 8740 8741/** 8742 * t4_update_port_info - retrieve and update port information if changed 8743 * @pi: the port_info 8744 * 8745 * We issue a Get Port Information Command to the Firmware and, if 8746 * successful, we check to see if anything is different from what we 8747 * last recorded and update things accordingly. 8748 */ 8749int t4_update_port_info(struct port_info *pi) 8750{ 8751 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8752 struct fw_port_cmd port_cmd; 8753 int ret; 8754 8755 memset(&port_cmd, 0, sizeof(port_cmd)); 8756 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8757 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8758 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8759 port_cmd.action_to_len16 = cpu_to_be32( 8760 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 8761 ? FW_PORT_ACTION_GET_PORT_INFO 8762 : FW_PORT_ACTION_GET_PORT_INFO32) | 8763 FW_LEN16(port_cmd)); 8764 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8765 &port_cmd, sizeof(port_cmd), &port_cmd); 8766 if (ret) 8767 return ret; 8768 8769 t4_handle_get_port_info(pi, (__be64 *)&port_cmd); 8770 return 0; 8771} 8772 8773/** 8774 * t4_get_link_params - retrieve basic link parameters for given port 8775 * @pi: the port 8776 * @link_okp: value return pointer for link up/down 8777 * @speedp: value return pointer for speed (Mb/s) 8778 * @mtup: value return pointer for mtu 8779 * 8780 * Retrieves basic link parameters for a port: link up/down, speed (Mb/s), 8781 * and MTU for a specified port. A negative error is returned on 8782 * failure; 0 on success. 8783 */ 8784int t4_get_link_params(struct port_info *pi, unsigned int *link_okp, 8785 unsigned int *speedp, unsigned int *mtup) 8786{ 8787 unsigned int fw_caps = pi->adapter->params.fw_caps_support; 8788 unsigned int action, link_ok, mtu; 8789 struct fw_port_cmd port_cmd; 8790 fw_port_cap32_t linkattr; 8791 int ret; 8792 8793 memset(&port_cmd, 0, sizeof(port_cmd)); 8794 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 8795 FW_CMD_REQUEST_F | FW_CMD_READ_F | 8796 FW_PORT_CMD_PORTID_V(pi->tx_chan)); 8797 action = (fw_caps == FW_CAPS16 8798 ? FW_PORT_ACTION_GET_PORT_INFO 8799 : FW_PORT_ACTION_GET_PORT_INFO32); 8800 port_cmd.action_to_len16 = cpu_to_be32( 8801 FW_PORT_CMD_ACTION_V(action) | 8802 FW_LEN16(port_cmd)); 8803 ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox, 8804 &port_cmd, sizeof(port_cmd), &port_cmd); 8805 if (ret) 8806 return ret; 8807 8808 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8809 u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype); 8810 8811 link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F); 8812 linkattr = lstatus_to_fwcap(lstatus); 8813 mtu = be16_to_cpu(port_cmd.u.info.mtu); 8814 } else { 8815 u32 lstatus32 = 8816 be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32); 8817 8818 link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F); 8819 linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32); 8820 mtu = FW_PORT_CMD_MTU32_G( 8821 be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32)); 8822 } 8823 8824 if (link_okp) 8825 *link_okp = link_ok; 8826 if (speedp) 8827 *speedp = fwcap_to_speed(linkattr); 8828 if (mtup) 8829 *mtup = mtu; 8830 8831 return 0; 8832} 8833 8834/** 8835 * t4_handle_fw_rpl - process a FW reply message 8836 * @adap: the adapter 8837 * @rpl: start of the FW message 8838 * 8839 * Processes a FW message, such as link state change messages. 8840 */ 8841int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8842{ 8843 u8 opcode = *(const u8 *)rpl; 8844 8845 /* This might be a port command ... this simplifies the following 8846 * conditionals ... We can get away with pre-dereferencing 8847 * action_to_len16 because it's in the first 16 bytes and all messages 8848 * will be at least that long. 8849 */ 8850 const struct fw_port_cmd *p = (const void *)rpl; 8851 unsigned int action = 8852 FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16)); 8853 8854 if (opcode == FW_PORT_CMD && 8855 (action == FW_PORT_ACTION_GET_PORT_INFO || 8856 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8857 int i; 8858 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid)); 8859 struct port_info *pi = NULL; 8860 8861 for_each_port(adap, i) { 8862 pi = adap2pinfo(adap, i); 8863 if (pi->tx_chan == chan) 8864 break; 8865 } 8866 8867 t4_handle_get_port_info(pi, rpl); 8868 } else { 8869 dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", 8870 opcode); 8871 return -EINVAL; 8872 } 8873 return 0; 8874} 8875 8876static void get_pci_mode(struct adapter *adapter, struct pci_params *p) 8877{ 8878 u16 val; 8879 8880 if (pci_is_pcie(adapter->pdev)) { 8881 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); 8882 p->speed = val & PCI_EXP_LNKSTA_CLS; 8883 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8884 } 8885} 8886 8887/** 8888 * init_link_config - initialize a link's SW state 8889 * @lc: pointer to structure holding the link state 8890 * @pcaps: link Port Capabilities 8891 * @acaps: link current Advertised Port Capabilities 8892 * 8893 * Initializes the SW state maintained for each link, including the link's 8894 * capabilities and default speed/flow-control/autonegotiation settings. 8895 */ 8896static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, 8897 fw_port_cap32_t acaps) 8898{ 8899 lc->pcaps = pcaps; 8900 lc->def_acaps = acaps; 8901 lc->lpacaps = 0; 8902 lc->speed_caps = 0; 8903 lc->speed = 0; 8904 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 8905 8906 /* For Forward Error Control, we default to whatever the Firmware 8907 * tells us the Link is currently advertising. 8908 */ 8909 lc->requested_fec = FEC_AUTO; 8910 lc->fec = fwcap_to_cc_fec(lc->def_acaps); 8911 8912 /* If the Port is capable of Auto-Negtotiation, initialize it as 8913 * "enabled" and copy over all of the Physical Port Capabilities 8914 * to the Advertised Port Capabilities. Otherwise mark it as 8915 * Auto-Negotiate disabled and select the highest supported speed 8916 * for the link. Note parallel structure in t4_link_l1cfg_core() 8917 * and t4_handle_get_port_info(). 8918 */ 8919 if (lc->pcaps & FW_PORT_CAP32_ANEG) { 8920 lc->acaps = lc->pcaps & ADVERT_MASK; 8921 lc->autoneg = AUTONEG_ENABLE; 8922 lc->requested_fc |= PAUSE_AUTONEG; 8923 } else { 8924 lc->acaps = 0; 8925 lc->autoneg = AUTONEG_DISABLE; 8926 lc->speed_caps = fwcap_to_fwspeed(acaps); 8927 } 8928} 8929 8930#define CIM_PF_NOACCESS 0xeeeeeeee 8931 8932int t4_wait_dev_ready(void __iomem *regs) 8933{ 8934 u32 whoami; 8935 8936 whoami = readl(regs + PL_WHOAMI_A); 8937 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) 8938 return 0; 8939 8940 msleep(500); 8941 whoami = readl(regs + PL_WHOAMI_A); 8942 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); 8943} 8944 8945struct flash_desc { 8946 u32 vendor_and_model_id; 8947 u32 size_mb; 8948}; 8949 8950static int t4_get_flash_params(struct adapter *adap) 8951{ 8952 /* Table for non-Numonix supported flash parts. Numonix parts are left 8953 * to the preexisting code. All flash parts have 64KB sectors. 8954 */ 8955 static struct flash_desc supported_flash[] = { 8956 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8957 }; 8958 8959 unsigned int part, manufacturer; 8960 unsigned int density, size = 0; 8961 u32 flashid = 0; 8962 int ret; 8963 8964 /* Issue a Read ID Command to the Flash part. We decode supported 8965 * Flash parts and their sizes from this. There's a newer Query 8966 * Command which can retrieve detailed geometry information but many 8967 * Flash parts don't support it. 8968 */ 8969 8970 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); 8971 if (!ret) 8972 ret = sf1_read(adap, 3, 0, 1, &flashid); 8973 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */ 8974 if (ret) 8975 return ret; 8976 8977 /* Check to see if it's one of our non-standard supported Flash parts. 8978 */ 8979 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8980 if (supported_flash[part].vendor_and_model_id == flashid) { 8981 adap->params.sf_size = supported_flash[part].size_mb; 8982 adap->params.sf_nsec = 8983 adap->params.sf_size / SF_SEC_SIZE; 8984 goto found; 8985 } 8986 8987 /* Decode Flash part size. The code below looks repetitive with 8988 * common encodings, but that's not guaranteed in the JEDEC 8989 * specification for the Read JEDEC ID command. The only thing that 8990 * we're guaranteed by the JEDEC specification is where the 8991 * Manufacturer ID is in the returned result. After that each 8992 * Manufacturer ~could~ encode things completely differently. 8993 * Note, all Flash parts must have 64KB sectors. 8994 */ 8995 manufacturer = flashid & 0xff; 8996 switch (manufacturer) { 8997 case 0x20: { /* Micron/Numonix */ 8998 /* This Density -> Size decoding table is taken from Micron 8999 * Data Sheets. 9000 */ 9001 density = (flashid >> 16) & 0xff; 9002 switch (density) { 9003 case 0x14: /* 1MB */ 9004 size = 1 << 20; 9005 break; 9006 case 0x15: /* 2MB */ 9007 size = 1 << 21; 9008 break; 9009 case 0x16: /* 4MB */ 9010 size = 1 << 22; 9011 break; 9012 case 0x17: /* 8MB */ 9013 size = 1 << 23; 9014 break; 9015 case 0x18: /* 16MB */ 9016 size = 1 << 24; 9017 break; 9018 case 0x19: /* 32MB */ 9019 size = 1 << 25; 9020 break; 9021 case 0x20: /* 64MB */ 9022 size = 1 << 26; 9023 break; 9024 case 0x21: /* 128MB */ 9025 size = 1 << 27; 9026 break; 9027 case 0x22: /* 256MB */ 9028 size = 1 << 28; 9029 break; 9030 } 9031 break; 9032 } 9033 case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ 9034 /* This Density -> Size decoding table is taken from ISSI 9035 * Data Sheets. 9036 */ 9037 density = (flashid >> 16) & 0xff; 9038 switch (density) { 9039 case 0x16: /* 32 MB */ 9040 size = 1 << 25; 9041 break; 9042 case 0x17: /* 64MB */ 9043 size = 1 << 26; 9044 break; 9045 } 9046 break; 9047 } 9048 case 0xc2: { /* Macronix */ 9049 /* This Density -> Size decoding table is taken from Macronix 9050 * Data Sheets. 9051 */ 9052 density = (flashid >> 16) & 0xff; 9053 switch (density) { 9054 case 0x17: /* 8MB */ 9055 size = 1 << 23; 9056 break; 9057 case 0x18: /* 16MB */ 9058 size = 1 << 24; 9059 break; 9060 } 9061 break; 9062 } 9063 case 0xef: { /* Winbond */ 9064 /* This Density -> Size decoding table is taken from Winbond 9065 * Data Sheets. 9066 */ 9067 density = (flashid >> 16) & 0xff; 9068 switch (density) { 9069 case 0x17: /* 8MB */ 9070 size = 1 << 23; 9071 break; 9072 case 0x18: /* 16MB */ 9073 size = 1 << 24; 9074 break; 9075 } 9076 break; 9077 } 9078 } 9079 9080 /* If we didn't recognize the FLASH part, that's no real issue: the 9081 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9082 * use a FLASH part which is at least 4MB in size and has 64KB 9083 * sectors. The unrecognized FLASH part is likely to be much larger 9084 * than 4MB, but that's all we really need. 9085 */ 9086 if (size == 0) { 9087 dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n", 9088 flashid); 9089 size = 1 << 22; 9090 } 9091 9092 /* Store decoded Flash size and fall through into vetting code. */ 9093 adap->params.sf_size = size; 9094 adap->params.sf_nsec = size / SF_SEC_SIZE; 9095 9096found: 9097 if (adap->params.sf_size < FLASH_MIN_SIZE) 9098 dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9099 flashid, adap->params.sf_size, FLASH_MIN_SIZE); 9100 return 0; 9101} 9102 9103/** 9104 * t4_prep_adapter - prepare SW and HW for operation 9105 * @adapter: the adapter 9106 * 9107 * Initialize adapter SW state for the various HW modules, set initial 9108 * values for some adapter tunables, take PHYs out of reset, and 9109 * initialize the MDIO interface. 9110 */ 9111int t4_prep_adapter(struct adapter *adapter) 9112{ 9113 int ret, ver; 9114 uint16_t device_id; 9115 u32 pl_rev; 9116 9117 get_pci_mode(adapter, &adapter->params.pci); 9118 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A)); 9119 9120 ret = t4_get_flash_params(adapter); 9121 if (ret < 0) { 9122 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); 9123 return ret; 9124 } 9125 9126 /* Retrieve adapter's device ID 9127 */ 9128 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); 9129 ver = device_id >> 12; 9130 adapter->params.chip = 0; 9131 switch (ver) { 9132 case CHELSIO_T4: 9133 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); 9134 adapter->params.arch.sge_fl_db = DBPRIO_F; 9135 adapter->params.arch.mps_tcam_size = 9136 NUM_MPS_CLS_SRAM_L_INSTANCES; 9137 adapter->params.arch.mps_rplc_size = 128; 9138 adapter->params.arch.nchan = NCHAN; 9139 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9140 adapter->params.arch.vfcount = 128; 9141 /* Congestion map is for 4 channels so that 9142 * MPS can have 4 priority per port. 9143 */ 9144 adapter->params.arch.cng_ch_bits_log = 2; 9145 break; 9146 case CHELSIO_T5: 9147 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); 9148 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; 9149 adapter->params.arch.mps_tcam_size = 9150 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9151 adapter->params.arch.mps_rplc_size = 128; 9152 adapter->params.arch.nchan = NCHAN; 9153 adapter->params.arch.pm_stats_cnt = PM_NSTATS; 9154 adapter->params.arch.vfcount = 128; 9155 adapter->params.arch.cng_ch_bits_log = 2; 9156 break; 9157 case CHELSIO_T6: 9158 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev); 9159 adapter->params.arch.sge_fl_db = 0; 9160 adapter->params.arch.mps_tcam_size = 9161 NUM_MPS_T5_CLS_SRAM_L_INSTANCES; 9162 adapter->params.arch.mps_rplc_size = 256; 9163 adapter->params.arch.nchan = 2; 9164 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS; 9165 adapter->params.arch.vfcount = 256; 9166 /* Congestion map will be for 2 channels so that 9167 * MPS can have 8 priority per port. 9168 */ 9169 adapter->params.arch.cng_ch_bits_log = 3; 9170 break; 9171 default: 9172 dev_err(adapter->pdev_dev, "Device %d is not supported\n", 9173 device_id); 9174 return -EINVAL; 9175 } 9176 9177 adapter->params.cim_la_size = CIMLA_SIZE; 9178 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9179 9180 /* 9181 * Default port for debugging in case we can't reach FW. 9182 */ 9183 adapter->params.nports = 1; 9184 adapter->params.portvec = 1; 9185 adapter->params.vpd.cclk = 50000; 9186 9187 /* Set PCIe completion timeout to 4 seconds. */ 9188 pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2, 9189 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); 9190 return 0; 9191} 9192 9193/** 9194 * t4_shutdown_adapter - shut down adapter, host & wire 9195 * @adapter: the adapter 9196 * 9197 * Perform an emergency shutdown of the adapter and stop it from 9198 * continuing any further communication on the ports or DMA to the 9199 * host. This is typically used when the adapter and/or firmware 9200 * have crashed and we want to prevent any further accidental 9201 * communication with the rest of the world. This will also force 9202 * the port Link Status to go down -- if register writes work -- 9203 * which should help our peers figure out that we're down. 9204 */ 9205int t4_shutdown_adapter(struct adapter *adapter) 9206{ 9207 int port; 9208 9209 t4_intr_disable(adapter); 9210 t4_write_reg(adapter, DBG_GPIO_EN_A, 0); 9211 for_each_port(adapter, port) { 9212 u32 a_port_cfg = is_t4(adapter->params.chip) ? 9213 PORT_REG(port, XGMAC_PORT_CFG_A) : 9214 T5_PORT_REG(port, MAC_PORT_CFG_A); 9215 9216 t4_write_reg(adapter, a_port_cfg, 9217 t4_read_reg(adapter, a_port_cfg) 9218 & ~SIGNAL_DET_V(1)); 9219 } 9220 t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0); 9221 9222 return 0; 9223} 9224 9225/** 9226 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9227 * @adapter: the adapter 9228 * @qid: the Queue ID 9229 * @qtype: the Ingress or Egress type for @qid 9230 * @user: true if this request is for a user mode queue 9231 * @pbar2_qoffset: BAR2 Queue Offset 9232 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9233 * 9234 * Returns the BAR2 SGE Queue Registers information associated with the 9235 * indicated Absolute Queue ID. These are passed back in return value 9236 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9237 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9238 * 9239 * This may return an error which indicates that BAR2 SGE Queue 9240 * registers aren't available. If an error is not returned, then the 9241 * following values are returned: 9242 * 9243 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9244 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9245 * 9246 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9247 * require the "Inferred Queue ID" ability may be used. E.g. the 9248 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9249 * then these "Inferred Queue ID" register may not be used. 9250 */ 9251int t4_bar2_sge_qregs(struct adapter *adapter, 9252 unsigned int qid, 9253 enum t4_bar2_qtype qtype, 9254 int user, 9255 u64 *pbar2_qoffset, 9256 unsigned int *pbar2_qid) 9257{ 9258 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9259 u64 bar2_page_offset, bar2_qoffset; 9260 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9261 9262 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */ 9263 if (!user && is_t4(adapter->params.chip)) 9264 return -EINVAL; 9265 9266 /* Get our SGE Page Size parameters. 9267 */ 9268 page_shift = adapter->params.sge.hps + 10; 9269 page_size = 1 << page_shift; 9270 9271 /* Get the right Queues per Page parameters for our Queue. 9272 */ 9273 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9274 ? adapter->params.sge.eq_qpp 9275 : adapter->params.sge.iq_qpp); 9276 qpp_mask = (1 << qpp_shift) - 1; 9277 9278 /* Calculate the basics of the BAR2 SGE Queue register area: 9279 * o The BAR2 page the Queue registers will be in. 9280 * o The BAR2 Queue ID. 9281 * o The BAR2 Queue ID Offset into the BAR2 page. 9282 */ 9283 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9284 bar2_qid = qid & qpp_mask; 9285 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9286 9287 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9288 * hardware will infer the Absolute Queue ID simply from the writes to 9289 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9290 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9291 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9292 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9293 * from the BAR2 Page and BAR2 Queue ID. 9294 * 9295 * One important censequence of this is that some BAR2 SGE registers 9296 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9297 * there. But other registers synthesize the SGE Queue ID purely 9298 * from the writes to the registers -- the Write Combined Doorbell 9299 * Buffer is a good example. These BAR2 SGE Registers are only 9300 * available for those BAR2 SGE Register areas where the SGE Absolute 9301 * Queue ID can be inferred from simple writes. 9302 */ 9303 bar2_qoffset = bar2_page_offset; 9304 bar2_qinferred = (bar2_qid_offset < page_size); 9305 if (bar2_qinferred) { 9306 bar2_qoffset += bar2_qid_offset; 9307 bar2_qid = 0; 9308 } 9309 9310 *pbar2_qoffset = bar2_qoffset; 9311 *pbar2_qid = bar2_qid; 9312 return 0; 9313} 9314 9315/** 9316 * t4_init_devlog_params - initialize adapter->params.devlog 9317 * @adap: the adapter 9318 * 9319 * Initialize various fields of the adapter's Firmware Device Log 9320 * Parameters structure. 9321 */ 9322int t4_init_devlog_params(struct adapter *adap) 9323{ 9324 struct devlog_params *dparams = &adap->params.devlog; 9325 u32 pf_dparams; 9326 unsigned int devlog_meminfo; 9327 struct fw_devlog_cmd devlog_cmd; 9328 int ret; 9329 9330 /* If we're dealing with newer firmware, the Device Log Parameters 9331 * are stored in a designated register which allows us to access the 9332 * Device Log even if we can't talk to the firmware. 9333 */ 9334 pf_dparams = 9335 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG)); 9336 if (pf_dparams) { 9337 unsigned int nentries, nentries128; 9338 9339 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams); 9340 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4; 9341 9342 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams); 9343 nentries = (nentries128 + 1) * 128; 9344 dparams->size = nentries * sizeof(struct fw_devlog_e); 9345 9346 return 0; 9347 } 9348 9349 /* Otherwise, ask the firmware for it's Device Log Parameters. 9350 */ 9351 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 9352 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) | 9353 FW_CMD_REQUEST_F | FW_CMD_READ_F); 9354 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9355 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9356 &devlog_cmd); 9357 if (ret) 9358 return ret; 9359 9360 devlog_meminfo = 9361 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9362 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo); 9363 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4; 9364 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9365 9366 return 0; 9367} 9368 9369/** 9370 * t4_init_sge_params - initialize adap->params.sge 9371 * @adapter: the adapter 9372 * 9373 * Initialize various fields of the adapter's SGE Parameters structure. 9374 */ 9375int t4_init_sge_params(struct adapter *adapter) 9376{ 9377 struct sge_params *sge_params = &adapter->params.sge; 9378 u32 hps, qpp; 9379 unsigned int s_hps, s_qpp; 9380 9381 /* Extract the SGE Page Size for our PF. 9382 */ 9383 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A); 9384 s_hps = (HOSTPAGESIZEPF0_S + 9385 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf); 9386 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); 9387 9388 /* Extract the SGE Egress and Ingess Queues Per Page for our PF. 9389 */ 9390 s_qpp = (QUEUESPERPAGEPF0_S + 9391 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); 9392 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A); 9393 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9394 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A); 9395 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M); 9396 9397 return 0; 9398} 9399 9400/** 9401 * t4_init_tp_params - initialize adap->params.tp 9402 * @adap: the adapter 9403 * @sleep_ok: if true we may sleep while awaiting command completion 9404 * 9405 * Initialize various fields of the adapter's TP Parameters structure. 9406 */ 9407int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9408{ 9409 u32 param, val, v; 9410 int chan, ret; 9411 9412 9413 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A); 9414 adap->params.tp.tre = TIMERRESOLUTION_G(v); 9415 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v); 9416 9417 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9418 for (chan = 0; chan < NCHAN; chan++) 9419 adap->params.tp.tx_modq[chan] = chan; 9420 9421 /* Cache the adapter's Compressed Filter Mode/Mask and global Ingress 9422 * Configuration. 9423 */ 9424 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | 9425 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) | 9426 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK)); 9427 9428 /* Read current value */ 9429 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, 9430 ¶m, &val); 9431 if (ret == 0) { 9432 dev_info(adap->pdev_dev, 9433 "Current filter mode/mask 0x%x:0x%x\n", 9434 FW_PARAMS_PARAM_FILTER_MODE_G(val), 9435 FW_PARAMS_PARAM_FILTER_MASK_G(val)); 9436 adap->params.tp.vlan_pri_map = 9437 FW_PARAMS_PARAM_FILTER_MODE_G(val); 9438 adap->params.tp.filter_mask = 9439 FW_PARAMS_PARAM_FILTER_MASK_G(val); 9440 } else { 9441 dev_info(adap->pdev_dev, 9442 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n"); 9443 9444 /* Incase of older-fw (which doesn't expose the api 9445 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses 9446 * the fw api) combination, fall-back to older method of reading 9447 * the filter mode from indirect-register 9448 */ 9449 t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1, 9450 TP_VLAN_PRI_MAP_A, sleep_ok); 9451 9452 /* With the older-fw and newer-driver combination we might run 9453 * into an issue when user wants to use hash filter region but 9454 * the filter_mask is zero, in this case filter_mask validation 9455 * is tough. To avoid that we set the filter_mask same as filter 9456 * mode, which will behave exactly as the older way of ignoring 9457 * the filter mask validation. 9458 */ 9459 adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map; 9460 } 9461 9462 t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1, 9463 TP_INGRESS_CONFIG_A, sleep_ok); 9464 9465 /* For T6, cache the adapter's compressed error vector 9466 * and passing outer header info for encapsulated packets. 9467 */ 9468 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) { 9469 v = t4_read_reg(adap, TP_OUT_CONFIG_A); 9470 adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0; 9471 } 9472 9473 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9474 * shift positions of several elements of the Compressed Filter Tuple 9475 * for this adapter which we need frequently ... 9476 */ 9477 adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F); 9478 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F); 9479 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F); 9480 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F); 9481 adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F); 9482 adap->params.tp.protocol_shift = t4_filter_field_shift(adap, 9483 PROTOCOL_F); 9484 adap->params.tp.ethertype_shift = t4_filter_field_shift(adap, 9485 ETHERTYPE_F); 9486 adap->params.tp.macmatch_shift = t4_filter_field_shift(adap, 9487 MACMATCH_F); 9488 adap->params.tp.matchtype_shift = t4_filter_field_shift(adap, 9489 MPSHITTYPE_F); 9490 adap->params.tp.frag_shift = t4_filter_field_shift(adap, 9491 FRAGMENTATION_F); 9492 9493 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID 9494 * represents the presence of an Outer VLAN instead of a VNIC ID. 9495 */ 9496 if ((adap->params.tp.ingress_config & VNIC_F) == 0) 9497 adap->params.tp.vnic_shift = -1; 9498 9499 v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A); 9500 adap->params.tp.hash_filter_mask = v; 9501 v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A); 9502 adap->params.tp.hash_filter_mask |= ((u64)v << 32); 9503 return 0; 9504} 9505 9506/** 9507 * t4_filter_field_shift - calculate filter field shift 9508 * @adap: the adapter 9509 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9510 * 9511 * Return the shift position of a filter field within the Compressed 9512 * Filter Tuple. The filter field is specified via its selection bit 9513 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9514 */ 9515int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9516{ 9517 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9518 unsigned int sel; 9519 int field_shift; 9520 9521 if ((filter_mode & filter_sel) == 0) 9522 return -1; 9523 9524 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9525 switch (filter_mode & sel) { 9526 case FCOE_F: 9527 field_shift += FT_FCOE_W; 9528 break; 9529 case PORT_F: 9530 field_shift += FT_PORT_W; 9531 break; 9532 case VNIC_ID_F: 9533 field_shift += FT_VNIC_ID_W; 9534 break; 9535 case VLAN_F: 9536 field_shift += FT_VLAN_W; 9537 break; 9538 case TOS_F: 9539 field_shift += FT_TOS_W; 9540 break; 9541 case PROTOCOL_F: 9542 field_shift += FT_PROTOCOL_W; 9543 break; 9544 case ETHERTYPE_F: 9545 field_shift += FT_ETHERTYPE_W; 9546 break; 9547 case MACMATCH_F: 9548 field_shift += FT_MACMATCH_W; 9549 break; 9550 case MPSHITTYPE_F: 9551 field_shift += FT_MPSHITTYPE_W; 9552 break; 9553 case FRAGMENTATION_F: 9554 field_shift += FT_FRAGMENTATION_W; 9555 break; 9556 } 9557 } 9558 return field_shift; 9559} 9560 9561int t4_init_rss_mode(struct adapter *adap, int mbox) 9562{ 9563 int i, ret; 9564 struct fw_rss_vi_config_cmd rvc; 9565 9566 memset(&rvc, 0, sizeof(rvc)); 9567 9568 for_each_port(adap, i) { 9569 struct port_info *p = adap2pinfo(adap, i); 9570 9571 rvc.op_to_viid = 9572 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | 9573 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9574 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid)); 9575 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc)); 9576 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); 9577 if (ret) 9578 return ret; 9579 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen); 9580 } 9581 return 0; 9582} 9583 9584/** 9585 * t4_init_portinfo - allocate a virtual interface and initialize port_info 9586 * @pi: the port_info 9587 * @mbox: mailbox to use for the FW command 9588 * @port: physical port associated with the VI 9589 * @pf: the PF owning the VI 9590 * @vf: the VF owning the VI 9591 * @mac: the MAC address of the VI 9592 * 9593 * Allocates a virtual interface for the given physical port. If @mac is 9594 * not %NULL it contains the MAC address of the VI as assigned by FW. 9595 * @mac should be large enough to hold an Ethernet address. 9596 * Returns < 0 on error. 9597 */ 9598int t4_init_portinfo(struct port_info *pi, int mbox, 9599 int port, int pf, int vf, u8 mac[]) 9600{ 9601 struct adapter *adapter = pi->adapter; 9602 unsigned int fw_caps = adapter->params.fw_caps_support; 9603 struct fw_port_cmd cmd; 9604 unsigned int rss_size; 9605 enum fw_port_type port_type; 9606 int mdio_addr; 9607 fw_port_cap32_t pcaps, acaps; 9608 u8 vivld = 0, vin = 0; 9609 int ret; 9610 9611 /* If we haven't yet determined whether we're talking to Firmware 9612 * which knows the new 32-bit Port Capabilities, it's time to find 9613 * out now. This will also tell new Firmware to send us Port Status 9614 * Updates using the new 32-bit Port Capabilities version of the 9615 * Port Information message. 9616 */ 9617 if (fw_caps == FW_CAPS_UNKNOWN) { 9618 u32 param, val; 9619 9620 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | 9621 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); 9622 val = 1; 9623 ret = t4_set_params(adapter, mbox, pf, vf, 1, ¶m, &val); 9624 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); 9625 adapter->params.fw_caps_support = fw_caps; 9626 } 9627 9628 memset(&cmd, 0, sizeof(cmd)); 9629 cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | 9630 FW_CMD_REQUEST_F | FW_CMD_READ_F | 9631 FW_PORT_CMD_PORTID_V(port)); 9632 cmd.action_to_len16 = cpu_to_be32( 9633 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 9634 ? FW_PORT_ACTION_GET_PORT_INFO 9635 : FW_PORT_ACTION_GET_PORT_INFO32) | 9636 FW_LEN16(cmd)); 9637 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd); 9638 if (ret) 9639 return ret; 9640 9641 /* Extract the various fields from the Port Information message. 9642 */ 9643 if (fw_caps == FW_CAPS16) { 9644 u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype); 9645 9646 port_type = FW_PORT_CMD_PTYPE_G(lstatus); 9647 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) 9648 ? FW_PORT_CMD_MDIOADDR_G(lstatus) 9649 : -1); 9650 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap)); 9651 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap)); 9652 } else { 9653 u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32); 9654 9655 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); 9656 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) 9657 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) 9658 : -1); 9659 pcaps = be32_to_cpu(cmd.u.info32.pcaps32); 9660 acaps = be32_to_cpu(cmd.u.info32.acaps32); 9661 } 9662 9663 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size, 9664 &vivld, &vin); 9665 if (ret < 0) 9666 return ret; 9667 9668 pi->viid = ret; 9669 pi->tx_chan = port; 9670 pi->lport = port; 9671 pi->rss_size = rss_size; 9672 pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port); 9673 9674 /* If fw supports returning the VIN as part of FW_VI_CMD, 9675 * save the returned values. 9676 */ 9677 if (adapter->params.viid_smt_extn_support) { 9678 pi->vivld = vivld; 9679 pi->vin = vin; 9680 } else { 9681 /* Retrieve the values from VIID */ 9682 pi->vivld = FW_VIID_VIVLD_G(pi->viid); 9683 pi->vin = FW_VIID_VIN_G(pi->viid); 9684 } 9685 9686 pi->port_type = port_type; 9687 pi->mdio_addr = mdio_addr; 9688 pi->mod_type = FW_PORT_MOD_TYPE_NA; 9689 9690 init_link_config(&pi->link_cfg, pcaps, acaps); 9691 return 0; 9692} 9693 9694int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) 9695{ 9696 u8 addr[6]; 9697 int ret, i, j = 0; 9698 9699 for_each_port(adap, i) { 9700 struct port_info *pi = adap2pinfo(adap, i); 9701 9702 while ((adap->params.portvec & (1 << j)) == 0) 9703 j++; 9704 9705 ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr); 9706 if (ret) 9707 return ret; 9708 9709 eth_hw_addr_set(adap->port[i], addr); 9710 j++; 9711 } 9712 return 0; 9713} 9714 9715int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf, 9716 u16 *mirror_viid) 9717{ 9718 int ret; 9719 9720 ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL, 9721 NULL, NULL); 9722 if (ret < 0) 9723 return ret; 9724 9725 if (mirror_viid) 9726 *mirror_viid = ret; 9727 9728 return 0; 9729} 9730 9731/** 9732 * t4_read_cimq_cfg - read CIM queue configuration 9733 * @adap: the adapter 9734 * @base: holds the queue base addresses in bytes 9735 * @size: holds the queue sizes in bytes 9736 * @thres: holds the queue full thresholds in bytes 9737 * 9738 * Returns the current configuration of the CIM queues, starting with 9739 * the IBQs, then the OBQs. 9740 */ 9741void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9742{ 9743 unsigned int i, v; 9744 int cim_num_obq = is_t4(adap->params.chip) ? 9745 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9746 9747 for (i = 0; i < CIM_NUM_IBQ; i++) { 9748 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F | 9749 QUENUMSELECT_V(i)); 9750 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9751 /* value is in 256-byte units */ 9752 *base++ = CIMQBASE_G(v) * 256; 9753 *size++ = CIMQSIZE_G(v) * 256; 9754 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */ 9755 } 9756 for (i = 0; i < cim_num_obq; i++) { 9757 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9758 QUENUMSELECT_V(i)); 9759 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9760 /* value is in 256-byte units */ 9761 *base++ = CIMQBASE_G(v) * 256; 9762 *size++ = CIMQSIZE_G(v) * 256; 9763 } 9764} 9765 9766/** 9767 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9768 * @adap: the adapter 9769 * @qid: the queue index 9770 * @data: where to store the queue contents 9771 * @n: capacity of @data in 32-bit words 9772 * 9773 * Reads the contents of the selected CIM queue starting at address 0 up 9774 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9775 * error and the number of 32-bit words actually read on success. 9776 */ 9777int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9778{ 9779 int i, err, attempts; 9780 unsigned int addr; 9781 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9782 9783 if (qid > 5 || (n & 3)) 9784 return -EINVAL; 9785 9786 addr = qid * nwords; 9787 if (n > nwords) 9788 n = nwords; 9789 9790 /* It might take 3-10ms before the IBQ debug read access is allowed. 9791 * Wait for 1 Sec with a delay of 1 usec. 9792 */ 9793 attempts = 1000000; 9794 9795 for (i = 0; i < n; i++, addr++) { 9796 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) | 9797 IBQDBGEN_F); 9798 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0, 9799 attempts, 1); 9800 if (err) 9801 return err; 9802 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A); 9803 } 9804 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0); 9805 return i; 9806} 9807 9808/** 9809 * t4_read_cim_obq - read the contents of a CIM outbound queue 9810 * @adap: the adapter 9811 * @qid: the queue index 9812 * @data: where to store the queue contents 9813 * @n: capacity of @data in 32-bit words 9814 * 9815 * Reads the contents of the selected CIM queue starting at address 0 up 9816 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9817 * error and the number of 32-bit words actually read on success. 9818 */ 9819int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9820{ 9821 int i, err; 9822 unsigned int addr, v, nwords; 9823 int cim_num_obq = is_t4(adap->params.chip) ? 9824 CIM_NUM_OBQ : CIM_NUM_OBQ_T5; 9825 9826 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9827 return -EINVAL; 9828 9829 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | 9830 QUENUMSELECT_V(qid)); 9831 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A); 9832 9833 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */ 9834 nwords = CIMQSIZE_G(v) * 64; /* same */ 9835 if (n > nwords) 9836 n = nwords; 9837 9838 for (i = 0; i < n; i++, addr++) { 9839 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) | 9840 OBQDBGEN_F); 9841 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0, 9842 2, 1); 9843 if (err) 9844 return err; 9845 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A); 9846 } 9847 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0); 9848 return i; 9849} 9850 9851/** 9852 * t4_cim_read - read a block from CIM internal address space 9853 * @adap: the adapter 9854 * @addr: the start address within the CIM address space 9855 * @n: number of words to read 9856 * @valp: where to store the result 9857 * 9858 * Reads a block of 4-byte words from the CIM intenal address space. 9859 */ 9860int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9861 unsigned int *valp) 9862{ 9863 int ret = 0; 9864 9865 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9866 return -EBUSY; 9867 9868 for ( ; !ret && n--; addr += 4) { 9869 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr); 9870 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9871 0, 5, 2); 9872 if (!ret) 9873 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A); 9874 } 9875 return ret; 9876} 9877 9878/** 9879 * t4_cim_write - write a block into CIM internal address space 9880 * @adap: the adapter 9881 * @addr: the start address within the CIM address space 9882 * @n: number of words to write 9883 * @valp: set of values to write 9884 * 9885 * Writes a block of 4-byte words into the CIM intenal address space. 9886 */ 9887int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9888 const unsigned int *valp) 9889{ 9890 int ret = 0; 9891 9892 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F) 9893 return -EBUSY; 9894 9895 for ( ; !ret && n--; addr += 4) { 9896 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++); 9897 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F); 9898 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F, 9899 0, 5, 2); 9900 } 9901 return ret; 9902} 9903 9904static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9905 unsigned int val) 9906{ 9907 return t4_cim_write(adap, addr, 1, &val); 9908} 9909 9910/** 9911 * t4_cim_read_la - read CIM LA capture buffer 9912 * @adap: the adapter 9913 * @la_buf: where to store the LA data 9914 * @wrptr: the HW write pointer within the capture buffer 9915 * 9916 * Reads the contents of the CIM LA buffer with the most recent entry at 9917 * the end of the returned data and with the entry at @wrptr first. 9918 * We try to leave the LA in the running state we find it in. 9919 */ 9920int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9921{ 9922 int i, ret; 9923 unsigned int cfg, val, idx; 9924 9925 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg); 9926 if (ret) 9927 return ret; 9928 9929 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */ 9930 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0); 9931 if (ret) 9932 return ret; 9933 } 9934 9935 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9936 if (ret) 9937 goto restart; 9938 9939 idx = UPDBGLAWRPTR_G(val); 9940 if (wrptr) 9941 *wrptr = idx; 9942 9943 for (i = 0; i < adap->params.cim_la_size; i++) { 9944 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9945 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F); 9946 if (ret) 9947 break; 9948 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val); 9949 if (ret) 9950 break; 9951 if (val & UPDBGLARDEN_F) { 9952 ret = -ETIMEDOUT; 9953 break; 9954 } 9955 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]); 9956 if (ret) 9957 break; 9958 9959 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9960 * identify the 32-bit portion of the full 312-bit data 9961 */ 9962 if (is_t6(adap->params.chip) && (idx & 0xf) >= 9) 9963 idx = (idx & 0xff0) + 0x10; 9964 else 9965 idx++; 9966 /* address can't exceed 0xfff */ 9967 idx &= UPDBGLARDPTR_M; 9968 } 9969restart: 9970 if (cfg & UPDBGLAEN_F) { 9971 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 9972 cfg & ~UPDBGLARDEN_F); 9973 if (!ret) 9974 ret = r; 9975 } 9976 return ret; 9977} 9978 9979/** 9980 * t4_tp_read_la - read TP LA capture buffer 9981 * @adap: the adapter 9982 * @la_buf: where to store the LA data 9983 * @wrptr: the HW write pointer within the capture buffer 9984 * 9985 * Reads the contents of the TP LA buffer with the most recent entry at 9986 * the end of the returned data and with the entry at @wrptr first. 9987 * We leave the LA in the running state we find it in. 9988 */ 9989void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9990{ 9991 bool last_incomplete; 9992 unsigned int i, cfg, val, idx; 9993 9994 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff; 9995 if (cfg & DBGLAENABLE_F) /* freeze LA */ 9996 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 9997 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F)); 9998 9999 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A); 10000 idx = DBGLAWPTR_G(val); 10001 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0; 10002 if (last_incomplete) 10003 idx = (idx + 1) & DBGLARPTR_M; 10004 if (wrptr) 10005 *wrptr = idx; 10006 10007 val &= 0xffff; 10008 val &= ~DBGLARPTR_V(DBGLARPTR_M); 10009 val |= adap->params.tp.la_mask; 10010 10011 for (i = 0; i < TPLA_SIZE; i++) { 10012 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val); 10013 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A); 10014 idx = (idx + 1) & DBGLARPTR_M; 10015 } 10016 10017 /* Wipe out last entry if it isn't valid */ 10018 if (last_incomplete) 10019 la_buf[TPLA_SIZE - 1] = ~0ULL; 10020 10021 if (cfg & DBGLAENABLE_F) /* restore running state */ 10022 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, 10023 cfg | adap->params.tp.la_mask); 10024} 10025 10026/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10027 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10028 * state for more than the Warning Threshold then we'll issue a warning about 10029 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10030 * appears to be hung every Warning Repeat second till the situation clears. 10031 * If the situation clears, we'll note that as well. 10032 */ 10033#define SGE_IDMA_WARN_THRESH 1 10034#define SGE_IDMA_WARN_REPEAT 300 10035 10036/** 10037 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10038 * @adapter: the adapter 10039 * @idma: the adapter IDMA Monitor state 10040 * 10041 * Initialize the state of an SGE Ingress DMA Monitor. 10042 */ 10043void t4_idma_monitor_init(struct adapter *adapter, 10044 struct sge_idma_monitor_state *idma) 10045{ 10046 /* Initialize the state variables for detecting an SGE Ingress DMA 10047 * hang. The SGE has internal counters which count up on each clock 10048 * tick whenever the SGE finds its Ingress DMA State Engines in the 10049 * same state they were on the previous clock tick. The clock used is 10050 * the Core Clock so we have a limit on the maximum "time" they can 10051 * record; typically a very small number of seconds. For instance, 10052 * with a 600MHz Core Clock, we can only count up to a bit more than 10053 * 7s. So we'll synthesize a larger counter in order to not run the 10054 * risk of having the "timers" overflow and give us the flexibility to 10055 * maintain a Hung SGE State Machine of our own which operates across 10056 * a longer time frame. 10057 */ 10058 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10059 idma->idma_stalled[0] = 0; 10060 idma->idma_stalled[1] = 0; 10061} 10062 10063/** 10064 * t4_idma_monitor - monitor SGE Ingress DMA state 10065 * @adapter: the adapter 10066 * @idma: the adapter IDMA Monitor state 10067 * @hz: number of ticks/second 10068 * @ticks: number of ticks since the last IDMA Monitor call 10069 */ 10070void t4_idma_monitor(struct adapter *adapter, 10071 struct sge_idma_monitor_state *idma, 10072 int hz, int ticks) 10073{ 10074 int i, idma_same_state_cnt[2]; 10075 10076 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10077 * are counters inside the SGE which count up on each clock when the 10078 * SGE finds its Ingress DMA State Engines in the same states they 10079 * were in the previous clock. The counters will peg out at 10080 * 0xffffffff without wrapping around so once they pass the 1s 10081 * threshold they'll stay above that till the IDMA state changes. 10082 */ 10083 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13); 10084 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A); 10085 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10086 10087 for (i = 0; i < 2; i++) { 10088 u32 debug0, debug11; 10089 10090 /* If the Ingress DMA Same State Counter ("timer") is less 10091 * than 1s, then we can reset our synthesized Stall Timer and 10092 * continue. If we have previously emitted warnings about a 10093 * potential stalled Ingress Queue, issue a note indicating 10094 * that the Ingress Queue has resumed forward progress. 10095 */ 10096 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10097 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz) 10098 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, " 10099 "resumed after %d seconds\n", 10100 i, idma->idma_qid[i], 10101 idma->idma_stalled[i] / hz); 10102 idma->idma_stalled[i] = 0; 10103 continue; 10104 } 10105 10106 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10107 * domain. The first time we get here it'll be because we 10108 * passed the 1s Threshold; each additional time it'll be 10109 * because the RX Timer Callback is being fired on its regular 10110 * schedule. 10111 * 10112 * If the stall is below our Potential Hung Ingress Queue 10113 * Warning Threshold, continue. 10114 */ 10115 if (idma->idma_stalled[i] == 0) { 10116 idma->idma_stalled[i] = hz; 10117 idma->idma_warn[i] = 0; 10118 } else { 10119 idma->idma_stalled[i] += ticks; 10120 idma->idma_warn[i] -= ticks; 10121 } 10122 10123 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz) 10124 continue; 10125 10126 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10127 */ 10128 if (idma->idma_warn[i] > 0) 10129 continue; 10130 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz; 10131 10132 /* Read and save the SGE IDMA State and Queue ID information. 10133 * We do this every time in case it changes across time ... 10134 * can't be too careful ... 10135 */ 10136 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0); 10137 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10138 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10139 10140 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11); 10141 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A); 10142 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10143 10144 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in " 10145 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10146 i, idma->idma_qid[i], idma->idma_state[i], 10147 idma->idma_stalled[i] / hz, 10148 debug0, debug11); 10149 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10150 } 10151} 10152 10153/** 10154 * t4_load_cfg - download config file 10155 * @adap: the adapter 10156 * @cfg_data: the cfg text file to write 10157 * @size: text file size 10158 * 10159 * Write the supplied config text file to the card's serial flash. 10160 */ 10161int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10162{ 10163 int ret, i, n, cfg_addr; 10164 unsigned int addr; 10165 unsigned int flash_cfg_start_sec; 10166 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10167 10168 cfg_addr = t4_flash_cfg_addr(adap); 10169 if (cfg_addr < 0) 10170 return cfg_addr; 10171 10172 addr = cfg_addr; 10173 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10174 10175 if (size > FLASH_CFG_MAX_SIZE) { 10176 dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n", 10177 FLASH_CFG_MAX_SIZE); 10178 return -EFBIG; 10179 } 10180 10181 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10182 sf_sec_size); 10183 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10184 flash_cfg_start_sec + i - 1); 10185 /* If size == 0 then we're simply erasing the FLASH sectors associated 10186 * with the on-adapter Firmware Configuration File. 10187 */ 10188 if (ret || size == 0) 10189 goto out; 10190 10191 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10192 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10193 if ((size - i) < SF_PAGE_SIZE) 10194 n = size - i; 10195 else 10196 n = SF_PAGE_SIZE; 10197 ret = t4_write_flash(adap, addr, n, cfg_data, true); 10198 if (ret) 10199 goto out; 10200 10201 addr += SF_PAGE_SIZE; 10202 cfg_data += SF_PAGE_SIZE; 10203 } 10204 10205out: 10206 if (ret) 10207 dev_err(adap->pdev_dev, "config file %s failed %d\n", 10208 (size == 0 ? "clear" : "download"), ret); 10209 return ret; 10210} 10211 10212/** 10213 * t4_set_vf_mac_acl - Set MAC address for the specified VF 10214 * @adapter: The adapter 10215 * @vf: one of the VFs instantiated by the specified PF 10216 * @naddr: the number of MAC addresses 10217 * @addr: the MAC address(es) to be set to the specified VF 10218 */ 10219int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf, 10220 unsigned int naddr, u8 *addr) 10221{ 10222 struct fw_acl_mac_cmd cmd; 10223 10224 memset(&cmd, 0, sizeof(cmd)); 10225 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | 10226 FW_CMD_REQUEST_F | 10227 FW_CMD_WRITE_F | 10228 FW_ACL_MAC_CMD_PFN_V(adapter->pf) | 10229 FW_ACL_MAC_CMD_VFN_V(vf)); 10230 10231 /* Note: Do not enable the ACL */ 10232 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10233 cmd.nmac = naddr; 10234 10235 switch (adapter->pf) { 10236 case 3: 10237 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10238 break; 10239 case 2: 10240 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10241 break; 10242 case 1: 10243 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10244 break; 10245 case 0: 10246 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10247 break; 10248 } 10249 10250 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10251} 10252 10253/** 10254 * t4_read_pace_tbl - read the pace table 10255 * @adap: the adapter 10256 * @pace_vals: holds the returned values 10257 * 10258 * Returns the values of TP's pace table in microseconds. 10259 */ 10260void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10261{ 10262 unsigned int i, v; 10263 10264 for (i = 0; i < NTX_SCHED; i++) { 10265 t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i); 10266 v = t4_read_reg(adap, TP_PACE_TABLE_A); 10267 pace_vals[i] = dack_ticks_to_usec(adap, v); 10268 } 10269} 10270 10271/** 10272 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10273 * @adap: the adapter 10274 * @sched: the scheduler index 10275 * @kbps: the byte rate in Kbps 10276 * @ipg: the interpacket delay in tenths of nanoseconds 10277 * @sleep_ok: if true we may sleep while awaiting command completion 10278 * 10279 * Return the current configuration of a HW Tx scheduler. 10280 */ 10281void t4_get_tx_sched(struct adapter *adap, unsigned int sched, 10282 unsigned int *kbps, unsigned int *ipg, bool sleep_ok) 10283{ 10284 unsigned int v, addr, bpt, cpt; 10285 10286 if (kbps) { 10287 addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2; 10288 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10289 if (sched & 1) 10290 v >>= 16; 10291 bpt = (v >> 8) & 0xff; 10292 cpt = v & 0xff; 10293 if (!cpt) { 10294 *kbps = 0; /* scheduler disabled */ 10295 } else { 10296 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10297 *kbps = (v * bpt) / 125; 10298 } 10299 } 10300 if (ipg) { 10301 addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2; 10302 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10303 if (sched & 1) 10304 v >>= 16; 10305 v &= 0xffff; 10306 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10307 } 10308} 10309 10310/* t4_sge_ctxt_rd - read an SGE context through FW 10311 * @adap: the adapter 10312 * @mbox: mailbox to use for the FW command 10313 * @cid: the context id 10314 * @ctype: the context type 10315 * @data: where to store the context data 10316 * 10317 * Issues a FW command through the given mailbox to read an SGE context. 10318 */ 10319int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10320 enum ctxt_type ctype, u32 *data) 10321{ 10322 struct fw_ldst_cmd c; 10323 int ret; 10324 10325 if (ctype == CTXT_FLM) 10326 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10327 else 10328 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10329 10330 memset(&c, 0, sizeof(c)); 10331 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10332 FW_CMD_REQUEST_F | FW_CMD_READ_F | 10333 FW_LDST_CMD_ADDRSPACE_V(ret)); 10334 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10335 c.u.idctxt.physid = cpu_to_be32(cid); 10336 10337 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10338 if (ret == 0) { 10339 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10340 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10341 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10342 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10343 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10344 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10345 } 10346 return ret; 10347} 10348 10349/** 10350 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10351 * @adap: the adapter 10352 * @cid: the context id 10353 * @ctype: the context type 10354 * @data: where to store the context data 10355 * 10356 * Reads an SGE context directly, bypassing FW. This is only for 10357 * debugging when FW is unavailable. 10358 */ 10359int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, 10360 enum ctxt_type ctype, u32 *data) 10361{ 10362 int i, ret; 10363 10364 t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype)); 10365 ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1); 10366 if (!ret) 10367 for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4) 10368 *data++ = t4_read_reg(adap, i); 10369 return ret; 10370} 10371 10372int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode, 10373 u8 rateunit, u8 ratemode, u8 channel, u8 class, 10374 u32 minrate, u32 maxrate, u16 weight, u16 pktsize, 10375 u16 burstsize) 10376{ 10377 struct fw_sched_cmd cmd; 10378 10379 memset(&cmd, 0, sizeof(cmd)); 10380 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) | 10381 FW_CMD_REQUEST_F | 10382 FW_CMD_WRITE_F); 10383 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10384 10385 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10386 cmd.u.params.type = type; 10387 cmd.u.params.level = level; 10388 cmd.u.params.mode = mode; 10389 cmd.u.params.ch = channel; 10390 cmd.u.params.cl = class; 10391 cmd.u.params.unit = rateunit; 10392 cmd.u.params.rate = ratemode; 10393 cmd.u.params.min = cpu_to_be32(minrate); 10394 cmd.u.params.max = cpu_to_be32(maxrate); 10395 cmd.u.params.weight = cpu_to_be16(weight); 10396 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10397 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10398 10399 return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd), 10400 NULL, 1); 10401} 10402 10403/** 10404 * t4_i2c_rd - read I2C data from adapter 10405 * @adap: the adapter 10406 * @mbox: mailbox to use for the FW command 10407 * @port: Port number if per-port device; <0 if not 10408 * @devid: per-port device ID or absolute device ID 10409 * @offset: byte offset into device I2C space 10410 * @len: byte length of I2C space data 10411 * @buf: buffer in which to return I2C data 10412 * 10413 * Reads the I2C data from the indicated device and location. 10414 */ 10415int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port, 10416 unsigned int devid, unsigned int offset, 10417 unsigned int len, u8 *buf) 10418{ 10419 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10420 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10421 int ret = 0; 10422 10423 if (len > I2C_PAGE_SIZE) 10424 return -EINVAL; 10425 10426 /* Dont allow reads that spans multiple pages */ 10427 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10428 return -EINVAL; 10429 10430 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10431 ldst_cmd.op_to_addrspace = 10432 cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) | 10433 FW_CMD_REQUEST_F | 10434 FW_CMD_READ_F | 10435 FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C)); 10436 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10437 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10438 ldst_cmd.u.i2c.did = devid; 10439 10440 while (len > 0) { 10441 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10442 10443 ldst_cmd.u.i2c.boffset = offset; 10444 ldst_cmd.u.i2c.blen = i2c_len; 10445 10446 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10447 &ldst_rpl); 10448 if (ret) 10449 break; 10450 10451 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10452 offset += i2c_len; 10453 buf += i2c_len; 10454 len -= i2c_len; 10455 } 10456 10457 return ret; 10458} 10459 10460/** 10461 * t4_set_vlan_acl - Set a VLAN id for the specified VF 10462 * @adap: the adapter 10463 * @mbox: mailbox to use for the FW command 10464 * @vf: one of the VFs instantiated by the specified PF 10465 * @vlan: The vlanid to be set 10466 */ 10467int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 10468 u16 vlan) 10469{ 10470 struct fw_acl_vlan_cmd vlan_cmd; 10471 unsigned int enable; 10472 10473 enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0); 10474 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 10475 vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | 10476 FW_CMD_REQUEST_F | 10477 FW_CMD_WRITE_F | 10478 FW_CMD_EXEC_F | 10479 FW_ACL_VLAN_CMD_PFN_V(adap->pf) | 10480 FW_ACL_VLAN_CMD_VFN_V(vf)); 10481 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 10482 /* Drop all packets that donot match vlan id */ 10483 vlan_cmd.dropnovlan_fm = (enable 10484 ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F | 10485 FW_ACL_VLAN_CMD_FM_F) : 0); 10486 if (enable != 0) { 10487 vlan_cmd.nvlan = 1; 10488 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 10489 } 10490 10491 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 10492} 10493 10494/** 10495 * modify_device_id - Modifies the device ID of the Boot BIOS image 10496 * @device_id: the device ID to write. 10497 * @boot_data: the boot image to modify. 10498 * 10499 * Write the supplied device ID to the boot BIOS image. 10500 */ 10501static void modify_device_id(int device_id, u8 *boot_data) 10502{ 10503 struct cxgb4_pcir_data *pcir_header; 10504 struct legacy_pci_rom_hdr *header; 10505 u8 *cur_header = boot_data; 10506 u16 pcir_offset; 10507 10508 /* Loop through all chained images and change the device ID's */ 10509 do { 10510 header = (struct legacy_pci_rom_hdr *)cur_header; 10511 pcir_offset = le16_to_cpu(header->pcir_offset); 10512 pcir_header = (struct cxgb4_pcir_data *)(cur_header + 10513 pcir_offset); 10514 10515 /** 10516 * Only modify the Device ID if code type is Legacy or HP. 10517 * 0x00: Okay to modify 10518 * 0x01: FCODE. Do not modify 10519 * 0x03: Okay to modify 10520 * 0x04-0xFF: Do not modify 10521 */ 10522 if (pcir_header->code_type == CXGB4_HDR_CODE1) { 10523 u8 csum = 0; 10524 int i; 10525 10526 /** 10527 * Modify Device ID to match current adatper 10528 */ 10529 pcir_header->device_id = cpu_to_le16(device_id); 10530 10531 /** 10532 * Set checksum temporarily to 0. 10533 * We will recalculate it later. 10534 */ 10535 header->cksum = 0x0; 10536 10537 /** 10538 * Calculate and update checksum 10539 */ 10540 for (i = 0; i < (header->size512 * 512); i++) 10541 csum += cur_header[i]; 10542 10543 /** 10544 * Invert summed value to create the checksum 10545 * Writing new checksum value directly to the boot data 10546 */ 10547 cur_header[7] = -csum; 10548 10549 } else if (pcir_header->code_type == CXGB4_HDR_CODE2) { 10550 /** 10551 * Modify Device ID to match current adatper 10552 */ 10553 pcir_header->device_id = cpu_to_le16(device_id); 10554 } 10555 10556 /** 10557 * Move header pointer up to the next image in the ROM. 10558 */ 10559 cur_header += header->size512 * 512; 10560 } while (!(pcir_header->indicator & CXGB4_HDR_INDI)); 10561} 10562 10563/** 10564 * t4_load_boot - download boot flash 10565 * @adap: the adapter 10566 * @boot_data: the boot image to write 10567 * @boot_addr: offset in flash to write boot_data 10568 * @size: image size 10569 * 10570 * Write the supplied boot image to the card's serial flash. 10571 * The boot image has the following sections: a 28-byte header and the 10572 * boot image. 10573 */ 10574int t4_load_boot(struct adapter *adap, u8 *boot_data, 10575 unsigned int boot_addr, unsigned int size) 10576{ 10577 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10578 unsigned int boot_sector = (boot_addr * 1024); 10579 struct cxgb4_pci_exp_rom_header *header; 10580 struct cxgb4_pcir_data *pcir_header; 10581 int pcir_offset; 10582 unsigned int i; 10583 u16 device_id; 10584 int ret, addr; 10585 10586 /** 10587 * Make sure the boot image does not encroach on the firmware region 10588 */ 10589 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10590 dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n"); 10591 return -EFBIG; 10592 } 10593 10594 /* Get boot header */ 10595 header = (struct cxgb4_pci_exp_rom_header *)boot_data; 10596 pcir_offset = le16_to_cpu(header->pcir_offset); 10597 /* PCIR Data Structure */ 10598 pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset]; 10599 10600 /** 10601 * Perform some primitive sanity testing to avoid accidentally 10602 * writing garbage over the boot sectors. We ought to check for 10603 * more but it's not worth it for now ... 10604 */ 10605 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10606 dev_err(adap->pdev_dev, "boot image too small/large\n"); 10607 return -EFBIG; 10608 } 10609 10610 if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) { 10611 dev_err(adap->pdev_dev, "Boot image missing signature\n"); 10612 return -EINVAL; 10613 } 10614 10615 /* Check PCI header signature */ 10616 if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) { 10617 dev_err(adap->pdev_dev, "PCI header missing signature\n"); 10618 return -EINVAL; 10619 } 10620 10621 /* Check Vendor ID matches Chelsio ID*/ 10622 if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) { 10623 dev_err(adap->pdev_dev, "Vendor ID missing signature\n"); 10624 return -EINVAL; 10625 } 10626 10627 /** 10628 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10629 * and Boot configuration data sections. These 3 boot sections span 10630 * sectors 0 to 7 in flash and live right before the FW image location. 10631 */ 10632 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, sf_sec_size); 10633 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10634 (boot_sector >> 16) + i - 1); 10635 10636 /** 10637 * If size == 0 then we're simply erasing the FLASH sectors associated 10638 * with the on-adapter option ROM file 10639 */ 10640 if (ret || size == 0) 10641 goto out; 10642 /* Retrieve adapter's device ID */ 10643 pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id); 10644 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10645 device_id = device_id & 0xf0ff; 10646 10647 /* Check PCIE Device ID */ 10648 if (le16_to_cpu(pcir_header->device_id) != device_id) { 10649 /** 10650 * Change the device ID in the Boot BIOS image to match 10651 * the Device ID of the current adapter. 10652 */ 10653 modify_device_id(device_id, boot_data); 10654 } 10655 10656 /** 10657 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10658 * we finish copying the rest of the boot image. This will ensure 10659 * that the BIOS boot header will only be written if the boot image 10660 * was written in full. 10661 */ 10662 addr = boot_sector; 10663 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10664 addr += SF_PAGE_SIZE; 10665 boot_data += SF_PAGE_SIZE; 10666 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 10667 false); 10668 if (ret) 10669 goto out; 10670 } 10671 10672 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10673 (const u8 *)header, false); 10674 10675out: 10676 if (ret) 10677 dev_err(adap->pdev_dev, "boot image load failed, error %d\n", 10678 ret); 10679 return ret; 10680} 10681 10682/** 10683 * t4_flash_bootcfg_addr - return the address of the flash 10684 * optionrom configuration 10685 * @adapter: the adapter 10686 * 10687 * Return the address within the flash where the OptionROM Configuration 10688 * is stored, or an error if the device FLASH is too small to contain 10689 * a OptionROM Configuration. 10690 */ 10691static int t4_flash_bootcfg_addr(struct adapter *adapter) 10692{ 10693 /** 10694 * If the device FLASH isn't large enough to hold a Firmware 10695 * Configuration File, return an error. 10696 */ 10697 if (adapter->params.sf_size < 10698 FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10699 return -ENOSPC; 10700 10701 return FLASH_BOOTCFG_START; 10702} 10703 10704int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10705{ 10706 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10707 struct cxgb4_bootcfg_data *header; 10708 unsigned int flash_cfg_start_sec; 10709 unsigned int addr, npad; 10710 int ret, i, n, cfg_addr; 10711 10712 cfg_addr = t4_flash_bootcfg_addr(adap); 10713 if (cfg_addr < 0) 10714 return cfg_addr; 10715 10716 addr = cfg_addr; 10717 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10718 10719 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10720 dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n", 10721 FLASH_BOOTCFG_MAX_SIZE); 10722 return -EFBIG; 10723 } 10724 10725 header = (struct cxgb4_bootcfg_data *)cfg_data; 10726 if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) { 10727 dev_err(adap->pdev_dev, "Wrong bootcfg signature\n"); 10728 ret = -EINVAL; 10729 goto out; 10730 } 10731 10732 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE, 10733 sf_sec_size); 10734 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10735 flash_cfg_start_sec + i - 1); 10736 10737 /** 10738 * If size == 0 then we're simply erasing the FLASH sectors associated 10739 * with the on-adapter OptionROM Configuration File. 10740 */ 10741 if (ret || size == 0) 10742 goto out; 10743 10744 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10745 for (i = 0; i < size; i += SF_PAGE_SIZE) { 10746 n = min_t(u32, size - i, SF_PAGE_SIZE); 10747 10748 ret = t4_write_flash(adap, addr, n, cfg_data, false); 10749 if (ret) 10750 goto out; 10751 10752 addr += SF_PAGE_SIZE; 10753 cfg_data += SF_PAGE_SIZE; 10754 } 10755 10756 npad = ((size + 4 - 1) & ~3) - size; 10757 for (i = 0; i < npad; i++) { 10758 u8 data = 0; 10759 10760 ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data, 10761 false); 10762 if (ret) 10763 goto out; 10764 } 10765 10766out: 10767 if (ret) 10768 dev_err(adap->pdev_dev, "boot config data %s failed %d\n", 10769 (size == 0 ? "clear" : "download"), ret); 10770 return ret; 10771}