cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dl2k.c (48286B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
      3/*
      4    Copyright (c) 2001, 2002 by D-Link Corporation
      5    Written by Edward Peng.<edward_peng@dlink.com.tw>
      6    Created 03-May-2001, base on Linux' sundance.c.
      7
      8*/
      9
     10#include "dl2k.h"
     11#include <linux/dma-mapping.h>
     12
     13#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
     14#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
     15#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
     16#define dr32(reg)	ioread32(ioaddr + (reg))
     17#define dr16(reg)	ioread16(ioaddr + (reg))
     18#define dr8(reg)	ioread8(ioaddr + (reg))
     19
     20#define MAX_UNITS 8
     21static int mtu[MAX_UNITS];
     22static int vlan[MAX_UNITS];
     23static int jumbo[MAX_UNITS];
     24static char *media[MAX_UNITS];
     25static int tx_flow=-1;
     26static int rx_flow=-1;
     27static int copy_thresh;
     28static int rx_coalesce=10;	/* Rx frame count each interrupt */
     29static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
     30static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
     31
     32
     33MODULE_AUTHOR ("Edward Peng");
     34MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
     35MODULE_LICENSE("GPL");
     36module_param_array(mtu, int, NULL, 0);
     37module_param_array(media, charp, NULL, 0);
     38module_param_array(vlan, int, NULL, 0);
     39module_param_array(jumbo, int, NULL, 0);
     40module_param(tx_flow, int, 0);
     41module_param(rx_flow, int, 0);
     42module_param(copy_thresh, int, 0);
     43module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
     44module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
     45module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
     46
     47
     48/* Enable the default interrupts */
     49#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
     50       UpdateStats | LinkEvent)
     51
     52static void dl2k_enable_int(struct netdev_private *np)
     53{
     54	void __iomem *ioaddr = np->ioaddr;
     55
     56	dw16(IntEnable, DEFAULT_INTR);
     57}
     58
     59static const int max_intrloop = 50;
     60static const int multicast_filter_limit = 0x40;
     61
     62static int rio_open (struct net_device *dev);
     63static void rio_timer (struct timer_list *t);
     64static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
     65static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
     66static irqreturn_t rio_interrupt (int irq, void *dev_instance);
     67static void rio_free_tx (struct net_device *dev, int irq);
     68static void tx_error (struct net_device *dev, int tx_status);
     69static int receive_packet (struct net_device *dev);
     70static void rio_error (struct net_device *dev, int int_status);
     71static void set_multicast (struct net_device *dev);
     72static struct net_device_stats *get_stats (struct net_device *dev);
     73static int clear_stats (struct net_device *dev);
     74static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
     75static int rio_close (struct net_device *dev);
     76static int find_miiphy (struct net_device *dev);
     77static int parse_eeprom (struct net_device *dev);
     78static int read_eeprom (struct netdev_private *, int eep_addr);
     79static int mii_wait_link (struct net_device *dev, int wait);
     80static int mii_set_media (struct net_device *dev);
     81static int mii_get_media (struct net_device *dev);
     82static int mii_set_media_pcs (struct net_device *dev);
     83static int mii_get_media_pcs (struct net_device *dev);
     84static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
     85static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
     86		      u16 data);
     87
     88static const struct ethtool_ops ethtool_ops;
     89
     90static const struct net_device_ops netdev_ops = {
     91	.ndo_open		= rio_open,
     92	.ndo_start_xmit	= start_xmit,
     93	.ndo_stop		= rio_close,
     94	.ndo_get_stats		= get_stats,
     95	.ndo_validate_addr	= eth_validate_addr,
     96	.ndo_set_mac_address 	= eth_mac_addr,
     97	.ndo_set_rx_mode	= set_multicast,
     98	.ndo_eth_ioctl		= rio_ioctl,
     99	.ndo_tx_timeout		= rio_tx_timeout,
    100};
    101
    102static int
    103rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
    104{
    105	struct net_device *dev;
    106	struct netdev_private *np;
    107	static int card_idx;
    108	int chip_idx = ent->driver_data;
    109	int err, irq;
    110	void __iomem *ioaddr;
    111	void *ring_space;
    112	dma_addr_t ring_dma;
    113
    114	err = pci_enable_device (pdev);
    115	if (err)
    116		return err;
    117
    118	irq = pdev->irq;
    119	err = pci_request_regions (pdev, "dl2k");
    120	if (err)
    121		goto err_out_disable;
    122
    123	pci_set_master (pdev);
    124
    125	err = -ENOMEM;
    126
    127	dev = alloc_etherdev (sizeof (*np));
    128	if (!dev)
    129		goto err_out_res;
    130	SET_NETDEV_DEV(dev, &pdev->dev);
    131
    132	np = netdev_priv(dev);
    133
    134	/* IO registers range. */
    135	ioaddr = pci_iomap(pdev, 0, 0);
    136	if (!ioaddr)
    137		goto err_out_dev;
    138	np->eeprom_addr = ioaddr;
    139
    140#ifdef MEM_MAPPING
    141	/* MM registers range. */
    142	ioaddr = pci_iomap(pdev, 1, 0);
    143	if (!ioaddr)
    144		goto err_out_iounmap;
    145#endif
    146	np->ioaddr = ioaddr;
    147	np->chip_id = chip_idx;
    148	np->pdev = pdev;
    149	spin_lock_init (&np->tx_lock);
    150	spin_lock_init (&np->rx_lock);
    151
    152	/* Parse manual configuration */
    153	np->an_enable = 1;
    154	np->tx_coalesce = 1;
    155	if (card_idx < MAX_UNITS) {
    156		if (media[card_idx] != NULL) {
    157			np->an_enable = 0;
    158			if (strcmp (media[card_idx], "auto") == 0 ||
    159			    strcmp (media[card_idx], "autosense") == 0 ||
    160			    strcmp (media[card_idx], "0") == 0 ) {
    161				np->an_enable = 2;
    162			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
    163			    strcmp (media[card_idx], "4") == 0) {
    164				np->speed = 100;
    165				np->full_duplex = 1;
    166			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
    167				   strcmp (media[card_idx], "3") == 0) {
    168				np->speed = 100;
    169				np->full_duplex = 0;
    170			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
    171				   strcmp (media[card_idx], "2") == 0) {
    172				np->speed = 10;
    173				np->full_duplex = 1;
    174			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
    175				   strcmp (media[card_idx], "1") == 0) {
    176				np->speed = 10;
    177				np->full_duplex = 0;
    178			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
    179				 strcmp (media[card_idx], "6") == 0) {
    180				np->speed=1000;
    181				np->full_duplex=1;
    182			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
    183				 strcmp (media[card_idx], "5") == 0) {
    184				np->speed = 1000;
    185				np->full_duplex = 0;
    186			} else {
    187				np->an_enable = 1;
    188			}
    189		}
    190		if (jumbo[card_idx] != 0) {
    191			np->jumbo = 1;
    192			dev->mtu = MAX_JUMBO;
    193		} else {
    194			np->jumbo = 0;
    195			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
    196				dev->mtu = mtu[card_idx];
    197		}
    198		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
    199		    vlan[card_idx] : 0;
    200		if (rx_coalesce > 0 && rx_timeout > 0) {
    201			np->rx_coalesce = rx_coalesce;
    202			np->rx_timeout = rx_timeout;
    203			np->coalesce = 1;
    204		}
    205		np->tx_flow = (tx_flow == 0) ? 0 : 1;
    206		np->rx_flow = (rx_flow == 0) ? 0 : 1;
    207
    208		if (tx_coalesce < 1)
    209			tx_coalesce = 1;
    210		else if (tx_coalesce > TX_RING_SIZE-1)
    211			tx_coalesce = TX_RING_SIZE - 1;
    212	}
    213	dev->netdev_ops = &netdev_ops;
    214	dev->watchdog_timeo = TX_TIMEOUT;
    215	dev->ethtool_ops = &ethtool_ops;
    216#if 0
    217	dev->features = NETIF_F_IP_CSUM;
    218#endif
    219	/* MTU range: 68 - 1536 or 8000 */
    220	dev->min_mtu = ETH_MIN_MTU;
    221	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
    222
    223	pci_set_drvdata (pdev, dev);
    224
    225	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
    226					GFP_KERNEL);
    227	if (!ring_space)
    228		goto err_out_iounmap;
    229	np->tx_ring = ring_space;
    230	np->tx_ring_dma = ring_dma;
    231
    232	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
    233					GFP_KERNEL);
    234	if (!ring_space)
    235		goto err_out_unmap_tx;
    236	np->rx_ring = ring_space;
    237	np->rx_ring_dma = ring_dma;
    238
    239	/* Parse eeprom data */
    240	parse_eeprom (dev);
    241
    242	/* Find PHY address */
    243	err = find_miiphy (dev);
    244	if (err)
    245		goto err_out_unmap_rx;
    246
    247	/* Fiber device? */
    248	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
    249	np->link_status = 0;
    250	/* Set media and reset PHY */
    251	if (np->phy_media) {
    252		/* default Auto-Negotiation for fiber deivices */
    253	 	if (np->an_enable == 2) {
    254			np->an_enable = 1;
    255		}
    256	} else {
    257		/* Auto-Negotiation is mandatory for 1000BASE-T,
    258		   IEEE 802.3ab Annex 28D page 14 */
    259		if (np->speed == 1000)
    260			np->an_enable = 1;
    261	}
    262
    263	err = register_netdev (dev);
    264	if (err)
    265		goto err_out_unmap_rx;
    266
    267	card_idx++;
    268
    269	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
    270		dev->name, np->name, dev->dev_addr, irq);
    271	if (tx_coalesce > 1)
    272		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
    273				tx_coalesce);
    274	if (np->coalesce)
    275		printk(KERN_INFO
    276		       "rx_coalesce:\t%d packets\n"
    277		       "rx_timeout: \t%d ns\n",
    278				np->rx_coalesce, np->rx_timeout*640);
    279	if (np->vlan)
    280		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
    281	return 0;
    282
    283err_out_unmap_rx:
    284	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
    285			  np->rx_ring_dma);
    286err_out_unmap_tx:
    287	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
    288			  np->tx_ring_dma);
    289err_out_iounmap:
    290#ifdef MEM_MAPPING
    291	pci_iounmap(pdev, np->ioaddr);
    292#endif
    293	pci_iounmap(pdev, np->eeprom_addr);
    294err_out_dev:
    295	free_netdev (dev);
    296err_out_res:
    297	pci_release_regions (pdev);
    298err_out_disable:
    299	pci_disable_device (pdev);
    300	return err;
    301}
    302
    303static int
    304find_miiphy (struct net_device *dev)
    305{
    306	struct netdev_private *np = netdev_priv(dev);
    307	int i, phy_found = 0;
    308
    309	np->phy_addr = 1;
    310
    311	for (i = 31; i >= 0; i--) {
    312		int mii_status = mii_read (dev, i, 1);
    313		if (mii_status != 0xffff && mii_status != 0x0000) {
    314			np->phy_addr = i;
    315			phy_found++;
    316		}
    317	}
    318	if (!phy_found) {
    319		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
    320		return -ENODEV;
    321	}
    322	return 0;
    323}
    324
    325static int
    326parse_eeprom (struct net_device *dev)
    327{
    328	struct netdev_private *np = netdev_priv(dev);
    329	void __iomem *ioaddr = np->ioaddr;
    330	int i, j;
    331	u8 sromdata[256];
    332	u8 *psib;
    333	u32 crc;
    334	PSROM_t psrom = (PSROM_t) sromdata;
    335
    336	int cid, next;
    337
    338	for (i = 0; i < 128; i++)
    339		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
    340
    341	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
    342		/* Check CRC */
    343		crc = ~ether_crc_le (256 - 4, sromdata);
    344		if (psrom->crc != cpu_to_le32(crc)) {
    345			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
    346					dev->name);
    347			return -1;
    348		}
    349	}
    350
    351	/* Set MAC address */
    352	eth_hw_addr_set(dev, psrom->mac_addr);
    353
    354	if (np->chip_id == CHIP_IP1000A) {
    355		np->led_mode = psrom->led_mode;
    356		return 0;
    357	}
    358
    359	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
    360		return 0;
    361	}
    362
    363	/* Parse Software Information Block */
    364	i = 0x30;
    365	psib = (u8 *) sromdata;
    366	do {
    367		cid = psib[i++];
    368		next = psib[i++];
    369		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
    370			printk (KERN_ERR "Cell data error\n");
    371			return -1;
    372		}
    373		switch (cid) {
    374		case 0:	/* Format version */
    375			break;
    376		case 1:	/* End of cell */
    377			return 0;
    378		case 2:	/* Duplex Polarity */
    379			np->duplex_polarity = psib[i];
    380			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
    381			break;
    382		case 3:	/* Wake Polarity */
    383			np->wake_polarity = psib[i];
    384			break;
    385		case 9:	/* Adapter description */
    386			j = (next - i > 255) ? 255 : next - i;
    387			memcpy (np->name, &(psib[i]), j);
    388			break;
    389		case 4:
    390		case 5:
    391		case 6:
    392		case 7:
    393		case 8:	/* Reversed */
    394			break;
    395		default:	/* Unknown cell */
    396			return -1;
    397		}
    398		i = next;
    399	} while (1);
    400
    401	return 0;
    402}
    403
    404static void rio_set_led_mode(struct net_device *dev)
    405{
    406	struct netdev_private *np = netdev_priv(dev);
    407	void __iomem *ioaddr = np->ioaddr;
    408	u32 mode;
    409
    410	if (np->chip_id != CHIP_IP1000A)
    411		return;
    412
    413	mode = dr32(ASICCtrl);
    414	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
    415
    416	if (np->led_mode & 0x01)
    417		mode |= IPG_AC_LED_MODE;
    418	if (np->led_mode & 0x02)
    419		mode |= IPG_AC_LED_MODE_BIT_1;
    420	if (np->led_mode & 0x08)
    421		mode |= IPG_AC_LED_SPEED;
    422
    423	dw32(ASICCtrl, mode);
    424}
    425
    426static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
    427{
    428	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
    429}
    430
    431static void free_list(struct net_device *dev)
    432{
    433	struct netdev_private *np = netdev_priv(dev);
    434	struct sk_buff *skb;
    435	int i;
    436
    437	/* Free all the skbuffs in the queue. */
    438	for (i = 0; i < RX_RING_SIZE; i++) {
    439		skb = np->rx_skbuff[i];
    440		if (skb) {
    441			dma_unmap_single(&np->pdev->dev,
    442					 desc_to_dma(&np->rx_ring[i]),
    443					 skb->len, DMA_FROM_DEVICE);
    444			dev_kfree_skb(skb);
    445			np->rx_skbuff[i] = NULL;
    446		}
    447		np->rx_ring[i].status = 0;
    448		np->rx_ring[i].fraginfo = 0;
    449	}
    450	for (i = 0; i < TX_RING_SIZE; i++) {
    451		skb = np->tx_skbuff[i];
    452		if (skb) {
    453			dma_unmap_single(&np->pdev->dev,
    454					 desc_to_dma(&np->tx_ring[i]),
    455					 skb->len, DMA_TO_DEVICE);
    456			dev_kfree_skb(skb);
    457			np->tx_skbuff[i] = NULL;
    458		}
    459	}
    460}
    461
    462static void rio_reset_ring(struct netdev_private *np)
    463{
    464	int i;
    465
    466	np->cur_rx = 0;
    467	np->cur_tx = 0;
    468	np->old_rx = 0;
    469	np->old_tx = 0;
    470
    471	for (i = 0; i < TX_RING_SIZE; i++)
    472		np->tx_ring[i].status = cpu_to_le64(TFDDone);
    473
    474	for (i = 0; i < RX_RING_SIZE; i++)
    475		np->rx_ring[i].status = 0;
    476}
    477
    478 /* allocate and initialize Tx and Rx descriptors */
    479static int alloc_list(struct net_device *dev)
    480{
    481	struct netdev_private *np = netdev_priv(dev);
    482	int i;
    483
    484	rio_reset_ring(np);
    485	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
    486
    487	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
    488	for (i = 0; i < TX_RING_SIZE; i++) {
    489		np->tx_skbuff[i] = NULL;
    490		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
    491					      ((i + 1) % TX_RING_SIZE) *
    492					      sizeof(struct netdev_desc));
    493	}
    494
    495	/* Initialize Rx descriptors & allocate buffers */
    496	for (i = 0; i < RX_RING_SIZE; i++) {
    497		/* Allocated fixed size of skbuff */
    498		struct sk_buff *skb;
    499
    500		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
    501		np->rx_skbuff[i] = skb;
    502		if (!skb) {
    503			free_list(dev);
    504			return -ENOMEM;
    505		}
    506
    507		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
    508						((i + 1) % RX_RING_SIZE) *
    509						sizeof(struct netdev_desc));
    510		/* Rubicon now supports 40 bits of addressing space. */
    511		np->rx_ring[i].fraginfo =
    512		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
    513					       np->rx_buf_sz, DMA_FROM_DEVICE));
    514		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
    515	}
    516
    517	return 0;
    518}
    519
    520static void rio_hw_init(struct net_device *dev)
    521{
    522	struct netdev_private *np = netdev_priv(dev);
    523	void __iomem *ioaddr = np->ioaddr;
    524	int i;
    525	u16 macctrl;
    526
    527	/* Reset all logic functions */
    528	dw16(ASICCtrl + 2,
    529	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
    530	mdelay(10);
    531
    532	rio_set_led_mode(dev);
    533
    534	/* DebugCtrl bit 4, 5, 9 must set */
    535	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
    536
    537	if (np->chip_id == CHIP_IP1000A &&
    538	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
    539		/* PHY magic taken from ipg driver, undocumented registers */
    540		mii_write(dev, np->phy_addr, 31, 0x0001);
    541		mii_write(dev, np->phy_addr, 27, 0x01e0);
    542		mii_write(dev, np->phy_addr, 31, 0x0002);
    543		mii_write(dev, np->phy_addr, 27, 0xeb8e);
    544		mii_write(dev, np->phy_addr, 31, 0x0000);
    545		mii_write(dev, np->phy_addr, 30, 0x005e);
    546		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
    547		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
    548	}
    549
    550	if (np->phy_media)
    551		mii_set_media_pcs(dev);
    552	else
    553		mii_set_media(dev);
    554
    555	/* Jumbo frame */
    556	if (np->jumbo != 0)
    557		dw16(MaxFrameSize, MAX_JUMBO+14);
    558
    559	/* Set RFDListPtr */
    560	dw32(RFDListPtr0, np->rx_ring_dma);
    561	dw32(RFDListPtr1, 0);
    562
    563	/* Set station address */
    564	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
    565	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
    566	 */
    567	for (i = 0; i < 3; i++)
    568		dw16(StationAddr0 + 2 * i,
    569		     cpu_to_le16(((const u16 *)dev->dev_addr)[i]));
    570
    571	set_multicast (dev);
    572	if (np->coalesce) {
    573		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
    574	}
    575	/* Set RIO to poll every N*320nsec. */
    576	dw8(RxDMAPollPeriod, 0x20);
    577	dw8(TxDMAPollPeriod, 0xff);
    578	dw8(RxDMABurstThresh, 0x30);
    579	dw8(RxDMAUrgentThresh, 0x30);
    580	dw32(RmonStatMask, 0x0007ffff);
    581	/* clear statistics */
    582	clear_stats (dev);
    583
    584	/* VLAN supported */
    585	if (np->vlan) {
    586		/* priority field in RxDMAIntCtrl  */
    587		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
    588		/* VLANId */
    589		dw16(VLANId, np->vlan);
    590		/* Length/Type should be 0x8100 */
    591		dw32(VLANTag, 0x8100 << 16 | np->vlan);
    592		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
    593		   VLAN information tagged by TFC' VID, CFI fields. */
    594		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
    595	}
    596
    597	/* Start Tx/Rx */
    598	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
    599
    600	macctrl = 0;
    601	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
    602	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
    603	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
    604	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
    605	dw16(MACCtrl, macctrl);
    606}
    607
    608static void rio_hw_stop(struct net_device *dev)
    609{
    610	struct netdev_private *np = netdev_priv(dev);
    611	void __iomem *ioaddr = np->ioaddr;
    612
    613	/* Disable interrupts */
    614	dw16(IntEnable, 0);
    615
    616	/* Stop Tx and Rx logics */
    617	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
    618}
    619
    620static int rio_open(struct net_device *dev)
    621{
    622	struct netdev_private *np = netdev_priv(dev);
    623	const int irq = np->pdev->irq;
    624	int i;
    625
    626	i = alloc_list(dev);
    627	if (i)
    628		return i;
    629
    630	rio_hw_init(dev);
    631
    632	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
    633	if (i) {
    634		rio_hw_stop(dev);
    635		free_list(dev);
    636		return i;
    637	}
    638
    639	timer_setup(&np->timer, rio_timer, 0);
    640	np->timer.expires = jiffies + 1 * HZ;
    641	add_timer(&np->timer);
    642
    643	netif_start_queue (dev);
    644
    645	dl2k_enable_int(np);
    646	return 0;
    647}
    648
    649static void
    650rio_timer (struct timer_list *t)
    651{
    652	struct netdev_private *np = from_timer(np, t, timer);
    653	struct net_device *dev = pci_get_drvdata(np->pdev);
    654	unsigned int entry;
    655	int next_tick = 1*HZ;
    656	unsigned long flags;
    657
    658	spin_lock_irqsave(&np->rx_lock, flags);
    659	/* Recover rx ring exhausted error */
    660	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
    661		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
    662		/* Re-allocate skbuffs to fill the descriptor ring */
    663		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
    664			struct sk_buff *skb;
    665			entry = np->old_rx % RX_RING_SIZE;
    666			/* Dropped packets don't need to re-allocate */
    667			if (np->rx_skbuff[entry] == NULL) {
    668				skb = netdev_alloc_skb_ip_align(dev,
    669								np->rx_buf_sz);
    670				if (skb == NULL) {
    671					np->rx_ring[entry].fraginfo = 0;
    672					printk (KERN_INFO
    673						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
    674						dev->name, entry);
    675					break;
    676				}
    677				np->rx_skbuff[entry] = skb;
    678				np->rx_ring[entry].fraginfo =
    679				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
    680								np->rx_buf_sz, DMA_FROM_DEVICE));
    681			}
    682			np->rx_ring[entry].fraginfo |=
    683			    cpu_to_le64((u64)np->rx_buf_sz << 48);
    684			np->rx_ring[entry].status = 0;
    685		} /* end for */
    686	} /* end if */
    687	spin_unlock_irqrestore (&np->rx_lock, flags);
    688	np->timer.expires = jiffies + next_tick;
    689	add_timer(&np->timer);
    690}
    691
    692static void
    693rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
    694{
    695	struct netdev_private *np = netdev_priv(dev);
    696	void __iomem *ioaddr = np->ioaddr;
    697
    698	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
    699		dev->name, dr32(TxStatus));
    700	rio_free_tx(dev, 0);
    701	dev->if_port = 0;
    702	netif_trans_update(dev); /* prevent tx timeout */
    703}
    704
    705static netdev_tx_t
    706start_xmit (struct sk_buff *skb, struct net_device *dev)
    707{
    708	struct netdev_private *np = netdev_priv(dev);
    709	void __iomem *ioaddr = np->ioaddr;
    710	struct netdev_desc *txdesc;
    711	unsigned entry;
    712	u64 tfc_vlan_tag = 0;
    713
    714	if (np->link_status == 0) {	/* Link Down */
    715		dev_kfree_skb(skb);
    716		return NETDEV_TX_OK;
    717	}
    718	entry = np->cur_tx % TX_RING_SIZE;
    719	np->tx_skbuff[entry] = skb;
    720	txdesc = &np->tx_ring[entry];
    721
    722#if 0
    723	if (skb->ip_summed == CHECKSUM_PARTIAL) {
    724		txdesc->status |=
    725		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
    726				 IPChecksumEnable);
    727	}
    728#endif
    729	if (np->vlan) {
    730		tfc_vlan_tag = VLANTagInsert |
    731		    ((u64)np->vlan << 32) |
    732		    ((u64)skb->priority << 45);
    733	}
    734	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
    735						       skb->len, DMA_TO_DEVICE));
    736	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
    737
    738	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
    739	 * Work around: Always use 1 descriptor in 10Mbps mode */
    740	if (entry % np->tx_coalesce == 0 || np->speed == 10)
    741		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
    742					      WordAlignDisable |
    743					      TxDMAIndicate |
    744					      (1 << FragCountShift));
    745	else
    746		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
    747					      WordAlignDisable |
    748					      (1 << FragCountShift));
    749
    750	/* TxDMAPollNow */
    751	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
    752	/* Schedule ISR */
    753	dw32(CountDown, 10000);
    754	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
    755	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
    756			< TX_QUEUE_LEN - 1 && np->speed != 10) {
    757		/* do nothing */
    758	} else if (!netif_queue_stopped(dev)) {
    759		netif_stop_queue (dev);
    760	}
    761
    762	/* The first TFDListPtr */
    763	if (!dr32(TFDListPtr0)) {
    764		dw32(TFDListPtr0, np->tx_ring_dma +
    765		     entry * sizeof (struct netdev_desc));
    766		dw32(TFDListPtr1, 0);
    767	}
    768
    769	return NETDEV_TX_OK;
    770}
    771
    772static irqreturn_t
    773rio_interrupt (int irq, void *dev_instance)
    774{
    775	struct net_device *dev = dev_instance;
    776	struct netdev_private *np = netdev_priv(dev);
    777	void __iomem *ioaddr = np->ioaddr;
    778	unsigned int_status;
    779	int cnt = max_intrloop;
    780	int handled = 0;
    781
    782	while (1) {
    783		int_status = dr16(IntStatus);
    784		dw16(IntStatus, int_status);
    785		int_status &= DEFAULT_INTR;
    786		if (int_status == 0 || --cnt < 0)
    787			break;
    788		handled = 1;
    789		/* Processing received packets */
    790		if (int_status & RxDMAComplete)
    791			receive_packet (dev);
    792		/* TxDMAComplete interrupt */
    793		if ((int_status & (TxDMAComplete|IntRequested))) {
    794			int tx_status;
    795			tx_status = dr32(TxStatus);
    796			if (tx_status & 0x01)
    797				tx_error (dev, tx_status);
    798			/* Free used tx skbuffs */
    799			rio_free_tx (dev, 1);
    800		}
    801
    802		/* Handle uncommon events */
    803		if (int_status &
    804		    (HostError | LinkEvent | UpdateStats))
    805			rio_error (dev, int_status);
    806	}
    807	if (np->cur_tx != np->old_tx)
    808		dw32(CountDown, 100);
    809	return IRQ_RETVAL(handled);
    810}
    811
    812static void
    813rio_free_tx (struct net_device *dev, int irq)
    814{
    815	struct netdev_private *np = netdev_priv(dev);
    816	int entry = np->old_tx % TX_RING_SIZE;
    817	int tx_use = 0;
    818	unsigned long flag = 0;
    819
    820	if (irq)
    821		spin_lock(&np->tx_lock);
    822	else
    823		spin_lock_irqsave(&np->tx_lock, flag);
    824
    825	/* Free used tx skbuffs */
    826	while (entry != np->cur_tx) {
    827		struct sk_buff *skb;
    828
    829		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
    830			break;
    831		skb = np->tx_skbuff[entry];
    832		dma_unmap_single(&np->pdev->dev,
    833				 desc_to_dma(&np->tx_ring[entry]), skb->len,
    834				 DMA_TO_DEVICE);
    835		if (irq)
    836			dev_consume_skb_irq(skb);
    837		else
    838			dev_kfree_skb(skb);
    839
    840		np->tx_skbuff[entry] = NULL;
    841		entry = (entry + 1) % TX_RING_SIZE;
    842		tx_use++;
    843	}
    844	if (irq)
    845		spin_unlock(&np->tx_lock);
    846	else
    847		spin_unlock_irqrestore(&np->tx_lock, flag);
    848	np->old_tx = entry;
    849
    850	/* If the ring is no longer full, clear tx_full and
    851	   call netif_wake_queue() */
    852
    853	if (netif_queue_stopped(dev) &&
    854	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
    855	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
    856		netif_wake_queue (dev);
    857	}
    858}
    859
    860static void
    861tx_error (struct net_device *dev, int tx_status)
    862{
    863	struct netdev_private *np = netdev_priv(dev);
    864	void __iomem *ioaddr = np->ioaddr;
    865	int frame_id;
    866	int i;
    867
    868	frame_id = (tx_status & 0xffff0000);
    869	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
    870		dev->name, tx_status, frame_id);
    871	dev->stats.tx_errors++;
    872	/* Ttransmit Underrun */
    873	if (tx_status & 0x10) {
    874		dev->stats.tx_fifo_errors++;
    875		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
    876		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
    877		dw16(ASICCtrl + 2,
    878		     TxReset | DMAReset | FIFOReset | NetworkReset);
    879		/* Wait for ResetBusy bit clear */
    880		for (i = 50; i > 0; i--) {
    881			if (!(dr16(ASICCtrl + 2) & ResetBusy))
    882				break;
    883			mdelay (1);
    884		}
    885		rio_set_led_mode(dev);
    886		rio_free_tx (dev, 1);
    887		/* Reset TFDListPtr */
    888		dw32(TFDListPtr0, np->tx_ring_dma +
    889		     np->old_tx * sizeof (struct netdev_desc));
    890		dw32(TFDListPtr1, 0);
    891
    892		/* Let TxStartThresh stay default value */
    893	}
    894	/* Late Collision */
    895	if (tx_status & 0x04) {
    896		dev->stats.tx_fifo_errors++;
    897		/* TxReset and clear FIFO */
    898		dw16(ASICCtrl + 2, TxReset | FIFOReset);
    899		/* Wait reset done */
    900		for (i = 50; i > 0; i--) {
    901			if (!(dr16(ASICCtrl + 2) & ResetBusy))
    902				break;
    903			mdelay (1);
    904		}
    905		rio_set_led_mode(dev);
    906		/* Let TxStartThresh stay default value */
    907	}
    908	/* Maximum Collisions */
    909	if (tx_status & 0x08)
    910		dev->stats.collisions++;
    911	/* Restart the Tx */
    912	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
    913}
    914
    915static int
    916receive_packet (struct net_device *dev)
    917{
    918	struct netdev_private *np = netdev_priv(dev);
    919	int entry = np->cur_rx % RX_RING_SIZE;
    920	int cnt = 30;
    921
    922	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
    923	while (1) {
    924		struct netdev_desc *desc = &np->rx_ring[entry];
    925		int pkt_len;
    926		u64 frame_status;
    927
    928		if (!(desc->status & cpu_to_le64(RFDDone)) ||
    929		    !(desc->status & cpu_to_le64(FrameStart)) ||
    930		    !(desc->status & cpu_to_le64(FrameEnd)))
    931			break;
    932
    933		/* Chip omits the CRC. */
    934		frame_status = le64_to_cpu(desc->status);
    935		pkt_len = frame_status & 0xffff;
    936		if (--cnt < 0)
    937			break;
    938		/* Update rx error statistics, drop packet. */
    939		if (frame_status & RFS_Errors) {
    940			dev->stats.rx_errors++;
    941			if (frame_status & (RxRuntFrame | RxLengthError))
    942				dev->stats.rx_length_errors++;
    943			if (frame_status & RxFCSError)
    944				dev->stats.rx_crc_errors++;
    945			if (frame_status & RxAlignmentError && np->speed != 1000)
    946				dev->stats.rx_frame_errors++;
    947			if (frame_status & RxFIFOOverrun)
    948				dev->stats.rx_fifo_errors++;
    949		} else {
    950			struct sk_buff *skb;
    951
    952			/* Small skbuffs for short packets */
    953			if (pkt_len > copy_thresh) {
    954				dma_unmap_single(&np->pdev->dev,
    955						 desc_to_dma(desc),
    956						 np->rx_buf_sz,
    957						 DMA_FROM_DEVICE);
    958				skb_put (skb = np->rx_skbuff[entry], pkt_len);
    959				np->rx_skbuff[entry] = NULL;
    960			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
    961				dma_sync_single_for_cpu(&np->pdev->dev,
    962							desc_to_dma(desc),
    963							np->rx_buf_sz,
    964							DMA_FROM_DEVICE);
    965				skb_copy_to_linear_data (skb,
    966						  np->rx_skbuff[entry]->data,
    967						  pkt_len);
    968				skb_put (skb, pkt_len);
    969				dma_sync_single_for_device(&np->pdev->dev,
    970							   desc_to_dma(desc),
    971							   np->rx_buf_sz,
    972							   DMA_FROM_DEVICE);
    973			}
    974			skb->protocol = eth_type_trans (skb, dev);
    975#if 0
    976			/* Checksum done by hw, but csum value unavailable. */
    977			if (np->pdev->pci_rev_id >= 0x0c &&
    978				!(frame_status & (TCPError | UDPError | IPError))) {
    979				skb->ip_summed = CHECKSUM_UNNECESSARY;
    980			}
    981#endif
    982			netif_rx (skb);
    983		}
    984		entry = (entry + 1) % RX_RING_SIZE;
    985	}
    986	spin_lock(&np->rx_lock);
    987	np->cur_rx = entry;
    988	/* Re-allocate skbuffs to fill the descriptor ring */
    989	entry = np->old_rx;
    990	while (entry != np->cur_rx) {
    991		struct sk_buff *skb;
    992		/* Dropped packets don't need to re-allocate */
    993		if (np->rx_skbuff[entry] == NULL) {
    994			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
    995			if (skb == NULL) {
    996				np->rx_ring[entry].fraginfo = 0;
    997				printk (KERN_INFO
    998					"%s: receive_packet: "
    999					"Unable to re-allocate Rx skbuff.#%d\n",
   1000					dev->name, entry);
   1001				break;
   1002			}
   1003			np->rx_skbuff[entry] = skb;
   1004			np->rx_ring[entry].fraginfo =
   1005			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
   1006						       np->rx_buf_sz, DMA_FROM_DEVICE));
   1007		}
   1008		np->rx_ring[entry].fraginfo |=
   1009		    cpu_to_le64((u64)np->rx_buf_sz << 48);
   1010		np->rx_ring[entry].status = 0;
   1011		entry = (entry + 1) % RX_RING_SIZE;
   1012	}
   1013	np->old_rx = entry;
   1014	spin_unlock(&np->rx_lock);
   1015	return 0;
   1016}
   1017
   1018static void
   1019rio_error (struct net_device *dev, int int_status)
   1020{
   1021	struct netdev_private *np = netdev_priv(dev);
   1022	void __iomem *ioaddr = np->ioaddr;
   1023	u16 macctrl;
   1024
   1025	/* Link change event */
   1026	if (int_status & LinkEvent) {
   1027		if (mii_wait_link (dev, 10) == 0) {
   1028			printk (KERN_INFO "%s: Link up\n", dev->name);
   1029			if (np->phy_media)
   1030				mii_get_media_pcs (dev);
   1031			else
   1032				mii_get_media (dev);
   1033			if (np->speed == 1000)
   1034				np->tx_coalesce = tx_coalesce;
   1035			else
   1036				np->tx_coalesce = 1;
   1037			macctrl = 0;
   1038			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
   1039			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
   1040			macctrl |= (np->tx_flow) ?
   1041				TxFlowControlEnable : 0;
   1042			macctrl |= (np->rx_flow) ?
   1043				RxFlowControlEnable : 0;
   1044			dw16(MACCtrl, macctrl);
   1045			np->link_status = 1;
   1046			netif_carrier_on(dev);
   1047		} else {
   1048			printk (KERN_INFO "%s: Link off\n", dev->name);
   1049			np->link_status = 0;
   1050			netif_carrier_off(dev);
   1051		}
   1052	}
   1053
   1054	/* UpdateStats statistics registers */
   1055	if (int_status & UpdateStats) {
   1056		get_stats (dev);
   1057	}
   1058
   1059	/* PCI Error, a catastronphic error related to the bus interface
   1060	   occurs, set GlobalReset and HostReset to reset. */
   1061	if (int_status & HostError) {
   1062		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
   1063			dev->name, int_status);
   1064		dw16(ASICCtrl + 2, GlobalReset | HostReset);
   1065		mdelay (500);
   1066		rio_set_led_mode(dev);
   1067	}
   1068}
   1069
   1070static struct net_device_stats *
   1071get_stats (struct net_device *dev)
   1072{
   1073	struct netdev_private *np = netdev_priv(dev);
   1074	void __iomem *ioaddr = np->ioaddr;
   1075#ifdef MEM_MAPPING
   1076	int i;
   1077#endif
   1078	unsigned int stat_reg;
   1079
   1080	/* All statistics registers need to be acknowledged,
   1081	   else statistic overflow could cause problems */
   1082
   1083	dev->stats.rx_packets += dr32(FramesRcvOk);
   1084	dev->stats.tx_packets += dr32(FramesXmtOk);
   1085	dev->stats.rx_bytes += dr32(OctetRcvOk);
   1086	dev->stats.tx_bytes += dr32(OctetXmtOk);
   1087
   1088	dev->stats.multicast = dr32(McstFramesRcvdOk);
   1089	dev->stats.collisions += dr32(SingleColFrames)
   1090			     +  dr32(MultiColFrames);
   1091
   1092	/* detailed tx errors */
   1093	stat_reg = dr16(FramesAbortXSColls);
   1094	dev->stats.tx_aborted_errors += stat_reg;
   1095	dev->stats.tx_errors += stat_reg;
   1096
   1097	stat_reg = dr16(CarrierSenseErrors);
   1098	dev->stats.tx_carrier_errors += stat_reg;
   1099	dev->stats.tx_errors += stat_reg;
   1100
   1101	/* Clear all other statistic register. */
   1102	dr32(McstOctetXmtOk);
   1103	dr16(BcstFramesXmtdOk);
   1104	dr32(McstFramesXmtdOk);
   1105	dr16(BcstFramesRcvdOk);
   1106	dr16(MacControlFramesRcvd);
   1107	dr16(FrameTooLongErrors);
   1108	dr16(InRangeLengthErrors);
   1109	dr16(FramesCheckSeqErrors);
   1110	dr16(FramesLostRxErrors);
   1111	dr32(McstOctetXmtOk);
   1112	dr32(BcstOctetXmtOk);
   1113	dr32(McstFramesXmtdOk);
   1114	dr32(FramesWDeferredXmt);
   1115	dr32(LateCollisions);
   1116	dr16(BcstFramesXmtdOk);
   1117	dr16(MacControlFramesXmtd);
   1118	dr16(FramesWEXDeferal);
   1119
   1120#ifdef MEM_MAPPING
   1121	for (i = 0x100; i <= 0x150; i += 4)
   1122		dr32(i);
   1123#endif
   1124	dr16(TxJumboFrames);
   1125	dr16(RxJumboFrames);
   1126	dr16(TCPCheckSumErrors);
   1127	dr16(UDPCheckSumErrors);
   1128	dr16(IPCheckSumErrors);
   1129	return &dev->stats;
   1130}
   1131
   1132static int
   1133clear_stats (struct net_device *dev)
   1134{
   1135	struct netdev_private *np = netdev_priv(dev);
   1136	void __iomem *ioaddr = np->ioaddr;
   1137#ifdef MEM_MAPPING
   1138	int i;
   1139#endif
   1140
   1141	/* All statistics registers need to be acknowledged,
   1142	   else statistic overflow could cause problems */
   1143	dr32(FramesRcvOk);
   1144	dr32(FramesXmtOk);
   1145	dr32(OctetRcvOk);
   1146	dr32(OctetXmtOk);
   1147
   1148	dr32(McstFramesRcvdOk);
   1149	dr32(SingleColFrames);
   1150	dr32(MultiColFrames);
   1151	dr32(LateCollisions);
   1152	/* detailed rx errors */
   1153	dr16(FrameTooLongErrors);
   1154	dr16(InRangeLengthErrors);
   1155	dr16(FramesCheckSeqErrors);
   1156	dr16(FramesLostRxErrors);
   1157
   1158	/* detailed tx errors */
   1159	dr16(FramesAbortXSColls);
   1160	dr16(CarrierSenseErrors);
   1161
   1162	/* Clear all other statistic register. */
   1163	dr32(McstOctetXmtOk);
   1164	dr16(BcstFramesXmtdOk);
   1165	dr32(McstFramesXmtdOk);
   1166	dr16(BcstFramesRcvdOk);
   1167	dr16(MacControlFramesRcvd);
   1168	dr32(McstOctetXmtOk);
   1169	dr32(BcstOctetXmtOk);
   1170	dr32(McstFramesXmtdOk);
   1171	dr32(FramesWDeferredXmt);
   1172	dr16(BcstFramesXmtdOk);
   1173	dr16(MacControlFramesXmtd);
   1174	dr16(FramesWEXDeferal);
   1175#ifdef MEM_MAPPING
   1176	for (i = 0x100; i <= 0x150; i += 4)
   1177		dr32(i);
   1178#endif
   1179	dr16(TxJumboFrames);
   1180	dr16(RxJumboFrames);
   1181	dr16(TCPCheckSumErrors);
   1182	dr16(UDPCheckSumErrors);
   1183	dr16(IPCheckSumErrors);
   1184	return 0;
   1185}
   1186
   1187static void
   1188set_multicast (struct net_device *dev)
   1189{
   1190	struct netdev_private *np = netdev_priv(dev);
   1191	void __iomem *ioaddr = np->ioaddr;
   1192	u32 hash_table[2];
   1193	u16 rx_mode = 0;
   1194
   1195	hash_table[0] = hash_table[1] = 0;
   1196	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
   1197	hash_table[1] |= 0x02000000;
   1198	if (dev->flags & IFF_PROMISC) {
   1199		/* Receive all frames promiscuously. */
   1200		rx_mode = ReceiveAllFrames;
   1201	} else if ((dev->flags & IFF_ALLMULTI) ||
   1202			(netdev_mc_count(dev) > multicast_filter_limit)) {
   1203		/* Receive broadcast and multicast frames */
   1204		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
   1205	} else if (!netdev_mc_empty(dev)) {
   1206		struct netdev_hw_addr *ha;
   1207		/* Receive broadcast frames and multicast frames filtering
   1208		   by Hashtable */
   1209		rx_mode =
   1210		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
   1211		netdev_for_each_mc_addr(ha, dev) {
   1212			int bit, index = 0;
   1213			int crc = ether_crc_le(ETH_ALEN, ha->addr);
   1214			/* The inverted high significant 6 bits of CRC are
   1215			   used as an index to hashtable */
   1216			for (bit = 0; bit < 6; bit++)
   1217				if (crc & (1 << (31 - bit)))
   1218					index |= (1 << bit);
   1219			hash_table[index / 32] |= (1 << (index % 32));
   1220		}
   1221	} else {
   1222		rx_mode = ReceiveBroadcast | ReceiveUnicast;
   1223	}
   1224	if (np->vlan) {
   1225		/* ReceiveVLANMatch field in ReceiveMode */
   1226		rx_mode |= ReceiveVLANMatch;
   1227	}
   1228
   1229	dw32(HashTable0, hash_table[0]);
   1230	dw32(HashTable1, hash_table[1]);
   1231	dw16(ReceiveMode, rx_mode);
   1232}
   1233
   1234static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
   1235{
   1236	struct netdev_private *np = netdev_priv(dev);
   1237
   1238	strlcpy(info->driver, "dl2k", sizeof(info->driver));
   1239	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
   1240}
   1241
   1242static int rio_get_link_ksettings(struct net_device *dev,
   1243				  struct ethtool_link_ksettings *cmd)
   1244{
   1245	struct netdev_private *np = netdev_priv(dev);
   1246	u32 supported, advertising;
   1247
   1248	if (np->phy_media) {
   1249		/* fiber device */
   1250		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
   1251		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
   1252		cmd->base.port = PORT_FIBRE;
   1253	} else {
   1254		/* copper device */
   1255		supported = SUPPORTED_10baseT_Half |
   1256			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
   1257			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
   1258			SUPPORTED_Autoneg | SUPPORTED_MII;
   1259		advertising = ADVERTISED_10baseT_Half |
   1260			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
   1261			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
   1262			ADVERTISED_Autoneg | ADVERTISED_MII;
   1263		cmd->base.port = PORT_MII;
   1264	}
   1265	if (np->link_status) {
   1266		cmd->base.speed = np->speed;
   1267		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
   1268	} else {
   1269		cmd->base.speed = SPEED_UNKNOWN;
   1270		cmd->base.duplex = DUPLEX_UNKNOWN;
   1271	}
   1272	if (np->an_enable)
   1273		cmd->base.autoneg = AUTONEG_ENABLE;
   1274	else
   1275		cmd->base.autoneg = AUTONEG_DISABLE;
   1276
   1277	cmd->base.phy_address = np->phy_addr;
   1278
   1279	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
   1280						supported);
   1281	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
   1282						advertising);
   1283
   1284	return 0;
   1285}
   1286
   1287static int rio_set_link_ksettings(struct net_device *dev,
   1288				  const struct ethtool_link_ksettings *cmd)
   1289{
   1290	struct netdev_private *np = netdev_priv(dev);
   1291	u32 speed = cmd->base.speed;
   1292	u8 duplex = cmd->base.duplex;
   1293
   1294	netif_carrier_off(dev);
   1295	if (cmd->base.autoneg == AUTONEG_ENABLE) {
   1296		if (np->an_enable) {
   1297			return 0;
   1298		} else {
   1299			np->an_enable = 1;
   1300			mii_set_media(dev);
   1301			return 0;
   1302		}
   1303	} else {
   1304		np->an_enable = 0;
   1305		if (np->speed == 1000) {
   1306			speed = SPEED_100;
   1307			duplex = DUPLEX_FULL;
   1308			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
   1309		}
   1310		switch (speed) {
   1311		case SPEED_10:
   1312			np->speed = 10;
   1313			np->full_duplex = (duplex == DUPLEX_FULL);
   1314			break;
   1315		case SPEED_100:
   1316			np->speed = 100;
   1317			np->full_duplex = (duplex == DUPLEX_FULL);
   1318			break;
   1319		case SPEED_1000: /* not supported */
   1320		default:
   1321			return -EINVAL;
   1322		}
   1323		mii_set_media(dev);
   1324	}
   1325	return 0;
   1326}
   1327
   1328static u32 rio_get_link(struct net_device *dev)
   1329{
   1330	struct netdev_private *np = netdev_priv(dev);
   1331	return np->link_status;
   1332}
   1333
   1334static const struct ethtool_ops ethtool_ops = {
   1335	.get_drvinfo = rio_get_drvinfo,
   1336	.get_link = rio_get_link,
   1337	.get_link_ksettings = rio_get_link_ksettings,
   1338	.set_link_ksettings = rio_set_link_ksettings,
   1339};
   1340
   1341static int
   1342rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
   1343{
   1344	int phy_addr;
   1345	struct netdev_private *np = netdev_priv(dev);
   1346	struct mii_ioctl_data *miidata = if_mii(rq);
   1347
   1348	phy_addr = np->phy_addr;
   1349	switch (cmd) {
   1350	case SIOCGMIIPHY:
   1351		miidata->phy_id = phy_addr;
   1352		break;
   1353	case SIOCGMIIREG:
   1354		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
   1355		break;
   1356	case SIOCSMIIREG:
   1357		if (!capable(CAP_NET_ADMIN))
   1358			return -EPERM;
   1359		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
   1360		break;
   1361	default:
   1362		return -EOPNOTSUPP;
   1363	}
   1364	return 0;
   1365}
   1366
   1367#define EEP_READ 0x0200
   1368#define EEP_BUSY 0x8000
   1369/* Read the EEPROM word */
   1370/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
   1371static int read_eeprom(struct netdev_private *np, int eep_addr)
   1372{
   1373	void __iomem *ioaddr = np->eeprom_addr;
   1374	int i = 1000;
   1375
   1376	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
   1377	while (i-- > 0) {
   1378		if (!(dr16(EepromCtrl) & EEP_BUSY))
   1379			return dr16(EepromData);
   1380	}
   1381	return 0;
   1382}
   1383
   1384enum phy_ctrl_bits {
   1385	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
   1386	MII_DUPLEX = 0x08,
   1387};
   1388
   1389#define mii_delay() dr8(PhyCtrl)
   1390static void
   1391mii_sendbit (struct net_device *dev, u32 data)
   1392{
   1393	struct netdev_private *np = netdev_priv(dev);
   1394	void __iomem *ioaddr = np->ioaddr;
   1395
   1396	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
   1397	dw8(PhyCtrl, data);
   1398	mii_delay ();
   1399	dw8(PhyCtrl, data | MII_CLK);
   1400	mii_delay ();
   1401}
   1402
   1403static int
   1404mii_getbit (struct net_device *dev)
   1405{
   1406	struct netdev_private *np = netdev_priv(dev);
   1407	void __iomem *ioaddr = np->ioaddr;
   1408	u8 data;
   1409
   1410	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
   1411	dw8(PhyCtrl, data);
   1412	mii_delay ();
   1413	dw8(PhyCtrl, data | MII_CLK);
   1414	mii_delay ();
   1415	return (dr8(PhyCtrl) >> 1) & 1;
   1416}
   1417
   1418static void
   1419mii_send_bits (struct net_device *dev, u32 data, int len)
   1420{
   1421	int i;
   1422
   1423	for (i = len - 1; i >= 0; i--) {
   1424		mii_sendbit (dev, data & (1 << i));
   1425	}
   1426}
   1427
   1428static int
   1429mii_read (struct net_device *dev, int phy_addr, int reg_num)
   1430{
   1431	u32 cmd;
   1432	int i;
   1433	u32 retval = 0;
   1434
   1435	/* Preamble */
   1436	mii_send_bits (dev, 0xffffffff, 32);
   1437	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
   1438	/* ST,OP = 0110'b for read operation */
   1439	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
   1440	mii_send_bits (dev, cmd, 14);
   1441	/* Turnaround */
   1442	if (mii_getbit (dev))
   1443		goto err_out;
   1444	/* Read data */
   1445	for (i = 0; i < 16; i++) {
   1446		retval |= mii_getbit (dev);
   1447		retval <<= 1;
   1448	}
   1449	/* End cycle */
   1450	mii_getbit (dev);
   1451	return (retval >> 1) & 0xffff;
   1452
   1453      err_out:
   1454	return 0;
   1455}
   1456static int
   1457mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
   1458{
   1459	u32 cmd;
   1460
   1461	/* Preamble */
   1462	mii_send_bits (dev, 0xffffffff, 32);
   1463	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
   1464	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
   1465	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
   1466	mii_send_bits (dev, cmd, 32);
   1467	/* End cycle */
   1468	mii_getbit (dev);
   1469	return 0;
   1470}
   1471static int
   1472mii_wait_link (struct net_device *dev, int wait)
   1473{
   1474	__u16 bmsr;
   1475	int phy_addr;
   1476	struct netdev_private *np;
   1477
   1478	np = netdev_priv(dev);
   1479	phy_addr = np->phy_addr;
   1480
   1481	do {
   1482		bmsr = mii_read (dev, phy_addr, MII_BMSR);
   1483		if (bmsr & BMSR_LSTATUS)
   1484			return 0;
   1485		mdelay (1);
   1486	} while (--wait > 0);
   1487	return -1;
   1488}
   1489static int
   1490mii_get_media (struct net_device *dev)
   1491{
   1492	__u16 negotiate;
   1493	__u16 bmsr;
   1494	__u16 mscr;
   1495	__u16 mssr;
   1496	int phy_addr;
   1497	struct netdev_private *np;
   1498
   1499	np = netdev_priv(dev);
   1500	phy_addr = np->phy_addr;
   1501
   1502	bmsr = mii_read (dev, phy_addr, MII_BMSR);
   1503	if (np->an_enable) {
   1504		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
   1505			/* Auto-Negotiation not completed */
   1506			return -1;
   1507		}
   1508		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
   1509			mii_read (dev, phy_addr, MII_LPA);
   1510		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
   1511		mssr = mii_read (dev, phy_addr, MII_STAT1000);
   1512		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
   1513			np->speed = 1000;
   1514			np->full_duplex = 1;
   1515			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
   1516		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
   1517			np->speed = 1000;
   1518			np->full_duplex = 0;
   1519			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
   1520		} else if (negotiate & ADVERTISE_100FULL) {
   1521			np->speed = 100;
   1522			np->full_duplex = 1;
   1523			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
   1524		} else if (negotiate & ADVERTISE_100HALF) {
   1525			np->speed = 100;
   1526			np->full_duplex = 0;
   1527			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
   1528		} else if (negotiate & ADVERTISE_10FULL) {
   1529			np->speed = 10;
   1530			np->full_duplex = 1;
   1531			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
   1532		} else if (negotiate & ADVERTISE_10HALF) {
   1533			np->speed = 10;
   1534			np->full_duplex = 0;
   1535			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
   1536		}
   1537		if (negotiate & ADVERTISE_PAUSE_CAP) {
   1538			np->tx_flow &= 1;
   1539			np->rx_flow &= 1;
   1540		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
   1541			np->tx_flow = 0;
   1542			np->rx_flow &= 1;
   1543		}
   1544		/* else tx_flow, rx_flow = user select  */
   1545	} else {
   1546		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
   1547		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
   1548		case BMCR_SPEED1000:
   1549			printk (KERN_INFO "Operating at 1000 Mbps, ");
   1550			break;
   1551		case BMCR_SPEED100:
   1552			printk (KERN_INFO "Operating at 100 Mbps, ");
   1553			break;
   1554		case 0:
   1555			printk (KERN_INFO "Operating at 10 Mbps, ");
   1556		}
   1557		if (bmcr & BMCR_FULLDPLX) {
   1558			printk (KERN_CONT "Full duplex\n");
   1559		} else {
   1560			printk (KERN_CONT "Half duplex\n");
   1561		}
   1562	}
   1563	if (np->tx_flow)
   1564		printk(KERN_INFO "Enable Tx Flow Control\n");
   1565	else
   1566		printk(KERN_INFO "Disable Tx Flow Control\n");
   1567	if (np->rx_flow)
   1568		printk(KERN_INFO "Enable Rx Flow Control\n");
   1569	else
   1570		printk(KERN_INFO "Disable Rx Flow Control\n");
   1571
   1572	return 0;
   1573}
   1574
   1575static int
   1576mii_set_media (struct net_device *dev)
   1577{
   1578	__u16 pscr;
   1579	__u16 bmcr;
   1580	__u16 bmsr;
   1581	__u16 anar;
   1582	int phy_addr;
   1583	struct netdev_private *np;
   1584	np = netdev_priv(dev);
   1585	phy_addr = np->phy_addr;
   1586
   1587	/* Does user set speed? */
   1588	if (np->an_enable) {
   1589		/* Advertise capabilities */
   1590		bmsr = mii_read (dev, phy_addr, MII_BMSR);
   1591		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
   1592			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
   1593			  ADVERTISE_100HALF | ADVERTISE_10HALF |
   1594			  ADVERTISE_100BASE4);
   1595		if (bmsr & BMSR_100FULL)
   1596			anar |= ADVERTISE_100FULL;
   1597		if (bmsr & BMSR_100HALF)
   1598			anar |= ADVERTISE_100HALF;
   1599		if (bmsr & BMSR_100BASE4)
   1600			anar |= ADVERTISE_100BASE4;
   1601		if (bmsr & BMSR_10FULL)
   1602			anar |= ADVERTISE_10FULL;
   1603		if (bmsr & BMSR_10HALF)
   1604			anar |= ADVERTISE_10HALF;
   1605		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
   1606		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
   1607
   1608		/* Enable Auto crossover */
   1609		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
   1610		pscr |= 3 << 5;	/* 11'b */
   1611		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
   1612
   1613		/* Soft reset PHY */
   1614		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
   1615		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
   1616		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1617		mdelay(1);
   1618	} else {
   1619		/* Force speed setting */
   1620		/* 1) Disable Auto crossover */
   1621		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
   1622		pscr &= ~(3 << 5);
   1623		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
   1624
   1625		/* 2) PHY Reset */
   1626		bmcr = mii_read (dev, phy_addr, MII_BMCR);
   1627		bmcr |= BMCR_RESET;
   1628		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1629
   1630		/* 3) Power Down */
   1631		bmcr = 0x1940;	/* must be 0x1940 */
   1632		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1633		mdelay (100);	/* wait a certain time */
   1634
   1635		/* 4) Advertise nothing */
   1636		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
   1637
   1638		/* 5) Set media and Power Up */
   1639		bmcr = BMCR_PDOWN;
   1640		if (np->speed == 100) {
   1641			bmcr |= BMCR_SPEED100;
   1642			printk (KERN_INFO "Manual 100 Mbps, ");
   1643		} else if (np->speed == 10) {
   1644			printk (KERN_INFO "Manual 10 Mbps, ");
   1645		}
   1646		if (np->full_duplex) {
   1647			bmcr |= BMCR_FULLDPLX;
   1648			printk (KERN_CONT "Full duplex\n");
   1649		} else {
   1650			printk (KERN_CONT "Half duplex\n");
   1651		}
   1652#if 0
   1653		/* Set 1000BaseT Master/Slave setting */
   1654		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
   1655		mscr |= MII_MSCR_CFG_ENABLE;
   1656		mscr &= ~MII_MSCR_CFG_VALUE = 0;
   1657#endif
   1658		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1659		mdelay(10);
   1660	}
   1661	return 0;
   1662}
   1663
   1664static int
   1665mii_get_media_pcs (struct net_device *dev)
   1666{
   1667	__u16 negotiate;
   1668	__u16 bmsr;
   1669	int phy_addr;
   1670	struct netdev_private *np;
   1671
   1672	np = netdev_priv(dev);
   1673	phy_addr = np->phy_addr;
   1674
   1675	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
   1676	if (np->an_enable) {
   1677		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
   1678			/* Auto-Negotiation not completed */
   1679			return -1;
   1680		}
   1681		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
   1682			mii_read (dev, phy_addr, PCS_ANLPAR);
   1683		np->speed = 1000;
   1684		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
   1685			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
   1686			np->full_duplex = 1;
   1687		} else {
   1688			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
   1689			np->full_duplex = 0;
   1690		}
   1691		if (negotiate & PCS_ANAR_PAUSE) {
   1692			np->tx_flow &= 1;
   1693			np->rx_flow &= 1;
   1694		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
   1695			np->tx_flow = 0;
   1696			np->rx_flow &= 1;
   1697		}
   1698		/* else tx_flow, rx_flow = user select  */
   1699	} else {
   1700		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
   1701		printk (KERN_INFO "Operating at 1000 Mbps, ");
   1702		if (bmcr & BMCR_FULLDPLX) {
   1703			printk (KERN_CONT "Full duplex\n");
   1704		} else {
   1705			printk (KERN_CONT "Half duplex\n");
   1706		}
   1707	}
   1708	if (np->tx_flow)
   1709		printk(KERN_INFO "Enable Tx Flow Control\n");
   1710	else
   1711		printk(KERN_INFO "Disable Tx Flow Control\n");
   1712	if (np->rx_flow)
   1713		printk(KERN_INFO "Enable Rx Flow Control\n");
   1714	else
   1715		printk(KERN_INFO "Disable Rx Flow Control\n");
   1716
   1717	return 0;
   1718}
   1719
   1720static int
   1721mii_set_media_pcs (struct net_device *dev)
   1722{
   1723	__u16 bmcr;
   1724	__u16 esr;
   1725	__u16 anar;
   1726	int phy_addr;
   1727	struct netdev_private *np;
   1728	np = netdev_priv(dev);
   1729	phy_addr = np->phy_addr;
   1730
   1731	/* Auto-Negotiation? */
   1732	if (np->an_enable) {
   1733		/* Advertise capabilities */
   1734		esr = mii_read (dev, phy_addr, PCS_ESR);
   1735		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
   1736			~PCS_ANAR_HALF_DUPLEX &
   1737			~PCS_ANAR_FULL_DUPLEX;
   1738		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
   1739			anar |= PCS_ANAR_HALF_DUPLEX;
   1740		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
   1741			anar |= PCS_ANAR_FULL_DUPLEX;
   1742		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
   1743		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
   1744
   1745		/* Soft reset PHY */
   1746		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
   1747		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
   1748		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1749		mdelay(1);
   1750	} else {
   1751		/* Force speed setting */
   1752		/* PHY Reset */
   1753		bmcr = BMCR_RESET;
   1754		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1755		mdelay(10);
   1756		if (np->full_duplex) {
   1757			bmcr = BMCR_FULLDPLX;
   1758			printk (KERN_INFO "Manual full duplex\n");
   1759		} else {
   1760			bmcr = 0;
   1761			printk (KERN_INFO "Manual half duplex\n");
   1762		}
   1763		mii_write (dev, phy_addr, MII_BMCR, bmcr);
   1764		mdelay(10);
   1765
   1766		/*  Advertise nothing */
   1767		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
   1768	}
   1769	return 0;
   1770}
   1771
   1772
   1773static int
   1774rio_close (struct net_device *dev)
   1775{
   1776	struct netdev_private *np = netdev_priv(dev);
   1777	struct pci_dev *pdev = np->pdev;
   1778
   1779	netif_stop_queue (dev);
   1780
   1781	rio_hw_stop(dev);
   1782
   1783	free_irq(pdev->irq, dev);
   1784	del_timer_sync (&np->timer);
   1785
   1786	free_list(dev);
   1787
   1788	return 0;
   1789}
   1790
   1791static void
   1792rio_remove1 (struct pci_dev *pdev)
   1793{
   1794	struct net_device *dev = pci_get_drvdata (pdev);
   1795
   1796	if (dev) {
   1797		struct netdev_private *np = netdev_priv(dev);
   1798
   1799		unregister_netdev (dev);
   1800		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
   1801				  np->rx_ring_dma);
   1802		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
   1803				  np->tx_ring_dma);
   1804#ifdef MEM_MAPPING
   1805		pci_iounmap(pdev, np->ioaddr);
   1806#endif
   1807		pci_iounmap(pdev, np->eeprom_addr);
   1808		free_netdev (dev);
   1809		pci_release_regions (pdev);
   1810		pci_disable_device (pdev);
   1811	}
   1812}
   1813
   1814#ifdef CONFIG_PM_SLEEP
   1815static int rio_suspend(struct device *device)
   1816{
   1817	struct net_device *dev = dev_get_drvdata(device);
   1818	struct netdev_private *np = netdev_priv(dev);
   1819
   1820	if (!netif_running(dev))
   1821		return 0;
   1822
   1823	netif_device_detach(dev);
   1824	del_timer_sync(&np->timer);
   1825	rio_hw_stop(dev);
   1826
   1827	return 0;
   1828}
   1829
   1830static int rio_resume(struct device *device)
   1831{
   1832	struct net_device *dev = dev_get_drvdata(device);
   1833	struct netdev_private *np = netdev_priv(dev);
   1834
   1835	if (!netif_running(dev))
   1836		return 0;
   1837
   1838	rio_reset_ring(np);
   1839	rio_hw_init(dev);
   1840	np->timer.expires = jiffies + 1 * HZ;
   1841	add_timer(&np->timer);
   1842	netif_device_attach(dev);
   1843	dl2k_enable_int(np);
   1844
   1845	return 0;
   1846}
   1847
   1848static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
   1849#define RIO_PM_OPS    (&rio_pm_ops)
   1850
   1851#else
   1852
   1853#define RIO_PM_OPS	NULL
   1854
   1855#endif /* CONFIG_PM_SLEEP */
   1856
   1857static struct pci_driver rio_driver = {
   1858	.name		= "dl2k",
   1859	.id_table	= rio_pci_tbl,
   1860	.probe		= rio_probe1,
   1861	.remove		= rio_remove1,
   1862	.driver.pm	= RIO_PM_OPS,
   1863};
   1864
   1865module_pci_driver(rio_driver);
   1866
   1867/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */