cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fec_ptp.c (17933B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Fast Ethernet Controller (ENET) PTP driver for MX6x.
      4 *
      5 * Copyright (C) 2012 Freescale Semiconductor, Inc.
      6 */
      7
      8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      9
     10#include <linux/module.h>
     11#include <linux/kernel.h>
     12#include <linux/string.h>
     13#include <linux/ptrace.h>
     14#include <linux/errno.h>
     15#include <linux/ioport.h>
     16#include <linux/slab.h>
     17#include <linux/interrupt.h>
     18#include <linux/pci.h>
     19#include <linux/delay.h>
     20#include <linux/netdevice.h>
     21#include <linux/etherdevice.h>
     22#include <linux/skbuff.h>
     23#include <linux/spinlock.h>
     24#include <linux/workqueue.h>
     25#include <linux/bitops.h>
     26#include <linux/io.h>
     27#include <linux/irq.h>
     28#include <linux/clk.h>
     29#include <linux/platform_device.h>
     30#include <linux/phy.h>
     31#include <linux/fec.h>
     32#include <linux/of.h>
     33#include <linux/of_device.h>
     34#include <linux/of_gpio.h>
     35#include <linux/of_net.h>
     36
     37#include "fec.h"
     38
     39/* FEC 1588 register bits */
     40#define FEC_T_CTRL_SLAVE                0x00002000
     41#define FEC_T_CTRL_CAPTURE              0x00000800
     42#define FEC_T_CTRL_RESTART              0x00000200
     43#define FEC_T_CTRL_PERIOD_RST           0x00000030
     44#define FEC_T_CTRL_PERIOD_EN		0x00000010
     45#define FEC_T_CTRL_ENABLE               0x00000001
     46
     47#define FEC_T_INC_MASK                  0x0000007f
     48#define FEC_T_INC_OFFSET                0
     49#define FEC_T_INC_CORR_MASK             0x00007f00
     50#define FEC_T_INC_CORR_OFFSET           8
     51
     52#define FEC_T_CTRL_PINPER		0x00000080
     53#define FEC_T_TF0_MASK			0x00000001
     54#define FEC_T_TF0_OFFSET		0
     55#define FEC_T_TF1_MASK			0x00000002
     56#define FEC_T_TF1_OFFSET		1
     57#define FEC_T_TF2_MASK			0x00000004
     58#define FEC_T_TF2_OFFSET		2
     59#define FEC_T_TF3_MASK			0x00000008
     60#define FEC_T_TF3_OFFSET		3
     61#define FEC_T_TDRE_MASK			0x00000001
     62#define FEC_T_TDRE_OFFSET		0
     63#define FEC_T_TMODE_MASK		0x0000003C
     64#define FEC_T_TMODE_OFFSET		2
     65#define FEC_T_TIE_MASK			0x00000040
     66#define FEC_T_TIE_OFFSET		6
     67#define FEC_T_TF_MASK			0x00000080
     68#define FEC_T_TF_OFFSET			7
     69
     70#define FEC_ATIME_CTRL		0x400
     71#define FEC_ATIME		0x404
     72#define FEC_ATIME_EVT_OFFSET	0x408
     73#define FEC_ATIME_EVT_PERIOD	0x40c
     74#define FEC_ATIME_CORR		0x410
     75#define FEC_ATIME_INC		0x414
     76#define FEC_TS_TIMESTAMP	0x418
     77
     78#define FEC_TGSR		0x604
     79#define FEC_TCSR(n)		(0x608 + n * 0x08)
     80#define FEC_TCCR(n)		(0x60C + n * 0x08)
     81#define MAX_TIMER_CHANNEL	3
     82#define FEC_TMODE_TOGGLE	0x05
     83#define FEC_HIGH_PULSE		0x0F
     84
     85#define FEC_CC_MULT	(1 << 31)
     86#define FEC_COUNTER_PERIOD	(1 << 31)
     87#define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
     88#define FEC_CHANNLE_0		0
     89#define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
     90
     91/**
     92 * fec_ptp_enable_pps
     93 * @fep: the fec_enet_private structure handle
     94 * @enable: enable the channel pps output
     95 *
     96 * This function enble the PPS ouput on the timer channel.
     97 */
     98static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
     99{
    100	unsigned long flags;
    101	u32 val, tempval;
    102	struct timespec64 ts;
    103	u64 ns;
    104
    105	if (fep->pps_enable == enable)
    106		return 0;
    107
    108	fep->pps_channel = DEFAULT_PPS_CHANNEL;
    109	fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
    110
    111	spin_lock_irqsave(&fep->tmreg_lock, flags);
    112
    113	if (enable) {
    114		/* clear capture or output compare interrupt status if have.
    115		 */
    116		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
    117
    118		/* It is recommended to double check the TMODE field in the
    119		 * TCSR register to be cleared before the first compare counter
    120		 * is written into TCCR register. Just add a double check.
    121		 */
    122		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
    123		do {
    124			val &= ~(FEC_T_TMODE_MASK);
    125			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
    126			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
    127		} while (val & FEC_T_TMODE_MASK);
    128
    129		/* Dummy read counter to update the counter */
    130		timecounter_read(&fep->tc);
    131		/* We want to find the first compare event in the next
    132		 * second point. So we need to know what the ptp time
    133		 * is now and how many nanoseconds is ahead to get next second.
    134		 * The remaining nanosecond ahead before the next second would be
    135		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
    136		 * to current timer would be next second.
    137		 */
    138		tempval = readl(fep->hwp + FEC_ATIME_CTRL);
    139		tempval |= FEC_T_CTRL_CAPTURE;
    140		writel(tempval, fep->hwp + FEC_ATIME_CTRL);
    141
    142		tempval = readl(fep->hwp + FEC_ATIME);
    143		/* Convert the ptp local counter to 1588 timestamp */
    144		ns = timecounter_cyc2time(&fep->tc, tempval);
    145		ts = ns_to_timespec64(ns);
    146
    147		/* The tempval is  less than 3 seconds, and  so val is less than
    148		 * 4 seconds. No overflow for 32bit calculation.
    149		 */
    150		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
    151
    152		/* Need to consider the situation that the current time is
    153		 * very close to the second point, which means NSEC_PER_SEC
    154		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
    155		 * is still running when we calculate the first compare event, it is
    156		 * possible that the remaining nanoseonds run out before the compare
    157		 * counter is calculated and written into TCCR register. To avoid
    158		 * this possibility, we will set the compare event to be the next
    159		 * of next second. The current setting is 31-bit timer and wrap
    160		 * around over 2 seconds. So it is okay to set the next of next
    161		 * seond for the timer.
    162		 */
    163		val += NSEC_PER_SEC;
    164
    165		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
    166		 * ptp counter, which maybe cause 32-bit wrap. Since the
    167		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
    168		 * We can ensure the wrap will not cause issue. If the offset
    169		 * is bigger than fep->cc.mask would be a error.
    170		 */
    171		val &= fep->cc.mask;
    172		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
    173
    174		/* Calculate the second the compare event timestamp */
    175		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
    176
    177		/* * Enable compare event when overflow */
    178		val = readl(fep->hwp + FEC_ATIME_CTRL);
    179		val |= FEC_T_CTRL_PINPER;
    180		writel(val, fep->hwp + FEC_ATIME_CTRL);
    181
    182		/* Compare channel setting. */
    183		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
    184		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
    185		val &= ~(1 << FEC_T_TDRE_OFFSET);
    186		val &= ~(FEC_T_TMODE_MASK);
    187		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
    188		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
    189
    190		/* Write the second compare event timestamp and calculate
    191		 * the third timestamp. Refer the TCCR register detail in the spec.
    192		 */
    193		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
    194		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
    195	} else {
    196		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
    197	}
    198
    199	fep->pps_enable = enable;
    200	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    201
    202	return 0;
    203}
    204
    205/**
    206 * fec_ptp_read - read raw cycle counter (to be used by time counter)
    207 * @cc: the cyclecounter structure
    208 *
    209 * this function reads the cyclecounter registers and is called by the
    210 * cyclecounter structure used to construct a ns counter from the
    211 * arbitrary fixed point registers
    212 */
    213static u64 fec_ptp_read(const struct cyclecounter *cc)
    214{
    215	struct fec_enet_private *fep =
    216		container_of(cc, struct fec_enet_private, cc);
    217	u32 tempval;
    218
    219	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
    220	tempval |= FEC_T_CTRL_CAPTURE;
    221	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
    222
    223	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
    224		udelay(1);
    225
    226	return readl(fep->hwp + FEC_ATIME);
    227}
    228
    229/**
    230 * fec_ptp_start_cyclecounter - create the cycle counter from hw
    231 * @ndev: network device
    232 *
    233 * this function initializes the timecounter and cyclecounter
    234 * structures for use in generated a ns counter from the arbitrary
    235 * fixed point cycles registers in the hardware.
    236 */
    237void fec_ptp_start_cyclecounter(struct net_device *ndev)
    238{
    239	struct fec_enet_private *fep = netdev_priv(ndev);
    240	unsigned long flags;
    241	int inc;
    242
    243	inc = 1000000000 / fep->cycle_speed;
    244
    245	/* grab the ptp lock */
    246	spin_lock_irqsave(&fep->tmreg_lock, flags);
    247
    248	/* 1ns counter */
    249	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
    250
    251	/* use 31-bit timer counter */
    252	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
    253
    254	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
    255		fep->hwp + FEC_ATIME_CTRL);
    256
    257	memset(&fep->cc, 0, sizeof(fep->cc));
    258	fep->cc.read = fec_ptp_read;
    259	fep->cc.mask = CLOCKSOURCE_MASK(31);
    260	fep->cc.shift = 31;
    261	fep->cc.mult = FEC_CC_MULT;
    262
    263	/* reset the ns time counter */
    264	timecounter_init(&fep->tc, &fep->cc, 0);
    265
    266	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    267}
    268
    269/**
    270 * fec_ptp_adjfreq - adjust ptp cycle frequency
    271 * @ptp: the ptp clock structure
    272 * @ppb: parts per billion adjustment from base
    273 *
    274 * Adjust the frequency of the ptp cycle counter by the
    275 * indicated ppb from the base frequency.
    276 *
    277 * Because ENET hardware frequency adjust is complex,
    278 * using software method to do that.
    279 */
    280static int fec_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
    281{
    282	unsigned long flags;
    283	int neg_adj = 0;
    284	u32 i, tmp;
    285	u32 corr_inc, corr_period;
    286	u32 corr_ns;
    287	u64 lhs, rhs;
    288
    289	struct fec_enet_private *fep =
    290	    container_of(ptp, struct fec_enet_private, ptp_caps);
    291
    292	if (ppb == 0)
    293		return 0;
    294
    295	if (ppb < 0) {
    296		ppb = -ppb;
    297		neg_adj = 1;
    298	}
    299
    300	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
    301	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
    302	 * meet adjustment requirement.
    303	 */
    304	lhs = NSEC_PER_SEC;
    305	rhs = (u64)ppb * (u64)fep->ptp_inc;
    306	for (i = 1; i <= fep->ptp_inc; i++) {
    307		if (lhs >= rhs) {
    308			corr_inc = i;
    309			corr_period = div_u64(lhs, rhs);
    310			break;
    311		}
    312		lhs += NSEC_PER_SEC;
    313	}
    314	/* Not found? Set it to high value - double speed
    315	 * correct in every clock step.
    316	 */
    317	if (i > fep->ptp_inc) {
    318		corr_inc = fep->ptp_inc;
    319		corr_period = 1;
    320	}
    321
    322	if (neg_adj)
    323		corr_ns = fep->ptp_inc - corr_inc;
    324	else
    325		corr_ns = fep->ptp_inc + corr_inc;
    326
    327	spin_lock_irqsave(&fep->tmreg_lock, flags);
    328
    329	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
    330	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
    331	writel(tmp, fep->hwp + FEC_ATIME_INC);
    332	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
    333	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
    334	/* dummy read to update the timer. */
    335	timecounter_read(&fep->tc);
    336
    337	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    338
    339	return 0;
    340}
    341
    342/**
    343 * fec_ptp_adjtime
    344 * @ptp: the ptp clock structure
    345 * @delta: offset to adjust the cycle counter by
    346 *
    347 * adjust the timer by resetting the timecounter structure.
    348 */
    349static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
    350{
    351	struct fec_enet_private *fep =
    352	    container_of(ptp, struct fec_enet_private, ptp_caps);
    353	unsigned long flags;
    354
    355	spin_lock_irqsave(&fep->tmreg_lock, flags);
    356	timecounter_adjtime(&fep->tc, delta);
    357	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    358
    359	return 0;
    360}
    361
    362/**
    363 * fec_ptp_gettime
    364 * @ptp: the ptp clock structure
    365 * @ts: timespec structure to hold the current time value
    366 *
    367 * read the timecounter and return the correct value on ns,
    368 * after converting it into a struct timespec.
    369 */
    370static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
    371{
    372	struct fec_enet_private *adapter =
    373	    container_of(ptp, struct fec_enet_private, ptp_caps);
    374	u64 ns;
    375	unsigned long flags;
    376
    377	mutex_lock(&adapter->ptp_clk_mutex);
    378	/* Check the ptp clock */
    379	if (!adapter->ptp_clk_on) {
    380		mutex_unlock(&adapter->ptp_clk_mutex);
    381		return -EINVAL;
    382	}
    383	spin_lock_irqsave(&adapter->tmreg_lock, flags);
    384	ns = timecounter_read(&adapter->tc);
    385	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
    386	mutex_unlock(&adapter->ptp_clk_mutex);
    387
    388	*ts = ns_to_timespec64(ns);
    389
    390	return 0;
    391}
    392
    393/**
    394 * fec_ptp_settime
    395 * @ptp: the ptp clock structure
    396 * @ts: the timespec containing the new time for the cycle counter
    397 *
    398 * reset the timecounter to use a new base value instead of the kernel
    399 * wall timer value.
    400 */
    401static int fec_ptp_settime(struct ptp_clock_info *ptp,
    402			   const struct timespec64 *ts)
    403{
    404	struct fec_enet_private *fep =
    405	    container_of(ptp, struct fec_enet_private, ptp_caps);
    406
    407	u64 ns;
    408	unsigned long flags;
    409	u32 counter;
    410
    411	mutex_lock(&fep->ptp_clk_mutex);
    412	/* Check the ptp clock */
    413	if (!fep->ptp_clk_on) {
    414		mutex_unlock(&fep->ptp_clk_mutex);
    415		return -EINVAL;
    416	}
    417
    418	ns = timespec64_to_ns(ts);
    419	/* Get the timer value based on timestamp.
    420	 * Update the counter with the masked value.
    421	 */
    422	counter = ns & fep->cc.mask;
    423
    424	spin_lock_irqsave(&fep->tmreg_lock, flags);
    425	writel(counter, fep->hwp + FEC_ATIME);
    426	timecounter_init(&fep->tc, &fep->cc, ns);
    427	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    428	mutex_unlock(&fep->ptp_clk_mutex);
    429	return 0;
    430}
    431
    432/**
    433 * fec_ptp_enable
    434 * @ptp: the ptp clock structure
    435 * @rq: the requested feature to change
    436 * @on: whether to enable or disable the feature
    437 *
    438 */
    439static int fec_ptp_enable(struct ptp_clock_info *ptp,
    440			  struct ptp_clock_request *rq, int on)
    441{
    442	struct fec_enet_private *fep =
    443	    container_of(ptp, struct fec_enet_private, ptp_caps);
    444	int ret = 0;
    445
    446	if (rq->type == PTP_CLK_REQ_PPS) {
    447		ret = fec_ptp_enable_pps(fep, on);
    448
    449		return ret;
    450	}
    451	return -EOPNOTSUPP;
    452}
    453
    454/**
    455 * fec_ptp_disable_hwts - disable hardware time stamping
    456 * @ndev: pointer to net_device
    457 */
    458void fec_ptp_disable_hwts(struct net_device *ndev)
    459{
    460	struct fec_enet_private *fep = netdev_priv(ndev);
    461
    462	fep->hwts_tx_en = 0;
    463	fep->hwts_rx_en = 0;
    464}
    465
    466int fec_ptp_set(struct net_device *ndev, struct ifreq *ifr)
    467{
    468	struct fec_enet_private *fep = netdev_priv(ndev);
    469
    470	struct hwtstamp_config config;
    471
    472	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
    473		return -EFAULT;
    474
    475	switch (config.tx_type) {
    476	case HWTSTAMP_TX_OFF:
    477		fep->hwts_tx_en = 0;
    478		break;
    479	case HWTSTAMP_TX_ON:
    480		fep->hwts_tx_en = 1;
    481		break;
    482	default:
    483		return -ERANGE;
    484	}
    485
    486	switch (config.rx_filter) {
    487	case HWTSTAMP_FILTER_NONE:
    488		fep->hwts_rx_en = 0;
    489		break;
    490
    491	default:
    492		fep->hwts_rx_en = 1;
    493		config.rx_filter = HWTSTAMP_FILTER_ALL;
    494		break;
    495	}
    496
    497	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
    498	    -EFAULT : 0;
    499}
    500
    501int fec_ptp_get(struct net_device *ndev, struct ifreq *ifr)
    502{
    503	struct fec_enet_private *fep = netdev_priv(ndev);
    504	struct hwtstamp_config config;
    505
    506	config.flags = 0;
    507	config.tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
    508	config.rx_filter = (fep->hwts_rx_en ?
    509			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
    510
    511	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
    512		-EFAULT : 0;
    513}
    514
    515/*
    516 * fec_time_keep - call timecounter_read every second to avoid timer overrun
    517 *                 because ENET just support 32bit counter, will timeout in 4s
    518 */
    519static void fec_time_keep(struct work_struct *work)
    520{
    521	struct delayed_work *dwork = to_delayed_work(work);
    522	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
    523	unsigned long flags;
    524
    525	mutex_lock(&fep->ptp_clk_mutex);
    526	if (fep->ptp_clk_on) {
    527		spin_lock_irqsave(&fep->tmreg_lock, flags);
    528		timecounter_read(&fep->tc);
    529		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
    530	}
    531	mutex_unlock(&fep->ptp_clk_mutex);
    532
    533	schedule_delayed_work(&fep->time_keep, HZ);
    534}
    535
    536/* This function checks the pps event and reloads the timer compare counter. */
    537static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
    538{
    539	struct net_device *ndev = dev_id;
    540	struct fec_enet_private *fep = netdev_priv(ndev);
    541	u32 val;
    542	u8 channel = fep->pps_channel;
    543	struct ptp_clock_event event;
    544
    545	val = readl(fep->hwp + FEC_TCSR(channel));
    546	if (val & FEC_T_TF_MASK) {
    547		/* Write the next next compare(not the next according the spec)
    548		 * value to the register
    549		 */
    550		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
    551		do {
    552			writel(val, fep->hwp + FEC_TCSR(channel));
    553		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
    554
    555		/* Update the counter; */
    556		fep->next_counter = (fep->next_counter + fep->reload_period) &
    557				fep->cc.mask;
    558
    559		event.type = PTP_CLOCK_PPS;
    560		ptp_clock_event(fep->ptp_clock, &event);
    561		return IRQ_HANDLED;
    562	}
    563
    564	return IRQ_NONE;
    565}
    566
    567/**
    568 * fec_ptp_init
    569 * @pdev: The FEC network adapter
    570 * @irq_idx: the interrupt index
    571 *
    572 * This function performs the required steps for enabling ptp
    573 * support. If ptp support has already been loaded it simply calls the
    574 * cyclecounter init routine and exits.
    575 */
    576
    577void fec_ptp_init(struct platform_device *pdev, int irq_idx)
    578{
    579	struct net_device *ndev = platform_get_drvdata(pdev);
    580	struct fec_enet_private *fep = netdev_priv(ndev);
    581	int irq;
    582	int ret;
    583
    584	fep->ptp_caps.owner = THIS_MODULE;
    585	strlcpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
    586
    587	fep->ptp_caps.max_adj = 250000000;
    588	fep->ptp_caps.n_alarm = 0;
    589	fep->ptp_caps.n_ext_ts = 0;
    590	fep->ptp_caps.n_per_out = 0;
    591	fep->ptp_caps.n_pins = 0;
    592	fep->ptp_caps.pps = 1;
    593	fep->ptp_caps.adjfreq = fec_ptp_adjfreq;
    594	fep->ptp_caps.adjtime = fec_ptp_adjtime;
    595	fep->ptp_caps.gettime64 = fec_ptp_gettime;
    596	fep->ptp_caps.settime64 = fec_ptp_settime;
    597	fep->ptp_caps.enable = fec_ptp_enable;
    598
    599	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
    600	if (!fep->cycle_speed) {
    601		fep->cycle_speed = NSEC_PER_SEC;
    602		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
    603	}
    604	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
    605
    606	spin_lock_init(&fep->tmreg_lock);
    607
    608	fec_ptp_start_cyclecounter(ndev);
    609
    610	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
    611
    612	irq = platform_get_irq_byname_optional(pdev, "pps");
    613	if (irq < 0)
    614		irq = platform_get_irq_optional(pdev, irq_idx);
    615	/* Failure to get an irq is not fatal,
    616	 * only the PTP_CLOCK_PPS clock events should stop
    617	 */
    618	if (irq >= 0) {
    619		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
    620				       0, pdev->name, ndev);
    621		if (ret < 0)
    622			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
    623				 ret);
    624	}
    625
    626	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
    627	if (IS_ERR(fep->ptp_clock)) {
    628		fep->ptp_clock = NULL;
    629		dev_err(&pdev->dev, "ptp_clock_register failed\n");
    630	}
    631
    632	schedule_delayed_work(&fep->time_keep, HZ);
    633}
    634
    635void fec_ptp_stop(struct platform_device *pdev)
    636{
    637	struct net_device *ndev = platform_get_drvdata(pdev);
    638	struct fec_enet_private *fep = netdev_priv(ndev);
    639
    640	cancel_delayed_work_sync(&fep->time_keep);
    641	if (fep->ptp_clock)
    642		ptp_clock_unregister(fep->ptp_clock);
    643}