cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sge.c (82237B)


      1/*
      2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
      3 * driver for Linux.
      4 *
      5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
      6 *
      7 * This software is available to you under a choice of one of two
      8 * licenses.  You may choose to be licensed under the terms of the GNU
      9 * General Public License (GPL) Version 2, available from the file
     10 * COPYING in the main directory of this source tree, or the
     11 * OpenIB.org BSD license below:
     12 *
     13 *     Redistribution and use in source and binary forms, with or
     14 *     without modification, are permitted provided that the following
     15 *     conditions are met:
     16 *
     17 *      - Redistributions of source code must retain the above
     18 *        copyright notice, this list of conditions and the following
     19 *        disclaimer.
     20 *
     21 *      - Redistributions in binary form must reproduce the above
     22 *        copyright notice, this list of conditions and the following
     23 *        disclaimer in the documentation and/or other materials
     24 *        provided with the distribution.
     25 *
     26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     33 * SOFTWARE.
     34 */
     35
     36#include <linux/skbuff.h>
     37#include <linux/netdevice.h>
     38#include <linux/etherdevice.h>
     39#include <linux/if_vlan.h>
     40#include <linux/ip.h>
     41#include <net/ipv6.h>
     42#include <net/tcp.h>
     43#include <linux/dma-mapping.h>
     44#include <linux/prefetch.h>
     45
     46#include "t4vf_common.h"
     47#include "t4vf_defs.h"
     48
     49#include "../cxgb4/t4_regs.h"
     50#include "../cxgb4/t4_values.h"
     51#include "../cxgb4/t4fw_api.h"
     52#include "../cxgb4/t4_msg.h"
     53
     54/*
     55 * Constants ...
     56 */
     57enum {
     58	/*
     59	 * Egress Queue sizes, producer and consumer indices are all in units
     60	 * of Egress Context Units bytes.  Note that as far as the hardware is
     61	 * concerned, the free list is an Egress Queue (the host produces free
     62	 * buffers which the hardware consumes) and free list entries are
     63	 * 64-bit PCI DMA addresses.
     64	 */
     65	EQ_UNIT = SGE_EQ_IDXSIZE,
     66	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
     67	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
     68
     69	/*
     70	 * Max number of TX descriptors we clean up at a time.  Should be
     71	 * modest as freeing skbs isn't cheap and it happens while holding
     72	 * locks.  We just need to free packets faster than they arrive, we
     73	 * eventually catch up and keep the amortized cost reasonable.
     74	 */
     75	MAX_TX_RECLAIM = 16,
     76
     77	/*
     78	 * Max number of Rx buffers we replenish at a time.  Again keep this
     79	 * modest, allocating buffers isn't cheap either.
     80	 */
     81	MAX_RX_REFILL = 16,
     82
     83	/*
     84	 * Period of the Rx queue check timer.  This timer is infrequent as it
     85	 * has something to do only when the system experiences severe memory
     86	 * shortage.
     87	 */
     88	RX_QCHECK_PERIOD = (HZ / 2),
     89
     90	/*
     91	 * Period of the TX queue check timer and the maximum number of TX
     92	 * descriptors to be reclaimed by the TX timer.
     93	 */
     94	TX_QCHECK_PERIOD = (HZ / 2),
     95	MAX_TIMER_TX_RECLAIM = 100,
     96
     97	/*
     98	 * Suspend an Ethernet TX queue with fewer available descriptors than
     99	 * this.  We always want to have room for a maximum sized packet:
    100	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
    101	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
    102	 * (see that function and its helpers for a description of the
    103	 * calculation).
    104	 */
    105	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
    106	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
    107				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
    108				   2),
    109	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
    110			  sizeof(struct cpl_tx_pkt_lso_core) +
    111			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
    112	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
    113
    114	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
    115
    116	/*
    117	 * Max TX descriptor space we allow for an Ethernet packet to be
    118	 * inlined into a WR.  This is limited by the maximum value which
    119	 * we can specify for immediate data in the firmware Ethernet TX
    120	 * Work Request.
    121	 */
    122	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
    123
    124	/*
    125	 * Max size of a WR sent through a control TX queue.
    126	 */
    127	MAX_CTRL_WR_LEN = 256,
    128
    129	/*
    130	 * Maximum amount of data which we'll ever need to inline into a
    131	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
    132	 */
    133	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
    134			  ? MAX_IMM_TX_PKT_LEN
    135			  : MAX_CTRL_WR_LEN),
    136
    137	/*
    138	 * For incoming packets less than RX_COPY_THRES, we copy the data into
    139	 * an skb rather than referencing the data.  We allocate enough
    140	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
    141	 * of the data (header).
    142	 */
    143	RX_COPY_THRES = 256,
    144	RX_PULL_LEN = 128,
    145
    146	/*
    147	 * Main body length for sk_buffs used for RX Ethernet packets with
    148	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
    149	 * pskb_may_pull() some room.
    150	 */
    151	RX_SKB_LEN = 512,
    152};
    153
    154/*
    155 * Software state per TX descriptor.
    156 */
    157struct tx_sw_desc {
    158	struct sk_buff *skb;		/* socket buffer of TX data source */
    159	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
    160};
    161
    162/*
    163 * Software state per RX Free List descriptor.  We keep track of the allocated
    164 * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
    165 * page size and its PCI DMA mapped state are stored in the low bits of the
    166 * PCI DMA address as per below.
    167 */
    168struct rx_sw_desc {
    169	struct page *page;		/* Free List page buffer */
    170	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
    171					/*   and flags (see below) */
    172};
    173
    174/*
    175 * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
    176 * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
    177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
    178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
    179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
    180 * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
    181 * maintained in an inverse sense so the hardware never sees that bit high.
    182 */
    183enum {
    184	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
    185	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
    186};
    187
    188/**
    189 *	get_buf_addr - return DMA buffer address of software descriptor
    190 *	@sdesc: pointer to the software buffer descriptor
    191 *
    192 *	Return the DMA buffer address of a software descriptor (stripping out
    193 *	our low-order flag bits).
    194 */
    195static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
    196{
    197	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
    198}
    199
    200/**
    201 *	is_buf_mapped - is buffer mapped for DMA?
    202 *	@sdesc: pointer to the software buffer descriptor
    203 *
    204 *	Determine whether the buffer associated with a software descriptor in
    205 *	mapped for DMA or not.
    206 */
    207static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
    208{
    209	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
    210}
    211
    212/**
    213 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
    214 *
    215 *	Returns true if the platform needs sk_buff unmapping.  The compiler
    216 *	optimizes away unnecessary code if this returns true.
    217 */
    218static inline int need_skb_unmap(void)
    219{
    220#ifdef CONFIG_NEED_DMA_MAP_STATE
    221	return 1;
    222#else
    223	return 0;
    224#endif
    225}
    226
    227/**
    228 *	txq_avail - return the number of available slots in a TX queue
    229 *	@tq: the TX queue
    230 *
    231 *	Returns the number of available descriptors in a TX queue.
    232 */
    233static inline unsigned int txq_avail(const struct sge_txq *tq)
    234{
    235	return tq->size - 1 - tq->in_use;
    236}
    237
    238/**
    239 *	fl_cap - return the capacity of a Free List
    240 *	@fl: the Free List
    241 *
    242 *	Returns the capacity of a Free List.  The capacity is less than the
    243 *	size because an Egress Queue Index Unit worth of descriptors needs to
    244 *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
    245 *	and CIDX will match and the hardware will think the FL is empty.
    246 */
    247static inline unsigned int fl_cap(const struct sge_fl *fl)
    248{
    249	return fl->size - FL_PER_EQ_UNIT;
    250}
    251
    252/**
    253 *	fl_starving - return whether a Free List is starving.
    254 *	@adapter: pointer to the adapter
    255 *	@fl: the Free List
    256 *
    257 *	Tests specified Free List to see whether the number of buffers
    258 *	available to the hardware has falled below our "starvation"
    259 *	threshold.
    260 */
    261static inline bool fl_starving(const struct adapter *adapter,
    262			       const struct sge_fl *fl)
    263{
    264	const struct sge *s = &adapter->sge;
    265
    266	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
    267}
    268
    269/**
    270 *	map_skb -  map an skb for DMA to the device
    271 *	@dev: the egress net device
    272 *	@skb: the packet to map
    273 *	@addr: a pointer to the base of the DMA mapping array
    274 *
    275 *	Map an skb for DMA to the device and return an array of DMA addresses.
    276 */
    277static int map_skb(struct device *dev, const struct sk_buff *skb,
    278		   dma_addr_t *addr)
    279{
    280	const skb_frag_t *fp, *end;
    281	const struct skb_shared_info *si;
    282
    283	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
    284	if (dma_mapping_error(dev, *addr))
    285		goto out_err;
    286
    287	si = skb_shinfo(skb);
    288	end = &si->frags[si->nr_frags];
    289	for (fp = si->frags; fp < end; fp++) {
    290		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
    291					   DMA_TO_DEVICE);
    292		if (dma_mapping_error(dev, *addr))
    293			goto unwind;
    294	}
    295	return 0;
    296
    297unwind:
    298	while (fp-- > si->frags)
    299		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
    300	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
    301
    302out_err:
    303	return -ENOMEM;
    304}
    305
    306static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
    307		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
    308{
    309	const struct ulptx_sge_pair *p;
    310	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
    311
    312	if (likely(skb_headlen(skb)))
    313		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
    314				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
    315	else {
    316		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
    317			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
    318		nfrags--;
    319	}
    320
    321	/*
    322	 * the complexity below is because of the possibility of a wrap-around
    323	 * in the middle of an SGL
    324	 */
    325	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
    326		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
    327unmap:
    328			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
    329				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
    330			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
    331				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
    332			p++;
    333		} else if ((u8 *)p == (u8 *)tq->stat) {
    334			p = (const struct ulptx_sge_pair *)tq->desc;
    335			goto unmap;
    336		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
    337			const __be64 *addr = (const __be64 *)tq->desc;
    338
    339			dma_unmap_page(dev, be64_to_cpu(addr[0]),
    340				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
    341			dma_unmap_page(dev, be64_to_cpu(addr[1]),
    342				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
    343			p = (const struct ulptx_sge_pair *)&addr[2];
    344		} else {
    345			const __be64 *addr = (const __be64 *)tq->desc;
    346
    347			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
    348				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
    349			dma_unmap_page(dev, be64_to_cpu(addr[0]),
    350				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
    351			p = (const struct ulptx_sge_pair *)&addr[1];
    352		}
    353	}
    354	if (nfrags) {
    355		__be64 addr;
    356
    357		if ((u8 *)p == (u8 *)tq->stat)
    358			p = (const struct ulptx_sge_pair *)tq->desc;
    359		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
    360			? p->addr[0]
    361			: *(const __be64 *)tq->desc);
    362		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
    363			       DMA_TO_DEVICE);
    364	}
    365}
    366
    367/**
    368 *	free_tx_desc - reclaims TX descriptors and their buffers
    369 *	@adapter: the adapter
    370 *	@tq: the TX queue to reclaim descriptors from
    371 *	@n: the number of descriptors to reclaim
    372 *	@unmap: whether the buffers should be unmapped for DMA
    373 *
    374 *	Reclaims TX descriptors from an SGE TX queue and frees the associated
    375 *	TX buffers.  Called with the TX queue lock held.
    376 */
    377static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
    378			 unsigned int n, bool unmap)
    379{
    380	struct tx_sw_desc *sdesc;
    381	unsigned int cidx = tq->cidx;
    382	struct device *dev = adapter->pdev_dev;
    383
    384	const int need_unmap = need_skb_unmap() && unmap;
    385
    386	sdesc = &tq->sdesc[cidx];
    387	while (n--) {
    388		/*
    389		 * If we kept a reference to the original TX skb, we need to
    390		 * unmap it from PCI DMA space (if required) and free it.
    391		 */
    392		if (sdesc->skb) {
    393			if (need_unmap)
    394				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
    395			dev_consume_skb_any(sdesc->skb);
    396			sdesc->skb = NULL;
    397		}
    398
    399		sdesc++;
    400		if (++cidx == tq->size) {
    401			cidx = 0;
    402			sdesc = tq->sdesc;
    403		}
    404	}
    405	tq->cidx = cidx;
    406}
    407
    408/*
    409 * Return the number of reclaimable descriptors in a TX queue.
    410 */
    411static inline int reclaimable(const struct sge_txq *tq)
    412{
    413	int hw_cidx = be16_to_cpu(tq->stat->cidx);
    414	int reclaimable = hw_cidx - tq->cidx;
    415	if (reclaimable < 0)
    416		reclaimable += tq->size;
    417	return reclaimable;
    418}
    419
    420/**
    421 *	reclaim_completed_tx - reclaims completed TX descriptors
    422 *	@adapter: the adapter
    423 *	@tq: the TX queue to reclaim completed descriptors from
    424 *	@unmap: whether the buffers should be unmapped for DMA
    425 *
    426 *	Reclaims TX descriptors that the SGE has indicated it has processed,
    427 *	and frees the associated buffers if possible.  Called with the TX
    428 *	queue locked.
    429 */
    430static inline void reclaim_completed_tx(struct adapter *adapter,
    431					struct sge_txq *tq,
    432					bool unmap)
    433{
    434	int avail = reclaimable(tq);
    435
    436	if (avail) {
    437		/*
    438		 * Limit the amount of clean up work we do at a time to keep
    439		 * the TX lock hold time O(1).
    440		 */
    441		if (avail > MAX_TX_RECLAIM)
    442			avail = MAX_TX_RECLAIM;
    443
    444		free_tx_desc(adapter, tq, avail, unmap);
    445		tq->in_use -= avail;
    446	}
    447}
    448
    449/**
    450 *	get_buf_size - return the size of an RX Free List buffer.
    451 *	@adapter: pointer to the associated adapter
    452 *	@sdesc: pointer to the software buffer descriptor
    453 */
    454static inline int get_buf_size(const struct adapter *adapter,
    455			       const struct rx_sw_desc *sdesc)
    456{
    457	const struct sge *s = &adapter->sge;
    458
    459	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
    460		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
    461}
    462
    463/**
    464 *	free_rx_bufs - free RX buffers on an SGE Free List
    465 *	@adapter: the adapter
    466 *	@fl: the SGE Free List to free buffers from
    467 *	@n: how many buffers to free
    468 *
    469 *	Release the next @n buffers on an SGE Free List RX queue.   The
    470 *	buffers must be made inaccessible to hardware before calling this
    471 *	function.
    472 */
    473static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
    474{
    475	while (n--) {
    476		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
    477
    478		if (is_buf_mapped(sdesc))
    479			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
    480				       get_buf_size(adapter, sdesc),
    481				       DMA_FROM_DEVICE);
    482		put_page(sdesc->page);
    483		sdesc->page = NULL;
    484		if (++fl->cidx == fl->size)
    485			fl->cidx = 0;
    486		fl->avail--;
    487	}
    488}
    489
    490/**
    491 *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
    492 *	@adapter: the adapter
    493 *	@fl: the SGE Free List
    494 *
    495 *	Unmap the current buffer on an SGE Free List RX queue.   The
    496 *	buffer must be made inaccessible to HW before calling this function.
    497 *
    498 *	This is similar to @free_rx_bufs above but does not free the buffer.
    499 *	Do note that the FL still loses any further access to the buffer.
    500 *	This is used predominantly to "transfer ownership" of an FL buffer
    501 *	to another entity (typically an skb's fragment list).
    502 */
    503static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
    504{
    505	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
    506
    507	if (is_buf_mapped(sdesc))
    508		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
    509			       get_buf_size(adapter, sdesc),
    510			       DMA_FROM_DEVICE);
    511	sdesc->page = NULL;
    512	if (++fl->cidx == fl->size)
    513		fl->cidx = 0;
    514	fl->avail--;
    515}
    516
    517/**
    518 *	ring_fl_db - righ doorbell on free list
    519 *	@adapter: the adapter
    520 *	@fl: the Free List whose doorbell should be rung ...
    521 *
    522 *	Tell the Scatter Gather Engine that there are new free list entries
    523 *	available.
    524 */
    525static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
    526{
    527	u32 val = adapter->params.arch.sge_fl_db;
    528
    529	/* The SGE keeps track of its Producer and Consumer Indices in terms
    530	 * of Egress Queue Units so we can only tell it about integral numbers
    531	 * of multiples of Free List Entries per Egress Queue Units ...
    532	 */
    533	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
    534		if (is_t4(adapter->params.chip))
    535			val |= PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
    536		else
    537			val |= PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT);
    538
    539		/* Make sure all memory writes to the Free List queue are
    540		 * committed before we tell the hardware about them.
    541		 */
    542		wmb();
    543
    544		/* If we don't have access to the new User Doorbell (T5+), use
    545		 * the old doorbell mechanism; otherwise use the new BAR2
    546		 * mechanism.
    547		 */
    548		if (unlikely(fl->bar2_addr == NULL)) {
    549			t4_write_reg(adapter,
    550				     T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
    551				     QID_V(fl->cntxt_id) | val);
    552		} else {
    553			writel(val | QID_V(fl->bar2_qid),
    554			       fl->bar2_addr + SGE_UDB_KDOORBELL);
    555
    556			/* This Write memory Barrier will force the write to
    557			 * the User Doorbell area to be flushed.
    558			 */
    559			wmb();
    560		}
    561		fl->pend_cred %= FL_PER_EQ_UNIT;
    562	}
    563}
    564
    565/**
    566 *	set_rx_sw_desc - initialize software RX buffer descriptor
    567 *	@sdesc: pointer to the softwore RX buffer descriptor
    568 *	@page: pointer to the page data structure backing the RX buffer
    569 *	@dma_addr: PCI DMA address (possibly with low-bit flags)
    570 */
    571static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
    572				  dma_addr_t dma_addr)
    573{
    574	sdesc->page = page;
    575	sdesc->dma_addr = dma_addr;
    576}
    577
    578/*
    579 * Support for poisoning RX buffers ...
    580 */
    581#define POISON_BUF_VAL -1
    582
    583static inline void poison_buf(struct page *page, size_t sz)
    584{
    585#if POISON_BUF_VAL >= 0
    586	memset(page_address(page), POISON_BUF_VAL, sz);
    587#endif
    588}
    589
    590/**
    591 *	refill_fl - refill an SGE RX buffer ring
    592 *	@adapter: the adapter
    593 *	@fl: the Free List ring to refill
    594 *	@n: the number of new buffers to allocate
    595 *	@gfp: the gfp flags for the allocations
    596 *
    597 *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
    598 *	allocated with the supplied gfp flags.  The caller must assure that
    599 *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
    600 *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
    601 *	of buffers allocated.  If afterwards the queue is found critically low,
    602 *	mark it as starving in the bitmap of starving FLs.
    603 */
    604static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
    605			      int n, gfp_t gfp)
    606{
    607	struct sge *s = &adapter->sge;
    608	struct page *page;
    609	dma_addr_t dma_addr;
    610	unsigned int cred = fl->avail;
    611	__be64 *d = &fl->desc[fl->pidx];
    612	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
    613
    614	/*
    615	 * Sanity: ensure that the result of adding n Free List buffers
    616	 * won't result in wrapping the SGE's Producer Index around to
    617	 * it's Consumer Index thereby indicating an empty Free List ...
    618	 */
    619	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
    620
    621	gfp |= __GFP_NOWARN;
    622
    623	/*
    624	 * If we support large pages, prefer large buffers and fail over to
    625	 * small pages if we can't allocate large pages to satisfy the refill.
    626	 * If we don't support large pages, drop directly into the small page
    627	 * allocation code.
    628	 */
    629	if (s->fl_pg_order == 0)
    630		goto alloc_small_pages;
    631
    632	while (n) {
    633		page = __dev_alloc_pages(gfp, s->fl_pg_order);
    634		if (unlikely(!page)) {
    635			/*
    636			 * We've failed inour attempt to allocate a "large
    637			 * page".  Fail over to the "small page" allocation
    638			 * below.
    639			 */
    640			fl->large_alloc_failed++;
    641			break;
    642		}
    643		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
    644
    645		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
    646					PAGE_SIZE << s->fl_pg_order,
    647					DMA_FROM_DEVICE);
    648		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
    649			/*
    650			 * We've run out of DMA mapping space.  Free up the
    651			 * buffer and return with what we've managed to put
    652			 * into the free list.  We don't want to fail over to
    653			 * the small page allocation below in this case
    654			 * because DMA mapping resources are typically
    655			 * critical resources once they become scarse.
    656			 */
    657			__free_pages(page, s->fl_pg_order);
    658			goto out;
    659		}
    660		dma_addr |= RX_LARGE_BUF;
    661		*d++ = cpu_to_be64(dma_addr);
    662
    663		set_rx_sw_desc(sdesc, page, dma_addr);
    664		sdesc++;
    665
    666		fl->avail++;
    667		if (++fl->pidx == fl->size) {
    668			fl->pidx = 0;
    669			sdesc = fl->sdesc;
    670			d = fl->desc;
    671		}
    672		n--;
    673	}
    674
    675alloc_small_pages:
    676	while (n--) {
    677		page = __dev_alloc_page(gfp);
    678		if (unlikely(!page)) {
    679			fl->alloc_failed++;
    680			break;
    681		}
    682		poison_buf(page, PAGE_SIZE);
    683
    684		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
    685				       DMA_FROM_DEVICE);
    686		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
    687			put_page(page);
    688			break;
    689		}
    690		*d++ = cpu_to_be64(dma_addr);
    691
    692		set_rx_sw_desc(sdesc, page, dma_addr);
    693		sdesc++;
    694
    695		fl->avail++;
    696		if (++fl->pidx == fl->size) {
    697			fl->pidx = 0;
    698			sdesc = fl->sdesc;
    699			d = fl->desc;
    700		}
    701	}
    702
    703out:
    704	/*
    705	 * Update our accounting state to incorporate the new Free List
    706	 * buffers, tell the hardware about them and return the number of
    707	 * buffers which we were able to allocate.
    708	 */
    709	cred = fl->avail - cred;
    710	fl->pend_cred += cred;
    711	ring_fl_db(adapter, fl);
    712
    713	if (unlikely(fl_starving(adapter, fl))) {
    714		smp_wmb();
    715		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
    716	}
    717
    718	return cred;
    719}
    720
    721/*
    722 * Refill a Free List to its capacity or the Maximum Refill Increment,
    723 * whichever is smaller ...
    724 */
    725static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
    726{
    727	refill_fl(adapter, fl,
    728		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
    729		  GFP_ATOMIC);
    730}
    731
    732/**
    733 *	alloc_ring - allocate resources for an SGE descriptor ring
    734 *	@dev: the PCI device's core device
    735 *	@nelem: the number of descriptors
    736 *	@hwsize: the size of each hardware descriptor
    737 *	@swsize: the size of each software descriptor
    738 *	@busaddrp: the physical PCI bus address of the allocated ring
    739 *	@swringp: return address pointer for software ring
    740 *	@stat_size: extra space in hardware ring for status information
    741 *
    742 *	Allocates resources for an SGE descriptor ring, such as TX queues,
    743 *	free buffer lists, response queues, etc.  Each SGE ring requires
    744 *	space for its hardware descriptors plus, optionally, space for software
    745 *	state associated with each hardware entry (the metadata).  The function
    746 *	returns three values: the virtual address for the hardware ring (the
    747 *	return value of the function), the PCI bus address of the hardware
    748 *	ring (in *busaddrp), and the address of the software ring (in swringp).
    749 *	Both the hardware and software rings are returned zeroed out.
    750 */
    751static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
    752			size_t swsize, dma_addr_t *busaddrp, void *swringp,
    753			size_t stat_size)
    754{
    755	/*
    756	 * Allocate the hardware ring and PCI DMA bus address space for said.
    757	 */
    758	size_t hwlen = nelem * hwsize + stat_size;
    759	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
    760
    761	if (!hwring)
    762		return NULL;
    763
    764	/*
    765	 * If the caller wants a software ring, allocate it and return a
    766	 * pointer to it in *swringp.
    767	 */
    768	BUG_ON((swsize != 0) != (swringp != NULL));
    769	if (swsize) {
    770		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
    771
    772		if (!swring) {
    773			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
    774			return NULL;
    775		}
    776		*(void **)swringp = swring;
    777	}
    778
    779	return hwring;
    780}
    781
    782/**
    783 *	sgl_len - calculates the size of an SGL of the given capacity
    784 *	@n: the number of SGL entries
    785 *
    786 *	Calculates the number of flits (8-byte units) needed for a Direct
    787 *	Scatter/Gather List that can hold the given number of entries.
    788 */
    789static inline unsigned int sgl_len(unsigned int n)
    790{
    791	/*
    792	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
    793	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
    794	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
    795	 * repeated sequences of { Length[i], Length[i+1], Address[i],
    796	 * Address[i+1] } (this ensures that all addresses are on 64-bit
    797	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
    798	 * Address[N+1] is omitted.
    799	 *
    800	 * The following calculation incorporates all of the above.  It's
    801	 * somewhat hard to follow but, briefly: the "+2" accounts for the
    802	 * first two flits which include the DSGL header, Length0 and
    803	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
    804	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
    805	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
    806	 * (n-1) is odd ...
    807	 */
    808	n--;
    809	return (3 * n) / 2 + (n & 1) + 2;
    810}
    811
    812/**
    813 *	flits_to_desc - returns the num of TX descriptors for the given flits
    814 *	@flits: the number of flits
    815 *
    816 *	Returns the number of TX descriptors needed for the supplied number
    817 *	of flits.
    818 */
    819static inline unsigned int flits_to_desc(unsigned int flits)
    820{
    821	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
    822	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
    823}
    824
    825/**
    826 *	is_eth_imm - can an Ethernet packet be sent as immediate data?
    827 *	@skb: the packet
    828 *
    829 *	Returns whether an Ethernet packet is small enough to fit completely as
    830 *	immediate data.
    831 */
    832static inline int is_eth_imm(const struct sk_buff *skb)
    833{
    834	/*
    835	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
    836	 * which does not accommodate immediate data.  We could dike out all
    837	 * of the support code for immediate data but that would tie our hands
    838	 * too much if we ever want to enhace the firmware.  It would also
    839	 * create more differences between the PF and VF Drivers.
    840	 */
    841	return false;
    842}
    843
    844/**
    845 *	calc_tx_flits - calculate the number of flits for a packet TX WR
    846 *	@skb: the packet
    847 *
    848 *	Returns the number of flits needed for a TX Work Request for the
    849 *	given Ethernet packet, including the needed WR and CPL headers.
    850 */
    851static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
    852{
    853	unsigned int flits;
    854
    855	/*
    856	 * If the skb is small enough, we can pump it out as a work request
    857	 * with only immediate data.  In that case we just have to have the
    858	 * TX Packet header plus the skb data in the Work Request.
    859	 */
    860	if (is_eth_imm(skb))
    861		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
    862				    sizeof(__be64));
    863
    864	/*
    865	 * Otherwise, we're going to have to construct a Scatter gather list
    866	 * of the skb body and fragments.  We also include the flits necessary
    867	 * for the TX Packet Work Request and CPL.  We always have a firmware
    868	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
    869	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
    870	 * message or, if we're doing a Large Send Offload, an LSO CPL message
    871	 * with an embedded TX Packet Write CPL message.
    872	 */
    873	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
    874	if (skb_shinfo(skb)->gso_size)
    875		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
    876			  sizeof(struct cpl_tx_pkt_lso_core) +
    877			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
    878	else
    879		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
    880			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
    881	return flits;
    882}
    883
    884/**
    885 *	write_sgl - populate a Scatter/Gather List for a packet
    886 *	@skb: the packet
    887 *	@tq: the TX queue we are writing into
    888 *	@sgl: starting location for writing the SGL
    889 *	@end: points right after the end of the SGL
    890 *	@start: start offset into skb main-body data to include in the SGL
    891 *	@addr: the list of DMA bus addresses for the SGL elements
    892 *
    893 *	Generates a Scatter/Gather List for the buffers that make up a packet.
    894 *	The caller must provide adequate space for the SGL that will be written.
    895 *	The SGL includes all of the packet's page fragments and the data in its
    896 *	main body except for the first @start bytes.  @pos must be 16-byte
    897 *	aligned and within a TX descriptor with available space.  @end points
    898 *	write after the end of the SGL but does not account for any potential
    899 *	wrap around, i.e., @end > @tq->stat.
    900 */
    901static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
    902		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
    903		      const dma_addr_t *addr)
    904{
    905	unsigned int i, len;
    906	struct ulptx_sge_pair *to;
    907	const struct skb_shared_info *si = skb_shinfo(skb);
    908	unsigned int nfrags = si->nr_frags;
    909	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
    910
    911	len = skb_headlen(skb) - start;
    912	if (likely(len)) {
    913		sgl->len0 = htonl(len);
    914		sgl->addr0 = cpu_to_be64(addr[0] + start);
    915		nfrags++;
    916	} else {
    917		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
    918		sgl->addr0 = cpu_to_be64(addr[1]);
    919	}
    920
    921	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
    922			      ULPTX_NSGE_V(nfrags));
    923	if (likely(--nfrags == 0))
    924		return;
    925	/*
    926	 * Most of the complexity below deals with the possibility we hit the
    927	 * end of the queue in the middle of writing the SGL.  For this case
    928	 * only we create the SGL in a temporary buffer and then copy it.
    929	 */
    930	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
    931
    932	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
    933		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
    934		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
    935		to->addr[0] = cpu_to_be64(addr[i]);
    936		to->addr[1] = cpu_to_be64(addr[++i]);
    937	}
    938	if (nfrags) {
    939		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
    940		to->len[1] = cpu_to_be32(0);
    941		to->addr[0] = cpu_to_be64(addr[i + 1]);
    942	}
    943	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
    944		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
    945
    946		if (likely(part0))
    947			memcpy(sgl->sge, buf, part0);
    948		part1 = (u8 *)end - (u8 *)tq->stat;
    949		memcpy(tq->desc, (u8 *)buf + part0, part1);
    950		end = (void *)tq->desc + part1;
    951	}
    952	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
    953		*end = 0;
    954}
    955
    956/**
    957 *	ring_tx_db - check and potentially ring a TX queue's doorbell
    958 *	@adapter: the adapter
    959 *	@tq: the TX queue
    960 *	@n: number of new descriptors to give to HW
    961 *
    962 *	Ring the doorbel for a TX queue.
    963 */
    964static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
    965			      int n)
    966{
    967	/* Make sure that all writes to the TX Descriptors are committed
    968	 * before we tell the hardware about them.
    969	 */
    970	wmb();
    971
    972	/* If we don't have access to the new User Doorbell (T5+), use the old
    973	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
    974	 */
    975	if (unlikely(tq->bar2_addr == NULL)) {
    976		u32 val = PIDX_V(n);
    977
    978		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
    979			     QID_V(tq->cntxt_id) | val);
    980	} else {
    981		u32 val = PIDX_T5_V(n);
    982
    983		/* T4 and later chips share the same PIDX field offset within
    984		 * the doorbell, but T5 and later shrank the field in order to
    985		 * gain a bit for Doorbell Priority.  The field was absurdly
    986		 * large in the first place (14 bits) so we just use the T5
    987		 * and later limits and warn if a Queue ID is too large.
    988		 */
    989		WARN_ON(val & DBPRIO_F);
    990
    991		/* If we're only writing a single Egress Unit and the BAR2
    992		 * Queue ID is 0, we can use the Write Combining Doorbell
    993		 * Gather Buffer; otherwise we use the simple doorbell.
    994		 */
    995		if (n == 1 && tq->bar2_qid == 0) {
    996			unsigned int index = (tq->pidx
    997					      ? (tq->pidx - 1)
    998					      : (tq->size - 1));
    999			__be64 *src = (__be64 *)&tq->desc[index];
   1000			__be64 __iomem *dst = (__be64 __iomem *)(tq->bar2_addr +
   1001							 SGE_UDB_WCDOORBELL);
   1002			unsigned int count = EQ_UNIT / sizeof(__be64);
   1003
   1004			/* Copy the TX Descriptor in a tight loop in order to
   1005			 * try to get it to the adapter in a single Write
   1006			 * Combined transfer on the PCI-E Bus.  If the Write
   1007			 * Combine fails (say because of an interrupt, etc.)
   1008			 * the hardware will simply take the last write as a
   1009			 * simple doorbell write with a PIDX Increment of 1
   1010			 * and will fetch the TX Descriptor from memory via
   1011			 * DMA.
   1012			 */
   1013			while (count) {
   1014				/* the (__force u64) is because the compiler
   1015				 * doesn't understand the endian swizzling
   1016				 * going on
   1017				 */
   1018				writeq((__force u64)*src, dst);
   1019				src++;
   1020				dst++;
   1021				count--;
   1022			}
   1023		} else
   1024			writel(val | QID_V(tq->bar2_qid),
   1025			       tq->bar2_addr + SGE_UDB_KDOORBELL);
   1026
   1027		/* This Write Memory Barrier will force the write to the User
   1028		 * Doorbell area to be flushed.  This is needed to prevent
   1029		 * writes on different CPUs for the same queue from hitting
   1030		 * the adapter out of order.  This is required when some Work
   1031		 * Requests take the Write Combine Gather Buffer path (user
   1032		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
   1033		 * take the traditional path where we simply increment the
   1034		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
   1035		 * hardware DMA read the actual Work Request.
   1036		 */
   1037		wmb();
   1038	}
   1039}
   1040
   1041/**
   1042 *	inline_tx_skb - inline a packet's data into TX descriptors
   1043 *	@skb: the packet
   1044 *	@tq: the TX queue where the packet will be inlined
   1045 *	@pos: starting position in the TX queue to inline the packet
   1046 *
   1047 *	Inline a packet's contents directly into TX descriptors, starting at
   1048 *	the given position within the TX DMA ring.
   1049 *	Most of the complexity of this operation is dealing with wrap arounds
   1050 *	in the middle of the packet we want to inline.
   1051 */
   1052static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
   1053			  void *pos)
   1054{
   1055	u64 *p;
   1056	int left = (void *)tq->stat - pos;
   1057
   1058	if (likely(skb->len <= left)) {
   1059		if (likely(!skb->data_len))
   1060			skb_copy_from_linear_data(skb, pos, skb->len);
   1061		else
   1062			skb_copy_bits(skb, 0, pos, skb->len);
   1063		pos += skb->len;
   1064	} else {
   1065		skb_copy_bits(skb, 0, pos, left);
   1066		skb_copy_bits(skb, left, tq->desc, skb->len - left);
   1067		pos = (void *)tq->desc + (skb->len - left);
   1068	}
   1069
   1070	/* 0-pad to multiple of 16 */
   1071	p = PTR_ALIGN(pos, 8);
   1072	if ((uintptr_t)p & 8)
   1073		*p = 0;
   1074}
   1075
   1076/*
   1077 * Figure out what HW csum a packet wants and return the appropriate control
   1078 * bits.
   1079 */
   1080static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
   1081{
   1082	int csum_type;
   1083	const struct iphdr *iph = ip_hdr(skb);
   1084
   1085	if (iph->version == 4) {
   1086		if (iph->protocol == IPPROTO_TCP)
   1087			csum_type = TX_CSUM_TCPIP;
   1088		else if (iph->protocol == IPPROTO_UDP)
   1089			csum_type = TX_CSUM_UDPIP;
   1090		else {
   1091nocsum:
   1092			/*
   1093			 * unknown protocol, disable HW csum
   1094			 * and hope a bad packet is detected
   1095			 */
   1096			return TXPKT_L4CSUM_DIS_F;
   1097		}
   1098	} else {
   1099		/*
   1100		 * this doesn't work with extension headers
   1101		 */
   1102		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
   1103
   1104		if (ip6h->nexthdr == IPPROTO_TCP)
   1105			csum_type = TX_CSUM_TCPIP6;
   1106		else if (ip6h->nexthdr == IPPROTO_UDP)
   1107			csum_type = TX_CSUM_UDPIP6;
   1108		else
   1109			goto nocsum;
   1110	}
   1111
   1112	if (likely(csum_type >= TX_CSUM_TCPIP)) {
   1113		u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
   1114		int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
   1115
   1116		if (chip <= CHELSIO_T5)
   1117			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
   1118		else
   1119			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
   1120		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
   1121	} else {
   1122		int start = skb_transport_offset(skb);
   1123
   1124		return TXPKT_CSUM_TYPE_V(csum_type) |
   1125			TXPKT_CSUM_START_V(start) |
   1126			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
   1127	}
   1128}
   1129
   1130/*
   1131 * Stop an Ethernet TX queue and record that state change.
   1132 */
   1133static void txq_stop(struct sge_eth_txq *txq)
   1134{
   1135	netif_tx_stop_queue(txq->txq);
   1136	txq->q.stops++;
   1137}
   1138
   1139/*
   1140 * Advance our software state for a TX queue by adding n in use descriptors.
   1141 */
   1142static inline void txq_advance(struct sge_txq *tq, unsigned int n)
   1143{
   1144	tq->in_use += n;
   1145	tq->pidx += n;
   1146	if (tq->pidx >= tq->size)
   1147		tq->pidx -= tq->size;
   1148}
   1149
   1150/**
   1151 *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
   1152 *	@skb: the packet
   1153 *	@dev: the egress net device
   1154 *
   1155 *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
   1156 */
   1157netdev_tx_t t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
   1158{
   1159	u32 wr_mid;
   1160	u64 cntrl, *end;
   1161	int qidx, credits, max_pkt_len;
   1162	unsigned int flits, ndesc;
   1163	struct adapter *adapter;
   1164	struct sge_eth_txq *txq;
   1165	const struct port_info *pi;
   1166	struct fw_eth_tx_pkt_vm_wr *wr;
   1167	struct cpl_tx_pkt_core *cpl;
   1168	const struct skb_shared_info *ssi;
   1169	dma_addr_t addr[MAX_SKB_FRAGS + 1];
   1170	const size_t fw_hdr_copy_len = sizeof(wr->firmware);
   1171
   1172	/*
   1173	 * The chip minimum packet length is 10 octets but the firmware
   1174	 * command that we are using requires that we copy the Ethernet header
   1175	 * (including the VLAN tag) into the header so we reject anything
   1176	 * smaller than that ...
   1177	 */
   1178	if (unlikely(skb->len < fw_hdr_copy_len))
   1179		goto out_free;
   1180
   1181	/* Discard the packet if the length is greater than mtu */
   1182	max_pkt_len = ETH_HLEN + dev->mtu;
   1183	if (skb_vlan_tagged(skb))
   1184		max_pkt_len += VLAN_HLEN;
   1185	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
   1186		goto out_free;
   1187
   1188	/*
   1189	 * Figure out which TX Queue we're going to use.
   1190	 */
   1191	pi = netdev_priv(dev);
   1192	adapter = pi->adapter;
   1193	qidx = skb_get_queue_mapping(skb);
   1194	BUG_ON(qidx >= pi->nqsets);
   1195	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
   1196
   1197	if (pi->vlan_id && !skb_vlan_tag_present(skb))
   1198		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
   1199				       pi->vlan_id);
   1200
   1201	/*
   1202	 * Take this opportunity to reclaim any TX Descriptors whose DMA
   1203	 * transfers have completed.
   1204	 */
   1205	reclaim_completed_tx(adapter, &txq->q, true);
   1206
   1207	/*
   1208	 * Calculate the number of flits and TX Descriptors we're going to
   1209	 * need along with how many TX Descriptors will be left over after
   1210	 * we inject our Work Request.
   1211	 */
   1212	flits = calc_tx_flits(skb);
   1213	ndesc = flits_to_desc(flits);
   1214	credits = txq_avail(&txq->q) - ndesc;
   1215
   1216	if (unlikely(credits < 0)) {
   1217		/*
   1218		 * Not enough room for this packet's Work Request.  Stop the
   1219		 * TX Queue and return a "busy" condition.  The queue will get
   1220		 * started later on when the firmware informs us that space
   1221		 * has opened up.
   1222		 */
   1223		txq_stop(txq);
   1224		dev_err(adapter->pdev_dev,
   1225			"%s: TX ring %u full while queue awake!\n",
   1226			dev->name, qidx);
   1227		return NETDEV_TX_BUSY;
   1228	}
   1229
   1230	if (!is_eth_imm(skb) &&
   1231	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
   1232		/*
   1233		 * We need to map the skb into PCI DMA space (because it can't
   1234		 * be in-lined directly into the Work Request) and the mapping
   1235		 * operation failed.  Record the error and drop the packet.
   1236		 */
   1237		txq->mapping_err++;
   1238		goto out_free;
   1239	}
   1240
   1241	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
   1242	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
   1243		/*
   1244		 * After we're done injecting the Work Request for this
   1245		 * packet, we'll be below our "stop threshold" so stop the TX
   1246		 * Queue now and schedule a request for an SGE Egress Queue
   1247		 * Update message.  The queue will get started later on when
   1248		 * the firmware processes this Work Request and sends us an
   1249		 * Egress Queue Status Update message indicating that space
   1250		 * has opened up.
   1251		 */
   1252		txq_stop(txq);
   1253		wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
   1254	}
   1255
   1256	/*
   1257	 * Start filling in our Work Request.  Note that we do _not_ handle
   1258	 * the WR Header wrapping around the TX Descriptor Ring.  If our
   1259	 * maximum header size ever exceeds one TX Descriptor, we'll need to
   1260	 * do something else here.
   1261	 */
   1262	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
   1263	wr = (void *)&txq->q.desc[txq->q.pidx];
   1264	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
   1265	wr->r3[0] = cpu_to_be32(0);
   1266	wr->r3[1] = cpu_to_be32(0);
   1267	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
   1268	end = (u64 *)wr + flits;
   1269
   1270	/*
   1271	 * If this is a Large Send Offload packet we'll put in an LSO CPL
   1272	 * message with an encapsulated TX Packet CPL message.  Otherwise we
   1273	 * just use a TX Packet CPL message.
   1274	 */
   1275	ssi = skb_shinfo(skb);
   1276	if (ssi->gso_size) {
   1277		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
   1278		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
   1279		int l3hdr_len = skb_network_header_len(skb);
   1280		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
   1281
   1282		wr->op_immdlen =
   1283			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
   1284				    FW_WR_IMMDLEN_V(sizeof(*lso) +
   1285						    sizeof(*cpl)));
   1286		/*
   1287		 * Fill in the LSO CPL message.
   1288		 */
   1289		lso->lso_ctrl =
   1290			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
   1291				    LSO_FIRST_SLICE_F |
   1292				    LSO_LAST_SLICE_F |
   1293				    LSO_IPV6_V(v6) |
   1294				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
   1295				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
   1296				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
   1297		lso->ipid_ofst = cpu_to_be16(0);
   1298		lso->mss = cpu_to_be16(ssi->gso_size);
   1299		lso->seqno_offset = cpu_to_be32(0);
   1300		if (is_t4(adapter->params.chip))
   1301			lso->len = cpu_to_be32(skb->len);
   1302		else
   1303			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
   1304
   1305		/*
   1306		 * Set up TX Packet CPL pointer, control word and perform
   1307		 * accounting.
   1308		 */
   1309		cpl = (void *)(lso + 1);
   1310
   1311		if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
   1312			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
   1313		else
   1314			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
   1315
   1316		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
   1317					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
   1318			 TXPKT_IPHDR_LEN_V(l3hdr_len);
   1319		txq->tso++;
   1320		txq->tx_cso += ssi->gso_segs;
   1321	} else {
   1322		int len;
   1323
   1324		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
   1325		wr->op_immdlen =
   1326			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
   1327				    FW_WR_IMMDLEN_V(len));
   1328
   1329		/*
   1330		 * Set up TX Packet CPL pointer, control word and perform
   1331		 * accounting.
   1332		 */
   1333		cpl = (void *)(wr + 1);
   1334		if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1335			cntrl = hwcsum(adapter->params.chip, skb) |
   1336				TXPKT_IPCSUM_DIS_F;
   1337			txq->tx_cso++;
   1338		} else
   1339			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
   1340	}
   1341
   1342	/*
   1343	 * If there's a VLAN tag present, add that to the list of things to
   1344	 * do in this Work Request.
   1345	 */
   1346	if (skb_vlan_tag_present(skb)) {
   1347		txq->vlan_ins++;
   1348		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
   1349	}
   1350
   1351	/*
   1352	 * Fill in the TX Packet CPL message header.
   1353	 */
   1354	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
   1355				 TXPKT_INTF_V(pi->port_id) |
   1356				 TXPKT_PF_V(0));
   1357	cpl->pack = cpu_to_be16(0);
   1358	cpl->len = cpu_to_be16(skb->len);
   1359	cpl->ctrl1 = cpu_to_be64(cntrl);
   1360
   1361#ifdef T4_TRACE
   1362	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
   1363		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
   1364		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
   1365#endif
   1366
   1367	/*
   1368	 * Fill in the body of the TX Packet CPL message with either in-lined
   1369	 * data or a Scatter/Gather List.
   1370	 */
   1371	if (is_eth_imm(skb)) {
   1372		/*
   1373		 * In-line the packet's data and free the skb since we don't
   1374		 * need it any longer.
   1375		 */
   1376		inline_tx_skb(skb, &txq->q, cpl + 1);
   1377		dev_consume_skb_any(skb);
   1378	} else {
   1379		/*
   1380		 * Write the skb's Scatter/Gather list into the TX Packet CPL
   1381		 * message and retain a pointer to the skb so we can free it
   1382		 * later when its DMA completes.  (We store the skb pointer
   1383		 * in the Software Descriptor corresponding to the last TX
   1384		 * Descriptor used by the Work Request.)
   1385		 *
   1386		 * The retained skb will be freed when the corresponding TX
   1387		 * Descriptors are reclaimed after their DMAs complete.
   1388		 * However, this could take quite a while since, in general,
   1389		 * the hardware is set up to be lazy about sending DMA
   1390		 * completion notifications to us and we mostly perform TX
   1391		 * reclaims in the transmit routine.
   1392		 *
   1393		 * This is good for performamce but means that we rely on new
   1394		 * TX packets arriving to run the destructors of completed
   1395		 * packets, which open up space in their sockets' send queues.
   1396		 * Sometimes we do not get such new packets causing TX to
   1397		 * stall.  A single UDP transmitter is a good example of this
   1398		 * situation.  We have a clean up timer that periodically
   1399		 * reclaims completed packets but it doesn't run often enough
   1400		 * (nor do we want it to) to prevent lengthy stalls.  A
   1401		 * solution to this problem is to run the destructor early,
   1402		 * after the packet is queued but before it's DMAd.  A con is
   1403		 * that we lie to socket memory accounting, but the amount of
   1404		 * extra memory is reasonable (limited by the number of TX
   1405		 * descriptors), the packets do actually get freed quickly by
   1406		 * new packets almost always, and for protocols like TCP that
   1407		 * wait for acks to really free up the data the extra memory
   1408		 * is even less.  On the positive side we run the destructors
   1409		 * on the sending CPU rather than on a potentially different
   1410		 * completing CPU, usually a good thing.
   1411		 *
   1412		 * Run the destructor before telling the DMA engine about the
   1413		 * packet to make sure it doesn't complete and get freed
   1414		 * prematurely.
   1415		 */
   1416		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
   1417		struct sge_txq *tq = &txq->q;
   1418		int last_desc;
   1419
   1420		/*
   1421		 * If the Work Request header was an exact multiple of our TX
   1422		 * Descriptor length, then it's possible that the starting SGL
   1423		 * pointer lines up exactly with the end of our TX Descriptor
   1424		 * ring.  If that's the case, wrap around to the beginning
   1425		 * here ...
   1426		 */
   1427		if (unlikely((void *)sgl == (void *)tq->stat)) {
   1428			sgl = (void *)tq->desc;
   1429			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
   1430		}
   1431
   1432		write_sgl(skb, tq, sgl, end, 0, addr);
   1433		skb_orphan(skb);
   1434
   1435		last_desc = tq->pidx + ndesc - 1;
   1436		if (last_desc >= tq->size)
   1437			last_desc -= tq->size;
   1438		tq->sdesc[last_desc].skb = skb;
   1439		tq->sdesc[last_desc].sgl = sgl;
   1440	}
   1441
   1442	/*
   1443	 * Advance our internal TX Queue state, tell the hardware about
   1444	 * the new TX descriptors and return success.
   1445	 */
   1446	txq_advance(&txq->q, ndesc);
   1447	netif_trans_update(dev);
   1448	ring_tx_db(adapter, &txq->q, ndesc);
   1449	return NETDEV_TX_OK;
   1450
   1451out_free:
   1452	/*
   1453	 * An error of some sort happened.  Free the TX skb and tell the
   1454	 * OS that we've "dealt" with the packet ...
   1455	 */
   1456	dev_kfree_skb_any(skb);
   1457	return NETDEV_TX_OK;
   1458}
   1459
   1460/**
   1461 *	copy_frags - copy fragments from gather list into skb_shared_info
   1462 *	@skb: destination skb
   1463 *	@gl: source internal packet gather list
   1464 *	@offset: packet start offset in first page
   1465 *
   1466 *	Copy an internal packet gather list into a Linux skb_shared_info
   1467 *	structure.
   1468 */
   1469static inline void copy_frags(struct sk_buff *skb,
   1470			      const struct pkt_gl *gl,
   1471			      unsigned int offset)
   1472{
   1473	int i;
   1474
   1475	/* usually there's just one frag */
   1476	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
   1477			     gl->frags[0].offset + offset,
   1478			     gl->frags[0].size - offset);
   1479	skb_shinfo(skb)->nr_frags = gl->nfrags;
   1480	for (i = 1; i < gl->nfrags; i++)
   1481		__skb_fill_page_desc(skb, i, gl->frags[i].page,
   1482				     gl->frags[i].offset,
   1483				     gl->frags[i].size);
   1484
   1485	/* get a reference to the last page, we don't own it */
   1486	get_page(gl->frags[gl->nfrags - 1].page);
   1487}
   1488
   1489/**
   1490 *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
   1491 *	@gl: the gather list
   1492 *	@skb_len: size of sk_buff main body if it carries fragments
   1493 *	@pull_len: amount of data to move to the sk_buff's main body
   1494 *
   1495 *	Builds an sk_buff from the given packet gather list.  Returns the
   1496 *	sk_buff or %NULL if sk_buff allocation failed.
   1497 */
   1498static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
   1499					 unsigned int skb_len,
   1500					 unsigned int pull_len)
   1501{
   1502	struct sk_buff *skb;
   1503
   1504	/*
   1505	 * If the ingress packet is small enough, allocate an skb large enough
   1506	 * for all of the data and copy it inline.  Otherwise, allocate an skb
   1507	 * with enough room to pull in the header and reference the rest of
   1508	 * the data via the skb fragment list.
   1509	 *
   1510	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
   1511	 * buff!  size, which is expected since buffers are at least
   1512	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
   1513	 * fragment.
   1514	 */
   1515	if (gl->tot_len <= RX_COPY_THRES) {
   1516		/* small packets have only one fragment */
   1517		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
   1518		if (unlikely(!skb))
   1519			goto out;
   1520		__skb_put(skb, gl->tot_len);
   1521		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
   1522	} else {
   1523		skb = alloc_skb(skb_len, GFP_ATOMIC);
   1524		if (unlikely(!skb))
   1525			goto out;
   1526		__skb_put(skb, pull_len);
   1527		skb_copy_to_linear_data(skb, gl->va, pull_len);
   1528
   1529		copy_frags(skb, gl, pull_len);
   1530		skb->len = gl->tot_len;
   1531		skb->data_len = skb->len - pull_len;
   1532		skb->truesize += skb->data_len;
   1533	}
   1534
   1535out:
   1536	return skb;
   1537}
   1538
   1539/**
   1540 *	t4vf_pktgl_free - free a packet gather list
   1541 *	@gl: the gather list
   1542 *
   1543 *	Releases the pages of a packet gather list.  We do not own the last
   1544 *	page on the list and do not free it.
   1545 */
   1546static void t4vf_pktgl_free(const struct pkt_gl *gl)
   1547{
   1548	int frag;
   1549
   1550	frag = gl->nfrags - 1;
   1551	while (frag--)
   1552		put_page(gl->frags[frag].page);
   1553}
   1554
   1555/**
   1556 *	do_gro - perform Generic Receive Offload ingress packet processing
   1557 *	@rxq: ingress RX Ethernet Queue
   1558 *	@gl: gather list for ingress packet
   1559 *	@pkt: CPL header for last packet fragment
   1560 *
   1561 *	Perform Generic Receive Offload (GRO) ingress packet processing.
   1562 *	We use the standard Linux GRO interfaces for this.
   1563 */
   1564static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
   1565		   const struct cpl_rx_pkt *pkt)
   1566{
   1567	struct adapter *adapter = rxq->rspq.adapter;
   1568	struct sge *s = &adapter->sge;
   1569	struct port_info *pi;
   1570	int ret;
   1571	struct sk_buff *skb;
   1572
   1573	skb = napi_get_frags(&rxq->rspq.napi);
   1574	if (unlikely(!skb)) {
   1575		t4vf_pktgl_free(gl);
   1576		rxq->stats.rx_drops++;
   1577		return;
   1578	}
   1579
   1580	copy_frags(skb, gl, s->pktshift);
   1581	skb->len = gl->tot_len - s->pktshift;
   1582	skb->data_len = skb->len;
   1583	skb->truesize += skb->data_len;
   1584	skb->ip_summed = CHECKSUM_UNNECESSARY;
   1585	skb_record_rx_queue(skb, rxq->rspq.idx);
   1586	pi = netdev_priv(skb->dev);
   1587
   1588	if (pkt->vlan_ex && !pi->vlan_id) {
   1589		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
   1590					be16_to_cpu(pkt->vlan));
   1591		rxq->stats.vlan_ex++;
   1592	}
   1593	ret = napi_gro_frags(&rxq->rspq.napi);
   1594
   1595	if (ret == GRO_HELD)
   1596		rxq->stats.lro_pkts++;
   1597	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
   1598		rxq->stats.lro_merged++;
   1599	rxq->stats.pkts++;
   1600	rxq->stats.rx_cso++;
   1601}
   1602
   1603/**
   1604 *	t4vf_ethrx_handler - process an ingress ethernet packet
   1605 *	@rspq: the response queue that received the packet
   1606 *	@rsp: the response queue descriptor holding the RX_PKT message
   1607 *	@gl: the gather list of packet fragments
   1608 *
   1609 *	Process an ingress ethernet packet and deliver it to the stack.
   1610 */
   1611int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
   1612		       const struct pkt_gl *gl)
   1613{
   1614	struct sk_buff *skb;
   1615	const struct cpl_rx_pkt *pkt = (void *)rsp;
   1616	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
   1617		       (rspq->netdev->features & NETIF_F_RXCSUM);
   1618	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
   1619	struct adapter *adapter = rspq->adapter;
   1620	struct sge *s = &adapter->sge;
   1621	struct port_info *pi;
   1622
   1623	/*
   1624	 * If this is a good TCP packet and we have Generic Receive Offload
   1625	 * enabled, handle the packet in the GRO path.
   1626	 */
   1627	if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
   1628	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
   1629	    !pkt->ip_frag) {
   1630		do_gro(rxq, gl, pkt);
   1631		return 0;
   1632	}
   1633
   1634	/*
   1635	 * Convert the Packet Gather List into an skb.
   1636	 */
   1637	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
   1638	if (unlikely(!skb)) {
   1639		t4vf_pktgl_free(gl);
   1640		rxq->stats.rx_drops++;
   1641		return 0;
   1642	}
   1643	__skb_pull(skb, s->pktshift);
   1644	skb->protocol = eth_type_trans(skb, rspq->netdev);
   1645	skb_record_rx_queue(skb, rspq->idx);
   1646	pi = netdev_priv(skb->dev);
   1647	rxq->stats.pkts++;
   1648
   1649	if (csum_ok && !pkt->err_vec &&
   1650	    (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
   1651		if (!pkt->ip_frag) {
   1652			skb->ip_summed = CHECKSUM_UNNECESSARY;
   1653			rxq->stats.rx_cso++;
   1654		} else if (pkt->l2info & htonl(RXF_IP_F)) {
   1655			__sum16 c = (__force __sum16)pkt->csum;
   1656			skb->csum = csum_unfold(c);
   1657			skb->ip_summed = CHECKSUM_COMPLETE;
   1658			rxq->stats.rx_cso++;
   1659		}
   1660	} else
   1661		skb_checksum_none_assert(skb);
   1662
   1663	if (pkt->vlan_ex && !pi->vlan_id) {
   1664		rxq->stats.vlan_ex++;
   1665		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
   1666				       be16_to_cpu(pkt->vlan));
   1667	}
   1668
   1669	netif_receive_skb(skb);
   1670
   1671	return 0;
   1672}
   1673
   1674/**
   1675 *	is_new_response - check if a response is newly written
   1676 *	@rc: the response control descriptor
   1677 *	@rspq: the response queue
   1678 *
   1679 *	Returns true if a response descriptor contains a yet unprocessed
   1680 *	response.
   1681 */
   1682static inline bool is_new_response(const struct rsp_ctrl *rc,
   1683				   const struct sge_rspq *rspq)
   1684{
   1685	return ((rc->type_gen >> RSPD_GEN_S) & 0x1) == rspq->gen;
   1686}
   1687
   1688/**
   1689 *	restore_rx_bufs - put back a packet's RX buffers
   1690 *	@gl: the packet gather list
   1691 *	@fl: the SGE Free List
   1692 *	@frags: how many fragments in @si
   1693 *
   1694 *	Called when we find out that the current packet, @si, can't be
   1695 *	processed right away for some reason.  This is a very rare event and
   1696 *	there's no effort to make this suspension/resumption process
   1697 *	particularly efficient.
   1698 *
   1699 *	We implement the suspension by putting all of the RX buffers associated
   1700 *	with the current packet back on the original Free List.  The buffers
   1701 *	have already been unmapped and are left unmapped, we mark them as
   1702 *	unmapped in order to prevent further unmapping attempts.  (Effectively
   1703 *	this function undoes the series of @unmap_rx_buf calls which were done
   1704 *	to create the current packet's gather list.)  This leaves us ready to
   1705 *	restart processing of the packet the next time we start processing the
   1706 *	RX Queue ...
   1707 */
   1708static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
   1709			    int frags)
   1710{
   1711	struct rx_sw_desc *sdesc;
   1712
   1713	while (frags--) {
   1714		if (fl->cidx == 0)
   1715			fl->cidx = fl->size - 1;
   1716		else
   1717			fl->cidx--;
   1718		sdesc = &fl->sdesc[fl->cidx];
   1719		sdesc->page = gl->frags[frags].page;
   1720		sdesc->dma_addr |= RX_UNMAPPED_BUF;
   1721		fl->avail++;
   1722	}
   1723}
   1724
   1725/**
   1726 *	rspq_next - advance to the next entry in a response queue
   1727 *	@rspq: the queue
   1728 *
   1729 *	Updates the state of a response queue to advance it to the next entry.
   1730 */
   1731static inline void rspq_next(struct sge_rspq *rspq)
   1732{
   1733	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
   1734	if (unlikely(++rspq->cidx == rspq->size)) {
   1735		rspq->cidx = 0;
   1736		rspq->gen ^= 1;
   1737		rspq->cur_desc = rspq->desc;
   1738	}
   1739}
   1740
   1741/**
   1742 *	process_responses - process responses from an SGE response queue
   1743 *	@rspq: the ingress response queue to process
   1744 *	@budget: how many responses can be processed in this round
   1745 *
   1746 *	Process responses from a Scatter Gather Engine response queue up to
   1747 *	the supplied budget.  Responses include received packets as well as
   1748 *	control messages from firmware or hardware.
   1749 *
   1750 *	Additionally choose the interrupt holdoff time for the next interrupt
   1751 *	on this queue.  If the system is under memory shortage use a fairly
   1752 *	long delay to help recovery.
   1753 */
   1754static int process_responses(struct sge_rspq *rspq, int budget)
   1755{
   1756	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
   1757	struct adapter *adapter = rspq->adapter;
   1758	struct sge *s = &adapter->sge;
   1759	int budget_left = budget;
   1760
   1761	while (likely(budget_left)) {
   1762		int ret, rsp_type;
   1763		const struct rsp_ctrl *rc;
   1764
   1765		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
   1766		if (!is_new_response(rc, rspq))
   1767			break;
   1768
   1769		/*
   1770		 * Figure out what kind of response we've received from the
   1771		 * SGE.
   1772		 */
   1773		dma_rmb();
   1774		rsp_type = RSPD_TYPE_G(rc->type_gen);
   1775		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
   1776			struct page_frag *fp;
   1777			struct pkt_gl gl;
   1778			const struct rx_sw_desc *sdesc;
   1779			u32 bufsz, frag;
   1780			u32 len = be32_to_cpu(rc->pldbuflen_qid);
   1781
   1782			/*
   1783			 * If we get a "new buffer" message from the SGE we
   1784			 * need to move on to the next Free List buffer.
   1785			 */
   1786			if (len & RSPD_NEWBUF_F) {
   1787				/*
   1788				 * We get one "new buffer" message when we
   1789				 * first start up a queue so we need to ignore
   1790				 * it when our offset into the buffer is 0.
   1791				 */
   1792				if (likely(rspq->offset > 0)) {
   1793					free_rx_bufs(rspq->adapter, &rxq->fl,
   1794						     1);
   1795					rspq->offset = 0;
   1796				}
   1797				len = RSPD_LEN_G(len);
   1798			}
   1799			gl.tot_len = len;
   1800
   1801			/*
   1802			 * Gather packet fragments.
   1803			 */
   1804			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
   1805				BUG_ON(frag >= MAX_SKB_FRAGS);
   1806				BUG_ON(rxq->fl.avail == 0);
   1807				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
   1808				bufsz = get_buf_size(adapter, sdesc);
   1809				fp->page = sdesc->page;
   1810				fp->offset = rspq->offset;
   1811				fp->size = min(bufsz, len);
   1812				len -= fp->size;
   1813				if (!len)
   1814					break;
   1815				unmap_rx_buf(rspq->adapter, &rxq->fl);
   1816			}
   1817			gl.nfrags = frag+1;
   1818
   1819			/*
   1820			 * Last buffer remains mapped so explicitly make it
   1821			 * coherent for CPU access and start preloading first
   1822			 * cache line ...
   1823			 */
   1824			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
   1825						get_buf_addr(sdesc),
   1826						fp->size, DMA_FROM_DEVICE);
   1827			gl.va = (page_address(gl.frags[0].page) +
   1828				 gl.frags[0].offset);
   1829			prefetch(gl.va);
   1830
   1831			/*
   1832			 * Hand the new ingress packet to the handler for
   1833			 * this Response Queue.
   1834			 */
   1835			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
   1836			if (likely(ret == 0))
   1837				rspq->offset += ALIGN(fp->size, s->fl_align);
   1838			else
   1839				restore_rx_bufs(&gl, &rxq->fl, frag);
   1840		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
   1841			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
   1842		} else {
   1843			WARN_ON(rsp_type > RSPD_TYPE_CPL_X);
   1844			ret = 0;
   1845		}
   1846
   1847		if (unlikely(ret)) {
   1848			/*
   1849			 * Couldn't process descriptor, back off for recovery.
   1850			 * We use the SGE's last timer which has the longest
   1851			 * interrupt coalescing value ...
   1852			 */
   1853			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
   1854			rspq->next_intr_params =
   1855				QINTR_TIMER_IDX_V(NOMEM_TIMER_IDX);
   1856			break;
   1857		}
   1858
   1859		rspq_next(rspq);
   1860		budget_left--;
   1861	}
   1862
   1863	/*
   1864	 * If this is a Response Queue with an associated Free List and
   1865	 * at least two Egress Queue units available in the Free List
   1866	 * for new buffer pointers, refill the Free List.
   1867	 */
   1868	if (rspq->offset >= 0 &&
   1869	    fl_cap(&rxq->fl) - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
   1870		__refill_fl(rspq->adapter, &rxq->fl);
   1871	return budget - budget_left;
   1872}
   1873
   1874/**
   1875 *	napi_rx_handler - the NAPI handler for RX processing
   1876 *	@napi: the napi instance
   1877 *	@budget: how many packets we can process in this round
   1878 *
   1879 *	Handler for new data events when using NAPI.  This does not need any
   1880 *	locking or protection from interrupts as data interrupts are off at
   1881 *	this point and other adapter interrupts do not interfere (the latter
   1882 *	in not a concern at all with MSI-X as non-data interrupts then have
   1883 *	a separate handler).
   1884 */
   1885static int napi_rx_handler(struct napi_struct *napi, int budget)
   1886{
   1887	unsigned int intr_params;
   1888	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
   1889	int work_done = process_responses(rspq, budget);
   1890	u32 val;
   1891
   1892	if (likely(work_done < budget)) {
   1893		napi_complete_done(napi, work_done);
   1894		intr_params = rspq->next_intr_params;
   1895		rspq->next_intr_params = rspq->intr_params;
   1896	} else
   1897		intr_params = QINTR_TIMER_IDX_V(SGE_TIMER_UPD_CIDX);
   1898
   1899	if (unlikely(work_done == 0))
   1900		rspq->unhandled_irqs++;
   1901
   1902	val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
   1903	/* If we don't have access to the new User GTS (T5+), use the old
   1904	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
   1905	 */
   1906	if (unlikely(!rspq->bar2_addr)) {
   1907		t4_write_reg(rspq->adapter,
   1908			     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
   1909			     val | INGRESSQID_V((u32)rspq->cntxt_id));
   1910	} else {
   1911		writel(val | INGRESSQID_V(rspq->bar2_qid),
   1912		       rspq->bar2_addr + SGE_UDB_GTS);
   1913		wmb();
   1914	}
   1915	return work_done;
   1916}
   1917
   1918/*
   1919 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
   1920 * (i.e., response queue serviced by NAPI polling).
   1921 */
   1922irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
   1923{
   1924	struct sge_rspq *rspq = cookie;
   1925
   1926	napi_schedule(&rspq->napi);
   1927	return IRQ_HANDLED;
   1928}
   1929
   1930/*
   1931 * Process the indirect interrupt entries in the interrupt queue and kick off
   1932 * NAPI for each queue that has generated an entry.
   1933 */
   1934static unsigned int process_intrq(struct adapter *adapter)
   1935{
   1936	struct sge *s = &adapter->sge;
   1937	struct sge_rspq *intrq = &s->intrq;
   1938	unsigned int work_done;
   1939	u32 val;
   1940
   1941	spin_lock(&adapter->sge.intrq_lock);
   1942	for (work_done = 0; ; work_done++) {
   1943		const struct rsp_ctrl *rc;
   1944		unsigned int qid, iq_idx;
   1945		struct sge_rspq *rspq;
   1946
   1947		/*
   1948		 * Grab the next response from the interrupt queue and bail
   1949		 * out if it's not a new response.
   1950		 */
   1951		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
   1952		if (!is_new_response(rc, intrq))
   1953			break;
   1954
   1955		/*
   1956		 * If the response isn't a forwarded interrupt message issue a
   1957		 * error and go on to the next response message.  This should
   1958		 * never happen ...
   1959		 */
   1960		dma_rmb();
   1961		if (unlikely(RSPD_TYPE_G(rc->type_gen) != RSPD_TYPE_INTR_X)) {
   1962			dev_err(adapter->pdev_dev,
   1963				"Unexpected INTRQ response type %d\n",
   1964				RSPD_TYPE_G(rc->type_gen));
   1965			continue;
   1966		}
   1967
   1968		/*
   1969		 * Extract the Queue ID from the interrupt message and perform
   1970		 * sanity checking to make sure it really refers to one of our
   1971		 * Ingress Queues which is active and matches the queue's ID.
   1972		 * None of these error conditions should ever happen so we may
   1973		 * want to either make them fatal and/or conditionalized under
   1974		 * DEBUG.
   1975		 */
   1976		qid = RSPD_QID_G(be32_to_cpu(rc->pldbuflen_qid));
   1977		iq_idx = IQ_IDX(s, qid);
   1978		if (unlikely(iq_idx >= MAX_INGQ)) {
   1979			dev_err(adapter->pdev_dev,
   1980				"Ingress QID %d out of range\n", qid);
   1981			continue;
   1982		}
   1983		rspq = s->ingr_map[iq_idx];
   1984		if (unlikely(rspq == NULL)) {
   1985			dev_err(adapter->pdev_dev,
   1986				"Ingress QID %d RSPQ=NULL\n", qid);
   1987			continue;
   1988		}
   1989		if (unlikely(rspq->abs_id != qid)) {
   1990			dev_err(adapter->pdev_dev,
   1991				"Ingress QID %d refers to RSPQ %d\n",
   1992				qid, rspq->abs_id);
   1993			continue;
   1994		}
   1995
   1996		/*
   1997		 * Schedule NAPI processing on the indicated Response Queue
   1998		 * and move on to the next entry in the Forwarded Interrupt
   1999		 * Queue.
   2000		 */
   2001		napi_schedule(&rspq->napi);
   2002		rspq_next(intrq);
   2003	}
   2004
   2005	val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
   2006	/* If we don't have access to the new User GTS (T5+), use the old
   2007	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
   2008	 */
   2009	if (unlikely(!intrq->bar2_addr)) {
   2010		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
   2011			     val | INGRESSQID_V(intrq->cntxt_id));
   2012	} else {
   2013		writel(val | INGRESSQID_V(intrq->bar2_qid),
   2014		       intrq->bar2_addr + SGE_UDB_GTS);
   2015		wmb();
   2016	}
   2017
   2018	spin_unlock(&adapter->sge.intrq_lock);
   2019
   2020	return work_done;
   2021}
   2022
   2023/*
   2024 * The MSI interrupt handler handles data events from SGE response queues as
   2025 * well as error and other async events as they all use the same MSI vector.
   2026 */
   2027static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
   2028{
   2029	struct adapter *adapter = cookie;
   2030
   2031	process_intrq(adapter);
   2032	return IRQ_HANDLED;
   2033}
   2034
   2035/**
   2036 *	t4vf_intr_handler - select the top-level interrupt handler
   2037 *	@adapter: the adapter
   2038 *
   2039 *	Selects the top-level interrupt handler based on the type of interrupts
   2040 *	(MSI-X or MSI).
   2041 */
   2042irq_handler_t t4vf_intr_handler(struct adapter *adapter)
   2043{
   2044	BUG_ON((adapter->flags &
   2045	       (CXGB4VF_USING_MSIX | CXGB4VF_USING_MSI)) == 0);
   2046	if (adapter->flags & CXGB4VF_USING_MSIX)
   2047		return t4vf_sge_intr_msix;
   2048	else
   2049		return t4vf_intr_msi;
   2050}
   2051
   2052/**
   2053 *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
   2054 *	@t: Rx timer
   2055 *
   2056 *	Runs periodically from a timer to perform maintenance of SGE RX queues.
   2057 *
   2058 *	a) Replenishes RX queues that have run out due to memory shortage.
   2059 *	Normally new RX buffers are added when existing ones are consumed but
   2060 *	when out of memory a queue can become empty.  We schedule NAPI to do
   2061 *	the actual refill.
   2062 */
   2063static void sge_rx_timer_cb(struct timer_list *t)
   2064{
   2065	struct adapter *adapter = from_timer(adapter, t, sge.rx_timer);
   2066	struct sge *s = &adapter->sge;
   2067	unsigned int i;
   2068
   2069	/*
   2070	 * Scan the "Starving Free Lists" flag array looking for any Free
   2071	 * Lists in need of more free buffers.  If we find one and it's not
   2072	 * being actively polled, then bump its "starving" counter and attempt
   2073	 * to refill it.  If we're successful in adding enough buffers to push
   2074	 * the Free List over the starving threshold, then we can clear its
   2075	 * "starving" status.
   2076	 */
   2077	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
   2078		unsigned long m;
   2079
   2080		for (m = s->starving_fl[i]; m; m &= m - 1) {
   2081			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
   2082			struct sge_fl *fl = s->egr_map[id];
   2083
   2084			clear_bit(id, s->starving_fl);
   2085			smp_mb__after_atomic();
   2086
   2087			/*
   2088			 * Since we are accessing fl without a lock there's a
   2089			 * small probability of a false positive where we
   2090			 * schedule napi but the FL is no longer starving.
   2091			 * No biggie.
   2092			 */
   2093			if (fl_starving(adapter, fl)) {
   2094				struct sge_eth_rxq *rxq;
   2095
   2096				rxq = container_of(fl, struct sge_eth_rxq, fl);
   2097				if (napi_reschedule(&rxq->rspq.napi))
   2098					fl->starving++;
   2099				else
   2100					set_bit(id, s->starving_fl);
   2101			}
   2102		}
   2103	}
   2104
   2105	/*
   2106	 * Reschedule the next scan for starving Free Lists ...
   2107	 */
   2108	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
   2109}
   2110
   2111/**
   2112 *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
   2113 *	@t: Tx timer
   2114 *
   2115 *	Runs periodically from a timer to perform maintenance of SGE TX queues.
   2116 *
   2117 *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
   2118 *	packets are cleaned up by new Tx packets, this timer cleans up packets
   2119 *	when no new packets are being submitted.  This is essential for pktgen,
   2120 *	at least.
   2121 */
   2122static void sge_tx_timer_cb(struct timer_list *t)
   2123{
   2124	struct adapter *adapter = from_timer(adapter, t, sge.tx_timer);
   2125	struct sge *s = &adapter->sge;
   2126	unsigned int i, budget;
   2127
   2128	budget = MAX_TIMER_TX_RECLAIM;
   2129	i = s->ethtxq_rover;
   2130	do {
   2131		struct sge_eth_txq *txq = &s->ethtxq[i];
   2132
   2133		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
   2134			int avail = reclaimable(&txq->q);
   2135
   2136			if (avail > budget)
   2137				avail = budget;
   2138
   2139			free_tx_desc(adapter, &txq->q, avail, true);
   2140			txq->q.in_use -= avail;
   2141			__netif_tx_unlock(txq->txq);
   2142
   2143			budget -= avail;
   2144			if (!budget)
   2145				break;
   2146		}
   2147
   2148		i++;
   2149		if (i >= s->ethqsets)
   2150			i = 0;
   2151	} while (i != s->ethtxq_rover);
   2152	s->ethtxq_rover = i;
   2153
   2154	/*
   2155	 * If we found too many reclaimable packets schedule a timer in the
   2156	 * near future to continue where we left off.  Otherwise the next timer
   2157	 * will be at its normal interval.
   2158	 */
   2159	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
   2160}
   2161
   2162/**
   2163 *	bar2_address - return the BAR2 address for an SGE Queue's Registers
   2164 *	@adapter: the adapter
   2165 *	@qid: the SGE Queue ID
   2166 *	@qtype: the SGE Queue Type (Egress or Ingress)
   2167 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
   2168 *
   2169 *	Returns the BAR2 address for the SGE Queue Registers associated with
   2170 *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
   2171 *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
   2172 *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
   2173 *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
   2174 */
   2175static void __iomem *bar2_address(struct adapter *adapter,
   2176				  unsigned int qid,
   2177				  enum t4_bar2_qtype qtype,
   2178				  unsigned int *pbar2_qid)
   2179{
   2180	u64 bar2_qoffset;
   2181	int ret;
   2182
   2183	ret = t4vf_bar2_sge_qregs(adapter, qid, qtype,
   2184				  &bar2_qoffset, pbar2_qid);
   2185	if (ret)
   2186		return NULL;
   2187
   2188	return adapter->bar2 + bar2_qoffset;
   2189}
   2190
   2191/**
   2192 *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
   2193 *	@adapter: the adapter
   2194 *	@rspq: pointer to to the new rxq's Response Queue to be filled in
   2195 *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
   2196 *	@dev: the network device associated with the new rspq
   2197 *	@intr_dest: MSI-X vector index (overriden in MSI mode)
   2198 *	@fl: pointer to the new rxq's Free List to be filled in
   2199 *	@hnd: the interrupt handler to invoke for the rspq
   2200 */
   2201int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
   2202		       bool iqasynch, struct net_device *dev,
   2203		       int intr_dest,
   2204		       struct sge_fl *fl, rspq_handler_t hnd)
   2205{
   2206	struct sge *s = &adapter->sge;
   2207	struct port_info *pi = netdev_priv(dev);
   2208	struct fw_iq_cmd cmd, rpl;
   2209	int ret, iqandst, flsz = 0;
   2210	int relaxed = !(adapter->flags & CXGB4VF_ROOT_NO_RELAXED_ORDERING);
   2211
   2212	/*
   2213	 * If we're using MSI interrupts and we're not initializing the
   2214	 * Forwarded Interrupt Queue itself, then set up this queue for
   2215	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
   2216	 * the Forwarded Interrupt Queue must be set up before any other
   2217	 * ingress queue ...
   2218	 */
   2219	if ((adapter->flags & CXGB4VF_USING_MSI) &&
   2220	    rspq != &adapter->sge.intrq) {
   2221		iqandst = SGE_INTRDST_IQ;
   2222		intr_dest = adapter->sge.intrq.abs_id;
   2223	} else
   2224		iqandst = SGE_INTRDST_PCI;
   2225
   2226	/*
   2227	 * Allocate the hardware ring for the Response Queue.  The size needs
   2228	 * to be a multiple of 16 which includes the mandatory status entry
   2229	 * (regardless of whether the Status Page capabilities are enabled or
   2230	 * not).
   2231	 */
   2232	rspq->size = roundup(rspq->size, 16);
   2233	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
   2234				0, &rspq->phys_addr, NULL, 0);
   2235	if (!rspq->desc)
   2236		return -ENOMEM;
   2237
   2238	/*
   2239	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
   2240	 * be in t4vf_hw.c but there are so many parameters and dependencies
   2241	 * on our Linux SGE state that we would end up having to pass tons of
   2242	 * parameters.  We'll have to think about how this might be migrated
   2243	 * into OS-independent common code ...
   2244	 */
   2245	memset(&cmd, 0, sizeof(cmd));
   2246	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
   2247				    FW_CMD_REQUEST_F |
   2248				    FW_CMD_WRITE_F |
   2249				    FW_CMD_EXEC_F);
   2250	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
   2251					 FW_IQ_CMD_IQSTART_F |
   2252					 FW_LEN16(cmd));
   2253	cmd.type_to_iqandstindex =
   2254		cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
   2255			    FW_IQ_CMD_IQASYNCH_V(iqasynch) |
   2256			    FW_IQ_CMD_VIID_V(pi->viid) |
   2257			    FW_IQ_CMD_IQANDST_V(iqandst) |
   2258			    FW_IQ_CMD_IQANUS_V(1) |
   2259			    FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
   2260			    FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
   2261	cmd.iqdroprss_to_iqesize =
   2262		cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
   2263			    FW_IQ_CMD_IQGTSMODE_F |
   2264			    FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
   2265			    FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
   2266	cmd.iqsize = cpu_to_be16(rspq->size);
   2267	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
   2268
   2269	if (fl) {
   2270		unsigned int chip_ver =
   2271			CHELSIO_CHIP_VERSION(adapter->params.chip);
   2272		/*
   2273		 * Allocate the ring for the hardware free list (with space
   2274		 * for its status page) along with the associated software
   2275		 * descriptor ring.  The free list size needs to be a multiple
   2276		 * of the Egress Queue Unit and at least 2 Egress Units larger
   2277		 * than the SGE's Egress Congrestion Threshold
   2278		 * (fl_starve_thres - 1).
   2279		 */
   2280		if (fl->size < s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT)
   2281			fl->size = s->fl_starve_thres - 1 + 2 * FL_PER_EQ_UNIT;
   2282		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
   2283		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
   2284				      sizeof(__be64), sizeof(struct rx_sw_desc),
   2285				      &fl->addr, &fl->sdesc, s->stat_len);
   2286		if (!fl->desc) {
   2287			ret = -ENOMEM;
   2288			goto err;
   2289		}
   2290
   2291		/*
   2292		 * Calculate the size of the hardware free list ring plus
   2293		 * Status Page (which the SGE will place after the end of the
   2294		 * free list ring) in Egress Queue Units.
   2295		 */
   2296		flsz = (fl->size / FL_PER_EQ_UNIT +
   2297			s->stat_len / EQ_UNIT);
   2298
   2299		/*
   2300		 * Fill in all the relevant firmware Ingress Queue Command
   2301		 * fields for the free list.
   2302		 */
   2303		cmd.iqns_to_fl0congen =
   2304			cpu_to_be32(
   2305				FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
   2306				FW_IQ_CMD_FL0PACKEN_F |
   2307				FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
   2308				FW_IQ_CMD_FL0DATARO_V(relaxed) |
   2309				FW_IQ_CMD_FL0PADEN_F);
   2310
   2311		/* In T6, for egress queue type FL there is internal overhead
   2312		 * of 16B for header going into FLM module.  Hence the maximum
   2313		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
   2314		 * doesn't coalesce fetch requests if more than 64 bytes of
   2315		 * Free List pointers are provided, so we use a 128-byte Fetch
   2316		 * Burst Minimum there (T6 implements coalescing so we can use
   2317		 * the smaller 64-byte value there).
   2318		 */
   2319		cmd.fl0dcaen_to_fl0cidxfthresh =
   2320			cpu_to_be16(
   2321				FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5
   2322						     ? FETCHBURSTMIN_128B_X
   2323						     : FETCHBURSTMIN_64B_T6_X) |
   2324				FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
   2325						     FETCHBURSTMAX_512B_X :
   2326						     FETCHBURSTMAX_256B_X));
   2327		cmd.fl0size = cpu_to_be16(flsz);
   2328		cmd.fl0addr = cpu_to_be64(fl->addr);
   2329	}
   2330
   2331	/*
   2332	 * Issue the firmware Ingress Queue Command and extract the results if
   2333	 * it completes successfully.
   2334	 */
   2335	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   2336	if (ret)
   2337		goto err;
   2338
   2339	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
   2340	rspq->cur_desc = rspq->desc;
   2341	rspq->cidx = 0;
   2342	rspq->gen = 1;
   2343	rspq->next_intr_params = rspq->intr_params;
   2344	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
   2345	rspq->bar2_addr = bar2_address(adapter,
   2346				       rspq->cntxt_id,
   2347				       T4_BAR2_QTYPE_INGRESS,
   2348				       &rspq->bar2_qid);
   2349	rspq->abs_id = be16_to_cpu(rpl.physiqid);
   2350	rspq->size--;			/* subtract status entry */
   2351	rspq->adapter = adapter;
   2352	rspq->netdev = dev;
   2353	rspq->handler = hnd;
   2354
   2355	/* set offset to -1 to distinguish ingress queues without FL */
   2356	rspq->offset = fl ? 0 : -1;
   2357
   2358	if (fl) {
   2359		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
   2360		fl->avail = 0;
   2361		fl->pend_cred = 0;
   2362		fl->pidx = 0;
   2363		fl->cidx = 0;
   2364		fl->alloc_failed = 0;
   2365		fl->large_alloc_failed = 0;
   2366		fl->starving = 0;
   2367
   2368		/* Note, we must initialize the BAR2 Free List User Doorbell
   2369		 * information before refilling the Free List!
   2370		 */
   2371		fl->bar2_addr = bar2_address(adapter,
   2372					     fl->cntxt_id,
   2373					     T4_BAR2_QTYPE_EGRESS,
   2374					     &fl->bar2_qid);
   2375
   2376		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
   2377	}
   2378
   2379	return 0;
   2380
   2381err:
   2382	/*
   2383	 * An error occurred.  Clean up our partial allocation state and
   2384	 * return the error.
   2385	 */
   2386	if (rspq->desc) {
   2387		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
   2388				  rspq->desc, rspq->phys_addr);
   2389		rspq->desc = NULL;
   2390	}
   2391	if (fl && fl->desc) {
   2392		kfree(fl->sdesc);
   2393		fl->sdesc = NULL;
   2394		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
   2395				  fl->desc, fl->addr);
   2396		fl->desc = NULL;
   2397	}
   2398	return ret;
   2399}
   2400
   2401/**
   2402 *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
   2403 *	@adapter: the adapter
   2404 *	@txq: pointer to the new txq to be filled in
   2405 *	@dev: the network device
   2406 *	@devq: the network TX queue associated with the new txq
   2407 *	@iqid: the relative ingress queue ID to which events relating to
   2408 *		the new txq should be directed
   2409 */
   2410int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
   2411			   struct net_device *dev, struct netdev_queue *devq,
   2412			   unsigned int iqid)
   2413{
   2414	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
   2415	struct port_info *pi = netdev_priv(dev);
   2416	struct fw_eq_eth_cmd cmd, rpl;
   2417	struct sge *s = &adapter->sge;
   2418	int ret, nentries;
   2419
   2420	/*
   2421	 * Calculate the size of the hardware TX Queue (including the Status
   2422	 * Page on the end of the TX Queue) in units of TX Descriptors.
   2423	 */
   2424	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
   2425
   2426	/*
   2427	 * Allocate the hardware ring for the TX ring (with space for its
   2428	 * status page) along with the associated software descriptor ring.
   2429	 */
   2430	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
   2431				 sizeof(struct tx_desc),
   2432				 sizeof(struct tx_sw_desc),
   2433				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
   2434	if (!txq->q.desc)
   2435		return -ENOMEM;
   2436
   2437	/*
   2438	 * Fill in the Egress Queue Command.  Note: As with the direct use of
   2439	 * the firmware Ingress Queue COmmand above in our RXQ allocation
   2440	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
   2441	 * have to see if there's some reasonable way to parameterize it
   2442	 * into the common code ...
   2443	 */
   2444	memset(&cmd, 0, sizeof(cmd));
   2445	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
   2446				    FW_CMD_REQUEST_F |
   2447				    FW_CMD_WRITE_F |
   2448				    FW_CMD_EXEC_F);
   2449	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
   2450					 FW_EQ_ETH_CMD_EQSTART_F |
   2451					 FW_LEN16(cmd));
   2452	cmd.autoequiqe_to_viid = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
   2453					     FW_EQ_ETH_CMD_VIID_V(pi->viid));
   2454	cmd.fetchszm_to_iqid =
   2455		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
   2456			    FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
   2457			    FW_EQ_ETH_CMD_IQID_V(iqid));
   2458	cmd.dcaen_to_eqsize =
   2459		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
   2460						  ? FETCHBURSTMIN_64B_X
   2461						  : FETCHBURSTMIN_64B_T6_X) |
   2462			    FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
   2463			    FW_EQ_ETH_CMD_CIDXFTHRESH_V(
   2464						CIDXFLUSHTHRESH_32_X) |
   2465			    FW_EQ_ETH_CMD_EQSIZE_V(nentries));
   2466	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
   2467
   2468	/*
   2469	 * Issue the firmware Egress Queue Command and extract the results if
   2470	 * it completes successfully.
   2471	 */
   2472	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   2473	if (ret) {
   2474		/*
   2475		 * The girmware Ingress Queue Command failed for some reason.
   2476		 * Free up our partial allocation state and return the error.
   2477		 */
   2478		kfree(txq->q.sdesc);
   2479		txq->q.sdesc = NULL;
   2480		dma_free_coherent(adapter->pdev_dev,
   2481				  nentries * sizeof(struct tx_desc),
   2482				  txq->q.desc, txq->q.phys_addr);
   2483		txq->q.desc = NULL;
   2484		return ret;
   2485	}
   2486
   2487	txq->q.in_use = 0;
   2488	txq->q.cidx = 0;
   2489	txq->q.pidx = 0;
   2490	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
   2491	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
   2492	txq->q.bar2_addr = bar2_address(adapter,
   2493					txq->q.cntxt_id,
   2494					T4_BAR2_QTYPE_EGRESS,
   2495					&txq->q.bar2_qid);
   2496	txq->q.abs_id =
   2497		FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
   2498	txq->txq = devq;
   2499	txq->tso = 0;
   2500	txq->tx_cso = 0;
   2501	txq->vlan_ins = 0;
   2502	txq->q.stops = 0;
   2503	txq->q.restarts = 0;
   2504	txq->mapping_err = 0;
   2505	return 0;
   2506}
   2507
   2508/*
   2509 * Free the DMA map resources associated with a TX queue.
   2510 */
   2511static void free_txq(struct adapter *adapter, struct sge_txq *tq)
   2512{
   2513	struct sge *s = &adapter->sge;
   2514
   2515	dma_free_coherent(adapter->pdev_dev,
   2516			  tq->size * sizeof(*tq->desc) + s->stat_len,
   2517			  tq->desc, tq->phys_addr);
   2518	tq->cntxt_id = 0;
   2519	tq->sdesc = NULL;
   2520	tq->desc = NULL;
   2521}
   2522
   2523/*
   2524 * Free the resources associated with a response queue (possibly including a
   2525 * free list).
   2526 */
   2527static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
   2528			 struct sge_fl *fl)
   2529{
   2530	struct sge *s = &adapter->sge;
   2531	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
   2532
   2533	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
   2534		     rspq->cntxt_id, flid, 0xffff);
   2535	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
   2536			  rspq->desc, rspq->phys_addr);
   2537	netif_napi_del(&rspq->napi);
   2538	rspq->netdev = NULL;
   2539	rspq->cntxt_id = 0;
   2540	rspq->abs_id = 0;
   2541	rspq->desc = NULL;
   2542
   2543	if (fl) {
   2544		free_rx_bufs(adapter, fl, fl->avail);
   2545		dma_free_coherent(adapter->pdev_dev,
   2546				  fl->size * sizeof(*fl->desc) + s->stat_len,
   2547				  fl->desc, fl->addr);
   2548		kfree(fl->sdesc);
   2549		fl->sdesc = NULL;
   2550		fl->cntxt_id = 0;
   2551		fl->desc = NULL;
   2552	}
   2553}
   2554
   2555/**
   2556 *	t4vf_free_sge_resources - free SGE resources
   2557 *	@adapter: the adapter
   2558 *
   2559 *	Frees resources used by the SGE queue sets.
   2560 */
   2561void t4vf_free_sge_resources(struct adapter *adapter)
   2562{
   2563	struct sge *s = &adapter->sge;
   2564	struct sge_eth_rxq *rxq = s->ethrxq;
   2565	struct sge_eth_txq *txq = s->ethtxq;
   2566	struct sge_rspq *evtq = &s->fw_evtq;
   2567	struct sge_rspq *intrq = &s->intrq;
   2568	int qs;
   2569
   2570	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
   2571		if (rxq->rspq.desc)
   2572			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
   2573		if (txq->q.desc) {
   2574			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
   2575			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
   2576			kfree(txq->q.sdesc);
   2577			free_txq(adapter, &txq->q);
   2578		}
   2579	}
   2580	if (evtq->desc)
   2581		free_rspq_fl(adapter, evtq, NULL);
   2582	if (intrq->desc)
   2583		free_rspq_fl(adapter, intrq, NULL);
   2584}
   2585
   2586/**
   2587 *	t4vf_sge_start - enable SGE operation
   2588 *	@adapter: the adapter
   2589 *
   2590 *	Start tasklets and timers associated with the DMA engine.
   2591 */
   2592void t4vf_sge_start(struct adapter *adapter)
   2593{
   2594	adapter->sge.ethtxq_rover = 0;
   2595	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
   2596	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
   2597}
   2598
   2599/**
   2600 *	t4vf_sge_stop - disable SGE operation
   2601 *	@adapter: the adapter
   2602 *
   2603 *	Stop tasklets and timers associated with the DMA engine.  Note that
   2604 *	this is effective only if measures have been taken to disable any HW
   2605 *	events that may restart them.
   2606 */
   2607void t4vf_sge_stop(struct adapter *adapter)
   2608{
   2609	struct sge *s = &adapter->sge;
   2610
   2611	if (s->rx_timer.function)
   2612		del_timer_sync(&s->rx_timer);
   2613	if (s->tx_timer.function)
   2614		del_timer_sync(&s->tx_timer);
   2615}
   2616
   2617/**
   2618 *	t4vf_sge_init - initialize SGE
   2619 *	@adapter: the adapter
   2620 *
   2621 *	Performs SGE initialization needed every time after a chip reset.
   2622 *	We do not initialize any of the queue sets here, instead the driver
   2623 *	top-level must request those individually.  We also do not enable DMA
   2624 *	here, that should be done after the queues have been set up.
   2625 */
   2626int t4vf_sge_init(struct adapter *adapter)
   2627{
   2628	struct sge_params *sge_params = &adapter->params.sge;
   2629	u32 fl_small_pg = sge_params->sge_fl_buffer_size[0];
   2630	u32 fl_large_pg = sge_params->sge_fl_buffer_size[1];
   2631	struct sge *s = &adapter->sge;
   2632
   2633	/*
   2634	 * Start by vetting the basic SGE parameters which have been set up by
   2635	 * the Physical Function Driver.  Ideally we should be able to deal
   2636	 * with _any_ configuration.  Practice is different ...
   2637	 */
   2638
   2639	/* We only bother using the Large Page logic if the Large Page Buffer
   2640	 * is larger than our Page Size Buffer.
   2641	 */
   2642	if (fl_large_pg <= fl_small_pg)
   2643		fl_large_pg = 0;
   2644
   2645	/* The Page Size Buffer must be exactly equal to our Page Size and the
   2646	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
   2647	 */
   2648	if (fl_small_pg != PAGE_SIZE ||
   2649	    (fl_large_pg & (fl_large_pg - 1)) != 0) {
   2650		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
   2651			fl_small_pg, fl_large_pg);
   2652		return -EINVAL;
   2653	}
   2654	if ((sge_params->sge_control & RXPKTCPLMODE_F) !=
   2655	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
   2656		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
   2657		return -EINVAL;
   2658	}
   2659
   2660	/*
   2661	 * Now translate the adapter parameters into our internal forms.
   2662	 */
   2663	if (fl_large_pg)
   2664		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
   2665	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
   2666			? 128 : 64);
   2667	s->pktshift = PKTSHIFT_G(sge_params->sge_control);
   2668	s->fl_align = t4vf_fl_pkt_align(adapter);
   2669
   2670	/* A FL with <= fl_starve_thres buffers is starving and a periodic
   2671	 * timer will attempt to refill it.  This needs to be larger than the
   2672	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
   2673	 * stuck waiting for new packets while the SGE is waiting for us to
   2674	 * give it more Free List entries.  (Note that the SGE's Egress
   2675	 * Congestion Threshold is in units of 2 Free List pointers.)
   2676	 */
   2677	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
   2678	case CHELSIO_T4:
   2679		s->fl_starve_thres =
   2680		   EGRTHRESHOLD_G(sge_params->sge_congestion_control);
   2681		break;
   2682	case CHELSIO_T5:
   2683		s->fl_starve_thres =
   2684		   EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
   2685		break;
   2686	case CHELSIO_T6:
   2687	default:
   2688		s->fl_starve_thres =
   2689		   T6_EGRTHRESHOLDPACKING_G(sge_params->sge_congestion_control);
   2690		break;
   2691	}
   2692	s->fl_starve_thres = s->fl_starve_thres * 2 + 1;
   2693
   2694	/*
   2695	 * Set up tasklet timers.
   2696	 */
   2697	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
   2698	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
   2699
   2700	/*
   2701	 * Initialize Forwarded Interrupt Queue lock.
   2702	 */
   2703	spin_lock_init(&s->intrq_lock);
   2704
   2705	return 0;
   2706}