cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

80003es2lan.c (37369B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2018 Intel Corporation. */
      3
      4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
      5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
      6 */
      7
      8#include "e1000.h"
      9
     10/* A table for the GG82563 cable length where the range is defined
     11 * with a lower bound at "index" and the upper bound at
     12 * "index + 5".
     13 */
     14static const u16 e1000_gg82563_cable_length_table[] = {
     15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
     16};
     17
     18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
     19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
     20
     21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
     22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
     23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
     24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
     25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
     26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
     27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
     28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
     29					   u16 *data);
     30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
     31					    u16 data);
     32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
     33
     34/**
     35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
     36 *  @hw: pointer to the HW structure
     37 **/
     38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
     39{
     40	struct e1000_phy_info *phy = &hw->phy;
     41	s32 ret_val;
     42
     43	if (hw->phy.media_type != e1000_media_type_copper) {
     44		phy->type = e1000_phy_none;
     45		return 0;
     46	} else {
     47		phy->ops.power_up = e1000_power_up_phy_copper;
     48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
     49	}
     50
     51	phy->addr = 1;
     52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
     53	phy->reset_delay_us = 100;
     54	phy->type = e1000_phy_gg82563;
     55
     56	/* This can only be done after all function pointers are setup. */
     57	ret_val = e1000e_get_phy_id(hw);
     58
     59	/* Verify phy id */
     60	if (phy->id != GG82563_E_PHY_ID)
     61		return -E1000_ERR_PHY;
     62
     63	return ret_val;
     64}
     65
     66/**
     67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
     68 *  @hw: pointer to the HW structure
     69 **/
     70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
     71{
     72	struct e1000_nvm_info *nvm = &hw->nvm;
     73	u32 eecd = er32(EECD);
     74	u16 size;
     75
     76	nvm->opcode_bits = 8;
     77	nvm->delay_usec = 1;
     78	switch (nvm->override) {
     79	case e1000_nvm_override_spi_large:
     80		nvm->page_size = 32;
     81		nvm->address_bits = 16;
     82		break;
     83	case e1000_nvm_override_spi_small:
     84		nvm->page_size = 8;
     85		nvm->address_bits = 8;
     86		break;
     87	default:
     88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
     89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
     90		break;
     91	}
     92
     93	nvm->type = e1000_nvm_eeprom_spi;
     94
     95	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
     96		     E1000_EECD_SIZE_EX_SHIFT);
     97
     98	/* Added to a constant, "size" becomes the left-shift value
     99	 * for setting word_size.
    100	 */
    101	size += NVM_WORD_SIZE_BASE_SHIFT;
    102
    103	/* EEPROM access above 16k is unsupported */
    104	if (size > 14)
    105		size = 14;
    106	nvm->word_size = BIT(size);
    107
    108	return 0;
    109}
    110
    111/**
    112 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
    113 *  @hw: pointer to the HW structure
    114 **/
    115static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
    116{
    117	struct e1000_mac_info *mac = &hw->mac;
    118
    119	/* Set media type and media-dependent function pointers */
    120	switch (hw->adapter->pdev->device) {
    121	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
    122		hw->phy.media_type = e1000_media_type_internal_serdes;
    123		mac->ops.check_for_link = e1000e_check_for_serdes_link;
    124		mac->ops.setup_physical_interface =
    125		    e1000e_setup_fiber_serdes_link;
    126		break;
    127	default:
    128		hw->phy.media_type = e1000_media_type_copper;
    129		mac->ops.check_for_link = e1000e_check_for_copper_link;
    130		mac->ops.setup_physical_interface =
    131		    e1000_setup_copper_link_80003es2lan;
    132		break;
    133	}
    134
    135	/* Set mta register count */
    136	mac->mta_reg_count = 128;
    137	/* Set rar entry count */
    138	mac->rar_entry_count = E1000_RAR_ENTRIES;
    139	/* FWSM register */
    140	mac->has_fwsm = true;
    141	/* ARC supported; valid only if manageability features are enabled. */
    142	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
    143	/* Adaptive IFS not supported */
    144	mac->adaptive_ifs = false;
    145
    146	/* set lan id for port to determine which phy lock to use */
    147	hw->mac.ops.set_lan_id(hw);
    148
    149	return 0;
    150}
    151
    152static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
    153{
    154	struct e1000_hw *hw = &adapter->hw;
    155	s32 rc;
    156
    157	rc = e1000_init_mac_params_80003es2lan(hw);
    158	if (rc)
    159		return rc;
    160
    161	rc = e1000_init_nvm_params_80003es2lan(hw);
    162	if (rc)
    163		return rc;
    164
    165	rc = e1000_init_phy_params_80003es2lan(hw);
    166	if (rc)
    167		return rc;
    168
    169	return 0;
    170}
    171
    172/**
    173 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
    174 *  @hw: pointer to the HW structure
    175 *
    176 *  A wrapper to acquire access rights to the correct PHY.
    177 **/
    178static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
    179{
    180	u16 mask;
    181
    182	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
    183	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
    184}
    185
    186/**
    187 *  e1000_release_phy_80003es2lan - Release rights to access PHY
    188 *  @hw: pointer to the HW structure
    189 *
    190 *  A wrapper to release access rights to the correct PHY.
    191 **/
    192static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
    193{
    194	u16 mask;
    195
    196	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
    197	e1000_release_swfw_sync_80003es2lan(hw, mask);
    198}
    199
    200/**
    201 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
    202 *  @hw: pointer to the HW structure
    203 *
    204 *  Acquire the semaphore to access the Kumeran interface.
    205 *
    206 **/
    207static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
    208{
    209	u16 mask;
    210
    211	mask = E1000_SWFW_CSR_SM;
    212
    213	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
    214}
    215
    216/**
    217 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
    218 *  @hw: pointer to the HW structure
    219 *
    220 *  Release the semaphore used to access the Kumeran interface
    221 **/
    222static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
    223{
    224	u16 mask;
    225
    226	mask = E1000_SWFW_CSR_SM;
    227
    228	e1000_release_swfw_sync_80003es2lan(hw, mask);
    229}
    230
    231/**
    232 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
    233 *  @hw: pointer to the HW structure
    234 *
    235 *  Acquire the semaphore to access the EEPROM.
    236 **/
    237static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
    238{
    239	s32 ret_val;
    240
    241	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
    242	if (ret_val)
    243		return ret_val;
    244
    245	ret_val = e1000e_acquire_nvm(hw);
    246
    247	if (ret_val)
    248		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
    249
    250	return ret_val;
    251}
    252
    253/**
    254 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
    255 *  @hw: pointer to the HW structure
    256 *
    257 *  Release the semaphore used to access the EEPROM.
    258 **/
    259static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
    260{
    261	e1000e_release_nvm(hw);
    262	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
    263}
    264
    265/**
    266 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
    267 *  @hw: pointer to the HW structure
    268 *  @mask: specifies which semaphore to acquire
    269 *
    270 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
    271 *  will also specify which port we're acquiring the lock for.
    272 **/
    273static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
    274{
    275	u32 swfw_sync;
    276	u32 swmask = mask;
    277	u32 fwmask = mask << 16;
    278	s32 i = 0;
    279	s32 timeout = 50;
    280
    281	while (i < timeout) {
    282		if (e1000e_get_hw_semaphore(hw))
    283			return -E1000_ERR_SWFW_SYNC;
    284
    285		swfw_sync = er32(SW_FW_SYNC);
    286		if (!(swfw_sync & (fwmask | swmask)))
    287			break;
    288
    289		/* Firmware currently using resource (fwmask)
    290		 * or other software thread using resource (swmask)
    291		 */
    292		e1000e_put_hw_semaphore(hw);
    293		mdelay(5);
    294		i++;
    295	}
    296
    297	if (i == timeout) {
    298		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
    299		return -E1000_ERR_SWFW_SYNC;
    300	}
    301
    302	swfw_sync |= swmask;
    303	ew32(SW_FW_SYNC, swfw_sync);
    304
    305	e1000e_put_hw_semaphore(hw);
    306
    307	return 0;
    308}
    309
    310/**
    311 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
    312 *  @hw: pointer to the HW structure
    313 *  @mask: specifies which semaphore to acquire
    314 *
    315 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
    316 *  will also specify which port we're releasing the lock for.
    317 **/
    318static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
    319{
    320	u32 swfw_sync;
    321
    322	while (e1000e_get_hw_semaphore(hw) != 0)
    323		; /* Empty */
    324
    325	swfw_sync = er32(SW_FW_SYNC);
    326	swfw_sync &= ~mask;
    327	ew32(SW_FW_SYNC, swfw_sync);
    328
    329	e1000e_put_hw_semaphore(hw);
    330}
    331
    332/**
    333 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
    334 *  @hw: pointer to the HW structure
    335 *  @offset: offset of the register to read
    336 *  @data: pointer to the data returned from the operation
    337 *
    338 *  Read the GG82563 PHY register.
    339 **/
    340static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
    341						  u32 offset, u16 *data)
    342{
    343	s32 ret_val;
    344	u32 page_select;
    345	u16 temp;
    346
    347	ret_val = e1000_acquire_phy_80003es2lan(hw);
    348	if (ret_val)
    349		return ret_val;
    350
    351	/* Select Configuration Page */
    352	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
    353		page_select = GG82563_PHY_PAGE_SELECT;
    354	} else {
    355		/* Use Alternative Page Select register to access
    356		 * registers 30 and 31
    357		 */
    358		page_select = GG82563_PHY_PAGE_SELECT_ALT;
    359	}
    360
    361	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
    362	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
    363	if (ret_val) {
    364		e1000_release_phy_80003es2lan(hw);
    365		return ret_val;
    366	}
    367
    368	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
    369		/* The "ready" bit in the MDIC register may be incorrectly set
    370		 * before the device has completed the "Page Select" MDI
    371		 * transaction.  So we wait 200us after each MDI command...
    372		 */
    373		usleep_range(200, 400);
    374
    375		/* ...and verify the command was successful. */
    376		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
    377
    378		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
    379			e1000_release_phy_80003es2lan(hw);
    380			return -E1000_ERR_PHY;
    381		}
    382
    383		usleep_range(200, 400);
    384
    385		ret_val = e1000e_read_phy_reg_mdic(hw,
    386						   MAX_PHY_REG_ADDRESS & offset,
    387						   data);
    388
    389		usleep_range(200, 400);
    390	} else {
    391		ret_val = e1000e_read_phy_reg_mdic(hw,
    392						   MAX_PHY_REG_ADDRESS & offset,
    393						   data);
    394	}
    395
    396	e1000_release_phy_80003es2lan(hw);
    397
    398	return ret_val;
    399}
    400
    401/**
    402 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
    403 *  @hw: pointer to the HW structure
    404 *  @offset: offset of the register to read
    405 *  @data: value to write to the register
    406 *
    407 *  Write to the GG82563 PHY register.
    408 **/
    409static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
    410						   u32 offset, u16 data)
    411{
    412	s32 ret_val;
    413	u32 page_select;
    414	u16 temp;
    415
    416	ret_val = e1000_acquire_phy_80003es2lan(hw);
    417	if (ret_val)
    418		return ret_val;
    419
    420	/* Select Configuration Page */
    421	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
    422		page_select = GG82563_PHY_PAGE_SELECT;
    423	} else {
    424		/* Use Alternative Page Select register to access
    425		 * registers 30 and 31
    426		 */
    427		page_select = GG82563_PHY_PAGE_SELECT_ALT;
    428	}
    429
    430	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
    431	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
    432	if (ret_val) {
    433		e1000_release_phy_80003es2lan(hw);
    434		return ret_val;
    435	}
    436
    437	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
    438		/* The "ready" bit in the MDIC register may be incorrectly set
    439		 * before the device has completed the "Page Select" MDI
    440		 * transaction.  So we wait 200us after each MDI command...
    441		 */
    442		usleep_range(200, 400);
    443
    444		/* ...and verify the command was successful. */
    445		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
    446
    447		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
    448			e1000_release_phy_80003es2lan(hw);
    449			return -E1000_ERR_PHY;
    450		}
    451
    452		usleep_range(200, 400);
    453
    454		ret_val = e1000e_write_phy_reg_mdic(hw,
    455						    MAX_PHY_REG_ADDRESS &
    456						    offset, data);
    457
    458		usleep_range(200, 400);
    459	} else {
    460		ret_val = e1000e_write_phy_reg_mdic(hw,
    461						    MAX_PHY_REG_ADDRESS &
    462						    offset, data);
    463	}
    464
    465	e1000_release_phy_80003es2lan(hw);
    466
    467	return ret_val;
    468}
    469
    470/**
    471 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
    472 *  @hw: pointer to the HW structure
    473 *  @offset: offset of the register to read
    474 *  @words: number of words to write
    475 *  @data: buffer of data to write to the NVM
    476 *
    477 *  Write "words" of data to the ESB2 NVM.
    478 **/
    479static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
    480				       u16 words, u16 *data)
    481{
    482	return e1000e_write_nvm_spi(hw, offset, words, data);
    483}
    484
    485/**
    486 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
    487 *  @hw: pointer to the HW structure
    488 *
    489 *  Wait a specific amount of time for manageability processes to complete.
    490 *  This is a function pointer entry point called by the phy module.
    491 **/
    492static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
    493{
    494	s32 timeout = PHY_CFG_TIMEOUT;
    495	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
    496
    497	if (hw->bus.func == 1)
    498		mask = E1000_NVM_CFG_DONE_PORT_1;
    499
    500	while (timeout) {
    501		if (er32(EEMNGCTL) & mask)
    502			break;
    503		usleep_range(1000, 2000);
    504		timeout--;
    505	}
    506	if (!timeout) {
    507		e_dbg("MNG configuration cycle has not completed.\n");
    508		return -E1000_ERR_RESET;
    509	}
    510
    511	return 0;
    512}
    513
    514/**
    515 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
    516 *  @hw: pointer to the HW structure
    517 *
    518 *  Force the speed and duplex settings onto the PHY.  This is a
    519 *  function pointer entry point called by the phy module.
    520 **/
    521static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
    522{
    523	s32 ret_val;
    524	u16 phy_data;
    525	bool link;
    526
    527	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
    528	 * forced whenever speed and duplex are forced.
    529	 */
    530	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
    531	if (ret_val)
    532		return ret_val;
    533
    534	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
    535	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
    536	if (ret_val)
    537		return ret_val;
    538
    539	e_dbg("GG82563 PSCR: %X\n", phy_data);
    540
    541	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
    542	if (ret_val)
    543		return ret_val;
    544
    545	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
    546
    547	/* Reset the phy to commit changes. */
    548	phy_data |= BMCR_RESET;
    549
    550	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
    551	if (ret_val)
    552		return ret_val;
    553
    554	udelay(1);
    555
    556	if (hw->phy.autoneg_wait_to_complete) {
    557		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
    558
    559		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
    560						      100000, &link);
    561		if (ret_val)
    562			return ret_val;
    563
    564		if (!link) {
    565			/* We didn't get link.
    566			 * Reset the DSP and cross our fingers.
    567			 */
    568			ret_val = e1000e_phy_reset_dsp(hw);
    569			if (ret_val)
    570				return ret_val;
    571		}
    572
    573		/* Try once more */
    574		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
    575						      100000, &link);
    576		if (ret_val)
    577			return ret_val;
    578	}
    579
    580	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
    581	if (ret_val)
    582		return ret_val;
    583
    584	/* Resetting the phy means we need to verify the TX_CLK corresponds
    585	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
    586	 */
    587	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
    588	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
    589		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
    590	else
    591		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
    592
    593	/* In addition, we must re-enable CRS on Tx for both half and full
    594	 * duplex.
    595	 */
    596	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
    597	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
    598
    599	return ret_val;
    600}
    601
    602/**
    603 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
    604 *  @hw: pointer to the HW structure
    605 *
    606 *  Find the approximate cable length as measured by the GG82563 PHY.
    607 *  This is a function pointer entry point called by the phy module.
    608 **/
    609static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
    610{
    611	struct e1000_phy_info *phy = &hw->phy;
    612	s32 ret_val;
    613	u16 phy_data, index;
    614
    615	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
    616	if (ret_val)
    617		return ret_val;
    618
    619	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
    620
    621	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
    622		return -E1000_ERR_PHY;
    623
    624	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
    625	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
    626
    627	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
    628
    629	return 0;
    630}
    631
    632/**
    633 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
    634 *  @hw: pointer to the HW structure
    635 *  @speed: pointer to speed buffer
    636 *  @duplex: pointer to duplex buffer
    637 *
    638 *  Retrieve the current speed and duplex configuration.
    639 **/
    640static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
    641					      u16 *duplex)
    642{
    643	s32 ret_val;
    644
    645	if (hw->phy.media_type == e1000_media_type_copper) {
    646		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
    647		hw->phy.ops.cfg_on_link_up(hw);
    648	} else {
    649		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
    650								   speed,
    651								   duplex);
    652	}
    653
    654	return ret_val;
    655}
    656
    657/**
    658 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
    659 *  @hw: pointer to the HW structure
    660 *
    661 *  Perform a global reset to the ESB2 controller.
    662 **/
    663static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
    664{
    665	u32 ctrl;
    666	s32 ret_val;
    667	u16 kum_reg_data;
    668
    669	/* Prevent the PCI-E bus from sticking if there is no TLP connection
    670	 * on the last TLP read/write transaction when MAC is reset.
    671	 */
    672	ret_val = e1000e_disable_pcie_master(hw);
    673	if (ret_val)
    674		e_dbg("PCI-E Master disable polling has failed.\n");
    675
    676	e_dbg("Masking off all interrupts\n");
    677	ew32(IMC, 0xffffffff);
    678
    679	ew32(RCTL, 0);
    680	ew32(TCTL, E1000_TCTL_PSP);
    681	e1e_flush();
    682
    683	usleep_range(10000, 11000);
    684
    685	ctrl = er32(CTRL);
    686
    687	ret_val = e1000_acquire_phy_80003es2lan(hw);
    688	if (ret_val)
    689		return ret_val;
    690
    691	e_dbg("Issuing a global reset to MAC\n");
    692	ew32(CTRL, ctrl | E1000_CTRL_RST);
    693	e1000_release_phy_80003es2lan(hw);
    694
    695	/* Disable IBIST slave mode (far-end loopback) */
    696	ret_val =
    697	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
    698					    &kum_reg_data);
    699	if (!ret_val) {
    700		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
    701		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
    702						 E1000_KMRNCTRLSTA_INBAND_PARAM,
    703						 kum_reg_data);
    704		if (ret_val)
    705			e_dbg("Error disabling far-end loopback\n");
    706	} else {
    707		e_dbg("Error disabling far-end loopback\n");
    708	}
    709
    710	ret_val = e1000e_get_auto_rd_done(hw);
    711	if (ret_val)
    712		/* We don't want to continue accessing MAC registers. */
    713		return ret_val;
    714
    715	/* Clear any pending interrupt events. */
    716	ew32(IMC, 0xffffffff);
    717	er32(ICR);
    718
    719	return e1000_check_alt_mac_addr_generic(hw);
    720}
    721
    722/**
    723 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
    724 *  @hw: pointer to the HW structure
    725 *
    726 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
    727 **/
    728static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
    729{
    730	struct e1000_mac_info *mac = &hw->mac;
    731	u32 reg_data;
    732	s32 ret_val;
    733	u16 kum_reg_data;
    734	u16 i;
    735
    736	e1000_initialize_hw_bits_80003es2lan(hw);
    737
    738	/* Initialize identification LED */
    739	ret_val = mac->ops.id_led_init(hw);
    740	/* An error is not fatal and we should not stop init due to this */
    741	if (ret_val)
    742		e_dbg("Error initializing identification LED\n");
    743
    744	/* Disabling VLAN filtering */
    745	e_dbg("Initializing the IEEE VLAN\n");
    746	mac->ops.clear_vfta(hw);
    747
    748	/* Setup the receive address. */
    749	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
    750
    751	/* Zero out the Multicast HASH table */
    752	e_dbg("Zeroing the MTA\n");
    753	for (i = 0; i < mac->mta_reg_count; i++)
    754		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
    755
    756	/* Setup link and flow control */
    757	ret_val = mac->ops.setup_link(hw);
    758	if (ret_val)
    759		return ret_val;
    760
    761	/* Disable IBIST slave mode (far-end loopback) */
    762	ret_val =
    763	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
    764					    &kum_reg_data);
    765	if (!ret_val) {
    766		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
    767		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
    768						 E1000_KMRNCTRLSTA_INBAND_PARAM,
    769						 kum_reg_data);
    770		if (ret_val)
    771			e_dbg("Error disabling far-end loopback\n");
    772	} else {
    773		e_dbg("Error disabling far-end loopback\n");
    774	}
    775
    776	/* Set the transmit descriptor write-back policy */
    777	reg_data = er32(TXDCTL(0));
    778	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
    779		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
    780	ew32(TXDCTL(0), reg_data);
    781
    782	/* ...for both queues. */
    783	reg_data = er32(TXDCTL(1));
    784	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
    785		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
    786	ew32(TXDCTL(1), reg_data);
    787
    788	/* Enable retransmit on late collisions */
    789	reg_data = er32(TCTL);
    790	reg_data |= E1000_TCTL_RTLC;
    791	ew32(TCTL, reg_data);
    792
    793	/* Configure Gigabit Carry Extend Padding */
    794	reg_data = er32(TCTL_EXT);
    795	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
    796	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
    797	ew32(TCTL_EXT, reg_data);
    798
    799	/* Configure Transmit Inter-Packet Gap */
    800	reg_data = er32(TIPG);
    801	reg_data &= ~E1000_TIPG_IPGT_MASK;
    802	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
    803	ew32(TIPG, reg_data);
    804
    805	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
    806	reg_data &= ~0x00100000;
    807	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
    808
    809	/* default to true to enable the MDIC W/A */
    810	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
    811
    812	ret_val =
    813	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
    814					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
    815	if (!ret_val) {
    816		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
    817		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
    818			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
    819	}
    820
    821	/* Clear all of the statistics registers (clear on read).  It is
    822	 * important that we do this after we have tried to establish link
    823	 * because the symbol error count will increment wildly if there
    824	 * is no link.
    825	 */
    826	e1000_clear_hw_cntrs_80003es2lan(hw);
    827
    828	return ret_val;
    829}
    830
    831/**
    832 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
    833 *  @hw: pointer to the HW structure
    834 *
    835 *  Initializes required hardware-dependent bits needed for normal operation.
    836 **/
    837static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
    838{
    839	u32 reg;
    840
    841	/* Transmit Descriptor Control 0 */
    842	reg = er32(TXDCTL(0));
    843	reg |= BIT(22);
    844	ew32(TXDCTL(0), reg);
    845
    846	/* Transmit Descriptor Control 1 */
    847	reg = er32(TXDCTL(1));
    848	reg |= BIT(22);
    849	ew32(TXDCTL(1), reg);
    850
    851	/* Transmit Arbitration Control 0 */
    852	reg = er32(TARC(0));
    853	reg &= ~(0xF << 27);	/* 30:27 */
    854	if (hw->phy.media_type != e1000_media_type_copper)
    855		reg &= ~BIT(20);
    856	ew32(TARC(0), reg);
    857
    858	/* Transmit Arbitration Control 1 */
    859	reg = er32(TARC(1));
    860	if (er32(TCTL) & E1000_TCTL_MULR)
    861		reg &= ~BIT(28);
    862	else
    863		reg |= BIT(28);
    864	ew32(TARC(1), reg);
    865
    866	/* Disable IPv6 extension header parsing because some malformed
    867	 * IPv6 headers can hang the Rx.
    868	 */
    869	reg = er32(RFCTL);
    870	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
    871	ew32(RFCTL, reg);
    872}
    873
    874/**
    875 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
    876 *  @hw: pointer to the HW structure
    877 *
    878 *  Setup some GG82563 PHY registers for obtaining link
    879 **/
    880static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
    881{
    882	struct e1000_phy_info *phy = &hw->phy;
    883	s32 ret_val;
    884	u32 reg;
    885	u16 data;
    886
    887	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
    888	if (ret_val)
    889		return ret_val;
    890
    891	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
    892	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
    893	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
    894
    895	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
    896	if (ret_val)
    897		return ret_val;
    898
    899	/* Options:
    900	 *   MDI/MDI-X = 0 (default)
    901	 *   0 - Auto for all speeds
    902	 *   1 - MDI mode
    903	 *   2 - MDI-X mode
    904	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
    905	 */
    906	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
    907	if (ret_val)
    908		return ret_val;
    909
    910	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
    911
    912	switch (phy->mdix) {
    913	case 1:
    914		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
    915		break;
    916	case 2:
    917		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
    918		break;
    919	case 0:
    920	default:
    921		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
    922		break;
    923	}
    924
    925	/* Options:
    926	 *   disable_polarity_correction = 0 (default)
    927	 *       Automatic Correction for Reversed Cable Polarity
    928	 *   0 - Disabled
    929	 *   1 - Enabled
    930	 */
    931	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
    932	if (phy->disable_polarity_correction)
    933		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
    934
    935	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
    936	if (ret_val)
    937		return ret_val;
    938
    939	/* SW Reset the PHY so all changes take effect */
    940	ret_val = hw->phy.ops.commit(hw);
    941	if (ret_val) {
    942		e_dbg("Error Resetting the PHY\n");
    943		return ret_val;
    944	}
    945
    946	/* Bypass Rx and Tx FIFO's */
    947	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
    948	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
    949		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
    950	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
    951	if (ret_val)
    952		return ret_val;
    953
    954	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
    955	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
    956	if (ret_val)
    957		return ret_val;
    958	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
    959	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
    960	if (ret_val)
    961		return ret_val;
    962
    963	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
    964	if (ret_val)
    965		return ret_val;
    966
    967	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
    968	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
    969	if (ret_val)
    970		return ret_val;
    971
    972	reg = er32(CTRL_EXT);
    973	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
    974	ew32(CTRL_EXT, reg);
    975
    976	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
    977	if (ret_val)
    978		return ret_val;
    979
    980	/* Do not init these registers when the HW is in IAMT mode, since the
    981	 * firmware will have already initialized them.  We only initialize
    982	 * them if the HW is not in IAMT mode.
    983	 */
    984	if (!hw->mac.ops.check_mng_mode(hw)) {
    985		/* Enable Electrical Idle on the PHY */
    986		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
    987		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
    988		if (ret_val)
    989			return ret_val;
    990
    991		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
    992		if (ret_val)
    993			return ret_val;
    994
    995		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
    996		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
    997		if (ret_val)
    998			return ret_val;
    999	}
   1000
   1001	/* Workaround: Disable padding in Kumeran interface in the MAC
   1002	 * and in the PHY to avoid CRC errors.
   1003	 */
   1004	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
   1005	if (ret_val)
   1006		return ret_val;
   1007
   1008	data |= GG82563_ICR_DIS_PADDING;
   1009	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
   1010	if (ret_val)
   1011		return ret_val;
   1012
   1013	return 0;
   1014}
   1015
   1016/**
   1017 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
   1018 *  @hw: pointer to the HW structure
   1019 *
   1020 *  Essentially a wrapper for setting up all things "copper" related.
   1021 *  This is a function pointer entry point called by the mac module.
   1022 **/
   1023static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
   1024{
   1025	u32 ctrl;
   1026	s32 ret_val;
   1027	u16 reg_data;
   1028
   1029	ctrl = er32(CTRL);
   1030	ctrl |= E1000_CTRL_SLU;
   1031	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
   1032	ew32(CTRL, ctrl);
   1033
   1034	/* Set the mac to wait the maximum time between each
   1035	 * iteration and increase the max iterations when
   1036	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
   1037	 */
   1038	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
   1039						   0xFFFF);
   1040	if (ret_val)
   1041		return ret_val;
   1042	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
   1043						  &reg_data);
   1044	if (ret_val)
   1045		return ret_val;
   1046	reg_data |= 0x3F;
   1047	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
   1048						   reg_data);
   1049	if (ret_val)
   1050		return ret_val;
   1051	ret_val =
   1052	    e1000_read_kmrn_reg_80003es2lan(hw,
   1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
   1054					    &reg_data);
   1055	if (ret_val)
   1056		return ret_val;
   1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
   1058	ret_val =
   1059	    e1000_write_kmrn_reg_80003es2lan(hw,
   1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
   1061					     reg_data);
   1062	if (ret_val)
   1063		return ret_val;
   1064
   1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
   1066	if (ret_val)
   1067		return ret_val;
   1068
   1069	return e1000e_setup_copper_link(hw);
   1070}
   1071
   1072/**
   1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
   1074 *  @hw: pointer to the HW structure
   1075 *
   1076 *  Configure the KMRN interface by applying last minute quirks for
   1077 *  10/100 operation.
   1078 **/
   1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
   1080{
   1081	s32 ret_val = 0;
   1082	u16 speed;
   1083	u16 duplex;
   1084
   1085	if (hw->phy.media_type == e1000_media_type_copper) {
   1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
   1087							     &duplex);
   1088		if (ret_val)
   1089			return ret_val;
   1090
   1091		if (speed == SPEED_1000)
   1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
   1093		else
   1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
   1095	}
   1096
   1097	return ret_val;
   1098}
   1099
   1100/**
   1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
   1102 *  @hw: pointer to the HW structure
   1103 *  @duplex: current duplex setting
   1104 *
   1105 *  Configure the KMRN interface by applying last minute quirks for
   1106 *  10/100 operation.
   1107 **/
   1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
   1109{
   1110	s32 ret_val;
   1111	u32 tipg;
   1112	u32 i = 0;
   1113	u16 reg_data, reg_data2;
   1114
   1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
   1116	ret_val =
   1117	    e1000_write_kmrn_reg_80003es2lan(hw,
   1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
   1119					     reg_data);
   1120	if (ret_val)
   1121		return ret_val;
   1122
   1123	/* Configure Transmit Inter-Packet Gap */
   1124	tipg = er32(TIPG);
   1125	tipg &= ~E1000_TIPG_IPGT_MASK;
   1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
   1127	ew32(TIPG, tipg);
   1128
   1129	do {
   1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
   1131		if (ret_val)
   1132			return ret_val;
   1133
   1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
   1135		if (ret_val)
   1136			return ret_val;
   1137		i++;
   1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
   1139
   1140	if (duplex == HALF_DUPLEX)
   1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
   1142	else
   1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
   1144
   1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
   1146}
   1147
   1148/**
   1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
   1150 *  @hw: pointer to the HW structure
   1151 *
   1152 *  Configure the KMRN interface by applying last minute quirks for
   1153 *  gigabit operation.
   1154 **/
   1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
   1156{
   1157	s32 ret_val;
   1158	u16 reg_data, reg_data2;
   1159	u32 tipg;
   1160	u32 i = 0;
   1161
   1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
   1163	ret_val =
   1164	    e1000_write_kmrn_reg_80003es2lan(hw,
   1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
   1166					     reg_data);
   1167	if (ret_val)
   1168		return ret_val;
   1169
   1170	/* Configure Transmit Inter-Packet Gap */
   1171	tipg = er32(TIPG);
   1172	tipg &= ~E1000_TIPG_IPGT_MASK;
   1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
   1174	ew32(TIPG, tipg);
   1175
   1176	do {
   1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
   1178		if (ret_val)
   1179			return ret_val;
   1180
   1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
   1182		if (ret_val)
   1183			return ret_val;
   1184		i++;
   1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
   1186
   1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
   1188
   1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
   1190}
   1191
   1192/**
   1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
   1194 *  @hw: pointer to the HW structure
   1195 *  @offset: register offset to be read
   1196 *  @data: pointer to the read data
   1197 *
   1198 *  Acquire semaphore, then read the PHY register at offset
   1199 *  using the kumeran interface.  The information retrieved is stored in data.
   1200 *  Release the semaphore before exiting.
   1201 **/
   1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
   1203					   u16 *data)
   1204{
   1205	u32 kmrnctrlsta;
   1206	s32 ret_val;
   1207
   1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
   1209	if (ret_val)
   1210		return ret_val;
   1211
   1212	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
   1213		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
   1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
   1215	e1e_flush();
   1216
   1217	udelay(2);
   1218
   1219	kmrnctrlsta = er32(KMRNCTRLSTA);
   1220	*data = (u16)kmrnctrlsta;
   1221
   1222	e1000_release_mac_csr_80003es2lan(hw);
   1223
   1224	return ret_val;
   1225}
   1226
   1227/**
   1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
   1229 *  @hw: pointer to the HW structure
   1230 *  @offset: register offset to write to
   1231 *  @data: data to write at register offset
   1232 *
   1233 *  Acquire semaphore, then write the data to PHY register
   1234 *  at the offset using the kumeran interface.  Release semaphore
   1235 *  before exiting.
   1236 **/
   1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
   1238					    u16 data)
   1239{
   1240	u32 kmrnctrlsta;
   1241	s32 ret_val;
   1242
   1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
   1244	if (ret_val)
   1245		return ret_val;
   1246
   1247	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
   1248		       E1000_KMRNCTRLSTA_OFFSET) | data;
   1249	ew32(KMRNCTRLSTA, kmrnctrlsta);
   1250	e1e_flush();
   1251
   1252	udelay(2);
   1253
   1254	e1000_release_mac_csr_80003es2lan(hw);
   1255
   1256	return ret_val;
   1257}
   1258
   1259/**
   1260 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
   1261 *  @hw: pointer to the HW structure
   1262 **/
   1263static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
   1264{
   1265	s32 ret_val;
   1266
   1267	/* If there's an alternate MAC address place it in RAR0
   1268	 * so that it will override the Si installed default perm
   1269	 * address.
   1270	 */
   1271	ret_val = e1000_check_alt_mac_addr_generic(hw);
   1272	if (ret_val)
   1273		return ret_val;
   1274
   1275	return e1000_read_mac_addr_generic(hw);
   1276}
   1277
   1278/**
   1279 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
   1280 * @hw: pointer to the HW structure
   1281 *
   1282 * In the case of a PHY power down to save power, or to turn off link during a
   1283 * driver unload, or wake on lan is not enabled, remove the link.
   1284 **/
   1285static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
   1286{
   1287	/* If the management interface is not enabled, then power down */
   1288	if (!(hw->mac.ops.check_mng_mode(hw) ||
   1289	      hw->phy.ops.check_reset_block(hw)))
   1290		e1000_power_down_phy_copper(hw);
   1291}
   1292
   1293/**
   1294 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
   1295 *  @hw: pointer to the HW structure
   1296 *
   1297 *  Clears the hardware counters by reading the counter registers.
   1298 **/
   1299static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
   1300{
   1301	e1000e_clear_hw_cntrs_base(hw);
   1302
   1303	er32(PRC64);
   1304	er32(PRC127);
   1305	er32(PRC255);
   1306	er32(PRC511);
   1307	er32(PRC1023);
   1308	er32(PRC1522);
   1309	er32(PTC64);
   1310	er32(PTC127);
   1311	er32(PTC255);
   1312	er32(PTC511);
   1313	er32(PTC1023);
   1314	er32(PTC1522);
   1315
   1316	er32(ALGNERRC);
   1317	er32(RXERRC);
   1318	er32(TNCRS);
   1319	er32(CEXTERR);
   1320	er32(TSCTC);
   1321	er32(TSCTFC);
   1322
   1323	er32(MGTPRC);
   1324	er32(MGTPDC);
   1325	er32(MGTPTC);
   1326
   1327	er32(IAC);
   1328	er32(ICRXOC);
   1329
   1330	er32(ICRXPTC);
   1331	er32(ICRXATC);
   1332	er32(ICTXPTC);
   1333	er32(ICTXATC);
   1334	er32(ICTXQEC);
   1335	er32(ICTXQMTC);
   1336	er32(ICRXDMTC);
   1337}
   1338
   1339static const struct e1000_mac_operations es2_mac_ops = {
   1340	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
   1341	.id_led_init		= e1000e_id_led_init_generic,
   1342	.blink_led		= e1000e_blink_led_generic,
   1343	.check_mng_mode		= e1000e_check_mng_mode_generic,
   1344	/* check_for_link dependent on media type */
   1345	.cleanup_led		= e1000e_cleanup_led_generic,
   1346	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
   1347	.get_bus_info		= e1000e_get_bus_info_pcie,
   1348	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
   1349	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
   1350	.led_on			= e1000e_led_on_generic,
   1351	.led_off		= e1000e_led_off_generic,
   1352	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
   1353	.write_vfta		= e1000_write_vfta_generic,
   1354	.clear_vfta		= e1000_clear_vfta_generic,
   1355	.reset_hw		= e1000_reset_hw_80003es2lan,
   1356	.init_hw		= e1000_init_hw_80003es2lan,
   1357	.setup_link		= e1000e_setup_link_generic,
   1358	/* setup_physical_interface dependent on media type */
   1359	.setup_led		= e1000e_setup_led_generic,
   1360	.config_collision_dist	= e1000e_config_collision_dist_generic,
   1361	.rar_set		= e1000e_rar_set_generic,
   1362	.rar_get_count		= e1000e_rar_get_count_generic,
   1363};
   1364
   1365static const struct e1000_phy_operations es2_phy_ops = {
   1366	.acquire		= e1000_acquire_phy_80003es2lan,
   1367	.check_polarity		= e1000_check_polarity_m88,
   1368	.check_reset_block	= e1000e_check_reset_block_generic,
   1369	.commit			= e1000e_phy_sw_reset,
   1370	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
   1371	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
   1372	.get_cable_length	= e1000_get_cable_length_80003es2lan,
   1373	.get_info		= e1000e_get_phy_info_m88,
   1374	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
   1375	.release		= e1000_release_phy_80003es2lan,
   1376	.reset			= e1000e_phy_hw_reset_generic,
   1377	.set_d0_lplu_state	= NULL,
   1378	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
   1379	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
   1380	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
   1381};
   1382
   1383static const struct e1000_nvm_operations es2_nvm_ops = {
   1384	.acquire		= e1000_acquire_nvm_80003es2lan,
   1385	.read			= e1000e_read_nvm_eerd,
   1386	.release		= e1000_release_nvm_80003es2lan,
   1387	.reload			= e1000e_reload_nvm_generic,
   1388	.update			= e1000e_update_nvm_checksum_generic,
   1389	.valid_led_default	= e1000e_valid_led_default,
   1390	.validate		= e1000e_validate_nvm_checksum_generic,
   1391	.write			= e1000_write_nvm_80003es2lan,
   1392};
   1393
   1394const struct e1000_info e1000_es2_info = {
   1395	.mac			= e1000_80003es2lan,
   1396	.flags			= FLAG_HAS_HW_VLAN_FILTER
   1397				  | FLAG_HAS_JUMBO_FRAMES
   1398				  | FLAG_HAS_WOL
   1399				  | FLAG_APME_IN_CTRL3
   1400				  | FLAG_HAS_CTRLEXT_ON_LOAD
   1401				  | FLAG_RX_NEEDS_RESTART /* errata */
   1402				  | FLAG_TARC_SET_BIT_ZERO /* errata */
   1403				  | FLAG_APME_CHECK_PORT_B
   1404				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
   1405	.flags2			= FLAG2_DMA_BURST,
   1406	.pba			= 38,
   1407	.max_hw_frame_size	= DEFAULT_JUMBO,
   1408	.get_variants		= e1000_get_variants_80003es2lan,
   1409	.mac_ops		= &es2_mac_ops,
   1410	.phy_ops		= &es2_phy_ops,
   1411	.nvm_ops		= &es2_nvm_ops,
   1412};