cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

82571.c (54837B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2018 Intel Corporation. */
      3
      4/* 82571EB Gigabit Ethernet Controller
      5 * 82571EB Gigabit Ethernet Controller (Copper)
      6 * 82571EB Gigabit Ethernet Controller (Fiber)
      7 * 82571EB Dual Port Gigabit Mezzanine Adapter
      8 * 82571EB Quad Port Gigabit Mezzanine Adapter
      9 * 82571PT Gigabit PT Quad Port Server ExpressModule
     10 * 82572EI Gigabit Ethernet Controller (Copper)
     11 * 82572EI Gigabit Ethernet Controller (Fiber)
     12 * 82572EI Gigabit Ethernet Controller
     13 * 82573V Gigabit Ethernet Controller (Copper)
     14 * 82573E Gigabit Ethernet Controller (Copper)
     15 * 82573L Gigabit Ethernet Controller
     16 * 82574L Gigabit Network Connection
     17 * 82583V Gigabit Network Connection
     18 */
     19
     20#include "e1000.h"
     21
     22static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
     23static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
     24static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
     25static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
     26static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
     27				      u16 words, u16 *data);
     28static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
     29static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
     30static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
     31static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
     32static s32 e1000_led_on_82574(struct e1000_hw *hw);
     33static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
     34static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
     35static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
     36static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
     37static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
     38static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
     39static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
     40
     41/**
     42 *  e1000_init_phy_params_82571 - Init PHY func ptrs.
     43 *  @hw: pointer to the HW structure
     44 **/
     45static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
     46{
     47	struct e1000_phy_info *phy = &hw->phy;
     48	s32 ret_val;
     49
     50	if (hw->phy.media_type != e1000_media_type_copper) {
     51		phy->type = e1000_phy_none;
     52		return 0;
     53	}
     54
     55	phy->addr = 1;
     56	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
     57	phy->reset_delay_us = 100;
     58
     59	phy->ops.power_up = e1000_power_up_phy_copper;
     60	phy->ops.power_down = e1000_power_down_phy_copper_82571;
     61
     62	switch (hw->mac.type) {
     63	case e1000_82571:
     64	case e1000_82572:
     65		phy->type = e1000_phy_igp_2;
     66		break;
     67	case e1000_82573:
     68		phy->type = e1000_phy_m88;
     69		break;
     70	case e1000_82574:
     71	case e1000_82583:
     72		phy->type = e1000_phy_bm;
     73		phy->ops.acquire = e1000_get_hw_semaphore_82574;
     74		phy->ops.release = e1000_put_hw_semaphore_82574;
     75		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
     76		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
     77		break;
     78	default:
     79		return -E1000_ERR_PHY;
     80	}
     81
     82	/* This can only be done after all function pointers are setup. */
     83	ret_val = e1000_get_phy_id_82571(hw);
     84	if (ret_val) {
     85		e_dbg("Error getting PHY ID\n");
     86		return ret_val;
     87	}
     88
     89	/* Verify phy id */
     90	switch (hw->mac.type) {
     91	case e1000_82571:
     92	case e1000_82572:
     93		if (phy->id != IGP01E1000_I_PHY_ID)
     94			ret_val = -E1000_ERR_PHY;
     95		break;
     96	case e1000_82573:
     97		if (phy->id != M88E1111_I_PHY_ID)
     98			ret_val = -E1000_ERR_PHY;
     99		break;
    100	case e1000_82574:
    101	case e1000_82583:
    102		if (phy->id != BME1000_E_PHY_ID_R2)
    103			ret_val = -E1000_ERR_PHY;
    104		break;
    105	default:
    106		ret_val = -E1000_ERR_PHY;
    107		break;
    108	}
    109
    110	if (ret_val)
    111		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
    112
    113	return ret_val;
    114}
    115
    116/**
    117 *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
    118 *  @hw: pointer to the HW structure
    119 **/
    120static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
    121{
    122	struct e1000_nvm_info *nvm = &hw->nvm;
    123	u32 eecd = er32(EECD);
    124	u16 size;
    125
    126	nvm->opcode_bits = 8;
    127	nvm->delay_usec = 1;
    128	switch (nvm->override) {
    129	case e1000_nvm_override_spi_large:
    130		nvm->page_size = 32;
    131		nvm->address_bits = 16;
    132		break;
    133	case e1000_nvm_override_spi_small:
    134		nvm->page_size = 8;
    135		nvm->address_bits = 8;
    136		break;
    137	default:
    138		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
    139		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
    140		break;
    141	}
    142
    143	switch (hw->mac.type) {
    144	case e1000_82573:
    145	case e1000_82574:
    146	case e1000_82583:
    147		if (((eecd >> 15) & 0x3) == 0x3) {
    148			nvm->type = e1000_nvm_flash_hw;
    149			nvm->word_size = 2048;
    150			/* Autonomous Flash update bit must be cleared due
    151			 * to Flash update issue.
    152			 */
    153			eecd &= ~E1000_EECD_AUPDEN;
    154			ew32(EECD, eecd);
    155			break;
    156		}
    157		fallthrough;
    158	default:
    159		nvm->type = e1000_nvm_eeprom_spi;
    160		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
    161			     E1000_EECD_SIZE_EX_SHIFT);
    162		/* Added to a constant, "size" becomes the left-shift value
    163		 * for setting word_size.
    164		 */
    165		size += NVM_WORD_SIZE_BASE_SHIFT;
    166
    167		/* EEPROM access above 16k is unsupported */
    168		if (size > 14)
    169			size = 14;
    170		nvm->word_size = BIT(size);
    171		break;
    172	}
    173
    174	/* Function Pointers */
    175	switch (hw->mac.type) {
    176	case e1000_82574:
    177	case e1000_82583:
    178		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
    179		nvm->ops.release = e1000_put_hw_semaphore_82574;
    180		break;
    181	default:
    182		break;
    183	}
    184
    185	return 0;
    186}
    187
    188/**
    189 *  e1000_init_mac_params_82571 - Init MAC func ptrs.
    190 *  @hw: pointer to the HW structure
    191 **/
    192static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
    193{
    194	struct e1000_mac_info *mac = &hw->mac;
    195	u32 swsm = 0;
    196	u32 swsm2 = 0;
    197	bool force_clear_smbi = false;
    198
    199	/* Set media type and media-dependent function pointers */
    200	switch (hw->adapter->pdev->device) {
    201	case E1000_DEV_ID_82571EB_FIBER:
    202	case E1000_DEV_ID_82572EI_FIBER:
    203	case E1000_DEV_ID_82571EB_QUAD_FIBER:
    204		hw->phy.media_type = e1000_media_type_fiber;
    205		mac->ops.setup_physical_interface =
    206		    e1000_setup_fiber_serdes_link_82571;
    207		mac->ops.check_for_link = e1000e_check_for_fiber_link;
    208		mac->ops.get_link_up_info =
    209		    e1000e_get_speed_and_duplex_fiber_serdes;
    210		break;
    211	case E1000_DEV_ID_82571EB_SERDES:
    212	case E1000_DEV_ID_82571EB_SERDES_DUAL:
    213	case E1000_DEV_ID_82571EB_SERDES_QUAD:
    214	case E1000_DEV_ID_82572EI_SERDES:
    215		hw->phy.media_type = e1000_media_type_internal_serdes;
    216		mac->ops.setup_physical_interface =
    217		    e1000_setup_fiber_serdes_link_82571;
    218		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
    219		mac->ops.get_link_up_info =
    220		    e1000e_get_speed_and_duplex_fiber_serdes;
    221		break;
    222	default:
    223		hw->phy.media_type = e1000_media_type_copper;
    224		mac->ops.setup_physical_interface =
    225		    e1000_setup_copper_link_82571;
    226		mac->ops.check_for_link = e1000e_check_for_copper_link;
    227		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
    228		break;
    229	}
    230
    231	/* Set mta register count */
    232	mac->mta_reg_count = 128;
    233	/* Set rar entry count */
    234	mac->rar_entry_count = E1000_RAR_ENTRIES;
    235	/* Adaptive IFS supported */
    236	mac->adaptive_ifs = true;
    237
    238	/* MAC-specific function pointers */
    239	switch (hw->mac.type) {
    240	case e1000_82573:
    241		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
    242		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
    243		mac->ops.led_on = e1000e_led_on_generic;
    244		mac->ops.blink_led = e1000e_blink_led_generic;
    245
    246		/* FWSM register */
    247		mac->has_fwsm = true;
    248		/* ARC supported; valid only if manageability features are
    249		 * enabled.
    250		 */
    251		mac->arc_subsystem_valid = !!(er32(FWSM) &
    252					      E1000_FWSM_MODE_MASK);
    253		break;
    254	case e1000_82574:
    255	case e1000_82583:
    256		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
    257		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
    258		mac->ops.led_on = e1000_led_on_82574;
    259		break;
    260	default:
    261		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
    262		mac->ops.led_on = e1000e_led_on_generic;
    263		mac->ops.blink_led = e1000e_blink_led_generic;
    264
    265		/* FWSM register */
    266		mac->has_fwsm = true;
    267		break;
    268	}
    269
    270	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
    271	 * first NVM or PHY access. This should be done for single-port
    272	 * devices, and for one port only on dual-port devices so that
    273	 * for those devices we can still use the SMBI lock to synchronize
    274	 * inter-port accesses to the PHY & NVM.
    275	 */
    276	switch (hw->mac.type) {
    277	case e1000_82571:
    278	case e1000_82572:
    279		swsm2 = er32(SWSM2);
    280
    281		if (!(swsm2 & E1000_SWSM2_LOCK)) {
    282			/* Only do this for the first interface on this card */
    283			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
    284			force_clear_smbi = true;
    285		} else {
    286			force_clear_smbi = false;
    287		}
    288		break;
    289	default:
    290		force_clear_smbi = true;
    291		break;
    292	}
    293
    294	if (force_clear_smbi) {
    295		/* Make sure SWSM.SMBI is clear */
    296		swsm = er32(SWSM);
    297		if (swsm & E1000_SWSM_SMBI) {
    298			/* This bit should not be set on a first interface, and
    299			 * indicates that the bootagent or EFI code has
    300			 * improperly left this bit enabled
    301			 */
    302			e_dbg("Please update your 82571 Bootagent\n");
    303		}
    304		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
    305	}
    306
    307	/* Initialize device specific counter of SMBI acquisition timeouts. */
    308	hw->dev_spec.e82571.smb_counter = 0;
    309
    310	return 0;
    311}
    312
    313static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
    314{
    315	struct e1000_hw *hw = &adapter->hw;
    316	static int global_quad_port_a;	/* global port a indication */
    317	struct pci_dev *pdev = adapter->pdev;
    318	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
    319	s32 rc;
    320
    321	rc = e1000_init_mac_params_82571(hw);
    322	if (rc)
    323		return rc;
    324
    325	rc = e1000_init_nvm_params_82571(hw);
    326	if (rc)
    327		return rc;
    328
    329	rc = e1000_init_phy_params_82571(hw);
    330	if (rc)
    331		return rc;
    332
    333	/* tag quad port adapters first, it's used below */
    334	switch (pdev->device) {
    335	case E1000_DEV_ID_82571EB_QUAD_COPPER:
    336	case E1000_DEV_ID_82571EB_QUAD_FIBER:
    337	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
    338	case E1000_DEV_ID_82571PT_QUAD_COPPER:
    339		adapter->flags |= FLAG_IS_QUAD_PORT;
    340		/* mark the first port */
    341		if (global_quad_port_a == 0)
    342			adapter->flags |= FLAG_IS_QUAD_PORT_A;
    343		/* Reset for multiple quad port adapters */
    344		global_quad_port_a++;
    345		if (global_quad_port_a == 4)
    346			global_quad_port_a = 0;
    347		break;
    348	default:
    349		break;
    350	}
    351
    352	switch (adapter->hw.mac.type) {
    353	case e1000_82571:
    354		/* these dual ports don't have WoL on port B at all */
    355		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
    356		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
    357		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
    358		    (is_port_b))
    359			adapter->flags &= ~FLAG_HAS_WOL;
    360		/* quad ports only support WoL on port A */
    361		if (adapter->flags & FLAG_IS_QUAD_PORT &&
    362		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
    363			adapter->flags &= ~FLAG_HAS_WOL;
    364		/* Does not support WoL on any port */
    365		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
    366			adapter->flags &= ~FLAG_HAS_WOL;
    367		break;
    368	case e1000_82573:
    369		if (pdev->device == E1000_DEV_ID_82573L) {
    370			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
    371			adapter->max_hw_frame_size = DEFAULT_JUMBO;
    372		}
    373		break;
    374	default:
    375		break;
    376	}
    377
    378	return 0;
    379}
    380
    381/**
    382 *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
    383 *  @hw: pointer to the HW structure
    384 *
    385 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
    386 *  revision in the hardware structure.
    387 **/
    388static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
    389{
    390	struct e1000_phy_info *phy = &hw->phy;
    391	s32 ret_val;
    392	u16 phy_id = 0;
    393
    394	switch (hw->mac.type) {
    395	case e1000_82571:
    396	case e1000_82572:
    397		/* The 82571 firmware may still be configuring the PHY.
    398		 * In this case, we cannot access the PHY until the
    399		 * configuration is done.  So we explicitly set the
    400		 * PHY ID.
    401		 */
    402		phy->id = IGP01E1000_I_PHY_ID;
    403		break;
    404	case e1000_82573:
    405		return e1000e_get_phy_id(hw);
    406	case e1000_82574:
    407	case e1000_82583:
    408		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
    409		if (ret_val)
    410			return ret_val;
    411
    412		phy->id = (u32)(phy_id << 16);
    413		usleep_range(20, 40);
    414		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
    415		if (ret_val)
    416			return ret_val;
    417
    418		phy->id |= (u32)(phy_id);
    419		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
    420		break;
    421	default:
    422		return -E1000_ERR_PHY;
    423	}
    424
    425	return 0;
    426}
    427
    428/**
    429 *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
    430 *  @hw: pointer to the HW structure
    431 *
    432 *  Acquire the HW semaphore to access the PHY or NVM
    433 **/
    434static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
    435{
    436	u32 swsm;
    437	s32 sw_timeout = hw->nvm.word_size + 1;
    438	s32 fw_timeout = hw->nvm.word_size + 1;
    439	s32 i = 0;
    440
    441	/* If we have timedout 3 times on trying to acquire
    442	 * the inter-port SMBI semaphore, there is old code
    443	 * operating on the other port, and it is not
    444	 * releasing SMBI. Modify the number of times that
    445	 * we try for the semaphore to interwork with this
    446	 * older code.
    447	 */
    448	if (hw->dev_spec.e82571.smb_counter > 2)
    449		sw_timeout = 1;
    450
    451	/* Get the SW semaphore */
    452	while (i < sw_timeout) {
    453		swsm = er32(SWSM);
    454		if (!(swsm & E1000_SWSM_SMBI))
    455			break;
    456
    457		usleep_range(50, 100);
    458		i++;
    459	}
    460
    461	if (i == sw_timeout) {
    462		e_dbg("Driver can't access device - SMBI bit is set.\n");
    463		hw->dev_spec.e82571.smb_counter++;
    464	}
    465	/* Get the FW semaphore. */
    466	for (i = 0; i < fw_timeout; i++) {
    467		swsm = er32(SWSM);
    468		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
    469
    470		/* Semaphore acquired if bit latched */
    471		if (er32(SWSM) & E1000_SWSM_SWESMBI)
    472			break;
    473
    474		usleep_range(50, 100);
    475	}
    476
    477	if (i == fw_timeout) {
    478		/* Release semaphores */
    479		e1000_put_hw_semaphore_82571(hw);
    480		e_dbg("Driver can't access the NVM\n");
    481		return -E1000_ERR_NVM;
    482	}
    483
    484	return 0;
    485}
    486
    487/**
    488 *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
    489 *  @hw: pointer to the HW structure
    490 *
    491 *  Release hardware semaphore used to access the PHY or NVM
    492 **/
    493static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
    494{
    495	u32 swsm;
    496
    497	swsm = er32(SWSM);
    498	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
    499	ew32(SWSM, swsm);
    500}
    501
    502/**
    503 *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
    504 *  @hw: pointer to the HW structure
    505 *
    506 *  Acquire the HW semaphore during reset.
    507 *
    508 **/
    509static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
    510{
    511	u32 extcnf_ctrl;
    512	s32 i = 0;
    513
    514	extcnf_ctrl = er32(EXTCNF_CTRL);
    515	do {
    516		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
    517		ew32(EXTCNF_CTRL, extcnf_ctrl);
    518		extcnf_ctrl = er32(EXTCNF_CTRL);
    519
    520		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
    521			break;
    522
    523		usleep_range(2000, 4000);
    524		i++;
    525	} while (i < MDIO_OWNERSHIP_TIMEOUT);
    526
    527	if (i == MDIO_OWNERSHIP_TIMEOUT) {
    528		/* Release semaphores */
    529		e1000_put_hw_semaphore_82573(hw);
    530		e_dbg("Driver can't access the PHY\n");
    531		return -E1000_ERR_PHY;
    532	}
    533
    534	return 0;
    535}
    536
    537/**
    538 *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
    539 *  @hw: pointer to the HW structure
    540 *
    541 *  Release hardware semaphore used during reset.
    542 *
    543 **/
    544static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
    545{
    546	u32 extcnf_ctrl;
    547
    548	extcnf_ctrl = er32(EXTCNF_CTRL);
    549	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
    550	ew32(EXTCNF_CTRL, extcnf_ctrl);
    551}
    552
    553static DEFINE_MUTEX(swflag_mutex);
    554
    555/**
    556 *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
    557 *  @hw: pointer to the HW structure
    558 *
    559 *  Acquire the HW semaphore to access the PHY or NVM.
    560 *
    561 **/
    562static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
    563{
    564	s32 ret_val;
    565
    566	mutex_lock(&swflag_mutex);
    567	ret_val = e1000_get_hw_semaphore_82573(hw);
    568	if (ret_val)
    569		mutex_unlock(&swflag_mutex);
    570	return ret_val;
    571}
    572
    573/**
    574 *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
    575 *  @hw: pointer to the HW structure
    576 *
    577 *  Release hardware semaphore used to access the PHY or NVM
    578 *
    579 **/
    580static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
    581{
    582	e1000_put_hw_semaphore_82573(hw);
    583	mutex_unlock(&swflag_mutex);
    584}
    585
    586/**
    587 *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
    588 *  @hw: pointer to the HW structure
    589 *  @active: true to enable LPLU, false to disable
    590 *
    591 *  Sets the LPLU D0 state according to the active flag.
    592 *  LPLU will not be activated unless the
    593 *  device autonegotiation advertisement meets standards of
    594 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
    595 *  This is a function pointer entry point only called by
    596 *  PHY setup routines.
    597 **/
    598static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
    599{
    600	u32 data = er32(POEMB);
    601
    602	if (active)
    603		data |= E1000_PHY_CTRL_D0A_LPLU;
    604	else
    605		data &= ~E1000_PHY_CTRL_D0A_LPLU;
    606
    607	ew32(POEMB, data);
    608	return 0;
    609}
    610
    611/**
    612 *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
    613 *  @hw: pointer to the HW structure
    614 *  @active: boolean used to enable/disable lplu
    615 *
    616 *  The low power link up (lplu) state is set to the power management level D3
    617 *  when active is true, else clear lplu for D3. LPLU
    618 *  is used during Dx states where the power conservation is most important.
    619 *  During driver activity, SmartSpeed should be enabled so performance is
    620 *  maintained.
    621 **/
    622static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
    623{
    624	u32 data = er32(POEMB);
    625
    626	if (!active) {
    627		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
    628	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
    629		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
    630		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
    631		data |= E1000_PHY_CTRL_NOND0A_LPLU;
    632	}
    633
    634	ew32(POEMB, data);
    635	return 0;
    636}
    637
    638/**
    639 *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
    640 *  @hw: pointer to the HW structure
    641 *
    642 *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
    643 *  Then for non-82573 hardware, set the EEPROM access request bit and wait
    644 *  for EEPROM access grant bit.  If the access grant bit is not set, release
    645 *  hardware semaphore.
    646 **/
    647static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
    648{
    649	s32 ret_val;
    650
    651	ret_val = e1000_get_hw_semaphore_82571(hw);
    652	if (ret_val)
    653		return ret_val;
    654
    655	switch (hw->mac.type) {
    656	case e1000_82573:
    657		break;
    658	default:
    659		ret_val = e1000e_acquire_nvm(hw);
    660		break;
    661	}
    662
    663	if (ret_val)
    664		e1000_put_hw_semaphore_82571(hw);
    665
    666	return ret_val;
    667}
    668
    669/**
    670 *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
    671 *  @hw: pointer to the HW structure
    672 *
    673 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
    674 **/
    675static void e1000_release_nvm_82571(struct e1000_hw *hw)
    676{
    677	e1000e_release_nvm(hw);
    678	e1000_put_hw_semaphore_82571(hw);
    679}
    680
    681/**
    682 *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
    683 *  @hw: pointer to the HW structure
    684 *  @offset: offset within the EEPROM to be written to
    685 *  @words: number of words to write
    686 *  @data: 16 bit word(s) to be written to the EEPROM
    687 *
    688 *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
    689 *
    690 *  If e1000e_update_nvm_checksum is not called after this function, the
    691 *  EEPROM will most likely contain an invalid checksum.
    692 **/
    693static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
    694				 u16 *data)
    695{
    696	s32 ret_val;
    697
    698	switch (hw->mac.type) {
    699	case e1000_82573:
    700	case e1000_82574:
    701	case e1000_82583:
    702		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
    703		break;
    704	case e1000_82571:
    705	case e1000_82572:
    706		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
    707		break;
    708	default:
    709		ret_val = -E1000_ERR_NVM;
    710		break;
    711	}
    712
    713	return ret_val;
    714}
    715
    716/**
    717 *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
    718 *  @hw: pointer to the HW structure
    719 *
    720 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
    721 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
    722 *  value to the EEPROM.
    723 **/
    724static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
    725{
    726	u32 eecd;
    727	s32 ret_val;
    728	u16 i;
    729
    730	ret_val = e1000e_update_nvm_checksum_generic(hw);
    731	if (ret_val)
    732		return ret_val;
    733
    734	/* If our nvm is an EEPROM, then we're done
    735	 * otherwise, commit the checksum to the flash NVM.
    736	 */
    737	if (hw->nvm.type != e1000_nvm_flash_hw)
    738		return 0;
    739
    740	/* Check for pending operations. */
    741	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
    742		usleep_range(1000, 2000);
    743		if (!(er32(EECD) & E1000_EECD_FLUPD))
    744			break;
    745	}
    746
    747	if (i == E1000_FLASH_UPDATES)
    748		return -E1000_ERR_NVM;
    749
    750	/* Reset the firmware if using STM opcode. */
    751	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
    752		/* The enabling of and the actual reset must be done
    753		 * in two write cycles.
    754		 */
    755		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
    756		e1e_flush();
    757		ew32(HICR, E1000_HICR_FW_RESET);
    758	}
    759
    760	/* Commit the write to flash */
    761	eecd = er32(EECD) | E1000_EECD_FLUPD;
    762	ew32(EECD, eecd);
    763
    764	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
    765		usleep_range(1000, 2000);
    766		if (!(er32(EECD) & E1000_EECD_FLUPD))
    767			break;
    768	}
    769
    770	if (i == E1000_FLASH_UPDATES)
    771		return -E1000_ERR_NVM;
    772
    773	return 0;
    774}
    775
    776/**
    777 *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
    778 *  @hw: pointer to the HW structure
    779 *
    780 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
    781 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
    782 **/
    783static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
    784{
    785	if (hw->nvm.type == e1000_nvm_flash_hw)
    786		e1000_fix_nvm_checksum_82571(hw);
    787
    788	return e1000e_validate_nvm_checksum_generic(hw);
    789}
    790
    791/**
    792 *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
    793 *  @hw: pointer to the HW structure
    794 *  @offset: offset within the EEPROM to be written to
    795 *  @words: number of words to write
    796 *  @data: 16 bit word(s) to be written to the EEPROM
    797 *
    798 *  After checking for invalid values, poll the EEPROM to ensure the previous
    799 *  command has completed before trying to write the next word.  After write
    800 *  poll for completion.
    801 *
    802 *  If e1000e_update_nvm_checksum is not called after this function, the
    803 *  EEPROM will most likely contain an invalid checksum.
    804 **/
    805static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
    806				      u16 words, u16 *data)
    807{
    808	struct e1000_nvm_info *nvm = &hw->nvm;
    809	u32 i, eewr = 0;
    810	s32 ret_val = 0;
    811
    812	/* A check for invalid values:  offset too large, too many words,
    813	 * and not enough words.
    814	 */
    815	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    816	    (words == 0)) {
    817		e_dbg("nvm parameter(s) out of bounds\n");
    818		return -E1000_ERR_NVM;
    819	}
    820
    821	for (i = 0; i < words; i++) {
    822		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
    823			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
    824			E1000_NVM_RW_REG_START);
    825
    826		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
    827		if (ret_val)
    828			break;
    829
    830		ew32(EEWR, eewr);
    831
    832		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
    833		if (ret_val)
    834			break;
    835	}
    836
    837	return ret_val;
    838}
    839
    840/**
    841 *  e1000_get_cfg_done_82571 - Poll for configuration done
    842 *  @hw: pointer to the HW structure
    843 *
    844 *  Reads the management control register for the config done bit to be set.
    845 **/
    846static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
    847{
    848	s32 timeout = PHY_CFG_TIMEOUT;
    849
    850	while (timeout) {
    851		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
    852			break;
    853		usleep_range(1000, 2000);
    854		timeout--;
    855	}
    856	if (!timeout) {
    857		e_dbg("MNG configuration cycle has not completed.\n");
    858		return -E1000_ERR_RESET;
    859	}
    860
    861	return 0;
    862}
    863
    864/**
    865 *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
    866 *  @hw: pointer to the HW structure
    867 *  @active: true to enable LPLU, false to disable
    868 *
    869 *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
    870 *  this function also disables smart speed and vice versa.  LPLU will not be
    871 *  activated unless the device autonegotiation advertisement meets standards
    872 *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
    873 *  pointer entry point only called by PHY setup routines.
    874 **/
    875static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
    876{
    877	struct e1000_phy_info *phy = &hw->phy;
    878	s32 ret_val;
    879	u16 data;
    880
    881	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
    882	if (ret_val)
    883		return ret_val;
    884
    885	if (active) {
    886		data |= IGP02E1000_PM_D0_LPLU;
    887		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
    888		if (ret_val)
    889			return ret_val;
    890
    891		/* When LPLU is enabled, we should disable SmartSpeed */
    892		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
    893		if (ret_val)
    894			return ret_val;
    895		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
    896		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
    897		if (ret_val)
    898			return ret_val;
    899	} else {
    900		data &= ~IGP02E1000_PM_D0_LPLU;
    901		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
    902		if (ret_val)
    903			return ret_val;
    904		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
    905		 * during Dx states where the power conservation is most
    906		 * important.  During driver activity we should enable
    907		 * SmartSpeed, so performance is maintained.
    908		 */
    909		if (phy->smart_speed == e1000_smart_speed_on) {
    910			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
    911					   &data);
    912			if (ret_val)
    913				return ret_val;
    914
    915			data |= IGP01E1000_PSCFR_SMART_SPEED;
    916			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
    917					   data);
    918			if (ret_val)
    919				return ret_val;
    920		} else if (phy->smart_speed == e1000_smart_speed_off) {
    921			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
    922					   &data);
    923			if (ret_val)
    924				return ret_val;
    925
    926			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
    927			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
    928					   data);
    929			if (ret_val)
    930				return ret_val;
    931		}
    932	}
    933
    934	return 0;
    935}
    936
    937/**
    938 *  e1000_reset_hw_82571 - Reset hardware
    939 *  @hw: pointer to the HW structure
    940 *
    941 *  This resets the hardware into a known state.
    942 **/
    943static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
    944{
    945	u32 ctrl, ctrl_ext, eecd, tctl;
    946	s32 ret_val;
    947
    948	/* Prevent the PCI-E bus from sticking if there is no TLP connection
    949	 * on the last TLP read/write transaction when MAC is reset.
    950	 */
    951	ret_val = e1000e_disable_pcie_master(hw);
    952	if (ret_val)
    953		e_dbg("PCI-E Master disable polling has failed.\n");
    954
    955	e_dbg("Masking off all interrupts\n");
    956	ew32(IMC, 0xffffffff);
    957
    958	ew32(RCTL, 0);
    959	tctl = er32(TCTL);
    960	tctl &= ~E1000_TCTL_EN;
    961	ew32(TCTL, tctl);
    962	e1e_flush();
    963
    964	usleep_range(10000, 11000);
    965
    966	/* Must acquire the MDIO ownership before MAC reset.
    967	 * Ownership defaults to firmware after a reset.
    968	 */
    969	switch (hw->mac.type) {
    970	case e1000_82573:
    971		ret_val = e1000_get_hw_semaphore_82573(hw);
    972		break;
    973	case e1000_82574:
    974	case e1000_82583:
    975		ret_val = e1000_get_hw_semaphore_82574(hw);
    976		break;
    977	default:
    978		break;
    979	}
    980
    981	ctrl = er32(CTRL);
    982
    983	e_dbg("Issuing a global reset to MAC\n");
    984	ew32(CTRL, ctrl | E1000_CTRL_RST);
    985
    986	/* Must release MDIO ownership and mutex after MAC reset. */
    987	switch (hw->mac.type) {
    988	case e1000_82573:
    989		/* Release mutex only if the hw semaphore is acquired */
    990		if (!ret_val)
    991			e1000_put_hw_semaphore_82573(hw);
    992		break;
    993	case e1000_82574:
    994	case e1000_82583:
    995		/* Release mutex only if the hw semaphore is acquired */
    996		if (!ret_val)
    997			e1000_put_hw_semaphore_82574(hw);
    998		break;
    999	default:
   1000		break;
   1001	}
   1002
   1003	if (hw->nvm.type == e1000_nvm_flash_hw) {
   1004		usleep_range(10, 20);
   1005		ctrl_ext = er32(CTRL_EXT);
   1006		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
   1007		ew32(CTRL_EXT, ctrl_ext);
   1008		e1e_flush();
   1009	}
   1010
   1011	ret_val = e1000e_get_auto_rd_done(hw);
   1012	if (ret_val)
   1013		/* We don't want to continue accessing MAC registers. */
   1014		return ret_val;
   1015
   1016	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
   1017	 * Need to wait for Phy configuration completion before accessing
   1018	 * NVM and Phy.
   1019	 */
   1020
   1021	switch (hw->mac.type) {
   1022	case e1000_82571:
   1023	case e1000_82572:
   1024		/* REQ and GNT bits need to be cleared when using AUTO_RD
   1025		 * to access the EEPROM.
   1026		 */
   1027		eecd = er32(EECD);
   1028		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
   1029		ew32(EECD, eecd);
   1030		break;
   1031	case e1000_82573:
   1032	case e1000_82574:
   1033	case e1000_82583:
   1034		msleep(25);
   1035		break;
   1036	default:
   1037		break;
   1038	}
   1039
   1040	/* Clear any pending interrupt events. */
   1041	ew32(IMC, 0xffffffff);
   1042	er32(ICR);
   1043
   1044	if (hw->mac.type == e1000_82571) {
   1045		/* Install any alternate MAC address into RAR0 */
   1046		ret_val = e1000_check_alt_mac_addr_generic(hw);
   1047		if (ret_val)
   1048			return ret_val;
   1049
   1050		e1000e_set_laa_state_82571(hw, true);
   1051	}
   1052
   1053	/* Reinitialize the 82571 serdes link state machine */
   1054	if (hw->phy.media_type == e1000_media_type_internal_serdes)
   1055		hw->mac.serdes_link_state = e1000_serdes_link_down;
   1056
   1057	return 0;
   1058}
   1059
   1060/**
   1061 *  e1000_init_hw_82571 - Initialize hardware
   1062 *  @hw: pointer to the HW structure
   1063 *
   1064 *  This inits the hardware readying it for operation.
   1065 **/
   1066static s32 e1000_init_hw_82571(struct e1000_hw *hw)
   1067{
   1068	struct e1000_mac_info *mac = &hw->mac;
   1069	u32 reg_data;
   1070	s32 ret_val;
   1071	u16 i, rar_count = mac->rar_entry_count;
   1072
   1073	e1000_initialize_hw_bits_82571(hw);
   1074
   1075	/* Initialize identification LED */
   1076	ret_val = mac->ops.id_led_init(hw);
   1077	/* An error is not fatal and we should not stop init due to this */
   1078	if (ret_val)
   1079		e_dbg("Error initializing identification LED\n");
   1080
   1081	/* Disabling VLAN filtering */
   1082	e_dbg("Initializing the IEEE VLAN\n");
   1083	mac->ops.clear_vfta(hw);
   1084
   1085	/* Setup the receive address.
   1086	 * If, however, a locally administered address was assigned to the
   1087	 * 82571, we must reserve a RAR for it to work around an issue where
   1088	 * resetting one port will reload the MAC on the other port.
   1089	 */
   1090	if (e1000e_get_laa_state_82571(hw))
   1091		rar_count--;
   1092	e1000e_init_rx_addrs(hw, rar_count);
   1093
   1094	/* Zero out the Multicast HASH table */
   1095	e_dbg("Zeroing the MTA\n");
   1096	for (i = 0; i < mac->mta_reg_count; i++)
   1097		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
   1098
   1099	/* Setup link and flow control */
   1100	ret_val = mac->ops.setup_link(hw);
   1101
   1102	/* Set the transmit descriptor write-back policy */
   1103	reg_data = er32(TXDCTL(0));
   1104	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
   1105		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
   1106	ew32(TXDCTL(0), reg_data);
   1107
   1108	/* ...for both queues. */
   1109	switch (mac->type) {
   1110	case e1000_82573:
   1111		e1000e_enable_tx_pkt_filtering(hw);
   1112		fallthrough;
   1113	case e1000_82574:
   1114	case e1000_82583:
   1115		reg_data = er32(GCR);
   1116		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
   1117		ew32(GCR, reg_data);
   1118		break;
   1119	default:
   1120		reg_data = er32(TXDCTL(1));
   1121		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
   1122			    E1000_TXDCTL_FULL_TX_DESC_WB |
   1123			    E1000_TXDCTL_COUNT_DESC);
   1124		ew32(TXDCTL(1), reg_data);
   1125		break;
   1126	}
   1127
   1128	/* Clear all of the statistics registers (clear on read).  It is
   1129	 * important that we do this after we have tried to establish link
   1130	 * because the symbol error count will increment wildly if there
   1131	 * is no link.
   1132	 */
   1133	e1000_clear_hw_cntrs_82571(hw);
   1134
   1135	return ret_val;
   1136}
   1137
   1138/**
   1139 *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
   1140 *  @hw: pointer to the HW structure
   1141 *
   1142 *  Initializes required hardware-dependent bits needed for normal operation.
   1143 **/
   1144static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
   1145{
   1146	u32 reg;
   1147
   1148	/* Transmit Descriptor Control 0 */
   1149	reg = er32(TXDCTL(0));
   1150	reg |= BIT(22);
   1151	ew32(TXDCTL(0), reg);
   1152
   1153	/* Transmit Descriptor Control 1 */
   1154	reg = er32(TXDCTL(1));
   1155	reg |= BIT(22);
   1156	ew32(TXDCTL(1), reg);
   1157
   1158	/* Transmit Arbitration Control 0 */
   1159	reg = er32(TARC(0));
   1160	reg &= ~(0xF << 27);	/* 30:27 */
   1161	switch (hw->mac.type) {
   1162	case e1000_82571:
   1163	case e1000_82572:
   1164		reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
   1165		break;
   1166	case e1000_82574:
   1167	case e1000_82583:
   1168		reg |= BIT(26);
   1169		break;
   1170	default:
   1171		break;
   1172	}
   1173	ew32(TARC(0), reg);
   1174
   1175	/* Transmit Arbitration Control 1 */
   1176	reg = er32(TARC(1));
   1177	switch (hw->mac.type) {
   1178	case e1000_82571:
   1179	case e1000_82572:
   1180		reg &= ~(BIT(29) | BIT(30));
   1181		reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
   1182		if (er32(TCTL) & E1000_TCTL_MULR)
   1183			reg &= ~BIT(28);
   1184		else
   1185			reg |= BIT(28);
   1186		ew32(TARC(1), reg);
   1187		break;
   1188	default:
   1189		break;
   1190	}
   1191
   1192	/* Device Control */
   1193	switch (hw->mac.type) {
   1194	case e1000_82573:
   1195	case e1000_82574:
   1196	case e1000_82583:
   1197		reg = er32(CTRL);
   1198		reg &= ~BIT(29);
   1199		ew32(CTRL, reg);
   1200		break;
   1201	default:
   1202		break;
   1203	}
   1204
   1205	/* Extended Device Control */
   1206	switch (hw->mac.type) {
   1207	case e1000_82573:
   1208	case e1000_82574:
   1209	case e1000_82583:
   1210		reg = er32(CTRL_EXT);
   1211		reg &= ~BIT(23);
   1212		reg |= BIT(22);
   1213		ew32(CTRL_EXT, reg);
   1214		break;
   1215	default:
   1216		break;
   1217	}
   1218
   1219	if (hw->mac.type == e1000_82571) {
   1220		reg = er32(PBA_ECC);
   1221		reg |= E1000_PBA_ECC_CORR_EN;
   1222		ew32(PBA_ECC, reg);
   1223	}
   1224
   1225	/* Workaround for hardware errata.
   1226	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
   1227	 */
   1228	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
   1229		reg = er32(CTRL_EXT);
   1230		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
   1231		ew32(CTRL_EXT, reg);
   1232	}
   1233
   1234	/* Disable IPv6 extension header parsing because some malformed
   1235	 * IPv6 headers can hang the Rx.
   1236	 */
   1237	if (hw->mac.type <= e1000_82573) {
   1238		reg = er32(RFCTL);
   1239		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
   1240		ew32(RFCTL, reg);
   1241	}
   1242
   1243	/* PCI-Ex Control Registers */
   1244	switch (hw->mac.type) {
   1245	case e1000_82574:
   1246	case e1000_82583:
   1247		reg = er32(GCR);
   1248		reg |= BIT(22);
   1249		ew32(GCR, reg);
   1250
   1251		/* Workaround for hardware errata.
   1252		 * apply workaround for hardware errata documented in errata
   1253		 * docs Fixes issue where some error prone or unreliable PCIe
   1254		 * completions are occurring, particularly with ASPM enabled.
   1255		 * Without fix, issue can cause Tx timeouts.
   1256		 */
   1257		reg = er32(GCR2);
   1258		reg |= 1;
   1259		ew32(GCR2, reg);
   1260		break;
   1261	default:
   1262		break;
   1263	}
   1264}
   1265
   1266/**
   1267 *  e1000_clear_vfta_82571 - Clear VLAN filter table
   1268 *  @hw: pointer to the HW structure
   1269 *
   1270 *  Clears the register array which contains the VLAN filter table by
   1271 *  setting all the values to 0.
   1272 **/
   1273static void e1000_clear_vfta_82571(struct e1000_hw *hw)
   1274{
   1275	u32 offset;
   1276	u32 vfta_value = 0;
   1277	u32 vfta_offset = 0;
   1278	u32 vfta_bit_in_reg = 0;
   1279
   1280	switch (hw->mac.type) {
   1281	case e1000_82573:
   1282	case e1000_82574:
   1283	case e1000_82583:
   1284		if (hw->mng_cookie.vlan_id != 0) {
   1285			/* The VFTA is a 4096b bit-field, each identifying
   1286			 * a single VLAN ID.  The following operations
   1287			 * determine which 32b entry (i.e. offset) into the
   1288			 * array we want to set the VLAN ID (i.e. bit) of
   1289			 * the manageability unit.
   1290			 */
   1291			vfta_offset = (hw->mng_cookie.vlan_id >>
   1292				       E1000_VFTA_ENTRY_SHIFT) &
   1293			    E1000_VFTA_ENTRY_MASK;
   1294			vfta_bit_in_reg =
   1295			    BIT(hw->mng_cookie.vlan_id &
   1296				E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
   1297		}
   1298		break;
   1299	default:
   1300		break;
   1301	}
   1302	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
   1303		/* If the offset we want to clear is the same offset of the
   1304		 * manageability VLAN ID, then clear all bits except that of
   1305		 * the manageability unit.
   1306		 */
   1307		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
   1308		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
   1309		e1e_flush();
   1310	}
   1311}
   1312
   1313/**
   1314 *  e1000_check_mng_mode_82574 - Check manageability is enabled
   1315 *  @hw: pointer to the HW structure
   1316 *
   1317 *  Reads the NVM Initialization Control Word 2 and returns true
   1318 *  (>0) if any manageability is enabled, else false (0).
   1319 **/
   1320static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
   1321{
   1322	u16 data;
   1323
   1324	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
   1325	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
   1326}
   1327
   1328/**
   1329 *  e1000_led_on_82574 - Turn LED on
   1330 *  @hw: pointer to the HW structure
   1331 *
   1332 *  Turn LED on.
   1333 **/
   1334static s32 e1000_led_on_82574(struct e1000_hw *hw)
   1335{
   1336	u32 ctrl;
   1337	u32 i;
   1338
   1339	ctrl = hw->mac.ledctl_mode2;
   1340	if (!(E1000_STATUS_LU & er32(STATUS))) {
   1341		/* If no link, then turn LED on by setting the invert bit
   1342		 * for each LED that's "on" (0x0E) in ledctl_mode2.
   1343		 */
   1344		for (i = 0; i < 4; i++)
   1345			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
   1346			    E1000_LEDCTL_MODE_LED_ON)
   1347				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
   1348	}
   1349	ew32(LEDCTL, ctrl);
   1350
   1351	return 0;
   1352}
   1353
   1354/**
   1355 *  e1000_check_phy_82574 - check 82574 phy hung state
   1356 *  @hw: pointer to the HW structure
   1357 *
   1358 *  Returns whether phy is hung or not
   1359 **/
   1360bool e1000_check_phy_82574(struct e1000_hw *hw)
   1361{
   1362	u16 status_1kbt = 0;
   1363	u16 receive_errors = 0;
   1364	s32 ret_val;
   1365
   1366	/* Read PHY Receive Error counter first, if its is max - all F's then
   1367	 * read the Base1000T status register If both are max then PHY is hung.
   1368	 */
   1369	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
   1370	if (ret_val)
   1371		return false;
   1372	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
   1373		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
   1374		if (ret_val)
   1375			return false;
   1376		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
   1377		    E1000_IDLE_ERROR_COUNT_MASK)
   1378			return true;
   1379	}
   1380
   1381	return false;
   1382}
   1383
   1384/**
   1385 *  e1000_setup_link_82571 - Setup flow control and link settings
   1386 *  @hw: pointer to the HW structure
   1387 *
   1388 *  Determines which flow control settings to use, then configures flow
   1389 *  control.  Calls the appropriate media-specific link configuration
   1390 *  function.  Assuming the adapter has a valid link partner, a valid link
   1391 *  should be established.  Assumes the hardware has previously been reset
   1392 *  and the transmitter and receiver are not enabled.
   1393 **/
   1394static s32 e1000_setup_link_82571(struct e1000_hw *hw)
   1395{
   1396	/* 82573 does not have a word in the NVM to determine
   1397	 * the default flow control setting, so we explicitly
   1398	 * set it to full.
   1399	 */
   1400	switch (hw->mac.type) {
   1401	case e1000_82573:
   1402	case e1000_82574:
   1403	case e1000_82583:
   1404		if (hw->fc.requested_mode == e1000_fc_default)
   1405			hw->fc.requested_mode = e1000_fc_full;
   1406		break;
   1407	default:
   1408		break;
   1409	}
   1410
   1411	return e1000e_setup_link_generic(hw);
   1412}
   1413
   1414/**
   1415 *  e1000_setup_copper_link_82571 - Configure copper link settings
   1416 *  @hw: pointer to the HW structure
   1417 *
   1418 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
   1419 *  for link, once link is established calls to configure collision distance
   1420 *  and flow control are called.
   1421 **/
   1422static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
   1423{
   1424	u32 ctrl;
   1425	s32 ret_val;
   1426
   1427	ctrl = er32(CTRL);
   1428	ctrl |= E1000_CTRL_SLU;
   1429	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
   1430	ew32(CTRL, ctrl);
   1431
   1432	switch (hw->phy.type) {
   1433	case e1000_phy_m88:
   1434	case e1000_phy_bm:
   1435		ret_val = e1000e_copper_link_setup_m88(hw);
   1436		break;
   1437	case e1000_phy_igp_2:
   1438		ret_val = e1000e_copper_link_setup_igp(hw);
   1439		break;
   1440	default:
   1441		return -E1000_ERR_PHY;
   1442	}
   1443
   1444	if (ret_val)
   1445		return ret_val;
   1446
   1447	return e1000e_setup_copper_link(hw);
   1448}
   1449
   1450/**
   1451 *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
   1452 *  @hw: pointer to the HW structure
   1453 *
   1454 *  Configures collision distance and flow control for fiber and serdes links.
   1455 *  Upon successful setup, poll for link.
   1456 **/
   1457static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
   1458{
   1459	switch (hw->mac.type) {
   1460	case e1000_82571:
   1461	case e1000_82572:
   1462		/* If SerDes loopback mode is entered, there is no form
   1463		 * of reset to take the adapter out of that mode.  So we
   1464		 * have to explicitly take the adapter out of loopback
   1465		 * mode.  This prevents drivers from twiddling their thumbs
   1466		 * if another tool failed to take it out of loopback mode.
   1467		 */
   1468		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
   1469		break;
   1470	default:
   1471		break;
   1472	}
   1473
   1474	return e1000e_setup_fiber_serdes_link(hw);
   1475}
   1476
   1477/**
   1478 *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
   1479 *  @hw: pointer to the HW structure
   1480 *
   1481 *  Reports the link state as up or down.
   1482 *
   1483 *  If autonegotiation is supported by the link partner, the link state is
   1484 *  determined by the result of autonegotiation. This is the most likely case.
   1485 *  If autonegotiation is not supported by the link partner, and the link
   1486 *  has a valid signal, force the link up.
   1487 *
   1488 *  The link state is represented internally here by 4 states:
   1489 *
   1490 *  1) down
   1491 *  2) autoneg_progress
   1492 *  3) autoneg_complete (the link successfully autonegotiated)
   1493 *  4) forced_up (the link has been forced up, it did not autonegotiate)
   1494 *
   1495 **/
   1496static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
   1497{
   1498	struct e1000_mac_info *mac = &hw->mac;
   1499	u32 rxcw;
   1500	u32 ctrl;
   1501	u32 status;
   1502	u32 txcw;
   1503	u32 i;
   1504	s32 ret_val = 0;
   1505
   1506	ctrl = er32(CTRL);
   1507	status = er32(STATUS);
   1508	er32(RXCW);
   1509	/* SYNCH bit and IV bit are sticky */
   1510	usleep_range(10, 20);
   1511	rxcw = er32(RXCW);
   1512
   1513	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
   1514		/* Receiver is synchronized with no invalid bits.  */
   1515		switch (mac->serdes_link_state) {
   1516		case e1000_serdes_link_autoneg_complete:
   1517			if (!(status & E1000_STATUS_LU)) {
   1518				/* We have lost link, retry autoneg before
   1519				 * reporting link failure
   1520				 */
   1521				mac->serdes_link_state =
   1522				    e1000_serdes_link_autoneg_progress;
   1523				mac->serdes_has_link = false;
   1524				e_dbg("AN_UP     -> AN_PROG\n");
   1525			} else {
   1526				mac->serdes_has_link = true;
   1527			}
   1528			break;
   1529
   1530		case e1000_serdes_link_forced_up:
   1531			/* If we are receiving /C/ ordered sets, re-enable
   1532			 * auto-negotiation in the TXCW register and disable
   1533			 * forced link in the Device Control register in an
   1534			 * attempt to auto-negotiate with our link partner.
   1535			 */
   1536			if (rxcw & E1000_RXCW_C) {
   1537				/* Enable autoneg, and unforce link up */
   1538				ew32(TXCW, mac->txcw);
   1539				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
   1540				mac->serdes_link_state =
   1541				    e1000_serdes_link_autoneg_progress;
   1542				mac->serdes_has_link = false;
   1543				e_dbg("FORCED_UP -> AN_PROG\n");
   1544			} else {
   1545				mac->serdes_has_link = true;
   1546			}
   1547			break;
   1548
   1549		case e1000_serdes_link_autoneg_progress:
   1550			if (rxcw & E1000_RXCW_C) {
   1551				/* We received /C/ ordered sets, meaning the
   1552				 * link partner has autonegotiated, and we can
   1553				 * trust the Link Up (LU) status bit.
   1554				 */
   1555				if (status & E1000_STATUS_LU) {
   1556					mac->serdes_link_state =
   1557					    e1000_serdes_link_autoneg_complete;
   1558					e_dbg("AN_PROG   -> AN_UP\n");
   1559					mac->serdes_has_link = true;
   1560				} else {
   1561					/* Autoneg completed, but failed. */
   1562					mac->serdes_link_state =
   1563					    e1000_serdes_link_down;
   1564					e_dbg("AN_PROG   -> DOWN\n");
   1565				}
   1566			} else {
   1567				/* The link partner did not autoneg.
   1568				 * Force link up and full duplex, and change
   1569				 * state to forced.
   1570				 */
   1571				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
   1572				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
   1573				ew32(CTRL, ctrl);
   1574
   1575				/* Configure Flow Control after link up. */
   1576				ret_val = e1000e_config_fc_after_link_up(hw);
   1577				if (ret_val) {
   1578					e_dbg("Error config flow control\n");
   1579					break;
   1580				}
   1581				mac->serdes_link_state =
   1582				    e1000_serdes_link_forced_up;
   1583				mac->serdes_has_link = true;
   1584				e_dbg("AN_PROG   -> FORCED_UP\n");
   1585			}
   1586			break;
   1587
   1588		case e1000_serdes_link_down:
   1589		default:
   1590			/* The link was down but the receiver has now gained
   1591			 * valid sync, so lets see if we can bring the link
   1592			 * up.
   1593			 */
   1594			ew32(TXCW, mac->txcw);
   1595			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
   1596			mac->serdes_link_state =
   1597			    e1000_serdes_link_autoneg_progress;
   1598			mac->serdes_has_link = false;
   1599			e_dbg("DOWN      -> AN_PROG\n");
   1600			break;
   1601		}
   1602	} else {
   1603		if (!(rxcw & E1000_RXCW_SYNCH)) {
   1604			mac->serdes_has_link = false;
   1605			mac->serdes_link_state = e1000_serdes_link_down;
   1606			e_dbg("ANYSTATE  -> DOWN\n");
   1607		} else {
   1608			/* Check several times, if SYNCH bit and CONFIG
   1609			 * bit both are consistently 1 then simply ignore
   1610			 * the IV bit and restart Autoneg
   1611			 */
   1612			for (i = 0; i < AN_RETRY_COUNT; i++) {
   1613				usleep_range(10, 20);
   1614				rxcw = er32(RXCW);
   1615				if ((rxcw & E1000_RXCW_SYNCH) &&
   1616				    (rxcw & E1000_RXCW_C))
   1617					continue;
   1618
   1619				if (rxcw & E1000_RXCW_IV) {
   1620					mac->serdes_has_link = false;
   1621					mac->serdes_link_state =
   1622					    e1000_serdes_link_down;
   1623					e_dbg("ANYSTATE  -> DOWN\n");
   1624					break;
   1625				}
   1626			}
   1627
   1628			if (i == AN_RETRY_COUNT) {
   1629				txcw = er32(TXCW);
   1630				txcw |= E1000_TXCW_ANE;
   1631				ew32(TXCW, txcw);
   1632				mac->serdes_link_state =
   1633				    e1000_serdes_link_autoneg_progress;
   1634				mac->serdes_has_link = false;
   1635				e_dbg("ANYSTATE  -> AN_PROG\n");
   1636			}
   1637		}
   1638	}
   1639
   1640	return ret_val;
   1641}
   1642
   1643/**
   1644 *  e1000_valid_led_default_82571 - Verify a valid default LED config
   1645 *  @hw: pointer to the HW structure
   1646 *  @data: pointer to the NVM (EEPROM)
   1647 *
   1648 *  Read the EEPROM for the current default LED configuration.  If the
   1649 *  LED configuration is not valid, set to a valid LED configuration.
   1650 **/
   1651static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
   1652{
   1653	s32 ret_val;
   1654
   1655	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
   1656	if (ret_val) {
   1657		e_dbg("NVM Read Error\n");
   1658		return ret_val;
   1659	}
   1660
   1661	switch (hw->mac.type) {
   1662	case e1000_82573:
   1663	case e1000_82574:
   1664	case e1000_82583:
   1665		if (*data == ID_LED_RESERVED_F746)
   1666			*data = ID_LED_DEFAULT_82573;
   1667		break;
   1668	default:
   1669		if (*data == ID_LED_RESERVED_0000 ||
   1670		    *data == ID_LED_RESERVED_FFFF)
   1671			*data = ID_LED_DEFAULT;
   1672		break;
   1673	}
   1674
   1675	return 0;
   1676}
   1677
   1678/**
   1679 *  e1000e_get_laa_state_82571 - Get locally administered address state
   1680 *  @hw: pointer to the HW structure
   1681 *
   1682 *  Retrieve and return the current locally administered address state.
   1683 **/
   1684bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
   1685{
   1686	if (hw->mac.type != e1000_82571)
   1687		return false;
   1688
   1689	return hw->dev_spec.e82571.laa_is_present;
   1690}
   1691
   1692/**
   1693 *  e1000e_set_laa_state_82571 - Set locally administered address state
   1694 *  @hw: pointer to the HW structure
   1695 *  @state: enable/disable locally administered address
   1696 *
   1697 *  Enable/Disable the current locally administered address state.
   1698 **/
   1699void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
   1700{
   1701	if (hw->mac.type != e1000_82571)
   1702		return;
   1703
   1704	hw->dev_spec.e82571.laa_is_present = state;
   1705
   1706	/* If workaround is activated... */
   1707	if (state)
   1708		/* Hold a copy of the LAA in RAR[14] This is done so that
   1709		 * between the time RAR[0] gets clobbered and the time it
   1710		 * gets fixed, the actual LAA is in one of the RARs and no
   1711		 * incoming packets directed to this port are dropped.
   1712		 * Eventually the LAA will be in RAR[0] and RAR[14].
   1713		 */
   1714		hw->mac.ops.rar_set(hw, hw->mac.addr,
   1715				    hw->mac.rar_entry_count - 1);
   1716}
   1717
   1718/**
   1719 *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
   1720 *  @hw: pointer to the HW structure
   1721 *
   1722 *  Verifies that the EEPROM has completed the update.  After updating the
   1723 *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
   1724 *  the checksum fix is not implemented, we need to set the bit and update
   1725 *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
   1726 *  we need to return bad checksum.
   1727 **/
   1728static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
   1729{
   1730	struct e1000_nvm_info *nvm = &hw->nvm;
   1731	s32 ret_val;
   1732	u16 data;
   1733
   1734	if (nvm->type != e1000_nvm_flash_hw)
   1735		return 0;
   1736
   1737	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
   1738	 * 10h-12h.  Checksum may need to be fixed.
   1739	 */
   1740	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
   1741	if (ret_val)
   1742		return ret_val;
   1743
   1744	if (!(data & 0x10)) {
   1745		/* Read 0x23 and check bit 15.  This bit is a 1
   1746		 * when the checksum has already been fixed.  If
   1747		 * the checksum is still wrong and this bit is a
   1748		 * 1, we need to return bad checksum.  Otherwise,
   1749		 * we need to set this bit to a 1 and update the
   1750		 * checksum.
   1751		 */
   1752		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
   1753		if (ret_val)
   1754			return ret_val;
   1755
   1756		if (!(data & 0x8000)) {
   1757			data |= 0x8000;
   1758			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
   1759			if (ret_val)
   1760				return ret_val;
   1761			ret_val = e1000e_update_nvm_checksum(hw);
   1762			if (ret_val)
   1763				return ret_val;
   1764		}
   1765	}
   1766
   1767	return 0;
   1768}
   1769
   1770/**
   1771 *  e1000_read_mac_addr_82571 - Read device MAC address
   1772 *  @hw: pointer to the HW structure
   1773 **/
   1774static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
   1775{
   1776	if (hw->mac.type == e1000_82571) {
   1777		s32 ret_val;
   1778
   1779		/* If there's an alternate MAC address place it in RAR0
   1780		 * so that it will override the Si installed default perm
   1781		 * address.
   1782		 */
   1783		ret_val = e1000_check_alt_mac_addr_generic(hw);
   1784		if (ret_val)
   1785			return ret_val;
   1786	}
   1787
   1788	return e1000_read_mac_addr_generic(hw);
   1789}
   1790
   1791/**
   1792 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
   1793 * @hw: pointer to the HW structure
   1794 *
   1795 * In the case of a PHY power down to save power, or to turn off link during a
   1796 * driver unload, or wake on lan is not enabled, remove the link.
   1797 **/
   1798static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
   1799{
   1800	struct e1000_phy_info *phy = &hw->phy;
   1801	struct e1000_mac_info *mac = &hw->mac;
   1802
   1803	if (!phy->ops.check_reset_block)
   1804		return;
   1805
   1806	/* If the management interface is not enabled, then power down */
   1807	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
   1808		e1000_power_down_phy_copper(hw);
   1809}
   1810
   1811/**
   1812 *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
   1813 *  @hw: pointer to the HW structure
   1814 *
   1815 *  Clears the hardware counters by reading the counter registers.
   1816 **/
   1817static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
   1818{
   1819	e1000e_clear_hw_cntrs_base(hw);
   1820
   1821	er32(PRC64);
   1822	er32(PRC127);
   1823	er32(PRC255);
   1824	er32(PRC511);
   1825	er32(PRC1023);
   1826	er32(PRC1522);
   1827	er32(PTC64);
   1828	er32(PTC127);
   1829	er32(PTC255);
   1830	er32(PTC511);
   1831	er32(PTC1023);
   1832	er32(PTC1522);
   1833
   1834	er32(ALGNERRC);
   1835	er32(RXERRC);
   1836	er32(TNCRS);
   1837	er32(CEXTERR);
   1838	er32(TSCTC);
   1839	er32(TSCTFC);
   1840
   1841	er32(MGTPRC);
   1842	er32(MGTPDC);
   1843	er32(MGTPTC);
   1844
   1845	er32(IAC);
   1846	er32(ICRXOC);
   1847
   1848	er32(ICRXPTC);
   1849	er32(ICRXATC);
   1850	er32(ICTXPTC);
   1851	er32(ICTXATC);
   1852	er32(ICTXQEC);
   1853	er32(ICTXQMTC);
   1854	er32(ICRXDMTC);
   1855}
   1856
   1857static const struct e1000_mac_operations e82571_mac_ops = {
   1858	/* .check_mng_mode: mac type dependent */
   1859	/* .check_for_link: media type dependent */
   1860	.id_led_init		= e1000e_id_led_init_generic,
   1861	.cleanup_led		= e1000e_cleanup_led_generic,
   1862	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
   1863	.get_bus_info		= e1000e_get_bus_info_pcie,
   1864	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
   1865	/* .get_link_up_info: media type dependent */
   1866	/* .led_on: mac type dependent */
   1867	.led_off		= e1000e_led_off_generic,
   1868	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
   1869	.write_vfta		= e1000_write_vfta_generic,
   1870	.clear_vfta		= e1000_clear_vfta_82571,
   1871	.reset_hw		= e1000_reset_hw_82571,
   1872	.init_hw		= e1000_init_hw_82571,
   1873	.setup_link		= e1000_setup_link_82571,
   1874	/* .setup_physical_interface: media type dependent */
   1875	.setup_led		= e1000e_setup_led_generic,
   1876	.config_collision_dist	= e1000e_config_collision_dist_generic,
   1877	.read_mac_addr		= e1000_read_mac_addr_82571,
   1878	.rar_set		= e1000e_rar_set_generic,
   1879	.rar_get_count		= e1000e_rar_get_count_generic,
   1880};
   1881
   1882static const struct e1000_phy_operations e82_phy_ops_igp = {
   1883	.acquire		= e1000_get_hw_semaphore_82571,
   1884	.check_polarity		= e1000_check_polarity_igp,
   1885	.check_reset_block	= e1000e_check_reset_block_generic,
   1886	.commit			= NULL,
   1887	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
   1888	.get_cfg_done		= e1000_get_cfg_done_82571,
   1889	.get_cable_length	= e1000e_get_cable_length_igp_2,
   1890	.get_info		= e1000e_get_phy_info_igp,
   1891	.read_reg		= e1000e_read_phy_reg_igp,
   1892	.release		= e1000_put_hw_semaphore_82571,
   1893	.reset			= e1000e_phy_hw_reset_generic,
   1894	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
   1895	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
   1896	.write_reg		= e1000e_write_phy_reg_igp,
   1897	.cfg_on_link_up		= NULL,
   1898};
   1899
   1900static const struct e1000_phy_operations e82_phy_ops_m88 = {
   1901	.acquire		= e1000_get_hw_semaphore_82571,
   1902	.check_polarity		= e1000_check_polarity_m88,
   1903	.check_reset_block	= e1000e_check_reset_block_generic,
   1904	.commit			= e1000e_phy_sw_reset,
   1905	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
   1906	.get_cfg_done		= e1000e_get_cfg_done_generic,
   1907	.get_cable_length	= e1000e_get_cable_length_m88,
   1908	.get_info		= e1000e_get_phy_info_m88,
   1909	.read_reg		= e1000e_read_phy_reg_m88,
   1910	.release		= e1000_put_hw_semaphore_82571,
   1911	.reset			= e1000e_phy_hw_reset_generic,
   1912	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
   1913	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
   1914	.write_reg		= e1000e_write_phy_reg_m88,
   1915	.cfg_on_link_up		= NULL,
   1916};
   1917
   1918static const struct e1000_phy_operations e82_phy_ops_bm = {
   1919	.acquire		= e1000_get_hw_semaphore_82571,
   1920	.check_polarity		= e1000_check_polarity_m88,
   1921	.check_reset_block	= e1000e_check_reset_block_generic,
   1922	.commit			= e1000e_phy_sw_reset,
   1923	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
   1924	.get_cfg_done		= e1000e_get_cfg_done_generic,
   1925	.get_cable_length	= e1000e_get_cable_length_m88,
   1926	.get_info		= e1000e_get_phy_info_m88,
   1927	.read_reg		= e1000e_read_phy_reg_bm2,
   1928	.release		= e1000_put_hw_semaphore_82571,
   1929	.reset			= e1000e_phy_hw_reset_generic,
   1930	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
   1931	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
   1932	.write_reg		= e1000e_write_phy_reg_bm2,
   1933	.cfg_on_link_up		= NULL,
   1934};
   1935
   1936static const struct e1000_nvm_operations e82571_nvm_ops = {
   1937	.acquire		= e1000_acquire_nvm_82571,
   1938	.read			= e1000e_read_nvm_eerd,
   1939	.release		= e1000_release_nvm_82571,
   1940	.reload			= e1000e_reload_nvm_generic,
   1941	.update			= e1000_update_nvm_checksum_82571,
   1942	.valid_led_default	= e1000_valid_led_default_82571,
   1943	.validate		= e1000_validate_nvm_checksum_82571,
   1944	.write			= e1000_write_nvm_82571,
   1945};
   1946
   1947const struct e1000_info e1000_82571_info = {
   1948	.mac			= e1000_82571,
   1949	.flags			= FLAG_HAS_HW_VLAN_FILTER
   1950				  | FLAG_HAS_JUMBO_FRAMES
   1951				  | FLAG_HAS_WOL
   1952				  | FLAG_APME_IN_CTRL3
   1953				  | FLAG_HAS_CTRLEXT_ON_LOAD
   1954				  | FLAG_HAS_SMART_POWER_DOWN
   1955				  | FLAG_RESET_OVERWRITES_LAA /* errata */
   1956				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
   1957				  | FLAG_APME_CHECK_PORT_B,
   1958	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
   1959				  | FLAG2_DMA_BURST,
   1960	.pba			= 38,
   1961	.max_hw_frame_size	= DEFAULT_JUMBO,
   1962	.get_variants		= e1000_get_variants_82571,
   1963	.mac_ops		= &e82571_mac_ops,
   1964	.phy_ops		= &e82_phy_ops_igp,
   1965	.nvm_ops		= &e82571_nvm_ops,
   1966};
   1967
   1968const struct e1000_info e1000_82572_info = {
   1969	.mac			= e1000_82572,
   1970	.flags			= FLAG_HAS_HW_VLAN_FILTER
   1971				  | FLAG_HAS_JUMBO_FRAMES
   1972				  | FLAG_HAS_WOL
   1973				  | FLAG_APME_IN_CTRL3
   1974				  | FLAG_HAS_CTRLEXT_ON_LOAD
   1975				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
   1976	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
   1977				  | FLAG2_DMA_BURST,
   1978	.pba			= 38,
   1979	.max_hw_frame_size	= DEFAULT_JUMBO,
   1980	.get_variants		= e1000_get_variants_82571,
   1981	.mac_ops		= &e82571_mac_ops,
   1982	.phy_ops		= &e82_phy_ops_igp,
   1983	.nvm_ops		= &e82571_nvm_ops,
   1984};
   1985
   1986const struct e1000_info e1000_82573_info = {
   1987	.mac			= e1000_82573,
   1988	.flags			= FLAG_HAS_HW_VLAN_FILTER
   1989				  | FLAG_HAS_WOL
   1990				  | FLAG_APME_IN_CTRL3
   1991				  | FLAG_HAS_SMART_POWER_DOWN
   1992				  | FLAG_HAS_AMT
   1993				  | FLAG_HAS_SWSM_ON_LOAD,
   1994	.flags2			= FLAG2_DISABLE_ASPM_L1
   1995				  | FLAG2_DISABLE_ASPM_L0S,
   1996	.pba			= 20,
   1997	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
   1998	.get_variants		= e1000_get_variants_82571,
   1999	.mac_ops		= &e82571_mac_ops,
   2000	.phy_ops		= &e82_phy_ops_m88,
   2001	.nvm_ops		= &e82571_nvm_ops,
   2002};
   2003
   2004const struct e1000_info e1000_82574_info = {
   2005	.mac			= e1000_82574,
   2006	.flags			= FLAG_HAS_HW_VLAN_FILTER
   2007				  | FLAG_HAS_MSIX
   2008				  | FLAG_HAS_JUMBO_FRAMES
   2009				  | FLAG_HAS_WOL
   2010				  | FLAG_HAS_HW_TIMESTAMP
   2011				  | FLAG_APME_IN_CTRL3
   2012				  | FLAG_HAS_SMART_POWER_DOWN
   2013				  | FLAG_HAS_AMT
   2014				  | FLAG_HAS_CTRLEXT_ON_LOAD,
   2015	.flags2			 = FLAG2_CHECK_PHY_HANG
   2016				  | FLAG2_DISABLE_ASPM_L0S
   2017				  | FLAG2_DISABLE_ASPM_L1
   2018				  | FLAG2_NO_DISABLE_RX
   2019				  | FLAG2_DMA_BURST
   2020				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
   2021	.pba			= 32,
   2022	.max_hw_frame_size	= DEFAULT_JUMBO,
   2023	.get_variants		= e1000_get_variants_82571,
   2024	.mac_ops		= &e82571_mac_ops,
   2025	.phy_ops		= &e82_phy_ops_bm,
   2026	.nvm_ops		= &e82571_nvm_ops,
   2027};
   2028
   2029const struct e1000_info e1000_82583_info = {
   2030	.mac			= e1000_82583,
   2031	.flags			= FLAG_HAS_HW_VLAN_FILTER
   2032				  | FLAG_HAS_WOL
   2033				  | FLAG_HAS_HW_TIMESTAMP
   2034				  | FLAG_APME_IN_CTRL3
   2035				  | FLAG_HAS_SMART_POWER_DOWN
   2036				  | FLAG_HAS_AMT
   2037				  | FLAG_HAS_JUMBO_FRAMES
   2038				  | FLAG_HAS_CTRLEXT_ON_LOAD,
   2039	.flags2			= FLAG2_DISABLE_ASPM_L0S
   2040				  | FLAG2_DISABLE_ASPM_L1
   2041				  | FLAG2_NO_DISABLE_RX
   2042				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
   2043	.pba			= 32,
   2044	.max_hw_frame_size	= DEFAULT_JUMBO,
   2045	.get_variants		= e1000_get_variants_82571,
   2046	.mac_ops		= &e82571_mac_ops,
   2047	.phy_ops		= &e82_phy_ops_bm,
   2048	.nvm_ops		= &e82571_nvm_ops,
   2049};