cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e100.c (93068B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2006 Intel Corporation. */
      3
      4/*
      5 *	e100.c: Intel(R) PRO/100 ethernet driver
      6 *
      7 *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
      8 *	original e100 driver, but better described as a munging of
      9 *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
     10 *
     11 *	References:
     12 *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
     13 *		Open Source Software Developers Manual,
     14 *		http://sourceforge.net/projects/e1000
     15 *
     16 *
     17 *	                      Theory of Operation
     18 *
     19 *	I.   General
     20 *
     21 *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
     22 *	controller family, which includes the 82557, 82558, 82559, 82550,
     23 *	82551, and 82562 devices.  82558 and greater controllers
     24 *	integrate the Intel 82555 PHY.  The controllers are used in
     25 *	server and client network interface cards, as well as in
     26 *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
     27 *	configurations.  8255x supports a 32-bit linear addressing
     28 *	mode and operates at 33Mhz PCI clock rate.
     29 *
     30 *	II.  Driver Operation
     31 *
     32 *	Memory-mapped mode is used exclusively to access the device's
     33 *	shared-memory structure, the Control/Status Registers (CSR). All
     34 *	setup, configuration, and control of the device, including queuing
     35 *	of Tx, Rx, and configuration commands is through the CSR.
     36 *	cmd_lock serializes accesses to the CSR command register.  cb_lock
     37 *	protects the shared Command Block List (CBL).
     38 *
     39 *	8255x is highly MII-compliant and all access to the PHY go
     40 *	through the Management Data Interface (MDI).  Consequently, the
     41 *	driver leverages the mii.c library shared with other MII-compliant
     42 *	devices.
     43 *
     44 *	Big- and Little-Endian byte order as well as 32- and 64-bit
     45 *	archs are supported.  Weak-ordered memory and non-cache-coherent
     46 *	archs are supported.
     47 *
     48 *	III. Transmit
     49 *
     50 *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
     51 *	together in a fixed-size ring (CBL) thus forming the flexible mode
     52 *	memory structure.  A TCB marked with the suspend-bit indicates
     53 *	the end of the ring.  The last TCB processed suspends the
     54 *	controller, and the controller can be restarted by issue a CU
     55 *	resume command to continue from the suspend point, or a CU start
     56 *	command to start at a given position in the ring.
     57 *
     58 *	Non-Tx commands (config, multicast setup, etc) are linked
     59 *	into the CBL ring along with Tx commands.  The common structure
     60 *	used for both Tx and non-Tx commands is the Command Block (CB).
     61 *
     62 *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
     63 *	is the next CB to check for completion; cb_to_send is the first
     64 *	CB to start on in case of a previous failure to resume.  CB clean
     65 *	up happens in interrupt context in response to a CU interrupt.
     66 *	cbs_avail keeps track of number of free CB resources available.
     67 *
     68 * 	Hardware padding of short packets to minimum packet size is
     69 * 	enabled.  82557 pads with 7Eh, while the later controllers pad
     70 * 	with 00h.
     71 *
     72 *	IV.  Receive
     73 *
     74 *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
     75 *	Descriptors (RFD) + data buffer, thus forming the simplified mode
     76 *	memory structure.  Rx skbs are allocated to contain both the RFD
     77 *	and the data buffer, but the RFD is pulled off before the skb is
     78 *	indicated.  The data buffer is aligned such that encapsulated
     79 *	protocol headers are u32-aligned.  Since the RFD is part of the
     80 *	mapped shared memory, and completion status is contained within
     81 *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
     82 *	view from software and hardware.
     83 *
     84 *	In order to keep updates to the RFD link field from colliding with
     85 *	hardware writes to mark packets complete, we use the feature that
     86 *	hardware will not write to a size 0 descriptor and mark the previous
     87 *	packet as end-of-list (EL).   After updating the link, we remove EL
     88 *	and only then restore the size such that hardware may use the
     89 *	previous-to-end RFD.
     90 *
     91 *	Under typical operation, the  receive unit (RU) is start once,
     92 *	and the controller happily fills RFDs as frames arrive.  If
     93 *	replacement RFDs cannot be allocated, or the RU goes non-active,
     94 *	the RU must be restarted.  Frame arrival generates an interrupt,
     95 *	and Rx indication and re-allocation happen in the same context,
     96 *	therefore no locking is required.  A software-generated interrupt
     97 *	is generated from the watchdog to recover from a failed allocation
     98 *	scenario where all Rx resources have been indicated and none re-
     99 *	placed.
    100 *
    101 *	V.   Miscellaneous
    102 *
    103 * 	VLAN offloading of tagging, stripping and filtering is not
    104 * 	supported, but driver will accommodate the extra 4-byte VLAN tag
    105 * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
    106 * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
    107 * 	not supported (hardware limitation).
    108 *
    109 * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
    110 *
    111 * 	Thanks to JC (jchapman@katalix.com) for helping with
    112 * 	testing/troubleshooting the development driver.
    113 *
    114 * 	TODO:
    115 * 	o several entry points race with dev->close
    116 * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
    117 *
    118 *	FIXES:
    119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
    120 *	- Stratus87247: protect MDI control register manipulations
    121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
    122 *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
    123 */
    124
    125#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    126
    127#include <linux/hardirq.h>
    128#include <linux/interrupt.h>
    129#include <linux/module.h>
    130#include <linux/moduleparam.h>
    131#include <linux/kernel.h>
    132#include <linux/types.h>
    133#include <linux/sched.h>
    134#include <linux/slab.h>
    135#include <linux/delay.h>
    136#include <linux/init.h>
    137#include <linux/pci.h>
    138#include <linux/dma-mapping.h>
    139#include <linux/dmapool.h>
    140#include <linux/netdevice.h>
    141#include <linux/etherdevice.h>
    142#include <linux/mii.h>
    143#include <linux/if_vlan.h>
    144#include <linux/skbuff.h>
    145#include <linux/ethtool.h>
    146#include <linux/string.h>
    147#include <linux/firmware.h>
    148#include <linux/rtnetlink.h>
    149#include <asm/unaligned.h>
    150
    151
    152#define DRV_NAME		"e100"
    153#define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
    154#define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
    155
    156#define E100_WATCHDOG_PERIOD	(2 * HZ)
    157#define E100_NAPI_WEIGHT	16
    158
    159#define FIRMWARE_D101M		"e100/d101m_ucode.bin"
    160#define FIRMWARE_D101S		"e100/d101s_ucode.bin"
    161#define FIRMWARE_D102E		"e100/d102e_ucode.bin"
    162
    163MODULE_DESCRIPTION(DRV_DESCRIPTION);
    164MODULE_AUTHOR(DRV_COPYRIGHT);
    165MODULE_LICENSE("GPL v2");
    166MODULE_FIRMWARE(FIRMWARE_D101M);
    167MODULE_FIRMWARE(FIRMWARE_D101S);
    168MODULE_FIRMWARE(FIRMWARE_D102E);
    169
    170static int debug = 3;
    171static int eeprom_bad_csum_allow = 0;
    172static int use_io = 0;
    173module_param(debug, int, 0);
    174module_param(eeprom_bad_csum_allow, int, 0);
    175module_param(use_io, int, 0);
    176MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
    177MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
    178MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
    179
    180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
    181	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
    182	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
    183static const struct pci_device_id e100_id_table[] = {
    184	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
    185	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
    186	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
    187	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
    188	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
    189	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
    190	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
    191	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
    192	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
    193	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
    194	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
    195	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
    196	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
    197	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
    198	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
    199	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
    200	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
    201	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
    202	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
    203	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
    204	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
    205	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
    206	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
    207	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
    208	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
    209	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
    210	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
    211	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
    212	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
    213	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
    214	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
    215	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
    216	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
    217	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
    218	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
    219	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
    220	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
    221	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
    222	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
    223	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
    224	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
    225	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
    226	{ 0, }
    227};
    228MODULE_DEVICE_TABLE(pci, e100_id_table);
    229
    230enum mac {
    231	mac_82557_D100_A  = 0,
    232	mac_82557_D100_B  = 1,
    233	mac_82557_D100_C  = 2,
    234	mac_82558_D101_A4 = 4,
    235	mac_82558_D101_B0 = 5,
    236	mac_82559_D101M   = 8,
    237	mac_82559_D101S   = 9,
    238	mac_82550_D102    = 12,
    239	mac_82550_D102_C  = 13,
    240	mac_82551_E       = 14,
    241	mac_82551_F       = 15,
    242	mac_82551_10      = 16,
    243	mac_unknown       = 0xFF,
    244};
    245
    246enum phy {
    247	phy_100a     = 0x000003E0,
    248	phy_100c     = 0x035002A8,
    249	phy_82555_tx = 0x015002A8,
    250	phy_nsc_tx   = 0x5C002000,
    251	phy_82562_et = 0x033002A8,
    252	phy_82562_em = 0x032002A8,
    253	phy_82562_ek = 0x031002A8,
    254	phy_82562_eh = 0x017002A8,
    255	phy_82552_v  = 0xd061004d,
    256	phy_unknown  = 0xFFFFFFFF,
    257};
    258
    259/* CSR (Control/Status Registers) */
    260struct csr {
    261	struct {
    262		u8 status;
    263		u8 stat_ack;
    264		u8 cmd_lo;
    265		u8 cmd_hi;
    266		u32 gen_ptr;
    267	} scb;
    268	u32 port;
    269	u16 flash_ctrl;
    270	u8 eeprom_ctrl_lo;
    271	u8 eeprom_ctrl_hi;
    272	u32 mdi_ctrl;
    273	u32 rx_dma_count;
    274};
    275
    276enum scb_status {
    277	rus_no_res       = 0x08,
    278	rus_ready        = 0x10,
    279	rus_mask         = 0x3C,
    280};
    281
    282enum ru_state  {
    283	RU_SUSPENDED = 0,
    284	RU_RUNNING	 = 1,
    285	RU_UNINITIALIZED = -1,
    286};
    287
    288enum scb_stat_ack {
    289	stat_ack_not_ours    = 0x00,
    290	stat_ack_sw_gen      = 0x04,
    291	stat_ack_rnr         = 0x10,
    292	stat_ack_cu_idle     = 0x20,
    293	stat_ack_frame_rx    = 0x40,
    294	stat_ack_cu_cmd_done = 0x80,
    295	stat_ack_not_present = 0xFF,
    296	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
    297	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
    298};
    299
    300enum scb_cmd_hi {
    301	irq_mask_none = 0x00,
    302	irq_mask_all  = 0x01,
    303	irq_sw_gen    = 0x02,
    304};
    305
    306enum scb_cmd_lo {
    307	cuc_nop        = 0x00,
    308	ruc_start      = 0x01,
    309	ruc_load_base  = 0x06,
    310	cuc_start      = 0x10,
    311	cuc_resume     = 0x20,
    312	cuc_dump_addr  = 0x40,
    313	cuc_dump_stats = 0x50,
    314	cuc_load_base  = 0x60,
    315	cuc_dump_reset = 0x70,
    316};
    317
    318enum cuc_dump {
    319	cuc_dump_complete       = 0x0000A005,
    320	cuc_dump_reset_complete = 0x0000A007,
    321};
    322
    323enum port {
    324	software_reset  = 0x0000,
    325	selftest        = 0x0001,
    326	selective_reset = 0x0002,
    327};
    328
    329enum eeprom_ctrl_lo {
    330	eesk = 0x01,
    331	eecs = 0x02,
    332	eedi = 0x04,
    333	eedo = 0x08,
    334};
    335
    336enum mdi_ctrl {
    337	mdi_write = 0x04000000,
    338	mdi_read  = 0x08000000,
    339	mdi_ready = 0x10000000,
    340};
    341
    342enum eeprom_op {
    343	op_write = 0x05,
    344	op_read  = 0x06,
    345	op_ewds  = 0x10,
    346	op_ewen  = 0x13,
    347};
    348
    349enum eeprom_offsets {
    350	eeprom_cnfg_mdix  = 0x03,
    351	eeprom_phy_iface  = 0x06,
    352	eeprom_id         = 0x0A,
    353	eeprom_config_asf = 0x0D,
    354	eeprom_smbus_addr = 0x90,
    355};
    356
    357enum eeprom_cnfg_mdix {
    358	eeprom_mdix_enabled = 0x0080,
    359};
    360
    361enum eeprom_phy_iface {
    362	NoSuchPhy = 0,
    363	I82553AB,
    364	I82553C,
    365	I82503,
    366	DP83840,
    367	S80C240,
    368	S80C24,
    369	I82555,
    370	DP83840A = 10,
    371};
    372
    373enum eeprom_id {
    374	eeprom_id_wol = 0x0020,
    375};
    376
    377enum eeprom_config_asf {
    378	eeprom_asf = 0x8000,
    379	eeprom_gcl = 0x4000,
    380};
    381
    382enum cb_status {
    383	cb_complete = 0x8000,
    384	cb_ok       = 0x2000,
    385};
    386
    387/*
    388 * cb_command - Command Block flags
    389 * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
    390 */
    391enum cb_command {
    392	cb_nop    = 0x0000,
    393	cb_iaaddr = 0x0001,
    394	cb_config = 0x0002,
    395	cb_multi  = 0x0003,
    396	cb_tx     = 0x0004,
    397	cb_ucode  = 0x0005,
    398	cb_dump   = 0x0006,
    399	cb_tx_sf  = 0x0008,
    400	cb_tx_nc  = 0x0010,
    401	cb_cid    = 0x1f00,
    402	cb_i      = 0x2000,
    403	cb_s      = 0x4000,
    404	cb_el     = 0x8000,
    405};
    406
    407struct rfd {
    408	__le16 status;
    409	__le16 command;
    410	__le32 link;
    411	__le32 rbd;
    412	__le16 actual_size;
    413	__le16 size;
    414};
    415
    416struct rx {
    417	struct rx *next, *prev;
    418	struct sk_buff *skb;
    419	dma_addr_t dma_addr;
    420};
    421
    422#if defined(__BIG_ENDIAN_BITFIELD)
    423#define X(a,b)	b,a
    424#else
    425#define X(a,b)	a,b
    426#endif
    427struct config {
    428/*0*/	u8 X(byte_count:6, pad0:2);
    429/*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
    430/*2*/	u8 adaptive_ifs;
    431/*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
    432	   term_write_cache_line:1), pad3:4);
    433/*4*/	u8 X(rx_dma_max_count:7, pad4:1);
    434/*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
    435/*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
    436	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
    437	   rx_save_overruns : 1), rx_save_bad_frames : 1);
    438/*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
    439	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
    440	   tx_dynamic_tbd:1);
    441/*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
    442/*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
    443	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
    444/*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
    445	   loopback:2);
    446/*11*/	u8 X(linear_priority:3, pad11:5);
    447/*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
    448/*13*/	u8 ip_addr_lo;
    449/*14*/	u8 ip_addr_hi;
    450/*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
    451	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
    452	   pad15_2:1), crs_or_cdt:1);
    453/*16*/	u8 fc_delay_lo;
    454/*17*/	u8 fc_delay_hi;
    455/*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
    456	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
    457/*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
    458	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
    459	   full_duplex_force:1), full_duplex_pin:1);
    460/*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
    461/*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
    462/*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
    463	u8 pad_d102[9];
    464};
    465
    466#define E100_MAX_MULTICAST_ADDRS	64
    467struct multi {
    468	__le16 count;
    469	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
    470};
    471
    472/* Important: keep total struct u32-aligned */
    473#define UCODE_SIZE			134
    474struct cb {
    475	__le16 status;
    476	__le16 command;
    477	__le32 link;
    478	union {
    479		u8 iaaddr[ETH_ALEN];
    480		__le32 ucode[UCODE_SIZE];
    481		struct config config;
    482		struct multi multi;
    483		struct {
    484			u32 tbd_array;
    485			u16 tcb_byte_count;
    486			u8 threshold;
    487			u8 tbd_count;
    488			struct {
    489				__le32 buf_addr;
    490				__le16 size;
    491				u16 eol;
    492			} tbd;
    493		} tcb;
    494		__le32 dump_buffer_addr;
    495	} u;
    496	struct cb *next, *prev;
    497	dma_addr_t dma_addr;
    498	struct sk_buff *skb;
    499};
    500
    501enum loopback {
    502	lb_none = 0, lb_mac = 1, lb_phy = 3,
    503};
    504
    505struct stats {
    506	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
    507		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
    508		tx_multiple_collisions, tx_total_collisions;
    509	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
    510		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
    511		rx_short_frame_errors;
    512	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
    513	__le16 xmt_tco_frames, rcv_tco_frames;
    514	__le32 complete;
    515};
    516
    517struct mem {
    518	struct {
    519		u32 signature;
    520		u32 result;
    521	} selftest;
    522	struct stats stats;
    523	u8 dump_buf[596];
    524};
    525
    526struct param_range {
    527	u32 min;
    528	u32 max;
    529	u32 count;
    530};
    531
    532struct params {
    533	struct param_range rfds;
    534	struct param_range cbs;
    535};
    536
    537struct nic {
    538	/* Begin: frequently used values: keep adjacent for cache effect */
    539	u32 msg_enable				____cacheline_aligned;
    540	struct net_device *netdev;
    541	struct pci_dev *pdev;
    542	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
    543
    544	struct rx *rxs				____cacheline_aligned;
    545	struct rx *rx_to_use;
    546	struct rx *rx_to_clean;
    547	struct rfd blank_rfd;
    548	enum ru_state ru_running;
    549
    550	spinlock_t cb_lock			____cacheline_aligned;
    551	spinlock_t cmd_lock;
    552	struct csr __iomem *csr;
    553	enum scb_cmd_lo cuc_cmd;
    554	unsigned int cbs_avail;
    555	struct napi_struct napi;
    556	struct cb *cbs;
    557	struct cb *cb_to_use;
    558	struct cb *cb_to_send;
    559	struct cb *cb_to_clean;
    560	__le16 tx_command;
    561	/* End: frequently used values: keep adjacent for cache effect */
    562
    563	enum {
    564		ich                = (1 << 0),
    565		promiscuous        = (1 << 1),
    566		multicast_all      = (1 << 2),
    567		wol_magic          = (1 << 3),
    568		ich_10h_workaround = (1 << 4),
    569	} flags					____cacheline_aligned;
    570
    571	enum mac mac;
    572	enum phy phy;
    573	struct params params;
    574	struct timer_list watchdog;
    575	struct mii_if_info mii;
    576	struct work_struct tx_timeout_task;
    577	enum loopback loopback;
    578
    579	struct mem *mem;
    580	dma_addr_t dma_addr;
    581
    582	struct dma_pool *cbs_pool;
    583	dma_addr_t cbs_dma_addr;
    584	u8 adaptive_ifs;
    585	u8 tx_threshold;
    586	u32 tx_frames;
    587	u32 tx_collisions;
    588	u32 tx_deferred;
    589	u32 tx_single_collisions;
    590	u32 tx_multiple_collisions;
    591	u32 tx_fc_pause;
    592	u32 tx_tco_frames;
    593
    594	u32 rx_fc_pause;
    595	u32 rx_fc_unsupported;
    596	u32 rx_tco_frames;
    597	u32 rx_short_frame_errors;
    598	u32 rx_over_length_errors;
    599
    600	u16 eeprom_wc;
    601	__le16 eeprom[256];
    602	spinlock_t mdio_lock;
    603	const struct firmware *fw;
    604};
    605
    606static inline void e100_write_flush(struct nic *nic)
    607{
    608	/* Flush previous PCI writes through intermediate bridges
    609	 * by doing a benign read */
    610	(void)ioread8(&nic->csr->scb.status);
    611}
    612
    613static void e100_enable_irq(struct nic *nic)
    614{
    615	unsigned long flags;
    616
    617	spin_lock_irqsave(&nic->cmd_lock, flags);
    618	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
    619	e100_write_flush(nic);
    620	spin_unlock_irqrestore(&nic->cmd_lock, flags);
    621}
    622
    623static void e100_disable_irq(struct nic *nic)
    624{
    625	unsigned long flags;
    626
    627	spin_lock_irqsave(&nic->cmd_lock, flags);
    628	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
    629	e100_write_flush(nic);
    630	spin_unlock_irqrestore(&nic->cmd_lock, flags);
    631}
    632
    633static void e100_hw_reset(struct nic *nic)
    634{
    635	/* Put CU and RU into idle with a selective reset to get
    636	 * device off of PCI bus */
    637	iowrite32(selective_reset, &nic->csr->port);
    638	e100_write_flush(nic); udelay(20);
    639
    640	/* Now fully reset device */
    641	iowrite32(software_reset, &nic->csr->port);
    642	e100_write_flush(nic); udelay(20);
    643
    644	/* Mask off our interrupt line - it's unmasked after reset */
    645	e100_disable_irq(nic);
    646}
    647
    648static int e100_self_test(struct nic *nic)
    649{
    650	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
    651
    652	/* Passing the self-test is a pretty good indication
    653	 * that the device can DMA to/from host memory */
    654
    655	nic->mem->selftest.signature = 0;
    656	nic->mem->selftest.result = 0xFFFFFFFF;
    657
    658	iowrite32(selftest | dma_addr, &nic->csr->port);
    659	e100_write_flush(nic);
    660	/* Wait 10 msec for self-test to complete */
    661	msleep(10);
    662
    663	/* Interrupts are enabled after self-test */
    664	e100_disable_irq(nic);
    665
    666	/* Check results of self-test */
    667	if (nic->mem->selftest.result != 0) {
    668		netif_err(nic, hw, nic->netdev,
    669			  "Self-test failed: result=0x%08X\n",
    670			  nic->mem->selftest.result);
    671		return -ETIMEDOUT;
    672	}
    673	if (nic->mem->selftest.signature == 0) {
    674		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
    675		return -ETIMEDOUT;
    676	}
    677
    678	return 0;
    679}
    680
    681static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
    682{
    683	u32 cmd_addr_data[3];
    684	u8 ctrl;
    685	int i, j;
    686
    687	/* Three cmds: write/erase enable, write data, write/erase disable */
    688	cmd_addr_data[0] = op_ewen << (addr_len - 2);
    689	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
    690		le16_to_cpu(data);
    691	cmd_addr_data[2] = op_ewds << (addr_len - 2);
    692
    693	/* Bit-bang cmds to write word to eeprom */
    694	for (j = 0; j < 3; j++) {
    695
    696		/* Chip select */
    697		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
    698		e100_write_flush(nic); udelay(4);
    699
    700		for (i = 31; i >= 0; i--) {
    701			ctrl = (cmd_addr_data[j] & (1 << i)) ?
    702				eecs | eedi : eecs;
    703			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
    704			e100_write_flush(nic); udelay(4);
    705
    706			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
    707			e100_write_flush(nic); udelay(4);
    708		}
    709		/* Wait 10 msec for cmd to complete */
    710		msleep(10);
    711
    712		/* Chip deselect */
    713		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
    714		e100_write_flush(nic); udelay(4);
    715	}
    716};
    717
    718/* General technique stolen from the eepro100 driver - very clever */
    719static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
    720{
    721	u32 cmd_addr_data;
    722	u16 data = 0;
    723	u8 ctrl;
    724	int i;
    725
    726	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
    727
    728	/* Chip select */
    729	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
    730	e100_write_flush(nic); udelay(4);
    731
    732	/* Bit-bang to read word from eeprom */
    733	for (i = 31; i >= 0; i--) {
    734		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
    735		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
    736		e100_write_flush(nic); udelay(4);
    737
    738		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
    739		e100_write_flush(nic); udelay(4);
    740
    741		/* Eeprom drives a dummy zero to EEDO after receiving
    742		 * complete address.  Use this to adjust addr_len. */
    743		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
    744		if (!(ctrl & eedo) && i > 16) {
    745			*addr_len -= (i - 16);
    746			i = 17;
    747		}
    748
    749		data = (data << 1) | (ctrl & eedo ? 1 : 0);
    750	}
    751
    752	/* Chip deselect */
    753	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
    754	e100_write_flush(nic); udelay(4);
    755
    756	return cpu_to_le16(data);
    757};
    758
    759/* Load entire EEPROM image into driver cache and validate checksum */
    760static int e100_eeprom_load(struct nic *nic)
    761{
    762	u16 addr, addr_len = 8, checksum = 0;
    763
    764	/* Try reading with an 8-bit addr len to discover actual addr len */
    765	e100_eeprom_read(nic, &addr_len, 0);
    766	nic->eeprom_wc = 1 << addr_len;
    767
    768	for (addr = 0; addr < nic->eeprom_wc; addr++) {
    769		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
    770		if (addr < nic->eeprom_wc - 1)
    771			checksum += le16_to_cpu(nic->eeprom[addr]);
    772	}
    773
    774	/* The checksum, stored in the last word, is calculated such that
    775	 * the sum of words should be 0xBABA */
    776	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
    777		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
    778		if (!eeprom_bad_csum_allow)
    779			return -EAGAIN;
    780	}
    781
    782	return 0;
    783}
    784
    785/* Save (portion of) driver EEPROM cache to device and update checksum */
    786static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
    787{
    788	u16 addr, addr_len = 8, checksum = 0;
    789
    790	/* Try reading with an 8-bit addr len to discover actual addr len */
    791	e100_eeprom_read(nic, &addr_len, 0);
    792	nic->eeprom_wc = 1 << addr_len;
    793
    794	if (start + count >= nic->eeprom_wc)
    795		return -EINVAL;
    796
    797	for (addr = start; addr < start + count; addr++)
    798		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
    799
    800	/* The checksum, stored in the last word, is calculated such that
    801	 * the sum of words should be 0xBABA */
    802	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
    803		checksum += le16_to_cpu(nic->eeprom[addr]);
    804	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
    805	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
    806		nic->eeprom[nic->eeprom_wc - 1]);
    807
    808	return 0;
    809}
    810
    811#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
    812#define E100_WAIT_SCB_FAST 20       /* delay like the old code */
    813static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
    814{
    815	unsigned long flags;
    816	unsigned int i;
    817	int err = 0;
    818
    819	spin_lock_irqsave(&nic->cmd_lock, flags);
    820
    821	/* Previous command is accepted when SCB clears */
    822	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
    823		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
    824			break;
    825		cpu_relax();
    826		if (unlikely(i > E100_WAIT_SCB_FAST))
    827			udelay(5);
    828	}
    829	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
    830		err = -EAGAIN;
    831		goto err_unlock;
    832	}
    833
    834	if (unlikely(cmd != cuc_resume))
    835		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
    836	iowrite8(cmd, &nic->csr->scb.cmd_lo);
    837
    838err_unlock:
    839	spin_unlock_irqrestore(&nic->cmd_lock, flags);
    840
    841	return err;
    842}
    843
    844static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
    845	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
    846{
    847	struct cb *cb;
    848	unsigned long flags;
    849	int err;
    850
    851	spin_lock_irqsave(&nic->cb_lock, flags);
    852
    853	if (unlikely(!nic->cbs_avail)) {
    854		err = -ENOMEM;
    855		goto err_unlock;
    856	}
    857
    858	cb = nic->cb_to_use;
    859	nic->cb_to_use = cb->next;
    860	nic->cbs_avail--;
    861	cb->skb = skb;
    862
    863	err = cb_prepare(nic, cb, skb);
    864	if (err)
    865		goto err_unlock;
    866
    867	if (unlikely(!nic->cbs_avail))
    868		err = -ENOSPC;
    869
    870
    871	/* Order is important otherwise we'll be in a race with h/w:
    872	 * set S-bit in current first, then clear S-bit in previous. */
    873	cb->command |= cpu_to_le16(cb_s);
    874	dma_wmb();
    875	cb->prev->command &= cpu_to_le16(~cb_s);
    876
    877	while (nic->cb_to_send != nic->cb_to_use) {
    878		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
    879			nic->cb_to_send->dma_addr))) {
    880			/* Ok, here's where things get sticky.  It's
    881			 * possible that we can't schedule the command
    882			 * because the controller is too busy, so
    883			 * let's just queue the command and try again
    884			 * when another command is scheduled. */
    885			if (err == -ENOSPC) {
    886				//request a reset
    887				schedule_work(&nic->tx_timeout_task);
    888			}
    889			break;
    890		} else {
    891			nic->cuc_cmd = cuc_resume;
    892			nic->cb_to_send = nic->cb_to_send->next;
    893		}
    894	}
    895
    896err_unlock:
    897	spin_unlock_irqrestore(&nic->cb_lock, flags);
    898
    899	return err;
    900}
    901
    902static int mdio_read(struct net_device *netdev, int addr, int reg)
    903{
    904	struct nic *nic = netdev_priv(netdev);
    905	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
    906}
    907
    908static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
    909{
    910	struct nic *nic = netdev_priv(netdev);
    911
    912	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
    913}
    914
    915/* the standard mdio_ctrl() function for usual MII-compliant hardware */
    916static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
    917{
    918	u32 data_out = 0;
    919	unsigned int i;
    920	unsigned long flags;
    921
    922
    923	/*
    924	 * Stratus87247: we shouldn't be writing the MDI control
    925	 * register until the Ready bit shows True.  Also, since
    926	 * manipulation of the MDI control registers is a multi-step
    927	 * procedure it should be done under lock.
    928	 */
    929	spin_lock_irqsave(&nic->mdio_lock, flags);
    930	for (i = 100; i; --i) {
    931		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
    932			break;
    933		udelay(20);
    934	}
    935	if (unlikely(!i)) {
    936		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
    937		spin_unlock_irqrestore(&nic->mdio_lock, flags);
    938		return 0;		/* No way to indicate timeout error */
    939	}
    940	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
    941
    942	for (i = 0; i < 100; i++) {
    943		udelay(20);
    944		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
    945			break;
    946	}
    947	spin_unlock_irqrestore(&nic->mdio_lock, flags);
    948	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
    949		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
    950		     dir == mdi_read ? "READ" : "WRITE",
    951		     addr, reg, data, data_out);
    952	return (u16)data_out;
    953}
    954
    955/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
    956static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
    957				 u32 addr,
    958				 u32 dir,
    959				 u32 reg,
    960				 u16 data)
    961{
    962	if ((reg == MII_BMCR) && (dir == mdi_write)) {
    963		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
    964			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
    965							MII_ADVERTISE);
    966
    967			/*
    968			 * Workaround Si issue where sometimes the part will not
    969			 * autoneg to 100Mbps even when advertised.
    970			 */
    971			if (advert & ADVERTISE_100FULL)
    972				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
    973			else if (advert & ADVERTISE_100HALF)
    974				data |= BMCR_SPEED100;
    975		}
    976	}
    977	return mdio_ctrl_hw(nic, addr, dir, reg, data);
    978}
    979
    980/* Fully software-emulated mdio_ctrl() function for cards without
    981 * MII-compliant PHYs.
    982 * For now, this is mainly geared towards 80c24 support; in case of further
    983 * requirements for other types (i82503, ...?) either extend this mechanism
    984 * or split it, whichever is cleaner.
    985 */
    986static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
    987				      u32 addr,
    988				      u32 dir,
    989				      u32 reg,
    990				      u16 data)
    991{
    992	/* might need to allocate a netdev_priv'ed register array eventually
    993	 * to be able to record state changes, but for now
    994	 * some fully hardcoded register handling ought to be ok I guess. */
    995
    996	if (dir == mdi_read) {
    997		switch (reg) {
    998		case MII_BMCR:
    999			/* Auto-negotiation, right? */
   1000			return  BMCR_ANENABLE |
   1001				BMCR_FULLDPLX;
   1002		case MII_BMSR:
   1003			return	BMSR_LSTATUS /* for mii_link_ok() */ |
   1004				BMSR_ANEGCAPABLE |
   1005				BMSR_10FULL;
   1006		case MII_ADVERTISE:
   1007			/* 80c24 is a "combo card" PHY, right? */
   1008			return	ADVERTISE_10HALF |
   1009				ADVERTISE_10FULL;
   1010		default:
   1011			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
   1012				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
   1013				     dir == mdi_read ? "READ" : "WRITE",
   1014				     addr, reg, data);
   1015			return 0xFFFF;
   1016		}
   1017	} else {
   1018		switch (reg) {
   1019		default:
   1020			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
   1021				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
   1022				     dir == mdi_read ? "READ" : "WRITE",
   1023				     addr, reg, data);
   1024			return 0xFFFF;
   1025		}
   1026	}
   1027}
   1028static inline int e100_phy_supports_mii(struct nic *nic)
   1029{
   1030	/* for now, just check it by comparing whether we
   1031	   are using MII software emulation.
   1032	*/
   1033	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
   1034}
   1035
   1036static void e100_get_defaults(struct nic *nic)
   1037{
   1038	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
   1039	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
   1040
   1041	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
   1042	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
   1043	if (nic->mac == mac_unknown)
   1044		nic->mac = mac_82557_D100_A;
   1045
   1046	nic->params.rfds = rfds;
   1047	nic->params.cbs = cbs;
   1048
   1049	/* Quadwords to DMA into FIFO before starting frame transmit */
   1050	nic->tx_threshold = 0xE0;
   1051
   1052	/* no interrupt for every tx completion, delay = 256us if not 557 */
   1053	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
   1054		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
   1055
   1056	/* Template for a freshly allocated RFD */
   1057	nic->blank_rfd.command = 0;
   1058	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
   1059	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
   1060
   1061	/* MII setup */
   1062	nic->mii.phy_id_mask = 0x1F;
   1063	nic->mii.reg_num_mask = 0x1F;
   1064	nic->mii.dev = nic->netdev;
   1065	nic->mii.mdio_read = mdio_read;
   1066	nic->mii.mdio_write = mdio_write;
   1067}
   1068
   1069static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
   1070{
   1071	struct config *config = &cb->u.config;
   1072	u8 *c = (u8 *)config;
   1073	struct net_device *netdev = nic->netdev;
   1074
   1075	cb->command = cpu_to_le16(cb_config);
   1076
   1077	memset(config, 0, sizeof(struct config));
   1078
   1079	config->byte_count = 0x16;		/* bytes in this struct */
   1080	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
   1081	config->direct_rx_dma = 0x1;		/* reserved */
   1082	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
   1083	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
   1084	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
   1085	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
   1086	if (e100_phy_supports_mii(nic))
   1087		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
   1088	config->pad10 = 0x6;
   1089	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
   1090	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
   1091	config->ifs = 0x6;			/* x16 = inter frame spacing */
   1092	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
   1093	config->pad15_1 = 0x1;
   1094	config->pad15_2 = 0x1;
   1095	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
   1096	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
   1097	config->tx_padding = 0x1;		/* 1=pad short frames */
   1098	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
   1099	config->pad18 = 0x1;
   1100	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
   1101	config->pad20_1 = 0x1F;
   1102	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
   1103	config->pad21_1 = 0x5;
   1104
   1105	config->adaptive_ifs = nic->adaptive_ifs;
   1106	config->loopback = nic->loopback;
   1107
   1108	if (nic->mii.force_media && nic->mii.full_duplex)
   1109		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
   1110
   1111	if (nic->flags & promiscuous || nic->loopback) {
   1112		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
   1113		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
   1114		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
   1115	}
   1116
   1117	if (unlikely(netdev->features & NETIF_F_RXFCS))
   1118		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
   1119
   1120	if (nic->flags & multicast_all)
   1121		config->multicast_all = 0x1;		/* 1=accept, 0=no */
   1122
   1123	/* disable WoL when up */
   1124	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
   1125		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
   1126
   1127	if (nic->mac >= mac_82558_D101_A4) {
   1128		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
   1129		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
   1130		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
   1131		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
   1132		if (nic->mac >= mac_82559_D101M) {
   1133			config->tno_intr = 0x1;		/* TCO stats enable */
   1134			/* Enable TCO in extended config */
   1135			if (nic->mac >= mac_82551_10) {
   1136				config->byte_count = 0x20; /* extended bytes */
   1137				config->rx_d102_mode = 0x1; /* GMRC for TCO */
   1138			}
   1139		} else {
   1140			config->standard_stat_counter = 0x0;
   1141		}
   1142	}
   1143
   1144	if (netdev->features & NETIF_F_RXALL) {
   1145		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
   1146		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
   1147		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
   1148	}
   1149
   1150	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
   1151		     c + 0);
   1152	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
   1153		     c + 8);
   1154	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
   1155		     c + 16);
   1156	return 0;
   1157}
   1158
   1159/*************************************************************************
   1160*  CPUSaver parameters
   1161*
   1162*  All CPUSaver parameters are 16-bit literals that are part of a
   1163*  "move immediate value" instruction.  By changing the value of
   1164*  the literal in the instruction before the code is loaded, the
   1165*  driver can change the algorithm.
   1166*
   1167*  INTDELAY - This loads the dead-man timer with its initial value.
   1168*    When this timer expires the interrupt is asserted, and the
   1169*    timer is reset each time a new packet is received.  (see
   1170*    BUNDLEMAX below to set the limit on number of chained packets)
   1171*    The current default is 0x600 or 1536.  Experiments show that
   1172*    the value should probably stay within the 0x200 - 0x1000.
   1173*
   1174*  BUNDLEMAX -
   1175*    This sets the maximum number of frames that will be bundled.  In
   1176*    some situations, such as the TCP windowing algorithm, it may be
   1177*    better to limit the growth of the bundle size than let it go as
   1178*    high as it can, because that could cause too much added latency.
   1179*    The default is six, because this is the number of packets in the
   1180*    default TCP window size.  A value of 1 would make CPUSaver indicate
   1181*    an interrupt for every frame received.  If you do not want to put
   1182*    a limit on the bundle size, set this value to xFFFF.
   1183*
   1184*  BUNDLESMALL -
   1185*    This contains a bit-mask describing the minimum size frame that
   1186*    will be bundled.  The default masks the lower 7 bits, which means
   1187*    that any frame less than 128 bytes in length will not be bundled,
   1188*    but will instead immediately generate an interrupt.  This does
   1189*    not affect the current bundle in any way.  Any frame that is 128
   1190*    bytes or large will be bundled normally.  This feature is meant
   1191*    to provide immediate indication of ACK frames in a TCP environment.
   1192*    Customers were seeing poor performance when a machine with CPUSaver
   1193*    enabled was sending but not receiving.  The delay introduced when
   1194*    the ACKs were received was enough to reduce total throughput, because
   1195*    the sender would sit idle until the ACK was finally seen.
   1196*
   1197*    The current default is 0xFF80, which masks out the lower 7 bits.
   1198*    This means that any frame which is x7F (127) bytes or smaller
   1199*    will cause an immediate interrupt.  Because this value must be a
   1200*    bit mask, there are only a few valid values that can be used.  To
   1201*    turn this feature off, the driver can write the value xFFFF to the
   1202*    lower word of this instruction (in the same way that the other
   1203*    parameters are used).  Likewise, a value of 0xF800 (2047) would
   1204*    cause an interrupt to be generated for every frame, because all
   1205*    standard Ethernet frames are <= 2047 bytes in length.
   1206*************************************************************************/
   1207
   1208/* if you wish to disable the ucode functionality, while maintaining the
   1209 * workarounds it provides, set the following defines to:
   1210 * BUNDLESMALL 0
   1211 * BUNDLEMAX 1
   1212 * INTDELAY 1
   1213 */
   1214#define BUNDLESMALL 1
   1215#define BUNDLEMAX (u16)6
   1216#define INTDELAY (u16)1536 /* 0x600 */
   1217
   1218/* Initialize firmware */
   1219static const struct firmware *e100_request_firmware(struct nic *nic)
   1220{
   1221	const char *fw_name;
   1222	const struct firmware *fw = nic->fw;
   1223	u8 timer, bundle, min_size;
   1224	int err = 0;
   1225	bool required = false;
   1226
   1227	/* do not load u-code for ICH devices */
   1228	if (nic->flags & ich)
   1229		return NULL;
   1230
   1231	/* Search for ucode match against h/w revision
   1232	 *
   1233	 * Based on comments in the source code for the FreeBSD fxp
   1234	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
   1235	 *
   1236	 *    "fixes for bugs in the B-step hardware (specifically, bugs
   1237	 *     with Inline Receive)."
   1238	 *
   1239	 * So we must fail if it cannot be loaded.
   1240	 *
   1241	 * The other microcode files are only required for the optional
   1242	 * CPUSaver feature.  Nice to have, but no reason to fail.
   1243	 */
   1244	if (nic->mac == mac_82559_D101M) {
   1245		fw_name = FIRMWARE_D101M;
   1246	} else if (nic->mac == mac_82559_D101S) {
   1247		fw_name = FIRMWARE_D101S;
   1248	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
   1249		fw_name = FIRMWARE_D102E;
   1250		required = true;
   1251	} else { /* No ucode on other devices */
   1252		return NULL;
   1253	}
   1254
   1255	/* If the firmware has not previously been loaded, request a pointer
   1256	 * to it. If it was previously loaded, we are reinitializing the
   1257	 * adapter, possibly in a resume from hibernate, in which case
   1258	 * request_firmware() cannot be used.
   1259	 */
   1260	if (!fw)
   1261		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
   1262
   1263	if (err) {
   1264		if (required) {
   1265			netif_err(nic, probe, nic->netdev,
   1266				  "Failed to load firmware \"%s\": %d\n",
   1267				  fw_name, err);
   1268			return ERR_PTR(err);
   1269		} else {
   1270			netif_info(nic, probe, nic->netdev,
   1271				   "CPUSaver disabled. Needs \"%s\": %d\n",
   1272				   fw_name, err);
   1273			return NULL;
   1274		}
   1275	}
   1276
   1277	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
   1278	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
   1279	if (fw->size != UCODE_SIZE * 4 + 3) {
   1280		netif_err(nic, probe, nic->netdev,
   1281			  "Firmware \"%s\" has wrong size %zu\n",
   1282			  fw_name, fw->size);
   1283		release_firmware(fw);
   1284		return ERR_PTR(-EINVAL);
   1285	}
   1286
   1287	/* Read timer, bundle and min_size from end of firmware blob */
   1288	timer = fw->data[UCODE_SIZE * 4];
   1289	bundle = fw->data[UCODE_SIZE * 4 + 1];
   1290	min_size = fw->data[UCODE_SIZE * 4 + 2];
   1291
   1292	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
   1293	    min_size >= UCODE_SIZE) {
   1294		netif_err(nic, probe, nic->netdev,
   1295			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
   1296			  fw_name, timer, bundle, min_size);
   1297		release_firmware(fw);
   1298		return ERR_PTR(-EINVAL);
   1299	}
   1300
   1301	/* OK, firmware is validated and ready to use. Save a pointer
   1302	 * to it in the nic */
   1303	nic->fw = fw;
   1304	return fw;
   1305}
   1306
   1307static int e100_setup_ucode(struct nic *nic, struct cb *cb,
   1308			     struct sk_buff *skb)
   1309{
   1310	const struct firmware *fw = (void *)skb;
   1311	u8 timer, bundle, min_size;
   1312
   1313	/* It's not a real skb; we just abused the fact that e100_exec_cb
   1314	   will pass it through to here... */
   1315	cb->skb = NULL;
   1316
   1317	/* firmware is stored as little endian already */
   1318	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
   1319
   1320	/* Read timer, bundle and min_size from end of firmware blob */
   1321	timer = fw->data[UCODE_SIZE * 4];
   1322	bundle = fw->data[UCODE_SIZE * 4 + 1];
   1323	min_size = fw->data[UCODE_SIZE * 4 + 2];
   1324
   1325	/* Insert user-tunable settings in cb->u.ucode */
   1326	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
   1327	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
   1328	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
   1329	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
   1330	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
   1331	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
   1332
   1333	cb->command = cpu_to_le16(cb_ucode | cb_el);
   1334	return 0;
   1335}
   1336
   1337static inline int e100_load_ucode_wait(struct nic *nic)
   1338{
   1339	const struct firmware *fw;
   1340	int err = 0, counter = 50;
   1341	struct cb *cb = nic->cb_to_clean;
   1342
   1343	fw = e100_request_firmware(nic);
   1344	/* If it's NULL, then no ucode is required */
   1345	if (IS_ERR_OR_NULL(fw))
   1346		return PTR_ERR_OR_ZERO(fw);
   1347
   1348	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
   1349		netif_err(nic, probe, nic->netdev,
   1350			  "ucode cmd failed with error %d\n", err);
   1351
   1352	/* must restart cuc */
   1353	nic->cuc_cmd = cuc_start;
   1354
   1355	/* wait for completion */
   1356	e100_write_flush(nic);
   1357	udelay(10);
   1358
   1359	/* wait for possibly (ouch) 500ms */
   1360	while (!(cb->status & cpu_to_le16(cb_complete))) {
   1361		msleep(10);
   1362		if (!--counter) break;
   1363	}
   1364
   1365	/* ack any interrupts, something could have been set */
   1366	iowrite8(~0, &nic->csr->scb.stat_ack);
   1367
   1368	/* if the command failed, or is not OK, notify and return */
   1369	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
   1370		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
   1371		err = -EPERM;
   1372	}
   1373
   1374	return err;
   1375}
   1376
   1377static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
   1378	struct sk_buff *skb)
   1379{
   1380	cb->command = cpu_to_le16(cb_iaaddr);
   1381	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
   1382	return 0;
   1383}
   1384
   1385static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
   1386{
   1387	cb->command = cpu_to_le16(cb_dump);
   1388	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
   1389		offsetof(struct mem, dump_buf));
   1390	return 0;
   1391}
   1392
   1393static int e100_phy_check_without_mii(struct nic *nic)
   1394{
   1395	u8 phy_type;
   1396	int without_mii;
   1397
   1398	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
   1399
   1400	switch (phy_type) {
   1401	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
   1402	case I82503: /* Non-MII PHY; UNTESTED! */
   1403	case S80C24: /* Non-MII PHY; tested and working */
   1404		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
   1405		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
   1406		 * doesn't have a programming interface of any sort.  The
   1407		 * media is sensed automatically based on how the link partner
   1408		 * is configured.  This is, in essence, manual configuration.
   1409		 */
   1410		netif_info(nic, probe, nic->netdev,
   1411			   "found MII-less i82503 or 80c24 or other PHY\n");
   1412
   1413		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
   1414		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
   1415
   1416		/* these might be needed for certain MII-less cards...
   1417		 * nic->flags |= ich;
   1418		 * nic->flags |= ich_10h_workaround; */
   1419
   1420		without_mii = 1;
   1421		break;
   1422	default:
   1423		without_mii = 0;
   1424		break;
   1425	}
   1426	return without_mii;
   1427}
   1428
   1429#define NCONFIG_AUTO_SWITCH	0x0080
   1430#define MII_NSC_CONG		MII_RESV1
   1431#define NSC_CONG_ENABLE		0x0100
   1432#define NSC_CONG_TXREADY	0x0400
   1433#define ADVERTISE_FC_SUPPORTED	0x0400
   1434static int e100_phy_init(struct nic *nic)
   1435{
   1436	struct net_device *netdev = nic->netdev;
   1437	u32 addr;
   1438	u16 bmcr, stat, id_lo, id_hi, cong;
   1439
   1440	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
   1441	for (addr = 0; addr < 32; addr++) {
   1442		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
   1443		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
   1444		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
   1445		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
   1446		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
   1447			break;
   1448	}
   1449	if (addr == 32) {
   1450		/* uhoh, no PHY detected: check whether we seem to be some
   1451		 * weird, rare variant which is *known* to not have any MII.
   1452		 * But do this AFTER MII checking only, since this does
   1453		 * lookup of EEPROM values which may easily be unreliable. */
   1454		if (e100_phy_check_without_mii(nic))
   1455			return 0; /* simply return and hope for the best */
   1456		else {
   1457			/* for unknown cases log a fatal error */
   1458			netif_err(nic, hw, nic->netdev,
   1459				  "Failed to locate any known PHY, aborting\n");
   1460			return -EAGAIN;
   1461		}
   1462	} else
   1463		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
   1464			     "phy_addr = %d\n", nic->mii.phy_id);
   1465
   1466	/* Get phy ID */
   1467	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
   1468	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
   1469	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
   1470	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
   1471		     "phy ID = 0x%08X\n", nic->phy);
   1472
   1473	/* Select the phy and isolate the rest */
   1474	for (addr = 0; addr < 32; addr++) {
   1475		if (addr != nic->mii.phy_id) {
   1476			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
   1477		} else if (nic->phy != phy_82552_v) {
   1478			bmcr = mdio_read(netdev, addr, MII_BMCR);
   1479			mdio_write(netdev, addr, MII_BMCR,
   1480				bmcr & ~BMCR_ISOLATE);
   1481		}
   1482	}
   1483	/*
   1484	 * Workaround for 82552:
   1485	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
   1486	 * other phy_id's) using bmcr value from addr discovery loop above.
   1487	 */
   1488	if (nic->phy == phy_82552_v)
   1489		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
   1490			bmcr & ~BMCR_ISOLATE);
   1491
   1492	/* Handle National tx phys */
   1493#define NCS_PHY_MODEL_MASK	0xFFF0FFFF
   1494	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
   1495		/* Disable congestion control */
   1496		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
   1497		cong |= NSC_CONG_TXREADY;
   1498		cong &= ~NSC_CONG_ENABLE;
   1499		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
   1500	}
   1501
   1502	if (nic->phy == phy_82552_v) {
   1503		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
   1504
   1505		/* assign special tweaked mdio_ctrl() function */
   1506		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
   1507
   1508		/* Workaround Si not advertising flow-control during autoneg */
   1509		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
   1510		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
   1511
   1512		/* Reset for the above changes to take effect */
   1513		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
   1514		bmcr |= BMCR_RESET;
   1515		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
   1516	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
   1517	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
   1518	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
   1519		/* enable/disable MDI/MDI-X auto-switching. */
   1520		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
   1521				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
   1522	}
   1523
   1524	return 0;
   1525}
   1526
   1527static int e100_hw_init(struct nic *nic)
   1528{
   1529	int err = 0;
   1530
   1531	e100_hw_reset(nic);
   1532
   1533	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
   1534	if ((err = e100_self_test(nic)))
   1535		return err;
   1536
   1537	if ((err = e100_phy_init(nic)))
   1538		return err;
   1539	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
   1540		return err;
   1541	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
   1542		return err;
   1543	if ((err = e100_load_ucode_wait(nic)))
   1544		return err;
   1545	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
   1546		return err;
   1547	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
   1548		return err;
   1549	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
   1550		nic->dma_addr + offsetof(struct mem, stats))))
   1551		return err;
   1552	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
   1553		return err;
   1554
   1555	e100_disable_irq(nic);
   1556
   1557	return 0;
   1558}
   1559
   1560static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
   1561{
   1562	struct net_device *netdev = nic->netdev;
   1563	struct netdev_hw_addr *ha;
   1564	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
   1565
   1566	cb->command = cpu_to_le16(cb_multi);
   1567	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
   1568	i = 0;
   1569	netdev_for_each_mc_addr(ha, netdev) {
   1570		if (i == count)
   1571			break;
   1572		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
   1573			ETH_ALEN);
   1574	}
   1575	return 0;
   1576}
   1577
   1578static void e100_set_multicast_list(struct net_device *netdev)
   1579{
   1580	struct nic *nic = netdev_priv(netdev);
   1581
   1582	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
   1583		     "mc_count=%d, flags=0x%04X\n",
   1584		     netdev_mc_count(netdev), netdev->flags);
   1585
   1586	if (netdev->flags & IFF_PROMISC)
   1587		nic->flags |= promiscuous;
   1588	else
   1589		nic->flags &= ~promiscuous;
   1590
   1591	if (netdev->flags & IFF_ALLMULTI ||
   1592		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
   1593		nic->flags |= multicast_all;
   1594	else
   1595		nic->flags &= ~multicast_all;
   1596
   1597	e100_exec_cb(nic, NULL, e100_configure);
   1598	e100_exec_cb(nic, NULL, e100_multi);
   1599}
   1600
   1601static void e100_update_stats(struct nic *nic)
   1602{
   1603	struct net_device *dev = nic->netdev;
   1604	struct net_device_stats *ns = &dev->stats;
   1605	struct stats *s = &nic->mem->stats;
   1606	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
   1607		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
   1608		&s->complete;
   1609
   1610	/* Device's stats reporting may take several microseconds to
   1611	 * complete, so we're always waiting for results of the
   1612	 * previous command. */
   1613
   1614	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
   1615		*complete = 0;
   1616		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
   1617		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
   1618		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
   1619		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
   1620		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
   1621		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
   1622		ns->collisions += nic->tx_collisions;
   1623		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
   1624			le32_to_cpu(s->tx_lost_crs);
   1625		nic->rx_short_frame_errors +=
   1626			le32_to_cpu(s->rx_short_frame_errors);
   1627		ns->rx_length_errors = nic->rx_short_frame_errors +
   1628			nic->rx_over_length_errors;
   1629		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
   1630		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
   1631		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
   1632		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
   1633		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
   1634		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
   1635			le32_to_cpu(s->rx_alignment_errors) +
   1636			le32_to_cpu(s->rx_short_frame_errors) +
   1637			le32_to_cpu(s->rx_cdt_errors);
   1638		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
   1639		nic->tx_single_collisions +=
   1640			le32_to_cpu(s->tx_single_collisions);
   1641		nic->tx_multiple_collisions +=
   1642			le32_to_cpu(s->tx_multiple_collisions);
   1643		if (nic->mac >= mac_82558_D101_A4) {
   1644			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
   1645			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
   1646			nic->rx_fc_unsupported +=
   1647				le32_to_cpu(s->fc_rcv_unsupported);
   1648			if (nic->mac >= mac_82559_D101M) {
   1649				nic->tx_tco_frames +=
   1650					le16_to_cpu(s->xmt_tco_frames);
   1651				nic->rx_tco_frames +=
   1652					le16_to_cpu(s->rcv_tco_frames);
   1653			}
   1654		}
   1655	}
   1656
   1657
   1658	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
   1659		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
   1660			     "exec cuc_dump_reset failed\n");
   1661}
   1662
   1663static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
   1664{
   1665	/* Adjust inter-frame-spacing (IFS) between two transmits if
   1666	 * we're getting collisions on a half-duplex connection. */
   1667
   1668	if (duplex == DUPLEX_HALF) {
   1669		u32 prev = nic->adaptive_ifs;
   1670		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
   1671
   1672		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
   1673		   (nic->tx_frames > min_frames)) {
   1674			if (nic->adaptive_ifs < 60)
   1675				nic->adaptive_ifs += 5;
   1676		} else if (nic->tx_frames < min_frames) {
   1677			if (nic->adaptive_ifs >= 5)
   1678				nic->adaptive_ifs -= 5;
   1679		}
   1680		if (nic->adaptive_ifs != prev)
   1681			e100_exec_cb(nic, NULL, e100_configure);
   1682	}
   1683}
   1684
   1685static void e100_watchdog(struct timer_list *t)
   1686{
   1687	struct nic *nic = from_timer(nic, t, watchdog);
   1688	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
   1689	u32 speed;
   1690
   1691	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
   1692		     "right now = %ld\n", jiffies);
   1693
   1694	/* mii library handles link maintenance tasks */
   1695
   1696	mii_ethtool_gset(&nic->mii, &cmd);
   1697	speed = ethtool_cmd_speed(&cmd);
   1698
   1699	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
   1700		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
   1701			    speed == SPEED_100 ? 100 : 10,
   1702			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
   1703	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
   1704		netdev_info(nic->netdev, "NIC Link is Down\n");
   1705	}
   1706
   1707	mii_check_link(&nic->mii);
   1708
   1709	/* Software generated interrupt to recover from (rare) Rx
   1710	 * allocation failure.
   1711	 * Unfortunately have to use a spinlock to not re-enable interrupts
   1712	 * accidentally, due to hardware that shares a register between the
   1713	 * interrupt mask bit and the SW Interrupt generation bit */
   1714	spin_lock_irq(&nic->cmd_lock);
   1715	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
   1716	e100_write_flush(nic);
   1717	spin_unlock_irq(&nic->cmd_lock);
   1718
   1719	e100_update_stats(nic);
   1720	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
   1721
   1722	if (nic->mac <= mac_82557_D100_C)
   1723		/* Issue a multicast command to workaround a 557 lock up */
   1724		e100_set_multicast_list(nic->netdev);
   1725
   1726	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
   1727		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
   1728		nic->flags |= ich_10h_workaround;
   1729	else
   1730		nic->flags &= ~ich_10h_workaround;
   1731
   1732	mod_timer(&nic->watchdog,
   1733		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
   1734}
   1735
   1736static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
   1737	struct sk_buff *skb)
   1738{
   1739	dma_addr_t dma_addr;
   1740	cb->command = nic->tx_command;
   1741
   1742	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
   1743				  DMA_TO_DEVICE);
   1744	/* If we can't map the skb, have the upper layer try later */
   1745	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
   1746		dev_kfree_skb_any(skb);
   1747		skb = NULL;
   1748		return -ENOMEM;
   1749	}
   1750
   1751	/*
   1752	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
   1753	 * testing, ie sending frames with bad CRC.
   1754	 */
   1755	if (unlikely(skb->no_fcs))
   1756		cb->command |= cpu_to_le16(cb_tx_nc);
   1757	else
   1758		cb->command &= ~cpu_to_le16(cb_tx_nc);
   1759
   1760	/* interrupt every 16 packets regardless of delay */
   1761	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
   1762		cb->command |= cpu_to_le16(cb_i);
   1763	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
   1764	cb->u.tcb.tcb_byte_count = 0;
   1765	cb->u.tcb.threshold = nic->tx_threshold;
   1766	cb->u.tcb.tbd_count = 1;
   1767	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
   1768	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
   1769	skb_tx_timestamp(skb);
   1770	return 0;
   1771}
   1772
   1773static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
   1774				   struct net_device *netdev)
   1775{
   1776	struct nic *nic = netdev_priv(netdev);
   1777	int err;
   1778
   1779	if (nic->flags & ich_10h_workaround) {
   1780		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
   1781		   Issue a NOP command followed by a 1us delay before
   1782		   issuing the Tx command. */
   1783		if (e100_exec_cmd(nic, cuc_nop, 0))
   1784			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
   1785				     "exec cuc_nop failed\n");
   1786		udelay(1);
   1787	}
   1788
   1789	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
   1790
   1791	switch (err) {
   1792	case -ENOSPC:
   1793		/* We queued the skb, but now we're out of space. */
   1794		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
   1795			     "No space for CB\n");
   1796		netif_stop_queue(netdev);
   1797		break;
   1798	case -ENOMEM:
   1799		/* This is a hard error - log it. */
   1800		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
   1801			     "Out of Tx resources, returning skb\n");
   1802		netif_stop_queue(netdev);
   1803		return NETDEV_TX_BUSY;
   1804	}
   1805
   1806	return NETDEV_TX_OK;
   1807}
   1808
   1809static int e100_tx_clean(struct nic *nic)
   1810{
   1811	struct net_device *dev = nic->netdev;
   1812	struct cb *cb;
   1813	int tx_cleaned = 0;
   1814
   1815	spin_lock(&nic->cb_lock);
   1816
   1817	/* Clean CBs marked complete */
   1818	for (cb = nic->cb_to_clean;
   1819	    cb->status & cpu_to_le16(cb_complete);
   1820	    cb = nic->cb_to_clean = cb->next) {
   1821		dma_rmb(); /* read skb after status */
   1822		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
   1823			     "cb[%d]->status = 0x%04X\n",
   1824			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
   1825			     cb->status);
   1826
   1827		if (likely(cb->skb != NULL)) {
   1828			dev->stats.tx_packets++;
   1829			dev->stats.tx_bytes += cb->skb->len;
   1830
   1831			dma_unmap_single(&nic->pdev->dev,
   1832					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
   1833					 le16_to_cpu(cb->u.tcb.tbd.size),
   1834					 DMA_TO_DEVICE);
   1835			dev_kfree_skb_any(cb->skb);
   1836			cb->skb = NULL;
   1837			tx_cleaned = 1;
   1838		}
   1839		cb->status = 0;
   1840		nic->cbs_avail++;
   1841	}
   1842
   1843	spin_unlock(&nic->cb_lock);
   1844
   1845	/* Recover from running out of Tx resources in xmit_frame */
   1846	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
   1847		netif_wake_queue(nic->netdev);
   1848
   1849	return tx_cleaned;
   1850}
   1851
   1852static void e100_clean_cbs(struct nic *nic)
   1853{
   1854	if (nic->cbs) {
   1855		while (nic->cbs_avail != nic->params.cbs.count) {
   1856			struct cb *cb = nic->cb_to_clean;
   1857			if (cb->skb) {
   1858				dma_unmap_single(&nic->pdev->dev,
   1859						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
   1860						 le16_to_cpu(cb->u.tcb.tbd.size),
   1861						 DMA_TO_DEVICE);
   1862				dev_kfree_skb(cb->skb);
   1863			}
   1864			nic->cb_to_clean = nic->cb_to_clean->next;
   1865			nic->cbs_avail++;
   1866		}
   1867		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
   1868		nic->cbs = NULL;
   1869		nic->cbs_avail = 0;
   1870	}
   1871	nic->cuc_cmd = cuc_start;
   1872	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
   1873		nic->cbs;
   1874}
   1875
   1876static int e100_alloc_cbs(struct nic *nic)
   1877{
   1878	struct cb *cb;
   1879	unsigned int i, count = nic->params.cbs.count;
   1880
   1881	nic->cuc_cmd = cuc_start;
   1882	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
   1883	nic->cbs_avail = 0;
   1884
   1885	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
   1886				   &nic->cbs_dma_addr);
   1887	if (!nic->cbs)
   1888		return -ENOMEM;
   1889
   1890	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
   1891		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
   1892		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
   1893
   1894		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
   1895		cb->link = cpu_to_le32(nic->cbs_dma_addr +
   1896			((i+1) % count) * sizeof(struct cb));
   1897	}
   1898
   1899	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
   1900	nic->cbs_avail = count;
   1901
   1902	return 0;
   1903}
   1904
   1905static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
   1906{
   1907	if (!nic->rxs) return;
   1908	if (RU_SUSPENDED != nic->ru_running) return;
   1909
   1910	/* handle init time starts */
   1911	if (!rx) rx = nic->rxs;
   1912
   1913	/* (Re)start RU if suspended or idle and RFA is non-NULL */
   1914	if (rx->skb) {
   1915		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
   1916		nic->ru_running = RU_RUNNING;
   1917	}
   1918}
   1919
   1920#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
   1921static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
   1922{
   1923	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
   1924		return -ENOMEM;
   1925
   1926	/* Init, and map the RFD. */
   1927	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
   1928	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
   1929				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
   1930
   1931	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
   1932		dev_kfree_skb_any(rx->skb);
   1933		rx->skb = NULL;
   1934		rx->dma_addr = 0;
   1935		return -ENOMEM;
   1936	}
   1937
   1938	/* Link the RFD to end of RFA by linking previous RFD to
   1939	 * this one.  We are safe to touch the previous RFD because
   1940	 * it is protected by the before last buffer's el bit being set */
   1941	if (rx->prev->skb) {
   1942		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
   1943		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
   1944		dma_sync_single_for_device(&nic->pdev->dev,
   1945					   rx->prev->dma_addr,
   1946					   sizeof(struct rfd),
   1947					   DMA_BIDIRECTIONAL);
   1948	}
   1949
   1950	return 0;
   1951}
   1952
   1953static int e100_rx_indicate(struct nic *nic, struct rx *rx,
   1954	unsigned int *work_done, unsigned int work_to_do)
   1955{
   1956	struct net_device *dev = nic->netdev;
   1957	struct sk_buff *skb = rx->skb;
   1958	struct rfd *rfd = (struct rfd *)skb->data;
   1959	u16 rfd_status, actual_size;
   1960	u16 fcs_pad = 0;
   1961
   1962	if (unlikely(work_done && *work_done >= work_to_do))
   1963		return -EAGAIN;
   1964
   1965	/* Need to sync before taking a peek at cb_complete bit */
   1966	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
   1967				sizeof(struct rfd), DMA_BIDIRECTIONAL);
   1968	rfd_status = le16_to_cpu(rfd->status);
   1969
   1970	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
   1971		     "status=0x%04X\n", rfd_status);
   1972	dma_rmb(); /* read size after status bit */
   1973
   1974	/* If data isn't ready, nothing to indicate */
   1975	if (unlikely(!(rfd_status & cb_complete))) {
   1976		/* If the next buffer has the el bit, but we think the receiver
   1977		 * is still running, check to see if it really stopped while
   1978		 * we had interrupts off.
   1979		 * This allows for a fast restart without re-enabling
   1980		 * interrupts */
   1981		if ((le16_to_cpu(rfd->command) & cb_el) &&
   1982		    (RU_RUNNING == nic->ru_running))
   1983
   1984			if (ioread8(&nic->csr->scb.status) & rus_no_res)
   1985				nic->ru_running = RU_SUSPENDED;
   1986		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
   1987					   sizeof(struct rfd),
   1988					   DMA_FROM_DEVICE);
   1989		return -ENODATA;
   1990	}
   1991
   1992	/* Get actual data size */
   1993	if (unlikely(dev->features & NETIF_F_RXFCS))
   1994		fcs_pad = 4;
   1995	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
   1996	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
   1997		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
   1998
   1999	/* Get data */
   2000	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
   2001			 DMA_BIDIRECTIONAL);
   2002
   2003	/* If this buffer has the el bit, but we think the receiver
   2004	 * is still running, check to see if it really stopped while
   2005	 * we had interrupts off.
   2006	 * This allows for a fast restart without re-enabling interrupts.
   2007	 * This can happen when the RU sees the size change but also sees
   2008	 * the el bit set. */
   2009	if ((le16_to_cpu(rfd->command) & cb_el) &&
   2010	    (RU_RUNNING == nic->ru_running)) {
   2011
   2012	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
   2013		nic->ru_running = RU_SUSPENDED;
   2014	}
   2015
   2016	/* Pull off the RFD and put the actual data (minus eth hdr) */
   2017	skb_reserve(skb, sizeof(struct rfd));
   2018	skb_put(skb, actual_size);
   2019	skb->protocol = eth_type_trans(skb, nic->netdev);
   2020
   2021	/* If we are receiving all frames, then don't bother
   2022	 * checking for errors.
   2023	 */
   2024	if (unlikely(dev->features & NETIF_F_RXALL)) {
   2025		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
   2026			/* Received oversized frame, but keep it. */
   2027			nic->rx_over_length_errors++;
   2028		goto process_skb;
   2029	}
   2030
   2031	if (unlikely(!(rfd_status & cb_ok))) {
   2032		/* Don't indicate if hardware indicates errors */
   2033		dev_kfree_skb_any(skb);
   2034	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
   2035		/* Don't indicate oversized frames */
   2036		nic->rx_over_length_errors++;
   2037		dev_kfree_skb_any(skb);
   2038	} else {
   2039process_skb:
   2040		dev->stats.rx_packets++;
   2041		dev->stats.rx_bytes += (actual_size - fcs_pad);
   2042		netif_receive_skb(skb);
   2043		if (work_done)
   2044			(*work_done)++;
   2045	}
   2046
   2047	rx->skb = NULL;
   2048
   2049	return 0;
   2050}
   2051
   2052static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
   2053	unsigned int work_to_do)
   2054{
   2055	struct rx *rx;
   2056	int restart_required = 0, err = 0;
   2057	struct rx *old_before_last_rx, *new_before_last_rx;
   2058	struct rfd *old_before_last_rfd, *new_before_last_rfd;
   2059
   2060	/* Indicate newly arrived packets */
   2061	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
   2062		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
   2063		/* Hit quota or no more to clean */
   2064		if (-EAGAIN == err || -ENODATA == err)
   2065			break;
   2066	}
   2067
   2068
   2069	/* On EAGAIN, hit quota so have more work to do, restart once
   2070	 * cleanup is complete.
   2071	 * Else, are we already rnr? then pay attention!!! this ensures that
   2072	 * the state machine progression never allows a start with a
   2073	 * partially cleaned list, avoiding a race between hardware
   2074	 * and rx_to_clean when in NAPI mode */
   2075	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
   2076		restart_required = 1;
   2077
   2078	old_before_last_rx = nic->rx_to_use->prev->prev;
   2079	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
   2080
   2081	/* Alloc new skbs to refill list */
   2082	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
   2083		if (unlikely(e100_rx_alloc_skb(nic, rx)))
   2084			break; /* Better luck next time (see watchdog) */
   2085	}
   2086
   2087	new_before_last_rx = nic->rx_to_use->prev->prev;
   2088	if (new_before_last_rx != old_before_last_rx) {
   2089		/* Set the el-bit on the buffer that is before the last buffer.
   2090		 * This lets us update the next pointer on the last buffer
   2091		 * without worrying about hardware touching it.
   2092		 * We set the size to 0 to prevent hardware from touching this
   2093		 * buffer.
   2094		 * When the hardware hits the before last buffer with el-bit
   2095		 * and size of 0, it will RNR interrupt, the RUS will go into
   2096		 * the No Resources state.  It will not complete nor write to
   2097		 * this buffer. */
   2098		new_before_last_rfd =
   2099			(struct rfd *)new_before_last_rx->skb->data;
   2100		new_before_last_rfd->size = 0;
   2101		new_before_last_rfd->command |= cpu_to_le16(cb_el);
   2102		dma_sync_single_for_device(&nic->pdev->dev,
   2103					   new_before_last_rx->dma_addr,
   2104					   sizeof(struct rfd),
   2105					   DMA_BIDIRECTIONAL);
   2106
   2107		/* Now that we have a new stopping point, we can clear the old
   2108		 * stopping point.  We must sync twice to get the proper
   2109		 * ordering on the hardware side of things. */
   2110		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
   2111		dma_sync_single_for_device(&nic->pdev->dev,
   2112					   old_before_last_rx->dma_addr,
   2113					   sizeof(struct rfd),
   2114					   DMA_BIDIRECTIONAL);
   2115		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
   2116							+ ETH_FCS_LEN);
   2117		dma_sync_single_for_device(&nic->pdev->dev,
   2118					   old_before_last_rx->dma_addr,
   2119					   sizeof(struct rfd),
   2120					   DMA_BIDIRECTIONAL);
   2121	}
   2122
   2123	if (restart_required) {
   2124		// ack the rnr?
   2125		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
   2126		e100_start_receiver(nic, nic->rx_to_clean);
   2127		if (work_done)
   2128			(*work_done)++;
   2129	}
   2130}
   2131
   2132static void e100_rx_clean_list(struct nic *nic)
   2133{
   2134	struct rx *rx;
   2135	unsigned int i, count = nic->params.rfds.count;
   2136
   2137	nic->ru_running = RU_UNINITIALIZED;
   2138
   2139	if (nic->rxs) {
   2140		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
   2141			if (rx->skb) {
   2142				dma_unmap_single(&nic->pdev->dev,
   2143						 rx->dma_addr, RFD_BUF_LEN,
   2144						 DMA_BIDIRECTIONAL);
   2145				dev_kfree_skb(rx->skb);
   2146			}
   2147		}
   2148		kfree(nic->rxs);
   2149		nic->rxs = NULL;
   2150	}
   2151
   2152	nic->rx_to_use = nic->rx_to_clean = NULL;
   2153}
   2154
   2155static int e100_rx_alloc_list(struct nic *nic)
   2156{
   2157	struct rx *rx;
   2158	unsigned int i, count = nic->params.rfds.count;
   2159	struct rfd *before_last;
   2160
   2161	nic->rx_to_use = nic->rx_to_clean = NULL;
   2162	nic->ru_running = RU_UNINITIALIZED;
   2163
   2164	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
   2165		return -ENOMEM;
   2166
   2167	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
   2168		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
   2169		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
   2170		if (e100_rx_alloc_skb(nic, rx)) {
   2171			e100_rx_clean_list(nic);
   2172			return -ENOMEM;
   2173		}
   2174	}
   2175	/* Set the el-bit on the buffer that is before the last buffer.
   2176	 * This lets us update the next pointer on the last buffer without
   2177	 * worrying about hardware touching it.
   2178	 * We set the size to 0 to prevent hardware from touching this buffer.
   2179	 * When the hardware hits the before last buffer with el-bit and size
   2180	 * of 0, it will RNR interrupt, the RU will go into the No Resources
   2181	 * state.  It will not complete nor write to this buffer. */
   2182	rx = nic->rxs->prev->prev;
   2183	before_last = (struct rfd *)rx->skb->data;
   2184	before_last->command |= cpu_to_le16(cb_el);
   2185	before_last->size = 0;
   2186	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
   2187				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
   2188
   2189	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
   2190	nic->ru_running = RU_SUSPENDED;
   2191
   2192	return 0;
   2193}
   2194
   2195static irqreturn_t e100_intr(int irq, void *dev_id)
   2196{
   2197	struct net_device *netdev = dev_id;
   2198	struct nic *nic = netdev_priv(netdev);
   2199	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
   2200
   2201	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
   2202		     "stat_ack = 0x%02X\n", stat_ack);
   2203
   2204	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
   2205	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
   2206		return IRQ_NONE;
   2207
   2208	/* Ack interrupt(s) */
   2209	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
   2210
   2211	/* We hit Receive No Resource (RNR); restart RU after cleaning */
   2212	if (stat_ack & stat_ack_rnr)
   2213		nic->ru_running = RU_SUSPENDED;
   2214
   2215	if (likely(napi_schedule_prep(&nic->napi))) {
   2216		e100_disable_irq(nic);
   2217		__napi_schedule(&nic->napi);
   2218	}
   2219
   2220	return IRQ_HANDLED;
   2221}
   2222
   2223static int e100_poll(struct napi_struct *napi, int budget)
   2224{
   2225	struct nic *nic = container_of(napi, struct nic, napi);
   2226	unsigned int work_done = 0;
   2227
   2228	e100_rx_clean(nic, &work_done, budget);
   2229	e100_tx_clean(nic);
   2230
   2231	/* If budget fully consumed, continue polling */
   2232	if (work_done == budget)
   2233		return budget;
   2234
   2235	/* only re-enable interrupt if stack agrees polling is really done */
   2236	if (likely(napi_complete_done(napi, work_done)))
   2237		e100_enable_irq(nic);
   2238
   2239	return work_done;
   2240}
   2241
   2242#ifdef CONFIG_NET_POLL_CONTROLLER
   2243static void e100_netpoll(struct net_device *netdev)
   2244{
   2245	struct nic *nic = netdev_priv(netdev);
   2246
   2247	e100_disable_irq(nic);
   2248	e100_intr(nic->pdev->irq, netdev);
   2249	e100_tx_clean(nic);
   2250	e100_enable_irq(nic);
   2251}
   2252#endif
   2253
   2254static int e100_set_mac_address(struct net_device *netdev, void *p)
   2255{
   2256	struct nic *nic = netdev_priv(netdev);
   2257	struct sockaddr *addr = p;
   2258
   2259	if (!is_valid_ether_addr(addr->sa_data))
   2260		return -EADDRNOTAVAIL;
   2261
   2262	eth_hw_addr_set(netdev, addr->sa_data);
   2263	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
   2264
   2265	return 0;
   2266}
   2267
   2268static int e100_asf(struct nic *nic)
   2269{
   2270	/* ASF can be enabled from eeprom */
   2271	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
   2272	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
   2273	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
   2274	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
   2275}
   2276
   2277static int e100_up(struct nic *nic)
   2278{
   2279	int err;
   2280
   2281	if ((err = e100_rx_alloc_list(nic)))
   2282		return err;
   2283	if ((err = e100_alloc_cbs(nic)))
   2284		goto err_rx_clean_list;
   2285	if ((err = e100_hw_init(nic)))
   2286		goto err_clean_cbs;
   2287	e100_set_multicast_list(nic->netdev);
   2288	e100_start_receiver(nic, NULL);
   2289	mod_timer(&nic->watchdog, jiffies);
   2290	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
   2291		nic->netdev->name, nic->netdev)))
   2292		goto err_no_irq;
   2293	netif_wake_queue(nic->netdev);
   2294	napi_enable(&nic->napi);
   2295	/* enable ints _after_ enabling poll, preventing a race between
   2296	 * disable ints+schedule */
   2297	e100_enable_irq(nic);
   2298	return 0;
   2299
   2300err_no_irq:
   2301	del_timer_sync(&nic->watchdog);
   2302err_clean_cbs:
   2303	e100_clean_cbs(nic);
   2304err_rx_clean_list:
   2305	e100_rx_clean_list(nic);
   2306	return err;
   2307}
   2308
   2309static void e100_down(struct nic *nic)
   2310{
   2311	/* wait here for poll to complete */
   2312	napi_disable(&nic->napi);
   2313	netif_stop_queue(nic->netdev);
   2314	e100_hw_reset(nic);
   2315	free_irq(nic->pdev->irq, nic->netdev);
   2316	del_timer_sync(&nic->watchdog);
   2317	netif_carrier_off(nic->netdev);
   2318	e100_clean_cbs(nic);
   2319	e100_rx_clean_list(nic);
   2320}
   2321
   2322static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
   2323{
   2324	struct nic *nic = netdev_priv(netdev);
   2325
   2326	/* Reset outside of interrupt context, to avoid request_irq
   2327	 * in interrupt context */
   2328	schedule_work(&nic->tx_timeout_task);
   2329}
   2330
   2331static void e100_tx_timeout_task(struct work_struct *work)
   2332{
   2333	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
   2334	struct net_device *netdev = nic->netdev;
   2335
   2336	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
   2337		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
   2338
   2339	rtnl_lock();
   2340	if (netif_running(netdev)) {
   2341		e100_down(netdev_priv(netdev));
   2342		e100_up(netdev_priv(netdev));
   2343	}
   2344	rtnl_unlock();
   2345}
   2346
   2347static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
   2348{
   2349	int err;
   2350	struct sk_buff *skb;
   2351
   2352	/* Use driver resources to perform internal MAC or PHY
   2353	 * loopback test.  A single packet is prepared and transmitted
   2354	 * in loopback mode, and the test passes if the received
   2355	 * packet compares byte-for-byte to the transmitted packet. */
   2356
   2357	if ((err = e100_rx_alloc_list(nic)))
   2358		return err;
   2359	if ((err = e100_alloc_cbs(nic)))
   2360		goto err_clean_rx;
   2361
   2362	/* ICH PHY loopback is broken so do MAC loopback instead */
   2363	if (nic->flags & ich && loopback_mode == lb_phy)
   2364		loopback_mode = lb_mac;
   2365
   2366	nic->loopback = loopback_mode;
   2367	if ((err = e100_hw_init(nic)))
   2368		goto err_loopback_none;
   2369
   2370	if (loopback_mode == lb_phy)
   2371		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
   2372			BMCR_LOOPBACK);
   2373
   2374	e100_start_receiver(nic, NULL);
   2375
   2376	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
   2377		err = -ENOMEM;
   2378		goto err_loopback_none;
   2379	}
   2380	skb_put(skb, ETH_DATA_LEN);
   2381	memset(skb->data, 0xFF, ETH_DATA_LEN);
   2382	e100_xmit_frame(skb, nic->netdev);
   2383
   2384	msleep(10);
   2385
   2386	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
   2387				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
   2388
   2389	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
   2390	   skb->data, ETH_DATA_LEN))
   2391		err = -EAGAIN;
   2392
   2393err_loopback_none:
   2394	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
   2395	nic->loopback = lb_none;
   2396	e100_clean_cbs(nic);
   2397	e100_hw_reset(nic);
   2398err_clean_rx:
   2399	e100_rx_clean_list(nic);
   2400	return err;
   2401}
   2402
   2403#define MII_LED_CONTROL	0x1B
   2404#define E100_82552_LED_OVERRIDE 0x19
   2405#define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
   2406#define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
   2407
   2408static int e100_get_link_ksettings(struct net_device *netdev,
   2409				   struct ethtool_link_ksettings *cmd)
   2410{
   2411	struct nic *nic = netdev_priv(netdev);
   2412
   2413	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
   2414
   2415	return 0;
   2416}
   2417
   2418static int e100_set_link_ksettings(struct net_device *netdev,
   2419				   const struct ethtool_link_ksettings *cmd)
   2420{
   2421	struct nic *nic = netdev_priv(netdev);
   2422	int err;
   2423
   2424	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
   2425	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
   2426	e100_exec_cb(nic, NULL, e100_configure);
   2427
   2428	return err;
   2429}
   2430
   2431static void e100_get_drvinfo(struct net_device *netdev,
   2432	struct ethtool_drvinfo *info)
   2433{
   2434	struct nic *nic = netdev_priv(netdev);
   2435	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
   2436	strlcpy(info->bus_info, pci_name(nic->pdev),
   2437		sizeof(info->bus_info));
   2438}
   2439
   2440#define E100_PHY_REGS 0x1D
   2441static int e100_get_regs_len(struct net_device *netdev)
   2442{
   2443	struct nic *nic = netdev_priv(netdev);
   2444
   2445	/* We know the number of registers, and the size of the dump buffer.
   2446	 * Calculate the total size in bytes.
   2447	 */
   2448	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
   2449}
   2450
   2451static void e100_get_regs(struct net_device *netdev,
   2452	struct ethtool_regs *regs, void *p)
   2453{
   2454	struct nic *nic = netdev_priv(netdev);
   2455	u32 *buff = p;
   2456	int i;
   2457
   2458	regs->version = (1 << 24) | nic->pdev->revision;
   2459	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
   2460		ioread8(&nic->csr->scb.cmd_lo) << 16 |
   2461		ioread16(&nic->csr->scb.status);
   2462	for (i = 0; i < E100_PHY_REGS; i++)
   2463		/* Note that we read the registers in reverse order. This
   2464		 * ordering is the ABI apparently used by ethtool and other
   2465		 * applications.
   2466		 */
   2467		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
   2468					E100_PHY_REGS - 1 - i);
   2469	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
   2470	e100_exec_cb(nic, NULL, e100_dump);
   2471	msleep(10);
   2472	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
   2473	       sizeof(nic->mem->dump_buf));
   2474}
   2475
   2476static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
   2477{
   2478	struct nic *nic = netdev_priv(netdev);
   2479	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
   2480	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
   2481}
   2482
   2483static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
   2484{
   2485	struct nic *nic = netdev_priv(netdev);
   2486
   2487	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
   2488	    !device_can_wakeup(&nic->pdev->dev))
   2489		return -EOPNOTSUPP;
   2490
   2491	if (wol->wolopts)
   2492		nic->flags |= wol_magic;
   2493	else
   2494		nic->flags &= ~wol_magic;
   2495
   2496	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
   2497
   2498	e100_exec_cb(nic, NULL, e100_configure);
   2499
   2500	return 0;
   2501}
   2502
   2503static u32 e100_get_msglevel(struct net_device *netdev)
   2504{
   2505	struct nic *nic = netdev_priv(netdev);
   2506	return nic->msg_enable;
   2507}
   2508
   2509static void e100_set_msglevel(struct net_device *netdev, u32 value)
   2510{
   2511	struct nic *nic = netdev_priv(netdev);
   2512	nic->msg_enable = value;
   2513}
   2514
   2515static int e100_nway_reset(struct net_device *netdev)
   2516{
   2517	struct nic *nic = netdev_priv(netdev);
   2518	return mii_nway_restart(&nic->mii);
   2519}
   2520
   2521static u32 e100_get_link(struct net_device *netdev)
   2522{
   2523	struct nic *nic = netdev_priv(netdev);
   2524	return mii_link_ok(&nic->mii);
   2525}
   2526
   2527static int e100_get_eeprom_len(struct net_device *netdev)
   2528{
   2529	struct nic *nic = netdev_priv(netdev);
   2530	return nic->eeprom_wc << 1;
   2531}
   2532
   2533#define E100_EEPROM_MAGIC	0x1234
   2534static int e100_get_eeprom(struct net_device *netdev,
   2535	struct ethtool_eeprom *eeprom, u8 *bytes)
   2536{
   2537	struct nic *nic = netdev_priv(netdev);
   2538
   2539	eeprom->magic = E100_EEPROM_MAGIC;
   2540	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
   2541
   2542	return 0;
   2543}
   2544
   2545static int e100_set_eeprom(struct net_device *netdev,
   2546	struct ethtool_eeprom *eeprom, u8 *bytes)
   2547{
   2548	struct nic *nic = netdev_priv(netdev);
   2549
   2550	if (eeprom->magic != E100_EEPROM_MAGIC)
   2551		return -EINVAL;
   2552
   2553	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
   2554
   2555	return e100_eeprom_save(nic, eeprom->offset >> 1,
   2556		(eeprom->len >> 1) + 1);
   2557}
   2558
   2559static void e100_get_ringparam(struct net_device *netdev,
   2560			       struct ethtool_ringparam *ring,
   2561			       struct kernel_ethtool_ringparam *kernel_ring,
   2562			       struct netlink_ext_ack *extack)
   2563{
   2564	struct nic *nic = netdev_priv(netdev);
   2565	struct param_range *rfds = &nic->params.rfds;
   2566	struct param_range *cbs = &nic->params.cbs;
   2567
   2568	ring->rx_max_pending = rfds->max;
   2569	ring->tx_max_pending = cbs->max;
   2570	ring->rx_pending = rfds->count;
   2571	ring->tx_pending = cbs->count;
   2572}
   2573
   2574static int e100_set_ringparam(struct net_device *netdev,
   2575			      struct ethtool_ringparam *ring,
   2576			      struct kernel_ethtool_ringparam *kernel_ring,
   2577			      struct netlink_ext_ack *extack)
   2578{
   2579	struct nic *nic = netdev_priv(netdev);
   2580	struct param_range *rfds = &nic->params.rfds;
   2581	struct param_range *cbs = &nic->params.cbs;
   2582
   2583	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
   2584		return -EINVAL;
   2585
   2586	if (netif_running(netdev))
   2587		e100_down(nic);
   2588	rfds->count = max(ring->rx_pending, rfds->min);
   2589	rfds->count = min(rfds->count, rfds->max);
   2590	cbs->count = max(ring->tx_pending, cbs->min);
   2591	cbs->count = min(cbs->count, cbs->max);
   2592	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
   2593		   rfds->count, cbs->count);
   2594	if (netif_running(netdev))
   2595		e100_up(nic);
   2596
   2597	return 0;
   2598}
   2599
   2600static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
   2601	"Link test     (on/offline)",
   2602	"Eeprom test   (on/offline)",
   2603	"Self test        (offline)",
   2604	"Mac loopback     (offline)",
   2605	"Phy loopback     (offline)",
   2606};
   2607#define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
   2608
   2609static void e100_diag_test(struct net_device *netdev,
   2610	struct ethtool_test *test, u64 *data)
   2611{
   2612	struct ethtool_cmd cmd;
   2613	struct nic *nic = netdev_priv(netdev);
   2614	int i;
   2615
   2616	memset(data, 0, E100_TEST_LEN * sizeof(u64));
   2617	data[0] = !mii_link_ok(&nic->mii);
   2618	data[1] = e100_eeprom_load(nic);
   2619	if (test->flags & ETH_TEST_FL_OFFLINE) {
   2620
   2621		/* save speed, duplex & autoneg settings */
   2622		mii_ethtool_gset(&nic->mii, &cmd);
   2623
   2624		if (netif_running(netdev))
   2625			e100_down(nic);
   2626		data[2] = e100_self_test(nic);
   2627		data[3] = e100_loopback_test(nic, lb_mac);
   2628		data[4] = e100_loopback_test(nic, lb_phy);
   2629
   2630		/* restore speed, duplex & autoneg settings */
   2631		mii_ethtool_sset(&nic->mii, &cmd);
   2632
   2633		if (netif_running(netdev))
   2634			e100_up(nic);
   2635	}
   2636	for (i = 0; i < E100_TEST_LEN; i++)
   2637		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
   2638
   2639	msleep_interruptible(4 * 1000);
   2640}
   2641
   2642static int e100_set_phys_id(struct net_device *netdev,
   2643			    enum ethtool_phys_id_state state)
   2644{
   2645	struct nic *nic = netdev_priv(netdev);
   2646	enum led_state {
   2647		led_on     = 0x01,
   2648		led_off    = 0x04,
   2649		led_on_559 = 0x05,
   2650		led_on_557 = 0x07,
   2651	};
   2652	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
   2653		MII_LED_CONTROL;
   2654	u16 leds = 0;
   2655
   2656	switch (state) {
   2657	case ETHTOOL_ID_ACTIVE:
   2658		return 2;
   2659
   2660	case ETHTOOL_ID_ON:
   2661		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
   2662		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
   2663		break;
   2664
   2665	case ETHTOOL_ID_OFF:
   2666		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
   2667		break;
   2668
   2669	case ETHTOOL_ID_INACTIVE:
   2670		break;
   2671	}
   2672
   2673	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
   2674	return 0;
   2675}
   2676
   2677static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
   2678	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
   2679	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
   2680	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
   2681	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
   2682	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
   2683	"tx_heartbeat_errors", "tx_window_errors",
   2684	/* device-specific stats */
   2685	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
   2686	"tx_flow_control_pause", "rx_flow_control_pause",
   2687	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
   2688	"rx_short_frame_errors", "rx_over_length_errors",
   2689};
   2690#define E100_NET_STATS_LEN	21
   2691#define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
   2692
   2693static int e100_get_sset_count(struct net_device *netdev, int sset)
   2694{
   2695	switch (sset) {
   2696	case ETH_SS_TEST:
   2697		return E100_TEST_LEN;
   2698	case ETH_SS_STATS:
   2699		return E100_STATS_LEN;
   2700	default:
   2701		return -EOPNOTSUPP;
   2702	}
   2703}
   2704
   2705static void e100_get_ethtool_stats(struct net_device *netdev,
   2706	struct ethtool_stats *stats, u64 *data)
   2707{
   2708	struct nic *nic = netdev_priv(netdev);
   2709	int i;
   2710
   2711	for (i = 0; i < E100_NET_STATS_LEN; i++)
   2712		data[i] = ((unsigned long *)&netdev->stats)[i];
   2713
   2714	data[i++] = nic->tx_deferred;
   2715	data[i++] = nic->tx_single_collisions;
   2716	data[i++] = nic->tx_multiple_collisions;
   2717	data[i++] = nic->tx_fc_pause;
   2718	data[i++] = nic->rx_fc_pause;
   2719	data[i++] = nic->rx_fc_unsupported;
   2720	data[i++] = nic->tx_tco_frames;
   2721	data[i++] = nic->rx_tco_frames;
   2722	data[i++] = nic->rx_short_frame_errors;
   2723	data[i++] = nic->rx_over_length_errors;
   2724}
   2725
   2726static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
   2727{
   2728	switch (stringset) {
   2729	case ETH_SS_TEST:
   2730		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
   2731		break;
   2732	case ETH_SS_STATS:
   2733		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
   2734		break;
   2735	}
   2736}
   2737
   2738static const struct ethtool_ops e100_ethtool_ops = {
   2739	.get_drvinfo		= e100_get_drvinfo,
   2740	.get_regs_len		= e100_get_regs_len,
   2741	.get_regs		= e100_get_regs,
   2742	.get_wol		= e100_get_wol,
   2743	.set_wol		= e100_set_wol,
   2744	.get_msglevel		= e100_get_msglevel,
   2745	.set_msglevel		= e100_set_msglevel,
   2746	.nway_reset		= e100_nway_reset,
   2747	.get_link		= e100_get_link,
   2748	.get_eeprom_len		= e100_get_eeprom_len,
   2749	.get_eeprom		= e100_get_eeprom,
   2750	.set_eeprom		= e100_set_eeprom,
   2751	.get_ringparam		= e100_get_ringparam,
   2752	.set_ringparam		= e100_set_ringparam,
   2753	.self_test		= e100_diag_test,
   2754	.get_strings		= e100_get_strings,
   2755	.set_phys_id		= e100_set_phys_id,
   2756	.get_ethtool_stats	= e100_get_ethtool_stats,
   2757	.get_sset_count		= e100_get_sset_count,
   2758	.get_ts_info		= ethtool_op_get_ts_info,
   2759	.get_link_ksettings	= e100_get_link_ksettings,
   2760	.set_link_ksettings	= e100_set_link_ksettings,
   2761};
   2762
   2763static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
   2764{
   2765	struct nic *nic = netdev_priv(netdev);
   2766
   2767	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
   2768}
   2769
   2770static int e100_alloc(struct nic *nic)
   2771{
   2772	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
   2773				      &nic->dma_addr, GFP_KERNEL);
   2774	return nic->mem ? 0 : -ENOMEM;
   2775}
   2776
   2777static void e100_free(struct nic *nic)
   2778{
   2779	if (nic->mem) {
   2780		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
   2781				  nic->mem, nic->dma_addr);
   2782		nic->mem = NULL;
   2783	}
   2784}
   2785
   2786static int e100_open(struct net_device *netdev)
   2787{
   2788	struct nic *nic = netdev_priv(netdev);
   2789	int err = 0;
   2790
   2791	netif_carrier_off(netdev);
   2792	if ((err = e100_up(nic)))
   2793		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
   2794	return err;
   2795}
   2796
   2797static int e100_close(struct net_device *netdev)
   2798{
   2799	e100_down(netdev_priv(netdev));
   2800	return 0;
   2801}
   2802
   2803static int e100_set_features(struct net_device *netdev,
   2804			     netdev_features_t features)
   2805{
   2806	struct nic *nic = netdev_priv(netdev);
   2807	netdev_features_t changed = features ^ netdev->features;
   2808
   2809	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
   2810		return 0;
   2811
   2812	netdev->features = features;
   2813	e100_exec_cb(nic, NULL, e100_configure);
   2814	return 1;
   2815}
   2816
   2817static const struct net_device_ops e100_netdev_ops = {
   2818	.ndo_open		= e100_open,
   2819	.ndo_stop		= e100_close,
   2820	.ndo_start_xmit		= e100_xmit_frame,
   2821	.ndo_validate_addr	= eth_validate_addr,
   2822	.ndo_set_rx_mode	= e100_set_multicast_list,
   2823	.ndo_set_mac_address	= e100_set_mac_address,
   2824	.ndo_eth_ioctl		= e100_do_ioctl,
   2825	.ndo_tx_timeout		= e100_tx_timeout,
   2826#ifdef CONFIG_NET_POLL_CONTROLLER
   2827	.ndo_poll_controller	= e100_netpoll,
   2828#endif
   2829	.ndo_set_features	= e100_set_features,
   2830};
   2831
   2832static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
   2833{
   2834	struct net_device *netdev;
   2835	struct nic *nic;
   2836	int err;
   2837
   2838	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
   2839		return -ENOMEM;
   2840
   2841	netdev->hw_features |= NETIF_F_RXFCS;
   2842	netdev->priv_flags |= IFF_SUPP_NOFCS;
   2843	netdev->hw_features |= NETIF_F_RXALL;
   2844
   2845	netdev->netdev_ops = &e100_netdev_ops;
   2846	netdev->ethtool_ops = &e100_ethtool_ops;
   2847	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
   2848	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
   2849
   2850	nic = netdev_priv(netdev);
   2851	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
   2852	nic->netdev = netdev;
   2853	nic->pdev = pdev;
   2854	nic->msg_enable = (1 << debug) - 1;
   2855	nic->mdio_ctrl = mdio_ctrl_hw;
   2856	pci_set_drvdata(pdev, netdev);
   2857
   2858	if ((err = pci_enable_device(pdev))) {
   2859		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
   2860		goto err_out_free_dev;
   2861	}
   2862
   2863	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
   2864		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
   2865		err = -ENODEV;
   2866		goto err_out_disable_pdev;
   2867	}
   2868
   2869	if ((err = pci_request_regions(pdev, DRV_NAME))) {
   2870		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
   2871		goto err_out_disable_pdev;
   2872	}
   2873
   2874	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
   2875		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
   2876		goto err_out_free_res;
   2877	}
   2878
   2879	SET_NETDEV_DEV(netdev, &pdev->dev);
   2880
   2881	if (use_io)
   2882		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
   2883
   2884	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
   2885	if (!nic->csr) {
   2886		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
   2887		err = -ENOMEM;
   2888		goto err_out_free_res;
   2889	}
   2890
   2891	if (ent->driver_data)
   2892		nic->flags |= ich;
   2893	else
   2894		nic->flags &= ~ich;
   2895
   2896	e100_get_defaults(nic);
   2897
   2898	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
   2899	if (nic->mac < mac_82558_D101_A4)
   2900		netdev->features |= NETIF_F_VLAN_CHALLENGED;
   2901
   2902	/* locks must be initialized before calling hw_reset */
   2903	spin_lock_init(&nic->cb_lock);
   2904	spin_lock_init(&nic->cmd_lock);
   2905	spin_lock_init(&nic->mdio_lock);
   2906
   2907	/* Reset the device before pci_set_master() in case device is in some
   2908	 * funky state and has an interrupt pending - hint: we don't have the
   2909	 * interrupt handler registered yet. */
   2910	e100_hw_reset(nic);
   2911
   2912	pci_set_master(pdev);
   2913
   2914	timer_setup(&nic->watchdog, e100_watchdog, 0);
   2915
   2916	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
   2917
   2918	if ((err = e100_alloc(nic))) {
   2919		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
   2920		goto err_out_iounmap;
   2921	}
   2922
   2923	if ((err = e100_eeprom_load(nic)))
   2924		goto err_out_free;
   2925
   2926	e100_phy_init(nic);
   2927
   2928	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
   2929	if (!is_valid_ether_addr(netdev->dev_addr)) {
   2930		if (!eeprom_bad_csum_allow) {
   2931			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
   2932			err = -EAGAIN;
   2933			goto err_out_free;
   2934		} else {
   2935			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
   2936		}
   2937	}
   2938
   2939	/* Wol magic packet can be enabled from eeprom */
   2940	if ((nic->mac >= mac_82558_D101_A4) &&
   2941	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
   2942		nic->flags |= wol_magic;
   2943		device_set_wakeup_enable(&pdev->dev, true);
   2944	}
   2945
   2946	/* ack any pending wake events, disable PME */
   2947	pci_pme_active(pdev, false);
   2948
   2949	strcpy(netdev->name, "eth%d");
   2950	if ((err = register_netdev(netdev))) {
   2951		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
   2952		goto err_out_free;
   2953	}
   2954	nic->cbs_pool = dma_pool_create(netdev->name,
   2955			   &nic->pdev->dev,
   2956			   nic->params.cbs.max * sizeof(struct cb),
   2957			   sizeof(u32),
   2958			   0);
   2959	if (!nic->cbs_pool) {
   2960		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
   2961		err = -ENOMEM;
   2962		goto err_out_pool;
   2963	}
   2964	netif_info(nic, probe, nic->netdev,
   2965		   "addr 0x%llx, irq %d, MAC addr %pM\n",
   2966		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
   2967		   pdev->irq, netdev->dev_addr);
   2968
   2969	return 0;
   2970
   2971err_out_pool:
   2972	unregister_netdev(netdev);
   2973err_out_free:
   2974	e100_free(nic);
   2975err_out_iounmap:
   2976	pci_iounmap(pdev, nic->csr);
   2977err_out_free_res:
   2978	pci_release_regions(pdev);
   2979err_out_disable_pdev:
   2980	pci_disable_device(pdev);
   2981err_out_free_dev:
   2982	free_netdev(netdev);
   2983	return err;
   2984}
   2985
   2986static void e100_remove(struct pci_dev *pdev)
   2987{
   2988	struct net_device *netdev = pci_get_drvdata(pdev);
   2989
   2990	if (netdev) {
   2991		struct nic *nic = netdev_priv(netdev);
   2992		unregister_netdev(netdev);
   2993		e100_free(nic);
   2994		pci_iounmap(pdev, nic->csr);
   2995		dma_pool_destroy(nic->cbs_pool);
   2996		free_netdev(netdev);
   2997		pci_release_regions(pdev);
   2998		pci_disable_device(pdev);
   2999	}
   3000}
   3001
   3002#define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
   3003#define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
   3004#define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
   3005static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
   3006{
   3007	struct net_device *netdev = pci_get_drvdata(pdev);
   3008	struct nic *nic = netdev_priv(netdev);
   3009
   3010	netif_device_detach(netdev);
   3011
   3012	if (netif_running(netdev))
   3013		e100_down(nic);
   3014
   3015	if ((nic->flags & wol_magic) | e100_asf(nic)) {
   3016		/* enable reverse auto-negotiation */
   3017		if (nic->phy == phy_82552_v) {
   3018			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
   3019			                           E100_82552_SMARTSPEED);
   3020
   3021			mdio_write(netdev, nic->mii.phy_id,
   3022			           E100_82552_SMARTSPEED, smartspeed |
   3023			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
   3024		}
   3025		*enable_wake = true;
   3026	} else {
   3027		*enable_wake = false;
   3028	}
   3029
   3030	pci_disable_device(pdev);
   3031}
   3032
   3033static int __e100_power_off(struct pci_dev *pdev, bool wake)
   3034{
   3035	if (wake)
   3036		return pci_prepare_to_sleep(pdev);
   3037
   3038	pci_wake_from_d3(pdev, false);
   3039	pci_set_power_state(pdev, PCI_D3hot);
   3040
   3041	return 0;
   3042}
   3043
   3044static int __maybe_unused e100_suspend(struct device *dev_d)
   3045{
   3046	bool wake;
   3047
   3048	__e100_shutdown(to_pci_dev(dev_d), &wake);
   3049
   3050	return 0;
   3051}
   3052
   3053static int __maybe_unused e100_resume(struct device *dev_d)
   3054{
   3055	struct net_device *netdev = dev_get_drvdata(dev_d);
   3056	struct nic *nic = netdev_priv(netdev);
   3057	int err;
   3058
   3059	err = pci_enable_device(to_pci_dev(dev_d));
   3060	if (err) {
   3061		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
   3062		return err;
   3063	}
   3064	pci_set_master(to_pci_dev(dev_d));
   3065
   3066	/* disable reverse auto-negotiation */
   3067	if (nic->phy == phy_82552_v) {
   3068		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
   3069		                           E100_82552_SMARTSPEED);
   3070
   3071		mdio_write(netdev, nic->mii.phy_id,
   3072		           E100_82552_SMARTSPEED,
   3073		           smartspeed & ~(E100_82552_REV_ANEG));
   3074	}
   3075
   3076	if (netif_running(netdev))
   3077		e100_up(nic);
   3078
   3079	netif_device_attach(netdev);
   3080
   3081	return 0;
   3082}
   3083
   3084static void e100_shutdown(struct pci_dev *pdev)
   3085{
   3086	bool wake;
   3087	__e100_shutdown(pdev, &wake);
   3088	if (system_state == SYSTEM_POWER_OFF)
   3089		__e100_power_off(pdev, wake);
   3090}
   3091
   3092/* ------------------ PCI Error Recovery infrastructure  -------------- */
   3093/**
   3094 * e100_io_error_detected - called when PCI error is detected.
   3095 * @pdev: Pointer to PCI device
   3096 * @state: The current pci connection state
   3097 */
   3098static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
   3099{
   3100	struct net_device *netdev = pci_get_drvdata(pdev);
   3101	struct nic *nic = netdev_priv(netdev);
   3102
   3103	netif_device_detach(netdev);
   3104
   3105	if (state == pci_channel_io_perm_failure)
   3106		return PCI_ERS_RESULT_DISCONNECT;
   3107
   3108	if (netif_running(netdev))
   3109		e100_down(nic);
   3110	pci_disable_device(pdev);
   3111
   3112	/* Request a slot reset. */
   3113	return PCI_ERS_RESULT_NEED_RESET;
   3114}
   3115
   3116/**
   3117 * e100_io_slot_reset - called after the pci bus has been reset.
   3118 * @pdev: Pointer to PCI device
   3119 *
   3120 * Restart the card from scratch.
   3121 */
   3122static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
   3123{
   3124	struct net_device *netdev = pci_get_drvdata(pdev);
   3125	struct nic *nic = netdev_priv(netdev);
   3126
   3127	if (pci_enable_device(pdev)) {
   3128		pr_err("Cannot re-enable PCI device after reset\n");
   3129		return PCI_ERS_RESULT_DISCONNECT;
   3130	}
   3131	pci_set_master(pdev);
   3132
   3133	/* Only one device per card can do a reset */
   3134	if (0 != PCI_FUNC(pdev->devfn))
   3135		return PCI_ERS_RESULT_RECOVERED;
   3136	e100_hw_reset(nic);
   3137	e100_phy_init(nic);
   3138
   3139	return PCI_ERS_RESULT_RECOVERED;
   3140}
   3141
   3142/**
   3143 * e100_io_resume - resume normal operations
   3144 * @pdev: Pointer to PCI device
   3145 *
   3146 * Resume normal operations after an error recovery
   3147 * sequence has been completed.
   3148 */
   3149static void e100_io_resume(struct pci_dev *pdev)
   3150{
   3151	struct net_device *netdev = pci_get_drvdata(pdev);
   3152	struct nic *nic = netdev_priv(netdev);
   3153
   3154	/* ack any pending wake events, disable PME */
   3155	pci_enable_wake(pdev, PCI_D0, 0);
   3156
   3157	netif_device_attach(netdev);
   3158	if (netif_running(netdev)) {
   3159		e100_open(netdev);
   3160		mod_timer(&nic->watchdog, jiffies);
   3161	}
   3162}
   3163
   3164static const struct pci_error_handlers e100_err_handler = {
   3165	.error_detected = e100_io_error_detected,
   3166	.slot_reset = e100_io_slot_reset,
   3167	.resume = e100_io_resume,
   3168};
   3169
   3170static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
   3171
   3172static struct pci_driver e100_driver = {
   3173	.name =         DRV_NAME,
   3174	.id_table =     e100_id_table,
   3175	.probe =        e100_probe,
   3176	.remove =       e100_remove,
   3177
   3178	/* Power Management hooks */
   3179	.driver.pm =	&e100_pm_ops,
   3180
   3181	.shutdown =     e100_shutdown,
   3182	.err_handler = &e100_err_handler,
   3183};
   3184
   3185static int __init e100_init_module(void)
   3186{
   3187	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
   3188		pr_info("%s\n", DRV_DESCRIPTION);
   3189		pr_info("%s\n", DRV_COPYRIGHT);
   3190	}
   3191	return pci_register_driver(&e100_driver);
   3192}
   3193
   3194static void __exit e100_cleanup_module(void)
   3195{
   3196	pci_unregister_driver(&e100_driver);
   3197}
   3198
   3199module_init(e100_init_module);
   3200module_exit(e100_cleanup_module);