cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e1000.h (17564B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/* Copyright(c) 1999 - 2018 Intel Corporation. */
      3
      4/* Linux PRO/1000 Ethernet Driver main header file */
      5
      6#ifndef _E1000_H_
      7#define _E1000_H_
      8
      9#include <linux/bitops.h>
     10#include <linux/types.h>
     11#include <linux/timer.h>
     12#include <linux/workqueue.h>
     13#include <linux/io.h>
     14#include <linux/netdevice.h>
     15#include <linux/pci.h>
     16#include <linux/crc32.h>
     17#include <linux/if_vlan.h>
     18#include <linux/timecounter.h>
     19#include <linux/net_tstamp.h>
     20#include <linux/ptp_clock_kernel.h>
     21#include <linux/ptp_classify.h>
     22#include <linux/mii.h>
     23#include <linux/mdio.h>
     24#include <linux/mutex.h>
     25#include <linux/pm_qos.h>
     26#include "hw.h"
     27
     28struct e1000_info;
     29
     30#define e_dbg(format, arg...) \
     31	netdev_dbg(hw->adapter->netdev, format, ## arg)
     32#define e_err(format, arg...) \
     33	netdev_err(adapter->netdev, format, ## arg)
     34#define e_info(format, arg...) \
     35	netdev_info(adapter->netdev, format, ## arg)
     36#define e_warn(format, arg...) \
     37	netdev_warn(adapter->netdev, format, ## arg)
     38#define e_notice(format, arg...) \
     39	netdev_notice(adapter->netdev, format, ## arg)
     40
     41/* Interrupt modes, as used by the IntMode parameter */
     42#define E1000E_INT_MODE_LEGACY		0
     43#define E1000E_INT_MODE_MSI		1
     44#define E1000E_INT_MODE_MSIX		2
     45
     46/* Tx/Rx descriptor defines */
     47#define E1000_DEFAULT_TXD		256
     48#define E1000_MAX_TXD			4096
     49#define E1000_MIN_TXD			64
     50
     51#define E1000_DEFAULT_RXD		256
     52#define E1000_MAX_RXD			4096
     53#define E1000_MIN_RXD			64
     54
     55#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
     56#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
     57
     58#define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
     59
     60/* How many Tx Descriptors do we need to call netif_wake_queue ? */
     61/* How many Rx Buffers do we bundle into one write to the hardware ? */
     62#define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
     63
     64#define AUTO_ALL_MODES			0
     65#define E1000_EEPROM_APME		0x0400
     66
     67#define E1000_MNG_VLAN_NONE		(-1)
     68
     69#define DEFAULT_JUMBO			9234
     70
     71/* Time to wait before putting the device into D3 if there's no link (in ms). */
     72#define LINK_TIMEOUT		100
     73
     74/* Count for polling __E1000_RESET condition every 10-20msec.
     75 * Experimentation has shown the reset can take approximately 210msec.
     76 */
     77#define E1000_CHECK_RESET_COUNT		25
     78
     79#define PCICFG_DESC_RING_STATUS		0xe4
     80#define FLUSH_DESC_REQUIRED		0x100
     81
     82/* in the case of WTHRESH, it appears at least the 82571/2 hardware
     83 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
     84 * WTHRESH=4, so a setting of 5 gives the most efficient bus
     85 * utilization but to avoid possible Tx stalls, set it to 1
     86 */
     87#define E1000_TXDCTL_DMA_BURST_ENABLE                          \
     88	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
     89	 E1000_TXDCTL_COUNT_DESC |                             \
     90	 (1u << 16) | /* wthresh must be +1 more than desired */\
     91	 (1u << 8)  | /* hthresh */                             \
     92	 0x1f)        /* pthresh */
     93
     94#define E1000_RXDCTL_DMA_BURST_ENABLE                          \
     95	(0x01000000 | /* set descriptor granularity */         \
     96	 (4u << 16) | /* set writeback threshold    */         \
     97	 (4u << 8)  | /* set prefetch threshold     */         \
     98	 0x20)        /* set hthresh                */
     99
    100#define E1000_TIDV_FPD BIT(31)
    101#define E1000_RDTR_FPD BIT(31)
    102
    103enum e1000_boards {
    104	board_82571,
    105	board_82572,
    106	board_82573,
    107	board_82574,
    108	board_82583,
    109	board_80003es2lan,
    110	board_ich8lan,
    111	board_ich9lan,
    112	board_ich10lan,
    113	board_pchlan,
    114	board_pch2lan,
    115	board_pch_lpt,
    116	board_pch_spt,
    117	board_pch_cnp,
    118	board_pch_tgp,
    119	board_pch_adp
    120};
    121
    122struct e1000_ps_page {
    123	struct page *page;
    124	u64 dma; /* must be u64 - written to hw */
    125};
    126
    127/* wrappers around a pointer to a socket buffer,
    128 * so a DMA handle can be stored along with the buffer
    129 */
    130struct e1000_buffer {
    131	dma_addr_t dma;
    132	struct sk_buff *skb;
    133	union {
    134		/* Tx */
    135		struct {
    136			unsigned long time_stamp;
    137			u16 length;
    138			u16 next_to_watch;
    139			unsigned int segs;
    140			unsigned int bytecount;
    141			u16 mapped_as_page;
    142		};
    143		/* Rx */
    144		struct {
    145			/* arrays of page information for packet split */
    146			struct e1000_ps_page *ps_pages;
    147			struct page *page;
    148		};
    149	};
    150};
    151
    152struct e1000_ring {
    153	struct e1000_adapter *adapter;	/* back pointer to adapter */
    154	void *desc;			/* pointer to ring memory  */
    155	dma_addr_t dma;			/* phys address of ring    */
    156	unsigned int size;		/* length of ring in bytes */
    157	unsigned int count;		/* number of desc. in ring */
    158
    159	u16 next_to_use;
    160	u16 next_to_clean;
    161
    162	void __iomem *head;
    163	void __iomem *tail;
    164
    165	/* array of buffer information structs */
    166	struct e1000_buffer *buffer_info;
    167
    168	char name[IFNAMSIZ + 5];
    169	u32 ims_val;
    170	u32 itr_val;
    171	void __iomem *itr_register;
    172	int set_itr;
    173
    174	struct sk_buff *rx_skb_top;
    175};
    176
    177/* PHY register snapshot values */
    178struct e1000_phy_regs {
    179	u16 bmcr;		/* basic mode control register    */
    180	u16 bmsr;		/* basic mode status register     */
    181	u16 advertise;		/* auto-negotiation advertisement */
    182	u16 lpa;		/* link partner ability register  */
    183	u16 expansion;		/* auto-negotiation expansion reg */
    184	u16 ctrl1000;		/* 1000BASE-T control register    */
    185	u16 stat1000;		/* 1000BASE-T status register     */
    186	u16 estatus;		/* extended status register       */
    187};
    188
    189/* board specific private data structure */
    190struct e1000_adapter {
    191	struct timer_list watchdog_timer;
    192	struct timer_list phy_info_timer;
    193	struct timer_list blink_timer;
    194
    195	struct work_struct reset_task;
    196	struct work_struct watchdog_task;
    197
    198	const struct e1000_info *ei;
    199
    200	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
    201	u32 bd_number;
    202	u32 rx_buffer_len;
    203	u16 mng_vlan_id;
    204	u16 link_speed;
    205	u16 link_duplex;
    206	u16 eeprom_vers;
    207
    208	/* track device up/down/testing state */
    209	unsigned long state;
    210
    211	/* Interrupt Throttle Rate */
    212	u32 itr;
    213	u32 itr_setting;
    214	u16 tx_itr;
    215	u16 rx_itr;
    216
    217	/* Tx - one ring per active queue */
    218	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
    219	u32 tx_fifo_limit;
    220
    221	struct napi_struct napi;
    222
    223	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
    224	unsigned int corr_errors;	/* correctable ECC errors */
    225	unsigned int restart_queue;
    226	u32 txd_cmd;
    227
    228	bool detect_tx_hung;
    229	bool tx_hang_recheck;
    230	u8 tx_timeout_factor;
    231
    232	u32 tx_int_delay;
    233	u32 tx_abs_int_delay;
    234
    235	unsigned int total_tx_bytes;
    236	unsigned int total_tx_packets;
    237	unsigned int total_rx_bytes;
    238	unsigned int total_rx_packets;
    239
    240	/* Tx stats */
    241	u64 tpt_old;
    242	u64 colc_old;
    243	u32 gotc;
    244	u64 gotc_old;
    245	u32 tx_timeout_count;
    246	u32 tx_fifo_head;
    247	u32 tx_head_addr;
    248	u32 tx_fifo_size;
    249	u32 tx_dma_failed;
    250	u32 tx_hwtstamp_timeouts;
    251	u32 tx_hwtstamp_skipped;
    252
    253	/* Rx */
    254	bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
    255			 int work_to_do) ____cacheline_aligned_in_smp;
    256	void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
    257			     gfp_t gfp);
    258	struct e1000_ring *rx_ring;
    259
    260	u32 rx_int_delay;
    261	u32 rx_abs_int_delay;
    262
    263	/* Rx stats */
    264	u64 hw_csum_err;
    265	u64 hw_csum_good;
    266	u64 rx_hdr_split;
    267	u32 gorc;
    268	u64 gorc_old;
    269	u32 alloc_rx_buff_failed;
    270	u32 rx_dma_failed;
    271	u32 rx_hwtstamp_cleared;
    272
    273	unsigned int rx_ps_pages;
    274	u16 rx_ps_bsize0;
    275	u32 max_frame_size;
    276	u32 min_frame_size;
    277
    278	/* OS defined structs */
    279	struct net_device *netdev;
    280	struct pci_dev *pdev;
    281
    282	/* structs defined in e1000_hw.h */
    283	struct e1000_hw hw;
    284
    285	spinlock_t stats64_lock;	/* protects statistics counters */
    286	struct e1000_hw_stats stats;
    287	struct e1000_phy_info phy_info;
    288	struct e1000_phy_stats phy_stats;
    289
    290	/* Snapshot of PHY registers */
    291	struct e1000_phy_regs phy_regs;
    292
    293	struct e1000_ring test_tx_ring;
    294	struct e1000_ring test_rx_ring;
    295	u32 test_icr;
    296
    297	u32 msg_enable;
    298	unsigned int num_vectors;
    299	struct msix_entry *msix_entries;
    300	int int_mode;
    301	u32 eiac_mask;
    302
    303	u32 eeprom_wol;
    304	u32 wol;
    305	u32 pba;
    306	u32 max_hw_frame_size;
    307
    308	bool fc_autoneg;
    309
    310	unsigned int flags;
    311	unsigned int flags2;
    312	struct work_struct downshift_task;
    313	struct work_struct update_phy_task;
    314	struct work_struct print_hang_task;
    315
    316	int phy_hang_count;
    317
    318	u16 tx_ring_count;
    319	u16 rx_ring_count;
    320
    321	struct hwtstamp_config hwtstamp_config;
    322	struct delayed_work systim_overflow_work;
    323	struct sk_buff *tx_hwtstamp_skb;
    324	unsigned long tx_hwtstamp_start;
    325	struct work_struct tx_hwtstamp_work;
    326	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
    327	struct cyclecounter cc;
    328	struct timecounter tc;
    329	struct ptp_clock *ptp_clock;
    330	struct ptp_clock_info ptp_clock_info;
    331	struct pm_qos_request pm_qos_req;
    332	s32 ptp_delta;
    333
    334	u16 eee_advert;
    335};
    336
    337struct e1000_info {
    338	enum e1000_mac_type	mac;
    339	unsigned int		flags;
    340	unsigned int		flags2;
    341	u32			pba;
    342	u32			max_hw_frame_size;
    343	s32			(*get_variants)(struct e1000_adapter *);
    344	const struct e1000_mac_operations *mac_ops;
    345	const struct e1000_phy_operations *phy_ops;
    346	const struct e1000_nvm_operations *nvm_ops;
    347};
    348
    349s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
    350
    351/* The system time is maintained by a 64-bit counter comprised of the 32-bit
    352 * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
    353 * its resolution) is based on the contents of the TIMINCA register - it
    354 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
    355 * For the best accuracy, the incperiod should be as small as possible.  The
    356 * incvalue is scaled by a factor as large as possible (while still fitting
    357 * in bits 23:0) so that relatively small clock corrections can be made.
    358 *
    359 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
    360 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
    361 * bits to count nanoseconds leaving the rest for fractional nonseconds.
    362 */
    363#define INCVALUE_96MHZ		125
    364#define INCVALUE_SHIFT_96MHZ	17
    365#define INCPERIOD_SHIFT_96MHZ	2
    366#define INCPERIOD_96MHZ		(12 >> INCPERIOD_SHIFT_96MHZ)
    367
    368#define INCVALUE_25MHZ		40
    369#define INCVALUE_SHIFT_25MHZ	18
    370#define INCPERIOD_25MHZ		1
    371
    372#define INCVALUE_24MHZ		125
    373#define INCVALUE_SHIFT_24MHZ	14
    374#define INCPERIOD_24MHZ		3
    375
    376#define INCVALUE_38400KHZ	26
    377#define INCVALUE_SHIFT_38400KHZ	19
    378#define INCPERIOD_38400KHZ	1
    379
    380/* Another drawback of scaling the incvalue by a large factor is the
    381 * 64-bit SYSTIM register overflows more quickly.  This is dealt with
    382 * by simply reading the clock before it overflows.
    383 *
    384 * Clock	ns bits	Overflows after
    385 * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
    386 * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
    387 * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
    388 */
    389#define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
    390#define E1000_MAX_82574_SYSTIM_REREADS	50
    391#define E1000_82574_SYSTIM_EPSILON	(1ULL << 35ULL)
    392
    393/* hardware capability, feature, and workaround flags */
    394#define FLAG_HAS_AMT                      BIT(0)
    395#define FLAG_HAS_FLASH                    BIT(1)
    396#define FLAG_HAS_HW_VLAN_FILTER           BIT(2)
    397#define FLAG_HAS_WOL                      BIT(3)
    398/* reserved BIT(4) */
    399#define FLAG_HAS_CTRLEXT_ON_LOAD          BIT(5)
    400#define FLAG_HAS_SWSM_ON_LOAD             BIT(6)
    401#define FLAG_HAS_JUMBO_FRAMES             BIT(7)
    402#define FLAG_READ_ONLY_NVM                BIT(8)
    403#define FLAG_IS_ICH                       BIT(9)
    404#define FLAG_HAS_MSIX                     BIT(10)
    405#define FLAG_HAS_SMART_POWER_DOWN         BIT(11)
    406#define FLAG_IS_QUAD_PORT_A               BIT(12)
    407#define FLAG_IS_QUAD_PORT                 BIT(13)
    408#define FLAG_HAS_HW_TIMESTAMP             BIT(14)
    409#define FLAG_APME_IN_WUC                  BIT(15)
    410#define FLAG_APME_IN_CTRL3                BIT(16)
    411#define FLAG_APME_CHECK_PORT_B            BIT(17)
    412#define FLAG_DISABLE_FC_PAUSE_TIME        BIT(18)
    413#define FLAG_NO_WAKE_UCAST                BIT(19)
    414#define FLAG_MNG_PT_ENABLED               BIT(20)
    415#define FLAG_RESET_OVERWRITES_LAA         BIT(21)
    416#define FLAG_TARC_SPEED_MODE_BIT          BIT(22)
    417#define FLAG_TARC_SET_BIT_ZERO            BIT(23)
    418#define FLAG_RX_NEEDS_RESTART             BIT(24)
    419#define FLAG_LSC_GIG_SPEED_DROP           BIT(25)
    420#define FLAG_SMART_POWER_DOWN             BIT(26)
    421#define FLAG_MSI_ENABLED                  BIT(27)
    422/* reserved BIT(28) */
    423#define FLAG_TSO_FORCE                    BIT(29)
    424#define FLAG_RESTART_NOW                  BIT(30)
    425#define FLAG_MSI_TEST_FAILED              BIT(31)
    426
    427#define FLAG2_CRC_STRIPPING               BIT(0)
    428#define FLAG2_HAS_PHY_WAKEUP              BIT(1)
    429#define FLAG2_IS_DISCARDING               BIT(2)
    430#define FLAG2_DISABLE_ASPM_L1             BIT(3)
    431#define FLAG2_HAS_PHY_STATS               BIT(4)
    432#define FLAG2_HAS_EEE                     BIT(5)
    433#define FLAG2_DMA_BURST                   BIT(6)
    434#define FLAG2_DISABLE_ASPM_L0S            BIT(7)
    435#define FLAG2_DISABLE_AIM                 BIT(8)
    436#define FLAG2_CHECK_PHY_HANG              BIT(9)
    437#define FLAG2_NO_DISABLE_RX               BIT(10)
    438#define FLAG2_PCIM2PCI_ARBITER_WA         BIT(11)
    439#define FLAG2_DFLT_CRC_STRIPPING          BIT(12)
    440#define FLAG2_CHECK_RX_HWTSTAMP           BIT(13)
    441#define FLAG2_CHECK_SYSTIM_OVERFLOW       BIT(14)
    442#define FLAG2_ENABLE_S0IX_FLOWS           BIT(15)
    443
    444#define E1000_RX_DESC_PS(R, i)	    \
    445	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
    446#define E1000_RX_DESC_EXT(R, i)	    \
    447	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
    448#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
    449#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
    450#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
    451
    452enum e1000_state_t {
    453	__E1000_TESTING,
    454	__E1000_RESETTING,
    455	__E1000_ACCESS_SHARED_RESOURCE,
    456	__E1000_DOWN
    457};
    458
    459enum latency_range {
    460	lowest_latency = 0,
    461	low_latency = 1,
    462	bulk_latency = 2,
    463	latency_invalid = 255
    464};
    465
    466extern char e1000e_driver_name[];
    467
    468void e1000e_check_options(struct e1000_adapter *adapter);
    469void e1000e_set_ethtool_ops(struct net_device *netdev);
    470
    471int e1000e_open(struct net_device *netdev);
    472int e1000e_close(struct net_device *netdev);
    473void e1000e_up(struct e1000_adapter *adapter);
    474void e1000e_down(struct e1000_adapter *adapter, bool reset);
    475void e1000e_reinit_locked(struct e1000_adapter *adapter);
    476void e1000e_reset(struct e1000_adapter *adapter);
    477void e1000e_power_up_phy(struct e1000_adapter *adapter);
    478int e1000e_setup_rx_resources(struct e1000_ring *ring);
    479int e1000e_setup_tx_resources(struct e1000_ring *ring);
    480void e1000e_free_rx_resources(struct e1000_ring *ring);
    481void e1000e_free_tx_resources(struct e1000_ring *ring);
    482void e1000e_get_stats64(struct net_device *netdev,
    483			struct rtnl_link_stats64 *stats);
    484void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
    485void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
    486void e1000e_get_hw_control(struct e1000_adapter *adapter);
    487void e1000e_release_hw_control(struct e1000_adapter *adapter);
    488void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
    489
    490extern unsigned int copybreak;
    491
    492extern const struct e1000_info e1000_82571_info;
    493extern const struct e1000_info e1000_82572_info;
    494extern const struct e1000_info e1000_82573_info;
    495extern const struct e1000_info e1000_82574_info;
    496extern const struct e1000_info e1000_82583_info;
    497extern const struct e1000_info e1000_ich8_info;
    498extern const struct e1000_info e1000_ich9_info;
    499extern const struct e1000_info e1000_ich10_info;
    500extern const struct e1000_info e1000_pch_info;
    501extern const struct e1000_info e1000_pch2_info;
    502extern const struct e1000_info e1000_pch_lpt_info;
    503extern const struct e1000_info e1000_pch_spt_info;
    504extern const struct e1000_info e1000_pch_cnp_info;
    505extern const struct e1000_info e1000_pch_tgp_info;
    506extern const struct e1000_info e1000_pch_adp_info;
    507extern const struct e1000_info e1000_es2_info;
    508
    509void e1000e_ptp_init(struct e1000_adapter *adapter);
    510void e1000e_ptp_remove(struct e1000_adapter *adapter);
    511
    512u64 e1000e_read_systim(struct e1000_adapter *adapter,
    513		       struct ptp_system_timestamp *sts);
    514
    515static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
    516{
    517	return hw->phy.ops.reset(hw);
    518}
    519
    520static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
    521{
    522	return hw->phy.ops.read_reg(hw, offset, data);
    523}
    524
    525static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
    526{
    527	return hw->phy.ops.read_reg_locked(hw, offset, data);
    528}
    529
    530static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
    531{
    532	return hw->phy.ops.write_reg(hw, offset, data);
    533}
    534
    535static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
    536{
    537	return hw->phy.ops.write_reg_locked(hw, offset, data);
    538}
    539
    540void e1000e_reload_nvm_generic(struct e1000_hw *hw);
    541
    542static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
    543{
    544	if (hw->mac.ops.read_mac_addr)
    545		return hw->mac.ops.read_mac_addr(hw);
    546
    547	return e1000_read_mac_addr_generic(hw);
    548}
    549
    550static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
    551{
    552	return hw->nvm.ops.validate(hw);
    553}
    554
    555static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
    556{
    557	return hw->nvm.ops.update(hw);
    558}
    559
    560static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
    561				 u16 *data)
    562{
    563	return hw->nvm.ops.read(hw, offset, words, data);
    564}
    565
    566static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
    567				  u16 *data)
    568{
    569	return hw->nvm.ops.write(hw, offset, words, data);
    570}
    571
    572static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
    573{
    574	return hw->phy.ops.get_info(hw);
    575}
    576
    577static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
    578{
    579	return readl(hw->hw_addr + reg);
    580}
    581
    582#define er32(reg)	__er32(hw, E1000_##reg)
    583
    584void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
    585
    586#define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
    587
    588#define e1e_flush()	er32(STATUS)
    589
    590#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
    591	(__ew32((a), (reg + ((offset) << 2)), (value)))
    592
    593#define E1000_READ_REG_ARRAY(a, reg, offset) \
    594	(readl((a)->hw_addr + reg + ((offset) << 2)))
    595
    596#endif /* _E1000_H_ */