cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fsl_pq_mdio.c (13947B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
      4 * Provides Bus interface for MIIM regs
      5 *
      6 * Author: Andy Fleming <afleming@freescale.com>
      7 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
      8 *
      9 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
     10 *
     11 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
     12 */
     13
     14#include <linux/kernel.h>
     15#include <linux/string.h>
     16#include <linux/errno.h>
     17#include <linux/slab.h>
     18#include <linux/delay.h>
     19#include <linux/module.h>
     20#include <linux/mii.h>
     21#include <linux/of_address.h>
     22#include <linux/of_mdio.h>
     23#include <linux/of_device.h>
     24
     25#include <asm/io.h>
     26#if IS_ENABLED(CONFIG_UCC_GETH)
     27#include <soc/fsl/qe/ucc.h>
     28#endif
     29
     30#include "gianfar.h"
     31
     32#define MIIMIND_BUSY		0x00000001
     33#define MIIMIND_NOTVALID	0x00000004
     34#define MIIMCFG_INIT_VALUE	0x00000007
     35#define MIIMCFG_RESET		0x80000000
     36
     37#define MII_READ_COMMAND	0x00000001
     38
     39struct fsl_pq_mii {
     40	u32 miimcfg;	/* MII management configuration reg */
     41	u32 miimcom;	/* MII management command reg */
     42	u32 miimadd;	/* MII management address reg */
     43	u32 miimcon;	/* MII management control reg */
     44	u32 miimstat;	/* MII management status reg */
     45	u32 miimind;	/* MII management indication reg */
     46};
     47
     48struct fsl_pq_mdio {
     49	u8 res1[16];
     50	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
     51	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
     52	u8 res2[4];
     53	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
     54	u8 res3[1280];
     55	struct fsl_pq_mii mii;
     56	u8 res4[28];
     57	u32 utbipar;	/* TBI phy address reg (only on UCC) */
     58	u8 res5[2728];
     59} __packed;
     60
     61/* Number of microseconds to wait for an MII register to respond */
     62#define MII_TIMEOUT	1000
     63
     64struct fsl_pq_mdio_priv {
     65	void __iomem *map;
     66	struct fsl_pq_mii __iomem *regs;
     67};
     68
     69/*
     70 * Per-device-type data.  Each type of device tree node that we support gets
     71 * one of these.
     72 *
     73 * @mii_offset: the offset of the MII registers within the memory map of the
     74 * node.  Some nodes define only the MII registers, and some define the whole
     75 * MAC (which includes the MII registers).
     76 *
     77 * @get_tbipa: determines the address of the TBIPA register
     78 *
     79 * @ucc_configure: a special function for extra QE configuration
     80 */
     81struct fsl_pq_mdio_data {
     82	unsigned int mii_offset;	/* offset of the MII registers */
     83	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
     84	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
     85};
     86
     87/*
     88 * Write value to the PHY at mii_id at register regnum, on the bus attached
     89 * to the local interface, which may be different from the generic mdio bus
     90 * (tied to a single interface), waiting until the write is done before
     91 * returning. This is helpful in programming interfaces like the TBI which
     92 * control interfaces like onchip SERDES and are always tied to the local
     93 * mdio pins, which may not be the same as system mdio bus, used for
     94 * controlling the external PHYs, for example.
     95 */
     96static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
     97		u16 value)
     98{
     99	struct fsl_pq_mdio_priv *priv = bus->priv;
    100	struct fsl_pq_mii __iomem *regs = priv->regs;
    101	unsigned int timeout;
    102
    103	/* Set the PHY address and the register address we want to write */
    104	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
    105
    106	/* Write out the value we want */
    107	iowrite32be(value, &regs->miimcon);
    108
    109	/* Wait for the transaction to finish */
    110	timeout = MII_TIMEOUT;
    111	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
    112		cpu_relax();
    113		timeout--;
    114	}
    115
    116	return timeout ? 0 : -ETIMEDOUT;
    117}
    118
    119/*
    120 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
    121 * Clears miimcom first.
    122 *
    123 * All PHY operation done on the bus attached to the local interface, which
    124 * may be different from the generic mdio bus.  This is helpful in programming
    125 * interfaces like the TBI which, in turn, control interfaces like on-chip
    126 * SERDES and are always tied to the local mdio pins, which may not be the
    127 * same as system mdio bus, used for controlling the external PHYs, for eg.
    128 */
    129static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
    130{
    131	struct fsl_pq_mdio_priv *priv = bus->priv;
    132	struct fsl_pq_mii __iomem *regs = priv->regs;
    133	unsigned int timeout;
    134	u16 value;
    135
    136	/* Set the PHY address and the register address we want to read */
    137	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
    138
    139	/* Clear miimcom, and then initiate a read */
    140	iowrite32be(0, &regs->miimcom);
    141	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
    142
    143	/* Wait for the transaction to finish, normally less than 100us */
    144	timeout = MII_TIMEOUT;
    145	while ((ioread32be(&regs->miimind) &
    146	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
    147		cpu_relax();
    148		timeout--;
    149	}
    150
    151	if (!timeout)
    152		return -ETIMEDOUT;
    153
    154	/* Grab the value of the register from miimstat */
    155	value = ioread32be(&regs->miimstat);
    156
    157	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
    158	return value;
    159}
    160
    161/* Reset the MIIM registers, and wait for the bus to free */
    162static int fsl_pq_mdio_reset(struct mii_bus *bus)
    163{
    164	struct fsl_pq_mdio_priv *priv = bus->priv;
    165	struct fsl_pq_mii __iomem *regs = priv->regs;
    166	unsigned int timeout;
    167
    168	mutex_lock(&bus->mdio_lock);
    169
    170	/* Reset the management interface */
    171	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
    172
    173	/* Setup the MII Mgmt clock speed */
    174	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
    175
    176	/* Wait until the bus is free */
    177	timeout = MII_TIMEOUT;
    178	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
    179		cpu_relax();
    180		timeout--;
    181	}
    182
    183	mutex_unlock(&bus->mdio_lock);
    184
    185	if (!timeout) {
    186		dev_err(&bus->dev, "timeout waiting for MII bus\n");
    187		return -EBUSY;
    188	}
    189
    190	return 0;
    191}
    192
    193#if IS_ENABLED(CONFIG_GIANFAR)
    194/*
    195 * Return the TBIPA address, starting from the address
    196 * of the mapped GFAR MDIO registers (struct gfar)
    197 * This is mildly evil, but so is our hardware for doing this.
    198 * Also, we have to cast back to struct gfar because of
    199 * definition weirdness done in gianfar.h.
    200 */
    201static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
    202{
    203	struct gfar __iomem *enet_regs = p;
    204
    205	return &enet_regs->tbipa;
    206}
    207
    208/*
    209 * Return the TBIPA address, starting from the address
    210 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
    211 */
    212static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
    213{
    214	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
    215}
    216
    217/*
    218 * Return the TBIPAR address for an eTSEC2 node
    219 */
    220static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
    221{
    222	return p;
    223}
    224#endif
    225
    226#if IS_ENABLED(CONFIG_UCC_GETH)
    227/*
    228 * Return the TBIPAR address for a QE MDIO node, starting from the address
    229 * of the mapped MII registers (struct fsl_pq_mii)
    230 */
    231static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
    232{
    233	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
    234
    235	return &mdio->utbipar;
    236}
    237
    238/*
    239 * Find the UCC node that controls the given MDIO node
    240 *
    241 * For some reason, the QE MDIO nodes are not children of the UCC devices
    242 * that control them.  Therefore, we need to scan all UCC nodes looking for
    243 * the one that encompases the given MDIO node.  We do this by comparing
    244 * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
    245 * passed, and the correct UCC node will cover the entire address range.
    246 *
    247 * This assumes that there is only one QE MDIO node in the entire device tree.
    248 */
    249static void ucc_configure(phys_addr_t start, phys_addr_t end)
    250{
    251	static bool found_mii_master;
    252	struct device_node *np = NULL;
    253
    254	if (found_mii_master)
    255		return;
    256
    257	for_each_compatible_node(np, NULL, "ucc_geth") {
    258		struct resource res;
    259		const uint32_t *iprop;
    260		uint32_t id;
    261		int ret;
    262
    263		ret = of_address_to_resource(np, 0, &res);
    264		if (ret < 0) {
    265			pr_debug("fsl-pq-mdio: no address range in node %pOF\n",
    266				 np);
    267			continue;
    268		}
    269
    270		/* if our mdio regs fall within this UCC regs range */
    271		if ((start < res.start) || (end > res.end))
    272			continue;
    273
    274		iprop = of_get_property(np, "cell-index", NULL);
    275		if (!iprop) {
    276			iprop = of_get_property(np, "device-id", NULL);
    277			if (!iprop) {
    278				pr_debug("fsl-pq-mdio: no UCC ID in node %pOF\n",
    279					 np);
    280				continue;
    281			}
    282		}
    283
    284		id = be32_to_cpup(iprop);
    285
    286		/*
    287		 * cell-index and device-id for QE nodes are
    288		 * numbered from 1, not 0.
    289		 */
    290		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
    291			pr_debug("fsl-pq-mdio: invalid UCC ID in node %pOF\n",
    292				 np);
    293			continue;
    294		}
    295
    296		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
    297		found_mii_master = true;
    298	}
    299}
    300
    301#endif
    302
    303static const struct of_device_id fsl_pq_mdio_match[] = {
    304#if IS_ENABLED(CONFIG_GIANFAR)
    305	{
    306		.compatible = "fsl,gianfar-tbi",
    307		.data = &(struct fsl_pq_mdio_data) {
    308			.mii_offset = 0,
    309			.get_tbipa = get_gfar_tbipa_from_mii,
    310		},
    311	},
    312	{
    313		.compatible = "fsl,gianfar-mdio",
    314		.data = &(struct fsl_pq_mdio_data) {
    315			.mii_offset = 0,
    316			.get_tbipa = get_gfar_tbipa_from_mii,
    317		},
    318	},
    319	{
    320		.type = "mdio",
    321		.compatible = "gianfar",
    322		.data = &(struct fsl_pq_mdio_data) {
    323			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
    324			.get_tbipa = get_gfar_tbipa_from_mdio,
    325		},
    326	},
    327	{
    328		.compatible = "fsl,etsec2-tbi",
    329		.data = &(struct fsl_pq_mdio_data) {
    330			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
    331			.get_tbipa = get_etsec_tbipa,
    332		},
    333	},
    334	{
    335		.compatible = "fsl,etsec2-mdio",
    336		.data = &(struct fsl_pq_mdio_data) {
    337			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
    338			.get_tbipa = get_etsec_tbipa,
    339		},
    340	},
    341#endif
    342#if IS_ENABLED(CONFIG_UCC_GETH)
    343	{
    344		.compatible = "fsl,ucc-mdio",
    345		.data = &(struct fsl_pq_mdio_data) {
    346			.mii_offset = 0,
    347			.get_tbipa = get_ucc_tbipa,
    348			.ucc_configure = ucc_configure,
    349		},
    350	},
    351	{
    352		/* Legacy UCC MDIO node */
    353		.type = "mdio",
    354		.compatible = "ucc_geth_phy",
    355		.data = &(struct fsl_pq_mdio_data) {
    356			.mii_offset = 0,
    357			.get_tbipa = get_ucc_tbipa,
    358			.ucc_configure = ucc_configure,
    359		},
    360	},
    361#endif
    362	/* No Kconfig option for Fman support yet */
    363	{
    364		.compatible = "fsl,fman-mdio",
    365		.data = &(struct fsl_pq_mdio_data) {
    366			.mii_offset = 0,
    367			/* Fman TBI operations are handled elsewhere */
    368		},
    369	},
    370
    371	{},
    372};
    373MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
    374
    375static void set_tbipa(const u32 tbipa_val, struct platform_device *pdev,
    376		      uint32_t __iomem * (*get_tbipa)(void __iomem *),
    377		      void __iomem *reg_map, struct resource *reg_res)
    378{
    379	struct device_node *np = pdev->dev.of_node;
    380	uint32_t __iomem *tbipa;
    381	bool tbipa_mapped;
    382
    383	tbipa = of_iomap(np, 1);
    384	if (tbipa) {
    385		tbipa_mapped = true;
    386	} else {
    387		tbipa_mapped = false;
    388		tbipa = (*get_tbipa)(reg_map);
    389
    390		/*
    391		 * Add consistency check to make sure TBI is contained within
    392		 * the mapped range (not because we would get a segfault,
    393		 * rather to catch bugs in computing TBI address). Print error
    394		 * message but continue anyway.
    395		 */
    396		if ((void *)tbipa > reg_map + resource_size(reg_res) - 4)
    397			dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
    398				((void *)tbipa - reg_map) + 4);
    399	}
    400
    401	iowrite32be(be32_to_cpu(tbipa_val), tbipa);
    402
    403	if (tbipa_mapped)
    404		iounmap(tbipa);
    405}
    406
    407static int fsl_pq_mdio_probe(struct platform_device *pdev)
    408{
    409	const struct of_device_id *id =
    410		of_match_device(fsl_pq_mdio_match, &pdev->dev);
    411	const struct fsl_pq_mdio_data *data;
    412	struct device_node *np = pdev->dev.of_node;
    413	struct resource res;
    414	struct device_node *tbi;
    415	struct fsl_pq_mdio_priv *priv;
    416	struct mii_bus *new_bus;
    417	int err;
    418
    419	if (!id) {
    420		dev_err(&pdev->dev, "Failed to match device\n");
    421		return -ENODEV;
    422	}
    423
    424	data = id->data;
    425
    426	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
    427
    428	new_bus = mdiobus_alloc_size(sizeof(*priv));
    429	if (!new_bus)
    430		return -ENOMEM;
    431
    432	priv = new_bus->priv;
    433	new_bus->name = "Freescale PowerQUICC MII Bus";
    434	new_bus->read = &fsl_pq_mdio_read;
    435	new_bus->write = &fsl_pq_mdio_write;
    436	new_bus->reset = &fsl_pq_mdio_reset;
    437
    438	err = of_address_to_resource(np, 0, &res);
    439	if (err < 0) {
    440		dev_err(&pdev->dev, "could not obtain address information\n");
    441		goto error;
    442	}
    443
    444	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%pOFn@%llx", np,
    445		 (unsigned long long)res.start);
    446
    447	priv->map = of_iomap(np, 0);
    448	if (!priv->map) {
    449		err = -ENOMEM;
    450		goto error;
    451	}
    452
    453	/*
    454	 * Some device tree nodes represent only the MII registers, and
    455	 * others represent the MAC and MII registers.  The 'mii_offset' field
    456	 * contains the offset of the MII registers inside the mapped register
    457	 * space.
    458	 */
    459	if (data->mii_offset > resource_size(&res)) {
    460		dev_err(&pdev->dev, "invalid register map\n");
    461		err = -EINVAL;
    462		goto error;
    463	}
    464	priv->regs = priv->map + data->mii_offset;
    465
    466	new_bus->parent = &pdev->dev;
    467	platform_set_drvdata(pdev, new_bus);
    468
    469	if (data->get_tbipa) {
    470		for_each_child_of_node(np, tbi) {
    471			if (of_node_is_type(tbi, "tbi-phy")) {
    472				dev_dbg(&pdev->dev, "found TBI PHY node %pOFP\n",
    473					tbi);
    474				break;
    475			}
    476		}
    477
    478		if (tbi) {
    479			const u32 *prop = of_get_property(tbi, "reg", NULL);
    480			if (!prop) {
    481				dev_err(&pdev->dev,
    482					"missing 'reg' property in node %pOF\n",
    483					tbi);
    484				err = -EBUSY;
    485				goto error;
    486			}
    487			set_tbipa(*prop, pdev,
    488				  data->get_tbipa, priv->map, &res);
    489		}
    490	}
    491
    492	if (data->ucc_configure)
    493		data->ucc_configure(res.start, res.end);
    494
    495	err = of_mdiobus_register(new_bus, np);
    496	if (err) {
    497		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
    498			new_bus->name);
    499		goto error;
    500	}
    501
    502	return 0;
    503
    504error:
    505	if (priv->map)
    506		iounmap(priv->map);
    507
    508	kfree(new_bus);
    509
    510	return err;
    511}
    512
    513
    514static int fsl_pq_mdio_remove(struct platform_device *pdev)
    515{
    516	struct device *device = &pdev->dev;
    517	struct mii_bus *bus = dev_get_drvdata(device);
    518	struct fsl_pq_mdio_priv *priv = bus->priv;
    519
    520	mdiobus_unregister(bus);
    521
    522	iounmap(priv->map);
    523	mdiobus_free(bus);
    524
    525	return 0;
    526}
    527
    528static struct platform_driver fsl_pq_mdio_driver = {
    529	.driver = {
    530		.name = "fsl-pq_mdio",
    531		.of_match_table = fsl_pq_mdio_match,
    532	},
    533	.probe = fsl_pq_mdio_probe,
    534	.remove = fsl_pq_mdio_remove,
    535};
    536
    537module_platform_driver(fsl_pq_mdio_driver);
    538
    539MODULE_LICENSE("GPL");