e1000.h (17564B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4/* Linux PRO/1000 Ethernet Driver main header file */ 5 6#ifndef _E1000_H_ 7#define _E1000_H_ 8 9#include <linux/bitops.h> 10#include <linux/types.h> 11#include <linux/timer.h> 12#include <linux/workqueue.h> 13#include <linux/io.h> 14#include <linux/netdevice.h> 15#include <linux/pci.h> 16#include <linux/crc32.h> 17#include <linux/if_vlan.h> 18#include <linux/timecounter.h> 19#include <linux/net_tstamp.h> 20#include <linux/ptp_clock_kernel.h> 21#include <linux/ptp_classify.h> 22#include <linux/mii.h> 23#include <linux/mdio.h> 24#include <linux/mutex.h> 25#include <linux/pm_qos.h> 26#include "hw.h" 27 28struct e1000_info; 29 30#define e_dbg(format, arg...) \ 31 netdev_dbg(hw->adapter->netdev, format, ## arg) 32#define e_err(format, arg...) \ 33 netdev_err(adapter->netdev, format, ## arg) 34#define e_info(format, arg...) \ 35 netdev_info(adapter->netdev, format, ## arg) 36#define e_warn(format, arg...) \ 37 netdev_warn(adapter->netdev, format, ## arg) 38#define e_notice(format, arg...) \ 39 netdev_notice(adapter->netdev, format, ## arg) 40 41/* Interrupt modes, as used by the IntMode parameter */ 42#define E1000E_INT_MODE_LEGACY 0 43#define E1000E_INT_MODE_MSI 1 44#define E1000E_INT_MODE_MSIX 2 45 46/* Tx/Rx descriptor defines */ 47#define E1000_DEFAULT_TXD 256 48#define E1000_MAX_TXD 4096 49#define E1000_MIN_TXD 64 50 51#define E1000_DEFAULT_RXD 256 52#define E1000_MAX_RXD 4096 53#define E1000_MIN_RXD 64 54 55#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */ 56#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */ 57 58#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */ 59 60/* How many Tx Descriptors do we need to call netif_wake_queue ? */ 61/* How many Rx Buffers do we bundle into one write to the hardware ? */ 62#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */ 63 64#define AUTO_ALL_MODES 0 65#define E1000_EEPROM_APME 0x0400 66 67#define E1000_MNG_VLAN_NONE (-1) 68 69#define DEFAULT_JUMBO 9234 70 71/* Time to wait before putting the device into D3 if there's no link (in ms). */ 72#define LINK_TIMEOUT 100 73 74/* Count for polling __E1000_RESET condition every 10-20msec. 75 * Experimentation has shown the reset can take approximately 210msec. 76 */ 77#define E1000_CHECK_RESET_COUNT 25 78 79#define PCICFG_DESC_RING_STATUS 0xe4 80#define FLUSH_DESC_REQUIRED 0x100 81 82/* in the case of WTHRESH, it appears at least the 82571/2 hardware 83 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when 84 * WTHRESH=4, so a setting of 5 gives the most efficient bus 85 * utilization but to avoid possible Tx stalls, set it to 1 86 */ 87#define E1000_TXDCTL_DMA_BURST_ENABLE \ 88 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \ 89 E1000_TXDCTL_COUNT_DESC | \ 90 (1u << 16) | /* wthresh must be +1 more than desired */\ 91 (1u << 8) | /* hthresh */ \ 92 0x1f) /* pthresh */ 93 94#define E1000_RXDCTL_DMA_BURST_ENABLE \ 95 (0x01000000 | /* set descriptor granularity */ \ 96 (4u << 16) | /* set writeback threshold */ \ 97 (4u << 8) | /* set prefetch threshold */ \ 98 0x20) /* set hthresh */ 99 100#define E1000_TIDV_FPD BIT(31) 101#define E1000_RDTR_FPD BIT(31) 102 103enum e1000_boards { 104 board_82571, 105 board_82572, 106 board_82573, 107 board_82574, 108 board_82583, 109 board_80003es2lan, 110 board_ich8lan, 111 board_ich9lan, 112 board_ich10lan, 113 board_pchlan, 114 board_pch2lan, 115 board_pch_lpt, 116 board_pch_spt, 117 board_pch_cnp, 118 board_pch_tgp, 119 board_pch_adp 120}; 121 122struct e1000_ps_page { 123 struct page *page; 124 u64 dma; /* must be u64 - written to hw */ 125}; 126 127/* wrappers around a pointer to a socket buffer, 128 * so a DMA handle can be stored along with the buffer 129 */ 130struct e1000_buffer { 131 dma_addr_t dma; 132 struct sk_buff *skb; 133 union { 134 /* Tx */ 135 struct { 136 unsigned long time_stamp; 137 u16 length; 138 u16 next_to_watch; 139 unsigned int segs; 140 unsigned int bytecount; 141 u16 mapped_as_page; 142 }; 143 /* Rx */ 144 struct { 145 /* arrays of page information for packet split */ 146 struct e1000_ps_page *ps_pages; 147 struct page *page; 148 }; 149 }; 150}; 151 152struct e1000_ring { 153 struct e1000_adapter *adapter; /* back pointer to adapter */ 154 void *desc; /* pointer to ring memory */ 155 dma_addr_t dma; /* phys address of ring */ 156 unsigned int size; /* length of ring in bytes */ 157 unsigned int count; /* number of desc. in ring */ 158 159 u16 next_to_use; 160 u16 next_to_clean; 161 162 void __iomem *head; 163 void __iomem *tail; 164 165 /* array of buffer information structs */ 166 struct e1000_buffer *buffer_info; 167 168 char name[IFNAMSIZ + 5]; 169 u32 ims_val; 170 u32 itr_val; 171 void __iomem *itr_register; 172 int set_itr; 173 174 struct sk_buff *rx_skb_top; 175}; 176 177/* PHY register snapshot values */ 178struct e1000_phy_regs { 179 u16 bmcr; /* basic mode control register */ 180 u16 bmsr; /* basic mode status register */ 181 u16 advertise; /* auto-negotiation advertisement */ 182 u16 lpa; /* link partner ability register */ 183 u16 expansion; /* auto-negotiation expansion reg */ 184 u16 ctrl1000; /* 1000BASE-T control register */ 185 u16 stat1000; /* 1000BASE-T status register */ 186 u16 estatus; /* extended status register */ 187}; 188 189/* board specific private data structure */ 190struct e1000_adapter { 191 struct timer_list watchdog_timer; 192 struct timer_list phy_info_timer; 193 struct timer_list blink_timer; 194 195 struct work_struct reset_task; 196 struct work_struct watchdog_task; 197 198 const struct e1000_info *ei; 199 200 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 201 u32 bd_number; 202 u32 rx_buffer_len; 203 u16 mng_vlan_id; 204 u16 link_speed; 205 u16 link_duplex; 206 u16 eeprom_vers; 207 208 /* track device up/down/testing state */ 209 unsigned long state; 210 211 /* Interrupt Throttle Rate */ 212 u32 itr; 213 u32 itr_setting; 214 u16 tx_itr; 215 u16 rx_itr; 216 217 /* Tx - one ring per active queue */ 218 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp; 219 u32 tx_fifo_limit; 220 221 struct napi_struct napi; 222 223 unsigned int uncorr_errors; /* uncorrectable ECC errors */ 224 unsigned int corr_errors; /* correctable ECC errors */ 225 unsigned int restart_queue; 226 u32 txd_cmd; 227 228 bool detect_tx_hung; 229 bool tx_hang_recheck; 230 u8 tx_timeout_factor; 231 232 u32 tx_int_delay; 233 u32 tx_abs_int_delay; 234 235 unsigned int total_tx_bytes; 236 unsigned int total_tx_packets; 237 unsigned int total_rx_bytes; 238 unsigned int total_rx_packets; 239 240 /* Tx stats */ 241 u64 tpt_old; 242 u64 colc_old; 243 u32 gotc; 244 u64 gotc_old; 245 u32 tx_timeout_count; 246 u32 tx_fifo_head; 247 u32 tx_head_addr; 248 u32 tx_fifo_size; 249 u32 tx_dma_failed; 250 u32 tx_hwtstamp_timeouts; 251 u32 tx_hwtstamp_skipped; 252 253 /* Rx */ 254 bool (*clean_rx)(struct e1000_ring *ring, int *work_done, 255 int work_to_do) ____cacheline_aligned_in_smp; 256 void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count, 257 gfp_t gfp); 258 struct e1000_ring *rx_ring; 259 260 u32 rx_int_delay; 261 u32 rx_abs_int_delay; 262 263 /* Rx stats */ 264 u64 hw_csum_err; 265 u64 hw_csum_good; 266 u64 rx_hdr_split; 267 u32 gorc; 268 u64 gorc_old; 269 u32 alloc_rx_buff_failed; 270 u32 rx_dma_failed; 271 u32 rx_hwtstamp_cleared; 272 273 unsigned int rx_ps_pages; 274 u16 rx_ps_bsize0; 275 u32 max_frame_size; 276 u32 min_frame_size; 277 278 /* OS defined structs */ 279 struct net_device *netdev; 280 struct pci_dev *pdev; 281 282 /* structs defined in e1000_hw.h */ 283 struct e1000_hw hw; 284 285 spinlock_t stats64_lock; /* protects statistics counters */ 286 struct e1000_hw_stats stats; 287 struct e1000_phy_info phy_info; 288 struct e1000_phy_stats phy_stats; 289 290 /* Snapshot of PHY registers */ 291 struct e1000_phy_regs phy_regs; 292 293 struct e1000_ring test_tx_ring; 294 struct e1000_ring test_rx_ring; 295 u32 test_icr; 296 297 u32 msg_enable; 298 unsigned int num_vectors; 299 struct msix_entry *msix_entries; 300 int int_mode; 301 u32 eiac_mask; 302 303 u32 eeprom_wol; 304 u32 wol; 305 u32 pba; 306 u32 max_hw_frame_size; 307 308 bool fc_autoneg; 309 310 unsigned int flags; 311 unsigned int flags2; 312 struct work_struct downshift_task; 313 struct work_struct update_phy_task; 314 struct work_struct print_hang_task; 315 316 int phy_hang_count; 317 318 u16 tx_ring_count; 319 u16 rx_ring_count; 320 321 struct hwtstamp_config hwtstamp_config; 322 struct delayed_work systim_overflow_work; 323 struct sk_buff *tx_hwtstamp_skb; 324 unsigned long tx_hwtstamp_start; 325 struct work_struct tx_hwtstamp_work; 326 spinlock_t systim_lock; /* protects SYSTIML/H regsters */ 327 struct cyclecounter cc; 328 struct timecounter tc; 329 struct ptp_clock *ptp_clock; 330 struct ptp_clock_info ptp_clock_info; 331 struct pm_qos_request pm_qos_req; 332 s32 ptp_delta; 333 334 u16 eee_advert; 335}; 336 337struct e1000_info { 338 enum e1000_mac_type mac; 339 unsigned int flags; 340 unsigned int flags2; 341 u32 pba; 342 u32 max_hw_frame_size; 343 s32 (*get_variants)(struct e1000_adapter *); 344 const struct e1000_mac_operations *mac_ops; 345 const struct e1000_phy_operations *phy_ops; 346 const struct e1000_nvm_operations *nvm_ops; 347}; 348 349s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca); 350 351/* The system time is maintained by a 64-bit counter comprised of the 32-bit 352 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore 353 * its resolution) is based on the contents of the TIMINCA register - it 354 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0). 355 * For the best accuracy, the incperiod should be as small as possible. The 356 * incvalue is scaled by a factor as large as possible (while still fitting 357 * in bits 23:0) so that relatively small clock corrections can be made. 358 * 359 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of 360 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n) 361 * bits to count nanoseconds leaving the rest for fractional nonseconds. 362 */ 363#define INCVALUE_96MHZ 125 364#define INCVALUE_SHIFT_96MHZ 17 365#define INCPERIOD_SHIFT_96MHZ 2 366#define INCPERIOD_96MHZ (12 >> INCPERIOD_SHIFT_96MHZ) 367 368#define INCVALUE_25MHZ 40 369#define INCVALUE_SHIFT_25MHZ 18 370#define INCPERIOD_25MHZ 1 371 372#define INCVALUE_24MHZ 125 373#define INCVALUE_SHIFT_24MHZ 14 374#define INCPERIOD_24MHZ 3 375 376#define INCVALUE_38400KHZ 26 377#define INCVALUE_SHIFT_38400KHZ 19 378#define INCPERIOD_38400KHZ 1 379 380/* Another drawback of scaling the incvalue by a large factor is the 381 * 64-bit SYSTIM register overflows more quickly. This is dealt with 382 * by simply reading the clock before it overflows. 383 * 384 * Clock ns bits Overflows after 385 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~ 386 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs 387 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours 388 */ 389#define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4) 390#define E1000_MAX_82574_SYSTIM_REREADS 50 391#define E1000_82574_SYSTIM_EPSILON (1ULL << 35ULL) 392 393/* hardware capability, feature, and workaround flags */ 394#define FLAG_HAS_AMT BIT(0) 395#define FLAG_HAS_FLASH BIT(1) 396#define FLAG_HAS_HW_VLAN_FILTER BIT(2) 397#define FLAG_HAS_WOL BIT(3) 398/* reserved BIT(4) */ 399#define FLAG_HAS_CTRLEXT_ON_LOAD BIT(5) 400#define FLAG_HAS_SWSM_ON_LOAD BIT(6) 401#define FLAG_HAS_JUMBO_FRAMES BIT(7) 402#define FLAG_READ_ONLY_NVM BIT(8) 403#define FLAG_IS_ICH BIT(9) 404#define FLAG_HAS_MSIX BIT(10) 405#define FLAG_HAS_SMART_POWER_DOWN BIT(11) 406#define FLAG_IS_QUAD_PORT_A BIT(12) 407#define FLAG_IS_QUAD_PORT BIT(13) 408#define FLAG_HAS_HW_TIMESTAMP BIT(14) 409#define FLAG_APME_IN_WUC BIT(15) 410#define FLAG_APME_IN_CTRL3 BIT(16) 411#define FLAG_APME_CHECK_PORT_B BIT(17) 412#define FLAG_DISABLE_FC_PAUSE_TIME BIT(18) 413#define FLAG_NO_WAKE_UCAST BIT(19) 414#define FLAG_MNG_PT_ENABLED BIT(20) 415#define FLAG_RESET_OVERWRITES_LAA BIT(21) 416#define FLAG_TARC_SPEED_MODE_BIT BIT(22) 417#define FLAG_TARC_SET_BIT_ZERO BIT(23) 418#define FLAG_RX_NEEDS_RESTART BIT(24) 419#define FLAG_LSC_GIG_SPEED_DROP BIT(25) 420#define FLAG_SMART_POWER_DOWN BIT(26) 421#define FLAG_MSI_ENABLED BIT(27) 422/* reserved BIT(28) */ 423#define FLAG_TSO_FORCE BIT(29) 424#define FLAG_RESTART_NOW BIT(30) 425#define FLAG_MSI_TEST_FAILED BIT(31) 426 427#define FLAG2_CRC_STRIPPING BIT(0) 428#define FLAG2_HAS_PHY_WAKEUP BIT(1) 429#define FLAG2_IS_DISCARDING BIT(2) 430#define FLAG2_DISABLE_ASPM_L1 BIT(3) 431#define FLAG2_HAS_PHY_STATS BIT(4) 432#define FLAG2_HAS_EEE BIT(5) 433#define FLAG2_DMA_BURST BIT(6) 434#define FLAG2_DISABLE_ASPM_L0S BIT(7) 435#define FLAG2_DISABLE_AIM BIT(8) 436#define FLAG2_CHECK_PHY_HANG BIT(9) 437#define FLAG2_NO_DISABLE_RX BIT(10) 438#define FLAG2_PCIM2PCI_ARBITER_WA BIT(11) 439#define FLAG2_DFLT_CRC_STRIPPING BIT(12) 440#define FLAG2_CHECK_RX_HWTSTAMP BIT(13) 441#define FLAG2_CHECK_SYSTIM_OVERFLOW BIT(14) 442#define FLAG2_ENABLE_S0IX_FLOWS BIT(15) 443 444#define E1000_RX_DESC_PS(R, i) \ 445 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) 446#define E1000_RX_DESC_EXT(R, i) \ 447 (&(((union e1000_rx_desc_extended *)((R).desc))[i])) 448#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) 449#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) 450#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc) 451 452enum e1000_state_t { 453 __E1000_TESTING, 454 __E1000_RESETTING, 455 __E1000_ACCESS_SHARED_RESOURCE, 456 __E1000_DOWN 457}; 458 459enum latency_range { 460 lowest_latency = 0, 461 low_latency = 1, 462 bulk_latency = 2, 463 latency_invalid = 255 464}; 465 466extern char e1000e_driver_name[]; 467 468void e1000e_check_options(struct e1000_adapter *adapter); 469void e1000e_set_ethtool_ops(struct net_device *netdev); 470 471int e1000e_open(struct net_device *netdev); 472int e1000e_close(struct net_device *netdev); 473void e1000e_up(struct e1000_adapter *adapter); 474void e1000e_down(struct e1000_adapter *adapter, bool reset); 475void e1000e_reinit_locked(struct e1000_adapter *adapter); 476void e1000e_reset(struct e1000_adapter *adapter); 477void e1000e_power_up_phy(struct e1000_adapter *adapter); 478int e1000e_setup_rx_resources(struct e1000_ring *ring); 479int e1000e_setup_tx_resources(struct e1000_ring *ring); 480void e1000e_free_rx_resources(struct e1000_ring *ring); 481void e1000e_free_tx_resources(struct e1000_ring *ring); 482void e1000e_get_stats64(struct net_device *netdev, 483 struct rtnl_link_stats64 *stats); 484void e1000e_set_interrupt_capability(struct e1000_adapter *adapter); 485void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter); 486void e1000e_get_hw_control(struct e1000_adapter *adapter); 487void e1000e_release_hw_control(struct e1000_adapter *adapter); 488void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr); 489 490extern unsigned int copybreak; 491 492extern const struct e1000_info e1000_82571_info; 493extern const struct e1000_info e1000_82572_info; 494extern const struct e1000_info e1000_82573_info; 495extern const struct e1000_info e1000_82574_info; 496extern const struct e1000_info e1000_82583_info; 497extern const struct e1000_info e1000_ich8_info; 498extern const struct e1000_info e1000_ich9_info; 499extern const struct e1000_info e1000_ich10_info; 500extern const struct e1000_info e1000_pch_info; 501extern const struct e1000_info e1000_pch2_info; 502extern const struct e1000_info e1000_pch_lpt_info; 503extern const struct e1000_info e1000_pch_spt_info; 504extern const struct e1000_info e1000_pch_cnp_info; 505extern const struct e1000_info e1000_pch_tgp_info; 506extern const struct e1000_info e1000_pch_adp_info; 507extern const struct e1000_info e1000_es2_info; 508 509void e1000e_ptp_init(struct e1000_adapter *adapter); 510void e1000e_ptp_remove(struct e1000_adapter *adapter); 511 512u64 e1000e_read_systim(struct e1000_adapter *adapter, 513 struct ptp_system_timestamp *sts); 514 515static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw) 516{ 517 return hw->phy.ops.reset(hw); 518} 519 520static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data) 521{ 522 return hw->phy.ops.read_reg(hw, offset, data); 523} 524 525static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data) 526{ 527 return hw->phy.ops.read_reg_locked(hw, offset, data); 528} 529 530static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data) 531{ 532 return hw->phy.ops.write_reg(hw, offset, data); 533} 534 535static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data) 536{ 537 return hw->phy.ops.write_reg_locked(hw, offset, data); 538} 539 540void e1000e_reload_nvm_generic(struct e1000_hw *hw); 541 542static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw) 543{ 544 if (hw->mac.ops.read_mac_addr) 545 return hw->mac.ops.read_mac_addr(hw); 546 547 return e1000_read_mac_addr_generic(hw); 548} 549 550static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw) 551{ 552 return hw->nvm.ops.validate(hw); 553} 554 555static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw) 556{ 557 return hw->nvm.ops.update(hw); 558} 559 560static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, 561 u16 *data) 562{ 563 return hw->nvm.ops.read(hw, offset, words, data); 564} 565 566static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, 567 u16 *data) 568{ 569 return hw->nvm.ops.write(hw, offset, words, data); 570} 571 572static inline s32 e1000_get_phy_info(struct e1000_hw *hw) 573{ 574 return hw->phy.ops.get_info(hw); 575} 576 577static inline u32 __er32(struct e1000_hw *hw, unsigned long reg) 578{ 579 return readl(hw->hw_addr + reg); 580} 581 582#define er32(reg) __er32(hw, E1000_##reg) 583 584void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val); 585 586#define ew32(reg, val) __ew32(hw, E1000_##reg, (val)) 587 588#define e1e_flush() er32(STATUS) 589 590#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \ 591 (__ew32((a), (reg + ((offset) << 2)), (value))) 592 593#define E1000_READ_REG_ARRAY(a, reg, offset) \ 594 (readl((a)->hw_addr + reg + ((offset) << 2))) 595 596#endif /* _E1000_H_ */