tulip_core.c (57509B)
1/* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. 2 3 Copyright 2000,2001 The Linux Kernel Team 4 Written/copyright 1994-2001 by Donald Becker. 5 6 This software may be used and distributed according to the terms 7 of the GNU General Public License, incorporated herein by reference. 8 9 Please submit bugs to http://bugzilla.kernel.org/ . 10*/ 11 12#define pr_fmt(fmt) "tulip: " fmt 13 14#define DRV_NAME "tulip" 15 16#include <linux/module.h> 17#include <linux/pci.h> 18#include <linux/slab.h> 19#include "tulip.h" 20#include <linux/init.h> 21#include <linux/interrupt.h> 22#include <linux/etherdevice.h> 23#include <linux/delay.h> 24#include <linux/mii.h> 25#include <linux/crc32.h> 26#include <asm/unaligned.h> 27#include <linux/uaccess.h> 28 29#ifdef CONFIG_SPARC 30#include <asm/prom.h> 31#endif 32 33/* A few user-configurable values. */ 34 35/* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 36static unsigned int max_interrupt_work = 25; 37 38#define MAX_UNITS 8 39/* Used to pass the full-duplex flag, etc. */ 40static int full_duplex[MAX_UNITS]; 41static int options[MAX_UNITS]; 42static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */ 43 44/* The possible media types that can be set in options[] are: */ 45const char * const medianame[32] = { 46 "10baseT", "10base2", "AUI", "100baseTx", 47 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx", 48 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII", 49 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4", 50 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19", 51 "","","","", "","","","", "","","","Transceiver reset", 52}; 53 54/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ 55#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 56 defined(CONFIG_SPARC) || defined(__ia64__) || \ 57 defined(__sh__) || defined(__mips__) 58static int rx_copybreak = 1518; 59#else 60static int rx_copybreak = 100; 61#endif 62 63/* 64 Set the bus performance register. 65 Typical: Set 16 longword cache alignment, no burst limit. 66 Cache alignment bits 15:14 Burst length 13:8 67 0000 No alignment 0x00000000 unlimited 0800 8 longwords 68 4000 8 longwords 0100 1 longword 1000 16 longwords 69 8000 16 longwords 0200 2 longwords 2000 32 longwords 70 C000 32 longwords 0400 4 longwords 71 Warning: many older 486 systems are broken and require setting 0x00A04800 72 8 longword cache alignment, 8 longword burst. 73 ToDo: Non-Intel setting could be better. 74*/ 75 76#if defined(__alpha__) || defined(__ia64__) 77static int csr0 = 0x01A00000 | 0xE000; 78#elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__) 79static int csr0 = 0x01A00000 | 0x8000; 80#elif defined(CONFIG_SPARC) || defined(__hppa__) 81/* The UltraSparc PCI controllers will disconnect at every 64-byte 82 * crossing anyways so it makes no sense to tell Tulip to burst 83 * any more than that. 84 */ 85static int csr0 = 0x01A00000 | 0x9000; 86#elif defined(__arm__) || defined(__sh__) 87static int csr0 = 0x01A00000 | 0x4800; 88#elif defined(__mips__) 89static int csr0 = 0x00200000 | 0x4000; 90#else 91static int csr0; 92#endif 93 94/* Operational parameters that usually are not changed. */ 95/* Time in jiffies before concluding the transmitter is hung. */ 96#define TX_TIMEOUT (4*HZ) 97 98 99MODULE_AUTHOR("The Linux Kernel Team"); 100MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver"); 101MODULE_LICENSE("GPL"); 102module_param(tulip_debug, int, 0); 103module_param(max_interrupt_work, int, 0); 104module_param(rx_copybreak, int, 0); 105module_param(csr0, int, 0); 106module_param_array(options, int, NULL, 0); 107module_param_array(full_duplex, int, NULL, 0); 108 109#ifdef TULIP_DEBUG 110int tulip_debug = TULIP_DEBUG; 111#else 112int tulip_debug = 1; 113#endif 114 115static void tulip_timer(struct timer_list *t) 116{ 117 struct tulip_private *tp = from_timer(tp, t, timer); 118 struct net_device *dev = tp->dev; 119 120 if (netif_running(dev)) 121 schedule_work(&tp->media_work); 122} 123 124/* 125 * This table use during operation for capabilities and media timer. 126 * 127 * It is indexed via the values in 'enum chips' 128 */ 129 130const struct tulip_chip_table tulip_tbl[] = { 131 { }, /* placeholder for array, slot unused currently */ 132 { }, /* placeholder for array, slot unused currently */ 133 134 /* DC21140 */ 135 { "Digital DS21140 Tulip", 128, 0x0001ebef, 136 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer, 137 tulip_media_task }, 138 139 /* DC21142, DC21143 */ 140 { "Digital DS21142/43 Tulip", 128, 0x0801fbff, 141 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY 142 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task }, 143 144 /* LC82C168 */ 145 { "Lite-On 82c168 PNIC", 256, 0x0001fbef, 146 HAS_MII | HAS_PNICNWAY, pnic_timer, }, 147 148 /* MX98713 */ 149 { "Macronix 98713 PMAC", 128, 0x0001ebef, 150 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, }, 151 152 /* MX98715 */ 153 { "Macronix 98715 PMAC", 256, 0x0001ebef, 154 HAS_MEDIA_TABLE, mxic_timer, }, 155 156 /* MX98725 */ 157 { "Macronix 98725 PMAC", 256, 0x0001ebef, 158 HAS_MEDIA_TABLE, mxic_timer, }, 159 160 /* AX88140 */ 161 { "ASIX AX88140", 128, 0x0001fbff, 162 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY 163 | IS_ASIX, tulip_timer, tulip_media_task }, 164 165 /* PNIC2 */ 166 { "Lite-On PNIC-II", 256, 0x0801fbff, 167 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, }, 168 169 /* COMET */ 170 { "ADMtek Comet", 256, 0x0001abef, 171 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, }, 172 173 /* COMPEX9881 */ 174 { "Compex 9881 PMAC", 128, 0x0001ebef, 175 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, }, 176 177 /* I21145 */ 178 { "Intel DS21145 Tulip", 128, 0x0801fbff, 179 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI 180 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task }, 181 182 /* DM910X */ 183#ifdef CONFIG_TULIP_DM910X 184 { "Davicom DM9102/DM9102A", 128, 0x0001ebef, 185 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI, 186 tulip_timer, tulip_media_task }, 187#else 188 { NULL }, 189#endif 190 191 /* RS7112 */ 192 { "Conexant LANfinity", 256, 0x0001ebef, 193 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task }, 194 195}; 196 197 198static const struct pci_device_id tulip_pci_tbl[] = { 199 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 }, 200 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 }, 201 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 }, 202 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 }, 203 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, 204/* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/ 205 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 }, 206 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 }, 207 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 208 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 209 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 210 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 211 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 212 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 213 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 214 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 215 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 216 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 217 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 }, 218 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 }, 219#ifdef CONFIG_TULIP_DM910X 220 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, 221 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X }, 222#endif 223 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 224 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 }, 225 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 226 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 227 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 228 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 229 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT }, 230 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 231 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 232 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 233 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 234 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */ 235 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */ 236 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */ 237 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, 238 { } /* terminate list */ 239}; 240MODULE_DEVICE_TABLE(pci, tulip_pci_tbl); 241 242 243/* A full-duplex map for media types. */ 244const char tulip_media_cap[32] = 245{0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, }; 246 247static void tulip_tx_timeout(struct net_device *dev, unsigned int txqueue); 248static void tulip_init_ring(struct net_device *dev); 249static void tulip_free_ring(struct net_device *dev); 250static netdev_tx_t tulip_start_xmit(struct sk_buff *skb, 251 struct net_device *dev); 252static int tulip_open(struct net_device *dev); 253static int tulip_close(struct net_device *dev); 254static void tulip_up(struct net_device *dev); 255static void tulip_down(struct net_device *dev); 256static struct net_device_stats *tulip_get_stats(struct net_device *dev); 257static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 258static void set_rx_mode(struct net_device *dev); 259static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts); 260#ifdef CONFIG_NET_POLL_CONTROLLER 261static void poll_tulip(struct net_device *dev); 262#endif 263 264static void tulip_set_power_state (struct tulip_private *tp, 265 int sleep, int snooze) 266{ 267 if (tp->flags & HAS_ACPI) { 268 u32 tmp, newtmp; 269 pci_read_config_dword (tp->pdev, CFDD, &tmp); 270 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze); 271 if (sleep) 272 newtmp |= CFDD_Sleep; 273 else if (snooze) 274 newtmp |= CFDD_Snooze; 275 if (tmp != newtmp) 276 pci_write_config_dword (tp->pdev, CFDD, newtmp); 277 } 278 279} 280 281 282static void tulip_up(struct net_device *dev) 283{ 284 struct tulip_private *tp = netdev_priv(dev); 285 void __iomem *ioaddr = tp->base_addr; 286 int next_tick = 3*HZ; 287 u32 reg; 288 int i; 289 290#ifdef CONFIG_TULIP_NAPI 291 napi_enable(&tp->napi); 292#endif 293 294 /* Wake the chip from sleep/snooze mode. */ 295 tulip_set_power_state (tp, 0, 0); 296 297 /* Disable all WOL events */ 298 pci_enable_wake(tp->pdev, PCI_D3hot, 0); 299 pci_enable_wake(tp->pdev, PCI_D3cold, 0); 300 tulip_set_wolopts(tp->pdev, 0); 301 302 /* On some chip revs we must set the MII/SYM port before the reset!? */ 303 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii)) 304 iowrite32(0x00040000, ioaddr + CSR6); 305 306 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ 307 iowrite32(0x00000001, ioaddr + CSR0); 308 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */ 309 udelay(100); 310 311 /* Deassert reset. 312 Wait the specified 50 PCI cycles after a reset by initializing 313 Tx and Rx queues and the address filter list. */ 314 iowrite32(tp->csr0, ioaddr + CSR0); 315 pci_read_config_dword(tp->pdev, PCI_COMMAND, ®); /* flush write */ 316 udelay(100); 317 318 if (tulip_debug > 1) 319 netdev_dbg(dev, "tulip_up(), irq==%d\n", tp->pdev->irq); 320 321 iowrite32(tp->rx_ring_dma, ioaddr + CSR3); 322 iowrite32(tp->tx_ring_dma, ioaddr + CSR4); 323 tp->cur_rx = tp->cur_tx = 0; 324 tp->dirty_rx = tp->dirty_tx = 0; 325 326 if (tp->flags & MC_HASH_ONLY) { 327 u32 addr_low = get_unaligned_le32(dev->dev_addr); 328 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4); 329 if (tp->chip_id == AX88140) { 330 iowrite32(0, ioaddr + CSR13); 331 iowrite32(addr_low, ioaddr + CSR14); 332 iowrite32(1, ioaddr + CSR13); 333 iowrite32(addr_high, ioaddr + CSR14); 334 } else if (tp->flags & COMET_MAC_ADDR) { 335 iowrite32(addr_low, ioaddr + 0xA4); 336 iowrite32(addr_high, ioaddr + 0xA8); 337 iowrite32(0, ioaddr + CSR27); 338 iowrite32(0, ioaddr + CSR28); 339 } 340 } else { 341 /* This is set_rx_mode(), but without starting the transmitter. */ 342 const u16 *eaddrs = (const u16 *)dev->dev_addr; 343 u16 *setup_frm = &tp->setup_frame[15*6]; 344 dma_addr_t mapping; 345 346 /* 21140 bug: you must add the broadcast address. */ 347 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame)); 348 /* Fill the final entry of the table with our physical address. */ 349 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 350 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 351 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 352 353 mapping = dma_map_single(&tp->pdev->dev, tp->setup_frame, 354 sizeof(tp->setup_frame), 355 DMA_TO_DEVICE); 356 tp->tx_buffers[tp->cur_tx].skb = NULL; 357 tp->tx_buffers[tp->cur_tx].mapping = mapping; 358 359 /* Put the setup frame on the Tx list. */ 360 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192); 361 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping); 362 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned); 363 364 tp->cur_tx++; 365 } 366 367 tp->saved_if_port = dev->if_port; 368 if (dev->if_port == 0) 369 dev->if_port = tp->default_port; 370 371 /* Allow selecting a default media. */ 372 i = 0; 373 if (tp->mtable == NULL) 374 goto media_picked; 375 if (dev->if_port) { 376 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 : 377 (dev->if_port == 12 ? 0 : dev->if_port); 378 for (i = 0; i < tp->mtable->leafcount; i++) 379 if (tp->mtable->mleaf[i].media == looking_for) { 380 dev_info(&dev->dev, 381 "Using user-specified media %s\n", 382 medianame[dev->if_port]); 383 goto media_picked; 384 } 385 } 386 if ((tp->mtable->defaultmedia & 0x0800) == 0) { 387 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK; 388 for (i = 0; i < tp->mtable->leafcount; i++) 389 if (tp->mtable->mleaf[i].media == looking_for) { 390 dev_info(&dev->dev, 391 "Using EEPROM-set media %s\n", 392 medianame[looking_for]); 393 goto media_picked; 394 } 395 } 396 /* Start sensing first non-full-duplex media. */ 397 for (i = tp->mtable->leafcount - 1; 398 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--) 399 ; 400media_picked: 401 402 tp->csr6 = 0; 403 tp->cur_index = i; 404 tp->nwayset = 0; 405 406 if (dev->if_port) { 407 if (tp->chip_id == DC21143 && 408 (tulip_media_cap[dev->if_port] & MediaIsMII)) { 409 /* We must reset the media CSRs when we force-select MII mode. */ 410 iowrite32(0x0000, ioaddr + CSR13); 411 iowrite32(0x0000, ioaddr + CSR14); 412 iowrite32(0x0008, ioaddr + CSR15); 413 } 414 tulip_select_media(dev, 1); 415 } else if (tp->chip_id == DC21142) { 416 if (tp->mii_cnt) { 417 tulip_select_media(dev, 1); 418 if (tulip_debug > 1) 419 dev_info(&dev->dev, 420 "Using MII transceiver %d, status %04x\n", 421 tp->phys[0], 422 tulip_mdio_read(dev, tp->phys[0], 1)); 423 iowrite32(csr6_mask_defstate, ioaddr + CSR6); 424 tp->csr6 = csr6_mask_hdcap; 425 dev->if_port = 11; 426 iowrite32(0x0000, ioaddr + CSR13); 427 iowrite32(0x0000, ioaddr + CSR14); 428 } else 429 t21142_start_nway(dev); 430 } else if (tp->chip_id == PNIC2) { 431 /* for initial startup advertise 10/100 Full and Half */ 432 tp->sym_advertise = 0x01E0; 433 /* enable autonegotiate end interrupt */ 434 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5); 435 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7); 436 pnic2_start_nway(dev); 437 } else if (tp->chip_id == LC82C168 && ! tp->medialock) { 438 if (tp->mii_cnt) { 439 dev->if_port = 11; 440 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0); 441 iowrite32(0x0001, ioaddr + CSR15); 442 } else if (ioread32(ioaddr + CSR5) & TPLnkPass) 443 pnic_do_nway(dev); 444 else { 445 /* Start with 10mbps to do autonegotiation. */ 446 iowrite32(0x32, ioaddr + CSR12); 447 tp->csr6 = 0x00420000; 448 iowrite32(0x0001B078, ioaddr + 0xB8); 449 iowrite32(0x0201B078, ioaddr + 0xB8); 450 next_tick = 1*HZ; 451 } 452 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) && 453 ! tp->medialock) { 454 dev->if_port = 0; 455 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0); 456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80); 457 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) { 458 /* Provided by BOLO, Macronix - 12/10/1998. */ 459 dev->if_port = 0; 460 tp->csr6 = 0x01a80200; 461 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80); 462 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0); 463 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) { 464 /* Enable automatic Tx underrun recovery. */ 465 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88); 466 dev->if_port = tp->mii_cnt ? 11 : 0; 467 tp->csr6 = 0x00040000; 468 } else if (tp->chip_id == AX88140) { 469 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100; 470 } else 471 tulip_select_media(dev, 1); 472 473 /* Start the chip's Tx to process setup frame. */ 474 tulip_stop_rxtx(tp); 475 barrier(); 476 udelay(5); 477 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6); 478 479 /* Enable interrupts by setting the interrupt mask. */ 480 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5); 481 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7); 482 tulip_start_rxtx(tp); 483 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */ 484 485 if (tulip_debug > 2) { 486 netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n", 487 ioread32(ioaddr + CSR0), 488 ioread32(ioaddr + CSR5), 489 ioread32(ioaddr + CSR6)); 490 } 491 492 /* Set the timer to switch to check for link beat and perhaps switch 493 to an alternate media type. */ 494 tp->timer.expires = RUN_AT(next_tick); 495 add_timer(&tp->timer); 496#ifdef CONFIG_TULIP_NAPI 497 timer_setup(&tp->oom_timer, oom_timer, 0); 498#endif 499} 500 501static int 502tulip_open(struct net_device *dev) 503{ 504 struct tulip_private *tp = netdev_priv(dev); 505 int retval; 506 507 tulip_init_ring (dev); 508 509 retval = request_irq(tp->pdev->irq, tulip_interrupt, IRQF_SHARED, 510 dev->name, dev); 511 if (retval) 512 goto free_ring; 513 514 tulip_up (dev); 515 516 netif_start_queue (dev); 517 518 return 0; 519 520free_ring: 521 tulip_free_ring (dev); 522 return retval; 523} 524 525 526static void tulip_tx_timeout(struct net_device *dev, unsigned int txqueue) 527{ 528 struct tulip_private *tp = netdev_priv(dev); 529 void __iomem *ioaddr = tp->base_addr; 530 unsigned long flags; 531 532 spin_lock_irqsave (&tp->lock, flags); 533 534 if (tulip_media_cap[dev->if_port] & MediaIsMII) { 535 /* Do nothing -- the media monitor should handle this. */ 536 if (tulip_debug > 1) 537 dev_warn(&dev->dev, 538 "Transmit timeout using MII device\n"); 539 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 || 540 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 || 541 tp->chip_id == DM910X) { 542 dev_warn(&dev->dev, 543 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n", 544 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12), 545 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), 546 ioread32(ioaddr + CSR15)); 547 tp->timeout_recovery = 1; 548 schedule_work(&tp->media_work); 549 goto out_unlock; 550 } else if (tp->chip_id == PNIC2) { 551 dev_warn(&dev->dev, 552 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n", 553 (int)ioread32(ioaddr + CSR5), 554 (int)ioread32(ioaddr + CSR6), 555 (int)ioread32(ioaddr + CSR7), 556 (int)ioread32(ioaddr + CSR12)); 557 } else { 558 dev_warn(&dev->dev, 559 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n", 560 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12)); 561 dev->if_port = 0; 562 } 563 564#if defined(way_too_many_messages) 565 if (tulip_debug > 3) { 566 int i; 567 for (i = 0; i < RX_RING_SIZE; i++) { 568 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1); 569 int j; 570 printk(KERN_DEBUG 571 "%2d: %08x %08x %08x %08x %02x %02x %02x\n", 572 i, 573 (unsigned int)tp->rx_ring[i].status, 574 (unsigned int)tp->rx_ring[i].length, 575 (unsigned int)tp->rx_ring[i].buffer1, 576 (unsigned int)tp->rx_ring[i].buffer2, 577 buf[0], buf[1], buf[2]); 578 for (j = 0; ((j < 1600) && buf[j] != 0xee); j++) 579 if (j < 100) 580 pr_cont(" %02x", buf[j]); 581 pr_cont(" j=%d\n", j); 582 } 583 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring); 584 for (i = 0; i < RX_RING_SIZE; i++) 585 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status); 586 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring); 587 for (i = 0; i < TX_RING_SIZE; i++) 588 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status); 589 pr_cont("\n"); 590 } 591#endif 592 593 tulip_tx_timeout_complete(tp, ioaddr); 594 595out_unlock: 596 spin_unlock_irqrestore (&tp->lock, flags); 597 netif_trans_update(dev); /* prevent tx timeout */ 598 netif_wake_queue (dev); 599} 600 601 602/* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 603static void tulip_init_ring(struct net_device *dev) 604{ 605 struct tulip_private *tp = netdev_priv(dev); 606 int i; 607 608 tp->susp_rx = 0; 609 tp->ttimer = 0; 610 tp->nir = 0; 611 612 for (i = 0; i < RX_RING_SIZE; i++) { 613 tp->rx_ring[i].status = 0x00000000; 614 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ); 615 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1)); 616 tp->rx_buffers[i].skb = NULL; 617 tp->rx_buffers[i].mapping = 0; 618 } 619 /* Mark the last entry as wrapping the ring. */ 620 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP); 621 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma); 622 623 for (i = 0; i < RX_RING_SIZE; i++) { 624 dma_addr_t mapping; 625 626 /* Note the receive buffer must be longword aligned. 627 netdev_alloc_skb() provides 16 byte alignment. But do *not* 628 use skb_reserve() to align the IP header! */ 629 struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ); 630 tp->rx_buffers[i].skb = skb; 631 if (skb == NULL) 632 break; 633 mapping = dma_map_single(&tp->pdev->dev, skb->data, 634 PKT_BUF_SZ, DMA_FROM_DEVICE); 635 tp->rx_buffers[i].mapping = mapping; 636 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */ 637 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping); 638 } 639 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 640 641 /* The Tx buffer descriptor is filled in as needed, but we 642 do need to clear the ownership bit. */ 643 for (i = 0; i < TX_RING_SIZE; i++) { 644 tp->tx_buffers[i].skb = NULL; 645 tp->tx_buffers[i].mapping = 0; 646 tp->tx_ring[i].status = 0x00000000; 647 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1)); 648 } 649 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma); 650} 651 652static netdev_tx_t 653tulip_start_xmit(struct sk_buff *skb, struct net_device *dev) 654{ 655 struct tulip_private *tp = netdev_priv(dev); 656 int entry; 657 u32 flag; 658 dma_addr_t mapping; 659 unsigned long flags; 660 661 spin_lock_irqsave(&tp->lock, flags); 662 663 /* Calculate the next Tx descriptor entry. */ 664 entry = tp->cur_tx % TX_RING_SIZE; 665 666 tp->tx_buffers[entry].skb = skb; 667 mapping = dma_map_single(&tp->pdev->dev, skb->data, skb->len, 668 DMA_TO_DEVICE); 669 tp->tx_buffers[entry].mapping = mapping; 670 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping); 671 672 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */ 673 flag = 0x60000000; /* No interrupt */ 674 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) { 675 flag = 0xe0000000; /* Tx-done intr. */ 676 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) { 677 flag = 0x60000000; /* No Tx-done intr. */ 678 } else { /* Leave room for set_rx_mode() to fill entries. */ 679 flag = 0xe0000000; /* Tx-done intr. */ 680 netif_stop_queue(dev); 681 } 682 if (entry == TX_RING_SIZE-1) 683 flag = 0xe0000000 | DESC_RING_WRAP; 684 685 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag); 686 /* if we were using Transmit Automatic Polling, we would need a 687 * wmb() here. */ 688 tp->tx_ring[entry].status = cpu_to_le32(DescOwned); 689 wmb(); 690 691 tp->cur_tx++; 692 693 /* Trigger an immediate transmit demand. */ 694 iowrite32(0, tp->base_addr + CSR1); 695 696 spin_unlock_irqrestore(&tp->lock, flags); 697 698 return NETDEV_TX_OK; 699} 700 701static void tulip_clean_tx_ring(struct tulip_private *tp) 702{ 703 unsigned int dirty_tx; 704 705 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0; 706 dirty_tx++) { 707 int entry = dirty_tx % TX_RING_SIZE; 708 int status = le32_to_cpu(tp->tx_ring[entry].status); 709 710 if (status < 0) { 711 tp->dev->stats.tx_errors++; /* It wasn't Txed */ 712 tp->tx_ring[entry].status = 0; 713 } 714 715 /* Check for Tx filter setup frames. */ 716 if (tp->tx_buffers[entry].skb == NULL) { 717 /* test because dummy frames not mapped */ 718 if (tp->tx_buffers[entry].mapping) 719 dma_unmap_single(&tp->pdev->dev, 720 tp->tx_buffers[entry].mapping, 721 sizeof(tp->setup_frame), 722 DMA_TO_DEVICE); 723 continue; 724 } 725 726 dma_unmap_single(&tp->pdev->dev, 727 tp->tx_buffers[entry].mapping, 728 tp->tx_buffers[entry].skb->len, 729 DMA_TO_DEVICE); 730 731 /* Free the original skb. */ 732 dev_kfree_skb_irq(tp->tx_buffers[entry].skb); 733 tp->tx_buffers[entry].skb = NULL; 734 tp->tx_buffers[entry].mapping = 0; 735 } 736} 737 738static void tulip_down (struct net_device *dev) 739{ 740 struct tulip_private *tp = netdev_priv(dev); 741 void __iomem *ioaddr = tp->base_addr; 742 unsigned long flags; 743 744 cancel_work_sync(&tp->media_work); 745 746#ifdef CONFIG_TULIP_NAPI 747 napi_disable(&tp->napi); 748#endif 749 750 del_timer_sync (&tp->timer); 751#ifdef CONFIG_TULIP_NAPI 752 del_timer_sync (&tp->oom_timer); 753#endif 754 spin_lock_irqsave (&tp->lock, flags); 755 756 /* Disable interrupts by clearing the interrupt mask. */ 757 iowrite32 (0x00000000, ioaddr + CSR7); 758 759 /* Stop the Tx and Rx processes. */ 760 tulip_stop_rxtx(tp); 761 762 /* prepare receive buffers */ 763 tulip_refill_rx(dev); 764 765 /* release any unconsumed transmit buffers */ 766 tulip_clean_tx_ring(tp); 767 768 if (ioread32(ioaddr + CSR6) != 0xffffffff) 769 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff; 770 771 spin_unlock_irqrestore (&tp->lock, flags); 772 773 timer_setup(&tp->timer, tulip_tbl[tp->chip_id].media_timer, 0); 774 775 dev->if_port = tp->saved_if_port; 776 777 /* Leave the driver in snooze, not sleep, mode. */ 778 tulip_set_power_state (tp, 0, 1); 779} 780 781static void tulip_free_ring (struct net_device *dev) 782{ 783 struct tulip_private *tp = netdev_priv(dev); 784 int i; 785 786 /* Free all the skbuffs in the Rx queue. */ 787 for (i = 0; i < RX_RING_SIZE; i++) { 788 struct sk_buff *skb = tp->rx_buffers[i].skb; 789 dma_addr_t mapping = tp->rx_buffers[i].mapping; 790 791 tp->rx_buffers[i].skb = NULL; 792 tp->rx_buffers[i].mapping = 0; 793 794 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */ 795 tp->rx_ring[i].length = 0; 796 /* An invalid address. */ 797 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0); 798 if (skb) { 799 dma_unmap_single(&tp->pdev->dev, mapping, PKT_BUF_SZ, 800 DMA_FROM_DEVICE); 801 dev_kfree_skb (skb); 802 } 803 } 804 805 for (i = 0; i < TX_RING_SIZE; i++) { 806 struct sk_buff *skb = tp->tx_buffers[i].skb; 807 808 if (skb != NULL) { 809 dma_unmap_single(&tp->pdev->dev, 810 tp->tx_buffers[i].mapping, skb->len, 811 DMA_TO_DEVICE); 812 dev_kfree_skb (skb); 813 } 814 tp->tx_buffers[i].skb = NULL; 815 tp->tx_buffers[i].mapping = 0; 816 } 817} 818 819static int tulip_close (struct net_device *dev) 820{ 821 struct tulip_private *tp = netdev_priv(dev); 822 void __iomem *ioaddr = tp->base_addr; 823 824 netif_stop_queue (dev); 825 826 tulip_down (dev); 827 828 if (tulip_debug > 1) 829 netdev_dbg(dev, "Shutting down ethercard, status was %02x\n", 830 ioread32 (ioaddr + CSR5)); 831 832 free_irq (tp->pdev->irq, dev); 833 834 tulip_free_ring (dev); 835 836 return 0; 837} 838 839static struct net_device_stats *tulip_get_stats(struct net_device *dev) 840{ 841 struct tulip_private *tp = netdev_priv(dev); 842 void __iomem *ioaddr = tp->base_addr; 843 844 if (netif_running(dev)) { 845 unsigned long flags; 846 847 spin_lock_irqsave (&tp->lock, flags); 848 849 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff; 850 851 spin_unlock_irqrestore(&tp->lock, flags); 852 } 853 854 return &dev->stats; 855} 856 857 858static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 859{ 860 struct tulip_private *np = netdev_priv(dev); 861 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 862 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info)); 863} 864 865 866static int tulip_ethtool_set_wol(struct net_device *dev, 867 struct ethtool_wolinfo *wolinfo) 868{ 869 struct tulip_private *tp = netdev_priv(dev); 870 871 if (wolinfo->wolopts & (~tp->wolinfo.supported)) 872 return -EOPNOTSUPP; 873 874 tp->wolinfo.wolopts = wolinfo->wolopts; 875 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts); 876 return 0; 877} 878 879static void tulip_ethtool_get_wol(struct net_device *dev, 880 struct ethtool_wolinfo *wolinfo) 881{ 882 struct tulip_private *tp = netdev_priv(dev); 883 884 wolinfo->supported = tp->wolinfo.supported; 885 wolinfo->wolopts = tp->wolinfo.wolopts; 886 return; 887} 888 889 890static const struct ethtool_ops ops = { 891 .get_drvinfo = tulip_get_drvinfo, 892 .set_wol = tulip_ethtool_set_wol, 893 .get_wol = tulip_ethtool_get_wol, 894}; 895 896/* Provide ioctl() calls to examine the MII xcvr state. */ 897static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 898{ 899 struct tulip_private *tp = netdev_priv(dev); 900 void __iomem *ioaddr = tp->base_addr; 901 struct mii_ioctl_data *data = if_mii(rq); 902 const unsigned int phy_idx = 0; 903 int phy = tp->phys[phy_idx] & 0x1f; 904 unsigned int regnum = data->reg_num; 905 906 switch (cmd) { 907 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 908 if (tp->mii_cnt) 909 data->phy_id = phy; 910 else if (tp->flags & HAS_NWAY) 911 data->phy_id = 32; 912 else if (tp->chip_id == COMET) 913 data->phy_id = 1; 914 else 915 return -ENODEV; 916 fallthrough; 917 918 case SIOCGMIIREG: /* Read MII PHY register. */ 919 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { 920 int csr12 = ioread32 (ioaddr + CSR12); 921 int csr14 = ioread32 (ioaddr + CSR14); 922 switch (regnum) { 923 case 0: 924 if (((csr14<<5) & 0x1000) || 925 (dev->if_port == 5 && tp->nwayset)) 926 data->val_out = 0x1000; 927 else 928 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0) 929 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0); 930 break; 931 case 1: 932 data->val_out = 933 0x1848 + 934 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) + 935 ((csr12&0x06) == 6 ? 0 : 4); 936 data->val_out |= 0x6048; 937 break; 938 case 4: 939 /* Advertised value, bogus 10baseTx-FD value from CSR6. */ 940 data->val_out = 941 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) + 942 ((csr14 >> 1) & 0x20) + 1; 943 data->val_out |= ((csr14 >> 9) & 0x03C0); 944 break; 945 case 5: data->val_out = tp->lpar; break; 946 default: data->val_out = 0; break; 947 } 948 } else { 949 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum); 950 } 951 return 0; 952 953 case SIOCSMIIREG: /* Write MII PHY register. */ 954 if (regnum & ~0x1f) 955 return -EINVAL; 956 if (data->phy_id == phy) { 957 u16 value = data->val_in; 958 switch (regnum) { 959 case 0: /* Check for autonegotiation on or reset. */ 960 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1; 961 if (tp->full_duplex_lock) 962 tp->full_duplex = (value & 0x0100) ? 1 : 0; 963 break; 964 case 4: 965 tp->advertising[phy_idx] = 966 tp->mii_advertise = data->val_in; 967 break; 968 } 969 } 970 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) { 971 u16 value = data->val_in; 972 if (regnum == 0) { 973 if ((value & 0x1200) == 0x1200) { 974 if (tp->chip_id == PNIC2) { 975 pnic2_start_nway (dev); 976 } else { 977 t21142_start_nway (dev); 978 } 979 } 980 } else if (regnum == 4) 981 tp->sym_advertise = value; 982 } else { 983 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in); 984 } 985 return 0; 986 default: 987 return -EOPNOTSUPP; 988 } 989 990 return -EOPNOTSUPP; 991} 992 993 994/* Set or clear the multicast filter for this adaptor. 995 Note that we only use exclusion around actually queueing the 996 new frame, not around filling tp->setup_frame. This is non-deterministic 997 when re-entered but still correct. */ 998 999static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) 1000{ 1001 struct tulip_private *tp = netdev_priv(dev); 1002 u16 hash_table[32]; 1003 struct netdev_hw_addr *ha; 1004 const u16 *eaddrs; 1005 int i; 1006 1007 memset(hash_table, 0, sizeof(hash_table)); 1008 __set_bit_le(255, hash_table); /* Broadcast entry */ 1009 /* This should work on big-endian machines as well. */ 1010 netdev_for_each_mc_addr(ha, dev) { 1011 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff; 1012 1013 __set_bit_le(index, hash_table); 1014 } 1015 for (i = 0; i < 32; i++) { 1016 *setup_frm++ = hash_table[i]; 1017 *setup_frm++ = hash_table[i]; 1018 } 1019 setup_frm = &tp->setup_frame[13*6]; 1020 1021 /* Fill the final entry with our physical address. */ 1022 eaddrs = (const u16 *)dev->dev_addr; 1023 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 1024 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 1025 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 1026} 1027 1028static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) 1029{ 1030 struct tulip_private *tp = netdev_priv(dev); 1031 struct netdev_hw_addr *ha; 1032 const u16 *eaddrs; 1033 1034 /* We have <= 14 addresses so we can use the wonderful 1035 16 address perfect filtering of the Tulip. */ 1036 netdev_for_each_mc_addr(ha, dev) { 1037 eaddrs = (u16 *) ha->addr; 1038 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 1039 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 1040 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 1041 } 1042 /* Fill the unused entries with the broadcast address. */ 1043 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12); 1044 setup_frm = &tp->setup_frame[15*6]; 1045 1046 /* Fill the final entry with our physical address. */ 1047 eaddrs = (const u16 *)dev->dev_addr; 1048 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 1049 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 1050 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 1051} 1052 1053 1054static void set_rx_mode(struct net_device *dev) 1055{ 1056 struct tulip_private *tp = netdev_priv(dev); 1057 void __iomem *ioaddr = tp->base_addr; 1058 int csr6; 1059 1060 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5; 1061 1062 tp->csr6 &= ~0x00D5; 1063 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1064 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys; 1065 csr6 |= AcceptAllMulticast | AcceptAllPhys; 1066 } else if ((netdev_mc_count(dev) > 1000) || 1067 (dev->flags & IFF_ALLMULTI)) { 1068 /* Too many to filter well -- accept all multicasts. */ 1069 tp->csr6 |= AcceptAllMulticast; 1070 csr6 |= AcceptAllMulticast; 1071 } else if (tp->flags & MC_HASH_ONLY) { 1072 /* Some work-alikes have only a 64-entry hash filter table. */ 1073 /* Should verify correctness on big-endian/__powerpc__ */ 1074 struct netdev_hw_addr *ha; 1075 if (netdev_mc_count(dev) > 64) { 1076 /* Arbitrary non-effective limit. */ 1077 tp->csr6 |= AcceptAllMulticast; 1078 csr6 |= AcceptAllMulticast; 1079 } else { 1080 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */ 1081 int filterbit; 1082 netdev_for_each_mc_addr(ha, dev) { 1083 if (tp->flags & COMET_MAC_ADDR) 1084 filterbit = ether_crc_le(ETH_ALEN, 1085 ha->addr); 1086 else 1087 filterbit = ether_crc(ETH_ALEN, 1088 ha->addr) >> 26; 1089 filterbit &= 0x3f; 1090 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31); 1091 if (tulip_debug > 2) 1092 dev_info(&dev->dev, 1093 "Added filter for %pM %08x bit %d\n", 1094 ha->addr, 1095 ether_crc(ETH_ALEN, ha->addr), 1096 filterbit); 1097 } 1098 if (mc_filter[0] == tp->mc_filter[0] && 1099 mc_filter[1] == tp->mc_filter[1]) 1100 ; /* No change. */ 1101 else if (tp->flags & IS_ASIX) { 1102 iowrite32(2, ioaddr + CSR13); 1103 iowrite32(mc_filter[0], ioaddr + CSR14); 1104 iowrite32(3, ioaddr + CSR13); 1105 iowrite32(mc_filter[1], ioaddr + CSR14); 1106 } else if (tp->flags & COMET_MAC_ADDR) { 1107 iowrite32(mc_filter[0], ioaddr + CSR27); 1108 iowrite32(mc_filter[1], ioaddr + CSR28); 1109 } 1110 tp->mc_filter[0] = mc_filter[0]; 1111 tp->mc_filter[1] = mc_filter[1]; 1112 } 1113 } else { 1114 unsigned long flags; 1115 u32 tx_flags = 0x08000000 | 192; 1116 1117 /* Note that only the low-address shortword of setup_frame is valid! 1118 The values are doubled for big-endian architectures. */ 1119 if (netdev_mc_count(dev) > 14) { 1120 /* Must use a multicast hash table. */ 1121 build_setup_frame_hash(tp->setup_frame, dev); 1122 tx_flags = 0x08400000 | 192; 1123 } else { 1124 build_setup_frame_perfect(tp->setup_frame, dev); 1125 } 1126 1127 spin_lock_irqsave(&tp->lock, flags); 1128 1129 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) { 1130 /* Same setup recently queued, we need not add it. */ 1131 } else { 1132 unsigned int entry; 1133 int dummy = -1; 1134 1135 /* Now add this frame to the Tx list. */ 1136 1137 entry = tp->cur_tx++ % TX_RING_SIZE; 1138 1139 if (entry != 0) { 1140 /* Avoid a chip errata by prefixing a dummy entry. */ 1141 tp->tx_buffers[entry].skb = NULL; 1142 tp->tx_buffers[entry].mapping = 0; 1143 tp->tx_ring[entry].length = 1144 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0; 1145 tp->tx_ring[entry].buffer1 = 0; 1146 /* Must set DescOwned later to avoid race with chip */ 1147 dummy = entry; 1148 entry = tp->cur_tx++ % TX_RING_SIZE; 1149 1150 } 1151 1152 tp->tx_buffers[entry].skb = NULL; 1153 tp->tx_buffers[entry].mapping = 1154 dma_map_single(&tp->pdev->dev, 1155 tp->setup_frame, 1156 sizeof(tp->setup_frame), 1157 DMA_TO_DEVICE); 1158 /* Put the setup frame on the Tx list. */ 1159 if (entry == TX_RING_SIZE-1) 1160 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */ 1161 tp->tx_ring[entry].length = cpu_to_le32(tx_flags); 1162 tp->tx_ring[entry].buffer1 = 1163 cpu_to_le32(tp->tx_buffers[entry].mapping); 1164 tp->tx_ring[entry].status = cpu_to_le32(DescOwned); 1165 if (dummy >= 0) 1166 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned); 1167 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2) 1168 netif_stop_queue(dev); 1169 1170 /* Trigger an immediate transmit demand. */ 1171 iowrite32(0, ioaddr + CSR1); 1172 } 1173 1174 spin_unlock_irqrestore(&tp->lock, flags); 1175 } 1176 1177 iowrite32(csr6, ioaddr + CSR6); 1178} 1179 1180#ifdef CONFIG_TULIP_MWI 1181static void tulip_mwi_config(struct pci_dev *pdev, struct net_device *dev) 1182{ 1183 struct tulip_private *tp = netdev_priv(dev); 1184 u8 cache; 1185 u16 pci_command; 1186 u32 csr0; 1187 1188 if (tulip_debug > 3) 1189 netdev_dbg(dev, "tulip_mwi_config()\n"); 1190 1191 tp->csr0 = csr0 = 0; 1192 1193 /* if we have any cache line size at all, we can do MRM and MWI */ 1194 csr0 |= MRM | MWI; 1195 1196 /* Enable MWI in the standard PCI command bit. 1197 * Check for the case where MWI is desired but not available 1198 */ 1199 pci_try_set_mwi(pdev); 1200 1201 /* read result from hardware (in case bit refused to enable) */ 1202 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 1203 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE))) 1204 csr0 &= ~MWI; 1205 1206 /* if cache line size hardwired to zero, no MWI */ 1207 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache); 1208 if ((csr0 & MWI) && (cache == 0)) { 1209 csr0 &= ~MWI; 1210 pci_clear_mwi(pdev); 1211 } 1212 1213 /* assign per-cacheline-size cache alignment and 1214 * burst length values 1215 */ 1216 switch (cache) { 1217 case 8: 1218 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift); 1219 break; 1220 case 16: 1221 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift); 1222 break; 1223 case 32: 1224 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift); 1225 break; 1226 default: 1227 cache = 0; 1228 break; 1229 } 1230 1231 /* if we have a good cache line size, we by now have a good 1232 * csr0, so save it and exit 1233 */ 1234 if (cache) 1235 goto out; 1236 1237 /* we don't have a good csr0 or cache line size, disable MWI */ 1238 if (csr0 & MWI) { 1239 pci_clear_mwi(pdev); 1240 csr0 &= ~MWI; 1241 } 1242 1243 /* sane defaults for burst length and cache alignment 1244 * originally from de4x5 driver 1245 */ 1246 csr0 |= (8 << BurstLenShift) | (1 << CALShift); 1247 1248out: 1249 tp->csr0 = csr0; 1250 if (tulip_debug > 2) 1251 netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n", 1252 cache, csr0); 1253} 1254#endif 1255 1256/* 1257 * Chips that have the MRM/reserved bit quirk and the burst quirk. That 1258 * is the DM910X and the on chip ULi devices 1259 */ 1260 1261static int tulip_uli_dm_quirk(struct pci_dev *pdev) 1262{ 1263 if (pdev->vendor == 0x1282 && pdev->device == 0x9102) 1264 return 1; 1265 return 0; 1266} 1267 1268static const struct net_device_ops tulip_netdev_ops = { 1269 .ndo_open = tulip_open, 1270 .ndo_start_xmit = tulip_start_xmit, 1271 .ndo_tx_timeout = tulip_tx_timeout, 1272 .ndo_stop = tulip_close, 1273 .ndo_get_stats = tulip_get_stats, 1274 .ndo_eth_ioctl = private_ioctl, 1275 .ndo_set_rx_mode = set_rx_mode, 1276 .ndo_set_mac_address = eth_mac_addr, 1277 .ndo_validate_addr = eth_validate_addr, 1278#ifdef CONFIG_NET_POLL_CONTROLLER 1279 .ndo_poll_controller = poll_tulip, 1280#endif 1281}; 1282 1283static const struct pci_device_id early_486_chipsets[] = { 1284 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) }, 1285 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) }, 1286 { }, 1287}; 1288 1289static int tulip_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1290{ 1291 struct tulip_private *tp; 1292 /* See note below on the multiport cards. */ 1293 static unsigned char last_phys_addr[ETH_ALEN] = { 1294 0x00, 'L', 'i', 'n', 'u', 'x' 1295 }; 1296#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */ 1297 static int last_irq; 1298#endif 1299 int i, irq; 1300 unsigned short sum; 1301 unsigned char *ee_data; 1302 struct net_device *dev; 1303 void __iomem *ioaddr; 1304 static int board_idx = -1; 1305 int chip_idx = ent->driver_data; 1306 const char *chip_name = tulip_tbl[chip_idx].chip_name; 1307 unsigned int eeprom_missing = 0; 1308 u8 addr[ETH_ALEN] __aligned(2); 1309 unsigned int force_csr0 = 0; 1310 1311 board_idx++; 1312 1313 /* 1314 * Lan media wire a tulip chip to a wan interface. Needs a very 1315 * different driver (lmc driver) 1316 */ 1317 1318 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) { 1319 pr_err("skipping LMC card\n"); 1320 return -ENODEV; 1321 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE && 1322 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 || 1323 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 || 1324 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) { 1325 pr_err("skipping SBE T3E3 port\n"); 1326 return -ENODEV; 1327 } 1328 1329 /* 1330 * DM910x chips should be handled by the dmfe driver, except 1331 * on-board chips on SPARC systems. Also, early DM9100s need 1332 * software CRC which only the dmfe driver supports. 1333 */ 1334 1335#ifdef CONFIG_TULIP_DM910X 1336 if (chip_idx == DM910X) { 1337 struct device_node *dp; 1338 1339 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 && 1340 pdev->revision < 0x30) { 1341 pr_info("skipping early DM9100 with Crc bug (use dmfe)\n"); 1342 return -ENODEV; 1343 } 1344 1345 dp = pci_device_to_OF_node(pdev); 1346 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) { 1347 pr_info("skipping DM910x expansion card (use dmfe)\n"); 1348 return -ENODEV; 1349 } 1350 } 1351#endif 1352 1353 /* 1354 * Looks for early PCI chipsets where people report hangs 1355 * without the workarounds being on. 1356 */ 1357 1358 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache 1359 aligned. Aries might need this too. The Saturn errata are not 1360 pretty reading but thankfully it's an old 486 chipset. 1361 1362 2. The dreaded SiS496 486 chipset. Same workaround as Intel 1363 Saturn. 1364 */ 1365 1366 if (pci_dev_present(early_486_chipsets)) { 1367 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift); 1368 force_csr0 = 1; 1369 } 1370 1371 /* bugfix: the ASIX must have a burst limit or horrible things happen. */ 1372 if (chip_idx == AX88140) { 1373 if ((csr0 & 0x3f00) == 0) 1374 csr0 |= 0x2000; 1375 } 1376 1377 /* PNIC doesn't have MWI/MRL/MRM... */ 1378 if (chip_idx == LC82C168) 1379 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */ 1380 1381 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */ 1382 if (tulip_uli_dm_quirk(pdev)) { 1383 csr0 &= ~0x01f100ff; 1384#if defined(CONFIG_SPARC) 1385 csr0 = (csr0 & ~0xff00) | 0xe000; 1386#endif 1387 } 1388 /* 1389 * And back to business 1390 */ 1391 1392 i = pcim_enable_device(pdev); 1393 if (i) { 1394 pr_err("Cannot enable tulip board #%d, aborting\n", board_idx); 1395 return i; 1396 } 1397 1398 irq = pdev->irq; 1399 1400 /* alloc_etherdev ensures aligned and zeroed private structures */ 1401 dev = devm_alloc_etherdev(&pdev->dev, sizeof(*tp)); 1402 if (!dev) 1403 return -ENOMEM; 1404 1405 SET_NETDEV_DEV(dev, &pdev->dev); 1406 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) { 1407 pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n", 1408 pci_name(pdev), 1409 (unsigned long long)pci_resource_len (pdev, 0), 1410 (unsigned long long)pci_resource_start (pdev, 0)); 1411 return -ENODEV; 1412 } 1413 1414 /* grab all resources from both PIO and MMIO regions, as we 1415 * don't want anyone else messing around with our hardware */ 1416 if (pci_request_regions(pdev, DRV_NAME)) 1417 return -ENODEV; 1418 1419 ioaddr = pcim_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size); 1420 1421 if (!ioaddr) 1422 return -ENODEV; 1423 1424 /* 1425 * initialize private data structure 'tp' 1426 * it is zeroed and aligned in alloc_etherdev 1427 */ 1428 tp = netdev_priv(dev); 1429 tp->dev = dev; 1430 1431 tp->rx_ring = dmam_alloc_coherent(&pdev->dev, 1432 sizeof(struct tulip_rx_desc) * RX_RING_SIZE + 1433 sizeof(struct tulip_tx_desc) * TX_RING_SIZE, 1434 &tp->rx_ring_dma, GFP_KERNEL); 1435 if (!tp->rx_ring) 1436 return -ENODEV; 1437 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE); 1438 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE; 1439 1440 tp->chip_id = chip_idx; 1441 tp->flags = tulip_tbl[chip_idx].flags; 1442 1443 tp->wolinfo.supported = 0; 1444 tp->wolinfo.wolopts = 0; 1445 /* COMET: Enable power management only for AN983B */ 1446 if (chip_idx == COMET ) { 1447 u32 sig; 1448 pci_read_config_dword (pdev, 0x80, &sig); 1449 if (sig == 0x09811317) { 1450 tp->flags |= COMET_PM; 1451 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC; 1452 pr_info("%s: Enabled WOL support for AN983B\n", 1453 __func__); 1454 } 1455 } 1456 tp->pdev = pdev; 1457 tp->base_addr = ioaddr; 1458 tp->revision = pdev->revision; 1459 tp->csr0 = csr0; 1460 spin_lock_init(&tp->lock); 1461 spin_lock_init(&tp->mii_lock); 1462 timer_setup(&tp->timer, tulip_tbl[tp->chip_id].media_timer, 0); 1463 1464 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task); 1465 1466#ifdef CONFIG_TULIP_MWI 1467 if (!force_csr0 && (tp->flags & HAS_PCI_MWI)) 1468 tulip_mwi_config (pdev, dev); 1469#endif 1470 1471 /* Stop the chip's Tx and Rx processes. */ 1472 tulip_stop_rxtx(tp); 1473 1474 pci_set_master(pdev); 1475 1476#ifdef CONFIG_GSC 1477 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) { 1478 switch (pdev->subsystem_device) { 1479 default: 1480 break; 1481 case 0x1061: 1482 case 0x1062: 1483 case 0x1063: 1484 case 0x1098: 1485 case 0x1099: 1486 case 0x10EE: 1487 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE; 1488 chip_name = "GSC DS21140 Tulip"; 1489 } 1490 } 1491#endif 1492 1493 /* Clear the missed-packet counter. */ 1494 ioread32(ioaddr + CSR8); 1495 1496 /* The station address ROM is read byte serially. The register must 1497 be polled, waiting for the value to be read bit serially from the 1498 EEPROM. 1499 */ 1500 ee_data = tp->eeprom; 1501 memset(ee_data, 0, sizeof(tp->eeprom)); 1502 sum = 0; 1503 if (chip_idx == LC82C168) { 1504 for (i = 0; i < 3; i++) { 1505 int value, boguscnt = 100000; 1506 iowrite32(0x600 | i, ioaddr + 0x98); 1507 do { 1508 value = ioread32(ioaddr + CSR9); 1509 } while (value < 0 && --boguscnt > 0); 1510 put_unaligned_le16(value, ((__le16 *)addr) + i); 1511 sum += value & 0xffff; 1512 } 1513 eth_hw_addr_set(dev, addr); 1514 } else if (chip_idx == COMET) { 1515 /* No need to read the EEPROM. */ 1516 put_unaligned_le32(ioread32(ioaddr + 0xA4), addr); 1517 put_unaligned_le16(ioread32(ioaddr + 0xA8), addr + 4); 1518 eth_hw_addr_set(dev, addr); 1519 for (i = 0; i < 6; i ++) 1520 sum += dev->dev_addr[i]; 1521 } else { 1522 /* A serial EEPROM interface, we read now and sort it out later. */ 1523 int sa_offset = 0; 1524 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6; 1525 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16); 1526 1527 if (ee_max_addr > sizeof(tp->eeprom)) 1528 ee_max_addr = sizeof(tp->eeprom); 1529 1530 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) { 1531 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size); 1532 ee_data[i] = data & 0xff; 1533 ee_data[i + 1] = data >> 8; 1534 } 1535 1536 /* DEC now has a specification (see Notes) but early board makers 1537 just put the address in the first EEPROM locations. */ 1538 /* This does memcmp(ee_data, ee_data+16, 8) */ 1539 for (i = 0; i < 8; i ++) 1540 if (ee_data[i] != ee_data[16+i]) 1541 sa_offset = 20; 1542 if (chip_idx == CONEXANT) { 1543 /* Check that the tuple type and length is correct. */ 1544 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6) 1545 sa_offset = 0x19A; 1546 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff && 1547 ee_data[2] == 0) { 1548 sa_offset = 2; /* Grrr, damn Matrox boards. */ 1549 } 1550#ifdef CONFIG_MIPS_COBALT 1551 if ((pdev->bus->number == 0) && 1552 ((PCI_SLOT(pdev->devfn) == 7) || 1553 (PCI_SLOT(pdev->devfn) == 12))) { 1554 /* Cobalt MAC address in first EEPROM locations. */ 1555 sa_offset = 0; 1556 /* Ensure our media table fixup get's applied */ 1557 memcpy(ee_data + 16, ee_data, 8); 1558 } 1559#endif 1560#ifdef CONFIG_GSC 1561 /* Check to see if we have a broken srom */ 1562 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) { 1563 /* pci_vendor_id and subsystem_id are swapped */ 1564 ee_data[0] = ee_data[2]; 1565 ee_data[1] = ee_data[3]; 1566 ee_data[2] = 0x61; 1567 ee_data[3] = 0x10; 1568 1569 /* HSC-PCI boards need to be byte-swaped and shifted 1570 * up 1 word. This shift needs to happen at the end 1571 * of the MAC first because of the 2 byte overlap. 1572 */ 1573 for (i = 4; i >= 0; i -= 2) { 1574 ee_data[17 + i + 3] = ee_data[17 + i]; 1575 ee_data[16 + i + 5] = ee_data[16 + i]; 1576 } 1577 } 1578#endif 1579 1580 for (i = 0; i < 6; i ++) { 1581 addr[i] = ee_data[i + sa_offset]; 1582 sum += ee_data[i + sa_offset]; 1583 } 1584 eth_hw_addr_set(dev, addr); 1585 } 1586 /* Lite-On boards have the address byte-swapped. */ 1587 if ((dev->dev_addr[0] == 0xA0 || 1588 dev->dev_addr[0] == 0xC0 || 1589 dev->dev_addr[0] == 0x02) && 1590 dev->dev_addr[1] == 0x00) { 1591 for (i = 0; i < 6; i+=2) { 1592 addr[i] = dev->dev_addr[i+1]; 1593 addr[i+1] = dev->dev_addr[i]; 1594 } 1595 eth_hw_addr_set(dev, addr); 1596 } 1597 1598 /* On the Zynx 315 Etherarray and other multiport boards only the 1599 first Tulip has an EEPROM. 1600 On Sparc systems the mac address is held in the OBP property 1601 "local-mac-address". 1602 The addresses of the subsequent ports are derived from the first. 1603 Many PCI BIOSes also incorrectly report the IRQ line, so we correct 1604 that here as well. */ 1605 if (sum == 0 || sum == 6*0xff) { 1606#if defined(CONFIG_SPARC) 1607 struct device_node *dp = pci_device_to_OF_node(pdev); 1608 const unsigned char *addr2; 1609 int len; 1610#endif 1611 eeprom_missing = 1; 1612 for (i = 0; i < 5; i++) 1613 addr[i] = last_phys_addr[i]; 1614 addr[i] = last_phys_addr[i] + 1; 1615 eth_hw_addr_set(dev, addr); 1616#if defined(CONFIG_SPARC) 1617 addr2 = of_get_property(dp, "local-mac-address", &len); 1618 if (addr2 && len == ETH_ALEN) 1619 eth_hw_addr_set(dev, addr2); 1620#endif 1621#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */ 1622 if (last_irq) 1623 irq = last_irq; 1624#endif 1625 } 1626 1627 for (i = 0; i < 6; i++) 1628 last_phys_addr[i] = dev->dev_addr[i]; 1629#if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */ 1630 last_irq = irq; 1631#endif 1632 1633 /* The lower four bits are the media type. */ 1634 if (board_idx >= 0 && board_idx < MAX_UNITS) { 1635 if (options[board_idx] & MEDIA_MASK) 1636 tp->default_port = options[board_idx] & MEDIA_MASK; 1637 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0) 1638 tp->full_duplex = 1; 1639 if (mtu[board_idx] > 0) 1640 dev->mtu = mtu[board_idx]; 1641 } 1642 if (dev->mem_start & MEDIA_MASK) 1643 tp->default_port = dev->mem_start & MEDIA_MASK; 1644 if (tp->default_port) { 1645 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n", 1646 board_idx, medianame[tp->default_port & MEDIA_MASK]); 1647 tp->medialock = 1; 1648 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD) 1649 tp->full_duplex = 1; 1650 } 1651 if (tp->full_duplex) 1652 tp->full_duplex_lock = 1; 1653 1654 if (tulip_media_cap[tp->default_port] & MediaIsMII) { 1655 static const u16 media2advert[] = { 1656 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 1657 }; 1658 tp->mii_advertise = media2advert[tp->default_port - 9]; 1659 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */ 1660 } 1661 1662 if (tp->flags & HAS_MEDIA_TABLE) { 1663 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */ 1664 tulip_parse_eeprom(dev); 1665 strcpy(dev->name, "eth%d"); /* un-hack */ 1666 } 1667 1668 if ((tp->flags & ALWAYS_CHECK_MII) || 1669 (tp->mtable && tp->mtable->has_mii) || 1670 ( ! tp->mtable && (tp->flags & HAS_MII))) { 1671 if (tp->mtable && tp->mtable->has_mii) { 1672 for (i = 0; i < tp->mtable->leafcount; i++) 1673 if (tp->mtable->mleaf[i].media == 11) { 1674 tp->cur_index = i; 1675 tp->saved_if_port = dev->if_port; 1676 tulip_select_media(dev, 2); 1677 dev->if_port = tp->saved_if_port; 1678 break; 1679 } 1680 } 1681 1682 /* Find the connected MII xcvrs. 1683 Doing this in open() would allow detecting external xcvrs 1684 later, but takes much time. */ 1685 tulip_find_mii (dev, board_idx); 1686 } 1687 1688 /* The Tulip-specific entries in the device structure. */ 1689 dev->netdev_ops = &tulip_netdev_ops; 1690 dev->watchdog_timeo = TX_TIMEOUT; 1691#ifdef CONFIG_TULIP_NAPI 1692 netif_napi_add_weight(dev, &tp->napi, tulip_poll, 16); 1693#endif 1694 dev->ethtool_ops = &ops; 1695 1696 i = register_netdev(dev); 1697 if (i) 1698 return i; 1699 1700 pci_set_drvdata(pdev, dev); 1701 1702 dev_info(&dev->dev, 1703#ifdef CONFIG_TULIP_MMIO 1704 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n", 1705#else 1706 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n", 1707#endif 1708 chip_name, pdev->revision, 1709 (unsigned long long)pci_resource_start(pdev, TULIP_BAR), 1710 eeprom_missing ? " EEPROM not present," : "", 1711 dev->dev_addr, irq); 1712 1713 if (tp->chip_id == PNIC2) 1714 tp->link_change = pnic2_lnk_change; 1715 else if (tp->flags & HAS_NWAY) 1716 tp->link_change = t21142_lnk_change; 1717 else if (tp->flags & HAS_PNICNWAY) 1718 tp->link_change = pnic_lnk_change; 1719 1720 /* Reset the xcvr interface and turn on heartbeat. */ 1721 switch (chip_idx) { 1722 case DC21140: 1723 case DM910X: 1724 default: 1725 if (tp->mtable) 1726 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12); 1727 break; 1728 case DC21142: 1729 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) { 1730 iowrite32(csr6_mask_defstate, ioaddr + CSR6); 1731 iowrite32(0x0000, ioaddr + CSR13); 1732 iowrite32(0x0000, ioaddr + CSR14); 1733 iowrite32(csr6_mask_hdcap, ioaddr + CSR6); 1734 } else 1735 t21142_start_nway(dev); 1736 break; 1737 case PNIC2: 1738 /* just do a reset for sanity sake */ 1739 iowrite32(0x0000, ioaddr + CSR13); 1740 iowrite32(0x0000, ioaddr + CSR14); 1741 break; 1742 case LC82C168: 1743 if ( ! tp->mii_cnt) { 1744 tp->nway = 1; 1745 tp->nwayset = 0; 1746 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6); 1747 iowrite32(0x30, ioaddr + CSR12); 1748 iowrite32(0x0001F078, ioaddr + CSR6); 1749 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */ 1750 } 1751 break; 1752 case MX98713: 1753 case COMPEX9881: 1754 iowrite32(0x00000000, ioaddr + CSR6); 1755 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */ 1756 iowrite32(0x00000001, ioaddr + CSR13); 1757 break; 1758 case MX98715: 1759 case MX98725: 1760 iowrite32(0x01a80000, ioaddr + CSR6); 1761 iowrite32(0xFFFFFFFF, ioaddr + CSR14); 1762 iowrite32(0x00001000, ioaddr + CSR12); 1763 break; 1764 case COMET: 1765 /* No initialization necessary. */ 1766 break; 1767 } 1768 1769 /* put the chip in snooze mode until opened */ 1770 tulip_set_power_state (tp, 0, 1); 1771 1772 return 0; 1773} 1774 1775 1776/* set the registers according to the given wolopts */ 1777static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts) 1778{ 1779 struct net_device *dev = pci_get_drvdata(pdev); 1780 struct tulip_private *tp = netdev_priv(dev); 1781 void __iomem *ioaddr = tp->base_addr; 1782 1783 if (tp->flags & COMET_PM) { 1784 unsigned int tmp; 1785 1786 tmp = ioread32(ioaddr + CSR18); 1787 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a); 1788 tmp |= comet_csr18_pm_mode; 1789 iowrite32(tmp, ioaddr + CSR18); 1790 1791 /* Set the Wake-up Control/Status Register to the given WOL options*/ 1792 tmp = ioread32(ioaddr + CSR13); 1793 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre); 1794 if (wolopts & WAKE_MAGIC) 1795 tmp |= comet_csr13_mpre; 1796 if (wolopts & WAKE_PHY) 1797 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce; 1798 /* Clear the event flags */ 1799 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc; 1800 iowrite32(tmp, ioaddr + CSR13); 1801 } 1802} 1803 1804static int __maybe_unused tulip_suspend(struct device *dev_d) 1805{ 1806 struct net_device *dev = dev_get_drvdata(dev_d); 1807 struct tulip_private *tp = netdev_priv(dev); 1808 1809 if (!dev) 1810 return -EINVAL; 1811 1812 if (!netif_running(dev)) 1813 goto save_state; 1814 1815 tulip_down(dev); 1816 1817 netif_device_detach(dev); 1818 /* FIXME: it needlessly adds an error path. */ 1819 free_irq(tp->pdev->irq, dev); 1820 1821save_state: 1822 tulip_set_wolopts(to_pci_dev(dev_d), tp->wolinfo.wolopts); 1823 device_set_wakeup_enable(dev_d, !!tp->wolinfo.wolopts); 1824 1825 return 0; 1826} 1827 1828static int __maybe_unused tulip_resume(struct device *dev_d) 1829{ 1830 struct pci_dev *pdev = to_pci_dev(dev_d); 1831 struct net_device *dev = dev_get_drvdata(dev_d); 1832 struct tulip_private *tp = netdev_priv(dev); 1833 void __iomem *ioaddr = tp->base_addr; 1834 unsigned int tmp; 1835 int retval = 0; 1836 1837 if (!dev) 1838 return -EINVAL; 1839 1840 if (!netif_running(dev)) 1841 return 0; 1842 1843 retval = request_irq(pdev->irq, tulip_interrupt, IRQF_SHARED, 1844 dev->name, dev); 1845 if (retval) { 1846 pr_err("request_irq failed in resume\n"); 1847 return retval; 1848 } 1849 1850 if (tp->flags & COMET_PM) { 1851 device_set_wakeup_enable(dev_d, 0); 1852 1853 /* Clear the PMES flag */ 1854 tmp = ioread32(ioaddr + CSR20); 1855 tmp |= comet_csr20_pmes; 1856 iowrite32(tmp, ioaddr + CSR20); 1857 1858 /* Disable all wake-up events */ 1859 tulip_set_wolopts(pdev, 0); 1860 } 1861 netif_device_attach(dev); 1862 1863 if (netif_running(dev)) 1864 tulip_up(dev); 1865 1866 return 0; 1867} 1868 1869static void tulip_remove_one(struct pci_dev *pdev) 1870{ 1871 struct net_device *dev = pci_get_drvdata (pdev); 1872 1873 if (!dev) 1874 return; 1875 1876 unregister_netdev(dev); 1877} 1878 1879#ifdef CONFIG_NET_POLL_CONTROLLER 1880/* 1881 * Polling 'interrupt' - used by things like netconsole to send skbs 1882 * without having to re-enable interrupts. It's not called while 1883 * the interrupt routine is executing. 1884 */ 1885 1886static void poll_tulip (struct net_device *dev) 1887{ 1888 struct tulip_private *tp = netdev_priv(dev); 1889 const int irq = tp->pdev->irq; 1890 1891 /* disable_irq here is not very nice, but with the lockless 1892 interrupt handler we have no other choice. */ 1893 disable_irq(irq); 1894 tulip_interrupt (irq, dev); 1895 enable_irq(irq); 1896} 1897#endif 1898 1899static SIMPLE_DEV_PM_OPS(tulip_pm_ops, tulip_suspend, tulip_resume); 1900 1901static struct pci_driver tulip_driver = { 1902 .name = DRV_NAME, 1903 .id_table = tulip_pci_tbl, 1904 .probe = tulip_init_one, 1905 .remove = tulip_remove_one, 1906 .driver.pm = &tulip_pm_ops, 1907}; 1908 1909 1910static int __init tulip_init (void) 1911{ 1912 if (!csr0) { 1913 pr_warn("tulip: unknown CPU architecture, using default csr0\n"); 1914 /* default to 8 longword cache line alignment */ 1915 csr0 = 0x00A00000 | 0x4800; 1916 } 1917 1918 /* copy module parms into globals */ 1919 tulip_rx_copybreak = rx_copybreak; 1920 tulip_max_interrupt_work = max_interrupt_work; 1921 1922 /* probe for and init boards */ 1923 return pci_register_driver(&tulip_driver); 1924} 1925 1926 1927static void __exit tulip_cleanup (void) 1928{ 1929 pci_unregister_driver (&tulip_driver); 1930} 1931 1932 1933module_init(tulip_init); 1934module_exit(tulip_cleanup);