cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e1000_ethtool.c (52638B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2006 Intel Corporation. */
      3
      4/* ethtool support for e1000 */
      5
      6#include "e1000.h"
      7#include <linux/jiffies.h>
      8#include <linux/uaccess.h>
      9
     10enum {NETDEV_STATS, E1000_STATS};
     11
     12struct e1000_stats {
     13	char stat_string[ETH_GSTRING_LEN];
     14	int type;
     15	int sizeof_stat;
     16	int stat_offset;
     17};
     18
     19#define E1000_STAT(m)		E1000_STATS, \
     20				sizeof(((struct e1000_adapter *)0)->m), \
     21				offsetof(struct e1000_adapter, m)
     22#define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
     23				sizeof(((struct net_device *)0)->m), \
     24				offsetof(struct net_device, m)
     25
     26static const struct e1000_stats e1000_gstrings_stats[] = {
     27	{ "rx_packets", E1000_STAT(stats.gprc) },
     28	{ "tx_packets", E1000_STAT(stats.gptc) },
     29	{ "rx_bytes", E1000_STAT(stats.gorcl) },
     30	{ "tx_bytes", E1000_STAT(stats.gotcl) },
     31	{ "rx_broadcast", E1000_STAT(stats.bprc) },
     32	{ "tx_broadcast", E1000_STAT(stats.bptc) },
     33	{ "rx_multicast", E1000_STAT(stats.mprc) },
     34	{ "tx_multicast", E1000_STAT(stats.mptc) },
     35	{ "rx_errors", E1000_STAT(stats.rxerrc) },
     36	{ "tx_errors", E1000_STAT(stats.txerrc) },
     37	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
     38	{ "multicast", E1000_STAT(stats.mprc) },
     39	{ "collisions", E1000_STAT(stats.colc) },
     40	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
     41	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
     42	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
     43	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
     44	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
     45	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
     46	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
     47	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
     48	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
     49	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
     50	{ "tx_window_errors", E1000_STAT(stats.latecol) },
     51	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
     52	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
     53	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
     54	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
     55	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
     56	{ "tx_restart_queue", E1000_STAT(restart_queue) },
     57	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
     58	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
     59	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
     60	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
     61	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
     62	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
     63	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
     64	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
     65	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
     66	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
     67	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
     68	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
     69	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
     70	{ "tx_smbus", E1000_STAT(stats.mgptc) },
     71	{ "rx_smbus", E1000_STAT(stats.mgprc) },
     72	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
     73};
     74
     75#define E1000_QUEUE_STATS_LEN 0
     76#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
     77#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
     78static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
     79	"Register test  (offline)", "Eeprom test    (offline)",
     80	"Interrupt test (offline)", "Loopback test  (offline)",
     81	"Link test   (on/offline)"
     82};
     83
     84#define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
     85
     86static int e1000_get_link_ksettings(struct net_device *netdev,
     87				    struct ethtool_link_ksettings *cmd)
     88{
     89	struct e1000_adapter *adapter = netdev_priv(netdev);
     90	struct e1000_hw *hw = &adapter->hw;
     91	u32 supported, advertising;
     92
     93	if (hw->media_type == e1000_media_type_copper) {
     94		supported = (SUPPORTED_10baseT_Half |
     95			     SUPPORTED_10baseT_Full |
     96			     SUPPORTED_100baseT_Half |
     97			     SUPPORTED_100baseT_Full |
     98			     SUPPORTED_1000baseT_Full|
     99			     SUPPORTED_Autoneg |
    100			     SUPPORTED_TP);
    101		advertising = ADVERTISED_TP;
    102
    103		if (hw->autoneg == 1) {
    104			advertising |= ADVERTISED_Autoneg;
    105			/* the e1000 autoneg seems to match ethtool nicely */
    106			advertising |= hw->autoneg_advertised;
    107		}
    108
    109		cmd->base.port = PORT_TP;
    110		cmd->base.phy_address = hw->phy_addr;
    111	} else {
    112		supported   = (SUPPORTED_1000baseT_Full |
    113			       SUPPORTED_FIBRE |
    114			       SUPPORTED_Autoneg);
    115
    116		advertising = (ADVERTISED_1000baseT_Full |
    117			       ADVERTISED_FIBRE |
    118			       ADVERTISED_Autoneg);
    119
    120		cmd->base.port = PORT_FIBRE;
    121	}
    122
    123	if (er32(STATUS) & E1000_STATUS_LU) {
    124		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
    125					   &adapter->link_duplex);
    126		cmd->base.speed = adapter->link_speed;
    127
    128		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
    129		 * and HALF_DUPLEX != DUPLEX_HALF
    130		 */
    131		if (adapter->link_duplex == FULL_DUPLEX)
    132			cmd->base.duplex = DUPLEX_FULL;
    133		else
    134			cmd->base.duplex = DUPLEX_HALF;
    135	} else {
    136		cmd->base.speed = SPEED_UNKNOWN;
    137		cmd->base.duplex = DUPLEX_UNKNOWN;
    138	}
    139
    140	cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
    141			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
    142
    143	/* MDI-X => 1; MDI => 0 */
    144	if ((hw->media_type == e1000_media_type_copper) &&
    145	    netif_carrier_ok(netdev))
    146		cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
    147				     ETH_TP_MDI_X : ETH_TP_MDI);
    148	else
    149		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
    150
    151	if (hw->mdix == AUTO_ALL_MODES)
    152		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
    153	else
    154		cmd->base.eth_tp_mdix_ctrl = hw->mdix;
    155
    156	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
    157						supported);
    158	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
    159						advertising);
    160
    161	return 0;
    162}
    163
    164static int e1000_set_link_ksettings(struct net_device *netdev,
    165				    const struct ethtool_link_ksettings *cmd)
    166{
    167	struct e1000_adapter *adapter = netdev_priv(netdev);
    168	struct e1000_hw *hw = &adapter->hw;
    169	u32 advertising;
    170
    171	ethtool_convert_link_mode_to_legacy_u32(&advertising,
    172						cmd->link_modes.advertising);
    173
    174	/* MDI setting is only allowed when autoneg enabled because
    175	 * some hardware doesn't allow MDI setting when speed or
    176	 * duplex is forced.
    177	 */
    178	if (cmd->base.eth_tp_mdix_ctrl) {
    179		if (hw->media_type != e1000_media_type_copper)
    180			return -EOPNOTSUPP;
    181
    182		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
    183		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
    184			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
    185			return -EINVAL;
    186		}
    187	}
    188
    189	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
    190		msleep(1);
    191
    192	if (cmd->base.autoneg == AUTONEG_ENABLE) {
    193		hw->autoneg = 1;
    194		if (hw->media_type == e1000_media_type_fiber)
    195			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
    196						 ADVERTISED_FIBRE |
    197						 ADVERTISED_Autoneg;
    198		else
    199			hw->autoneg_advertised = advertising |
    200						 ADVERTISED_TP |
    201						 ADVERTISED_Autoneg;
    202	} else {
    203		u32 speed = cmd->base.speed;
    204		/* calling this overrides forced MDI setting */
    205		if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
    206			clear_bit(__E1000_RESETTING, &adapter->flags);
    207			return -EINVAL;
    208		}
    209	}
    210
    211	/* MDI-X => 2; MDI => 1; Auto => 3 */
    212	if (cmd->base.eth_tp_mdix_ctrl) {
    213		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
    214			hw->mdix = AUTO_ALL_MODES;
    215		else
    216			hw->mdix = cmd->base.eth_tp_mdix_ctrl;
    217	}
    218
    219	/* reset the link */
    220
    221	if (netif_running(adapter->netdev)) {
    222		e1000_down(adapter);
    223		e1000_up(adapter);
    224	} else {
    225		e1000_reset(adapter);
    226	}
    227	clear_bit(__E1000_RESETTING, &adapter->flags);
    228	return 0;
    229}
    230
    231static u32 e1000_get_link(struct net_device *netdev)
    232{
    233	struct e1000_adapter *adapter = netdev_priv(netdev);
    234
    235	/* If the link is not reported up to netdev, interrupts are disabled,
    236	 * and so the physical link state may have changed since we last
    237	 * looked. Set get_link_status to make sure that the true link
    238	 * state is interrogated, rather than pulling a cached and possibly
    239	 * stale link state from the driver.
    240	 */
    241	if (!netif_carrier_ok(netdev))
    242		adapter->hw.get_link_status = 1;
    243
    244	return e1000_has_link(adapter);
    245}
    246
    247static void e1000_get_pauseparam(struct net_device *netdev,
    248				 struct ethtool_pauseparam *pause)
    249{
    250	struct e1000_adapter *adapter = netdev_priv(netdev);
    251	struct e1000_hw *hw = &adapter->hw;
    252
    253	pause->autoneg =
    254		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
    255
    256	if (hw->fc == E1000_FC_RX_PAUSE) {
    257		pause->rx_pause = 1;
    258	} else if (hw->fc == E1000_FC_TX_PAUSE) {
    259		pause->tx_pause = 1;
    260	} else if (hw->fc == E1000_FC_FULL) {
    261		pause->rx_pause = 1;
    262		pause->tx_pause = 1;
    263	}
    264}
    265
    266static int e1000_set_pauseparam(struct net_device *netdev,
    267				struct ethtool_pauseparam *pause)
    268{
    269	struct e1000_adapter *adapter = netdev_priv(netdev);
    270	struct e1000_hw *hw = &adapter->hw;
    271	int retval = 0;
    272
    273	adapter->fc_autoneg = pause->autoneg;
    274
    275	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
    276		msleep(1);
    277
    278	if (pause->rx_pause && pause->tx_pause)
    279		hw->fc = E1000_FC_FULL;
    280	else if (pause->rx_pause && !pause->tx_pause)
    281		hw->fc = E1000_FC_RX_PAUSE;
    282	else if (!pause->rx_pause && pause->tx_pause)
    283		hw->fc = E1000_FC_TX_PAUSE;
    284	else if (!pause->rx_pause && !pause->tx_pause)
    285		hw->fc = E1000_FC_NONE;
    286
    287	hw->original_fc = hw->fc;
    288
    289	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
    290		if (netif_running(adapter->netdev)) {
    291			e1000_down(adapter);
    292			e1000_up(adapter);
    293		} else {
    294			e1000_reset(adapter);
    295		}
    296	} else
    297		retval = ((hw->media_type == e1000_media_type_fiber) ?
    298			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
    299
    300	clear_bit(__E1000_RESETTING, &adapter->flags);
    301	return retval;
    302}
    303
    304static u32 e1000_get_msglevel(struct net_device *netdev)
    305{
    306	struct e1000_adapter *adapter = netdev_priv(netdev);
    307
    308	return adapter->msg_enable;
    309}
    310
    311static void e1000_set_msglevel(struct net_device *netdev, u32 data)
    312{
    313	struct e1000_adapter *adapter = netdev_priv(netdev);
    314
    315	adapter->msg_enable = data;
    316}
    317
    318static int e1000_get_regs_len(struct net_device *netdev)
    319{
    320#define E1000_REGS_LEN 32
    321	return E1000_REGS_LEN * sizeof(u32);
    322}
    323
    324static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
    325			   void *p)
    326{
    327	struct e1000_adapter *adapter = netdev_priv(netdev);
    328	struct e1000_hw *hw = &adapter->hw;
    329	u32 *regs_buff = p;
    330	u16 phy_data;
    331
    332	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
    333
    334	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
    335
    336	regs_buff[0]  = er32(CTRL);
    337	regs_buff[1]  = er32(STATUS);
    338
    339	regs_buff[2]  = er32(RCTL);
    340	regs_buff[3]  = er32(RDLEN);
    341	regs_buff[4]  = er32(RDH);
    342	regs_buff[5]  = er32(RDT);
    343	regs_buff[6]  = er32(RDTR);
    344
    345	regs_buff[7]  = er32(TCTL);
    346	regs_buff[8]  = er32(TDLEN);
    347	regs_buff[9]  = er32(TDH);
    348	regs_buff[10] = er32(TDT);
    349	regs_buff[11] = er32(TIDV);
    350
    351	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
    352	if (hw->phy_type == e1000_phy_igp) {
    353		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
    354				    IGP01E1000_PHY_AGC_A);
    355		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
    356				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
    357		regs_buff[13] = (u32)phy_data; /* cable length */
    358		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
    359				    IGP01E1000_PHY_AGC_B);
    360		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
    361				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
    362		regs_buff[14] = (u32)phy_data; /* cable length */
    363		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
    364				    IGP01E1000_PHY_AGC_C);
    365		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
    366				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
    367		regs_buff[15] = (u32)phy_data; /* cable length */
    368		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
    369				    IGP01E1000_PHY_AGC_D);
    370		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
    371				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
    372		regs_buff[16] = (u32)phy_data; /* cable length */
    373		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
    374		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
    375		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
    376				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
    377		regs_buff[18] = (u32)phy_data; /* cable polarity */
    378		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
    379				    IGP01E1000_PHY_PCS_INIT_REG);
    380		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
    381				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
    382		regs_buff[19] = (u32)phy_data; /* cable polarity */
    383		regs_buff[20] = 0; /* polarity correction enabled (always) */
    384		regs_buff[22] = 0; /* phy receive errors (unavailable) */
    385		regs_buff[23] = regs_buff[18]; /* mdix mode */
    386		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
    387	} else {
    388		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
    389		regs_buff[13] = (u32)phy_data; /* cable length */
    390		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
    391		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
    392		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
    393		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
    394		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
    395		regs_buff[18] = regs_buff[13]; /* cable polarity */
    396		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
    397		regs_buff[20] = regs_buff[17]; /* polarity correction */
    398		/* phy receive errors */
    399		regs_buff[22] = adapter->phy_stats.receive_errors;
    400		regs_buff[23] = regs_buff[13]; /* mdix mode */
    401	}
    402	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
    403	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
    404	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
    405	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
    406	if (hw->mac_type >= e1000_82540 &&
    407	    hw->media_type == e1000_media_type_copper) {
    408		regs_buff[26] = er32(MANC);
    409	}
    410}
    411
    412static int e1000_get_eeprom_len(struct net_device *netdev)
    413{
    414	struct e1000_adapter *adapter = netdev_priv(netdev);
    415	struct e1000_hw *hw = &adapter->hw;
    416
    417	return hw->eeprom.word_size * 2;
    418}
    419
    420static int e1000_get_eeprom(struct net_device *netdev,
    421			    struct ethtool_eeprom *eeprom, u8 *bytes)
    422{
    423	struct e1000_adapter *adapter = netdev_priv(netdev);
    424	struct e1000_hw *hw = &adapter->hw;
    425	u16 *eeprom_buff;
    426	int first_word, last_word;
    427	int ret_val = 0;
    428	u16 i;
    429
    430	if (eeprom->len == 0)
    431		return -EINVAL;
    432
    433	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
    434
    435	first_word = eeprom->offset >> 1;
    436	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
    437
    438	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
    439				    GFP_KERNEL);
    440	if (!eeprom_buff)
    441		return -ENOMEM;
    442
    443	if (hw->eeprom.type == e1000_eeprom_spi)
    444		ret_val = e1000_read_eeprom(hw, first_word,
    445					    last_word - first_word + 1,
    446					    eeprom_buff);
    447	else {
    448		for (i = 0; i < last_word - first_word + 1; i++) {
    449			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
    450						    &eeprom_buff[i]);
    451			if (ret_val)
    452				break;
    453		}
    454	}
    455
    456	/* Device's eeprom is always little-endian, word addressable */
    457	for (i = 0; i < last_word - first_word + 1; i++)
    458		le16_to_cpus(&eeprom_buff[i]);
    459
    460	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
    461	       eeprom->len);
    462	kfree(eeprom_buff);
    463
    464	return ret_val;
    465}
    466
    467static int e1000_set_eeprom(struct net_device *netdev,
    468			    struct ethtool_eeprom *eeprom, u8 *bytes)
    469{
    470	struct e1000_adapter *adapter = netdev_priv(netdev);
    471	struct e1000_hw *hw = &adapter->hw;
    472	u16 *eeprom_buff;
    473	void *ptr;
    474	int max_len, first_word, last_word, ret_val = 0;
    475	u16 i;
    476
    477	if (eeprom->len == 0)
    478		return -EOPNOTSUPP;
    479
    480	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
    481		return -EFAULT;
    482
    483	max_len = hw->eeprom.word_size * 2;
    484
    485	first_word = eeprom->offset >> 1;
    486	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
    487	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
    488	if (!eeprom_buff)
    489		return -ENOMEM;
    490
    491	ptr = (void *)eeprom_buff;
    492
    493	if (eeprom->offset & 1) {
    494		/* need read/modify/write of first changed EEPROM word
    495		 * only the second byte of the word is being modified
    496		 */
    497		ret_val = e1000_read_eeprom(hw, first_word, 1,
    498					    &eeprom_buff[0]);
    499		ptr++;
    500	}
    501	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
    502		/* need read/modify/write of last changed EEPROM word
    503		 * only the first byte of the word is being modified
    504		 */
    505		ret_val = e1000_read_eeprom(hw, last_word, 1,
    506					    &eeprom_buff[last_word - first_word]);
    507	}
    508
    509	/* Device's eeprom is always little-endian, word addressable */
    510	for (i = 0; i < last_word - first_word + 1; i++)
    511		le16_to_cpus(&eeprom_buff[i]);
    512
    513	memcpy(ptr, bytes, eeprom->len);
    514
    515	for (i = 0; i < last_word - first_word + 1; i++)
    516		cpu_to_le16s(&eeprom_buff[i]);
    517
    518	ret_val = e1000_write_eeprom(hw, first_word,
    519				     last_word - first_word + 1, eeprom_buff);
    520
    521	/* Update the checksum over the first part of the EEPROM if needed */
    522	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
    523		e1000_update_eeprom_checksum(hw);
    524
    525	kfree(eeprom_buff);
    526	return ret_val;
    527}
    528
    529static void e1000_get_drvinfo(struct net_device *netdev,
    530			      struct ethtool_drvinfo *drvinfo)
    531{
    532	struct e1000_adapter *adapter = netdev_priv(netdev);
    533
    534	strlcpy(drvinfo->driver,  e1000_driver_name,
    535		sizeof(drvinfo->driver));
    536
    537	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
    538		sizeof(drvinfo->bus_info));
    539}
    540
    541static void e1000_get_ringparam(struct net_device *netdev,
    542				struct ethtool_ringparam *ring,
    543				struct kernel_ethtool_ringparam *kernel_ring,
    544				struct netlink_ext_ack *extack)
    545{
    546	struct e1000_adapter *adapter = netdev_priv(netdev);
    547	struct e1000_hw *hw = &adapter->hw;
    548	e1000_mac_type mac_type = hw->mac_type;
    549	struct e1000_tx_ring *txdr = adapter->tx_ring;
    550	struct e1000_rx_ring *rxdr = adapter->rx_ring;
    551
    552	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
    553		E1000_MAX_82544_RXD;
    554	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
    555		E1000_MAX_82544_TXD;
    556	ring->rx_pending = rxdr->count;
    557	ring->tx_pending = txdr->count;
    558}
    559
    560static int e1000_set_ringparam(struct net_device *netdev,
    561			       struct ethtool_ringparam *ring,
    562			       struct kernel_ethtool_ringparam *kernel_ring,
    563			       struct netlink_ext_ack *extack)
    564{
    565	struct e1000_adapter *adapter = netdev_priv(netdev);
    566	struct e1000_hw *hw = &adapter->hw;
    567	e1000_mac_type mac_type = hw->mac_type;
    568	struct e1000_tx_ring *txdr, *tx_old;
    569	struct e1000_rx_ring *rxdr, *rx_old;
    570	int i, err;
    571
    572	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
    573		return -EINVAL;
    574
    575	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
    576		msleep(1);
    577
    578	if (netif_running(adapter->netdev))
    579		e1000_down(adapter);
    580
    581	tx_old = adapter->tx_ring;
    582	rx_old = adapter->rx_ring;
    583
    584	err = -ENOMEM;
    585	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
    586		       GFP_KERNEL);
    587	if (!txdr)
    588		goto err_alloc_tx;
    589
    590	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
    591		       GFP_KERNEL);
    592	if (!rxdr)
    593		goto err_alloc_rx;
    594
    595	adapter->tx_ring = txdr;
    596	adapter->rx_ring = rxdr;
    597
    598	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
    599	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
    600			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
    601	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
    602	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
    603	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
    604			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
    605	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
    606
    607	for (i = 0; i < adapter->num_tx_queues; i++)
    608		txdr[i].count = txdr->count;
    609	for (i = 0; i < adapter->num_rx_queues; i++)
    610		rxdr[i].count = rxdr->count;
    611
    612	err = 0;
    613	if (netif_running(adapter->netdev)) {
    614		/* Try to get new resources before deleting old */
    615		err = e1000_setup_all_rx_resources(adapter);
    616		if (err)
    617			goto err_setup_rx;
    618		err = e1000_setup_all_tx_resources(adapter);
    619		if (err)
    620			goto err_setup_tx;
    621
    622		/* save the new, restore the old in order to free it,
    623		 * then restore the new back again
    624		 */
    625
    626		adapter->rx_ring = rx_old;
    627		adapter->tx_ring = tx_old;
    628		e1000_free_all_rx_resources(adapter);
    629		e1000_free_all_tx_resources(adapter);
    630		adapter->rx_ring = rxdr;
    631		adapter->tx_ring = txdr;
    632		err = e1000_up(adapter);
    633	}
    634	kfree(tx_old);
    635	kfree(rx_old);
    636
    637	clear_bit(__E1000_RESETTING, &adapter->flags);
    638	return err;
    639
    640err_setup_tx:
    641	e1000_free_all_rx_resources(adapter);
    642err_setup_rx:
    643	adapter->rx_ring = rx_old;
    644	adapter->tx_ring = tx_old;
    645	kfree(rxdr);
    646err_alloc_rx:
    647	kfree(txdr);
    648err_alloc_tx:
    649	if (netif_running(adapter->netdev))
    650		e1000_up(adapter);
    651	clear_bit(__E1000_RESETTING, &adapter->flags);
    652	return err;
    653}
    654
    655static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
    656			     u32 mask, u32 write)
    657{
    658	struct e1000_hw *hw = &adapter->hw;
    659	static const u32 test[] = {
    660		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
    661	};
    662	u8 __iomem *address = hw->hw_addr + reg;
    663	u32 read;
    664	int i;
    665
    666	for (i = 0; i < ARRAY_SIZE(test); i++) {
    667		writel(write & test[i], address);
    668		read = readl(address);
    669		if (read != (write & test[i] & mask)) {
    670			e_err(drv, "pattern test reg %04X failed: "
    671			      "got 0x%08X expected 0x%08X\n",
    672			      reg, read, (write & test[i] & mask));
    673			*data = reg;
    674			return true;
    675		}
    676	}
    677	return false;
    678}
    679
    680static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
    681			      u32 mask, u32 write)
    682{
    683	struct e1000_hw *hw = &adapter->hw;
    684	u8 __iomem *address = hw->hw_addr + reg;
    685	u32 read;
    686
    687	writel(write & mask, address);
    688	read = readl(address);
    689	if ((read & mask) != (write & mask)) {
    690		e_err(drv, "set/check reg %04X test failed: "
    691		      "got 0x%08X expected 0x%08X\n",
    692		      reg, (read & mask), (write & mask));
    693		*data = reg;
    694		return true;
    695	}
    696	return false;
    697}
    698
    699#define REG_PATTERN_TEST(reg, mask, write)			     \
    700	do {							     \
    701		if (reg_pattern_test(adapter, data,		     \
    702			     (hw->mac_type >= e1000_82543)   \
    703			     ? E1000_##reg : E1000_82542_##reg,	     \
    704			     mask, write))			     \
    705			return 1;				     \
    706	} while (0)
    707
    708#define REG_SET_AND_CHECK(reg, mask, write)			     \
    709	do {							     \
    710		if (reg_set_and_check(adapter, data,		     \
    711			      (hw->mac_type >= e1000_82543)  \
    712			      ? E1000_##reg : E1000_82542_##reg,     \
    713			      mask, write))			     \
    714			return 1;				     \
    715	} while (0)
    716
    717static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
    718{
    719	u32 value, before, after;
    720	u32 i, toggle;
    721	struct e1000_hw *hw = &adapter->hw;
    722
    723	/* The status register is Read Only, so a write should fail.
    724	 * Some bits that get toggled are ignored.
    725	 */
    726
    727	/* there are several bits on newer hardware that are r/w */
    728	toggle = 0xFFFFF833;
    729
    730	before = er32(STATUS);
    731	value = (er32(STATUS) & toggle);
    732	ew32(STATUS, toggle);
    733	after = er32(STATUS) & toggle;
    734	if (value != after) {
    735		e_err(drv, "failed STATUS register test got: "
    736		      "0x%08X expected: 0x%08X\n", after, value);
    737		*data = 1;
    738		return 1;
    739	}
    740	/* restore previous status */
    741	ew32(STATUS, before);
    742
    743	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
    744	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
    745	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
    746	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
    747
    748	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
    749	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
    750	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
    751	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
    752	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
    753	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
    754	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
    755	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
    756	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
    757	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
    758
    759	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
    760
    761	before = 0x06DFB3FE;
    762	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
    763	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
    764
    765	if (hw->mac_type >= e1000_82543) {
    766		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
    767		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
    768		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
    769		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
    770		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
    771		value = E1000_RAR_ENTRIES;
    772		for (i = 0; i < value; i++) {
    773			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
    774					 0x8003FFFF, 0xFFFFFFFF);
    775		}
    776	} else {
    777		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
    778		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
    779		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
    780		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
    781	}
    782
    783	value = E1000_MC_TBL_SIZE;
    784	for (i = 0; i < value; i++)
    785		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
    786
    787	*data = 0;
    788	return 0;
    789}
    790
    791static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
    792{
    793	struct e1000_hw *hw = &adapter->hw;
    794	u16 temp;
    795	u16 checksum = 0;
    796	u16 i;
    797
    798	*data = 0;
    799	/* Read and add up the contents of the EEPROM */
    800	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
    801		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
    802			*data = 1;
    803			break;
    804		}
    805		checksum += temp;
    806	}
    807
    808	/* If Checksum is not Correct return error else test passed */
    809	if ((checksum != (u16)EEPROM_SUM) && !(*data))
    810		*data = 2;
    811
    812	return *data;
    813}
    814
    815static irqreturn_t e1000_test_intr(int irq, void *data)
    816{
    817	struct net_device *netdev = (struct net_device *)data;
    818	struct e1000_adapter *adapter = netdev_priv(netdev);
    819	struct e1000_hw *hw = &adapter->hw;
    820
    821	adapter->test_icr |= er32(ICR);
    822
    823	return IRQ_HANDLED;
    824}
    825
    826static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
    827{
    828	struct net_device *netdev = adapter->netdev;
    829	u32 mask, i = 0;
    830	bool shared_int = true;
    831	u32 irq = adapter->pdev->irq;
    832	struct e1000_hw *hw = &adapter->hw;
    833
    834	*data = 0;
    835
    836	/* NOTE: we don't test MSI interrupts here, yet
    837	 * Hook up test interrupt handler just for this test
    838	 */
    839	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
    840			 netdev))
    841		shared_int = false;
    842	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
    843			     netdev->name, netdev)) {
    844		*data = 1;
    845		return -1;
    846	}
    847	e_info(hw, "testing %s interrupt\n", (shared_int ?
    848	       "shared" : "unshared"));
    849
    850	/* Disable all the interrupts */
    851	ew32(IMC, 0xFFFFFFFF);
    852	E1000_WRITE_FLUSH();
    853	msleep(10);
    854
    855	/* Test each interrupt */
    856	for (; i < 10; i++) {
    857		/* Interrupt to test */
    858		mask = 1 << i;
    859
    860		if (!shared_int) {
    861			/* Disable the interrupt to be reported in
    862			 * the cause register and then force the same
    863			 * interrupt and see if one gets posted.  If
    864			 * an interrupt was posted to the bus, the
    865			 * test failed.
    866			 */
    867			adapter->test_icr = 0;
    868			ew32(IMC, mask);
    869			ew32(ICS, mask);
    870			E1000_WRITE_FLUSH();
    871			msleep(10);
    872
    873			if (adapter->test_icr & mask) {
    874				*data = 3;
    875				break;
    876			}
    877		}
    878
    879		/* Enable the interrupt to be reported in
    880		 * the cause register and then force the same
    881		 * interrupt and see if one gets posted.  If
    882		 * an interrupt was not posted to the bus, the
    883		 * test failed.
    884		 */
    885		adapter->test_icr = 0;
    886		ew32(IMS, mask);
    887		ew32(ICS, mask);
    888		E1000_WRITE_FLUSH();
    889		msleep(10);
    890
    891		if (!(adapter->test_icr & mask)) {
    892			*data = 4;
    893			break;
    894		}
    895
    896		if (!shared_int) {
    897			/* Disable the other interrupts to be reported in
    898			 * the cause register and then force the other
    899			 * interrupts and see if any get posted.  If
    900			 * an interrupt was posted to the bus, the
    901			 * test failed.
    902			 */
    903			adapter->test_icr = 0;
    904			ew32(IMC, ~mask & 0x00007FFF);
    905			ew32(ICS, ~mask & 0x00007FFF);
    906			E1000_WRITE_FLUSH();
    907			msleep(10);
    908
    909			if (adapter->test_icr) {
    910				*data = 5;
    911				break;
    912			}
    913		}
    914	}
    915
    916	/* Disable all the interrupts */
    917	ew32(IMC, 0xFFFFFFFF);
    918	E1000_WRITE_FLUSH();
    919	msleep(10);
    920
    921	/* Unhook test interrupt handler */
    922	free_irq(irq, netdev);
    923
    924	return *data;
    925}
    926
    927static void e1000_free_desc_rings(struct e1000_adapter *adapter)
    928{
    929	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
    930	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
    931	struct pci_dev *pdev = adapter->pdev;
    932	int i;
    933
    934	if (txdr->desc && txdr->buffer_info) {
    935		for (i = 0; i < txdr->count; i++) {
    936			if (txdr->buffer_info[i].dma)
    937				dma_unmap_single(&pdev->dev,
    938						 txdr->buffer_info[i].dma,
    939						 txdr->buffer_info[i].length,
    940						 DMA_TO_DEVICE);
    941			dev_kfree_skb(txdr->buffer_info[i].skb);
    942		}
    943	}
    944
    945	if (rxdr->desc && rxdr->buffer_info) {
    946		for (i = 0; i < rxdr->count; i++) {
    947			if (rxdr->buffer_info[i].dma)
    948				dma_unmap_single(&pdev->dev,
    949						 rxdr->buffer_info[i].dma,
    950						 E1000_RXBUFFER_2048,
    951						 DMA_FROM_DEVICE);
    952			kfree(rxdr->buffer_info[i].rxbuf.data);
    953		}
    954	}
    955
    956	if (txdr->desc) {
    957		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
    958				  txdr->dma);
    959		txdr->desc = NULL;
    960	}
    961	if (rxdr->desc) {
    962		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
    963				  rxdr->dma);
    964		rxdr->desc = NULL;
    965	}
    966
    967	kfree(txdr->buffer_info);
    968	txdr->buffer_info = NULL;
    969	kfree(rxdr->buffer_info);
    970	rxdr->buffer_info = NULL;
    971}
    972
    973static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
    974{
    975	struct e1000_hw *hw = &adapter->hw;
    976	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
    977	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
    978	struct pci_dev *pdev = adapter->pdev;
    979	u32 rctl;
    980	int i, ret_val;
    981
    982	/* Setup Tx descriptor ring and Tx buffers */
    983
    984	if (!txdr->count)
    985		txdr->count = E1000_DEFAULT_TXD;
    986
    987	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
    988				    GFP_KERNEL);
    989	if (!txdr->buffer_info) {
    990		ret_val = 1;
    991		goto err_nomem;
    992	}
    993
    994	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
    995	txdr->size = ALIGN(txdr->size, 4096);
    996	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
    997					GFP_KERNEL);
    998	if (!txdr->desc) {
    999		ret_val = 2;
   1000		goto err_nomem;
   1001	}
   1002	txdr->next_to_use = txdr->next_to_clean = 0;
   1003
   1004	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
   1005	ew32(TDBAH, ((u64)txdr->dma >> 32));
   1006	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
   1007	ew32(TDH, 0);
   1008	ew32(TDT, 0);
   1009	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
   1010	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
   1011	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
   1012
   1013	for (i = 0; i < txdr->count; i++) {
   1014		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
   1015		struct sk_buff *skb;
   1016		unsigned int size = 1024;
   1017
   1018		skb = alloc_skb(size, GFP_KERNEL);
   1019		if (!skb) {
   1020			ret_val = 3;
   1021			goto err_nomem;
   1022		}
   1023		skb_put(skb, size);
   1024		txdr->buffer_info[i].skb = skb;
   1025		txdr->buffer_info[i].length = skb->len;
   1026		txdr->buffer_info[i].dma =
   1027			dma_map_single(&pdev->dev, skb->data, skb->len,
   1028				       DMA_TO_DEVICE);
   1029		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
   1030			ret_val = 4;
   1031			goto err_nomem;
   1032		}
   1033		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
   1034		tx_desc->lower.data = cpu_to_le32(skb->len);
   1035		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
   1036						   E1000_TXD_CMD_IFCS |
   1037						   E1000_TXD_CMD_RPS);
   1038		tx_desc->upper.data = 0;
   1039	}
   1040
   1041	/* Setup Rx descriptor ring and Rx buffers */
   1042
   1043	if (!rxdr->count)
   1044		rxdr->count = E1000_DEFAULT_RXD;
   1045
   1046	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
   1047				    GFP_KERNEL);
   1048	if (!rxdr->buffer_info) {
   1049		ret_val = 5;
   1050		goto err_nomem;
   1051	}
   1052
   1053	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
   1054	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
   1055					GFP_KERNEL);
   1056	if (!rxdr->desc) {
   1057		ret_val = 6;
   1058		goto err_nomem;
   1059	}
   1060	rxdr->next_to_use = rxdr->next_to_clean = 0;
   1061
   1062	rctl = er32(RCTL);
   1063	ew32(RCTL, rctl & ~E1000_RCTL_EN);
   1064	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
   1065	ew32(RDBAH, ((u64)rxdr->dma >> 32));
   1066	ew32(RDLEN, rxdr->size);
   1067	ew32(RDH, 0);
   1068	ew32(RDT, 0);
   1069	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
   1070		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
   1071		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
   1072	ew32(RCTL, rctl);
   1073
   1074	for (i = 0; i < rxdr->count; i++) {
   1075		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
   1076		u8 *buf;
   1077
   1078		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
   1079			      GFP_KERNEL);
   1080		if (!buf) {
   1081			ret_val = 7;
   1082			goto err_nomem;
   1083		}
   1084		rxdr->buffer_info[i].rxbuf.data = buf;
   1085
   1086		rxdr->buffer_info[i].dma =
   1087			dma_map_single(&pdev->dev,
   1088				       buf + NET_SKB_PAD + NET_IP_ALIGN,
   1089				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
   1090		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
   1091			ret_val = 8;
   1092			goto err_nomem;
   1093		}
   1094		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
   1095	}
   1096
   1097	return 0;
   1098
   1099err_nomem:
   1100	e1000_free_desc_rings(adapter);
   1101	return ret_val;
   1102}
   1103
   1104static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
   1105{
   1106	struct e1000_hw *hw = &adapter->hw;
   1107
   1108	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
   1109	e1000_write_phy_reg(hw, 29, 0x001F);
   1110	e1000_write_phy_reg(hw, 30, 0x8FFC);
   1111	e1000_write_phy_reg(hw, 29, 0x001A);
   1112	e1000_write_phy_reg(hw, 30, 0x8FF0);
   1113}
   1114
   1115static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
   1116{
   1117	struct e1000_hw *hw = &adapter->hw;
   1118	u16 phy_reg;
   1119
   1120	/* Because we reset the PHY above, we need to re-force TX_CLK in the
   1121	 * Extended PHY Specific Control Register to 25MHz clock.  This
   1122	 * value defaults back to a 2.5MHz clock when the PHY is reset.
   1123	 */
   1124	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
   1125	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
   1126	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
   1127
   1128	/* In addition, because of the s/w reset above, we need to enable
   1129	 * CRS on TX.  This must be set for both full and half duplex
   1130	 * operation.
   1131	 */
   1132	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
   1133	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
   1134	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
   1135}
   1136
   1137static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
   1138{
   1139	struct e1000_hw *hw = &adapter->hw;
   1140	u32 ctrl_reg;
   1141	u16 phy_reg;
   1142
   1143	/* Setup the Device Control Register for PHY loopback test. */
   1144
   1145	ctrl_reg = er32(CTRL);
   1146	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
   1147		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
   1148		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
   1149		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
   1150		     E1000_CTRL_FD);		/* Force Duplex to FULL */
   1151
   1152	ew32(CTRL, ctrl_reg);
   1153
   1154	/* Read the PHY Specific Control Register (0x10) */
   1155	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
   1156
   1157	/* Clear Auto-Crossover bits in PHY Specific Control Register
   1158	 * (bits 6:5).
   1159	 */
   1160	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
   1161	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
   1162
   1163	/* Perform software reset on the PHY */
   1164	e1000_phy_reset(hw);
   1165
   1166	/* Have to setup TX_CLK and TX_CRS after software reset */
   1167	e1000_phy_reset_clk_and_crs(adapter);
   1168
   1169	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
   1170
   1171	/* Wait for reset to complete. */
   1172	udelay(500);
   1173
   1174	/* Have to setup TX_CLK and TX_CRS after software reset */
   1175	e1000_phy_reset_clk_and_crs(adapter);
   1176
   1177	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
   1178	e1000_phy_disable_receiver(adapter);
   1179
   1180	/* Set the loopback bit in the PHY control register. */
   1181	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
   1182	phy_reg |= MII_CR_LOOPBACK;
   1183	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
   1184
   1185	/* Setup TX_CLK and TX_CRS one more time. */
   1186	e1000_phy_reset_clk_and_crs(adapter);
   1187
   1188	/* Check Phy Configuration */
   1189	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
   1190	if (phy_reg != 0x4100)
   1191		return 9;
   1192
   1193	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
   1194	if (phy_reg != 0x0070)
   1195		return 10;
   1196
   1197	e1000_read_phy_reg(hw, 29, &phy_reg);
   1198	if (phy_reg != 0x001A)
   1199		return 11;
   1200
   1201	return 0;
   1202}
   1203
   1204static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
   1205{
   1206	struct e1000_hw *hw = &adapter->hw;
   1207	u32 ctrl_reg = 0;
   1208	u32 stat_reg = 0;
   1209
   1210	hw->autoneg = false;
   1211
   1212	if (hw->phy_type == e1000_phy_m88) {
   1213		/* Auto-MDI/MDIX Off */
   1214		e1000_write_phy_reg(hw,
   1215				    M88E1000_PHY_SPEC_CTRL, 0x0808);
   1216		/* reset to update Auto-MDI/MDIX */
   1217		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
   1218		/* autoneg off */
   1219		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
   1220	}
   1221
   1222	ctrl_reg = er32(CTRL);
   1223
   1224	/* force 1000, set loopback */
   1225	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
   1226
   1227	/* Now set up the MAC to the same speed/duplex as the PHY. */
   1228	ctrl_reg = er32(CTRL);
   1229	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
   1230	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
   1231			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
   1232			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
   1233			E1000_CTRL_FD); /* Force Duplex to FULL */
   1234
   1235	if (hw->media_type == e1000_media_type_copper &&
   1236	    hw->phy_type == e1000_phy_m88)
   1237		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
   1238	else {
   1239		/* Set the ILOS bit on the fiber Nic is half
   1240		 * duplex link is detected.
   1241		 */
   1242		stat_reg = er32(STATUS);
   1243		if ((stat_reg & E1000_STATUS_FD) == 0)
   1244			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
   1245	}
   1246
   1247	ew32(CTRL, ctrl_reg);
   1248
   1249	/* Disable the receiver on the PHY so when a cable is plugged in, the
   1250	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
   1251	 */
   1252	if (hw->phy_type == e1000_phy_m88)
   1253		e1000_phy_disable_receiver(adapter);
   1254
   1255	udelay(500);
   1256
   1257	return 0;
   1258}
   1259
   1260static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
   1261{
   1262	struct e1000_hw *hw = &adapter->hw;
   1263	u16 phy_reg = 0;
   1264	u16 count = 0;
   1265
   1266	switch (hw->mac_type) {
   1267	case e1000_82543:
   1268		if (hw->media_type == e1000_media_type_copper) {
   1269			/* Attempt to setup Loopback mode on Non-integrated PHY.
   1270			 * Some PHY registers get corrupted at random, so
   1271			 * attempt this 10 times.
   1272			 */
   1273			while (e1000_nonintegrated_phy_loopback(adapter) &&
   1274			       count++ < 10);
   1275			if (count < 11)
   1276				return 0;
   1277		}
   1278		break;
   1279
   1280	case e1000_82544:
   1281	case e1000_82540:
   1282	case e1000_82545:
   1283	case e1000_82545_rev_3:
   1284	case e1000_82546:
   1285	case e1000_82546_rev_3:
   1286	case e1000_82541:
   1287	case e1000_82541_rev_2:
   1288	case e1000_82547:
   1289	case e1000_82547_rev_2:
   1290		return e1000_integrated_phy_loopback(adapter);
   1291	default:
   1292		/* Default PHY loopback work is to read the MII
   1293		 * control register and assert bit 14 (loopback mode).
   1294		 */
   1295		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
   1296		phy_reg |= MII_CR_LOOPBACK;
   1297		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
   1298		return 0;
   1299	}
   1300
   1301	return 8;
   1302}
   1303
   1304static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
   1305{
   1306	struct e1000_hw *hw = &adapter->hw;
   1307	u32 rctl;
   1308
   1309	if (hw->media_type == e1000_media_type_fiber ||
   1310	    hw->media_type == e1000_media_type_internal_serdes) {
   1311		switch (hw->mac_type) {
   1312		case e1000_82545:
   1313		case e1000_82546:
   1314		case e1000_82545_rev_3:
   1315		case e1000_82546_rev_3:
   1316			return e1000_set_phy_loopback(adapter);
   1317		default:
   1318			rctl = er32(RCTL);
   1319			rctl |= E1000_RCTL_LBM_TCVR;
   1320			ew32(RCTL, rctl);
   1321			return 0;
   1322		}
   1323	} else if (hw->media_type == e1000_media_type_copper) {
   1324		return e1000_set_phy_loopback(adapter);
   1325	}
   1326
   1327	return 7;
   1328}
   1329
   1330static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
   1331{
   1332	struct e1000_hw *hw = &adapter->hw;
   1333	u32 rctl;
   1334	u16 phy_reg;
   1335
   1336	rctl = er32(RCTL);
   1337	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
   1338	ew32(RCTL, rctl);
   1339
   1340	switch (hw->mac_type) {
   1341	case e1000_82545:
   1342	case e1000_82546:
   1343	case e1000_82545_rev_3:
   1344	case e1000_82546_rev_3:
   1345	default:
   1346		hw->autoneg = true;
   1347		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
   1348		if (phy_reg & MII_CR_LOOPBACK) {
   1349			phy_reg &= ~MII_CR_LOOPBACK;
   1350			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
   1351			e1000_phy_reset(hw);
   1352		}
   1353		break;
   1354	}
   1355}
   1356
   1357static void e1000_create_lbtest_frame(struct sk_buff *skb,
   1358				      unsigned int frame_size)
   1359{
   1360	memset(skb->data, 0xFF, frame_size);
   1361	frame_size &= ~1;
   1362	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
   1363	skb->data[frame_size / 2 + 10] = 0xBE;
   1364	skb->data[frame_size / 2 + 12] = 0xAF;
   1365}
   1366
   1367static int e1000_check_lbtest_frame(const unsigned char *data,
   1368				    unsigned int frame_size)
   1369{
   1370	frame_size &= ~1;
   1371	if (*(data + 3) == 0xFF) {
   1372		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
   1373		    (*(data + frame_size / 2 + 12) == 0xAF)) {
   1374			return 0;
   1375		}
   1376	}
   1377	return 13;
   1378}
   1379
   1380static int e1000_run_loopback_test(struct e1000_adapter *adapter)
   1381{
   1382	struct e1000_hw *hw = &adapter->hw;
   1383	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
   1384	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
   1385	struct pci_dev *pdev = adapter->pdev;
   1386	int i, j, k, l, lc, good_cnt, ret_val = 0;
   1387	unsigned long time;
   1388
   1389	ew32(RDT, rxdr->count - 1);
   1390
   1391	/* Calculate the loop count based on the largest descriptor ring
   1392	 * The idea is to wrap the largest ring a number of times using 64
   1393	 * send/receive pairs during each loop
   1394	 */
   1395
   1396	if (rxdr->count <= txdr->count)
   1397		lc = ((txdr->count / 64) * 2) + 1;
   1398	else
   1399		lc = ((rxdr->count / 64) * 2) + 1;
   1400
   1401	k = l = 0;
   1402	for (j = 0; j <= lc; j++) { /* loop count loop */
   1403		for (i = 0; i < 64; i++) { /* send the packets */
   1404			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
   1405						  1024);
   1406			dma_sync_single_for_device(&pdev->dev,
   1407						   txdr->buffer_info[k].dma,
   1408						   txdr->buffer_info[k].length,
   1409						   DMA_TO_DEVICE);
   1410			if (unlikely(++k == txdr->count))
   1411				k = 0;
   1412		}
   1413		ew32(TDT, k);
   1414		E1000_WRITE_FLUSH();
   1415		msleep(200);
   1416		time = jiffies; /* set the start time for the receive */
   1417		good_cnt = 0;
   1418		do { /* receive the sent packets */
   1419			dma_sync_single_for_cpu(&pdev->dev,
   1420						rxdr->buffer_info[l].dma,
   1421						E1000_RXBUFFER_2048,
   1422						DMA_FROM_DEVICE);
   1423
   1424			ret_val = e1000_check_lbtest_frame(
   1425					rxdr->buffer_info[l].rxbuf.data +
   1426					NET_SKB_PAD + NET_IP_ALIGN,
   1427					1024);
   1428			if (!ret_val)
   1429				good_cnt++;
   1430			if (unlikely(++l == rxdr->count))
   1431				l = 0;
   1432			/* time + 20 msecs (200 msecs on 2.4) is more than
   1433			 * enough time to complete the receives, if it's
   1434			 * exceeded, break and error off
   1435			 */
   1436		} while (good_cnt < 64 && time_after(time + 20, jiffies));
   1437
   1438		if (good_cnt != 64) {
   1439			ret_val = 13; /* ret_val is the same as mis-compare */
   1440			break;
   1441		}
   1442		if (time_after_eq(jiffies, time + 2)) {
   1443			ret_val = 14; /* error code for time out error */
   1444			break;
   1445		}
   1446	} /* end loop count loop */
   1447	return ret_val;
   1448}
   1449
   1450static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
   1451{
   1452	*data = e1000_setup_desc_rings(adapter);
   1453	if (*data)
   1454		goto out;
   1455	*data = e1000_setup_loopback_test(adapter);
   1456	if (*data)
   1457		goto err_loopback;
   1458	*data = e1000_run_loopback_test(adapter);
   1459	e1000_loopback_cleanup(adapter);
   1460
   1461err_loopback:
   1462	e1000_free_desc_rings(adapter);
   1463out:
   1464	return *data;
   1465}
   1466
   1467static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
   1468{
   1469	struct e1000_hw *hw = &adapter->hw;
   1470	*data = 0;
   1471	if (hw->media_type == e1000_media_type_internal_serdes) {
   1472		int i = 0;
   1473
   1474		hw->serdes_has_link = false;
   1475
   1476		/* On some blade server designs, link establishment
   1477		 * could take as long as 2-3 minutes
   1478		 */
   1479		do {
   1480			e1000_check_for_link(hw);
   1481			if (hw->serdes_has_link)
   1482				return *data;
   1483			msleep(20);
   1484		} while (i++ < 3750);
   1485
   1486		*data = 1;
   1487	} else {
   1488		e1000_check_for_link(hw);
   1489		if (hw->autoneg)  /* if auto_neg is set wait for it */
   1490			msleep(4000);
   1491
   1492		if (!(er32(STATUS) & E1000_STATUS_LU))
   1493			*data = 1;
   1494	}
   1495	return *data;
   1496}
   1497
   1498static int e1000_get_sset_count(struct net_device *netdev, int sset)
   1499{
   1500	switch (sset) {
   1501	case ETH_SS_TEST:
   1502		return E1000_TEST_LEN;
   1503	case ETH_SS_STATS:
   1504		return E1000_STATS_LEN;
   1505	default:
   1506		return -EOPNOTSUPP;
   1507	}
   1508}
   1509
   1510static void e1000_diag_test(struct net_device *netdev,
   1511			    struct ethtool_test *eth_test, u64 *data)
   1512{
   1513	struct e1000_adapter *adapter = netdev_priv(netdev);
   1514	struct e1000_hw *hw = &adapter->hw;
   1515	bool if_running = netif_running(netdev);
   1516
   1517	set_bit(__E1000_TESTING, &adapter->flags);
   1518	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
   1519		/* Offline tests */
   1520
   1521		/* save speed, duplex, autoneg settings */
   1522		u16 autoneg_advertised = hw->autoneg_advertised;
   1523		u8 forced_speed_duplex = hw->forced_speed_duplex;
   1524		u8 autoneg = hw->autoneg;
   1525
   1526		e_info(hw, "offline testing starting\n");
   1527
   1528		/* Link test performed before hardware reset so autoneg doesn't
   1529		 * interfere with test result
   1530		 */
   1531		if (e1000_link_test(adapter, &data[4]))
   1532			eth_test->flags |= ETH_TEST_FL_FAILED;
   1533
   1534		if (if_running)
   1535			/* indicate we're in test mode */
   1536			e1000_close(netdev);
   1537		else
   1538			e1000_reset(adapter);
   1539
   1540		if (e1000_reg_test(adapter, &data[0]))
   1541			eth_test->flags |= ETH_TEST_FL_FAILED;
   1542
   1543		e1000_reset(adapter);
   1544		if (e1000_eeprom_test(adapter, &data[1]))
   1545			eth_test->flags |= ETH_TEST_FL_FAILED;
   1546
   1547		e1000_reset(adapter);
   1548		if (e1000_intr_test(adapter, &data[2]))
   1549			eth_test->flags |= ETH_TEST_FL_FAILED;
   1550
   1551		e1000_reset(adapter);
   1552		/* make sure the phy is powered up */
   1553		e1000_power_up_phy(adapter);
   1554		if (e1000_loopback_test(adapter, &data[3]))
   1555			eth_test->flags |= ETH_TEST_FL_FAILED;
   1556
   1557		/* restore speed, duplex, autoneg settings */
   1558		hw->autoneg_advertised = autoneg_advertised;
   1559		hw->forced_speed_duplex = forced_speed_duplex;
   1560		hw->autoneg = autoneg;
   1561
   1562		e1000_reset(adapter);
   1563		clear_bit(__E1000_TESTING, &adapter->flags);
   1564		if (if_running)
   1565			e1000_open(netdev);
   1566	} else {
   1567		e_info(hw, "online testing starting\n");
   1568		/* Online tests */
   1569		if (e1000_link_test(adapter, &data[4]))
   1570			eth_test->flags |= ETH_TEST_FL_FAILED;
   1571
   1572		/* Online tests aren't run; pass by default */
   1573		data[0] = 0;
   1574		data[1] = 0;
   1575		data[2] = 0;
   1576		data[3] = 0;
   1577
   1578		clear_bit(__E1000_TESTING, &adapter->flags);
   1579	}
   1580	msleep_interruptible(4 * 1000);
   1581}
   1582
   1583static int e1000_wol_exclusion(struct e1000_adapter *adapter,
   1584			       struct ethtool_wolinfo *wol)
   1585{
   1586	struct e1000_hw *hw = &adapter->hw;
   1587	int retval = 1; /* fail by default */
   1588
   1589	switch (hw->device_id) {
   1590	case E1000_DEV_ID_82542:
   1591	case E1000_DEV_ID_82543GC_FIBER:
   1592	case E1000_DEV_ID_82543GC_COPPER:
   1593	case E1000_DEV_ID_82544EI_FIBER:
   1594	case E1000_DEV_ID_82546EB_QUAD_COPPER:
   1595	case E1000_DEV_ID_82545EM_FIBER:
   1596	case E1000_DEV_ID_82545EM_COPPER:
   1597	case E1000_DEV_ID_82546GB_QUAD_COPPER:
   1598	case E1000_DEV_ID_82546GB_PCIE:
   1599		/* these don't support WoL at all */
   1600		wol->supported = 0;
   1601		break;
   1602	case E1000_DEV_ID_82546EB_FIBER:
   1603	case E1000_DEV_ID_82546GB_FIBER:
   1604		/* Wake events not supported on port B */
   1605		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
   1606			wol->supported = 0;
   1607			break;
   1608		}
   1609		/* return success for non excluded adapter ports */
   1610		retval = 0;
   1611		break;
   1612	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
   1613		/* quad port adapters only support WoL on port A */
   1614		if (!adapter->quad_port_a) {
   1615			wol->supported = 0;
   1616			break;
   1617		}
   1618		/* return success for non excluded adapter ports */
   1619		retval = 0;
   1620		break;
   1621	default:
   1622		/* dual port cards only support WoL on port A from now on
   1623		 * unless it was enabled in the eeprom for port B
   1624		 * so exclude FUNC_1 ports from having WoL enabled
   1625		 */
   1626		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
   1627		    !adapter->eeprom_wol) {
   1628			wol->supported = 0;
   1629			break;
   1630		}
   1631
   1632		retval = 0;
   1633	}
   1634
   1635	return retval;
   1636}
   1637
   1638static void e1000_get_wol(struct net_device *netdev,
   1639			  struct ethtool_wolinfo *wol)
   1640{
   1641	struct e1000_adapter *adapter = netdev_priv(netdev);
   1642	struct e1000_hw *hw = &adapter->hw;
   1643
   1644	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
   1645	wol->wolopts = 0;
   1646
   1647	/* this function will set ->supported = 0 and return 1 if wol is not
   1648	 * supported by this hardware
   1649	 */
   1650	if (e1000_wol_exclusion(adapter, wol) ||
   1651	    !device_can_wakeup(&adapter->pdev->dev))
   1652		return;
   1653
   1654	/* apply any specific unsupported masks here */
   1655	switch (hw->device_id) {
   1656	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
   1657		/* KSP3 does not support UCAST wake-ups */
   1658		wol->supported &= ~WAKE_UCAST;
   1659
   1660		if (adapter->wol & E1000_WUFC_EX)
   1661			e_err(drv, "Interface does not support directed "
   1662			      "(unicast) frame wake-up packets\n");
   1663		break;
   1664	default:
   1665		break;
   1666	}
   1667
   1668	if (adapter->wol & E1000_WUFC_EX)
   1669		wol->wolopts |= WAKE_UCAST;
   1670	if (adapter->wol & E1000_WUFC_MC)
   1671		wol->wolopts |= WAKE_MCAST;
   1672	if (adapter->wol & E1000_WUFC_BC)
   1673		wol->wolopts |= WAKE_BCAST;
   1674	if (adapter->wol & E1000_WUFC_MAG)
   1675		wol->wolopts |= WAKE_MAGIC;
   1676}
   1677
   1678static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
   1679{
   1680	struct e1000_adapter *adapter = netdev_priv(netdev);
   1681	struct e1000_hw *hw = &adapter->hw;
   1682
   1683	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
   1684		return -EOPNOTSUPP;
   1685
   1686	if (e1000_wol_exclusion(adapter, wol) ||
   1687	    !device_can_wakeup(&adapter->pdev->dev))
   1688		return wol->wolopts ? -EOPNOTSUPP : 0;
   1689
   1690	switch (hw->device_id) {
   1691	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
   1692		if (wol->wolopts & WAKE_UCAST) {
   1693			e_err(drv, "Interface does not support directed "
   1694			      "(unicast) frame wake-up packets\n");
   1695			return -EOPNOTSUPP;
   1696		}
   1697		break;
   1698	default:
   1699		break;
   1700	}
   1701
   1702	/* these settings will always override what we currently have */
   1703	adapter->wol = 0;
   1704
   1705	if (wol->wolopts & WAKE_UCAST)
   1706		adapter->wol |= E1000_WUFC_EX;
   1707	if (wol->wolopts & WAKE_MCAST)
   1708		adapter->wol |= E1000_WUFC_MC;
   1709	if (wol->wolopts & WAKE_BCAST)
   1710		adapter->wol |= E1000_WUFC_BC;
   1711	if (wol->wolopts & WAKE_MAGIC)
   1712		adapter->wol |= E1000_WUFC_MAG;
   1713
   1714	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
   1715
   1716	return 0;
   1717}
   1718
   1719static int e1000_set_phys_id(struct net_device *netdev,
   1720			     enum ethtool_phys_id_state state)
   1721{
   1722	struct e1000_adapter *adapter = netdev_priv(netdev);
   1723	struct e1000_hw *hw = &adapter->hw;
   1724
   1725	switch (state) {
   1726	case ETHTOOL_ID_ACTIVE:
   1727		e1000_setup_led(hw);
   1728		return 2;
   1729
   1730	case ETHTOOL_ID_ON:
   1731		e1000_led_on(hw);
   1732		break;
   1733
   1734	case ETHTOOL_ID_OFF:
   1735		e1000_led_off(hw);
   1736		break;
   1737
   1738	case ETHTOOL_ID_INACTIVE:
   1739		e1000_cleanup_led(hw);
   1740	}
   1741
   1742	return 0;
   1743}
   1744
   1745static int e1000_get_coalesce(struct net_device *netdev,
   1746			      struct ethtool_coalesce *ec,
   1747			      struct kernel_ethtool_coalesce *kernel_coal,
   1748			      struct netlink_ext_ack *extack)
   1749{
   1750	struct e1000_adapter *adapter = netdev_priv(netdev);
   1751
   1752	if (adapter->hw.mac_type < e1000_82545)
   1753		return -EOPNOTSUPP;
   1754
   1755	if (adapter->itr_setting <= 4)
   1756		ec->rx_coalesce_usecs = adapter->itr_setting;
   1757	else
   1758		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
   1759
   1760	return 0;
   1761}
   1762
   1763static int e1000_set_coalesce(struct net_device *netdev,
   1764			      struct ethtool_coalesce *ec,
   1765			      struct kernel_ethtool_coalesce *kernel_coal,
   1766			      struct netlink_ext_ack *extack)
   1767{
   1768	struct e1000_adapter *adapter = netdev_priv(netdev);
   1769	struct e1000_hw *hw = &adapter->hw;
   1770
   1771	if (hw->mac_type < e1000_82545)
   1772		return -EOPNOTSUPP;
   1773
   1774	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
   1775	    ((ec->rx_coalesce_usecs > 4) &&
   1776	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
   1777	    (ec->rx_coalesce_usecs == 2))
   1778		return -EINVAL;
   1779
   1780	if (ec->rx_coalesce_usecs == 4) {
   1781		adapter->itr = adapter->itr_setting = 4;
   1782	} else if (ec->rx_coalesce_usecs <= 3) {
   1783		adapter->itr = 20000;
   1784		adapter->itr_setting = ec->rx_coalesce_usecs;
   1785	} else {
   1786		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
   1787		adapter->itr_setting = adapter->itr & ~3;
   1788	}
   1789
   1790	if (adapter->itr_setting != 0)
   1791		ew32(ITR, 1000000000 / (adapter->itr * 256));
   1792	else
   1793		ew32(ITR, 0);
   1794
   1795	return 0;
   1796}
   1797
   1798static int e1000_nway_reset(struct net_device *netdev)
   1799{
   1800	struct e1000_adapter *adapter = netdev_priv(netdev);
   1801
   1802	if (netif_running(netdev))
   1803		e1000_reinit_locked(adapter);
   1804	return 0;
   1805}
   1806
   1807static void e1000_get_ethtool_stats(struct net_device *netdev,
   1808				    struct ethtool_stats *stats, u64 *data)
   1809{
   1810	struct e1000_adapter *adapter = netdev_priv(netdev);
   1811	int i;
   1812	const struct e1000_stats *stat = e1000_gstrings_stats;
   1813
   1814	e1000_update_stats(adapter);
   1815	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
   1816		char *p;
   1817
   1818		switch (stat->type) {
   1819		case NETDEV_STATS:
   1820			p = (char *)netdev + stat->stat_offset;
   1821			break;
   1822		case E1000_STATS:
   1823			p = (char *)adapter + stat->stat_offset;
   1824			break;
   1825		default:
   1826			netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
   1827					 stat->type, i);
   1828			continue;
   1829		}
   1830
   1831		if (stat->sizeof_stat == sizeof(u64))
   1832			data[i] = *(u64 *)p;
   1833		else
   1834			data[i] = *(u32 *)p;
   1835	}
   1836/* BUG_ON(i != E1000_STATS_LEN); */
   1837}
   1838
   1839static void e1000_get_strings(struct net_device *netdev, u32 stringset,
   1840			      u8 *data)
   1841{
   1842	u8 *p = data;
   1843	int i;
   1844
   1845	switch (stringset) {
   1846	case ETH_SS_TEST:
   1847		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
   1848		break;
   1849	case ETH_SS_STATS:
   1850		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
   1851			memcpy(p, e1000_gstrings_stats[i].stat_string,
   1852			       ETH_GSTRING_LEN);
   1853			p += ETH_GSTRING_LEN;
   1854		}
   1855		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
   1856		break;
   1857	}
   1858}
   1859
   1860static const struct ethtool_ops e1000_ethtool_ops = {
   1861	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
   1862	.get_drvinfo		= e1000_get_drvinfo,
   1863	.get_regs_len		= e1000_get_regs_len,
   1864	.get_regs		= e1000_get_regs,
   1865	.get_wol		= e1000_get_wol,
   1866	.set_wol		= e1000_set_wol,
   1867	.get_msglevel		= e1000_get_msglevel,
   1868	.set_msglevel		= e1000_set_msglevel,
   1869	.nway_reset		= e1000_nway_reset,
   1870	.get_link		= e1000_get_link,
   1871	.get_eeprom_len		= e1000_get_eeprom_len,
   1872	.get_eeprom		= e1000_get_eeprom,
   1873	.set_eeprom		= e1000_set_eeprom,
   1874	.get_ringparam		= e1000_get_ringparam,
   1875	.set_ringparam		= e1000_set_ringparam,
   1876	.get_pauseparam		= e1000_get_pauseparam,
   1877	.set_pauseparam		= e1000_set_pauseparam,
   1878	.self_test		= e1000_diag_test,
   1879	.get_strings		= e1000_get_strings,
   1880	.set_phys_id		= e1000_set_phys_id,
   1881	.get_ethtool_stats	= e1000_get_ethtool_stats,
   1882	.get_sset_count		= e1000_get_sset_count,
   1883	.get_coalesce		= e1000_get_coalesce,
   1884	.set_coalesce		= e1000_set_coalesce,
   1885	.get_ts_info		= ethtool_op_get_ts_info,
   1886	.get_link_ksettings	= e1000_get_link_ksettings,
   1887	.set_link_ksettings	= e1000_set_link_ksettings,
   1888};
   1889
   1890void e1000_set_ethtool_ops(struct net_device *netdev)
   1891{
   1892	netdev->ethtool_ops = &e1000_ethtool_ops;
   1893}