cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e1000_main.c (148783B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2006 Intel Corporation. */
      3
      4#include "e1000.h"
      5#include <net/ip6_checksum.h>
      6#include <linux/io.h>
      7#include <linux/prefetch.h>
      8#include <linux/bitops.h>
      9#include <linux/if_vlan.h>
     10
     11char e1000_driver_name[] = "e1000";
     12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
     13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
     14
     15/* e1000_pci_tbl - PCI Device ID Table
     16 *
     17 * Last entry must be all 0s
     18 *
     19 * Macro expands to...
     20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
     21 */
     22static const struct pci_device_id e1000_pci_tbl[] = {
     23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
     24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
     25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
     26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
     27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
     28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
     29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
     30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
     31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
     32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
     33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
     34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
     35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
     36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
     37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
     38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
     39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
     40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
     41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
     42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
     43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
     44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
     45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
     46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
     47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
     48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
     49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
     50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
     51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
     52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
     53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
     54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
     55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
     56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
     57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
     58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
     59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
     60	/* required last entry */
     61	{0,}
     62};
     63
     64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
     65
     66int e1000_up(struct e1000_adapter *adapter);
     67void e1000_down(struct e1000_adapter *adapter);
     68void e1000_reinit_locked(struct e1000_adapter *adapter);
     69void e1000_reset(struct e1000_adapter *adapter);
     70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
     71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
     72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
     73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
     74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
     75				    struct e1000_tx_ring *txdr);
     76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
     77				    struct e1000_rx_ring *rxdr);
     78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
     79				    struct e1000_tx_ring *tx_ring);
     80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
     81				    struct e1000_rx_ring *rx_ring);
     82void e1000_update_stats(struct e1000_adapter *adapter);
     83
     84static int e1000_init_module(void);
     85static void e1000_exit_module(void);
     86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
     87static void e1000_remove(struct pci_dev *pdev);
     88static int e1000_alloc_queues(struct e1000_adapter *adapter);
     89static int e1000_sw_init(struct e1000_adapter *adapter);
     90int e1000_open(struct net_device *netdev);
     91int e1000_close(struct net_device *netdev);
     92static void e1000_configure_tx(struct e1000_adapter *adapter);
     93static void e1000_configure_rx(struct e1000_adapter *adapter);
     94static void e1000_setup_rctl(struct e1000_adapter *adapter);
     95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
     96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
     97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
     98				struct e1000_tx_ring *tx_ring);
     99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
    100				struct e1000_rx_ring *rx_ring);
    101static void e1000_set_rx_mode(struct net_device *netdev);
    102static void e1000_update_phy_info_task(struct work_struct *work);
    103static void e1000_watchdog(struct work_struct *work);
    104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
    105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
    106				    struct net_device *netdev);
    107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
    108static int e1000_set_mac(struct net_device *netdev, void *p);
    109static irqreturn_t e1000_intr(int irq, void *data);
    110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
    111			       struct e1000_tx_ring *tx_ring);
    112static int e1000_clean(struct napi_struct *napi, int budget);
    113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
    114			       struct e1000_rx_ring *rx_ring,
    115			       int *work_done, int work_to_do);
    116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
    117				     struct e1000_rx_ring *rx_ring,
    118				     int *work_done, int work_to_do);
    119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
    120					 struct e1000_rx_ring *rx_ring,
    121					 int cleaned_count)
    122{
    123}
    124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
    125				   struct e1000_rx_ring *rx_ring,
    126				   int cleaned_count);
    127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
    128					 struct e1000_rx_ring *rx_ring,
    129					 int cleaned_count);
    130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
    131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
    132			   int cmd);
    133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
    134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
    135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
    136static void e1000_reset_task(struct work_struct *work);
    137static void e1000_smartspeed(struct e1000_adapter *adapter);
    138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
    139				       struct sk_buff *skb);
    140
    141static bool e1000_vlan_used(struct e1000_adapter *adapter);
    142static void e1000_vlan_mode(struct net_device *netdev,
    143			    netdev_features_t features);
    144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
    145				     bool filter_on);
    146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
    147				 __be16 proto, u16 vid);
    148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
    149				  __be16 proto, u16 vid);
    150static void e1000_restore_vlan(struct e1000_adapter *adapter);
    151
    152static int __maybe_unused e1000_suspend(struct device *dev);
    153static int __maybe_unused e1000_resume(struct device *dev);
    154static void e1000_shutdown(struct pci_dev *pdev);
    155
    156#ifdef CONFIG_NET_POLL_CONTROLLER
    157/* for netdump / net console */
    158static void e1000_netpoll (struct net_device *netdev);
    159#endif
    160
    161#define COPYBREAK_DEFAULT 256
    162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
    163module_param(copybreak, uint, 0644);
    164MODULE_PARM_DESC(copybreak,
    165	"Maximum size of packet that is copied to a new buffer on receive");
    166
    167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
    168						pci_channel_state_t state);
    169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
    170static void e1000_io_resume(struct pci_dev *pdev);
    171
    172static const struct pci_error_handlers e1000_err_handler = {
    173	.error_detected = e1000_io_error_detected,
    174	.slot_reset = e1000_io_slot_reset,
    175	.resume = e1000_io_resume,
    176};
    177
    178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
    179
    180static struct pci_driver e1000_driver = {
    181	.name     = e1000_driver_name,
    182	.id_table = e1000_pci_tbl,
    183	.probe    = e1000_probe,
    184	.remove   = e1000_remove,
    185	.driver = {
    186		.pm = &e1000_pm_ops,
    187	},
    188	.shutdown = e1000_shutdown,
    189	.err_handler = &e1000_err_handler
    190};
    191
    192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
    193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
    194MODULE_LICENSE("GPL v2");
    195
    196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
    197static int debug = -1;
    198module_param(debug, int, 0);
    199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
    200
    201/**
    202 * e1000_get_hw_dev - helper function for getting netdev
    203 * @hw: pointer to HW struct
    204 *
    205 * return device used by hardware layer to print debugging information
    206 *
    207 **/
    208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
    209{
    210	struct e1000_adapter *adapter = hw->back;
    211	return adapter->netdev;
    212}
    213
    214/**
    215 * e1000_init_module - Driver Registration Routine
    216 *
    217 * e1000_init_module is the first routine called when the driver is
    218 * loaded. All it does is register with the PCI subsystem.
    219 **/
    220static int __init e1000_init_module(void)
    221{
    222	int ret;
    223	pr_info("%s\n", e1000_driver_string);
    224
    225	pr_info("%s\n", e1000_copyright);
    226
    227	ret = pci_register_driver(&e1000_driver);
    228	if (copybreak != COPYBREAK_DEFAULT) {
    229		if (copybreak == 0)
    230			pr_info("copybreak disabled\n");
    231		else
    232			pr_info("copybreak enabled for "
    233				   "packets <= %u bytes\n", copybreak);
    234	}
    235	return ret;
    236}
    237
    238module_init(e1000_init_module);
    239
    240/**
    241 * e1000_exit_module - Driver Exit Cleanup Routine
    242 *
    243 * e1000_exit_module is called just before the driver is removed
    244 * from memory.
    245 **/
    246static void __exit e1000_exit_module(void)
    247{
    248	pci_unregister_driver(&e1000_driver);
    249}
    250
    251module_exit(e1000_exit_module);
    252
    253static int e1000_request_irq(struct e1000_adapter *adapter)
    254{
    255	struct net_device *netdev = adapter->netdev;
    256	irq_handler_t handler = e1000_intr;
    257	int irq_flags = IRQF_SHARED;
    258	int err;
    259
    260	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
    261			  netdev);
    262	if (err) {
    263		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
    264	}
    265
    266	return err;
    267}
    268
    269static void e1000_free_irq(struct e1000_adapter *adapter)
    270{
    271	struct net_device *netdev = adapter->netdev;
    272
    273	free_irq(adapter->pdev->irq, netdev);
    274}
    275
    276/**
    277 * e1000_irq_disable - Mask off interrupt generation on the NIC
    278 * @adapter: board private structure
    279 **/
    280static void e1000_irq_disable(struct e1000_adapter *adapter)
    281{
    282	struct e1000_hw *hw = &adapter->hw;
    283
    284	ew32(IMC, ~0);
    285	E1000_WRITE_FLUSH();
    286	synchronize_irq(adapter->pdev->irq);
    287}
    288
    289/**
    290 * e1000_irq_enable - Enable default interrupt generation settings
    291 * @adapter: board private structure
    292 **/
    293static void e1000_irq_enable(struct e1000_adapter *adapter)
    294{
    295	struct e1000_hw *hw = &adapter->hw;
    296
    297	ew32(IMS, IMS_ENABLE_MASK);
    298	E1000_WRITE_FLUSH();
    299}
    300
    301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
    302{
    303	struct e1000_hw *hw = &adapter->hw;
    304	struct net_device *netdev = adapter->netdev;
    305	u16 vid = hw->mng_cookie.vlan_id;
    306	u16 old_vid = adapter->mng_vlan_id;
    307
    308	if (!e1000_vlan_used(adapter))
    309		return;
    310
    311	if (!test_bit(vid, adapter->active_vlans)) {
    312		if (hw->mng_cookie.status &
    313		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
    314			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
    315			adapter->mng_vlan_id = vid;
    316		} else {
    317			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
    318		}
    319		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
    320		    (vid != old_vid) &&
    321		    !test_bit(old_vid, adapter->active_vlans))
    322			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
    323					       old_vid);
    324	} else {
    325		adapter->mng_vlan_id = vid;
    326	}
    327}
    328
    329static void e1000_init_manageability(struct e1000_adapter *adapter)
    330{
    331	struct e1000_hw *hw = &adapter->hw;
    332
    333	if (adapter->en_mng_pt) {
    334		u32 manc = er32(MANC);
    335
    336		/* disable hardware interception of ARP */
    337		manc &= ~(E1000_MANC_ARP_EN);
    338
    339		ew32(MANC, manc);
    340	}
    341}
    342
    343static void e1000_release_manageability(struct e1000_adapter *adapter)
    344{
    345	struct e1000_hw *hw = &adapter->hw;
    346
    347	if (adapter->en_mng_pt) {
    348		u32 manc = er32(MANC);
    349
    350		/* re-enable hardware interception of ARP */
    351		manc |= E1000_MANC_ARP_EN;
    352
    353		ew32(MANC, manc);
    354	}
    355}
    356
    357/**
    358 * e1000_configure - configure the hardware for RX and TX
    359 * @adapter: private board structure
    360 **/
    361static void e1000_configure(struct e1000_adapter *adapter)
    362{
    363	struct net_device *netdev = adapter->netdev;
    364	int i;
    365
    366	e1000_set_rx_mode(netdev);
    367
    368	e1000_restore_vlan(adapter);
    369	e1000_init_manageability(adapter);
    370
    371	e1000_configure_tx(adapter);
    372	e1000_setup_rctl(adapter);
    373	e1000_configure_rx(adapter);
    374	/* call E1000_DESC_UNUSED which always leaves
    375	 * at least 1 descriptor unused to make sure
    376	 * next_to_use != next_to_clean
    377	 */
    378	for (i = 0; i < adapter->num_rx_queues; i++) {
    379		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
    380		adapter->alloc_rx_buf(adapter, ring,
    381				      E1000_DESC_UNUSED(ring));
    382	}
    383}
    384
    385int e1000_up(struct e1000_adapter *adapter)
    386{
    387	struct e1000_hw *hw = &adapter->hw;
    388
    389	/* hardware has been reset, we need to reload some things */
    390	e1000_configure(adapter);
    391
    392	clear_bit(__E1000_DOWN, &adapter->flags);
    393
    394	napi_enable(&adapter->napi);
    395
    396	e1000_irq_enable(adapter);
    397
    398	netif_wake_queue(adapter->netdev);
    399
    400	/* fire a link change interrupt to start the watchdog */
    401	ew32(ICS, E1000_ICS_LSC);
    402	return 0;
    403}
    404
    405/**
    406 * e1000_power_up_phy - restore link in case the phy was powered down
    407 * @adapter: address of board private structure
    408 *
    409 * The phy may be powered down to save power and turn off link when the
    410 * driver is unloaded and wake on lan is not enabled (among others)
    411 * *** this routine MUST be followed by a call to e1000_reset ***
    412 **/
    413void e1000_power_up_phy(struct e1000_adapter *adapter)
    414{
    415	struct e1000_hw *hw = &adapter->hw;
    416	u16 mii_reg = 0;
    417
    418	/* Just clear the power down bit to wake the phy back up */
    419	if (hw->media_type == e1000_media_type_copper) {
    420		/* according to the manual, the phy will retain its
    421		 * settings across a power-down/up cycle
    422		 */
    423		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
    424		mii_reg &= ~MII_CR_POWER_DOWN;
    425		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
    426	}
    427}
    428
    429static void e1000_power_down_phy(struct e1000_adapter *adapter)
    430{
    431	struct e1000_hw *hw = &adapter->hw;
    432
    433	/* Power down the PHY so no link is implied when interface is down *
    434	 * The PHY cannot be powered down if any of the following is true *
    435	 * (a) WoL is enabled
    436	 * (b) AMT is active
    437	 * (c) SoL/IDER session is active
    438	 */
    439	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
    440	   hw->media_type == e1000_media_type_copper) {
    441		u16 mii_reg = 0;
    442
    443		switch (hw->mac_type) {
    444		case e1000_82540:
    445		case e1000_82545:
    446		case e1000_82545_rev_3:
    447		case e1000_82546:
    448		case e1000_ce4100:
    449		case e1000_82546_rev_3:
    450		case e1000_82541:
    451		case e1000_82541_rev_2:
    452		case e1000_82547:
    453		case e1000_82547_rev_2:
    454			if (er32(MANC) & E1000_MANC_SMBUS_EN)
    455				goto out;
    456			break;
    457		default:
    458			goto out;
    459		}
    460		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
    461		mii_reg |= MII_CR_POWER_DOWN;
    462		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
    463		msleep(1);
    464	}
    465out:
    466	return;
    467}
    468
    469static void e1000_down_and_stop(struct e1000_adapter *adapter)
    470{
    471	set_bit(__E1000_DOWN, &adapter->flags);
    472
    473	cancel_delayed_work_sync(&adapter->watchdog_task);
    474
    475	/*
    476	 * Since the watchdog task can reschedule other tasks, we should cancel
    477	 * it first, otherwise we can run into the situation when a work is
    478	 * still running after the adapter has been turned down.
    479	 */
    480
    481	cancel_delayed_work_sync(&adapter->phy_info_task);
    482	cancel_delayed_work_sync(&adapter->fifo_stall_task);
    483
    484	/* Only kill reset task if adapter is not resetting */
    485	if (!test_bit(__E1000_RESETTING, &adapter->flags))
    486		cancel_work_sync(&adapter->reset_task);
    487}
    488
    489void e1000_down(struct e1000_adapter *adapter)
    490{
    491	struct e1000_hw *hw = &adapter->hw;
    492	struct net_device *netdev = adapter->netdev;
    493	u32 rctl, tctl;
    494
    495	/* disable receives in the hardware */
    496	rctl = er32(RCTL);
    497	ew32(RCTL, rctl & ~E1000_RCTL_EN);
    498	/* flush and sleep below */
    499
    500	netif_tx_disable(netdev);
    501
    502	/* disable transmits in the hardware */
    503	tctl = er32(TCTL);
    504	tctl &= ~E1000_TCTL_EN;
    505	ew32(TCTL, tctl);
    506	/* flush both disables and wait for them to finish */
    507	E1000_WRITE_FLUSH();
    508	msleep(10);
    509
    510	/* Set the carrier off after transmits have been disabled in the
    511	 * hardware, to avoid race conditions with e1000_watchdog() (which
    512	 * may be running concurrently to us, checking for the carrier
    513	 * bit to decide whether it should enable transmits again). Such
    514	 * a race condition would result into transmission being disabled
    515	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
    516	 */
    517	netif_carrier_off(netdev);
    518
    519	napi_disable(&adapter->napi);
    520
    521	e1000_irq_disable(adapter);
    522
    523	/* Setting DOWN must be after irq_disable to prevent
    524	 * a screaming interrupt.  Setting DOWN also prevents
    525	 * tasks from rescheduling.
    526	 */
    527	e1000_down_and_stop(adapter);
    528
    529	adapter->link_speed = 0;
    530	adapter->link_duplex = 0;
    531
    532	e1000_reset(adapter);
    533	e1000_clean_all_tx_rings(adapter);
    534	e1000_clean_all_rx_rings(adapter);
    535}
    536
    537void e1000_reinit_locked(struct e1000_adapter *adapter)
    538{
    539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
    540		msleep(1);
    541
    542	/* only run the task if not already down */
    543	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
    544		e1000_down(adapter);
    545		e1000_up(adapter);
    546	}
    547
    548	clear_bit(__E1000_RESETTING, &adapter->flags);
    549}
    550
    551void e1000_reset(struct e1000_adapter *adapter)
    552{
    553	struct e1000_hw *hw = &adapter->hw;
    554	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
    555	bool legacy_pba_adjust = false;
    556	u16 hwm;
    557
    558	/* Repartition Pba for greater than 9k mtu
    559	 * To take effect CTRL.RST is required.
    560	 */
    561
    562	switch (hw->mac_type) {
    563	case e1000_82542_rev2_0:
    564	case e1000_82542_rev2_1:
    565	case e1000_82543:
    566	case e1000_82544:
    567	case e1000_82540:
    568	case e1000_82541:
    569	case e1000_82541_rev_2:
    570		legacy_pba_adjust = true;
    571		pba = E1000_PBA_48K;
    572		break;
    573	case e1000_82545:
    574	case e1000_82545_rev_3:
    575	case e1000_82546:
    576	case e1000_ce4100:
    577	case e1000_82546_rev_3:
    578		pba = E1000_PBA_48K;
    579		break;
    580	case e1000_82547:
    581	case e1000_82547_rev_2:
    582		legacy_pba_adjust = true;
    583		pba = E1000_PBA_30K;
    584		break;
    585	case e1000_undefined:
    586	case e1000_num_macs:
    587		break;
    588	}
    589
    590	if (legacy_pba_adjust) {
    591		if (hw->max_frame_size > E1000_RXBUFFER_8192)
    592			pba -= 8; /* allocate more FIFO for Tx */
    593
    594		if (hw->mac_type == e1000_82547) {
    595			adapter->tx_fifo_head = 0;
    596			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
    597			adapter->tx_fifo_size =
    598				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
    599			atomic_set(&adapter->tx_fifo_stall, 0);
    600		}
    601	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
    602		/* adjust PBA for jumbo frames */
    603		ew32(PBA, pba);
    604
    605		/* To maintain wire speed transmits, the Tx FIFO should be
    606		 * large enough to accommodate two full transmit packets,
    607		 * rounded up to the next 1KB and expressed in KB.  Likewise,
    608		 * the Rx FIFO should be large enough to accommodate at least
    609		 * one full receive packet and is similarly rounded up and
    610		 * expressed in KB.
    611		 */
    612		pba = er32(PBA);
    613		/* upper 16 bits has Tx packet buffer allocation size in KB */
    614		tx_space = pba >> 16;
    615		/* lower 16 bits has Rx packet buffer allocation size in KB */
    616		pba &= 0xffff;
    617		/* the Tx fifo also stores 16 bytes of information about the Tx
    618		 * but don't include ethernet FCS because hardware appends it
    619		 */
    620		min_tx_space = (hw->max_frame_size +
    621				sizeof(struct e1000_tx_desc) -
    622				ETH_FCS_LEN) * 2;
    623		min_tx_space = ALIGN(min_tx_space, 1024);
    624		min_tx_space >>= 10;
    625		/* software strips receive CRC, so leave room for it */
    626		min_rx_space = hw->max_frame_size;
    627		min_rx_space = ALIGN(min_rx_space, 1024);
    628		min_rx_space >>= 10;
    629
    630		/* If current Tx allocation is less than the min Tx FIFO size,
    631		 * and the min Tx FIFO size is less than the current Rx FIFO
    632		 * allocation, take space away from current Rx allocation
    633		 */
    634		if (tx_space < min_tx_space &&
    635		    ((min_tx_space - tx_space) < pba)) {
    636			pba = pba - (min_tx_space - tx_space);
    637
    638			/* PCI/PCIx hardware has PBA alignment constraints */
    639			switch (hw->mac_type) {
    640			case e1000_82545 ... e1000_82546_rev_3:
    641				pba &= ~(E1000_PBA_8K - 1);
    642				break;
    643			default:
    644				break;
    645			}
    646
    647			/* if short on Rx space, Rx wins and must trump Tx
    648			 * adjustment or use Early Receive if available
    649			 */
    650			if (pba < min_rx_space)
    651				pba = min_rx_space;
    652		}
    653	}
    654
    655	ew32(PBA, pba);
    656
    657	/* flow control settings:
    658	 * The high water mark must be low enough to fit one full frame
    659	 * (or the size used for early receive) above it in the Rx FIFO.
    660	 * Set it to the lower of:
    661	 * - 90% of the Rx FIFO size, and
    662	 * - the full Rx FIFO size minus the early receive size (for parts
    663	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
    664	 * - the full Rx FIFO size minus one full frame
    665	 */
    666	hwm = min(((pba << 10) * 9 / 10),
    667		  ((pba << 10) - hw->max_frame_size));
    668
    669	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
    670	hw->fc_low_water = hw->fc_high_water - 8;
    671	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
    672	hw->fc_send_xon = 1;
    673	hw->fc = hw->original_fc;
    674
    675	/* Allow time for pending master requests to run */
    676	e1000_reset_hw(hw);
    677	if (hw->mac_type >= e1000_82544)
    678		ew32(WUC, 0);
    679
    680	if (e1000_init_hw(hw))
    681		e_dev_err("Hardware Error\n");
    682	e1000_update_mng_vlan(adapter);
    683
    684	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
    685	if (hw->mac_type >= e1000_82544 &&
    686	    hw->autoneg == 1 &&
    687	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
    688		u32 ctrl = er32(CTRL);
    689		/* clear phy power management bit if we are in gig only mode,
    690		 * which if enabled will attempt negotiation to 100Mb, which
    691		 * can cause a loss of link at power off or driver unload
    692		 */
    693		ctrl &= ~E1000_CTRL_SWDPIN3;
    694		ew32(CTRL, ctrl);
    695	}
    696
    697	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
    698	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
    699
    700	e1000_reset_adaptive(hw);
    701	e1000_phy_get_info(hw, &adapter->phy_info);
    702
    703	e1000_release_manageability(adapter);
    704}
    705
    706/* Dump the eeprom for users having checksum issues */
    707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
    708{
    709	struct net_device *netdev = adapter->netdev;
    710	struct ethtool_eeprom eeprom;
    711	const struct ethtool_ops *ops = netdev->ethtool_ops;
    712	u8 *data;
    713	int i;
    714	u16 csum_old, csum_new = 0;
    715
    716	eeprom.len = ops->get_eeprom_len(netdev);
    717	eeprom.offset = 0;
    718
    719	data = kmalloc(eeprom.len, GFP_KERNEL);
    720	if (!data)
    721		return;
    722
    723	ops->get_eeprom(netdev, &eeprom, data);
    724
    725	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
    726		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
    727	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
    728		csum_new += data[i] + (data[i + 1] << 8);
    729	csum_new = EEPROM_SUM - csum_new;
    730
    731	pr_err("/*********************/\n");
    732	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
    733	pr_err("Calculated              : 0x%04x\n", csum_new);
    734
    735	pr_err("Offset    Values\n");
    736	pr_err("========  ======\n");
    737	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
    738
    739	pr_err("Include this output when contacting your support provider.\n");
    740	pr_err("This is not a software error! Something bad happened to\n");
    741	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
    742	pr_err("result in further problems, possibly loss of data,\n");
    743	pr_err("corruption or system hangs!\n");
    744	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
    745	pr_err("which is invalid and requires you to set the proper MAC\n");
    746	pr_err("address manually before continuing to enable this network\n");
    747	pr_err("device. Please inspect the EEPROM dump and report the\n");
    748	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
    749	pr_err("/*********************/\n");
    750
    751	kfree(data);
    752}
    753
    754/**
    755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
    756 * @pdev: PCI device information struct
    757 *
    758 * Return true if an adapter needs ioport resources
    759 **/
    760static int e1000_is_need_ioport(struct pci_dev *pdev)
    761{
    762	switch (pdev->device) {
    763	case E1000_DEV_ID_82540EM:
    764	case E1000_DEV_ID_82540EM_LOM:
    765	case E1000_DEV_ID_82540EP:
    766	case E1000_DEV_ID_82540EP_LOM:
    767	case E1000_DEV_ID_82540EP_LP:
    768	case E1000_DEV_ID_82541EI:
    769	case E1000_DEV_ID_82541EI_MOBILE:
    770	case E1000_DEV_ID_82541ER:
    771	case E1000_DEV_ID_82541ER_LOM:
    772	case E1000_DEV_ID_82541GI:
    773	case E1000_DEV_ID_82541GI_LF:
    774	case E1000_DEV_ID_82541GI_MOBILE:
    775	case E1000_DEV_ID_82544EI_COPPER:
    776	case E1000_DEV_ID_82544EI_FIBER:
    777	case E1000_DEV_ID_82544GC_COPPER:
    778	case E1000_DEV_ID_82544GC_LOM:
    779	case E1000_DEV_ID_82545EM_COPPER:
    780	case E1000_DEV_ID_82545EM_FIBER:
    781	case E1000_DEV_ID_82546EB_COPPER:
    782	case E1000_DEV_ID_82546EB_FIBER:
    783	case E1000_DEV_ID_82546EB_QUAD_COPPER:
    784		return true;
    785	default:
    786		return false;
    787	}
    788}
    789
    790static netdev_features_t e1000_fix_features(struct net_device *netdev,
    791	netdev_features_t features)
    792{
    793	/* Since there is no support for separate Rx/Tx vlan accel
    794	 * enable/disable make sure Tx flag is always in same state as Rx.
    795	 */
    796	if (features & NETIF_F_HW_VLAN_CTAG_RX)
    797		features |= NETIF_F_HW_VLAN_CTAG_TX;
    798	else
    799		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
    800
    801	return features;
    802}
    803
    804static int e1000_set_features(struct net_device *netdev,
    805	netdev_features_t features)
    806{
    807	struct e1000_adapter *adapter = netdev_priv(netdev);
    808	netdev_features_t changed = features ^ netdev->features;
    809
    810	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
    811		e1000_vlan_mode(netdev, features);
    812
    813	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
    814		return 0;
    815
    816	netdev->features = features;
    817	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
    818
    819	if (netif_running(netdev))
    820		e1000_reinit_locked(adapter);
    821	else
    822		e1000_reset(adapter);
    823
    824	return 1;
    825}
    826
    827static const struct net_device_ops e1000_netdev_ops = {
    828	.ndo_open		= e1000_open,
    829	.ndo_stop		= e1000_close,
    830	.ndo_start_xmit		= e1000_xmit_frame,
    831	.ndo_set_rx_mode	= e1000_set_rx_mode,
    832	.ndo_set_mac_address	= e1000_set_mac,
    833	.ndo_tx_timeout		= e1000_tx_timeout,
    834	.ndo_change_mtu		= e1000_change_mtu,
    835	.ndo_eth_ioctl		= e1000_ioctl,
    836	.ndo_validate_addr	= eth_validate_addr,
    837	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
    838	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
    839#ifdef CONFIG_NET_POLL_CONTROLLER
    840	.ndo_poll_controller	= e1000_netpoll,
    841#endif
    842	.ndo_fix_features	= e1000_fix_features,
    843	.ndo_set_features	= e1000_set_features,
    844};
    845
    846/**
    847 * e1000_init_hw_struct - initialize members of hw struct
    848 * @adapter: board private struct
    849 * @hw: structure used by e1000_hw.c
    850 *
    851 * Factors out initialization of the e1000_hw struct to its own function
    852 * that can be called very early at init (just after struct allocation).
    853 * Fields are initialized based on PCI device information and
    854 * OS network device settings (MTU size).
    855 * Returns negative error codes if MAC type setup fails.
    856 */
    857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
    858				struct e1000_hw *hw)
    859{
    860	struct pci_dev *pdev = adapter->pdev;
    861
    862	/* PCI config space info */
    863	hw->vendor_id = pdev->vendor;
    864	hw->device_id = pdev->device;
    865	hw->subsystem_vendor_id = pdev->subsystem_vendor;
    866	hw->subsystem_id = pdev->subsystem_device;
    867	hw->revision_id = pdev->revision;
    868
    869	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
    870
    871	hw->max_frame_size = adapter->netdev->mtu +
    872			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
    873	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
    874
    875	/* identify the MAC */
    876	if (e1000_set_mac_type(hw)) {
    877		e_err(probe, "Unknown MAC Type\n");
    878		return -EIO;
    879	}
    880
    881	switch (hw->mac_type) {
    882	default:
    883		break;
    884	case e1000_82541:
    885	case e1000_82547:
    886	case e1000_82541_rev_2:
    887	case e1000_82547_rev_2:
    888		hw->phy_init_script = 1;
    889		break;
    890	}
    891
    892	e1000_set_media_type(hw);
    893	e1000_get_bus_info(hw);
    894
    895	hw->wait_autoneg_complete = false;
    896	hw->tbi_compatibility_en = true;
    897	hw->adaptive_ifs = true;
    898
    899	/* Copper options */
    900
    901	if (hw->media_type == e1000_media_type_copper) {
    902		hw->mdix = AUTO_ALL_MODES;
    903		hw->disable_polarity_correction = false;
    904		hw->master_slave = E1000_MASTER_SLAVE;
    905	}
    906
    907	return 0;
    908}
    909
    910/**
    911 * e1000_probe - Device Initialization Routine
    912 * @pdev: PCI device information struct
    913 * @ent: entry in e1000_pci_tbl
    914 *
    915 * Returns 0 on success, negative on failure
    916 *
    917 * e1000_probe initializes an adapter identified by a pci_dev structure.
    918 * The OS initialization, configuring of the adapter private structure,
    919 * and a hardware reset occur.
    920 **/
    921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
    922{
    923	struct net_device *netdev;
    924	struct e1000_adapter *adapter = NULL;
    925	struct e1000_hw *hw;
    926
    927	static int cards_found;
    928	static int global_quad_port_a; /* global ksp3 port a indication */
    929	int i, err, pci_using_dac;
    930	u16 eeprom_data = 0;
    931	u16 tmp = 0;
    932	u16 eeprom_apme_mask = E1000_EEPROM_APME;
    933	int bars, need_ioport;
    934	bool disable_dev = false;
    935
    936	/* do not allocate ioport bars when not needed */
    937	need_ioport = e1000_is_need_ioport(pdev);
    938	if (need_ioport) {
    939		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
    940		err = pci_enable_device(pdev);
    941	} else {
    942		bars = pci_select_bars(pdev, IORESOURCE_MEM);
    943		err = pci_enable_device_mem(pdev);
    944	}
    945	if (err)
    946		return err;
    947
    948	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
    949	if (err)
    950		goto err_pci_reg;
    951
    952	pci_set_master(pdev);
    953	err = pci_save_state(pdev);
    954	if (err)
    955		goto err_alloc_etherdev;
    956
    957	err = -ENOMEM;
    958	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
    959	if (!netdev)
    960		goto err_alloc_etherdev;
    961
    962	SET_NETDEV_DEV(netdev, &pdev->dev);
    963
    964	pci_set_drvdata(pdev, netdev);
    965	adapter = netdev_priv(netdev);
    966	adapter->netdev = netdev;
    967	adapter->pdev = pdev;
    968	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
    969	adapter->bars = bars;
    970	adapter->need_ioport = need_ioport;
    971
    972	hw = &adapter->hw;
    973	hw->back = adapter;
    974
    975	err = -EIO;
    976	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
    977	if (!hw->hw_addr)
    978		goto err_ioremap;
    979
    980	if (adapter->need_ioport) {
    981		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
    982			if (pci_resource_len(pdev, i) == 0)
    983				continue;
    984			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
    985				hw->io_base = pci_resource_start(pdev, i);
    986				break;
    987			}
    988		}
    989	}
    990
    991	/* make ready for any if (hw->...) below */
    992	err = e1000_init_hw_struct(adapter, hw);
    993	if (err)
    994		goto err_sw_init;
    995
    996	/* there is a workaround being applied below that limits
    997	 * 64-bit DMA addresses to 64-bit hardware.  There are some
    998	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
    999	 */
   1000	pci_using_dac = 0;
   1001	if ((hw->bus_type == e1000_bus_type_pcix) &&
   1002	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
   1003		pci_using_dac = 1;
   1004	} else {
   1005		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
   1006		if (err) {
   1007			pr_err("No usable DMA config, aborting\n");
   1008			goto err_dma;
   1009		}
   1010	}
   1011
   1012	netdev->netdev_ops = &e1000_netdev_ops;
   1013	e1000_set_ethtool_ops(netdev);
   1014	netdev->watchdog_timeo = 5 * HZ;
   1015	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
   1016
   1017	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
   1018
   1019	adapter->bd_number = cards_found;
   1020
   1021	/* setup the private structure */
   1022
   1023	err = e1000_sw_init(adapter);
   1024	if (err)
   1025		goto err_sw_init;
   1026
   1027	err = -EIO;
   1028	if (hw->mac_type == e1000_ce4100) {
   1029		hw->ce4100_gbe_mdio_base_virt =
   1030					ioremap(pci_resource_start(pdev, BAR_1),
   1031						pci_resource_len(pdev, BAR_1));
   1032
   1033		if (!hw->ce4100_gbe_mdio_base_virt)
   1034			goto err_mdio_ioremap;
   1035	}
   1036
   1037	if (hw->mac_type >= e1000_82543) {
   1038		netdev->hw_features = NETIF_F_SG |
   1039				   NETIF_F_HW_CSUM |
   1040				   NETIF_F_HW_VLAN_CTAG_RX;
   1041		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
   1042				   NETIF_F_HW_VLAN_CTAG_FILTER;
   1043	}
   1044
   1045	if ((hw->mac_type >= e1000_82544) &&
   1046	   (hw->mac_type != e1000_82547))
   1047		netdev->hw_features |= NETIF_F_TSO;
   1048
   1049	netdev->priv_flags |= IFF_SUPP_NOFCS;
   1050
   1051	netdev->features |= netdev->hw_features;
   1052	netdev->hw_features |= (NETIF_F_RXCSUM |
   1053				NETIF_F_RXALL |
   1054				NETIF_F_RXFCS);
   1055
   1056	if (pci_using_dac) {
   1057		netdev->features |= NETIF_F_HIGHDMA;
   1058		netdev->vlan_features |= NETIF_F_HIGHDMA;
   1059	}
   1060
   1061	netdev->vlan_features |= (NETIF_F_TSO |
   1062				  NETIF_F_HW_CSUM |
   1063				  NETIF_F_SG);
   1064
   1065	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
   1066	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
   1067	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
   1068		netdev->priv_flags |= IFF_UNICAST_FLT;
   1069
   1070	/* MTU range: 46 - 16110 */
   1071	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
   1072	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
   1073
   1074	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
   1075
   1076	/* initialize eeprom parameters */
   1077	if (e1000_init_eeprom_params(hw)) {
   1078		e_err(probe, "EEPROM initialization failed\n");
   1079		goto err_eeprom;
   1080	}
   1081
   1082	/* before reading the EEPROM, reset the controller to
   1083	 * put the device in a known good starting state
   1084	 */
   1085
   1086	e1000_reset_hw(hw);
   1087
   1088	/* make sure the EEPROM is good */
   1089	if (e1000_validate_eeprom_checksum(hw) < 0) {
   1090		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
   1091		e1000_dump_eeprom(adapter);
   1092		/* set MAC address to all zeroes to invalidate and temporary
   1093		 * disable this device for the user. This blocks regular
   1094		 * traffic while still permitting ethtool ioctls from reaching
   1095		 * the hardware as well as allowing the user to run the
   1096		 * interface after manually setting a hw addr using
   1097		 * `ip set address`
   1098		 */
   1099		memset(hw->mac_addr, 0, netdev->addr_len);
   1100	} else {
   1101		/* copy the MAC address out of the EEPROM */
   1102		if (e1000_read_mac_addr(hw))
   1103			e_err(probe, "EEPROM Read Error\n");
   1104	}
   1105	/* don't block initialization here due to bad MAC address */
   1106	eth_hw_addr_set(netdev, hw->mac_addr);
   1107
   1108	if (!is_valid_ether_addr(netdev->dev_addr))
   1109		e_err(probe, "Invalid MAC Address\n");
   1110
   1111
   1112	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
   1113	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
   1114			  e1000_82547_tx_fifo_stall_task);
   1115	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
   1116	INIT_WORK(&adapter->reset_task, e1000_reset_task);
   1117
   1118	e1000_check_options(adapter);
   1119
   1120	/* Initial Wake on LAN setting
   1121	 * If APM wake is enabled in the EEPROM,
   1122	 * enable the ACPI Magic Packet filter
   1123	 */
   1124
   1125	switch (hw->mac_type) {
   1126	case e1000_82542_rev2_0:
   1127	case e1000_82542_rev2_1:
   1128	case e1000_82543:
   1129		break;
   1130	case e1000_82544:
   1131		e1000_read_eeprom(hw,
   1132			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
   1133		eeprom_apme_mask = E1000_EEPROM_82544_APM;
   1134		break;
   1135	case e1000_82546:
   1136	case e1000_82546_rev_3:
   1137		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
   1138			e1000_read_eeprom(hw,
   1139				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
   1140			break;
   1141		}
   1142		fallthrough;
   1143	default:
   1144		e1000_read_eeprom(hw,
   1145			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
   1146		break;
   1147	}
   1148	if (eeprom_data & eeprom_apme_mask)
   1149		adapter->eeprom_wol |= E1000_WUFC_MAG;
   1150
   1151	/* now that we have the eeprom settings, apply the special cases
   1152	 * where the eeprom may be wrong or the board simply won't support
   1153	 * wake on lan on a particular port
   1154	 */
   1155	switch (pdev->device) {
   1156	case E1000_DEV_ID_82546GB_PCIE:
   1157		adapter->eeprom_wol = 0;
   1158		break;
   1159	case E1000_DEV_ID_82546EB_FIBER:
   1160	case E1000_DEV_ID_82546GB_FIBER:
   1161		/* Wake events only supported on port A for dual fiber
   1162		 * regardless of eeprom setting
   1163		 */
   1164		if (er32(STATUS) & E1000_STATUS_FUNC_1)
   1165			adapter->eeprom_wol = 0;
   1166		break;
   1167	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
   1168		/* if quad port adapter, disable WoL on all but port A */
   1169		if (global_quad_port_a != 0)
   1170			adapter->eeprom_wol = 0;
   1171		else
   1172			adapter->quad_port_a = true;
   1173		/* Reset for multiple quad port adapters */
   1174		if (++global_quad_port_a == 4)
   1175			global_quad_port_a = 0;
   1176		break;
   1177	}
   1178
   1179	/* initialize the wol settings based on the eeprom settings */
   1180	adapter->wol = adapter->eeprom_wol;
   1181	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
   1182
   1183	/* Auto detect PHY address */
   1184	if (hw->mac_type == e1000_ce4100) {
   1185		for (i = 0; i < 32; i++) {
   1186			hw->phy_addr = i;
   1187			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
   1188
   1189			if (tmp != 0 && tmp != 0xFF)
   1190				break;
   1191		}
   1192
   1193		if (i >= 32)
   1194			goto err_eeprom;
   1195	}
   1196
   1197	/* reset the hardware with the new settings */
   1198	e1000_reset(adapter);
   1199
   1200	strcpy(netdev->name, "eth%d");
   1201	err = register_netdev(netdev);
   1202	if (err)
   1203		goto err_register;
   1204
   1205	e1000_vlan_filter_on_off(adapter, false);
   1206
   1207	/* print bus type/speed/width info */
   1208	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
   1209	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
   1210	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
   1211		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
   1212		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
   1213		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
   1214	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
   1215	       netdev->dev_addr);
   1216
   1217	/* carrier off reporting is important to ethtool even BEFORE open */
   1218	netif_carrier_off(netdev);
   1219
   1220	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
   1221
   1222	cards_found++;
   1223	return 0;
   1224
   1225err_register:
   1226err_eeprom:
   1227	e1000_phy_hw_reset(hw);
   1228
   1229	if (hw->flash_address)
   1230		iounmap(hw->flash_address);
   1231	kfree(adapter->tx_ring);
   1232	kfree(adapter->rx_ring);
   1233err_dma:
   1234err_sw_init:
   1235err_mdio_ioremap:
   1236	iounmap(hw->ce4100_gbe_mdio_base_virt);
   1237	iounmap(hw->hw_addr);
   1238err_ioremap:
   1239	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
   1240	free_netdev(netdev);
   1241err_alloc_etherdev:
   1242	pci_release_selected_regions(pdev, bars);
   1243err_pci_reg:
   1244	if (!adapter || disable_dev)
   1245		pci_disable_device(pdev);
   1246	return err;
   1247}
   1248
   1249/**
   1250 * e1000_remove - Device Removal Routine
   1251 * @pdev: PCI device information struct
   1252 *
   1253 * e1000_remove is called by the PCI subsystem to alert the driver
   1254 * that it should release a PCI device. That could be caused by a
   1255 * Hot-Plug event, or because the driver is going to be removed from
   1256 * memory.
   1257 **/
   1258static void e1000_remove(struct pci_dev *pdev)
   1259{
   1260	struct net_device *netdev = pci_get_drvdata(pdev);
   1261	struct e1000_adapter *adapter = netdev_priv(netdev);
   1262	struct e1000_hw *hw = &adapter->hw;
   1263	bool disable_dev;
   1264
   1265	e1000_down_and_stop(adapter);
   1266	e1000_release_manageability(adapter);
   1267
   1268	unregister_netdev(netdev);
   1269
   1270	e1000_phy_hw_reset(hw);
   1271
   1272	kfree(adapter->tx_ring);
   1273	kfree(adapter->rx_ring);
   1274
   1275	if (hw->mac_type == e1000_ce4100)
   1276		iounmap(hw->ce4100_gbe_mdio_base_virt);
   1277	iounmap(hw->hw_addr);
   1278	if (hw->flash_address)
   1279		iounmap(hw->flash_address);
   1280	pci_release_selected_regions(pdev, adapter->bars);
   1281
   1282	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
   1283	free_netdev(netdev);
   1284
   1285	if (disable_dev)
   1286		pci_disable_device(pdev);
   1287}
   1288
   1289/**
   1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
   1291 * @adapter: board private structure to initialize
   1292 *
   1293 * e1000_sw_init initializes the Adapter private data structure.
   1294 * e1000_init_hw_struct MUST be called before this function
   1295 **/
   1296static int e1000_sw_init(struct e1000_adapter *adapter)
   1297{
   1298	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
   1299
   1300	adapter->num_tx_queues = 1;
   1301	adapter->num_rx_queues = 1;
   1302
   1303	if (e1000_alloc_queues(adapter)) {
   1304		e_err(probe, "Unable to allocate memory for queues\n");
   1305		return -ENOMEM;
   1306	}
   1307
   1308	/* Explicitly disable IRQ since the NIC can be in any state. */
   1309	e1000_irq_disable(adapter);
   1310
   1311	spin_lock_init(&adapter->stats_lock);
   1312
   1313	set_bit(__E1000_DOWN, &adapter->flags);
   1314
   1315	return 0;
   1316}
   1317
   1318/**
   1319 * e1000_alloc_queues - Allocate memory for all rings
   1320 * @adapter: board private structure to initialize
   1321 *
   1322 * We allocate one ring per queue at run-time since we don't know the
   1323 * number of queues at compile-time.
   1324 **/
   1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
   1326{
   1327	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
   1328				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
   1329	if (!adapter->tx_ring)
   1330		return -ENOMEM;
   1331
   1332	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
   1333				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
   1334	if (!adapter->rx_ring) {
   1335		kfree(adapter->tx_ring);
   1336		return -ENOMEM;
   1337	}
   1338
   1339	return E1000_SUCCESS;
   1340}
   1341
   1342/**
   1343 * e1000_open - Called when a network interface is made active
   1344 * @netdev: network interface device structure
   1345 *
   1346 * Returns 0 on success, negative value on failure
   1347 *
   1348 * The open entry point is called when a network interface is made
   1349 * active by the system (IFF_UP).  At this point all resources needed
   1350 * for transmit and receive operations are allocated, the interrupt
   1351 * handler is registered with the OS, the watchdog task is started,
   1352 * and the stack is notified that the interface is ready.
   1353 **/
   1354int e1000_open(struct net_device *netdev)
   1355{
   1356	struct e1000_adapter *adapter = netdev_priv(netdev);
   1357	struct e1000_hw *hw = &adapter->hw;
   1358	int err;
   1359
   1360	/* disallow open during test */
   1361	if (test_bit(__E1000_TESTING, &adapter->flags))
   1362		return -EBUSY;
   1363
   1364	netif_carrier_off(netdev);
   1365
   1366	/* allocate transmit descriptors */
   1367	err = e1000_setup_all_tx_resources(adapter);
   1368	if (err)
   1369		goto err_setup_tx;
   1370
   1371	/* allocate receive descriptors */
   1372	err = e1000_setup_all_rx_resources(adapter);
   1373	if (err)
   1374		goto err_setup_rx;
   1375
   1376	e1000_power_up_phy(adapter);
   1377
   1378	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
   1379	if ((hw->mng_cookie.status &
   1380			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
   1381		e1000_update_mng_vlan(adapter);
   1382	}
   1383
   1384	/* before we allocate an interrupt, we must be ready to handle it.
   1385	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
   1386	 * as soon as we call pci_request_irq, so we have to setup our
   1387	 * clean_rx handler before we do so.
   1388	 */
   1389	e1000_configure(adapter);
   1390
   1391	err = e1000_request_irq(adapter);
   1392	if (err)
   1393		goto err_req_irq;
   1394
   1395	/* From here on the code is the same as e1000_up() */
   1396	clear_bit(__E1000_DOWN, &adapter->flags);
   1397
   1398	napi_enable(&adapter->napi);
   1399
   1400	e1000_irq_enable(adapter);
   1401
   1402	netif_start_queue(netdev);
   1403
   1404	/* fire a link status change interrupt to start the watchdog */
   1405	ew32(ICS, E1000_ICS_LSC);
   1406
   1407	return E1000_SUCCESS;
   1408
   1409err_req_irq:
   1410	e1000_power_down_phy(adapter);
   1411	e1000_free_all_rx_resources(adapter);
   1412err_setup_rx:
   1413	e1000_free_all_tx_resources(adapter);
   1414err_setup_tx:
   1415	e1000_reset(adapter);
   1416
   1417	return err;
   1418}
   1419
   1420/**
   1421 * e1000_close - Disables a network interface
   1422 * @netdev: network interface device structure
   1423 *
   1424 * Returns 0, this is not allowed to fail
   1425 *
   1426 * The close entry point is called when an interface is de-activated
   1427 * by the OS.  The hardware is still under the drivers control, but
   1428 * needs to be disabled.  A global MAC reset is issued to stop the
   1429 * hardware, and all transmit and receive resources are freed.
   1430 **/
   1431int e1000_close(struct net_device *netdev)
   1432{
   1433	struct e1000_adapter *adapter = netdev_priv(netdev);
   1434	struct e1000_hw *hw = &adapter->hw;
   1435	int count = E1000_CHECK_RESET_COUNT;
   1436
   1437	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
   1438		usleep_range(10000, 20000);
   1439
   1440	WARN_ON(count < 0);
   1441
   1442	/* signal that we're down so that the reset task will no longer run */
   1443	set_bit(__E1000_DOWN, &adapter->flags);
   1444	clear_bit(__E1000_RESETTING, &adapter->flags);
   1445
   1446	e1000_down(adapter);
   1447	e1000_power_down_phy(adapter);
   1448	e1000_free_irq(adapter);
   1449
   1450	e1000_free_all_tx_resources(adapter);
   1451	e1000_free_all_rx_resources(adapter);
   1452
   1453	/* kill manageability vlan ID if supported, but not if a vlan with
   1454	 * the same ID is registered on the host OS (let 8021q kill it)
   1455	 */
   1456	if ((hw->mng_cookie.status &
   1457	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
   1458	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
   1459		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
   1460				       adapter->mng_vlan_id);
   1461	}
   1462
   1463	return 0;
   1464}
   1465
   1466/**
   1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
   1468 * @adapter: address of board private structure
   1469 * @start: address of beginning of memory
   1470 * @len: length of memory
   1471 **/
   1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
   1473				  unsigned long len)
   1474{
   1475	struct e1000_hw *hw = &adapter->hw;
   1476	unsigned long begin = (unsigned long)start;
   1477	unsigned long end = begin + len;
   1478
   1479	/* First rev 82545 and 82546 need to not allow any memory
   1480	 * write location to cross 64k boundary due to errata 23
   1481	 */
   1482	if (hw->mac_type == e1000_82545 ||
   1483	    hw->mac_type == e1000_ce4100 ||
   1484	    hw->mac_type == e1000_82546) {
   1485		return ((begin ^ (end - 1)) >> 16) == 0;
   1486	}
   1487
   1488	return true;
   1489}
   1490
   1491/**
   1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
   1493 * @adapter: board private structure
   1494 * @txdr:    tx descriptor ring (for a specific queue) to setup
   1495 *
   1496 * Return 0 on success, negative on failure
   1497 **/
   1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
   1499				    struct e1000_tx_ring *txdr)
   1500{
   1501	struct pci_dev *pdev = adapter->pdev;
   1502	int size;
   1503
   1504	size = sizeof(struct e1000_tx_buffer) * txdr->count;
   1505	txdr->buffer_info = vzalloc(size);
   1506	if (!txdr->buffer_info)
   1507		return -ENOMEM;
   1508
   1509	/* round up to nearest 4K */
   1510
   1511	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
   1512	txdr->size = ALIGN(txdr->size, 4096);
   1513
   1514	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
   1515					GFP_KERNEL);
   1516	if (!txdr->desc) {
   1517setup_tx_desc_die:
   1518		vfree(txdr->buffer_info);
   1519		return -ENOMEM;
   1520	}
   1521
   1522	/* Fix for errata 23, can't cross 64kB boundary */
   1523	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
   1524		void *olddesc = txdr->desc;
   1525		dma_addr_t olddma = txdr->dma;
   1526		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
   1527		      txdr->size, txdr->desc);
   1528		/* Try again, without freeing the previous */
   1529		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
   1530						&txdr->dma, GFP_KERNEL);
   1531		/* Failed allocation, critical failure */
   1532		if (!txdr->desc) {
   1533			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
   1534					  olddma);
   1535			goto setup_tx_desc_die;
   1536		}
   1537
   1538		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
   1539			/* give up */
   1540			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
   1541					  txdr->dma);
   1542			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
   1543					  olddma);
   1544			e_err(probe, "Unable to allocate aligned memory "
   1545			      "for the transmit descriptor ring\n");
   1546			vfree(txdr->buffer_info);
   1547			return -ENOMEM;
   1548		} else {
   1549			/* Free old allocation, new allocation was successful */
   1550			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
   1551					  olddma);
   1552		}
   1553	}
   1554	memset(txdr->desc, 0, txdr->size);
   1555
   1556	txdr->next_to_use = 0;
   1557	txdr->next_to_clean = 0;
   1558
   1559	return 0;
   1560}
   1561
   1562/**
   1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
   1564 * 				  (Descriptors) for all queues
   1565 * @adapter: board private structure
   1566 *
   1567 * Return 0 on success, negative on failure
   1568 **/
   1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
   1570{
   1571	int i, err = 0;
   1572
   1573	for (i = 0; i < adapter->num_tx_queues; i++) {
   1574		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
   1575		if (err) {
   1576			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
   1577			for (i-- ; i >= 0; i--)
   1578				e1000_free_tx_resources(adapter,
   1579							&adapter->tx_ring[i]);
   1580			break;
   1581		}
   1582	}
   1583
   1584	return err;
   1585}
   1586
   1587/**
   1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
   1589 * @adapter: board private structure
   1590 *
   1591 * Configure the Tx unit of the MAC after a reset.
   1592 **/
   1593static void e1000_configure_tx(struct e1000_adapter *adapter)
   1594{
   1595	u64 tdba;
   1596	struct e1000_hw *hw = &adapter->hw;
   1597	u32 tdlen, tctl, tipg;
   1598	u32 ipgr1, ipgr2;
   1599
   1600	/* Setup the HW Tx Head and Tail descriptor pointers */
   1601
   1602	switch (adapter->num_tx_queues) {
   1603	case 1:
   1604	default:
   1605		tdba = adapter->tx_ring[0].dma;
   1606		tdlen = adapter->tx_ring[0].count *
   1607			sizeof(struct e1000_tx_desc);
   1608		ew32(TDLEN, tdlen);
   1609		ew32(TDBAH, (tdba >> 32));
   1610		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
   1611		ew32(TDT, 0);
   1612		ew32(TDH, 0);
   1613		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
   1614					   E1000_TDH : E1000_82542_TDH);
   1615		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
   1616					   E1000_TDT : E1000_82542_TDT);
   1617		break;
   1618	}
   1619
   1620	/* Set the default values for the Tx Inter Packet Gap timer */
   1621	if ((hw->media_type == e1000_media_type_fiber ||
   1622	     hw->media_type == e1000_media_type_internal_serdes))
   1623		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
   1624	else
   1625		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
   1626
   1627	switch (hw->mac_type) {
   1628	case e1000_82542_rev2_0:
   1629	case e1000_82542_rev2_1:
   1630		tipg = DEFAULT_82542_TIPG_IPGT;
   1631		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
   1632		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
   1633		break;
   1634	default:
   1635		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
   1636		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
   1637		break;
   1638	}
   1639	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
   1640	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
   1641	ew32(TIPG, tipg);
   1642
   1643	/* Set the Tx Interrupt Delay register */
   1644
   1645	ew32(TIDV, adapter->tx_int_delay);
   1646	if (hw->mac_type >= e1000_82540)
   1647		ew32(TADV, adapter->tx_abs_int_delay);
   1648
   1649	/* Program the Transmit Control Register */
   1650
   1651	tctl = er32(TCTL);
   1652	tctl &= ~E1000_TCTL_CT;
   1653	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
   1654		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
   1655
   1656	e1000_config_collision_dist(hw);
   1657
   1658	/* Setup Transmit Descriptor Settings for eop descriptor */
   1659	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
   1660
   1661	/* only set IDE if we are delaying interrupts using the timers */
   1662	if (adapter->tx_int_delay)
   1663		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
   1664
   1665	if (hw->mac_type < e1000_82543)
   1666		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
   1667	else
   1668		adapter->txd_cmd |= E1000_TXD_CMD_RS;
   1669
   1670	/* Cache if we're 82544 running in PCI-X because we'll
   1671	 * need this to apply a workaround later in the send path.
   1672	 */
   1673	if (hw->mac_type == e1000_82544 &&
   1674	    hw->bus_type == e1000_bus_type_pcix)
   1675		adapter->pcix_82544 = true;
   1676
   1677	ew32(TCTL, tctl);
   1678
   1679}
   1680
   1681/**
   1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
   1683 * @adapter: board private structure
   1684 * @rxdr:    rx descriptor ring (for a specific queue) to setup
   1685 *
   1686 * Returns 0 on success, negative on failure
   1687 **/
   1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
   1689				    struct e1000_rx_ring *rxdr)
   1690{
   1691	struct pci_dev *pdev = adapter->pdev;
   1692	int size, desc_len;
   1693
   1694	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
   1695	rxdr->buffer_info = vzalloc(size);
   1696	if (!rxdr->buffer_info)
   1697		return -ENOMEM;
   1698
   1699	desc_len = sizeof(struct e1000_rx_desc);
   1700
   1701	/* Round up to nearest 4K */
   1702
   1703	rxdr->size = rxdr->count * desc_len;
   1704	rxdr->size = ALIGN(rxdr->size, 4096);
   1705
   1706	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
   1707					GFP_KERNEL);
   1708	if (!rxdr->desc) {
   1709setup_rx_desc_die:
   1710		vfree(rxdr->buffer_info);
   1711		return -ENOMEM;
   1712	}
   1713
   1714	/* Fix for errata 23, can't cross 64kB boundary */
   1715	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
   1716		void *olddesc = rxdr->desc;
   1717		dma_addr_t olddma = rxdr->dma;
   1718		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
   1719		      rxdr->size, rxdr->desc);
   1720		/* Try again, without freeing the previous */
   1721		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
   1722						&rxdr->dma, GFP_KERNEL);
   1723		/* Failed allocation, critical failure */
   1724		if (!rxdr->desc) {
   1725			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
   1726					  olddma);
   1727			goto setup_rx_desc_die;
   1728		}
   1729
   1730		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
   1731			/* give up */
   1732			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
   1733					  rxdr->dma);
   1734			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
   1735					  olddma);
   1736			e_err(probe, "Unable to allocate aligned memory for "
   1737			      "the Rx descriptor ring\n");
   1738			goto setup_rx_desc_die;
   1739		} else {
   1740			/* Free old allocation, new allocation was successful */
   1741			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
   1742					  olddma);
   1743		}
   1744	}
   1745	memset(rxdr->desc, 0, rxdr->size);
   1746
   1747	rxdr->next_to_clean = 0;
   1748	rxdr->next_to_use = 0;
   1749	rxdr->rx_skb_top = NULL;
   1750
   1751	return 0;
   1752}
   1753
   1754/**
   1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
   1756 * 				  (Descriptors) for all queues
   1757 * @adapter: board private structure
   1758 *
   1759 * Return 0 on success, negative on failure
   1760 **/
   1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
   1762{
   1763	int i, err = 0;
   1764
   1765	for (i = 0; i < adapter->num_rx_queues; i++) {
   1766		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
   1767		if (err) {
   1768			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
   1769			for (i-- ; i >= 0; i--)
   1770				e1000_free_rx_resources(adapter,
   1771							&adapter->rx_ring[i]);
   1772			break;
   1773		}
   1774	}
   1775
   1776	return err;
   1777}
   1778
   1779/**
   1780 * e1000_setup_rctl - configure the receive control registers
   1781 * @adapter: Board private structure
   1782 **/
   1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
   1784{
   1785	struct e1000_hw *hw = &adapter->hw;
   1786	u32 rctl;
   1787
   1788	rctl = er32(RCTL);
   1789
   1790	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
   1791
   1792	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
   1793		E1000_RCTL_RDMTS_HALF |
   1794		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
   1795
   1796	if (hw->tbi_compatibility_on == 1)
   1797		rctl |= E1000_RCTL_SBP;
   1798	else
   1799		rctl &= ~E1000_RCTL_SBP;
   1800
   1801	if (adapter->netdev->mtu <= ETH_DATA_LEN)
   1802		rctl &= ~E1000_RCTL_LPE;
   1803	else
   1804		rctl |= E1000_RCTL_LPE;
   1805
   1806	/* Setup buffer sizes */
   1807	rctl &= ~E1000_RCTL_SZ_4096;
   1808	rctl |= E1000_RCTL_BSEX;
   1809	switch (adapter->rx_buffer_len) {
   1810	case E1000_RXBUFFER_2048:
   1811	default:
   1812		rctl |= E1000_RCTL_SZ_2048;
   1813		rctl &= ~E1000_RCTL_BSEX;
   1814		break;
   1815	case E1000_RXBUFFER_4096:
   1816		rctl |= E1000_RCTL_SZ_4096;
   1817		break;
   1818	case E1000_RXBUFFER_8192:
   1819		rctl |= E1000_RCTL_SZ_8192;
   1820		break;
   1821	case E1000_RXBUFFER_16384:
   1822		rctl |= E1000_RCTL_SZ_16384;
   1823		break;
   1824	}
   1825
   1826	/* This is useful for sniffing bad packets. */
   1827	if (adapter->netdev->features & NETIF_F_RXALL) {
   1828		/* UPE and MPE will be handled by normal PROMISC logic
   1829		 * in e1000e_set_rx_mode
   1830		 */
   1831		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
   1832			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
   1833			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
   1834
   1835		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
   1836			  E1000_RCTL_DPF | /* Allow filtered pause */
   1837			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
   1838		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
   1839		 * and that breaks VLANs.
   1840		 */
   1841	}
   1842
   1843	ew32(RCTL, rctl);
   1844}
   1845
   1846/**
   1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
   1848 * @adapter: board private structure
   1849 *
   1850 * Configure the Rx unit of the MAC after a reset.
   1851 **/
   1852static void e1000_configure_rx(struct e1000_adapter *adapter)
   1853{
   1854	u64 rdba;
   1855	struct e1000_hw *hw = &adapter->hw;
   1856	u32 rdlen, rctl, rxcsum;
   1857
   1858	if (adapter->netdev->mtu > ETH_DATA_LEN) {
   1859		rdlen = adapter->rx_ring[0].count *
   1860			sizeof(struct e1000_rx_desc);
   1861		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
   1862		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
   1863	} else {
   1864		rdlen = adapter->rx_ring[0].count *
   1865			sizeof(struct e1000_rx_desc);
   1866		adapter->clean_rx = e1000_clean_rx_irq;
   1867		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
   1868	}
   1869
   1870	/* disable receives while setting up the descriptors */
   1871	rctl = er32(RCTL);
   1872	ew32(RCTL, rctl & ~E1000_RCTL_EN);
   1873
   1874	/* set the Receive Delay Timer Register */
   1875	ew32(RDTR, adapter->rx_int_delay);
   1876
   1877	if (hw->mac_type >= e1000_82540) {
   1878		ew32(RADV, adapter->rx_abs_int_delay);
   1879		if (adapter->itr_setting != 0)
   1880			ew32(ITR, 1000000000 / (adapter->itr * 256));
   1881	}
   1882
   1883	/* Setup the HW Rx Head and Tail Descriptor Pointers and
   1884	 * the Base and Length of the Rx Descriptor Ring
   1885	 */
   1886	switch (adapter->num_rx_queues) {
   1887	case 1:
   1888	default:
   1889		rdba = adapter->rx_ring[0].dma;
   1890		ew32(RDLEN, rdlen);
   1891		ew32(RDBAH, (rdba >> 32));
   1892		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
   1893		ew32(RDT, 0);
   1894		ew32(RDH, 0);
   1895		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
   1896					   E1000_RDH : E1000_82542_RDH);
   1897		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
   1898					   E1000_RDT : E1000_82542_RDT);
   1899		break;
   1900	}
   1901
   1902	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
   1903	if (hw->mac_type >= e1000_82543) {
   1904		rxcsum = er32(RXCSUM);
   1905		if (adapter->rx_csum)
   1906			rxcsum |= E1000_RXCSUM_TUOFL;
   1907		else
   1908			/* don't need to clear IPPCSE as it defaults to 0 */
   1909			rxcsum &= ~E1000_RXCSUM_TUOFL;
   1910		ew32(RXCSUM, rxcsum);
   1911	}
   1912
   1913	/* Enable Receives */
   1914	ew32(RCTL, rctl | E1000_RCTL_EN);
   1915}
   1916
   1917/**
   1918 * e1000_free_tx_resources - Free Tx Resources per Queue
   1919 * @adapter: board private structure
   1920 * @tx_ring: Tx descriptor ring for a specific queue
   1921 *
   1922 * Free all transmit software resources
   1923 **/
   1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
   1925				    struct e1000_tx_ring *tx_ring)
   1926{
   1927	struct pci_dev *pdev = adapter->pdev;
   1928
   1929	e1000_clean_tx_ring(adapter, tx_ring);
   1930
   1931	vfree(tx_ring->buffer_info);
   1932	tx_ring->buffer_info = NULL;
   1933
   1934	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
   1935			  tx_ring->dma);
   1936
   1937	tx_ring->desc = NULL;
   1938}
   1939
   1940/**
   1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
   1942 * @adapter: board private structure
   1943 *
   1944 * Free all transmit software resources
   1945 **/
   1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
   1947{
   1948	int i;
   1949
   1950	for (i = 0; i < adapter->num_tx_queues; i++)
   1951		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
   1952}
   1953
   1954static void
   1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
   1956				 struct e1000_tx_buffer *buffer_info,
   1957				 int budget)
   1958{
   1959	if (buffer_info->dma) {
   1960		if (buffer_info->mapped_as_page)
   1961			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
   1962				       buffer_info->length, DMA_TO_DEVICE);
   1963		else
   1964			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
   1965					 buffer_info->length,
   1966					 DMA_TO_DEVICE);
   1967		buffer_info->dma = 0;
   1968	}
   1969	if (buffer_info->skb) {
   1970		napi_consume_skb(buffer_info->skb, budget);
   1971		buffer_info->skb = NULL;
   1972	}
   1973	buffer_info->time_stamp = 0;
   1974	/* buffer_info must be completely set up in the transmit path */
   1975}
   1976
   1977/**
   1978 * e1000_clean_tx_ring - Free Tx Buffers
   1979 * @adapter: board private structure
   1980 * @tx_ring: ring to be cleaned
   1981 **/
   1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
   1983				struct e1000_tx_ring *tx_ring)
   1984{
   1985	struct e1000_hw *hw = &adapter->hw;
   1986	struct e1000_tx_buffer *buffer_info;
   1987	unsigned long size;
   1988	unsigned int i;
   1989
   1990	/* Free all the Tx ring sk_buffs */
   1991
   1992	for (i = 0; i < tx_ring->count; i++) {
   1993		buffer_info = &tx_ring->buffer_info[i];
   1994		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
   1995	}
   1996
   1997	netdev_reset_queue(adapter->netdev);
   1998	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
   1999	memset(tx_ring->buffer_info, 0, size);
   2000
   2001	/* Zero out the descriptor ring */
   2002
   2003	memset(tx_ring->desc, 0, tx_ring->size);
   2004
   2005	tx_ring->next_to_use = 0;
   2006	tx_ring->next_to_clean = 0;
   2007	tx_ring->last_tx_tso = false;
   2008
   2009	writel(0, hw->hw_addr + tx_ring->tdh);
   2010	writel(0, hw->hw_addr + tx_ring->tdt);
   2011}
   2012
   2013/**
   2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
   2015 * @adapter: board private structure
   2016 **/
   2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
   2018{
   2019	int i;
   2020
   2021	for (i = 0; i < adapter->num_tx_queues; i++)
   2022		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
   2023}
   2024
   2025/**
   2026 * e1000_free_rx_resources - Free Rx Resources
   2027 * @adapter: board private structure
   2028 * @rx_ring: ring to clean the resources from
   2029 *
   2030 * Free all receive software resources
   2031 **/
   2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
   2033				    struct e1000_rx_ring *rx_ring)
   2034{
   2035	struct pci_dev *pdev = adapter->pdev;
   2036
   2037	e1000_clean_rx_ring(adapter, rx_ring);
   2038
   2039	vfree(rx_ring->buffer_info);
   2040	rx_ring->buffer_info = NULL;
   2041
   2042	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
   2043			  rx_ring->dma);
   2044
   2045	rx_ring->desc = NULL;
   2046}
   2047
   2048/**
   2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
   2050 * @adapter: board private structure
   2051 *
   2052 * Free all receive software resources
   2053 **/
   2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
   2055{
   2056	int i;
   2057
   2058	for (i = 0; i < adapter->num_rx_queues; i++)
   2059		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
   2060}
   2061
   2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
   2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
   2064{
   2065	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
   2066		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
   2067}
   2068
   2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
   2070{
   2071	unsigned int len = e1000_frag_len(a);
   2072	u8 *data = netdev_alloc_frag(len);
   2073
   2074	if (likely(data))
   2075		data += E1000_HEADROOM;
   2076	return data;
   2077}
   2078
   2079/**
   2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
   2081 * @adapter: board private structure
   2082 * @rx_ring: ring to free buffers from
   2083 **/
   2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
   2085				struct e1000_rx_ring *rx_ring)
   2086{
   2087	struct e1000_hw *hw = &adapter->hw;
   2088	struct e1000_rx_buffer *buffer_info;
   2089	struct pci_dev *pdev = adapter->pdev;
   2090	unsigned long size;
   2091	unsigned int i;
   2092
   2093	/* Free all the Rx netfrags */
   2094	for (i = 0; i < rx_ring->count; i++) {
   2095		buffer_info = &rx_ring->buffer_info[i];
   2096		if (adapter->clean_rx == e1000_clean_rx_irq) {
   2097			if (buffer_info->dma)
   2098				dma_unmap_single(&pdev->dev, buffer_info->dma,
   2099						 adapter->rx_buffer_len,
   2100						 DMA_FROM_DEVICE);
   2101			if (buffer_info->rxbuf.data) {
   2102				skb_free_frag(buffer_info->rxbuf.data);
   2103				buffer_info->rxbuf.data = NULL;
   2104			}
   2105		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
   2106			if (buffer_info->dma)
   2107				dma_unmap_page(&pdev->dev, buffer_info->dma,
   2108					       adapter->rx_buffer_len,
   2109					       DMA_FROM_DEVICE);
   2110			if (buffer_info->rxbuf.page) {
   2111				put_page(buffer_info->rxbuf.page);
   2112				buffer_info->rxbuf.page = NULL;
   2113			}
   2114		}
   2115
   2116		buffer_info->dma = 0;
   2117	}
   2118
   2119	/* there also may be some cached data from a chained receive */
   2120	napi_free_frags(&adapter->napi);
   2121	rx_ring->rx_skb_top = NULL;
   2122
   2123	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
   2124	memset(rx_ring->buffer_info, 0, size);
   2125
   2126	/* Zero out the descriptor ring */
   2127	memset(rx_ring->desc, 0, rx_ring->size);
   2128
   2129	rx_ring->next_to_clean = 0;
   2130	rx_ring->next_to_use = 0;
   2131
   2132	writel(0, hw->hw_addr + rx_ring->rdh);
   2133	writel(0, hw->hw_addr + rx_ring->rdt);
   2134}
   2135
   2136/**
   2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
   2138 * @adapter: board private structure
   2139 **/
   2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
   2141{
   2142	int i;
   2143
   2144	for (i = 0; i < adapter->num_rx_queues; i++)
   2145		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
   2146}
   2147
   2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
   2149 * and memory write and invalidate disabled for certain operations
   2150 */
   2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
   2152{
   2153	struct e1000_hw *hw = &adapter->hw;
   2154	struct net_device *netdev = adapter->netdev;
   2155	u32 rctl;
   2156
   2157	e1000_pci_clear_mwi(hw);
   2158
   2159	rctl = er32(RCTL);
   2160	rctl |= E1000_RCTL_RST;
   2161	ew32(RCTL, rctl);
   2162	E1000_WRITE_FLUSH();
   2163	mdelay(5);
   2164
   2165	if (netif_running(netdev))
   2166		e1000_clean_all_rx_rings(adapter);
   2167}
   2168
   2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
   2170{
   2171	struct e1000_hw *hw = &adapter->hw;
   2172	struct net_device *netdev = adapter->netdev;
   2173	u32 rctl;
   2174
   2175	rctl = er32(RCTL);
   2176	rctl &= ~E1000_RCTL_RST;
   2177	ew32(RCTL, rctl);
   2178	E1000_WRITE_FLUSH();
   2179	mdelay(5);
   2180
   2181	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
   2182		e1000_pci_set_mwi(hw);
   2183
   2184	if (netif_running(netdev)) {
   2185		/* No need to loop, because 82542 supports only 1 queue */
   2186		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
   2187		e1000_configure_rx(adapter);
   2188		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
   2189	}
   2190}
   2191
   2192/**
   2193 * e1000_set_mac - Change the Ethernet Address of the NIC
   2194 * @netdev: network interface device structure
   2195 * @p: pointer to an address structure
   2196 *
   2197 * Returns 0 on success, negative on failure
   2198 **/
   2199static int e1000_set_mac(struct net_device *netdev, void *p)
   2200{
   2201	struct e1000_adapter *adapter = netdev_priv(netdev);
   2202	struct e1000_hw *hw = &adapter->hw;
   2203	struct sockaddr *addr = p;
   2204
   2205	if (!is_valid_ether_addr(addr->sa_data))
   2206		return -EADDRNOTAVAIL;
   2207
   2208	/* 82542 2.0 needs to be in reset to write receive address registers */
   2209
   2210	if (hw->mac_type == e1000_82542_rev2_0)
   2211		e1000_enter_82542_rst(adapter);
   2212
   2213	eth_hw_addr_set(netdev, addr->sa_data);
   2214	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
   2215
   2216	e1000_rar_set(hw, hw->mac_addr, 0);
   2217
   2218	if (hw->mac_type == e1000_82542_rev2_0)
   2219		e1000_leave_82542_rst(adapter);
   2220
   2221	return 0;
   2222}
   2223
   2224/**
   2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
   2226 * @netdev: network interface device structure
   2227 *
   2228 * The set_rx_mode entry point is called whenever the unicast or multicast
   2229 * address lists or the network interface flags are updated. This routine is
   2230 * responsible for configuring the hardware for proper unicast, multicast,
   2231 * promiscuous mode, and all-multi behavior.
   2232 **/
   2233static void e1000_set_rx_mode(struct net_device *netdev)
   2234{
   2235	struct e1000_adapter *adapter = netdev_priv(netdev);
   2236	struct e1000_hw *hw = &adapter->hw;
   2237	struct netdev_hw_addr *ha;
   2238	bool use_uc = false;
   2239	u32 rctl;
   2240	u32 hash_value;
   2241	int i, rar_entries = E1000_RAR_ENTRIES;
   2242	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
   2243	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
   2244
   2245	if (!mcarray)
   2246		return;
   2247
   2248	/* Check for Promiscuous and All Multicast modes */
   2249
   2250	rctl = er32(RCTL);
   2251
   2252	if (netdev->flags & IFF_PROMISC) {
   2253		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
   2254		rctl &= ~E1000_RCTL_VFE;
   2255	} else {
   2256		if (netdev->flags & IFF_ALLMULTI)
   2257			rctl |= E1000_RCTL_MPE;
   2258		else
   2259			rctl &= ~E1000_RCTL_MPE;
   2260		/* Enable VLAN filter if there is a VLAN */
   2261		if (e1000_vlan_used(adapter))
   2262			rctl |= E1000_RCTL_VFE;
   2263	}
   2264
   2265	if (netdev_uc_count(netdev) > rar_entries - 1) {
   2266		rctl |= E1000_RCTL_UPE;
   2267	} else if (!(netdev->flags & IFF_PROMISC)) {
   2268		rctl &= ~E1000_RCTL_UPE;
   2269		use_uc = true;
   2270	}
   2271
   2272	ew32(RCTL, rctl);
   2273
   2274	/* 82542 2.0 needs to be in reset to write receive address registers */
   2275
   2276	if (hw->mac_type == e1000_82542_rev2_0)
   2277		e1000_enter_82542_rst(adapter);
   2278
   2279	/* load the first 14 addresses into the exact filters 1-14. Unicast
   2280	 * addresses take precedence to avoid disabling unicast filtering
   2281	 * when possible.
   2282	 *
   2283	 * RAR 0 is used for the station MAC address
   2284	 * if there are not 14 addresses, go ahead and clear the filters
   2285	 */
   2286	i = 1;
   2287	if (use_uc)
   2288		netdev_for_each_uc_addr(ha, netdev) {
   2289			if (i == rar_entries)
   2290				break;
   2291			e1000_rar_set(hw, ha->addr, i++);
   2292		}
   2293
   2294	netdev_for_each_mc_addr(ha, netdev) {
   2295		if (i == rar_entries) {
   2296			/* load any remaining addresses into the hash table */
   2297			u32 hash_reg, hash_bit, mta;
   2298			hash_value = e1000_hash_mc_addr(hw, ha->addr);
   2299			hash_reg = (hash_value >> 5) & 0x7F;
   2300			hash_bit = hash_value & 0x1F;
   2301			mta = (1 << hash_bit);
   2302			mcarray[hash_reg] |= mta;
   2303		} else {
   2304			e1000_rar_set(hw, ha->addr, i++);
   2305		}
   2306	}
   2307
   2308	for (; i < rar_entries; i++) {
   2309		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
   2310		E1000_WRITE_FLUSH();
   2311		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
   2312		E1000_WRITE_FLUSH();
   2313	}
   2314
   2315	/* write the hash table completely, write from bottom to avoid
   2316	 * both stupid write combining chipsets, and flushing each write
   2317	 */
   2318	for (i = mta_reg_count - 1; i >= 0 ; i--) {
   2319		/* If we are on an 82544 has an errata where writing odd
   2320		 * offsets overwrites the previous even offset, but writing
   2321		 * backwards over the range solves the issue by always
   2322		 * writing the odd offset first
   2323		 */
   2324		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
   2325	}
   2326	E1000_WRITE_FLUSH();
   2327
   2328	if (hw->mac_type == e1000_82542_rev2_0)
   2329		e1000_leave_82542_rst(adapter);
   2330
   2331	kfree(mcarray);
   2332}
   2333
   2334/**
   2335 * e1000_update_phy_info_task - get phy info
   2336 * @work: work struct contained inside adapter struct
   2337 *
   2338 * Need to wait a few seconds after link up to get diagnostic information from
   2339 * the phy
   2340 */
   2341static void e1000_update_phy_info_task(struct work_struct *work)
   2342{
   2343	struct e1000_adapter *adapter = container_of(work,
   2344						     struct e1000_adapter,
   2345						     phy_info_task.work);
   2346
   2347	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
   2348}
   2349
   2350/**
   2351 * e1000_82547_tx_fifo_stall_task - task to complete work
   2352 * @work: work struct contained inside adapter struct
   2353 **/
   2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
   2355{
   2356	struct e1000_adapter *adapter = container_of(work,
   2357						     struct e1000_adapter,
   2358						     fifo_stall_task.work);
   2359	struct e1000_hw *hw = &adapter->hw;
   2360	struct net_device *netdev = adapter->netdev;
   2361	u32 tctl;
   2362
   2363	if (atomic_read(&adapter->tx_fifo_stall)) {
   2364		if ((er32(TDT) == er32(TDH)) &&
   2365		   (er32(TDFT) == er32(TDFH)) &&
   2366		   (er32(TDFTS) == er32(TDFHS))) {
   2367			tctl = er32(TCTL);
   2368			ew32(TCTL, tctl & ~E1000_TCTL_EN);
   2369			ew32(TDFT, adapter->tx_head_addr);
   2370			ew32(TDFH, adapter->tx_head_addr);
   2371			ew32(TDFTS, adapter->tx_head_addr);
   2372			ew32(TDFHS, adapter->tx_head_addr);
   2373			ew32(TCTL, tctl);
   2374			E1000_WRITE_FLUSH();
   2375
   2376			adapter->tx_fifo_head = 0;
   2377			atomic_set(&adapter->tx_fifo_stall, 0);
   2378			netif_wake_queue(netdev);
   2379		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
   2380			schedule_delayed_work(&adapter->fifo_stall_task, 1);
   2381		}
   2382	}
   2383}
   2384
   2385bool e1000_has_link(struct e1000_adapter *adapter)
   2386{
   2387	struct e1000_hw *hw = &adapter->hw;
   2388	bool link_active = false;
   2389
   2390	/* get_link_status is set on LSC (link status) interrupt or rx
   2391	 * sequence error interrupt (except on intel ce4100).
   2392	 * get_link_status will stay false until the
   2393	 * e1000_check_for_link establishes link for copper adapters
   2394	 * ONLY
   2395	 */
   2396	switch (hw->media_type) {
   2397	case e1000_media_type_copper:
   2398		if (hw->mac_type == e1000_ce4100)
   2399			hw->get_link_status = 1;
   2400		if (hw->get_link_status) {
   2401			e1000_check_for_link(hw);
   2402			link_active = !hw->get_link_status;
   2403		} else {
   2404			link_active = true;
   2405		}
   2406		break;
   2407	case e1000_media_type_fiber:
   2408		e1000_check_for_link(hw);
   2409		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
   2410		break;
   2411	case e1000_media_type_internal_serdes:
   2412		e1000_check_for_link(hw);
   2413		link_active = hw->serdes_has_link;
   2414		break;
   2415	default:
   2416		break;
   2417	}
   2418
   2419	return link_active;
   2420}
   2421
   2422/**
   2423 * e1000_watchdog - work function
   2424 * @work: work struct contained inside adapter struct
   2425 **/
   2426static void e1000_watchdog(struct work_struct *work)
   2427{
   2428	struct e1000_adapter *adapter = container_of(work,
   2429						     struct e1000_adapter,
   2430						     watchdog_task.work);
   2431	struct e1000_hw *hw = &adapter->hw;
   2432	struct net_device *netdev = adapter->netdev;
   2433	struct e1000_tx_ring *txdr = adapter->tx_ring;
   2434	u32 link, tctl;
   2435
   2436	link = e1000_has_link(adapter);
   2437	if ((netif_carrier_ok(netdev)) && link)
   2438		goto link_up;
   2439
   2440	if (link) {
   2441		if (!netif_carrier_ok(netdev)) {
   2442			u32 ctrl;
   2443			/* update snapshot of PHY registers on LSC */
   2444			e1000_get_speed_and_duplex(hw,
   2445						   &adapter->link_speed,
   2446						   &adapter->link_duplex);
   2447
   2448			ctrl = er32(CTRL);
   2449			pr_info("%s NIC Link is Up %d Mbps %s, "
   2450				"Flow Control: %s\n",
   2451				netdev->name,
   2452				adapter->link_speed,
   2453				adapter->link_duplex == FULL_DUPLEX ?
   2454				"Full Duplex" : "Half Duplex",
   2455				((ctrl & E1000_CTRL_TFCE) && (ctrl &
   2456				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
   2457				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
   2458				E1000_CTRL_TFCE) ? "TX" : "None")));
   2459
   2460			/* adjust timeout factor according to speed/duplex */
   2461			adapter->tx_timeout_factor = 1;
   2462			switch (adapter->link_speed) {
   2463			case SPEED_10:
   2464				adapter->tx_timeout_factor = 16;
   2465				break;
   2466			case SPEED_100:
   2467				/* maybe add some timeout factor ? */
   2468				break;
   2469			}
   2470
   2471			/* enable transmits in the hardware */
   2472			tctl = er32(TCTL);
   2473			tctl |= E1000_TCTL_EN;
   2474			ew32(TCTL, tctl);
   2475
   2476			netif_carrier_on(netdev);
   2477			if (!test_bit(__E1000_DOWN, &adapter->flags))
   2478				schedule_delayed_work(&adapter->phy_info_task,
   2479						      2 * HZ);
   2480			adapter->smartspeed = 0;
   2481		}
   2482	} else {
   2483		if (netif_carrier_ok(netdev)) {
   2484			adapter->link_speed = 0;
   2485			adapter->link_duplex = 0;
   2486			pr_info("%s NIC Link is Down\n",
   2487				netdev->name);
   2488			netif_carrier_off(netdev);
   2489
   2490			if (!test_bit(__E1000_DOWN, &adapter->flags))
   2491				schedule_delayed_work(&adapter->phy_info_task,
   2492						      2 * HZ);
   2493		}
   2494
   2495		e1000_smartspeed(adapter);
   2496	}
   2497
   2498link_up:
   2499	e1000_update_stats(adapter);
   2500
   2501	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
   2502	adapter->tpt_old = adapter->stats.tpt;
   2503	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
   2504	adapter->colc_old = adapter->stats.colc;
   2505
   2506	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
   2507	adapter->gorcl_old = adapter->stats.gorcl;
   2508	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
   2509	adapter->gotcl_old = adapter->stats.gotcl;
   2510
   2511	e1000_update_adaptive(hw);
   2512
   2513	if (!netif_carrier_ok(netdev)) {
   2514		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
   2515			/* We've lost link, so the controller stops DMA,
   2516			 * but we've got queued Tx work that's never going
   2517			 * to get done, so reset controller to flush Tx.
   2518			 * (Do the reset outside of interrupt context).
   2519			 */
   2520			adapter->tx_timeout_count++;
   2521			schedule_work(&adapter->reset_task);
   2522			/* exit immediately since reset is imminent */
   2523			return;
   2524		}
   2525	}
   2526
   2527	/* Simple mode for Interrupt Throttle Rate (ITR) */
   2528	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
   2529		/* Symmetric Tx/Rx gets a reduced ITR=2000;
   2530		 * Total asymmetrical Tx or Rx gets ITR=8000;
   2531		 * everyone else is between 2000-8000.
   2532		 */
   2533		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
   2534		u32 dif = (adapter->gotcl > adapter->gorcl ?
   2535			    adapter->gotcl - adapter->gorcl :
   2536			    adapter->gorcl - adapter->gotcl) / 10000;
   2537		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
   2538
   2539		ew32(ITR, 1000000000 / (itr * 256));
   2540	}
   2541
   2542	/* Cause software interrupt to ensure rx ring is cleaned */
   2543	ew32(ICS, E1000_ICS_RXDMT0);
   2544
   2545	/* Force detection of hung controller every watchdog period */
   2546	adapter->detect_tx_hung = true;
   2547
   2548	/* Reschedule the task */
   2549	if (!test_bit(__E1000_DOWN, &adapter->flags))
   2550		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
   2551}
   2552
   2553enum latency_range {
   2554	lowest_latency = 0,
   2555	low_latency = 1,
   2556	bulk_latency = 2,
   2557	latency_invalid = 255
   2558};
   2559
   2560/**
   2561 * e1000_update_itr - update the dynamic ITR value based on statistics
   2562 * @adapter: pointer to adapter
   2563 * @itr_setting: current adapter->itr
   2564 * @packets: the number of packets during this measurement interval
   2565 * @bytes: the number of bytes during this measurement interval
   2566 *
   2567 *      Stores a new ITR value based on packets and byte
   2568 *      counts during the last interrupt.  The advantage of per interrupt
   2569 *      computation is faster updates and more accurate ITR for the current
   2570 *      traffic pattern.  Constants in this function were computed
   2571 *      based on theoretical maximum wire speed and thresholds were set based
   2572 *      on testing data as well as attempting to minimize response time
   2573 *      while increasing bulk throughput.
   2574 *      this functionality is controlled by the InterruptThrottleRate module
   2575 *      parameter (see e1000_param.c)
   2576 **/
   2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
   2578				     u16 itr_setting, int packets, int bytes)
   2579{
   2580	unsigned int retval = itr_setting;
   2581	struct e1000_hw *hw = &adapter->hw;
   2582
   2583	if (unlikely(hw->mac_type < e1000_82540))
   2584		goto update_itr_done;
   2585
   2586	if (packets == 0)
   2587		goto update_itr_done;
   2588
   2589	switch (itr_setting) {
   2590	case lowest_latency:
   2591		/* jumbo frames get bulk treatment*/
   2592		if (bytes/packets > 8000)
   2593			retval = bulk_latency;
   2594		else if ((packets < 5) && (bytes > 512))
   2595			retval = low_latency;
   2596		break;
   2597	case low_latency:  /* 50 usec aka 20000 ints/s */
   2598		if (bytes > 10000) {
   2599			/* jumbo frames need bulk latency setting */
   2600			if (bytes/packets > 8000)
   2601				retval = bulk_latency;
   2602			else if ((packets < 10) || ((bytes/packets) > 1200))
   2603				retval = bulk_latency;
   2604			else if ((packets > 35))
   2605				retval = lowest_latency;
   2606		} else if (bytes/packets > 2000)
   2607			retval = bulk_latency;
   2608		else if (packets <= 2 && bytes < 512)
   2609			retval = lowest_latency;
   2610		break;
   2611	case bulk_latency: /* 250 usec aka 4000 ints/s */
   2612		if (bytes > 25000) {
   2613			if (packets > 35)
   2614				retval = low_latency;
   2615		} else if (bytes < 6000) {
   2616			retval = low_latency;
   2617		}
   2618		break;
   2619	}
   2620
   2621update_itr_done:
   2622	return retval;
   2623}
   2624
   2625static void e1000_set_itr(struct e1000_adapter *adapter)
   2626{
   2627	struct e1000_hw *hw = &adapter->hw;
   2628	u16 current_itr;
   2629	u32 new_itr = adapter->itr;
   2630
   2631	if (unlikely(hw->mac_type < e1000_82540))
   2632		return;
   2633
   2634	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
   2635	if (unlikely(adapter->link_speed != SPEED_1000)) {
   2636		new_itr = 4000;
   2637		goto set_itr_now;
   2638	}
   2639
   2640	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
   2641					   adapter->total_tx_packets,
   2642					   adapter->total_tx_bytes);
   2643	/* conservative mode (itr 3) eliminates the lowest_latency setting */
   2644	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
   2645		adapter->tx_itr = low_latency;
   2646
   2647	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
   2648					   adapter->total_rx_packets,
   2649					   adapter->total_rx_bytes);
   2650	/* conservative mode (itr 3) eliminates the lowest_latency setting */
   2651	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
   2652		adapter->rx_itr = low_latency;
   2653
   2654	current_itr = max(adapter->rx_itr, adapter->tx_itr);
   2655
   2656	switch (current_itr) {
   2657	/* counts and packets in update_itr are dependent on these numbers */
   2658	case lowest_latency:
   2659		new_itr = 70000;
   2660		break;
   2661	case low_latency:
   2662		new_itr = 20000; /* aka hwitr = ~200 */
   2663		break;
   2664	case bulk_latency:
   2665		new_itr = 4000;
   2666		break;
   2667	default:
   2668		break;
   2669	}
   2670
   2671set_itr_now:
   2672	if (new_itr != adapter->itr) {
   2673		/* this attempts to bias the interrupt rate towards Bulk
   2674		 * by adding intermediate steps when interrupt rate is
   2675		 * increasing
   2676		 */
   2677		new_itr = new_itr > adapter->itr ?
   2678			  min(adapter->itr + (new_itr >> 2), new_itr) :
   2679			  new_itr;
   2680		adapter->itr = new_itr;
   2681		ew32(ITR, 1000000000 / (new_itr * 256));
   2682	}
   2683}
   2684
   2685#define E1000_TX_FLAGS_CSUM		0x00000001
   2686#define E1000_TX_FLAGS_VLAN		0x00000002
   2687#define E1000_TX_FLAGS_TSO		0x00000004
   2688#define E1000_TX_FLAGS_IPV4		0x00000008
   2689#define E1000_TX_FLAGS_NO_FCS		0x00000010
   2690#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
   2691#define E1000_TX_FLAGS_VLAN_SHIFT	16
   2692
   2693static int e1000_tso(struct e1000_adapter *adapter,
   2694		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
   2695		     __be16 protocol)
   2696{
   2697	struct e1000_context_desc *context_desc;
   2698	struct e1000_tx_buffer *buffer_info;
   2699	unsigned int i;
   2700	u32 cmd_length = 0;
   2701	u16 ipcse = 0, tucse, mss;
   2702	u8 ipcss, ipcso, tucss, tucso, hdr_len;
   2703
   2704	if (skb_is_gso(skb)) {
   2705		int err;
   2706
   2707		err = skb_cow_head(skb, 0);
   2708		if (err < 0)
   2709			return err;
   2710
   2711		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
   2712		mss = skb_shinfo(skb)->gso_size;
   2713		if (protocol == htons(ETH_P_IP)) {
   2714			struct iphdr *iph = ip_hdr(skb);
   2715			iph->tot_len = 0;
   2716			iph->check = 0;
   2717			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
   2718								 iph->daddr, 0,
   2719								 IPPROTO_TCP,
   2720								 0);
   2721			cmd_length = E1000_TXD_CMD_IP;
   2722			ipcse = skb_transport_offset(skb) - 1;
   2723		} else if (skb_is_gso_v6(skb)) {
   2724			tcp_v6_gso_csum_prep(skb);
   2725			ipcse = 0;
   2726		}
   2727		ipcss = skb_network_offset(skb);
   2728		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
   2729		tucss = skb_transport_offset(skb);
   2730		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
   2731		tucse = 0;
   2732
   2733		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
   2734			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
   2735
   2736		i = tx_ring->next_to_use;
   2737		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
   2738		buffer_info = &tx_ring->buffer_info[i];
   2739
   2740		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
   2741		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
   2742		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
   2743		context_desc->upper_setup.tcp_fields.tucss = tucss;
   2744		context_desc->upper_setup.tcp_fields.tucso = tucso;
   2745		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
   2746		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
   2747		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
   2748		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
   2749
   2750		buffer_info->time_stamp = jiffies;
   2751		buffer_info->next_to_watch = i;
   2752
   2753		if (++i == tx_ring->count)
   2754			i = 0;
   2755
   2756		tx_ring->next_to_use = i;
   2757
   2758		return true;
   2759	}
   2760	return false;
   2761}
   2762
   2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
   2764			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
   2765			  __be16 protocol)
   2766{
   2767	struct e1000_context_desc *context_desc;
   2768	struct e1000_tx_buffer *buffer_info;
   2769	unsigned int i;
   2770	u8 css;
   2771	u32 cmd_len = E1000_TXD_CMD_DEXT;
   2772
   2773	if (skb->ip_summed != CHECKSUM_PARTIAL)
   2774		return false;
   2775
   2776	switch (protocol) {
   2777	case cpu_to_be16(ETH_P_IP):
   2778		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
   2779			cmd_len |= E1000_TXD_CMD_TCP;
   2780		break;
   2781	case cpu_to_be16(ETH_P_IPV6):
   2782		/* XXX not handling all IPV6 headers */
   2783		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
   2784			cmd_len |= E1000_TXD_CMD_TCP;
   2785		break;
   2786	default:
   2787		if (unlikely(net_ratelimit()))
   2788			e_warn(drv, "checksum_partial proto=%x!\n",
   2789			       skb->protocol);
   2790		break;
   2791	}
   2792
   2793	css = skb_checksum_start_offset(skb);
   2794
   2795	i = tx_ring->next_to_use;
   2796	buffer_info = &tx_ring->buffer_info[i];
   2797	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
   2798
   2799	context_desc->lower_setup.ip_config = 0;
   2800	context_desc->upper_setup.tcp_fields.tucss = css;
   2801	context_desc->upper_setup.tcp_fields.tucso =
   2802		css + skb->csum_offset;
   2803	context_desc->upper_setup.tcp_fields.tucse = 0;
   2804	context_desc->tcp_seg_setup.data = 0;
   2805	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
   2806
   2807	buffer_info->time_stamp = jiffies;
   2808	buffer_info->next_to_watch = i;
   2809
   2810	if (unlikely(++i == tx_ring->count))
   2811		i = 0;
   2812
   2813	tx_ring->next_to_use = i;
   2814
   2815	return true;
   2816}
   2817
   2818#define E1000_MAX_TXD_PWR	12
   2819#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
   2820
   2821static int e1000_tx_map(struct e1000_adapter *adapter,
   2822			struct e1000_tx_ring *tx_ring,
   2823			struct sk_buff *skb, unsigned int first,
   2824			unsigned int max_per_txd, unsigned int nr_frags,
   2825			unsigned int mss)
   2826{
   2827	struct e1000_hw *hw = &adapter->hw;
   2828	struct pci_dev *pdev = adapter->pdev;
   2829	struct e1000_tx_buffer *buffer_info;
   2830	unsigned int len = skb_headlen(skb);
   2831	unsigned int offset = 0, size, count = 0, i;
   2832	unsigned int f, bytecount, segs;
   2833
   2834	i = tx_ring->next_to_use;
   2835
   2836	while (len) {
   2837		buffer_info = &tx_ring->buffer_info[i];
   2838		size = min(len, max_per_txd);
   2839		/* Workaround for Controller erratum --
   2840		 * descriptor for non-tso packet in a linear SKB that follows a
   2841		 * tso gets written back prematurely before the data is fully
   2842		 * DMA'd to the controller
   2843		 */
   2844		if (!skb->data_len && tx_ring->last_tx_tso &&
   2845		    !skb_is_gso(skb)) {
   2846			tx_ring->last_tx_tso = false;
   2847			size -= 4;
   2848		}
   2849
   2850		/* Workaround for premature desc write-backs
   2851		 * in TSO mode.  Append 4-byte sentinel desc
   2852		 */
   2853		if (unlikely(mss && !nr_frags && size == len && size > 8))
   2854			size -= 4;
   2855		/* work-around for errata 10 and it applies
   2856		 * to all controllers in PCI-X mode
   2857		 * The fix is to make sure that the first descriptor of a
   2858		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
   2859		 */
   2860		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
   2861			     (size > 2015) && count == 0))
   2862			size = 2015;
   2863
   2864		/* Workaround for potential 82544 hang in PCI-X.  Avoid
   2865		 * terminating buffers within evenly-aligned dwords.
   2866		 */
   2867		if (unlikely(adapter->pcix_82544 &&
   2868		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
   2869		   size > 4))
   2870			size -= 4;
   2871
   2872		buffer_info->length = size;
   2873		/* set time_stamp *before* dma to help avoid a possible race */
   2874		buffer_info->time_stamp = jiffies;
   2875		buffer_info->mapped_as_page = false;
   2876		buffer_info->dma = dma_map_single(&pdev->dev,
   2877						  skb->data + offset,
   2878						  size, DMA_TO_DEVICE);
   2879		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
   2880			goto dma_error;
   2881		buffer_info->next_to_watch = i;
   2882
   2883		len -= size;
   2884		offset += size;
   2885		count++;
   2886		if (len) {
   2887			i++;
   2888			if (unlikely(i == tx_ring->count))
   2889				i = 0;
   2890		}
   2891	}
   2892
   2893	for (f = 0; f < nr_frags; f++) {
   2894		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
   2895
   2896		len = skb_frag_size(frag);
   2897		offset = 0;
   2898
   2899		while (len) {
   2900			unsigned long bufend;
   2901			i++;
   2902			if (unlikely(i == tx_ring->count))
   2903				i = 0;
   2904
   2905			buffer_info = &tx_ring->buffer_info[i];
   2906			size = min(len, max_per_txd);
   2907			/* Workaround for premature desc write-backs
   2908			 * in TSO mode.  Append 4-byte sentinel desc
   2909			 */
   2910			if (unlikely(mss && f == (nr_frags-1) &&
   2911			    size == len && size > 8))
   2912				size -= 4;
   2913			/* Workaround for potential 82544 hang in PCI-X.
   2914			 * Avoid terminating buffers within evenly-aligned
   2915			 * dwords.
   2916			 */
   2917			bufend = (unsigned long)
   2918				page_to_phys(skb_frag_page(frag));
   2919			bufend += offset + size - 1;
   2920			if (unlikely(adapter->pcix_82544 &&
   2921				     !(bufend & 4) &&
   2922				     size > 4))
   2923				size -= 4;
   2924
   2925			buffer_info->length = size;
   2926			buffer_info->time_stamp = jiffies;
   2927			buffer_info->mapped_as_page = true;
   2928			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
   2929						offset, size, DMA_TO_DEVICE);
   2930			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
   2931				goto dma_error;
   2932			buffer_info->next_to_watch = i;
   2933
   2934			len -= size;
   2935			offset += size;
   2936			count++;
   2937		}
   2938	}
   2939
   2940	segs = skb_shinfo(skb)->gso_segs ?: 1;
   2941	/* multiply data chunks by size of headers */
   2942	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
   2943
   2944	tx_ring->buffer_info[i].skb = skb;
   2945	tx_ring->buffer_info[i].segs = segs;
   2946	tx_ring->buffer_info[i].bytecount = bytecount;
   2947	tx_ring->buffer_info[first].next_to_watch = i;
   2948
   2949	return count;
   2950
   2951dma_error:
   2952	dev_err(&pdev->dev, "TX DMA map failed\n");
   2953	buffer_info->dma = 0;
   2954	if (count)
   2955		count--;
   2956
   2957	while (count--) {
   2958		if (i == 0)
   2959			i += tx_ring->count;
   2960		i--;
   2961		buffer_info = &tx_ring->buffer_info[i];
   2962		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
   2963	}
   2964
   2965	return 0;
   2966}
   2967
   2968static void e1000_tx_queue(struct e1000_adapter *adapter,
   2969			   struct e1000_tx_ring *tx_ring, int tx_flags,
   2970			   int count)
   2971{
   2972	struct e1000_tx_desc *tx_desc = NULL;
   2973	struct e1000_tx_buffer *buffer_info;
   2974	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
   2975	unsigned int i;
   2976
   2977	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
   2978		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
   2979			     E1000_TXD_CMD_TSE;
   2980		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
   2981
   2982		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
   2983			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
   2984	}
   2985
   2986	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
   2987		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
   2988		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
   2989	}
   2990
   2991	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
   2992		txd_lower |= E1000_TXD_CMD_VLE;
   2993		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
   2994	}
   2995
   2996	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
   2997		txd_lower &= ~(E1000_TXD_CMD_IFCS);
   2998
   2999	i = tx_ring->next_to_use;
   3000
   3001	while (count--) {
   3002		buffer_info = &tx_ring->buffer_info[i];
   3003		tx_desc = E1000_TX_DESC(*tx_ring, i);
   3004		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
   3005		tx_desc->lower.data =
   3006			cpu_to_le32(txd_lower | buffer_info->length);
   3007		tx_desc->upper.data = cpu_to_le32(txd_upper);
   3008		if (unlikely(++i == tx_ring->count))
   3009			i = 0;
   3010	}
   3011
   3012	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
   3013
   3014	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
   3015	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
   3016		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
   3017
   3018	/* Force memory writes to complete before letting h/w
   3019	 * know there are new descriptors to fetch.  (Only
   3020	 * applicable for weak-ordered memory model archs,
   3021	 * such as IA-64).
   3022	 */
   3023	dma_wmb();
   3024
   3025	tx_ring->next_to_use = i;
   3026}
   3027
   3028/* 82547 workaround to avoid controller hang in half-duplex environment.
   3029 * The workaround is to avoid queuing a large packet that would span
   3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
   3031 * the packet at a later time.  This gives the Tx FIFO an opportunity to
   3032 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
   3033 * to the beginning of the Tx FIFO.
   3034 */
   3035
   3036#define E1000_FIFO_HDR			0x10
   3037#define E1000_82547_PAD_LEN		0x3E0
   3038
   3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
   3040				       struct sk_buff *skb)
   3041{
   3042	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
   3043	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
   3044
   3045	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
   3046
   3047	if (adapter->link_duplex != HALF_DUPLEX)
   3048		goto no_fifo_stall_required;
   3049
   3050	if (atomic_read(&adapter->tx_fifo_stall))
   3051		return 1;
   3052
   3053	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
   3054		atomic_set(&adapter->tx_fifo_stall, 1);
   3055		return 1;
   3056	}
   3057
   3058no_fifo_stall_required:
   3059	adapter->tx_fifo_head += skb_fifo_len;
   3060	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
   3061		adapter->tx_fifo_head -= adapter->tx_fifo_size;
   3062	return 0;
   3063}
   3064
   3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
   3066{
   3067	struct e1000_adapter *adapter = netdev_priv(netdev);
   3068	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
   3069
   3070	netif_stop_queue(netdev);
   3071	/* Herbert's original patch had:
   3072	 *  smp_mb__after_netif_stop_queue();
   3073	 * but since that doesn't exist yet, just open code it.
   3074	 */
   3075	smp_mb();
   3076
   3077	/* We need to check again in a case another CPU has just
   3078	 * made room available.
   3079	 */
   3080	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
   3081		return -EBUSY;
   3082
   3083	/* A reprieve! */
   3084	netif_start_queue(netdev);
   3085	++adapter->restart_queue;
   3086	return 0;
   3087}
   3088
   3089static int e1000_maybe_stop_tx(struct net_device *netdev,
   3090			       struct e1000_tx_ring *tx_ring, int size)
   3091{
   3092	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
   3093		return 0;
   3094	return __e1000_maybe_stop_tx(netdev, size);
   3095}
   3096
   3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
   3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
   3099				    struct net_device *netdev)
   3100{
   3101	struct e1000_adapter *adapter = netdev_priv(netdev);
   3102	struct e1000_hw *hw = &adapter->hw;
   3103	struct e1000_tx_ring *tx_ring;
   3104	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
   3105	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
   3106	unsigned int tx_flags = 0;
   3107	unsigned int len = skb_headlen(skb);
   3108	unsigned int nr_frags;
   3109	unsigned int mss;
   3110	int count = 0;
   3111	int tso;
   3112	unsigned int f;
   3113	__be16 protocol = vlan_get_protocol(skb);
   3114
   3115	/* This goes back to the question of how to logically map a Tx queue
   3116	 * to a flow.  Right now, performance is impacted slightly negatively
   3117	 * if using multiple Tx queues.  If the stack breaks away from a
   3118	 * single qdisc implementation, we can look at this again.
   3119	 */
   3120	tx_ring = adapter->tx_ring;
   3121
   3122	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
   3123	 * packets may get corrupted during padding by HW.
   3124	 * To WA this issue, pad all small packets manually.
   3125	 */
   3126	if (eth_skb_pad(skb))
   3127		return NETDEV_TX_OK;
   3128
   3129	mss = skb_shinfo(skb)->gso_size;
   3130	/* The controller does a simple calculation to
   3131	 * make sure there is enough room in the FIFO before
   3132	 * initiating the DMA for each buffer.  The calc is:
   3133	 * 4 = ceil(buffer len/mss).  To make sure we don't
   3134	 * overrun the FIFO, adjust the max buffer len if mss
   3135	 * drops.
   3136	 */
   3137	if (mss) {
   3138		u8 hdr_len;
   3139		max_per_txd = min(mss << 2, max_per_txd);
   3140		max_txd_pwr = fls(max_per_txd) - 1;
   3141
   3142		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
   3143		if (skb->data_len && hdr_len == len) {
   3144			switch (hw->mac_type) {
   3145			case e1000_82544: {
   3146				unsigned int pull_size;
   3147
   3148				/* Make sure we have room to chop off 4 bytes,
   3149				 * and that the end alignment will work out to
   3150				 * this hardware's requirements
   3151				 * NOTE: this is a TSO only workaround
   3152				 * if end byte alignment not correct move us
   3153				 * into the next dword
   3154				 */
   3155				if ((unsigned long)(skb_tail_pointer(skb) - 1)
   3156				    & 4)
   3157					break;
   3158				pull_size = min((unsigned int)4, skb->data_len);
   3159				if (!__pskb_pull_tail(skb, pull_size)) {
   3160					e_err(drv, "__pskb_pull_tail "
   3161					      "failed.\n");
   3162					dev_kfree_skb_any(skb);
   3163					return NETDEV_TX_OK;
   3164				}
   3165				len = skb_headlen(skb);
   3166				break;
   3167			}
   3168			default:
   3169				/* do nothing */
   3170				break;
   3171			}
   3172		}
   3173	}
   3174
   3175	/* reserve a descriptor for the offload context */
   3176	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
   3177		count++;
   3178	count++;
   3179
   3180	/* Controller Erratum workaround */
   3181	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
   3182		count++;
   3183
   3184	count += TXD_USE_COUNT(len, max_txd_pwr);
   3185
   3186	if (adapter->pcix_82544)
   3187		count++;
   3188
   3189	/* work-around for errata 10 and it applies to all controllers
   3190	 * in PCI-X mode, so add one more descriptor to the count
   3191	 */
   3192	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
   3193			(len > 2015)))
   3194		count++;
   3195
   3196	nr_frags = skb_shinfo(skb)->nr_frags;
   3197	for (f = 0; f < nr_frags; f++)
   3198		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
   3199				       max_txd_pwr);
   3200	if (adapter->pcix_82544)
   3201		count += nr_frags;
   3202
   3203	/* need: count + 2 desc gap to keep tail from touching
   3204	 * head, otherwise try next time
   3205	 */
   3206	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
   3207		return NETDEV_TX_BUSY;
   3208
   3209	if (unlikely((hw->mac_type == e1000_82547) &&
   3210		     (e1000_82547_fifo_workaround(adapter, skb)))) {
   3211		netif_stop_queue(netdev);
   3212		if (!test_bit(__E1000_DOWN, &adapter->flags))
   3213			schedule_delayed_work(&adapter->fifo_stall_task, 1);
   3214		return NETDEV_TX_BUSY;
   3215	}
   3216
   3217	if (skb_vlan_tag_present(skb)) {
   3218		tx_flags |= E1000_TX_FLAGS_VLAN;
   3219		tx_flags |= (skb_vlan_tag_get(skb) <<
   3220			     E1000_TX_FLAGS_VLAN_SHIFT);
   3221	}
   3222
   3223	first = tx_ring->next_to_use;
   3224
   3225	tso = e1000_tso(adapter, tx_ring, skb, protocol);
   3226	if (tso < 0) {
   3227		dev_kfree_skb_any(skb);
   3228		return NETDEV_TX_OK;
   3229	}
   3230
   3231	if (likely(tso)) {
   3232		if (likely(hw->mac_type != e1000_82544))
   3233			tx_ring->last_tx_tso = true;
   3234		tx_flags |= E1000_TX_FLAGS_TSO;
   3235	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
   3236		tx_flags |= E1000_TX_FLAGS_CSUM;
   3237
   3238	if (protocol == htons(ETH_P_IP))
   3239		tx_flags |= E1000_TX_FLAGS_IPV4;
   3240
   3241	if (unlikely(skb->no_fcs))
   3242		tx_flags |= E1000_TX_FLAGS_NO_FCS;
   3243
   3244	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
   3245			     nr_frags, mss);
   3246
   3247	if (count) {
   3248		/* The descriptors needed is higher than other Intel drivers
   3249		 * due to a number of workarounds.  The breakdown is below:
   3250		 * Data descriptors: MAX_SKB_FRAGS + 1
   3251		 * Context Descriptor: 1
   3252		 * Keep head from touching tail: 2
   3253		 * Workarounds: 3
   3254		 */
   3255		int desc_needed = MAX_SKB_FRAGS + 7;
   3256
   3257		netdev_sent_queue(netdev, skb->len);
   3258		skb_tx_timestamp(skb);
   3259
   3260		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
   3261
   3262		/* 82544 potentially requires twice as many data descriptors
   3263		 * in order to guarantee buffers don't end on evenly-aligned
   3264		 * dwords
   3265		 */
   3266		if (adapter->pcix_82544)
   3267			desc_needed += MAX_SKB_FRAGS + 1;
   3268
   3269		/* Make sure there is space in the ring for the next send. */
   3270		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
   3271
   3272		if (!netdev_xmit_more() ||
   3273		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
   3274			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
   3275		}
   3276	} else {
   3277		dev_kfree_skb_any(skb);
   3278		tx_ring->buffer_info[first].time_stamp = 0;
   3279		tx_ring->next_to_use = first;
   3280	}
   3281
   3282	return NETDEV_TX_OK;
   3283}
   3284
   3285#define NUM_REGS 38 /* 1 based count */
   3286static void e1000_regdump(struct e1000_adapter *adapter)
   3287{
   3288	struct e1000_hw *hw = &adapter->hw;
   3289	u32 regs[NUM_REGS];
   3290	u32 *regs_buff = regs;
   3291	int i = 0;
   3292
   3293	static const char * const reg_name[] = {
   3294		"CTRL",  "STATUS",
   3295		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
   3296		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
   3297		"TIDV", "TXDCTL", "TADV", "TARC0",
   3298		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
   3299		"TXDCTL1", "TARC1",
   3300		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
   3301		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
   3302		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
   3303	};
   3304
   3305	regs_buff[0]  = er32(CTRL);
   3306	regs_buff[1]  = er32(STATUS);
   3307
   3308	regs_buff[2]  = er32(RCTL);
   3309	regs_buff[3]  = er32(RDLEN);
   3310	regs_buff[4]  = er32(RDH);
   3311	regs_buff[5]  = er32(RDT);
   3312	regs_buff[6]  = er32(RDTR);
   3313
   3314	regs_buff[7]  = er32(TCTL);
   3315	regs_buff[8]  = er32(TDBAL);
   3316	regs_buff[9]  = er32(TDBAH);
   3317	regs_buff[10] = er32(TDLEN);
   3318	regs_buff[11] = er32(TDH);
   3319	regs_buff[12] = er32(TDT);
   3320	regs_buff[13] = er32(TIDV);
   3321	regs_buff[14] = er32(TXDCTL);
   3322	regs_buff[15] = er32(TADV);
   3323	regs_buff[16] = er32(TARC0);
   3324
   3325	regs_buff[17] = er32(TDBAL1);
   3326	regs_buff[18] = er32(TDBAH1);
   3327	regs_buff[19] = er32(TDLEN1);
   3328	regs_buff[20] = er32(TDH1);
   3329	regs_buff[21] = er32(TDT1);
   3330	regs_buff[22] = er32(TXDCTL1);
   3331	regs_buff[23] = er32(TARC1);
   3332	regs_buff[24] = er32(CTRL_EXT);
   3333	regs_buff[25] = er32(ERT);
   3334	regs_buff[26] = er32(RDBAL0);
   3335	regs_buff[27] = er32(RDBAH0);
   3336	regs_buff[28] = er32(TDFH);
   3337	regs_buff[29] = er32(TDFT);
   3338	regs_buff[30] = er32(TDFHS);
   3339	regs_buff[31] = er32(TDFTS);
   3340	regs_buff[32] = er32(TDFPC);
   3341	regs_buff[33] = er32(RDFH);
   3342	regs_buff[34] = er32(RDFT);
   3343	regs_buff[35] = er32(RDFHS);
   3344	regs_buff[36] = er32(RDFTS);
   3345	regs_buff[37] = er32(RDFPC);
   3346
   3347	pr_info("Register dump\n");
   3348	for (i = 0; i < NUM_REGS; i++)
   3349		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
   3350}
   3351
   3352/*
   3353 * e1000_dump: Print registers, tx ring and rx ring
   3354 */
   3355static void e1000_dump(struct e1000_adapter *adapter)
   3356{
   3357	/* this code doesn't handle multiple rings */
   3358	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
   3359	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
   3360	int i;
   3361
   3362	if (!netif_msg_hw(adapter))
   3363		return;
   3364
   3365	/* Print Registers */
   3366	e1000_regdump(adapter);
   3367
   3368	/* transmit dump */
   3369	pr_info("TX Desc ring0 dump\n");
   3370
   3371	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
   3372	 *
   3373	 * Legacy Transmit Descriptor
   3374	 *   +--------------------------------------------------------------+
   3375	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
   3376	 *   +--------------------------------------------------------------+
   3377	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
   3378	 *   +--------------------------------------------------------------+
   3379	 *   63       48 47        36 35    32 31     24 23    16 15        0
   3380	 *
   3381	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
   3382	 *   63      48 47    40 39       32 31             16 15    8 7      0
   3383	 *   +----------------------------------------------------------------+
   3384	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
   3385	 *   +----------------------------------------------------------------+
   3386	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
   3387	 *   +----------------------------------------------------------------+
   3388	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
   3389	 *
   3390	 * Extended Data Descriptor (DTYP=0x1)
   3391	 *   +----------------------------------------------------------------+
   3392	 * 0 |                     Buffer Address [63:0]                      |
   3393	 *   +----------------------------------------------------------------+
   3394	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
   3395	 *   +----------------------------------------------------------------+
   3396	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
   3397	 */
   3398	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
   3399	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
   3400
   3401	if (!netif_msg_tx_done(adapter))
   3402		goto rx_ring_summary;
   3403
   3404	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
   3405		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
   3406		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
   3407		struct my_u { __le64 a; __le64 b; };
   3408		struct my_u *u = (struct my_u *)tx_desc;
   3409		const char *type;
   3410
   3411		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
   3412			type = "NTC/U";
   3413		else if (i == tx_ring->next_to_use)
   3414			type = "NTU";
   3415		else if (i == tx_ring->next_to_clean)
   3416			type = "NTC";
   3417		else
   3418			type = "";
   3419
   3420		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
   3421			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
   3422			le64_to_cpu(u->a), le64_to_cpu(u->b),
   3423			(u64)buffer_info->dma, buffer_info->length,
   3424			buffer_info->next_to_watch,
   3425			(u64)buffer_info->time_stamp, buffer_info->skb, type);
   3426	}
   3427
   3428rx_ring_summary:
   3429	/* receive dump */
   3430	pr_info("\nRX Desc ring dump\n");
   3431
   3432	/* Legacy Receive Descriptor Format
   3433	 *
   3434	 * +-----------------------------------------------------+
   3435	 * |                Buffer Address [63:0]                |
   3436	 * +-----------------------------------------------------+
   3437	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
   3438	 * +-----------------------------------------------------+
   3439	 * 63       48 47    40 39      32 31         16 15      0
   3440	 */
   3441	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
   3442
   3443	if (!netif_msg_rx_status(adapter))
   3444		goto exit;
   3445
   3446	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
   3447		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
   3448		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
   3449		struct my_u { __le64 a; __le64 b; };
   3450		struct my_u *u = (struct my_u *)rx_desc;
   3451		const char *type;
   3452
   3453		if (i == rx_ring->next_to_use)
   3454			type = "NTU";
   3455		else if (i == rx_ring->next_to_clean)
   3456			type = "NTC";
   3457		else
   3458			type = "";
   3459
   3460		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
   3461			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
   3462			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
   3463	} /* for */
   3464
   3465	/* dump the descriptor caches */
   3466	/* rx */
   3467	pr_info("Rx descriptor cache in 64bit format\n");
   3468	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
   3469		pr_info("R%04X: %08X|%08X %08X|%08X\n",
   3470			i,
   3471			readl(adapter->hw.hw_addr + i+4),
   3472			readl(adapter->hw.hw_addr + i),
   3473			readl(adapter->hw.hw_addr + i+12),
   3474			readl(adapter->hw.hw_addr + i+8));
   3475	}
   3476	/* tx */
   3477	pr_info("Tx descriptor cache in 64bit format\n");
   3478	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
   3479		pr_info("T%04X: %08X|%08X %08X|%08X\n",
   3480			i,
   3481			readl(adapter->hw.hw_addr + i+4),
   3482			readl(adapter->hw.hw_addr + i),
   3483			readl(adapter->hw.hw_addr + i+12),
   3484			readl(adapter->hw.hw_addr + i+8));
   3485	}
   3486exit:
   3487	return;
   3488}
   3489
   3490/**
   3491 * e1000_tx_timeout - Respond to a Tx Hang
   3492 * @netdev: network interface device structure
   3493 * @txqueue: number of the Tx queue that hung (unused)
   3494 **/
   3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
   3496{
   3497	struct e1000_adapter *adapter = netdev_priv(netdev);
   3498
   3499	/* Do the reset outside of interrupt context */
   3500	adapter->tx_timeout_count++;
   3501	schedule_work(&adapter->reset_task);
   3502}
   3503
   3504static void e1000_reset_task(struct work_struct *work)
   3505{
   3506	struct e1000_adapter *adapter =
   3507		container_of(work, struct e1000_adapter, reset_task);
   3508
   3509	e_err(drv, "Reset adapter\n");
   3510	e1000_reinit_locked(adapter);
   3511}
   3512
   3513/**
   3514 * e1000_change_mtu - Change the Maximum Transfer Unit
   3515 * @netdev: network interface device structure
   3516 * @new_mtu: new value for maximum frame size
   3517 *
   3518 * Returns 0 on success, negative on failure
   3519 **/
   3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
   3521{
   3522	struct e1000_adapter *adapter = netdev_priv(netdev);
   3523	struct e1000_hw *hw = &adapter->hw;
   3524	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
   3525
   3526	/* Adapter-specific max frame size limits. */
   3527	switch (hw->mac_type) {
   3528	case e1000_undefined ... e1000_82542_rev2_1:
   3529		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
   3530			e_err(probe, "Jumbo Frames not supported.\n");
   3531			return -EINVAL;
   3532		}
   3533		break;
   3534	default:
   3535		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
   3536		break;
   3537	}
   3538
   3539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
   3540		msleep(1);
   3541	/* e1000_down has a dependency on max_frame_size */
   3542	hw->max_frame_size = max_frame;
   3543	if (netif_running(netdev)) {
   3544		/* prevent buffers from being reallocated */
   3545		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
   3546		e1000_down(adapter);
   3547	}
   3548
   3549	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
   3550	 * means we reserve 2 more, this pushes us to allocate from the next
   3551	 * larger slab size.
   3552	 * i.e. RXBUFFER_2048 --> size-4096 slab
   3553	 * however with the new *_jumbo_rx* routines, jumbo receives will use
   3554	 * fragmented skbs
   3555	 */
   3556
   3557	if (max_frame <= E1000_RXBUFFER_2048)
   3558		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
   3559	else
   3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
   3561		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
   3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
   3563		adapter->rx_buffer_len = PAGE_SIZE;
   3564#endif
   3565
   3566	/* adjust allocation if LPE protects us, and we aren't using SBP */
   3567	if (!hw->tbi_compatibility_on &&
   3568	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
   3569	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
   3570		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
   3571
   3572	netdev_dbg(netdev, "changing MTU from %d to %d\n",
   3573		   netdev->mtu, new_mtu);
   3574	netdev->mtu = new_mtu;
   3575
   3576	if (netif_running(netdev))
   3577		e1000_up(adapter);
   3578	else
   3579		e1000_reset(adapter);
   3580
   3581	clear_bit(__E1000_RESETTING, &adapter->flags);
   3582
   3583	return 0;
   3584}
   3585
   3586/**
   3587 * e1000_update_stats - Update the board statistics counters
   3588 * @adapter: board private structure
   3589 **/
   3590void e1000_update_stats(struct e1000_adapter *adapter)
   3591{
   3592	struct net_device *netdev = adapter->netdev;
   3593	struct e1000_hw *hw = &adapter->hw;
   3594	struct pci_dev *pdev = adapter->pdev;
   3595	unsigned long flags;
   3596	u16 phy_tmp;
   3597
   3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
   3599
   3600	/* Prevent stats update while adapter is being reset, or if the pci
   3601	 * connection is down.
   3602	 */
   3603	if (adapter->link_speed == 0)
   3604		return;
   3605	if (pci_channel_offline(pdev))
   3606		return;
   3607
   3608	spin_lock_irqsave(&adapter->stats_lock, flags);
   3609
   3610	/* these counters are modified from e1000_tbi_adjust_stats,
   3611	 * called from the interrupt context, so they must only
   3612	 * be written while holding adapter->stats_lock
   3613	 */
   3614
   3615	adapter->stats.crcerrs += er32(CRCERRS);
   3616	adapter->stats.gprc += er32(GPRC);
   3617	adapter->stats.gorcl += er32(GORCL);
   3618	adapter->stats.gorch += er32(GORCH);
   3619	adapter->stats.bprc += er32(BPRC);
   3620	adapter->stats.mprc += er32(MPRC);
   3621	adapter->stats.roc += er32(ROC);
   3622
   3623	adapter->stats.prc64 += er32(PRC64);
   3624	adapter->stats.prc127 += er32(PRC127);
   3625	adapter->stats.prc255 += er32(PRC255);
   3626	adapter->stats.prc511 += er32(PRC511);
   3627	adapter->stats.prc1023 += er32(PRC1023);
   3628	adapter->stats.prc1522 += er32(PRC1522);
   3629
   3630	adapter->stats.symerrs += er32(SYMERRS);
   3631	adapter->stats.mpc += er32(MPC);
   3632	adapter->stats.scc += er32(SCC);
   3633	adapter->stats.ecol += er32(ECOL);
   3634	adapter->stats.mcc += er32(MCC);
   3635	adapter->stats.latecol += er32(LATECOL);
   3636	adapter->stats.dc += er32(DC);
   3637	adapter->stats.sec += er32(SEC);
   3638	adapter->stats.rlec += er32(RLEC);
   3639	adapter->stats.xonrxc += er32(XONRXC);
   3640	adapter->stats.xontxc += er32(XONTXC);
   3641	adapter->stats.xoffrxc += er32(XOFFRXC);
   3642	adapter->stats.xofftxc += er32(XOFFTXC);
   3643	adapter->stats.fcruc += er32(FCRUC);
   3644	adapter->stats.gptc += er32(GPTC);
   3645	adapter->stats.gotcl += er32(GOTCL);
   3646	adapter->stats.gotch += er32(GOTCH);
   3647	adapter->stats.rnbc += er32(RNBC);
   3648	adapter->stats.ruc += er32(RUC);
   3649	adapter->stats.rfc += er32(RFC);
   3650	adapter->stats.rjc += er32(RJC);
   3651	adapter->stats.torl += er32(TORL);
   3652	adapter->stats.torh += er32(TORH);
   3653	adapter->stats.totl += er32(TOTL);
   3654	adapter->stats.toth += er32(TOTH);
   3655	adapter->stats.tpr += er32(TPR);
   3656
   3657	adapter->stats.ptc64 += er32(PTC64);
   3658	adapter->stats.ptc127 += er32(PTC127);
   3659	adapter->stats.ptc255 += er32(PTC255);
   3660	adapter->stats.ptc511 += er32(PTC511);
   3661	adapter->stats.ptc1023 += er32(PTC1023);
   3662	adapter->stats.ptc1522 += er32(PTC1522);
   3663
   3664	adapter->stats.mptc += er32(MPTC);
   3665	adapter->stats.bptc += er32(BPTC);
   3666
   3667	/* used for adaptive IFS */
   3668
   3669	hw->tx_packet_delta = er32(TPT);
   3670	adapter->stats.tpt += hw->tx_packet_delta;
   3671	hw->collision_delta = er32(COLC);
   3672	adapter->stats.colc += hw->collision_delta;
   3673
   3674	if (hw->mac_type >= e1000_82543) {
   3675		adapter->stats.algnerrc += er32(ALGNERRC);
   3676		adapter->stats.rxerrc += er32(RXERRC);
   3677		adapter->stats.tncrs += er32(TNCRS);
   3678		adapter->stats.cexterr += er32(CEXTERR);
   3679		adapter->stats.tsctc += er32(TSCTC);
   3680		adapter->stats.tsctfc += er32(TSCTFC);
   3681	}
   3682
   3683	/* Fill out the OS statistics structure */
   3684	netdev->stats.multicast = adapter->stats.mprc;
   3685	netdev->stats.collisions = adapter->stats.colc;
   3686
   3687	/* Rx Errors */
   3688
   3689	/* RLEC on some newer hardware can be incorrect so build
   3690	 * our own version based on RUC and ROC
   3691	 */
   3692	netdev->stats.rx_errors = adapter->stats.rxerrc +
   3693		adapter->stats.crcerrs + adapter->stats.algnerrc +
   3694		adapter->stats.ruc + adapter->stats.roc +
   3695		adapter->stats.cexterr;
   3696	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
   3697	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
   3698	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
   3699	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
   3700	netdev->stats.rx_missed_errors = adapter->stats.mpc;
   3701
   3702	/* Tx Errors */
   3703	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
   3704	netdev->stats.tx_errors = adapter->stats.txerrc;
   3705	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
   3706	netdev->stats.tx_window_errors = adapter->stats.latecol;
   3707	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
   3708	if (hw->bad_tx_carr_stats_fd &&
   3709	    adapter->link_duplex == FULL_DUPLEX) {
   3710		netdev->stats.tx_carrier_errors = 0;
   3711		adapter->stats.tncrs = 0;
   3712	}
   3713
   3714	/* Tx Dropped needs to be maintained elsewhere */
   3715
   3716	/* Phy Stats */
   3717	if (hw->media_type == e1000_media_type_copper) {
   3718		if ((adapter->link_speed == SPEED_1000) &&
   3719		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
   3720			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
   3721			adapter->phy_stats.idle_errors += phy_tmp;
   3722		}
   3723
   3724		if ((hw->mac_type <= e1000_82546) &&
   3725		   (hw->phy_type == e1000_phy_m88) &&
   3726		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
   3727			adapter->phy_stats.receive_errors += phy_tmp;
   3728	}
   3729
   3730	/* Management Stats */
   3731	if (hw->has_smbus) {
   3732		adapter->stats.mgptc += er32(MGTPTC);
   3733		adapter->stats.mgprc += er32(MGTPRC);
   3734		adapter->stats.mgpdc += er32(MGTPDC);
   3735	}
   3736
   3737	spin_unlock_irqrestore(&adapter->stats_lock, flags);
   3738}
   3739
   3740/**
   3741 * e1000_intr - Interrupt Handler
   3742 * @irq: interrupt number
   3743 * @data: pointer to a network interface device structure
   3744 **/
   3745static irqreturn_t e1000_intr(int irq, void *data)
   3746{
   3747	struct net_device *netdev = data;
   3748	struct e1000_adapter *adapter = netdev_priv(netdev);
   3749	struct e1000_hw *hw = &adapter->hw;
   3750	u32 icr = er32(ICR);
   3751
   3752	if (unlikely((!icr)))
   3753		return IRQ_NONE;  /* Not our interrupt */
   3754
   3755	/* we might have caused the interrupt, but the above
   3756	 * read cleared it, and just in case the driver is
   3757	 * down there is nothing to do so return handled
   3758	 */
   3759	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
   3760		return IRQ_HANDLED;
   3761
   3762	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
   3763		hw->get_link_status = 1;
   3764		/* guard against interrupt when we're going down */
   3765		if (!test_bit(__E1000_DOWN, &adapter->flags))
   3766			schedule_delayed_work(&adapter->watchdog_task, 1);
   3767	}
   3768
   3769	/* disable interrupts, without the synchronize_irq bit */
   3770	ew32(IMC, ~0);
   3771	E1000_WRITE_FLUSH();
   3772
   3773	if (likely(napi_schedule_prep(&adapter->napi))) {
   3774		adapter->total_tx_bytes = 0;
   3775		adapter->total_tx_packets = 0;
   3776		adapter->total_rx_bytes = 0;
   3777		adapter->total_rx_packets = 0;
   3778		__napi_schedule(&adapter->napi);
   3779	} else {
   3780		/* this really should not happen! if it does it is basically a
   3781		 * bug, but not a hard error, so enable ints and continue
   3782		 */
   3783		if (!test_bit(__E1000_DOWN, &adapter->flags))
   3784			e1000_irq_enable(adapter);
   3785	}
   3786
   3787	return IRQ_HANDLED;
   3788}
   3789
   3790/**
   3791 * e1000_clean - NAPI Rx polling callback
   3792 * @napi: napi struct containing references to driver info
   3793 * @budget: budget given to driver for receive packets
   3794 **/
   3795static int e1000_clean(struct napi_struct *napi, int budget)
   3796{
   3797	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
   3798						     napi);
   3799	int tx_clean_complete = 0, work_done = 0;
   3800
   3801	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
   3802
   3803	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
   3804
   3805	if (!tx_clean_complete || work_done == budget)
   3806		return budget;
   3807
   3808	/* Exit the polling mode, but don't re-enable interrupts if stack might
   3809	 * poll us due to busy-polling
   3810	 */
   3811	if (likely(napi_complete_done(napi, work_done))) {
   3812		if (likely(adapter->itr_setting & 3))
   3813			e1000_set_itr(adapter);
   3814		if (!test_bit(__E1000_DOWN, &adapter->flags))
   3815			e1000_irq_enable(adapter);
   3816	}
   3817
   3818	return work_done;
   3819}
   3820
   3821/**
   3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
   3823 * @adapter: board private structure
   3824 * @tx_ring: ring to clean
   3825 **/
   3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
   3827			       struct e1000_tx_ring *tx_ring)
   3828{
   3829	struct e1000_hw *hw = &adapter->hw;
   3830	struct net_device *netdev = adapter->netdev;
   3831	struct e1000_tx_desc *tx_desc, *eop_desc;
   3832	struct e1000_tx_buffer *buffer_info;
   3833	unsigned int i, eop;
   3834	unsigned int count = 0;
   3835	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
   3836	unsigned int bytes_compl = 0, pkts_compl = 0;
   3837
   3838	i = tx_ring->next_to_clean;
   3839	eop = tx_ring->buffer_info[i].next_to_watch;
   3840	eop_desc = E1000_TX_DESC(*tx_ring, eop);
   3841
   3842	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
   3843	       (count < tx_ring->count)) {
   3844		bool cleaned = false;
   3845		dma_rmb();	/* read buffer_info after eop_desc */
   3846		for ( ; !cleaned; count++) {
   3847			tx_desc = E1000_TX_DESC(*tx_ring, i);
   3848			buffer_info = &tx_ring->buffer_info[i];
   3849			cleaned = (i == eop);
   3850
   3851			if (cleaned) {
   3852				total_tx_packets += buffer_info->segs;
   3853				total_tx_bytes += buffer_info->bytecount;
   3854				if (buffer_info->skb) {
   3855					bytes_compl += buffer_info->skb->len;
   3856					pkts_compl++;
   3857				}
   3858
   3859			}
   3860			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
   3861							 64);
   3862			tx_desc->upper.data = 0;
   3863
   3864			if (unlikely(++i == tx_ring->count))
   3865				i = 0;
   3866		}
   3867
   3868		eop = tx_ring->buffer_info[i].next_to_watch;
   3869		eop_desc = E1000_TX_DESC(*tx_ring, eop);
   3870	}
   3871
   3872	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
   3873	 * which will reuse the cleaned buffers.
   3874	 */
   3875	smp_store_release(&tx_ring->next_to_clean, i);
   3876
   3877	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
   3878
   3879#define TX_WAKE_THRESHOLD 32
   3880	if (unlikely(count && netif_carrier_ok(netdev) &&
   3881		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
   3882		/* Make sure that anybody stopping the queue after this
   3883		 * sees the new next_to_clean.
   3884		 */
   3885		smp_mb();
   3886
   3887		if (netif_queue_stopped(netdev) &&
   3888		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
   3889			netif_wake_queue(netdev);
   3890			++adapter->restart_queue;
   3891		}
   3892	}
   3893
   3894	if (adapter->detect_tx_hung) {
   3895		/* Detect a transmit hang in hardware, this serializes the
   3896		 * check with the clearing of time_stamp and movement of i
   3897		 */
   3898		adapter->detect_tx_hung = false;
   3899		if (tx_ring->buffer_info[eop].time_stamp &&
   3900		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
   3901			       (adapter->tx_timeout_factor * HZ)) &&
   3902		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
   3903
   3904			/* detected Tx unit hang */
   3905			e_err(drv, "Detected Tx Unit Hang\n"
   3906			      "  Tx Queue             <%lu>\n"
   3907			      "  TDH                  <%x>\n"
   3908			      "  TDT                  <%x>\n"
   3909			      "  next_to_use          <%x>\n"
   3910			      "  next_to_clean        <%x>\n"
   3911			      "buffer_info[next_to_clean]\n"
   3912			      "  time_stamp           <%lx>\n"
   3913			      "  next_to_watch        <%x>\n"
   3914			      "  jiffies              <%lx>\n"
   3915			      "  next_to_watch.status <%x>\n",
   3916				(unsigned long)(tx_ring - adapter->tx_ring),
   3917				readl(hw->hw_addr + tx_ring->tdh),
   3918				readl(hw->hw_addr + tx_ring->tdt),
   3919				tx_ring->next_to_use,
   3920				tx_ring->next_to_clean,
   3921				tx_ring->buffer_info[eop].time_stamp,
   3922				eop,
   3923				jiffies,
   3924				eop_desc->upper.fields.status);
   3925			e1000_dump(adapter);
   3926			netif_stop_queue(netdev);
   3927		}
   3928	}
   3929	adapter->total_tx_bytes += total_tx_bytes;
   3930	adapter->total_tx_packets += total_tx_packets;
   3931	netdev->stats.tx_bytes += total_tx_bytes;
   3932	netdev->stats.tx_packets += total_tx_packets;
   3933	return count < tx_ring->count;
   3934}
   3935
   3936/**
   3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
   3938 * @adapter:     board private structure
   3939 * @status_err:  receive descriptor status and error fields
   3940 * @csum:        receive descriptor csum field
   3941 * @skb:         socket buffer with received data
   3942 **/
   3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
   3944			      u32 csum, struct sk_buff *skb)
   3945{
   3946	struct e1000_hw *hw = &adapter->hw;
   3947	u16 status = (u16)status_err;
   3948	u8 errors = (u8)(status_err >> 24);
   3949
   3950	skb_checksum_none_assert(skb);
   3951
   3952	/* 82543 or newer only */
   3953	if (unlikely(hw->mac_type < e1000_82543))
   3954		return;
   3955	/* Ignore Checksum bit is set */
   3956	if (unlikely(status & E1000_RXD_STAT_IXSM))
   3957		return;
   3958	/* TCP/UDP checksum error bit is set */
   3959	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
   3960		/* let the stack verify checksum errors */
   3961		adapter->hw_csum_err++;
   3962		return;
   3963	}
   3964	/* TCP/UDP Checksum has not been calculated */
   3965	if (!(status & E1000_RXD_STAT_TCPCS))
   3966		return;
   3967
   3968	/* It must be a TCP or UDP packet with a valid checksum */
   3969	if (likely(status & E1000_RXD_STAT_TCPCS)) {
   3970		/* TCP checksum is good */
   3971		skb->ip_summed = CHECKSUM_UNNECESSARY;
   3972	}
   3973	adapter->hw_csum_good++;
   3974}
   3975
   3976/**
   3977 * e1000_consume_page - helper function for jumbo Rx path
   3978 * @bi: software descriptor shadow data
   3979 * @skb: skb being modified
   3980 * @length: length of data being added
   3981 **/
   3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
   3983			       u16 length)
   3984{
   3985	bi->rxbuf.page = NULL;
   3986	skb->len += length;
   3987	skb->data_len += length;
   3988	skb->truesize += PAGE_SIZE;
   3989}
   3990
   3991/**
   3992 * e1000_receive_skb - helper function to handle rx indications
   3993 * @adapter: board private structure
   3994 * @status: descriptor status field as written by hardware
   3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
   3996 * @skb: pointer to sk_buff to be indicated to stack
   3997 */
   3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
   3999			      __le16 vlan, struct sk_buff *skb)
   4000{
   4001	skb->protocol = eth_type_trans(skb, adapter->netdev);
   4002
   4003	if (status & E1000_RXD_STAT_VP) {
   4004		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
   4005
   4006		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
   4007	}
   4008	napi_gro_receive(&adapter->napi, skb);
   4009}
   4010
   4011/**
   4012 * e1000_tbi_adjust_stats
   4013 * @hw: Struct containing variables accessed by shared code
   4014 * @stats: point to stats struct
   4015 * @frame_len: The length of the frame in question
   4016 * @mac_addr: The Ethernet destination address of the frame in question
   4017 *
   4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
   4019 */
   4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
   4021				   struct e1000_hw_stats *stats,
   4022				   u32 frame_len, const u8 *mac_addr)
   4023{
   4024	u64 carry_bit;
   4025
   4026	/* First adjust the frame length. */
   4027	frame_len--;
   4028	/* We need to adjust the statistics counters, since the hardware
   4029	 * counters overcount this packet as a CRC error and undercount
   4030	 * the packet as a good packet
   4031	 */
   4032	/* This packet should not be counted as a CRC error. */
   4033	stats->crcerrs--;
   4034	/* This packet does count as a Good Packet Received. */
   4035	stats->gprc++;
   4036
   4037	/* Adjust the Good Octets received counters */
   4038	carry_bit = 0x80000000 & stats->gorcl;
   4039	stats->gorcl += frame_len;
   4040	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
   4041	 * Received Count) was one before the addition,
   4042	 * AND it is zero after, then we lost the carry out,
   4043	 * need to add one to Gorch (Good Octets Received Count High).
   4044	 * This could be simplified if all environments supported
   4045	 * 64-bit integers.
   4046	 */
   4047	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
   4048		stats->gorch++;
   4049	/* Is this a broadcast or multicast?  Check broadcast first,
   4050	 * since the test for a multicast frame will test positive on
   4051	 * a broadcast frame.
   4052	 */
   4053	if (is_broadcast_ether_addr(mac_addr))
   4054		stats->bprc++;
   4055	else if (is_multicast_ether_addr(mac_addr))
   4056		stats->mprc++;
   4057
   4058	if (frame_len == hw->max_frame_size) {
   4059		/* In this case, the hardware has overcounted the number of
   4060		 * oversize frames.
   4061		 */
   4062		if (stats->roc > 0)
   4063			stats->roc--;
   4064	}
   4065
   4066	/* Adjust the bin counters when the extra byte put the frame in the
   4067	 * wrong bin. Remember that the frame_len was adjusted above.
   4068	 */
   4069	if (frame_len == 64) {
   4070		stats->prc64++;
   4071		stats->prc127--;
   4072	} else if (frame_len == 127) {
   4073		stats->prc127++;
   4074		stats->prc255--;
   4075	} else if (frame_len == 255) {
   4076		stats->prc255++;
   4077		stats->prc511--;
   4078	} else if (frame_len == 511) {
   4079		stats->prc511++;
   4080		stats->prc1023--;
   4081	} else if (frame_len == 1023) {
   4082		stats->prc1023++;
   4083		stats->prc1522--;
   4084	} else if (frame_len == 1522) {
   4085		stats->prc1522++;
   4086	}
   4087}
   4088
   4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
   4090				    u8 status, u8 errors,
   4091				    u32 length, const u8 *data)
   4092{
   4093	struct e1000_hw *hw = &adapter->hw;
   4094	u8 last_byte = *(data + length - 1);
   4095
   4096	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
   4097		unsigned long irq_flags;
   4098
   4099		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
   4100		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
   4101		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
   4102
   4103		return true;
   4104	}
   4105
   4106	return false;
   4107}
   4108
   4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
   4110					  unsigned int bufsz)
   4111{
   4112	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
   4113
   4114	if (unlikely(!skb))
   4115		adapter->alloc_rx_buff_failed++;
   4116	return skb;
   4117}
   4118
   4119/**
   4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
   4121 * @adapter: board private structure
   4122 * @rx_ring: ring to clean
   4123 * @work_done: amount of napi work completed this call
   4124 * @work_to_do: max amount of work allowed for this call to do
   4125 *
   4126 * the return value indicates whether actual cleaning was done, there
   4127 * is no guarantee that everything was cleaned
   4128 */
   4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
   4130				     struct e1000_rx_ring *rx_ring,
   4131				     int *work_done, int work_to_do)
   4132{
   4133	struct net_device *netdev = adapter->netdev;
   4134	struct pci_dev *pdev = adapter->pdev;
   4135	struct e1000_rx_desc *rx_desc, *next_rxd;
   4136	struct e1000_rx_buffer *buffer_info, *next_buffer;
   4137	u32 length;
   4138	unsigned int i;
   4139	int cleaned_count = 0;
   4140	bool cleaned = false;
   4141	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
   4142
   4143	i = rx_ring->next_to_clean;
   4144	rx_desc = E1000_RX_DESC(*rx_ring, i);
   4145	buffer_info = &rx_ring->buffer_info[i];
   4146
   4147	while (rx_desc->status & E1000_RXD_STAT_DD) {
   4148		struct sk_buff *skb;
   4149		u8 status;
   4150
   4151		if (*work_done >= work_to_do)
   4152			break;
   4153		(*work_done)++;
   4154		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
   4155
   4156		status = rx_desc->status;
   4157
   4158		if (++i == rx_ring->count)
   4159			i = 0;
   4160
   4161		next_rxd = E1000_RX_DESC(*rx_ring, i);
   4162		prefetch(next_rxd);
   4163
   4164		next_buffer = &rx_ring->buffer_info[i];
   4165
   4166		cleaned = true;
   4167		cleaned_count++;
   4168		dma_unmap_page(&pdev->dev, buffer_info->dma,
   4169			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
   4170		buffer_info->dma = 0;
   4171
   4172		length = le16_to_cpu(rx_desc->length);
   4173
   4174		/* errors is only valid for DD + EOP descriptors */
   4175		if (unlikely((status & E1000_RXD_STAT_EOP) &&
   4176		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
   4177			u8 *mapped = page_address(buffer_info->rxbuf.page);
   4178
   4179			if (e1000_tbi_should_accept(adapter, status,
   4180						    rx_desc->errors,
   4181						    length, mapped)) {
   4182				length--;
   4183			} else if (netdev->features & NETIF_F_RXALL) {
   4184				goto process_skb;
   4185			} else {
   4186				/* an error means any chain goes out the window
   4187				 * too
   4188				 */
   4189				dev_kfree_skb(rx_ring->rx_skb_top);
   4190				rx_ring->rx_skb_top = NULL;
   4191				goto next_desc;
   4192			}
   4193		}
   4194
   4195#define rxtop rx_ring->rx_skb_top
   4196process_skb:
   4197		if (!(status & E1000_RXD_STAT_EOP)) {
   4198			/* this descriptor is only the beginning (or middle) */
   4199			if (!rxtop) {
   4200				/* this is the beginning of a chain */
   4201				rxtop = napi_get_frags(&adapter->napi);
   4202				if (!rxtop)
   4203					break;
   4204
   4205				skb_fill_page_desc(rxtop, 0,
   4206						   buffer_info->rxbuf.page,
   4207						   0, length);
   4208			} else {
   4209				/* this is the middle of a chain */
   4210				skb_fill_page_desc(rxtop,
   4211				    skb_shinfo(rxtop)->nr_frags,
   4212				    buffer_info->rxbuf.page, 0, length);
   4213			}
   4214			e1000_consume_page(buffer_info, rxtop, length);
   4215			goto next_desc;
   4216		} else {
   4217			if (rxtop) {
   4218				/* end of the chain */
   4219				skb_fill_page_desc(rxtop,
   4220				    skb_shinfo(rxtop)->nr_frags,
   4221				    buffer_info->rxbuf.page, 0, length);
   4222				skb = rxtop;
   4223				rxtop = NULL;
   4224				e1000_consume_page(buffer_info, skb, length);
   4225			} else {
   4226				struct page *p;
   4227				/* no chain, got EOP, this buf is the packet
   4228				 * copybreak to save the put_page/alloc_page
   4229				 */
   4230				p = buffer_info->rxbuf.page;
   4231				if (length <= copybreak) {
   4232					u8 *vaddr;
   4233
   4234					if (likely(!(netdev->features & NETIF_F_RXFCS)))
   4235						length -= 4;
   4236					skb = e1000_alloc_rx_skb(adapter,
   4237								 length);
   4238					if (!skb)
   4239						break;
   4240
   4241					vaddr = kmap_atomic(p);
   4242					memcpy(skb_tail_pointer(skb), vaddr,
   4243					       length);
   4244					kunmap_atomic(vaddr);
   4245					/* re-use the page, so don't erase
   4246					 * buffer_info->rxbuf.page
   4247					 */
   4248					skb_put(skb, length);
   4249					e1000_rx_checksum(adapter,
   4250							  status | rx_desc->errors << 24,
   4251							  le16_to_cpu(rx_desc->csum), skb);
   4252
   4253					total_rx_bytes += skb->len;
   4254					total_rx_packets++;
   4255
   4256					e1000_receive_skb(adapter, status,
   4257							  rx_desc->special, skb);
   4258					goto next_desc;
   4259				} else {
   4260					skb = napi_get_frags(&adapter->napi);
   4261					if (!skb) {
   4262						adapter->alloc_rx_buff_failed++;
   4263						break;
   4264					}
   4265					skb_fill_page_desc(skb, 0, p, 0,
   4266							   length);
   4267					e1000_consume_page(buffer_info, skb,
   4268							   length);
   4269				}
   4270			}
   4271		}
   4272
   4273		/* Receive Checksum Offload XXX recompute due to CRC strip? */
   4274		e1000_rx_checksum(adapter,
   4275				  (u32)(status) |
   4276				  ((u32)(rx_desc->errors) << 24),
   4277				  le16_to_cpu(rx_desc->csum), skb);
   4278
   4279		total_rx_bytes += (skb->len - 4); /* don't count FCS */
   4280		if (likely(!(netdev->features & NETIF_F_RXFCS)))
   4281			pskb_trim(skb, skb->len - 4);
   4282		total_rx_packets++;
   4283
   4284		if (status & E1000_RXD_STAT_VP) {
   4285			__le16 vlan = rx_desc->special;
   4286			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
   4287
   4288			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
   4289		}
   4290
   4291		napi_gro_frags(&adapter->napi);
   4292
   4293next_desc:
   4294		rx_desc->status = 0;
   4295
   4296		/* return some buffers to hardware, one at a time is too slow */
   4297		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
   4298			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
   4299			cleaned_count = 0;
   4300		}
   4301
   4302		/* use prefetched values */
   4303		rx_desc = next_rxd;
   4304		buffer_info = next_buffer;
   4305	}
   4306	rx_ring->next_to_clean = i;
   4307
   4308	cleaned_count = E1000_DESC_UNUSED(rx_ring);
   4309	if (cleaned_count)
   4310		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
   4311
   4312	adapter->total_rx_packets += total_rx_packets;
   4313	adapter->total_rx_bytes += total_rx_bytes;
   4314	netdev->stats.rx_bytes += total_rx_bytes;
   4315	netdev->stats.rx_packets += total_rx_packets;
   4316	return cleaned;
   4317}
   4318
   4319/* this should improve performance for small packets with large amounts
   4320 * of reassembly being done in the stack
   4321 */
   4322static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
   4323				       struct e1000_rx_buffer *buffer_info,
   4324				       u32 length, const void *data)
   4325{
   4326	struct sk_buff *skb;
   4327
   4328	if (length > copybreak)
   4329		return NULL;
   4330
   4331	skb = e1000_alloc_rx_skb(adapter, length);
   4332	if (!skb)
   4333		return NULL;
   4334
   4335	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
   4336				length, DMA_FROM_DEVICE);
   4337
   4338	skb_put_data(skb, data, length);
   4339
   4340	return skb;
   4341}
   4342
   4343/**
   4344 * e1000_clean_rx_irq - Send received data up the network stack; legacy
   4345 * @adapter: board private structure
   4346 * @rx_ring: ring to clean
   4347 * @work_done: amount of napi work completed this call
   4348 * @work_to_do: max amount of work allowed for this call to do
   4349 */
   4350static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
   4351			       struct e1000_rx_ring *rx_ring,
   4352			       int *work_done, int work_to_do)
   4353{
   4354	struct net_device *netdev = adapter->netdev;
   4355	struct pci_dev *pdev = adapter->pdev;
   4356	struct e1000_rx_desc *rx_desc, *next_rxd;
   4357	struct e1000_rx_buffer *buffer_info, *next_buffer;
   4358	u32 length;
   4359	unsigned int i;
   4360	int cleaned_count = 0;
   4361	bool cleaned = false;
   4362	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
   4363
   4364	i = rx_ring->next_to_clean;
   4365	rx_desc = E1000_RX_DESC(*rx_ring, i);
   4366	buffer_info = &rx_ring->buffer_info[i];
   4367
   4368	while (rx_desc->status & E1000_RXD_STAT_DD) {
   4369		struct sk_buff *skb;
   4370		u8 *data;
   4371		u8 status;
   4372
   4373		if (*work_done >= work_to_do)
   4374			break;
   4375		(*work_done)++;
   4376		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
   4377
   4378		status = rx_desc->status;
   4379		length = le16_to_cpu(rx_desc->length);
   4380
   4381		data = buffer_info->rxbuf.data;
   4382		prefetch(data);
   4383		skb = e1000_copybreak(adapter, buffer_info, length, data);
   4384		if (!skb) {
   4385			unsigned int frag_len = e1000_frag_len(adapter);
   4386
   4387			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
   4388			if (!skb) {
   4389				adapter->alloc_rx_buff_failed++;
   4390				break;
   4391			}
   4392
   4393			skb_reserve(skb, E1000_HEADROOM);
   4394			dma_unmap_single(&pdev->dev, buffer_info->dma,
   4395					 adapter->rx_buffer_len,
   4396					 DMA_FROM_DEVICE);
   4397			buffer_info->dma = 0;
   4398			buffer_info->rxbuf.data = NULL;
   4399		}
   4400
   4401		if (++i == rx_ring->count)
   4402			i = 0;
   4403
   4404		next_rxd = E1000_RX_DESC(*rx_ring, i);
   4405		prefetch(next_rxd);
   4406
   4407		next_buffer = &rx_ring->buffer_info[i];
   4408
   4409		cleaned = true;
   4410		cleaned_count++;
   4411
   4412		/* !EOP means multiple descriptors were used to store a single
   4413		 * packet, if thats the case we need to toss it.  In fact, we
   4414		 * to toss every packet with the EOP bit clear and the next
   4415		 * frame that _does_ have the EOP bit set, as it is by
   4416		 * definition only a frame fragment
   4417		 */
   4418		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
   4419			adapter->discarding = true;
   4420
   4421		if (adapter->discarding) {
   4422			/* All receives must fit into a single buffer */
   4423			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
   4424			dev_kfree_skb(skb);
   4425			if (status & E1000_RXD_STAT_EOP)
   4426				adapter->discarding = false;
   4427			goto next_desc;
   4428		}
   4429
   4430		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
   4431			if (e1000_tbi_should_accept(adapter, status,
   4432						    rx_desc->errors,
   4433						    length, data)) {
   4434				length--;
   4435			} else if (netdev->features & NETIF_F_RXALL) {
   4436				goto process_skb;
   4437			} else {
   4438				dev_kfree_skb(skb);
   4439				goto next_desc;
   4440			}
   4441		}
   4442
   4443process_skb:
   4444		total_rx_bytes += (length - 4); /* don't count FCS */
   4445		total_rx_packets++;
   4446
   4447		if (likely(!(netdev->features & NETIF_F_RXFCS)))
   4448			/* adjust length to remove Ethernet CRC, this must be
   4449			 * done after the TBI_ACCEPT workaround above
   4450			 */
   4451			length -= 4;
   4452
   4453		if (buffer_info->rxbuf.data == NULL)
   4454			skb_put(skb, length);
   4455		else /* copybreak skb */
   4456			skb_trim(skb, length);
   4457
   4458		/* Receive Checksum Offload */
   4459		e1000_rx_checksum(adapter,
   4460				  (u32)(status) |
   4461				  ((u32)(rx_desc->errors) << 24),
   4462				  le16_to_cpu(rx_desc->csum), skb);
   4463
   4464		e1000_receive_skb(adapter, status, rx_desc->special, skb);
   4465
   4466next_desc:
   4467		rx_desc->status = 0;
   4468
   4469		/* return some buffers to hardware, one at a time is too slow */
   4470		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
   4471			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
   4472			cleaned_count = 0;
   4473		}
   4474
   4475		/* use prefetched values */
   4476		rx_desc = next_rxd;
   4477		buffer_info = next_buffer;
   4478	}
   4479	rx_ring->next_to_clean = i;
   4480
   4481	cleaned_count = E1000_DESC_UNUSED(rx_ring);
   4482	if (cleaned_count)
   4483		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
   4484
   4485	adapter->total_rx_packets += total_rx_packets;
   4486	adapter->total_rx_bytes += total_rx_bytes;
   4487	netdev->stats.rx_bytes += total_rx_bytes;
   4488	netdev->stats.rx_packets += total_rx_packets;
   4489	return cleaned;
   4490}
   4491
   4492/**
   4493 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
   4494 * @adapter: address of board private structure
   4495 * @rx_ring: pointer to receive ring structure
   4496 * @cleaned_count: number of buffers to allocate this pass
   4497 **/
   4498static void
   4499e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
   4500			     struct e1000_rx_ring *rx_ring, int cleaned_count)
   4501{
   4502	struct pci_dev *pdev = adapter->pdev;
   4503	struct e1000_rx_desc *rx_desc;
   4504	struct e1000_rx_buffer *buffer_info;
   4505	unsigned int i;
   4506
   4507	i = rx_ring->next_to_use;
   4508	buffer_info = &rx_ring->buffer_info[i];
   4509
   4510	while (cleaned_count--) {
   4511		/* allocate a new page if necessary */
   4512		if (!buffer_info->rxbuf.page) {
   4513			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
   4514			if (unlikely(!buffer_info->rxbuf.page)) {
   4515				adapter->alloc_rx_buff_failed++;
   4516				break;
   4517			}
   4518		}
   4519
   4520		if (!buffer_info->dma) {
   4521			buffer_info->dma = dma_map_page(&pdev->dev,
   4522							buffer_info->rxbuf.page, 0,
   4523							adapter->rx_buffer_len,
   4524							DMA_FROM_DEVICE);
   4525			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
   4526				put_page(buffer_info->rxbuf.page);
   4527				buffer_info->rxbuf.page = NULL;
   4528				buffer_info->dma = 0;
   4529				adapter->alloc_rx_buff_failed++;
   4530				break;
   4531			}
   4532		}
   4533
   4534		rx_desc = E1000_RX_DESC(*rx_ring, i);
   4535		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
   4536
   4537		if (unlikely(++i == rx_ring->count))
   4538			i = 0;
   4539		buffer_info = &rx_ring->buffer_info[i];
   4540	}
   4541
   4542	if (likely(rx_ring->next_to_use != i)) {
   4543		rx_ring->next_to_use = i;
   4544		if (unlikely(i-- == 0))
   4545			i = (rx_ring->count - 1);
   4546
   4547		/* Force memory writes to complete before letting h/w
   4548		 * know there are new descriptors to fetch.  (Only
   4549		 * applicable for weak-ordered memory model archs,
   4550		 * such as IA-64).
   4551		 */
   4552		dma_wmb();
   4553		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
   4554	}
   4555}
   4556
   4557/**
   4558 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
   4559 * @adapter: address of board private structure
   4560 * @rx_ring: pointer to ring struct
   4561 * @cleaned_count: number of new Rx buffers to try to allocate
   4562 **/
   4563static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
   4564				   struct e1000_rx_ring *rx_ring,
   4565				   int cleaned_count)
   4566{
   4567	struct e1000_hw *hw = &adapter->hw;
   4568	struct pci_dev *pdev = adapter->pdev;
   4569	struct e1000_rx_desc *rx_desc;
   4570	struct e1000_rx_buffer *buffer_info;
   4571	unsigned int i;
   4572	unsigned int bufsz = adapter->rx_buffer_len;
   4573
   4574	i = rx_ring->next_to_use;
   4575	buffer_info = &rx_ring->buffer_info[i];
   4576
   4577	while (cleaned_count--) {
   4578		void *data;
   4579
   4580		if (buffer_info->rxbuf.data)
   4581			goto skip;
   4582
   4583		data = e1000_alloc_frag(adapter);
   4584		if (!data) {
   4585			/* Better luck next round */
   4586			adapter->alloc_rx_buff_failed++;
   4587			break;
   4588		}
   4589
   4590		/* Fix for errata 23, can't cross 64kB boundary */
   4591		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
   4592			void *olddata = data;
   4593			e_err(rx_err, "skb align check failed: %u bytes at "
   4594			      "%p\n", bufsz, data);
   4595			/* Try again, without freeing the previous */
   4596			data = e1000_alloc_frag(adapter);
   4597			/* Failed allocation, critical failure */
   4598			if (!data) {
   4599				skb_free_frag(olddata);
   4600				adapter->alloc_rx_buff_failed++;
   4601				break;
   4602			}
   4603
   4604			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
   4605				/* give up */
   4606				skb_free_frag(data);
   4607				skb_free_frag(olddata);
   4608				adapter->alloc_rx_buff_failed++;
   4609				break;
   4610			}
   4611
   4612			/* Use new allocation */
   4613			skb_free_frag(olddata);
   4614		}
   4615		buffer_info->dma = dma_map_single(&pdev->dev,
   4616						  data,
   4617						  adapter->rx_buffer_len,
   4618						  DMA_FROM_DEVICE);
   4619		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
   4620			skb_free_frag(data);
   4621			buffer_info->dma = 0;
   4622			adapter->alloc_rx_buff_failed++;
   4623			break;
   4624		}
   4625
   4626		/* XXX if it was allocated cleanly it will never map to a
   4627		 * boundary crossing
   4628		 */
   4629
   4630		/* Fix for errata 23, can't cross 64kB boundary */
   4631		if (!e1000_check_64k_bound(adapter,
   4632					(void *)(unsigned long)buffer_info->dma,
   4633					adapter->rx_buffer_len)) {
   4634			e_err(rx_err, "dma align check failed: %u bytes at "
   4635			      "%p\n", adapter->rx_buffer_len,
   4636			      (void *)(unsigned long)buffer_info->dma);
   4637
   4638			dma_unmap_single(&pdev->dev, buffer_info->dma,
   4639					 adapter->rx_buffer_len,
   4640					 DMA_FROM_DEVICE);
   4641
   4642			skb_free_frag(data);
   4643			buffer_info->rxbuf.data = NULL;
   4644			buffer_info->dma = 0;
   4645
   4646			adapter->alloc_rx_buff_failed++;
   4647			break;
   4648		}
   4649		buffer_info->rxbuf.data = data;
   4650 skip:
   4651		rx_desc = E1000_RX_DESC(*rx_ring, i);
   4652		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
   4653
   4654		if (unlikely(++i == rx_ring->count))
   4655			i = 0;
   4656		buffer_info = &rx_ring->buffer_info[i];
   4657	}
   4658
   4659	if (likely(rx_ring->next_to_use != i)) {
   4660		rx_ring->next_to_use = i;
   4661		if (unlikely(i-- == 0))
   4662			i = (rx_ring->count - 1);
   4663
   4664		/* Force memory writes to complete before letting h/w
   4665		 * know there are new descriptors to fetch.  (Only
   4666		 * applicable for weak-ordered memory model archs,
   4667		 * such as IA-64).
   4668		 */
   4669		dma_wmb();
   4670		writel(i, hw->hw_addr + rx_ring->rdt);
   4671	}
   4672}
   4673
   4674/**
   4675 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
   4676 * @adapter: address of board private structure
   4677 **/
   4678static void e1000_smartspeed(struct e1000_adapter *adapter)
   4679{
   4680	struct e1000_hw *hw = &adapter->hw;
   4681	u16 phy_status;
   4682	u16 phy_ctrl;
   4683
   4684	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
   4685	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
   4686		return;
   4687
   4688	if (adapter->smartspeed == 0) {
   4689		/* If Master/Slave config fault is asserted twice,
   4690		 * we assume back-to-back
   4691		 */
   4692		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
   4693		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
   4694			return;
   4695		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
   4696		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
   4697			return;
   4698		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
   4699		if (phy_ctrl & CR_1000T_MS_ENABLE) {
   4700			phy_ctrl &= ~CR_1000T_MS_ENABLE;
   4701			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
   4702					    phy_ctrl);
   4703			adapter->smartspeed++;
   4704			if (!e1000_phy_setup_autoneg(hw) &&
   4705			   !e1000_read_phy_reg(hw, PHY_CTRL,
   4706					       &phy_ctrl)) {
   4707				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
   4708					     MII_CR_RESTART_AUTO_NEG);
   4709				e1000_write_phy_reg(hw, PHY_CTRL,
   4710						    phy_ctrl);
   4711			}
   4712		}
   4713		return;
   4714	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
   4715		/* If still no link, perhaps using 2/3 pair cable */
   4716		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
   4717		phy_ctrl |= CR_1000T_MS_ENABLE;
   4718		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
   4719		if (!e1000_phy_setup_autoneg(hw) &&
   4720		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
   4721			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
   4722				     MII_CR_RESTART_AUTO_NEG);
   4723			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
   4724		}
   4725	}
   4726	/* Restart process after E1000_SMARTSPEED_MAX iterations */
   4727	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
   4728		adapter->smartspeed = 0;
   4729}
   4730
   4731/**
   4732 * e1000_ioctl - handle ioctl calls
   4733 * @netdev: pointer to our netdev
   4734 * @ifr: pointer to interface request structure
   4735 * @cmd: ioctl data
   4736 **/
   4737static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
   4738{
   4739	switch (cmd) {
   4740	case SIOCGMIIPHY:
   4741	case SIOCGMIIREG:
   4742	case SIOCSMIIREG:
   4743		return e1000_mii_ioctl(netdev, ifr, cmd);
   4744	default:
   4745		return -EOPNOTSUPP;
   4746	}
   4747}
   4748
   4749/**
   4750 * e1000_mii_ioctl -
   4751 * @netdev: pointer to our netdev
   4752 * @ifr: pointer to interface request structure
   4753 * @cmd: ioctl data
   4754 **/
   4755static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
   4756			   int cmd)
   4757{
   4758	struct e1000_adapter *adapter = netdev_priv(netdev);
   4759	struct e1000_hw *hw = &adapter->hw;
   4760	struct mii_ioctl_data *data = if_mii(ifr);
   4761	int retval;
   4762	u16 mii_reg;
   4763	unsigned long flags;
   4764
   4765	if (hw->media_type != e1000_media_type_copper)
   4766		return -EOPNOTSUPP;
   4767
   4768	switch (cmd) {
   4769	case SIOCGMIIPHY:
   4770		data->phy_id = hw->phy_addr;
   4771		break;
   4772	case SIOCGMIIREG:
   4773		spin_lock_irqsave(&adapter->stats_lock, flags);
   4774		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
   4775				   &data->val_out)) {
   4776			spin_unlock_irqrestore(&adapter->stats_lock, flags);
   4777			return -EIO;
   4778		}
   4779		spin_unlock_irqrestore(&adapter->stats_lock, flags);
   4780		break;
   4781	case SIOCSMIIREG:
   4782		if (data->reg_num & ~(0x1F))
   4783			return -EFAULT;
   4784		mii_reg = data->val_in;
   4785		spin_lock_irqsave(&adapter->stats_lock, flags);
   4786		if (e1000_write_phy_reg(hw, data->reg_num,
   4787					mii_reg)) {
   4788			spin_unlock_irqrestore(&adapter->stats_lock, flags);
   4789			return -EIO;
   4790		}
   4791		spin_unlock_irqrestore(&adapter->stats_lock, flags);
   4792		if (hw->media_type == e1000_media_type_copper) {
   4793			switch (data->reg_num) {
   4794			case PHY_CTRL:
   4795				if (mii_reg & MII_CR_POWER_DOWN)
   4796					break;
   4797				if (mii_reg & MII_CR_AUTO_NEG_EN) {
   4798					hw->autoneg = 1;
   4799					hw->autoneg_advertised = 0x2F;
   4800				} else {
   4801					u32 speed;
   4802					if (mii_reg & 0x40)
   4803						speed = SPEED_1000;
   4804					else if (mii_reg & 0x2000)
   4805						speed = SPEED_100;
   4806					else
   4807						speed = SPEED_10;
   4808					retval = e1000_set_spd_dplx(
   4809						adapter, speed,
   4810						((mii_reg & 0x100)
   4811						 ? DUPLEX_FULL :
   4812						 DUPLEX_HALF));
   4813					if (retval)
   4814						return retval;
   4815				}
   4816				if (netif_running(adapter->netdev))
   4817					e1000_reinit_locked(adapter);
   4818				else
   4819					e1000_reset(adapter);
   4820				break;
   4821			case M88E1000_PHY_SPEC_CTRL:
   4822			case M88E1000_EXT_PHY_SPEC_CTRL:
   4823				if (e1000_phy_reset(hw))
   4824					return -EIO;
   4825				break;
   4826			}
   4827		} else {
   4828			switch (data->reg_num) {
   4829			case PHY_CTRL:
   4830				if (mii_reg & MII_CR_POWER_DOWN)
   4831					break;
   4832				if (netif_running(adapter->netdev))
   4833					e1000_reinit_locked(adapter);
   4834				else
   4835					e1000_reset(adapter);
   4836				break;
   4837			}
   4838		}
   4839		break;
   4840	default:
   4841		return -EOPNOTSUPP;
   4842	}
   4843	return E1000_SUCCESS;
   4844}
   4845
   4846void e1000_pci_set_mwi(struct e1000_hw *hw)
   4847{
   4848	struct e1000_adapter *adapter = hw->back;
   4849	int ret_val = pci_set_mwi(adapter->pdev);
   4850
   4851	if (ret_val)
   4852		e_err(probe, "Error in setting MWI\n");
   4853}
   4854
   4855void e1000_pci_clear_mwi(struct e1000_hw *hw)
   4856{
   4857	struct e1000_adapter *adapter = hw->back;
   4858
   4859	pci_clear_mwi(adapter->pdev);
   4860}
   4861
   4862int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
   4863{
   4864	struct e1000_adapter *adapter = hw->back;
   4865	return pcix_get_mmrbc(adapter->pdev);
   4866}
   4867
   4868void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
   4869{
   4870	struct e1000_adapter *adapter = hw->back;
   4871	pcix_set_mmrbc(adapter->pdev, mmrbc);
   4872}
   4873
   4874void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
   4875{
   4876	outl(value, port);
   4877}
   4878
   4879static bool e1000_vlan_used(struct e1000_adapter *adapter)
   4880{
   4881	u16 vid;
   4882
   4883	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
   4884		return true;
   4885	return false;
   4886}
   4887
   4888static void __e1000_vlan_mode(struct e1000_adapter *adapter,
   4889			      netdev_features_t features)
   4890{
   4891	struct e1000_hw *hw = &adapter->hw;
   4892	u32 ctrl;
   4893
   4894	ctrl = er32(CTRL);
   4895	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
   4896		/* enable VLAN tag insert/strip */
   4897		ctrl |= E1000_CTRL_VME;
   4898	} else {
   4899		/* disable VLAN tag insert/strip */
   4900		ctrl &= ~E1000_CTRL_VME;
   4901	}
   4902	ew32(CTRL, ctrl);
   4903}
   4904static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
   4905				     bool filter_on)
   4906{
   4907	struct e1000_hw *hw = &adapter->hw;
   4908	u32 rctl;
   4909
   4910	if (!test_bit(__E1000_DOWN, &adapter->flags))
   4911		e1000_irq_disable(adapter);
   4912
   4913	__e1000_vlan_mode(adapter, adapter->netdev->features);
   4914	if (filter_on) {
   4915		/* enable VLAN receive filtering */
   4916		rctl = er32(RCTL);
   4917		rctl &= ~E1000_RCTL_CFIEN;
   4918		if (!(adapter->netdev->flags & IFF_PROMISC))
   4919			rctl |= E1000_RCTL_VFE;
   4920		ew32(RCTL, rctl);
   4921		e1000_update_mng_vlan(adapter);
   4922	} else {
   4923		/* disable VLAN receive filtering */
   4924		rctl = er32(RCTL);
   4925		rctl &= ~E1000_RCTL_VFE;
   4926		ew32(RCTL, rctl);
   4927	}
   4928
   4929	if (!test_bit(__E1000_DOWN, &adapter->flags))
   4930		e1000_irq_enable(adapter);
   4931}
   4932
   4933static void e1000_vlan_mode(struct net_device *netdev,
   4934			    netdev_features_t features)
   4935{
   4936	struct e1000_adapter *adapter = netdev_priv(netdev);
   4937
   4938	if (!test_bit(__E1000_DOWN, &adapter->flags))
   4939		e1000_irq_disable(adapter);
   4940
   4941	__e1000_vlan_mode(adapter, features);
   4942
   4943	if (!test_bit(__E1000_DOWN, &adapter->flags))
   4944		e1000_irq_enable(adapter);
   4945}
   4946
   4947static int e1000_vlan_rx_add_vid(struct net_device *netdev,
   4948				 __be16 proto, u16 vid)
   4949{
   4950	struct e1000_adapter *adapter = netdev_priv(netdev);
   4951	struct e1000_hw *hw = &adapter->hw;
   4952	u32 vfta, index;
   4953
   4954	if ((hw->mng_cookie.status &
   4955	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
   4956	    (vid == adapter->mng_vlan_id))
   4957		return 0;
   4958
   4959	if (!e1000_vlan_used(adapter))
   4960		e1000_vlan_filter_on_off(adapter, true);
   4961
   4962	/* add VID to filter table */
   4963	index = (vid >> 5) & 0x7F;
   4964	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
   4965	vfta |= (1 << (vid & 0x1F));
   4966	e1000_write_vfta(hw, index, vfta);
   4967
   4968	set_bit(vid, adapter->active_vlans);
   4969
   4970	return 0;
   4971}
   4972
   4973static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
   4974				  __be16 proto, u16 vid)
   4975{
   4976	struct e1000_adapter *adapter = netdev_priv(netdev);
   4977	struct e1000_hw *hw = &adapter->hw;
   4978	u32 vfta, index;
   4979
   4980	if (!test_bit(__E1000_DOWN, &adapter->flags))
   4981		e1000_irq_disable(adapter);
   4982	if (!test_bit(__E1000_DOWN, &adapter->flags))
   4983		e1000_irq_enable(adapter);
   4984
   4985	/* remove VID from filter table */
   4986	index = (vid >> 5) & 0x7F;
   4987	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
   4988	vfta &= ~(1 << (vid & 0x1F));
   4989	e1000_write_vfta(hw, index, vfta);
   4990
   4991	clear_bit(vid, adapter->active_vlans);
   4992
   4993	if (!e1000_vlan_used(adapter))
   4994		e1000_vlan_filter_on_off(adapter, false);
   4995
   4996	return 0;
   4997}
   4998
   4999static void e1000_restore_vlan(struct e1000_adapter *adapter)
   5000{
   5001	u16 vid;
   5002
   5003	if (!e1000_vlan_used(adapter))
   5004		return;
   5005
   5006	e1000_vlan_filter_on_off(adapter, true);
   5007	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
   5008		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
   5009}
   5010
   5011int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
   5012{
   5013	struct e1000_hw *hw = &adapter->hw;
   5014
   5015	hw->autoneg = 0;
   5016
   5017	/* Make sure dplx is at most 1 bit and lsb of speed is not set
   5018	 * for the switch() below to work
   5019	 */
   5020	if ((spd & 1) || (dplx & ~1))
   5021		goto err_inval;
   5022
   5023	/* Fiber NICs only allow 1000 gbps Full duplex */
   5024	if ((hw->media_type == e1000_media_type_fiber) &&
   5025	    spd != SPEED_1000 &&
   5026	    dplx != DUPLEX_FULL)
   5027		goto err_inval;
   5028
   5029	switch (spd + dplx) {
   5030	case SPEED_10 + DUPLEX_HALF:
   5031		hw->forced_speed_duplex = e1000_10_half;
   5032		break;
   5033	case SPEED_10 + DUPLEX_FULL:
   5034		hw->forced_speed_duplex = e1000_10_full;
   5035		break;
   5036	case SPEED_100 + DUPLEX_HALF:
   5037		hw->forced_speed_duplex = e1000_100_half;
   5038		break;
   5039	case SPEED_100 + DUPLEX_FULL:
   5040		hw->forced_speed_duplex = e1000_100_full;
   5041		break;
   5042	case SPEED_1000 + DUPLEX_FULL:
   5043		hw->autoneg = 1;
   5044		hw->autoneg_advertised = ADVERTISE_1000_FULL;
   5045		break;
   5046	case SPEED_1000 + DUPLEX_HALF: /* not supported */
   5047	default:
   5048		goto err_inval;
   5049	}
   5050
   5051	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
   5052	hw->mdix = AUTO_ALL_MODES;
   5053
   5054	return 0;
   5055
   5056err_inval:
   5057	e_err(probe, "Unsupported Speed/Duplex configuration\n");
   5058	return -EINVAL;
   5059}
   5060
   5061static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
   5062{
   5063	struct net_device *netdev = pci_get_drvdata(pdev);
   5064	struct e1000_adapter *adapter = netdev_priv(netdev);
   5065	struct e1000_hw *hw = &adapter->hw;
   5066	u32 ctrl, ctrl_ext, rctl, status;
   5067	u32 wufc = adapter->wol;
   5068
   5069	netif_device_detach(netdev);
   5070
   5071	if (netif_running(netdev)) {
   5072		int count = E1000_CHECK_RESET_COUNT;
   5073
   5074		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
   5075			usleep_range(10000, 20000);
   5076
   5077		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
   5078		e1000_down(adapter);
   5079	}
   5080
   5081	status = er32(STATUS);
   5082	if (status & E1000_STATUS_LU)
   5083		wufc &= ~E1000_WUFC_LNKC;
   5084
   5085	if (wufc) {
   5086		e1000_setup_rctl(adapter);
   5087		e1000_set_rx_mode(netdev);
   5088
   5089		rctl = er32(RCTL);
   5090
   5091		/* turn on all-multi mode if wake on multicast is enabled */
   5092		if (wufc & E1000_WUFC_MC)
   5093			rctl |= E1000_RCTL_MPE;
   5094
   5095		/* enable receives in the hardware */
   5096		ew32(RCTL, rctl | E1000_RCTL_EN);
   5097
   5098		if (hw->mac_type >= e1000_82540) {
   5099			ctrl = er32(CTRL);
   5100			/* advertise wake from D3Cold */
   5101			#define E1000_CTRL_ADVD3WUC 0x00100000
   5102			/* phy power management enable */
   5103			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
   5104			ctrl |= E1000_CTRL_ADVD3WUC |
   5105				E1000_CTRL_EN_PHY_PWR_MGMT;
   5106			ew32(CTRL, ctrl);
   5107		}
   5108
   5109		if (hw->media_type == e1000_media_type_fiber ||
   5110		    hw->media_type == e1000_media_type_internal_serdes) {
   5111			/* keep the laser running in D3 */
   5112			ctrl_ext = er32(CTRL_EXT);
   5113			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
   5114			ew32(CTRL_EXT, ctrl_ext);
   5115		}
   5116
   5117		ew32(WUC, E1000_WUC_PME_EN);
   5118		ew32(WUFC, wufc);
   5119	} else {
   5120		ew32(WUC, 0);
   5121		ew32(WUFC, 0);
   5122	}
   5123
   5124	e1000_release_manageability(adapter);
   5125
   5126	*enable_wake = !!wufc;
   5127
   5128	/* make sure adapter isn't asleep if manageability is enabled */
   5129	if (adapter->en_mng_pt)
   5130		*enable_wake = true;
   5131
   5132	if (netif_running(netdev))
   5133		e1000_free_irq(adapter);
   5134
   5135	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
   5136		pci_disable_device(pdev);
   5137
   5138	return 0;
   5139}
   5140
   5141static int __maybe_unused e1000_suspend(struct device *dev)
   5142{
   5143	int retval;
   5144	struct pci_dev *pdev = to_pci_dev(dev);
   5145	bool wake;
   5146
   5147	retval = __e1000_shutdown(pdev, &wake);
   5148	device_set_wakeup_enable(dev, wake);
   5149
   5150	return retval;
   5151}
   5152
   5153static int __maybe_unused e1000_resume(struct device *dev)
   5154{
   5155	struct pci_dev *pdev = to_pci_dev(dev);
   5156	struct net_device *netdev = pci_get_drvdata(pdev);
   5157	struct e1000_adapter *adapter = netdev_priv(netdev);
   5158	struct e1000_hw *hw = &adapter->hw;
   5159	u32 err;
   5160
   5161	if (adapter->need_ioport)
   5162		err = pci_enable_device(pdev);
   5163	else
   5164		err = pci_enable_device_mem(pdev);
   5165	if (err) {
   5166		pr_err("Cannot enable PCI device from suspend\n");
   5167		return err;
   5168	}
   5169
   5170	/* flush memory to make sure state is correct */
   5171	smp_mb__before_atomic();
   5172	clear_bit(__E1000_DISABLED, &adapter->flags);
   5173	pci_set_master(pdev);
   5174
   5175	pci_enable_wake(pdev, PCI_D3hot, 0);
   5176	pci_enable_wake(pdev, PCI_D3cold, 0);
   5177
   5178	if (netif_running(netdev)) {
   5179		err = e1000_request_irq(adapter);
   5180		if (err)
   5181			return err;
   5182	}
   5183
   5184	e1000_power_up_phy(adapter);
   5185	e1000_reset(adapter);
   5186	ew32(WUS, ~0);
   5187
   5188	e1000_init_manageability(adapter);
   5189
   5190	if (netif_running(netdev))
   5191		e1000_up(adapter);
   5192
   5193	netif_device_attach(netdev);
   5194
   5195	return 0;
   5196}
   5197
   5198static void e1000_shutdown(struct pci_dev *pdev)
   5199{
   5200	bool wake;
   5201
   5202	__e1000_shutdown(pdev, &wake);
   5203
   5204	if (system_state == SYSTEM_POWER_OFF) {
   5205		pci_wake_from_d3(pdev, wake);
   5206		pci_set_power_state(pdev, PCI_D3hot);
   5207	}
   5208}
   5209
   5210#ifdef CONFIG_NET_POLL_CONTROLLER
   5211/* Polling 'interrupt' - used by things like netconsole to send skbs
   5212 * without having to re-enable interrupts. It's not called while
   5213 * the interrupt routine is executing.
   5214 */
   5215static void e1000_netpoll(struct net_device *netdev)
   5216{
   5217	struct e1000_adapter *adapter = netdev_priv(netdev);
   5218
   5219	if (disable_hardirq(adapter->pdev->irq))
   5220		e1000_intr(adapter->pdev->irq, netdev);
   5221	enable_irq(adapter->pdev->irq);
   5222}
   5223#endif
   5224
   5225/**
   5226 * e1000_io_error_detected - called when PCI error is detected
   5227 * @pdev: Pointer to PCI device
   5228 * @state: The current pci connection state
   5229 *
   5230 * This function is called after a PCI bus error affecting
   5231 * this device has been detected.
   5232 */
   5233static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
   5234						pci_channel_state_t state)
   5235{
   5236	struct net_device *netdev = pci_get_drvdata(pdev);
   5237	struct e1000_adapter *adapter = netdev_priv(netdev);
   5238
   5239	netif_device_detach(netdev);
   5240
   5241	if (state == pci_channel_io_perm_failure)
   5242		return PCI_ERS_RESULT_DISCONNECT;
   5243
   5244	if (netif_running(netdev))
   5245		e1000_down(adapter);
   5246
   5247	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
   5248		pci_disable_device(pdev);
   5249
   5250	/* Request a slot reset. */
   5251	return PCI_ERS_RESULT_NEED_RESET;
   5252}
   5253
   5254/**
   5255 * e1000_io_slot_reset - called after the pci bus has been reset.
   5256 * @pdev: Pointer to PCI device
   5257 *
   5258 * Restart the card from scratch, as if from a cold-boot. Implementation
   5259 * resembles the first-half of the e1000_resume routine.
   5260 */
   5261static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
   5262{
   5263	struct net_device *netdev = pci_get_drvdata(pdev);
   5264	struct e1000_adapter *adapter = netdev_priv(netdev);
   5265	struct e1000_hw *hw = &adapter->hw;
   5266	int err;
   5267
   5268	if (adapter->need_ioport)
   5269		err = pci_enable_device(pdev);
   5270	else
   5271		err = pci_enable_device_mem(pdev);
   5272	if (err) {
   5273		pr_err("Cannot re-enable PCI device after reset.\n");
   5274		return PCI_ERS_RESULT_DISCONNECT;
   5275	}
   5276
   5277	/* flush memory to make sure state is correct */
   5278	smp_mb__before_atomic();
   5279	clear_bit(__E1000_DISABLED, &adapter->flags);
   5280	pci_set_master(pdev);
   5281
   5282	pci_enable_wake(pdev, PCI_D3hot, 0);
   5283	pci_enable_wake(pdev, PCI_D3cold, 0);
   5284
   5285	e1000_reset(adapter);
   5286	ew32(WUS, ~0);
   5287
   5288	return PCI_ERS_RESULT_RECOVERED;
   5289}
   5290
   5291/**
   5292 * e1000_io_resume - called when traffic can start flowing again.
   5293 * @pdev: Pointer to PCI device
   5294 *
   5295 * This callback is called when the error recovery driver tells us that
   5296 * its OK to resume normal operation. Implementation resembles the
   5297 * second-half of the e1000_resume routine.
   5298 */
   5299static void e1000_io_resume(struct pci_dev *pdev)
   5300{
   5301	struct net_device *netdev = pci_get_drvdata(pdev);
   5302	struct e1000_adapter *adapter = netdev_priv(netdev);
   5303
   5304	e1000_init_manageability(adapter);
   5305
   5306	if (netif_running(netdev)) {
   5307		if (e1000_up(adapter)) {
   5308			pr_info("can't bring device back up after reset\n");
   5309			return;
   5310		}
   5311	}
   5312
   5313	netif_device_attach(netdev);
   5314}
   5315
   5316/* e1000_main.c */