cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

t4vf_hw.c (70679B)


      1/*
      2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
      3 * driver for Linux.
      4 *
      5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
      6 *
      7 * This software is available to you under a choice of one of two
      8 * licenses.  You may choose to be licensed under the terms of the GNU
      9 * General Public License (GPL) Version 2, available from the file
     10 * COPYING in the main directory of this source tree, or the
     11 * OpenIB.org BSD license below:
     12 *
     13 *     Redistribution and use in source and binary forms, with or
     14 *     without modification, are permitted provided that the following
     15 *     conditions are met:
     16 *
     17 *      - Redistributions of source code must retain the above
     18 *        copyright notice, this list of conditions and the following
     19 *        disclaimer.
     20 *
     21 *      - Redistributions in binary form must reproduce the above
     22 *        copyright notice, this list of conditions and the following
     23 *        disclaimer in the documentation and/or other materials
     24 *        provided with the distribution.
     25 *
     26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     33 * SOFTWARE.
     34 */
     35
     36#include <linux/ethtool.h>
     37#include <linux/pci.h>
     38
     39#include "t4vf_common.h"
     40#include "t4vf_defs.h"
     41
     42#include "../cxgb4/t4_regs.h"
     43#include "../cxgb4/t4_values.h"
     44#include "../cxgb4/t4fw_api.h"
     45
     46/*
     47 * Wait for the device to become ready (signified by our "who am I" register
     48 * returning a value other than all 1's).  Return an error if it doesn't
     49 * become ready ...
     50 */
     51int t4vf_wait_dev_ready(struct adapter *adapter)
     52{
     53	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
     54	const u32 notready1 = 0xffffffff;
     55	const u32 notready2 = 0xeeeeeeee;
     56	u32 val;
     57
     58	val = t4_read_reg(adapter, whoami);
     59	if (val != notready1 && val != notready2)
     60		return 0;
     61	msleep(500);
     62	val = t4_read_reg(adapter, whoami);
     63	if (val != notready1 && val != notready2)
     64		return 0;
     65	else
     66		return -EIO;
     67}
     68
     69/*
     70 * Get the reply to a mailbox command and store it in @rpl in big-endian order
     71 * (since the firmware data structures are specified in a big-endian layout).
     72 */
     73static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
     74			 u32 mbox_data)
     75{
     76	for ( ; size; size -= 8, mbox_data += 8)
     77		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
     78}
     79
     80/**
     81 *	t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
     82 *	@adapter: the adapter
     83 *	@cmd: the Firmware Mailbox Command or Reply
     84 *	@size: command length in bytes
     85 *	@access: the time (ms) needed to access the Firmware Mailbox
     86 *	@execute: the time (ms) the command spent being executed
     87 */
     88static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
     89			     int size, int access, int execute)
     90{
     91	struct mbox_cmd_log *log = adapter->mbox_log;
     92	struct mbox_cmd *entry;
     93	int i;
     94
     95	entry = mbox_cmd_log_entry(log, log->cursor++);
     96	if (log->cursor == log->size)
     97		log->cursor = 0;
     98
     99	for (i = 0; i < size / 8; i++)
    100		entry->cmd[i] = be64_to_cpu(cmd[i]);
    101	while (i < MBOX_LEN / 8)
    102		entry->cmd[i++] = 0;
    103	entry->timestamp = jiffies;
    104	entry->seqno = log->seqno++;
    105	entry->access = access;
    106	entry->execute = execute;
    107}
    108
    109/**
    110 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
    111 *	@adapter: the adapter
    112 *	@cmd: the command to write
    113 *	@size: command length in bytes
    114 *	@rpl: where to optionally store the reply
    115 *	@sleep_ok: if true we may sleep while awaiting command completion
    116 *
    117 *	Sends the given command to FW through the mailbox and waits for the
    118 *	FW to execute the command.  If @rpl is not %NULL it is used to store
    119 *	the FW's reply to the command.  The command and its optional reply
    120 *	are of the same length.  FW can take up to 500 ms to respond.
    121 *	@sleep_ok determines whether we may sleep while awaiting the response.
    122 *	If sleeping is allowed we use progressive backoff otherwise we spin.
    123 *
    124 *	The return value is 0 on success or a negative errno on failure.  A
    125 *	failure can happen either because we are not able to execute the
    126 *	command or FW executes it but signals an error.  In the latter case
    127 *	the return value is the error code indicated by FW (negated).
    128 */
    129int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
    130		      void *rpl, bool sleep_ok)
    131{
    132	static const int delay[] = {
    133		1, 1, 3, 5, 10, 10, 20, 50, 100
    134	};
    135
    136	u16 access = 0, execute = 0;
    137	u32 v, mbox_data;
    138	int i, ms, delay_idx, ret;
    139	const __be64 *p;
    140	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
    141	u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
    142	__be64 cmd_rpl[MBOX_LEN / 8];
    143	struct mbox_list entry;
    144
    145	/* In T6, mailbox size is changed to 128 bytes to avoid
    146	 * invalidating the entire prefetch buffer.
    147	 */
    148	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
    149		mbox_data = T4VF_MBDATA_BASE_ADDR;
    150	else
    151		mbox_data = T6VF_MBDATA_BASE_ADDR;
    152
    153	/*
    154	 * Commands must be multiples of 16 bytes in length and may not be
    155	 * larger than the size of the Mailbox Data register array.
    156	 */
    157	if ((size % 16) != 0 ||
    158	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
    159		return -EINVAL;
    160
    161	/* Queue ourselves onto the mailbox access list.  When our entry is at
    162	 * the front of the list, we have rights to access the mailbox.  So we
    163	 * wait [for a while] till we're at the front [or bail out with an
    164	 * EBUSY] ...
    165	 */
    166	spin_lock(&adapter->mbox_lock);
    167	list_add_tail(&entry.list, &adapter->mlist.list);
    168	spin_unlock(&adapter->mbox_lock);
    169
    170	delay_idx = 0;
    171	ms = delay[0];
    172
    173	for (i = 0; ; i += ms) {
    174		/* If we've waited too long, return a busy indication.  This
    175		 * really ought to be based on our initial position in the
    176		 * mailbox access list but this is a start.  We very rearely
    177		 * contend on access to the mailbox ...
    178		 */
    179		if (i > FW_CMD_MAX_TIMEOUT) {
    180			spin_lock(&adapter->mbox_lock);
    181			list_del(&entry.list);
    182			spin_unlock(&adapter->mbox_lock);
    183			ret = -EBUSY;
    184			t4vf_record_mbox(adapter, cmd, size, access, ret);
    185			return ret;
    186		}
    187
    188		/* If we're at the head, break out and start the mailbox
    189		 * protocol.
    190		 */
    191		if (list_first_entry(&adapter->mlist.list, struct mbox_list,
    192				     list) == &entry)
    193			break;
    194
    195		/* Delay for a bit before checking again ... */
    196		if (sleep_ok) {
    197			ms = delay[delay_idx];  /* last element may repeat */
    198			if (delay_idx < ARRAY_SIZE(delay) - 1)
    199				delay_idx++;
    200			msleep(ms);
    201		} else {
    202			mdelay(ms);
    203		}
    204	}
    205
    206	/*
    207	 * Loop trying to get ownership of the mailbox.  Return an error
    208	 * if we can't gain ownership.
    209	 */
    210	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
    211	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
    212		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
    213	if (v != MBOX_OWNER_DRV) {
    214		spin_lock(&adapter->mbox_lock);
    215		list_del(&entry.list);
    216		spin_unlock(&adapter->mbox_lock);
    217		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
    218		t4vf_record_mbox(adapter, cmd, size, access, ret);
    219		return ret;
    220	}
    221
    222	/*
    223	 * Write the command array into the Mailbox Data register array and
    224	 * transfer ownership of the mailbox to the firmware.
    225	 *
    226	 * For the VFs, the Mailbox Data "registers" are actually backed by
    227	 * T4's "MA" interface rather than PL Registers (as is the case for
    228	 * the PFs).  Because these are in different coherency domains, the
    229	 * write to the VF's PL-register-backed Mailbox Control can race in
    230	 * front of the writes to the MA-backed VF Mailbox Data "registers".
    231	 * So we need to do a read-back on at least one byte of the VF Mailbox
    232	 * Data registers before doing the write to the VF Mailbox Control
    233	 * register.
    234	 */
    235	if (cmd_op != FW_VI_STATS_CMD)
    236		t4vf_record_mbox(adapter, cmd, size, access, 0);
    237	for (i = 0, p = cmd; i < size; i += 8)
    238		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
    239	t4_read_reg(adapter, mbox_data);         /* flush write */
    240
    241	t4_write_reg(adapter, mbox_ctl,
    242		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
    243	t4_read_reg(adapter, mbox_ctl);          /* flush write */
    244
    245	/*
    246	 * Spin waiting for firmware to acknowledge processing our command.
    247	 */
    248	delay_idx = 0;
    249	ms = delay[0];
    250
    251	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
    252		if (sleep_ok) {
    253			ms = delay[delay_idx];
    254			if (delay_idx < ARRAY_SIZE(delay) - 1)
    255				delay_idx++;
    256			msleep(ms);
    257		} else
    258			mdelay(ms);
    259
    260		/*
    261		 * If we're the owner, see if this is the reply we wanted.
    262		 */
    263		v = t4_read_reg(adapter, mbox_ctl);
    264		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
    265			/*
    266			 * If the Message Valid bit isn't on, revoke ownership
    267			 * of the mailbox and continue waiting for our reply.
    268			 */
    269			if ((v & MBMSGVALID_F) == 0) {
    270				t4_write_reg(adapter, mbox_ctl,
    271					     MBOWNER_V(MBOX_OWNER_NONE));
    272				continue;
    273			}
    274
    275			/*
    276			 * We now have our reply.  Extract the command return
    277			 * value, copy the reply back to our caller's buffer
    278			 * (if specified) and revoke ownership of the mailbox.
    279			 * We return the (negated) firmware command return
    280			 * code (this depends on FW_SUCCESS == 0).
    281			 */
    282			get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
    283
    284			/* return value in low-order little-endian word */
    285			v = be64_to_cpu(cmd_rpl[0]);
    286
    287			if (rpl) {
    288				/* request bit in high-order BE word */
    289				WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
    290					 & FW_CMD_REQUEST_F) == 0);
    291				memcpy(rpl, cmd_rpl, size);
    292				WARN_ON((be32_to_cpu(*(__be32 *)rpl)
    293					 & FW_CMD_REQUEST_F) != 0);
    294			}
    295			t4_write_reg(adapter, mbox_ctl,
    296				     MBOWNER_V(MBOX_OWNER_NONE));
    297			execute = i + ms;
    298			if (cmd_op != FW_VI_STATS_CMD)
    299				t4vf_record_mbox(adapter, cmd_rpl, size, access,
    300						 execute);
    301			spin_lock(&adapter->mbox_lock);
    302			list_del(&entry.list);
    303			spin_unlock(&adapter->mbox_lock);
    304			return -FW_CMD_RETVAL_G(v);
    305		}
    306	}
    307
    308	/* We timed out.  Return the error ... */
    309	ret = -ETIMEDOUT;
    310	t4vf_record_mbox(adapter, cmd, size, access, ret);
    311	spin_lock(&adapter->mbox_lock);
    312	list_del(&entry.list);
    313	spin_unlock(&adapter->mbox_lock);
    314	return ret;
    315}
    316
    317/* In the Physical Function Driver Common Code, the ADVERT_MASK is used to
    318 * mask out bits in the Advertised Port Capabilities which are managed via
    319 * separate controls, like Pause Frames and Forward Error Correction.  In the
    320 * Virtual Function Common Code, since we never perform L1 Configuration on
    321 * the Link, the only things we really need to filter out are things which
    322 * we decode and report separately like Speed.
    323 */
    324#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
    325		     FW_PORT_CAP32_802_3_PAUSE | \
    326		     FW_PORT_CAP32_802_3_ASM_DIR | \
    327		     FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \
    328		     FW_PORT_CAP32_ANEG)
    329
    330/**
    331 *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
    332 *	@caps16: a 16-bit Port Capabilities value
    333 *
    334 *	Returns the equivalent 32-bit Port Capabilities value.
    335 */
    336static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
    337{
    338	fw_port_cap32_t caps32 = 0;
    339
    340	#define CAP16_TO_CAP32(__cap) \
    341		do { \
    342			if (caps16 & FW_PORT_CAP_##__cap) \
    343				caps32 |= FW_PORT_CAP32_##__cap; \
    344		} while (0)
    345
    346	CAP16_TO_CAP32(SPEED_100M);
    347	CAP16_TO_CAP32(SPEED_1G);
    348	CAP16_TO_CAP32(SPEED_25G);
    349	CAP16_TO_CAP32(SPEED_10G);
    350	CAP16_TO_CAP32(SPEED_40G);
    351	CAP16_TO_CAP32(SPEED_100G);
    352	CAP16_TO_CAP32(FC_RX);
    353	CAP16_TO_CAP32(FC_TX);
    354	CAP16_TO_CAP32(ANEG);
    355	CAP16_TO_CAP32(MDIAUTO);
    356	CAP16_TO_CAP32(MDISTRAIGHT);
    357	CAP16_TO_CAP32(FEC_RS);
    358	CAP16_TO_CAP32(FEC_BASER_RS);
    359	CAP16_TO_CAP32(802_3_PAUSE);
    360	CAP16_TO_CAP32(802_3_ASM_DIR);
    361
    362	#undef CAP16_TO_CAP32
    363
    364	return caps32;
    365}
    366
    367/* Translate Firmware Pause specification to Common Code */
    368static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
    369{
    370	enum cc_pause cc_pause = 0;
    371
    372	if (fw_pause & FW_PORT_CAP32_FC_RX)
    373		cc_pause |= PAUSE_RX;
    374	if (fw_pause & FW_PORT_CAP32_FC_TX)
    375		cc_pause |= PAUSE_TX;
    376
    377	return cc_pause;
    378}
    379
    380/* Translate Firmware Forward Error Correction specification to Common Code */
    381static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
    382{
    383	enum cc_fec cc_fec = 0;
    384
    385	if (fw_fec & FW_PORT_CAP32_FEC_RS)
    386		cc_fec |= FEC_RS;
    387	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
    388		cc_fec |= FEC_BASER_RS;
    389
    390	return cc_fec;
    391}
    392
    393/* Return the highest speed set in the port capabilities, in Mb/s. */
    394static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
    395{
    396	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
    397		do { \
    398			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
    399				return __speed; \
    400		} while (0)
    401
    402	TEST_SPEED_RETURN(400G, 400000);
    403	TEST_SPEED_RETURN(200G, 200000);
    404	TEST_SPEED_RETURN(100G, 100000);
    405	TEST_SPEED_RETURN(50G,   50000);
    406	TEST_SPEED_RETURN(40G,   40000);
    407	TEST_SPEED_RETURN(25G,   25000);
    408	TEST_SPEED_RETURN(10G,   10000);
    409	TEST_SPEED_RETURN(1G,     1000);
    410	TEST_SPEED_RETURN(100M,    100);
    411
    412	#undef TEST_SPEED_RETURN
    413
    414	return 0;
    415}
    416
    417/**
    418 *      fwcap_to_fwspeed - return highest speed in Port Capabilities
    419 *      @acaps: advertised Port Capabilities
    420 *
    421 *      Get the highest speed for the port from the advertised Port
    422 *      Capabilities.  It will be either the highest speed from the list of
    423 *      speeds or whatever user has set using ethtool.
    424 */
    425static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
    426{
    427	#define TEST_SPEED_RETURN(__caps_speed) \
    428		do { \
    429			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
    430				return FW_PORT_CAP32_SPEED_##__caps_speed; \
    431		} while (0)
    432
    433	TEST_SPEED_RETURN(400G);
    434	TEST_SPEED_RETURN(200G);
    435	TEST_SPEED_RETURN(100G);
    436	TEST_SPEED_RETURN(50G);
    437	TEST_SPEED_RETURN(40G);
    438	TEST_SPEED_RETURN(25G);
    439	TEST_SPEED_RETURN(10G);
    440	TEST_SPEED_RETURN(1G);
    441	TEST_SPEED_RETURN(100M);
    442
    443	#undef TEST_SPEED_RETURN
    444	return 0;
    445}
    446
    447/*
    448 *	init_link_config - initialize a link's SW state
    449 *	@lc: structure holding the link state
    450 *	@pcaps: link Port Capabilities
    451 *	@acaps: link current Advertised Port Capabilities
    452 *
    453 *	Initializes the SW state maintained for each link, including the link's
    454 *	capabilities and default speed/flow-control/autonegotiation settings.
    455 */
    456static void init_link_config(struct link_config *lc,
    457			     fw_port_cap32_t pcaps,
    458			     fw_port_cap32_t acaps)
    459{
    460	lc->pcaps = pcaps;
    461	lc->lpacaps = 0;
    462	lc->speed_caps = 0;
    463	lc->speed = 0;
    464	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
    465
    466	/* For Forward Error Control, we default to whatever the Firmware
    467	 * tells us the Link is currently advertising.
    468	 */
    469	lc->auto_fec = fwcap_to_cc_fec(acaps);
    470	lc->requested_fec = FEC_AUTO;
    471	lc->fec = lc->auto_fec;
    472
    473	/* If the Port is capable of Auto-Negtotiation, initialize it as
    474	 * "enabled" and copy over all of the Physical Port Capabilities
    475	 * to the Advertised Port Capabilities.  Otherwise mark it as
    476	 * Auto-Negotiate disabled and select the highest supported speed
    477	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
    478	 * and t4_handle_get_port_info().
    479	 */
    480	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
    481		lc->acaps = acaps & ADVERT_MASK;
    482		lc->autoneg = AUTONEG_ENABLE;
    483		lc->requested_fc |= PAUSE_AUTONEG;
    484	} else {
    485		lc->acaps = 0;
    486		lc->autoneg = AUTONEG_DISABLE;
    487		lc->speed_caps = fwcap_to_fwspeed(acaps);
    488	}
    489}
    490
    491/**
    492 *	t4vf_port_init - initialize port hardware/software state
    493 *	@adapter: the adapter
    494 *	@pidx: the adapter port index
    495 */
    496int t4vf_port_init(struct adapter *adapter, int pidx)
    497{
    498	struct port_info *pi = adap2pinfo(adapter, pidx);
    499	unsigned int fw_caps = adapter->params.fw_caps_support;
    500	struct fw_vi_cmd vi_cmd, vi_rpl;
    501	struct fw_port_cmd port_cmd, port_rpl;
    502	enum fw_port_type port_type;
    503	int mdio_addr;
    504	fw_port_cap32_t pcaps, acaps;
    505	int ret;
    506
    507	/* If we haven't yet determined whether we're talking to Firmware
    508	 * which knows the new 32-bit Port Capabilities, it's time to find
    509	 * out now.  This will also tell new Firmware to send us Port Status
    510	 * Updates using the new 32-bit Port Capabilities version of the
    511	 * Port Information message.
    512	 */
    513	if (fw_caps == FW_CAPS_UNKNOWN) {
    514		u32 param, val;
    515
    516		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
    517			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
    518		val = 1;
    519		ret = t4vf_set_params(adapter, 1, &param, &val);
    520		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
    521		adapter->params.fw_caps_support = fw_caps;
    522	}
    523
    524	/*
    525	 * Execute a VI Read command to get our Virtual Interface information
    526	 * like MAC address, etc.
    527	 */
    528	memset(&vi_cmd, 0, sizeof(vi_cmd));
    529	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
    530				       FW_CMD_REQUEST_F |
    531				       FW_CMD_READ_F);
    532	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
    533	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
    534	ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
    535	if (ret != FW_SUCCESS)
    536		return ret;
    537
    538	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
    539	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
    540	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
    541
    542	/*
    543	 * If we don't have read access to our port information, we're done
    544	 * now.  Otherwise, execute a PORT Read command to get it ...
    545	 */
    546	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
    547		return 0;
    548
    549	memset(&port_cmd, 0, sizeof(port_cmd));
    550	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
    551					    FW_CMD_REQUEST_F |
    552					    FW_CMD_READ_F |
    553					    FW_PORT_CMD_PORTID_V(pi->port_id));
    554	port_cmd.action_to_len16 = cpu_to_be32(
    555		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
    556				     ? FW_PORT_ACTION_GET_PORT_INFO
    557				     : FW_PORT_ACTION_GET_PORT_INFO32) |
    558		FW_LEN16(port_cmd));
    559	ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
    560	if (ret != FW_SUCCESS)
    561		return ret;
    562
    563	/* Extract the various fields from the Port Information message. */
    564	if (fw_caps == FW_CAPS16) {
    565		u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
    566
    567		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
    568		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
    569			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
    570			     : -1);
    571		pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
    572		acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
    573	} else {
    574		u32 lstatus32 =
    575			   be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
    576
    577		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
    578		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
    579			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
    580			     : -1);
    581		pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
    582		acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
    583	}
    584
    585	pi->port_type = port_type;
    586	pi->mdio_addr = mdio_addr;
    587	pi->mod_type = FW_PORT_MOD_TYPE_NA;
    588
    589	init_link_config(&pi->link_cfg, pcaps, acaps);
    590	return 0;
    591}
    592
    593/**
    594 *      t4vf_fw_reset - issue a reset to FW
    595 *      @adapter: the adapter
    596 *
    597 *	Issues a reset command to FW.  For a Physical Function this would
    598 *	result in the Firmware resetting all of its state.  For a Virtual
    599 *	Function this just resets the state associated with the VF.
    600 */
    601int t4vf_fw_reset(struct adapter *adapter)
    602{
    603	struct fw_reset_cmd cmd;
    604
    605	memset(&cmd, 0, sizeof(cmd));
    606	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
    607				      FW_CMD_WRITE_F);
    608	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
    609	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
    610}
    611
    612/**
    613 *	t4vf_query_params - query FW or device parameters
    614 *	@adapter: the adapter
    615 *	@nparams: the number of parameters
    616 *	@params: the parameter names
    617 *	@vals: the parameter values
    618 *
    619 *	Reads the values of firmware or device parameters.  Up to 7 parameters
    620 *	can be queried at once.
    621 */
    622static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
    623			     const u32 *params, u32 *vals)
    624{
    625	int i, ret;
    626	struct fw_params_cmd cmd, rpl;
    627	struct fw_params_param *p;
    628	size_t len16;
    629
    630	if (nparams > 7)
    631		return -EINVAL;
    632
    633	memset(&cmd, 0, sizeof(cmd));
    634	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
    635				    FW_CMD_REQUEST_F |
    636				    FW_CMD_READ_F);
    637	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
    638				      param[nparams].mnem), 16);
    639	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
    640	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
    641		p->mnem = htonl(*params++);
    642
    643	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
    644	if (ret == 0)
    645		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
    646			*vals++ = be32_to_cpu(p->val);
    647	return ret;
    648}
    649
    650/**
    651 *	t4vf_set_params - sets FW or device parameters
    652 *	@adapter: the adapter
    653 *	@nparams: the number of parameters
    654 *	@params: the parameter names
    655 *	@vals: the parameter values
    656 *
    657 *	Sets the values of firmware or device parameters.  Up to 7 parameters
    658 *	can be specified at once.
    659 */
    660int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
    661		    const u32 *params, const u32 *vals)
    662{
    663	int i;
    664	struct fw_params_cmd cmd;
    665	struct fw_params_param *p;
    666	size_t len16;
    667
    668	if (nparams > 7)
    669		return -EINVAL;
    670
    671	memset(&cmd, 0, sizeof(cmd));
    672	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
    673				    FW_CMD_REQUEST_F |
    674				    FW_CMD_WRITE_F);
    675	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
    676				      param[nparams]), 16);
    677	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
    678	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
    679		p->mnem = cpu_to_be32(*params++);
    680		p->val = cpu_to_be32(*vals++);
    681	}
    682
    683	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
    684}
    685
    686/**
    687 *	t4vf_fl_pkt_align - return the fl packet alignment
    688 *	@adapter: the adapter
    689 *
    690 *	T4 has a single field to specify the packing and padding boundary.
    691 *	T5 onwards has separate fields for this and hence the alignment for
    692 *	next packet offset is maximum of these two.  And T6 changes the
    693 *	Ingress Padding Boundary Shift, so it's all a mess and it's best
    694 *	if we put this in low-level Common Code ...
    695 *
    696 */
    697int t4vf_fl_pkt_align(struct adapter *adapter)
    698{
    699	u32 sge_control, sge_control2;
    700	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
    701
    702	sge_control = adapter->params.sge.sge_control;
    703
    704	/* T4 uses a single control field to specify both the PCIe Padding and
    705	 * Packing Boundary.  T5 introduced the ability to specify these
    706	 * separately.  The actual Ingress Packet Data alignment boundary
    707	 * within Packed Buffer Mode is the maximum of these two
    708	 * specifications.  (Note that it makes no real practical sense to
    709	 * have the Pading Boudary be larger than the Packing Boundary but you
    710	 * could set the chip up that way and, in fact, legacy T4 code would
    711	 * end doing this because it would initialize the Padding Boundary and
    712	 * leave the Packing Boundary initialized to 0 (16 bytes).)
    713	 * Padding Boundary values in T6 starts from 8B,
    714	 * where as it is 32B for T4 and T5.
    715	 */
    716	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
    717		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
    718	else
    719		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
    720
    721	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
    722
    723	fl_align = ingpadboundary;
    724	if (!is_t4(adapter->params.chip)) {
    725		/* T5 has a different interpretation of one of the PCIe Packing
    726		 * Boundary values.
    727		 */
    728		sge_control2 = adapter->params.sge.sge_control2;
    729		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
    730		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
    731			ingpackboundary = 16;
    732		else
    733			ingpackboundary = 1 << (ingpackboundary +
    734						INGPACKBOUNDARY_SHIFT_X);
    735
    736		fl_align = max(ingpadboundary, ingpackboundary);
    737	}
    738	return fl_align;
    739}
    740
    741/**
    742 *	t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
    743 *	@adapter: the adapter
    744 *	@qid: the Queue ID
    745 *	@qtype: the Ingress or Egress type for @qid
    746 *	@pbar2_qoffset: BAR2 Queue Offset
    747 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
    748 *
    749 *	Returns the BAR2 SGE Queue Registers information associated with the
    750 *	indicated Absolute Queue ID.  These are passed back in return value
    751 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
    752 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
    753 *
    754 *	This may return an error which indicates that BAR2 SGE Queue
    755 *	registers aren't available.  If an error is not returned, then the
    756 *	following values are returned:
    757 *
    758 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
    759 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
    760 *
    761 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
    762 *	require the "Inferred Queue ID" ability may be used.  E.g. the
    763 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
    764 *	then these "Inferred Queue ID" register may not be used.
    765 */
    766int t4vf_bar2_sge_qregs(struct adapter *adapter,
    767			unsigned int qid,
    768			enum t4_bar2_qtype qtype,
    769			u64 *pbar2_qoffset,
    770			unsigned int *pbar2_qid)
    771{
    772	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
    773	u64 bar2_page_offset, bar2_qoffset;
    774	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
    775
    776	/* T4 doesn't support BAR2 SGE Queue registers.
    777	 */
    778	if (is_t4(adapter->params.chip))
    779		return -EINVAL;
    780
    781	/* Get our SGE Page Size parameters.
    782	 */
    783	page_shift = adapter->params.sge.sge_vf_hps + 10;
    784	page_size = 1 << page_shift;
    785
    786	/* Get the right Queues per Page parameters for our Queue.
    787	 */
    788	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
    789		     ? adapter->params.sge.sge_vf_eq_qpp
    790		     : adapter->params.sge.sge_vf_iq_qpp);
    791	qpp_mask = (1 << qpp_shift) - 1;
    792
    793	/* Calculate the basics of the BAR2 SGE Queue register area:
    794	 *  o The BAR2 page the Queue registers will be in.
    795	 *  o The BAR2 Queue ID.
    796	 *  o The BAR2 Queue ID Offset into the BAR2 page.
    797	 */
    798	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
    799	bar2_qid = qid & qpp_mask;
    800	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
    801
    802	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
    803	 * hardware will infer the Absolute Queue ID simply from the writes to
    804	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
    805	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
    806	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
    807	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
    808	 * from the BAR2 Page and BAR2 Queue ID.
    809	 *
    810	 * One important censequence of this is that some BAR2 SGE registers
    811	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
    812	 * there.  But other registers synthesize the SGE Queue ID purely
    813	 * from the writes to the registers -- the Write Combined Doorbell
    814	 * Buffer is a good example.  These BAR2 SGE Registers are only
    815	 * available for those BAR2 SGE Register areas where the SGE Absolute
    816	 * Queue ID can be inferred from simple writes.
    817	 */
    818	bar2_qoffset = bar2_page_offset;
    819	bar2_qinferred = (bar2_qid_offset < page_size);
    820	if (bar2_qinferred) {
    821		bar2_qoffset += bar2_qid_offset;
    822		bar2_qid = 0;
    823	}
    824
    825	*pbar2_qoffset = bar2_qoffset;
    826	*pbar2_qid = bar2_qid;
    827	return 0;
    828}
    829
    830unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
    831{
    832	u32 whoami;
    833
    834	whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
    835	return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
    836			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
    837}
    838
    839/**
    840 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
    841 *	@adapter: the adapter
    842 *
    843 *	Retrieves various core SGE parameters in the form of hardware SGE
    844 *	register values.  The caller is responsible for decoding these as
    845 *	needed.  The SGE parameters are stored in @adapter->params.sge.
    846 */
    847int t4vf_get_sge_params(struct adapter *adapter)
    848{
    849	struct sge_params *sge_params = &adapter->params.sge;
    850	u32 params[7], vals[7];
    851	int v;
    852
    853	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    854		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
    855	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    856		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
    857	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    858		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
    859	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    860		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
    861	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    862		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
    863	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    864		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
    865	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    866		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
    867	v = t4vf_query_params(adapter, 7, params, vals);
    868	if (v)
    869		return v;
    870	sge_params->sge_control = vals[0];
    871	sge_params->sge_host_page_size = vals[1];
    872	sge_params->sge_fl_buffer_size[0] = vals[2];
    873	sge_params->sge_fl_buffer_size[1] = vals[3];
    874	sge_params->sge_timer_value_0_and_1 = vals[4];
    875	sge_params->sge_timer_value_2_and_3 = vals[5];
    876	sge_params->sge_timer_value_4_and_5 = vals[6];
    877
    878	/* T4 uses a single control field to specify both the PCIe Padding and
    879	 * Packing Boundary.  T5 introduced the ability to specify these
    880	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
    881	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
    882	 * SGE_CONTROL in order to determine how ingress packet data will be
    883	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
    884	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
    885	 * failure grabbing it we throw an error since we can't figure out the
    886	 * right value.
    887	 */
    888	if (!is_t4(adapter->params.chip)) {
    889		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    890			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
    891		v = t4vf_query_params(adapter, 1, params, vals);
    892		if (v != FW_SUCCESS) {
    893			dev_err(adapter->pdev_dev,
    894				"Unable to get SGE Control2; "
    895				"probably old firmware.\n");
    896			return v;
    897		}
    898		sge_params->sge_control2 = vals[0];
    899	}
    900
    901	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    902		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
    903	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    904		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
    905	v = t4vf_query_params(adapter, 2, params, vals);
    906	if (v)
    907		return v;
    908	sge_params->sge_ingress_rx_threshold = vals[0];
    909	sge_params->sge_congestion_control = vals[1];
    910
    911	/* For T5 and later we want to use the new BAR2 Doorbells.
    912	 * Unfortunately, older firmware didn't allow the this register to be
    913	 * read.
    914	 */
    915	if (!is_t4(adapter->params.chip)) {
    916		unsigned int pf, s_hps, s_qpp;
    917
    918		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    919			     FW_PARAMS_PARAM_XYZ_V(
    920				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
    921		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
    922			     FW_PARAMS_PARAM_XYZ_V(
    923				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
    924		v = t4vf_query_params(adapter, 2, params, vals);
    925		if (v != FW_SUCCESS) {
    926			dev_warn(adapter->pdev_dev,
    927				 "Unable to get VF SGE Queues/Page; "
    928				 "probably old firmware.\n");
    929			return v;
    930		}
    931		sge_params->sge_egress_queues_per_page = vals[0];
    932		sge_params->sge_ingress_queues_per_page = vals[1];
    933
    934		/* We need the Queues/Page for our VF.  This is based on the
    935		 * PF from which we're instantiated and is indexed in the
    936		 * register we just read. Do it once here so other code in
    937		 * the driver can just use it.
    938		 */
    939		pf = t4vf_get_pf_from_vf(adapter);
    940		s_hps = (HOSTPAGESIZEPF0_S +
    941			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
    942		sge_params->sge_vf_hps =
    943			((sge_params->sge_host_page_size >> s_hps)
    944			 & HOSTPAGESIZEPF0_M);
    945
    946		s_qpp = (QUEUESPERPAGEPF0_S +
    947			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
    948		sge_params->sge_vf_eq_qpp =
    949			((sge_params->sge_egress_queues_per_page >> s_qpp)
    950			 & QUEUESPERPAGEPF0_M);
    951		sge_params->sge_vf_iq_qpp =
    952			((sge_params->sge_ingress_queues_per_page >> s_qpp)
    953			 & QUEUESPERPAGEPF0_M);
    954	}
    955
    956	return 0;
    957}
    958
    959/**
    960 *	t4vf_get_vpd_params - retrieve device VPD paremeters
    961 *	@adapter: the adapter
    962 *
    963 *	Retrives various device Vital Product Data parameters.  The parameters
    964 *	are stored in @adapter->params.vpd.
    965 */
    966int t4vf_get_vpd_params(struct adapter *adapter)
    967{
    968	struct vpd_params *vpd_params = &adapter->params.vpd;
    969	u32 params[7], vals[7];
    970	int v;
    971
    972	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
    973		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
    974	v = t4vf_query_params(adapter, 1, params, vals);
    975	if (v)
    976		return v;
    977	vpd_params->cclk = vals[0];
    978
    979	return 0;
    980}
    981
    982/**
    983 *	t4vf_get_dev_params - retrieve device paremeters
    984 *	@adapter: the adapter
    985 *
    986 *	Retrives various device parameters.  The parameters are stored in
    987 *	@adapter->params.dev.
    988 */
    989int t4vf_get_dev_params(struct adapter *adapter)
    990{
    991	struct dev_params *dev_params = &adapter->params.dev;
    992	u32 params[7], vals[7];
    993	int v;
    994
    995	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
    996		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
    997	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
    998		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
    999	v = t4vf_query_params(adapter, 2, params, vals);
   1000	if (v)
   1001		return v;
   1002	dev_params->fwrev = vals[0];
   1003	dev_params->tprev = vals[1];
   1004
   1005	return 0;
   1006}
   1007
   1008/**
   1009 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
   1010 *	@adapter: the adapter
   1011 *
   1012 *	Retrieves global RSS mode and parameters with which we have to live
   1013 *	and stores them in the @adapter's RSS parameters.
   1014 */
   1015int t4vf_get_rss_glb_config(struct adapter *adapter)
   1016{
   1017	struct rss_params *rss = &adapter->params.rss;
   1018	struct fw_rss_glb_config_cmd cmd, rpl;
   1019	int v;
   1020
   1021	/*
   1022	 * Execute an RSS Global Configuration read command to retrieve
   1023	 * our RSS configuration.
   1024	 */
   1025	memset(&cmd, 0, sizeof(cmd));
   1026	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
   1027				      FW_CMD_REQUEST_F |
   1028				      FW_CMD_READ_F);
   1029	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
   1030	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   1031	if (v)
   1032		return v;
   1033
   1034	/*
   1035	 * Transate the big-endian RSS Global Configuration into our
   1036	 * cpu-endian format based on the RSS mode.  We also do first level
   1037	 * filtering at this point to weed out modes which don't support
   1038	 * VF Drivers ...
   1039	 */
   1040	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
   1041			be32_to_cpu(rpl.u.manual.mode_pkd));
   1042	switch (rss->mode) {
   1043	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
   1044		u32 word = be32_to_cpu(
   1045				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
   1046
   1047		rss->u.basicvirtual.synmapen =
   1048			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
   1049		rss->u.basicvirtual.syn4tupenipv6 =
   1050			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
   1051		rss->u.basicvirtual.syn2tupenipv6 =
   1052			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
   1053		rss->u.basicvirtual.syn4tupenipv4 =
   1054			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
   1055		rss->u.basicvirtual.syn2tupenipv4 =
   1056			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
   1057
   1058		rss->u.basicvirtual.ofdmapen =
   1059			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
   1060
   1061		rss->u.basicvirtual.tnlmapen =
   1062			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
   1063		rss->u.basicvirtual.tnlalllookup =
   1064			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
   1065
   1066		rss->u.basicvirtual.hashtoeplitz =
   1067			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
   1068
   1069		/* we need at least Tunnel Map Enable to be set */
   1070		if (!rss->u.basicvirtual.tnlmapen)
   1071			return -EINVAL;
   1072		break;
   1073	}
   1074
   1075	default:
   1076		/* all unknown/unsupported RSS modes result in an error */
   1077		return -EINVAL;
   1078	}
   1079
   1080	return 0;
   1081}
   1082
   1083/**
   1084 *	t4vf_get_vfres - retrieve VF resource limits
   1085 *	@adapter: the adapter
   1086 *
   1087 *	Retrieves configured resource limits and capabilities for a virtual
   1088 *	function.  The results are stored in @adapter->vfres.
   1089 */
   1090int t4vf_get_vfres(struct adapter *adapter)
   1091{
   1092	struct vf_resources *vfres = &adapter->params.vfres;
   1093	struct fw_pfvf_cmd cmd, rpl;
   1094	int v;
   1095	u32 word;
   1096
   1097	/*
   1098	 * Execute PFVF Read command to get VF resource limits; bail out early
   1099	 * with error on command failure.
   1100	 */
   1101	memset(&cmd, 0, sizeof(cmd));
   1102	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
   1103				    FW_CMD_REQUEST_F |
   1104				    FW_CMD_READ_F);
   1105	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
   1106	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   1107	if (v)
   1108		return v;
   1109
   1110	/*
   1111	 * Extract VF resource limits and return success.
   1112	 */
   1113	word = be32_to_cpu(rpl.niqflint_niq);
   1114	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
   1115	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
   1116
   1117	word = be32_to_cpu(rpl.type_to_neq);
   1118	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
   1119	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
   1120
   1121	word = be32_to_cpu(rpl.tc_to_nexactf);
   1122	vfres->tc = FW_PFVF_CMD_TC_G(word);
   1123	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
   1124	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
   1125
   1126	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
   1127	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
   1128	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
   1129	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
   1130
   1131	return 0;
   1132}
   1133
   1134/**
   1135 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
   1136 *	@adapter: the adapter
   1137 *	@viid: Virtual Interface ID
   1138 *	@config: pointer to host-native VI RSS Configuration buffer
   1139 *
   1140 *	Reads the Virtual Interface's RSS configuration information and
   1141 *	translates it into CPU-native format.
   1142 */
   1143int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
   1144			    union rss_vi_config *config)
   1145{
   1146	struct fw_rss_vi_config_cmd cmd, rpl;
   1147	int v;
   1148
   1149	memset(&cmd, 0, sizeof(cmd));
   1150	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
   1151				     FW_CMD_REQUEST_F |
   1152				     FW_CMD_READ_F |
   1153				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
   1154	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
   1155	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   1156	if (v)
   1157		return v;
   1158
   1159	switch (adapter->params.rss.mode) {
   1160	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
   1161		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
   1162
   1163		config->basicvirtual.ip6fourtupen =
   1164			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
   1165		config->basicvirtual.ip6twotupen =
   1166			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
   1167		config->basicvirtual.ip4fourtupen =
   1168			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
   1169		config->basicvirtual.ip4twotupen =
   1170			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
   1171		config->basicvirtual.udpen =
   1172			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
   1173		config->basicvirtual.defaultq =
   1174			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
   1175		break;
   1176	}
   1177
   1178	default:
   1179		return -EINVAL;
   1180	}
   1181
   1182	return 0;
   1183}
   1184
   1185/**
   1186 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
   1187 *	@adapter: the adapter
   1188 *	@viid: Virtual Interface ID
   1189 *	@config: pointer to host-native VI RSS Configuration buffer
   1190 *
   1191 *	Write the Virtual Interface's RSS configuration information
   1192 *	(translating it into firmware-native format before writing).
   1193 */
   1194int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
   1195			     union rss_vi_config *config)
   1196{
   1197	struct fw_rss_vi_config_cmd cmd, rpl;
   1198
   1199	memset(&cmd, 0, sizeof(cmd));
   1200	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
   1201				     FW_CMD_REQUEST_F |
   1202				     FW_CMD_WRITE_F |
   1203				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
   1204	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
   1205	switch (adapter->params.rss.mode) {
   1206	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
   1207		u32 word = 0;
   1208
   1209		if (config->basicvirtual.ip6fourtupen)
   1210			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
   1211		if (config->basicvirtual.ip6twotupen)
   1212			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
   1213		if (config->basicvirtual.ip4fourtupen)
   1214			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
   1215		if (config->basicvirtual.ip4twotupen)
   1216			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
   1217		if (config->basicvirtual.udpen)
   1218			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
   1219		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
   1220				config->basicvirtual.defaultq);
   1221		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
   1222		break;
   1223	}
   1224
   1225	default:
   1226		return -EINVAL;
   1227	}
   1228
   1229	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   1230}
   1231
   1232/**
   1233 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
   1234 *	@adapter: the adapter
   1235 *	@viid: Virtual Interface of RSS Table Slice
   1236 *	@start: starting entry in the table to write
   1237 *	@n: how many table entries to write
   1238 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
   1239 *	@nrspq: number of values in @rspq
   1240 *
   1241 *	Programs the selected part of the VI's RSS mapping table with the
   1242 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
   1243 *	until the full table range is populated.
   1244 *
   1245 *	The caller must ensure the values in @rspq are in the range 0..1023.
   1246 */
   1247int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
   1248			  int start, int n, const u16 *rspq, int nrspq)
   1249{
   1250	const u16 *rsp = rspq;
   1251	const u16 *rsp_end = rspq+nrspq;
   1252	struct fw_rss_ind_tbl_cmd cmd;
   1253
   1254	/*
   1255	 * Initialize firmware command template to write the RSS table.
   1256	 */
   1257	memset(&cmd, 0, sizeof(cmd));
   1258	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
   1259				     FW_CMD_REQUEST_F |
   1260				     FW_CMD_WRITE_F |
   1261				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
   1262	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
   1263
   1264	/*
   1265	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
   1266	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
   1267	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
   1268	 * reserved.
   1269	 */
   1270	while (n > 0) {
   1271		__be32 *qp = &cmd.iq0_to_iq2;
   1272		int nq = min(n, 32);
   1273		int ret;
   1274
   1275		/*
   1276		 * Set up the firmware RSS command header to send the next
   1277		 * "nq" Ingress Queue IDs to the firmware.
   1278		 */
   1279		cmd.niqid = cpu_to_be16(nq);
   1280		cmd.startidx = cpu_to_be16(start);
   1281
   1282		/*
   1283		 * "nq" more done for the start of the next loop.
   1284		 */
   1285		start += nq;
   1286		n -= nq;
   1287
   1288		/*
   1289		 * While there are still Ingress Queue IDs to stuff into the
   1290		 * current firmware RSS command, retrieve them from the
   1291		 * Ingress Queue ID array and insert them into the command.
   1292		 */
   1293		while (nq > 0) {
   1294			/*
   1295			 * Grab up to the next 3 Ingress Queue IDs (wrapping
   1296			 * around the Ingress Queue ID array if necessary) and
   1297			 * insert them into the firmware RSS command at the
   1298			 * current 3-tuple position within the commad.
   1299			 */
   1300			u16 qbuf[3];
   1301			u16 *qbp = qbuf;
   1302			int nqbuf = min(3, nq);
   1303
   1304			nq -= nqbuf;
   1305			qbuf[0] = qbuf[1] = qbuf[2] = 0;
   1306			while (nqbuf) {
   1307				nqbuf--;
   1308				*qbp++ = *rsp++;
   1309				if (rsp >= rsp_end)
   1310					rsp = rspq;
   1311			}
   1312			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
   1313					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
   1314					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
   1315		}
   1316
   1317		/*
   1318		 * Send this portion of the RRS table update to the firmware;
   1319		 * bail out on any errors.
   1320		 */
   1321		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
   1322		if (ret)
   1323			return ret;
   1324	}
   1325	return 0;
   1326}
   1327
   1328/**
   1329 *	t4vf_alloc_vi - allocate a virtual interface on a port
   1330 *	@adapter: the adapter
   1331 *	@port_id: physical port associated with the VI
   1332 *
   1333 *	Allocate a new Virtual Interface and bind it to the indicated
   1334 *	physical port.  Return the new Virtual Interface Identifier on
   1335 *	success, or a [negative] error number on failure.
   1336 */
   1337int t4vf_alloc_vi(struct adapter *adapter, int port_id)
   1338{
   1339	struct fw_vi_cmd cmd, rpl;
   1340	int v;
   1341
   1342	/*
   1343	 * Execute a VI command to allocate Virtual Interface and return its
   1344	 * VIID.
   1345	 */
   1346	memset(&cmd, 0, sizeof(cmd));
   1347	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
   1348				    FW_CMD_REQUEST_F |
   1349				    FW_CMD_WRITE_F |
   1350				    FW_CMD_EXEC_F);
   1351	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
   1352					 FW_VI_CMD_ALLOC_F);
   1353	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
   1354	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   1355	if (v)
   1356		return v;
   1357
   1358	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
   1359}
   1360
   1361/**
   1362 *	t4vf_free_vi -- free a virtual interface
   1363 *	@adapter: the adapter
   1364 *	@viid: the virtual interface identifier
   1365 *
   1366 *	Free a previously allocated Virtual Interface.  Return an error on
   1367 *	failure.
   1368 */
   1369int t4vf_free_vi(struct adapter *adapter, int viid)
   1370{
   1371	struct fw_vi_cmd cmd;
   1372
   1373	/*
   1374	 * Execute a VI command to free the Virtual Interface.
   1375	 */
   1376	memset(&cmd, 0, sizeof(cmd));
   1377	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
   1378				    FW_CMD_REQUEST_F |
   1379				    FW_CMD_EXEC_F);
   1380	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
   1381					 FW_VI_CMD_FREE_F);
   1382	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
   1383	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
   1384}
   1385
   1386/**
   1387 *	t4vf_enable_vi - enable/disable a virtual interface
   1388 *	@adapter: the adapter
   1389 *	@viid: the Virtual Interface ID
   1390 *	@rx_en: 1=enable Rx, 0=disable Rx
   1391 *	@tx_en: 1=enable Tx, 0=disable Tx
   1392 *
   1393 *	Enables/disables a virtual interface.
   1394 */
   1395int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
   1396		   bool rx_en, bool tx_en)
   1397{
   1398	struct fw_vi_enable_cmd cmd;
   1399
   1400	memset(&cmd, 0, sizeof(cmd));
   1401	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
   1402				     FW_CMD_REQUEST_F |
   1403				     FW_CMD_EXEC_F |
   1404				     FW_VI_ENABLE_CMD_VIID_V(viid));
   1405	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
   1406				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
   1407				       FW_LEN16(cmd));
   1408	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
   1409}
   1410
   1411/**
   1412 *	t4vf_enable_pi - enable/disable a Port's virtual interface
   1413 *	@adapter: the adapter
   1414 *	@pi: the Port Information structure
   1415 *	@rx_en: 1=enable Rx, 0=disable Rx
   1416 *	@tx_en: 1=enable Tx, 0=disable Tx
   1417 *
   1418 *	Enables/disables a Port's virtual interface.  If the Virtual
   1419 *	Interface enable/disable operation is successful, we notify the
   1420 *	OS-specific code of a potential Link Status change via the OS Contract
   1421 *	API t4vf_os_link_changed().
   1422 */
   1423int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
   1424		   bool rx_en, bool tx_en)
   1425{
   1426	int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
   1427
   1428	if (ret)
   1429		return ret;
   1430	t4vf_os_link_changed(adapter, pi->pidx,
   1431			     rx_en && tx_en && pi->link_cfg.link_ok);
   1432	return 0;
   1433}
   1434
   1435/**
   1436 *	t4vf_identify_port - identify a VI's port by blinking its LED
   1437 *	@adapter: the adapter
   1438 *	@viid: the Virtual Interface ID
   1439 *	@nblinks: how many times to blink LED at 2.5 Hz
   1440 *
   1441 *	Identifies a VI's port by blinking its LED.
   1442 */
   1443int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
   1444		       unsigned int nblinks)
   1445{
   1446	struct fw_vi_enable_cmd cmd;
   1447
   1448	memset(&cmd, 0, sizeof(cmd));
   1449	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
   1450				     FW_CMD_REQUEST_F |
   1451				     FW_CMD_EXEC_F |
   1452				     FW_VI_ENABLE_CMD_VIID_V(viid));
   1453	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
   1454				       FW_LEN16(cmd));
   1455	cmd.blinkdur = cpu_to_be16(nblinks);
   1456	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
   1457}
   1458
   1459/**
   1460 *	t4vf_set_rxmode - set Rx properties of a virtual interface
   1461 *	@adapter: the adapter
   1462 *	@viid: the VI id
   1463 *	@mtu: the new MTU or -1 for no change
   1464 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
   1465 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
   1466 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
   1467 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
   1468 *		-1 no change
   1469 *	@sleep_ok: call is allowed to sleep
   1470 *
   1471 *	Sets Rx properties of a virtual interface.
   1472 */
   1473int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
   1474		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
   1475		    bool sleep_ok)
   1476{
   1477	struct fw_vi_rxmode_cmd cmd;
   1478
   1479	/* convert to FW values */
   1480	if (mtu < 0)
   1481		mtu = FW_VI_RXMODE_CMD_MTU_M;
   1482	if (promisc < 0)
   1483		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
   1484	if (all_multi < 0)
   1485		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
   1486	if (bcast < 0)
   1487		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
   1488	if (vlanex < 0)
   1489		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
   1490
   1491	memset(&cmd, 0, sizeof(cmd));
   1492	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
   1493				     FW_CMD_REQUEST_F |
   1494				     FW_CMD_WRITE_F |
   1495				     FW_VI_RXMODE_CMD_VIID_V(viid));
   1496	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
   1497	cmd.mtu_to_vlanexen =
   1498		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
   1499			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
   1500			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
   1501			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
   1502			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
   1503	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
   1504}
   1505
   1506/**
   1507 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
   1508 *	@adapter: the adapter
   1509 *	@viid: the Virtual Interface Identifier
   1510 *	@free: if true any existing filters for this VI id are first removed
   1511 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
   1512 *	@addr: the MAC address(es)
   1513 *	@idx: where to store the index of each allocated filter
   1514 *	@hash: pointer to hash address filter bitmap
   1515 *	@sleep_ok: call is allowed to sleep
   1516 *
   1517 *	Allocates an exact-match filter for each of the supplied addresses and
   1518 *	sets it to the corresponding address.  If @idx is not %NULL it should
   1519 *	have at least @naddr entries, each of which will be set to the index of
   1520 *	the filter allocated for the corresponding MAC address.  If a filter
   1521 *	could not be allocated for an address its index is set to 0xffff.
   1522 *	If @hash is not %NULL addresses that fail to allocate an exact filter
   1523 *	are hashed and update the hash filter bitmap pointed at by @hash.
   1524 *
   1525 *	Returns a negative error number or the number of filters allocated.
   1526 */
   1527int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
   1528			unsigned int naddr, const u8 **addr, u16 *idx,
   1529			u64 *hash, bool sleep_ok)
   1530{
   1531	int offset, ret = 0;
   1532	unsigned nfilters = 0;
   1533	unsigned int rem = naddr;
   1534	struct fw_vi_mac_cmd cmd, rpl;
   1535	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
   1536
   1537	if (naddr > max_naddr)
   1538		return -EINVAL;
   1539
   1540	for (offset = 0; offset < naddr; /**/) {
   1541		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
   1542					 ? rem
   1543					 : ARRAY_SIZE(cmd.u.exact));
   1544		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
   1545						     u.exact[fw_naddr]), 16);
   1546		struct fw_vi_mac_exact *p;
   1547		int i;
   1548
   1549		memset(&cmd, 0, sizeof(cmd));
   1550		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
   1551					     FW_CMD_REQUEST_F |
   1552					     FW_CMD_WRITE_F |
   1553					     (free ? FW_CMD_EXEC_F : 0) |
   1554					     FW_VI_MAC_CMD_VIID_V(viid));
   1555		cmd.freemacs_to_len16 =
   1556			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
   1557				    FW_CMD_LEN16_V(len16));
   1558
   1559		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
   1560			p->valid_to_idx = cpu_to_be16(
   1561				FW_VI_MAC_CMD_VALID_F |
   1562				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
   1563			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
   1564		}
   1565
   1566
   1567		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
   1568					sleep_ok);
   1569		if (ret && ret != -ENOMEM)
   1570			break;
   1571
   1572		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
   1573			u16 index = FW_VI_MAC_CMD_IDX_G(
   1574				be16_to_cpu(p->valid_to_idx));
   1575
   1576			if (idx)
   1577				idx[offset+i] =
   1578					(index >= max_naddr
   1579					 ? 0xffff
   1580					 : index);
   1581			if (index < max_naddr)
   1582				nfilters++;
   1583			else if (hash)
   1584				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
   1585		}
   1586
   1587		free = false;
   1588		offset += fw_naddr;
   1589		rem -= fw_naddr;
   1590	}
   1591
   1592	/*
   1593	 * If there were no errors or we merely ran out of room in our MAC
   1594	 * address arena, return the number of filters actually written.
   1595	 */
   1596	if (ret == 0 || ret == -ENOMEM)
   1597		ret = nfilters;
   1598	return ret;
   1599}
   1600
   1601/**
   1602 *	t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
   1603 *	@adapter: the adapter
   1604 *	@viid: the VI id
   1605 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
   1606 *	@addr: the MAC address(es)
   1607 *	@sleep_ok: call is allowed to sleep
   1608 *
   1609 *	Frees the exact-match filter for each of the supplied addresses
   1610 *
   1611 *	Returns a negative error number or the number of filters freed.
   1612 */
   1613int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
   1614		       unsigned int naddr, const u8 **addr, bool sleep_ok)
   1615{
   1616	int offset, ret = 0;
   1617	struct fw_vi_mac_cmd cmd;
   1618	unsigned int nfilters = 0;
   1619	unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
   1620	unsigned int rem = naddr;
   1621
   1622	if (naddr > max_naddr)
   1623		return -EINVAL;
   1624
   1625	for (offset = 0; offset < (int)naddr ; /**/) {
   1626		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
   1627					 rem : ARRAY_SIZE(cmd.u.exact));
   1628		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
   1629						     u.exact[fw_naddr]), 16);
   1630		struct fw_vi_mac_exact *p;
   1631		int i;
   1632
   1633		memset(&cmd, 0, sizeof(cmd));
   1634		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
   1635				     FW_CMD_REQUEST_F |
   1636				     FW_CMD_WRITE_F |
   1637				     FW_CMD_EXEC_V(0) |
   1638				     FW_VI_MAC_CMD_VIID_V(viid));
   1639		cmd.freemacs_to_len16 =
   1640				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
   1641					    FW_CMD_LEN16_V(len16));
   1642
   1643		for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
   1644			p->valid_to_idx = cpu_to_be16(
   1645				FW_VI_MAC_CMD_VALID_F |
   1646				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
   1647			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
   1648		}
   1649
   1650		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
   1651					sleep_ok);
   1652		if (ret)
   1653			break;
   1654
   1655		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
   1656			u16 index = FW_VI_MAC_CMD_IDX_G(
   1657						be16_to_cpu(p->valid_to_idx));
   1658
   1659			if (index < max_naddr)
   1660				nfilters++;
   1661		}
   1662
   1663		offset += fw_naddr;
   1664		rem -= fw_naddr;
   1665	}
   1666
   1667	if (ret == 0)
   1668		ret = nfilters;
   1669	return ret;
   1670}
   1671
   1672/**
   1673 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
   1674 *	@adapter: the adapter
   1675 *	@viid: the Virtual Interface ID
   1676 *	@idx: index of existing filter for old value of MAC address, or -1
   1677 *	@addr: the new MAC address value
   1678 *	@persist: if idx < 0, the new MAC allocation should be persistent
   1679 *
   1680 *	Modifies an exact-match filter and sets it to the new MAC address.
   1681 *	Note that in general it is not possible to modify the value of a given
   1682 *	filter so the generic way to modify an address filter is to free the
   1683 *	one being used by the old address value and allocate a new filter for
   1684 *	the new address value.  @idx can be -1 if the address is a new
   1685 *	addition.
   1686 *
   1687 *	Returns a negative error number or the index of the filter with the new
   1688 *	MAC value.
   1689 */
   1690int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
   1691		    int idx, const u8 *addr, bool persist)
   1692{
   1693	int ret;
   1694	struct fw_vi_mac_cmd cmd, rpl;
   1695	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
   1696	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
   1697					     u.exact[1]), 16);
   1698	unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
   1699
   1700	/*
   1701	 * If this is a new allocation, determine whether it should be
   1702	 * persistent (across a "freemacs" operation) or not.
   1703	 */
   1704	if (idx < 0)
   1705		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
   1706
   1707	memset(&cmd, 0, sizeof(cmd));
   1708	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
   1709				     FW_CMD_REQUEST_F |
   1710				     FW_CMD_WRITE_F |
   1711				     FW_VI_MAC_CMD_VIID_V(viid));
   1712	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
   1713	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
   1714				      FW_VI_MAC_CMD_IDX_V(idx));
   1715	memcpy(p->macaddr, addr, sizeof(p->macaddr));
   1716
   1717	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
   1718	if (ret == 0) {
   1719		p = &rpl.u.exact[0];
   1720		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
   1721		if (ret >= max_mac_addr)
   1722			ret = -ENOMEM;
   1723	}
   1724	return ret;
   1725}
   1726
   1727/**
   1728 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
   1729 *	@adapter: the adapter
   1730 *	@viid: the Virtual Interface Identifier
   1731 *	@ucast: whether the hash filter should also match unicast addresses
   1732 *	@vec: the value to be written to the hash filter
   1733 *	@sleep_ok: call is allowed to sleep
   1734 *
   1735 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
   1736 */
   1737int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
   1738		       bool ucast, u64 vec, bool sleep_ok)
   1739{
   1740	struct fw_vi_mac_cmd cmd;
   1741	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
   1742					     u.exact[0]), 16);
   1743
   1744	memset(&cmd, 0, sizeof(cmd));
   1745	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
   1746				     FW_CMD_REQUEST_F |
   1747				     FW_CMD_WRITE_F |
   1748				     FW_VI_ENABLE_CMD_VIID_V(viid));
   1749	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
   1750					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
   1751					    FW_CMD_LEN16_V(len16));
   1752	cmd.u.hash.hashvec = cpu_to_be64(vec);
   1753	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
   1754}
   1755
   1756/**
   1757 *	t4vf_get_port_stats - collect "port" statistics
   1758 *	@adapter: the adapter
   1759 *	@pidx: the port index
   1760 *	@s: the stats structure to fill
   1761 *
   1762 *	Collect statistics for the "port"'s Virtual Interface.
   1763 */
   1764int t4vf_get_port_stats(struct adapter *adapter, int pidx,
   1765			struct t4vf_port_stats *s)
   1766{
   1767	struct port_info *pi = adap2pinfo(adapter, pidx);
   1768	struct fw_vi_stats_vf fwstats;
   1769	unsigned int rem = VI_VF_NUM_STATS;
   1770	__be64 *fwsp = (__be64 *)&fwstats;
   1771
   1772	/*
   1773	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
   1774	 * commands.  We could use a Work Request and get all of them at once
   1775	 * but that's an asynchronous interface which is awkward to use.
   1776	 */
   1777	while (rem) {
   1778		unsigned int ix = VI_VF_NUM_STATS - rem;
   1779		unsigned int nstats = min(6U, rem);
   1780		struct fw_vi_stats_cmd cmd, rpl;
   1781		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
   1782			      sizeof(struct fw_vi_stats_ctl));
   1783		size_t len16 = DIV_ROUND_UP(len, 16);
   1784		int ret;
   1785
   1786		memset(&cmd, 0, sizeof(cmd));
   1787		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
   1788					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
   1789					     FW_CMD_REQUEST_F |
   1790					     FW_CMD_READ_F);
   1791		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
   1792		cmd.u.ctl.nstats_ix =
   1793			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
   1794				    FW_VI_STATS_CMD_NSTATS_V(nstats));
   1795		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
   1796		if (ret)
   1797			return ret;
   1798
   1799		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
   1800
   1801		rem -= nstats;
   1802		fwsp += nstats;
   1803	}
   1804
   1805	/*
   1806	 * Translate firmware statistics into host native statistics.
   1807	 */
   1808	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
   1809	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
   1810	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
   1811	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
   1812	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
   1813	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
   1814	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
   1815	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
   1816	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
   1817
   1818	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
   1819	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
   1820	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
   1821	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
   1822	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
   1823	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
   1824
   1825	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
   1826
   1827	return 0;
   1828}
   1829
   1830/**
   1831 *	t4vf_iq_free - free an ingress queue and its free lists
   1832 *	@adapter: the adapter
   1833 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
   1834 *	@iqid: ingress queue ID
   1835 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
   1836 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
   1837 *
   1838 *	Frees an ingress queue and its associated free lists, if any.
   1839 */
   1840int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
   1841		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
   1842{
   1843	struct fw_iq_cmd cmd;
   1844
   1845	memset(&cmd, 0, sizeof(cmd));
   1846	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
   1847				    FW_CMD_REQUEST_F |
   1848				    FW_CMD_EXEC_F);
   1849	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
   1850					 FW_LEN16(cmd));
   1851	cmd.type_to_iqandstindex =
   1852		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
   1853
   1854	cmd.iqid = cpu_to_be16(iqid);
   1855	cmd.fl0id = cpu_to_be16(fl0id);
   1856	cmd.fl1id = cpu_to_be16(fl1id);
   1857	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
   1858}
   1859
   1860/**
   1861 *	t4vf_eth_eq_free - free an Ethernet egress queue
   1862 *	@adapter: the adapter
   1863 *	@eqid: egress queue ID
   1864 *
   1865 *	Frees an Ethernet egress queue.
   1866 */
   1867int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
   1868{
   1869	struct fw_eq_eth_cmd cmd;
   1870
   1871	memset(&cmd, 0, sizeof(cmd));
   1872	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
   1873				    FW_CMD_REQUEST_F |
   1874				    FW_CMD_EXEC_F);
   1875	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
   1876					 FW_LEN16(cmd));
   1877	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
   1878	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
   1879}
   1880
   1881/**
   1882 *	t4vf_link_down_rc_str - return a string for a Link Down Reason Code
   1883 *	@link_down_rc: Link Down Reason Code
   1884 *
   1885 *	Returns a string representation of the Link Down Reason Code.
   1886 */
   1887static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
   1888{
   1889	static const char * const reason[] = {
   1890		"Link Down",
   1891		"Remote Fault",
   1892		"Auto-negotiation Failure",
   1893		"Reserved",
   1894		"Insufficient Airflow",
   1895		"Unable To Determine Reason",
   1896		"No RX Signal Detected",
   1897		"Reserved",
   1898	};
   1899
   1900	if (link_down_rc >= ARRAY_SIZE(reason))
   1901		return "Bad Reason Code";
   1902
   1903	return reason[link_down_rc];
   1904}
   1905
   1906/**
   1907 *	t4vf_handle_get_port_info - process a FW reply message
   1908 *	@pi: the port info
   1909 *	@cmd: start of the FW message
   1910 *
   1911 *	Processes a GET_PORT_INFO FW reply message.
   1912 */
   1913static void t4vf_handle_get_port_info(struct port_info *pi,
   1914				      const struct fw_port_cmd *cmd)
   1915{
   1916	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
   1917	struct link_config *lc = &pi->link_cfg;
   1918	struct adapter *adapter = pi->adapter;
   1919	unsigned int speed, fc, fec, adv_fc;
   1920	enum fw_port_module_type mod_type;
   1921	int action, link_ok, linkdnrc;
   1922	enum fw_port_type port_type;
   1923
   1924	/* Extract the various fields from the Port Information message. */
   1925	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
   1926	switch (action) {
   1927	case FW_PORT_ACTION_GET_PORT_INFO: {
   1928		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
   1929
   1930		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
   1931		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
   1932		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
   1933		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
   1934		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
   1935		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
   1936		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
   1937
   1938		/* Unfortunately the format of the Link Status in the old
   1939		 * 16-bit Port Information message isn't the same as the
   1940		 * 16-bit Port Capabilities bitfield used everywhere else ...
   1941		 */
   1942		linkattr = 0;
   1943		if (lstatus & FW_PORT_CMD_RXPAUSE_F)
   1944			linkattr |= FW_PORT_CAP32_FC_RX;
   1945		if (lstatus & FW_PORT_CMD_TXPAUSE_F)
   1946			linkattr |= FW_PORT_CAP32_FC_TX;
   1947		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
   1948			linkattr |= FW_PORT_CAP32_SPEED_100M;
   1949		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
   1950			linkattr |= FW_PORT_CAP32_SPEED_1G;
   1951		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
   1952			linkattr |= FW_PORT_CAP32_SPEED_10G;
   1953		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
   1954			linkattr |= FW_PORT_CAP32_SPEED_25G;
   1955		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
   1956			linkattr |= FW_PORT_CAP32_SPEED_40G;
   1957		if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
   1958			linkattr |= FW_PORT_CAP32_SPEED_100G;
   1959
   1960		break;
   1961	}
   1962
   1963	case FW_PORT_ACTION_GET_PORT_INFO32: {
   1964		u32 lstatus32;
   1965
   1966		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
   1967		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
   1968		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
   1969		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
   1970		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
   1971		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
   1972		acaps = be32_to_cpu(cmd->u.info32.acaps32);
   1973		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
   1974		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
   1975		break;
   1976	}
   1977
   1978	default:
   1979		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
   1980			be32_to_cpu(cmd->action_to_len16));
   1981		return;
   1982	}
   1983
   1984	fec = fwcap_to_cc_fec(acaps);
   1985	adv_fc = fwcap_to_cc_pause(acaps);
   1986	fc = fwcap_to_cc_pause(linkattr);
   1987	speed = fwcap_to_speed(linkattr);
   1988
   1989	if (mod_type != pi->mod_type) {
   1990		/* When a new Transceiver Module is inserted, the Firmware
   1991		 * will examine any Forward Error Correction parameters
   1992		 * present in the Transceiver Module i2c EPROM and determine
   1993		 * the supported and recommended FEC settings from those
   1994		 * based on IEEE 802.3 standards.  We always record the
   1995		 * IEEE 802.3 recommended "automatic" settings.
   1996		 */
   1997		lc->auto_fec = fec;
   1998
   1999		/* Some versions of the early T6 Firmware "cheated" when
   2000		 * handling different Transceiver Modules by changing the
   2001		 * underlaying Port Type reported to the Host Drivers.  As
   2002		 * such we need to capture whatever Port Type the Firmware
   2003		 * sends us and record it in case it's different from what we
   2004		 * were told earlier.  Unfortunately, since Firmware is
   2005		 * forever, we'll need to keep this code here forever, but in
   2006		 * later T6 Firmware it should just be an assignment of the
   2007		 * same value already recorded.
   2008		 */
   2009		pi->port_type = port_type;
   2010
   2011		pi->mod_type = mod_type;
   2012		t4vf_os_portmod_changed(adapter, pi->pidx);
   2013	}
   2014
   2015	if (link_ok != lc->link_ok || speed != lc->speed ||
   2016	    fc != lc->fc || adv_fc != lc->advertised_fc ||
   2017	    fec != lc->fec) {
   2018		/* something changed */
   2019		if (!link_ok && lc->link_ok) {
   2020			lc->link_down_rc = linkdnrc;
   2021			dev_warn_ratelimited(adapter->pdev_dev,
   2022					     "Port %d link down, reason: %s\n",
   2023					     pi->port_id,
   2024					     t4vf_link_down_rc_str(linkdnrc));
   2025		}
   2026		lc->link_ok = link_ok;
   2027		lc->speed = speed;
   2028		lc->advertised_fc = adv_fc;
   2029		lc->fc = fc;
   2030		lc->fec = fec;
   2031
   2032		lc->pcaps = pcaps;
   2033		lc->lpacaps = lpacaps;
   2034		lc->acaps = acaps & ADVERT_MASK;
   2035
   2036		/* If we're not physically capable of Auto-Negotiation, note
   2037		 * this as Auto-Negotiation disabled.  Otherwise, we track
   2038		 * what Auto-Negotiation settings we have.  Note parallel
   2039		 * structure in init_link_config().
   2040		 */
   2041		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
   2042			lc->autoneg = AUTONEG_DISABLE;
   2043		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
   2044			lc->autoneg = AUTONEG_ENABLE;
   2045		} else {
   2046			/* When Autoneg is disabled, user needs to set
   2047			 * single speed.
   2048			 * Similar to cxgb4_ethtool.c: set_link_ksettings
   2049			 */
   2050			lc->acaps = 0;
   2051			lc->speed_caps = fwcap_to_speed(acaps);
   2052			lc->autoneg = AUTONEG_DISABLE;
   2053		}
   2054
   2055		t4vf_os_link_changed(adapter, pi->pidx, link_ok);
   2056	}
   2057}
   2058
   2059/**
   2060 *	t4vf_update_port_info - retrieve and update port information if changed
   2061 *	@pi: the port_info
   2062 *
   2063 *	We issue a Get Port Information Command to the Firmware and, if
   2064 *	successful, we check to see if anything is different from what we
   2065 *	last recorded and update things accordingly.
   2066 */
   2067int t4vf_update_port_info(struct port_info *pi)
   2068{
   2069	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
   2070	struct fw_port_cmd port_cmd;
   2071	int ret;
   2072
   2073	memset(&port_cmd, 0, sizeof(port_cmd));
   2074	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
   2075					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
   2076					    FW_PORT_CMD_PORTID_V(pi->port_id));
   2077	port_cmd.action_to_len16 = cpu_to_be32(
   2078		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
   2079				     ? FW_PORT_ACTION_GET_PORT_INFO
   2080				     : FW_PORT_ACTION_GET_PORT_INFO32) |
   2081		FW_LEN16(port_cmd));
   2082	ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
   2083			   &port_cmd);
   2084	if (ret)
   2085		return ret;
   2086	t4vf_handle_get_port_info(pi, &port_cmd);
   2087	return 0;
   2088}
   2089
   2090/**
   2091 *	t4vf_handle_fw_rpl - process a firmware reply message
   2092 *	@adapter: the adapter
   2093 *	@rpl: start of the firmware message
   2094 *
   2095 *	Processes a firmware message, such as link state change messages.
   2096 */
   2097int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
   2098{
   2099	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
   2100	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
   2101
   2102	switch (opcode) {
   2103	case FW_PORT_CMD: {
   2104		/*
   2105		 * Link/module state change message.
   2106		 */
   2107		const struct fw_port_cmd *port_cmd =
   2108			(const struct fw_port_cmd *)rpl;
   2109		int action = FW_PORT_CMD_ACTION_G(
   2110			be32_to_cpu(port_cmd->action_to_len16));
   2111		int port_id, pidx;
   2112
   2113		if (action != FW_PORT_ACTION_GET_PORT_INFO &&
   2114		    action != FW_PORT_ACTION_GET_PORT_INFO32) {
   2115			dev_err(adapter->pdev_dev,
   2116				"Unknown firmware PORT reply action %x\n",
   2117				action);
   2118			break;
   2119		}
   2120
   2121		port_id = FW_PORT_CMD_PORTID_G(
   2122			be32_to_cpu(port_cmd->op_to_portid));
   2123		for_each_port(adapter, pidx) {
   2124			struct port_info *pi = adap2pinfo(adapter, pidx);
   2125
   2126			if (pi->port_id != port_id)
   2127				continue;
   2128			t4vf_handle_get_port_info(pi, port_cmd);
   2129		}
   2130		break;
   2131	}
   2132
   2133	default:
   2134		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
   2135			opcode);
   2136	}
   2137	return 0;
   2138}
   2139
   2140int t4vf_prep_adapter(struct adapter *adapter)
   2141{
   2142	int err;
   2143	unsigned int chipid;
   2144
   2145	/* Wait for the device to become ready before proceeding ...
   2146	 */
   2147	err = t4vf_wait_dev_ready(adapter);
   2148	if (err)
   2149		return err;
   2150
   2151	/* Default port and clock for debugging in case we can't reach
   2152	 * firmware.
   2153	 */
   2154	adapter->params.nports = 1;
   2155	adapter->params.vfres.pmask = 1;
   2156	adapter->params.vpd.cclk = 50000;
   2157
   2158	adapter->params.chip = 0;
   2159	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
   2160	case CHELSIO_T4:
   2161		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
   2162		adapter->params.arch.sge_fl_db = DBPRIO_F;
   2163		adapter->params.arch.mps_tcam_size =
   2164				NUM_MPS_CLS_SRAM_L_INSTANCES;
   2165		break;
   2166
   2167	case CHELSIO_T5:
   2168		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
   2169		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
   2170		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
   2171		adapter->params.arch.mps_tcam_size =
   2172				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
   2173		break;
   2174
   2175	case CHELSIO_T6:
   2176		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
   2177		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
   2178		adapter->params.arch.sge_fl_db = 0;
   2179		adapter->params.arch.mps_tcam_size =
   2180				NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
   2181		break;
   2182	}
   2183
   2184	return 0;
   2185}
   2186
   2187/**
   2188 *	t4vf_get_vf_mac_acl - Get the MAC address to be set to
   2189 *			      the VI of this VF.
   2190 *	@adapter: The adapter
   2191 *	@port: The port associated with vf
   2192 *	@naddr: the number of ACL MAC addresses returned in addr
   2193 *	@addr: Placeholder for MAC addresses
   2194 *
   2195 *	Find the MAC address to be set to the VF's VI. The requested MAC address
   2196 *	is from the host OS via callback in the PF driver.
   2197 */
   2198int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int port,
   2199			unsigned int *naddr, u8 *addr)
   2200{
   2201	struct fw_acl_mac_cmd cmd;
   2202	int ret;
   2203
   2204	memset(&cmd, 0, sizeof(cmd));
   2205	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
   2206				    FW_CMD_REQUEST_F |
   2207				    FW_CMD_READ_F);
   2208	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
   2209	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
   2210	if (ret)
   2211		return ret;
   2212
   2213	if (cmd.nmac < *naddr)
   2214		*naddr = cmd.nmac;
   2215
   2216	switch (port) {
   2217	case 3:
   2218		memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
   2219		break;
   2220	case 2:
   2221		memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
   2222		break;
   2223	case 1:
   2224		memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
   2225		break;
   2226	case 0:
   2227		memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
   2228		break;
   2229	}
   2230
   2231	return ret;
   2232}
   2233
   2234/**
   2235 *	t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
   2236 *                             the VI of this VF.
   2237 *	@adapter: The adapter
   2238 *
   2239 *	Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
   2240 *	is from the host OS via callback in the PF driver.
   2241 */
   2242int t4vf_get_vf_vlan_acl(struct adapter *adapter)
   2243{
   2244	struct fw_acl_vlan_cmd cmd;
   2245	int vlan = 0;
   2246	int ret = 0;
   2247
   2248	cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
   2249			      FW_CMD_REQUEST_F | FW_CMD_READ_F);
   2250
   2251	/* Note: Do not enable the ACL */
   2252	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
   2253
   2254	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
   2255
   2256	if (!ret)
   2257		vlan = be16_to_cpu(cmd.vlanid[0]);
   2258
   2259	return vlan;
   2260}