mac.c (51960B)
1// SPDX-License-Identifier: GPL-2.0 2/* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4#include "e1000.h" 5 6/** 7 * e1000e_get_bus_info_pcie - Get PCIe bus information 8 * @hw: pointer to the HW structure 9 * 10 * Determines and stores the system bus information for a particular 11 * network interface. The following bus information is determined and stored: 12 * bus speed, bus width, type (PCIe), and PCIe function. 13 **/ 14s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) 15{ 16 struct e1000_mac_info *mac = &hw->mac; 17 struct e1000_bus_info *bus = &hw->bus; 18 struct e1000_adapter *adapter = hw->adapter; 19 u16 pcie_link_status, cap_offset; 20 21 cap_offset = adapter->pdev->pcie_cap; 22 if (!cap_offset) { 23 bus->width = e1000_bus_width_unknown; 24 } else { 25 pci_read_config_word(adapter->pdev, 26 cap_offset + PCIE_LINK_STATUS, 27 &pcie_link_status); 28 bus->width = (enum e1000_bus_width)((pcie_link_status & 29 PCIE_LINK_WIDTH_MASK) >> 30 PCIE_LINK_WIDTH_SHIFT); 31 } 32 33 mac->ops.set_lan_id(hw); 34 35 return 0; 36} 37 38/** 39 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 40 * 41 * @hw: pointer to the HW structure 42 * 43 * Determines the LAN function id by reading memory-mapped registers 44 * and swaps the port value if requested. 45 **/ 46void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) 47{ 48 struct e1000_bus_info *bus = &hw->bus; 49 u32 reg; 50 51 /* The status register reports the correct function number 52 * for the device regardless of function swap state. 53 */ 54 reg = er32(STATUS); 55 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 56} 57 58/** 59 * e1000_set_lan_id_single_port - Set LAN id for a single port device 60 * @hw: pointer to the HW structure 61 * 62 * Sets the LAN function id to zero for a single port device. 63 **/ 64void e1000_set_lan_id_single_port(struct e1000_hw *hw) 65{ 66 struct e1000_bus_info *bus = &hw->bus; 67 68 bus->func = 0; 69} 70 71/** 72 * e1000_clear_vfta_generic - Clear VLAN filter table 73 * @hw: pointer to the HW structure 74 * 75 * Clears the register array which contains the VLAN filter table by 76 * setting all the values to 0. 77 **/ 78void e1000_clear_vfta_generic(struct e1000_hw *hw) 79{ 80 u32 offset; 81 82 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 83 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 84 e1e_flush(); 85 } 86} 87 88/** 89 * e1000_write_vfta_generic - Write value to VLAN filter table 90 * @hw: pointer to the HW structure 91 * @offset: register offset in VLAN filter table 92 * @value: register value written to VLAN filter table 93 * 94 * Writes value at the given offset in the register array which stores 95 * the VLAN filter table. 96 **/ 97void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) 98{ 99 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 100 e1e_flush(); 101} 102 103/** 104 * e1000e_init_rx_addrs - Initialize receive address's 105 * @hw: pointer to the HW structure 106 * @rar_count: receive address registers 107 * 108 * Setup the receive address registers by setting the base receive address 109 * register to the devices MAC address and clearing all the other receive 110 * address registers to 0. 111 **/ 112void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 113{ 114 u32 i; 115 u8 mac_addr[ETH_ALEN] = { 0 }; 116 117 /* Setup the receive address */ 118 e_dbg("Programming MAC Address into RAR[0]\n"); 119 120 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 121 122 /* Zero out the other (rar_entry_count - 1) receive addresses */ 123 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); 124 for (i = 1; i < rar_count; i++) 125 hw->mac.ops.rar_set(hw, mac_addr, i); 126} 127 128/** 129 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr 130 * @hw: pointer to the HW structure 131 * 132 * Checks the nvm for an alternate MAC address. An alternate MAC address 133 * can be setup by pre-boot software and must be treated like a permanent 134 * address and must override the actual permanent MAC address. If an 135 * alternate MAC address is found it is programmed into RAR0, replacing 136 * the permanent address that was installed into RAR0 by the Si on reset. 137 * This function will return SUCCESS unless it encounters an error while 138 * reading the EEPROM. 139 **/ 140s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) 141{ 142 u32 i; 143 s32 ret_val; 144 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 145 u8 alt_mac_addr[ETH_ALEN]; 146 147 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); 148 if (ret_val) 149 return ret_val; 150 151 /* not supported on 82573 */ 152 if (hw->mac.type == e1000_82573) 153 return 0; 154 155 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, 156 &nvm_alt_mac_addr_offset); 157 if (ret_val) { 158 e_dbg("NVM Read Error\n"); 159 return ret_val; 160 } 161 162 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 163 (nvm_alt_mac_addr_offset == 0x0000)) 164 /* There is no Alternate MAC Address */ 165 return 0; 166 167 if (hw->bus.func == E1000_FUNC_1) 168 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 169 for (i = 0; i < ETH_ALEN; i += 2) { 170 offset = nvm_alt_mac_addr_offset + (i >> 1); 171 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); 172 if (ret_val) { 173 e_dbg("NVM Read Error\n"); 174 return ret_val; 175 } 176 177 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 178 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 179 } 180 181 /* if multicast bit is set, the alternate address will not be used */ 182 if (is_multicast_ether_addr(alt_mac_addr)) { 183 e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 184 return 0; 185 } 186 187 /* We have a valid alternate MAC address, and we want to treat it the 188 * same as the normal permanent MAC address stored by the HW into the 189 * RAR. Do this by mapping this address into RAR0. 190 */ 191 hw->mac.ops.rar_set(hw, alt_mac_addr, 0); 192 193 return 0; 194} 195 196u32 e1000e_rar_get_count_generic(struct e1000_hw *hw) 197{ 198 return hw->mac.rar_entry_count; 199} 200 201/** 202 * e1000e_rar_set_generic - Set receive address register 203 * @hw: pointer to the HW structure 204 * @addr: pointer to the receive address 205 * @index: receive address array register 206 * 207 * Sets the receive address array register at index to the address passed 208 * in by addr. 209 **/ 210int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) 211{ 212 u32 rar_low, rar_high; 213 214 /* HW expects these in little endian so we reverse the byte order 215 * from network order (big endian) to little endian 216 */ 217 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 218 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 219 220 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 221 222 /* If MAC address zero, no need to set the AV bit */ 223 if (rar_low || rar_high) 224 rar_high |= E1000_RAH_AV; 225 226 /* Some bridges will combine consecutive 32-bit writes into 227 * a single burst write, which will malfunction on some parts. 228 * The flushes avoid this. 229 */ 230 ew32(RAL(index), rar_low); 231 e1e_flush(); 232 ew32(RAH(index), rar_high); 233 e1e_flush(); 234 235 return 0; 236} 237 238/** 239 * e1000_hash_mc_addr - Generate a multicast hash value 240 * @hw: pointer to the HW structure 241 * @mc_addr: pointer to a multicast address 242 * 243 * Generates a multicast address hash value which is used to determine 244 * the multicast filter table array address and new table value. 245 **/ 246static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 247{ 248 u32 hash_value, hash_mask; 249 u8 bit_shift = 0; 250 251 /* Register count multiplied by bits per register */ 252 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 253 254 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 255 * where 0xFF would still fall within the hash mask. 256 */ 257 while (hash_mask >> bit_shift != 0xFF) 258 bit_shift++; 259 260 /* The portion of the address that is used for the hash table 261 * is determined by the mc_filter_type setting. 262 * The algorithm is such that there is a total of 8 bits of shifting. 263 * The bit_shift for a mc_filter_type of 0 represents the number of 264 * left-shifts where the MSB of mc_addr[5] would still fall within 265 * the hash_mask. Case 0 does this exactly. Since there are a total 266 * of 8 bits of shifting, then mc_addr[4] will shift right the 267 * remaining number of bits. Thus 8 - bit_shift. The rest of the 268 * cases are a variation of this algorithm...essentially raising the 269 * number of bits to shift mc_addr[5] left, while still keeping the 270 * 8-bit shifting total. 271 * 272 * For example, given the following Destination MAC Address and an 273 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 274 * we can see that the bit_shift for case 0 is 4. These are the hash 275 * values resulting from each mc_filter_type... 276 * [0] [1] [2] [3] [4] [5] 277 * 01 AA 00 12 34 56 278 * LSB MSB 279 * 280 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 281 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 282 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 283 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 284 */ 285 switch (hw->mac.mc_filter_type) { 286 default: 287 case 0: 288 break; 289 case 1: 290 bit_shift += 1; 291 break; 292 case 2: 293 bit_shift += 2; 294 break; 295 case 3: 296 bit_shift += 4; 297 break; 298 } 299 300 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 301 (((u16)mc_addr[5]) << bit_shift))); 302 303 return hash_value; 304} 305 306/** 307 * e1000e_update_mc_addr_list_generic - Update Multicast addresses 308 * @hw: pointer to the HW structure 309 * @mc_addr_list: array of multicast addresses to program 310 * @mc_addr_count: number of multicast addresses to program 311 * 312 * Updates entire Multicast Table Array. 313 * The caller must have a packed mc_addr_list of multicast addresses. 314 **/ 315void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, 316 u8 *mc_addr_list, u32 mc_addr_count) 317{ 318 u32 hash_value, hash_bit, hash_reg; 319 int i; 320 321 /* clear mta_shadow */ 322 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 323 324 /* update mta_shadow from mc_addr_list */ 325 for (i = 0; (u32)i < mc_addr_count; i++) { 326 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); 327 328 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 329 hash_bit = hash_value & 0x1F; 330 331 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); 332 mc_addr_list += (ETH_ALEN); 333 } 334 335 /* replace the entire MTA table */ 336 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 337 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); 338 e1e_flush(); 339} 340 341/** 342 * e1000e_clear_hw_cntrs_base - Clear base hardware counters 343 * @hw: pointer to the HW structure 344 * 345 * Clears the base hardware counters by reading the counter registers. 346 **/ 347void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) 348{ 349 er32(CRCERRS); 350 er32(SYMERRS); 351 er32(MPC); 352 er32(SCC); 353 er32(ECOL); 354 er32(MCC); 355 er32(LATECOL); 356 er32(COLC); 357 er32(DC); 358 er32(SEC); 359 er32(RLEC); 360 er32(XONRXC); 361 er32(XONTXC); 362 er32(XOFFRXC); 363 er32(XOFFTXC); 364 er32(FCRUC); 365 er32(GPRC); 366 er32(BPRC); 367 er32(MPRC); 368 er32(GPTC); 369 er32(GORCL); 370 er32(GORCH); 371 er32(GOTCL); 372 er32(GOTCH); 373 er32(RNBC); 374 er32(RUC); 375 er32(RFC); 376 er32(ROC); 377 er32(RJC); 378 er32(TORL); 379 er32(TORH); 380 er32(TOTL); 381 er32(TOTH); 382 er32(TPR); 383 er32(TPT); 384 er32(MPTC); 385 er32(BPTC); 386} 387 388/** 389 * e1000e_check_for_copper_link - Check for link (Copper) 390 * @hw: pointer to the HW structure 391 * 392 * Checks to see of the link status of the hardware has changed. If a 393 * change in link status has been detected, then we read the PHY registers 394 * to get the current speed/duplex if link exists. 395 **/ 396s32 e1000e_check_for_copper_link(struct e1000_hw *hw) 397{ 398 struct e1000_mac_info *mac = &hw->mac; 399 s32 ret_val; 400 bool link; 401 402 /* We only want to go out to the PHY registers to see if Auto-Neg 403 * has completed and/or if our link status has changed. The 404 * get_link_status flag is set upon receiving a Link Status 405 * Change or Rx Sequence Error interrupt. 406 */ 407 if (!mac->get_link_status) 408 return 0; 409 mac->get_link_status = false; 410 411 /* First we want to see if the MII Status Register reports 412 * link. If so, then we want to get the current speed/duplex 413 * of the PHY. 414 */ 415 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 416 if (ret_val || !link) 417 goto out; 418 419 /* Check if there was DownShift, must be checked 420 * immediately after link-up 421 */ 422 e1000e_check_downshift(hw); 423 424 /* If we are forcing speed/duplex, then we simply return since 425 * we have already determined whether we have link or not. 426 */ 427 if (!mac->autoneg) 428 return -E1000_ERR_CONFIG; 429 430 /* Auto-Neg is enabled. Auto Speed Detection takes care 431 * of MAC speed/duplex configuration. So we only need to 432 * configure Collision Distance in the MAC. 433 */ 434 mac->ops.config_collision_dist(hw); 435 436 /* Configure Flow Control now that Auto-Neg has completed. 437 * First, we need to restore the desired flow control 438 * settings because we may have had to re-autoneg with a 439 * different link partner. 440 */ 441 ret_val = e1000e_config_fc_after_link_up(hw); 442 if (ret_val) 443 e_dbg("Error configuring flow control\n"); 444 445 return ret_val; 446 447out: 448 mac->get_link_status = true; 449 return ret_val; 450} 451 452/** 453 * e1000e_check_for_fiber_link - Check for link (Fiber) 454 * @hw: pointer to the HW structure 455 * 456 * Checks for link up on the hardware. If link is not up and we have 457 * a signal, then we need to force link up. 458 **/ 459s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) 460{ 461 struct e1000_mac_info *mac = &hw->mac; 462 u32 rxcw; 463 u32 ctrl; 464 u32 status; 465 s32 ret_val; 466 467 ctrl = er32(CTRL); 468 status = er32(STATUS); 469 rxcw = er32(RXCW); 470 471 /* If we don't have link (auto-negotiation failed or link partner 472 * cannot auto-negotiate), the cable is plugged in (we have signal), 473 * and our link partner is not trying to auto-negotiate with us (we 474 * are receiving idles or data), we need to force link up. We also 475 * need to give auto-negotiation time to complete, in case the cable 476 * was just plugged in. The autoneg_failed flag does this. 477 */ 478 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 479 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && 480 !(rxcw & E1000_RXCW_C)) { 481 if (!mac->autoneg_failed) { 482 mac->autoneg_failed = true; 483 return 0; 484 } 485 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 486 487 /* Disable auto-negotiation in the TXCW register */ 488 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 489 490 /* Force link-up and also force full-duplex. */ 491 ctrl = er32(CTRL); 492 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 493 ew32(CTRL, ctrl); 494 495 /* Configure Flow Control after forcing link up. */ 496 ret_val = e1000e_config_fc_after_link_up(hw); 497 if (ret_val) { 498 e_dbg("Error configuring flow control\n"); 499 return ret_val; 500 } 501 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 502 /* If we are forcing link and we are receiving /C/ ordered 503 * sets, re-enable auto-negotiation in the TXCW register 504 * and disable forced link in the Device Control register 505 * in an attempt to auto-negotiate with our link partner. 506 */ 507 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 508 ew32(TXCW, mac->txcw); 509 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 510 511 mac->serdes_has_link = true; 512 } 513 514 return 0; 515} 516 517/** 518 * e1000e_check_for_serdes_link - Check for link (Serdes) 519 * @hw: pointer to the HW structure 520 * 521 * Checks for link up on the hardware. If link is not up and we have 522 * a signal, then we need to force link up. 523 **/ 524s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) 525{ 526 struct e1000_mac_info *mac = &hw->mac; 527 u32 rxcw; 528 u32 ctrl; 529 u32 status; 530 s32 ret_val; 531 532 ctrl = er32(CTRL); 533 status = er32(STATUS); 534 rxcw = er32(RXCW); 535 536 /* If we don't have link (auto-negotiation failed or link partner 537 * cannot auto-negotiate), and our link partner is not trying to 538 * auto-negotiate with us (we are receiving idles or data), 539 * we need to force link up. We also need to give auto-negotiation 540 * time to complete. 541 */ 542 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 543 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { 544 if (!mac->autoneg_failed) { 545 mac->autoneg_failed = true; 546 return 0; 547 } 548 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 549 550 /* Disable auto-negotiation in the TXCW register */ 551 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 552 553 /* Force link-up and also force full-duplex. */ 554 ctrl = er32(CTRL); 555 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 556 ew32(CTRL, ctrl); 557 558 /* Configure Flow Control after forcing link up. */ 559 ret_val = e1000e_config_fc_after_link_up(hw); 560 if (ret_val) { 561 e_dbg("Error configuring flow control\n"); 562 return ret_val; 563 } 564 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 565 /* If we are forcing link and we are receiving /C/ ordered 566 * sets, re-enable auto-negotiation in the TXCW register 567 * and disable forced link in the Device Control register 568 * in an attempt to auto-negotiate with our link partner. 569 */ 570 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 571 ew32(TXCW, mac->txcw); 572 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 573 574 mac->serdes_has_link = true; 575 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 576 /* If we force link for non-auto-negotiation switch, check 577 * link status based on MAC synchronization for internal 578 * serdes media type. 579 */ 580 /* SYNCH bit and IV bit are sticky. */ 581 usleep_range(10, 20); 582 rxcw = er32(RXCW); 583 if (rxcw & E1000_RXCW_SYNCH) { 584 if (!(rxcw & E1000_RXCW_IV)) { 585 mac->serdes_has_link = true; 586 e_dbg("SERDES: Link up - forced.\n"); 587 } 588 } else { 589 mac->serdes_has_link = false; 590 e_dbg("SERDES: Link down - force failed.\n"); 591 } 592 } 593 594 if (E1000_TXCW_ANE & er32(TXCW)) { 595 status = er32(STATUS); 596 if (status & E1000_STATUS_LU) { 597 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 598 usleep_range(10, 20); 599 rxcw = er32(RXCW); 600 if (rxcw & E1000_RXCW_SYNCH) { 601 if (!(rxcw & E1000_RXCW_IV)) { 602 mac->serdes_has_link = true; 603 e_dbg("SERDES: Link up - autoneg completed successfully.\n"); 604 } else { 605 mac->serdes_has_link = false; 606 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); 607 } 608 } else { 609 mac->serdes_has_link = false; 610 e_dbg("SERDES: Link down - no sync.\n"); 611 } 612 } else { 613 mac->serdes_has_link = false; 614 e_dbg("SERDES: Link down - autoneg failed\n"); 615 } 616 } 617 618 return 0; 619} 620 621/** 622 * e1000_set_default_fc_generic - Set flow control default values 623 * @hw: pointer to the HW structure 624 * 625 * Read the EEPROM for the default values for flow control and store the 626 * values. 627 **/ 628static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) 629{ 630 s32 ret_val; 631 u16 nvm_data; 632 633 /* Read and store word 0x0F of the EEPROM. This word contains bits 634 * that determine the hardware's default PAUSE (flow control) mode, 635 * a bit that determines whether the HW defaults to enabling or 636 * disabling auto-negotiation, and the direction of the 637 * SW defined pins. If there is no SW over-ride of the flow 638 * control setting, then the variable hw->fc will 639 * be initialized based on a value in the EEPROM. 640 */ 641 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); 642 643 if (ret_val) { 644 e_dbg("NVM Read Error\n"); 645 return ret_val; 646 } 647 648 if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) 649 hw->fc.requested_mode = e1000_fc_none; 650 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) 651 hw->fc.requested_mode = e1000_fc_tx_pause; 652 else 653 hw->fc.requested_mode = e1000_fc_full; 654 655 return 0; 656} 657 658/** 659 * e1000e_setup_link_generic - Setup flow control and link settings 660 * @hw: pointer to the HW structure 661 * 662 * Determines which flow control settings to use, then configures flow 663 * control. Calls the appropriate media-specific link configuration 664 * function. Assuming the adapter has a valid link partner, a valid link 665 * should be established. Assumes the hardware has previously been reset 666 * and the transmitter and receiver are not enabled. 667 **/ 668s32 e1000e_setup_link_generic(struct e1000_hw *hw) 669{ 670 s32 ret_val; 671 672 /* In the case of the phy reset being blocked, we already have a link. 673 * We do not need to set it up again. 674 */ 675 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 676 return 0; 677 678 /* If requested flow control is set to default, set flow control 679 * based on the EEPROM flow control settings. 680 */ 681 if (hw->fc.requested_mode == e1000_fc_default) { 682 ret_val = e1000_set_default_fc_generic(hw); 683 if (ret_val) 684 return ret_val; 685 } 686 687 /* Save off the requested flow control mode for use later. Depending 688 * on the link partner's capabilities, we may or may not use this mode. 689 */ 690 hw->fc.current_mode = hw->fc.requested_mode; 691 692 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 693 694 /* Call the necessary media_type subroutine to configure the link. */ 695 ret_val = hw->mac.ops.setup_physical_interface(hw); 696 if (ret_val) 697 return ret_val; 698 699 /* Initialize the flow control address, type, and PAUSE timer 700 * registers to their default values. This is done even if flow 701 * control is disabled, because it does not hurt anything to 702 * initialize these registers. 703 */ 704 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 705 ew32(FCT, FLOW_CONTROL_TYPE); 706 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 707 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 708 709 ew32(FCTTV, hw->fc.pause_time); 710 711 return e1000e_set_fc_watermarks(hw); 712} 713 714/** 715 * e1000_commit_fc_settings_generic - Configure flow control 716 * @hw: pointer to the HW structure 717 * 718 * Write the flow control settings to the Transmit Config Word Register (TXCW) 719 * base on the flow control settings in e1000_mac_info. 720 **/ 721static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) 722{ 723 struct e1000_mac_info *mac = &hw->mac; 724 u32 txcw; 725 726 /* Check for a software override of the flow control settings, and 727 * setup the device accordingly. If auto-negotiation is enabled, then 728 * software will have to set the "PAUSE" bits to the correct value in 729 * the Transmit Config Word Register (TXCW) and re-start auto- 730 * negotiation. However, if auto-negotiation is disabled, then 731 * software will have to manually configure the two flow control enable 732 * bits in the CTRL register. 733 * 734 * The possible values of the "fc" parameter are: 735 * 0: Flow control is completely disabled 736 * 1: Rx flow control is enabled (we can receive pause frames, 737 * but not send pause frames). 738 * 2: Tx flow control is enabled (we can send pause frames but we 739 * do not support receiving pause frames). 740 * 3: Both Rx and Tx flow control (symmetric) are enabled. 741 */ 742 switch (hw->fc.current_mode) { 743 case e1000_fc_none: 744 /* Flow control completely disabled by a software over-ride. */ 745 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 746 break; 747 case e1000_fc_rx_pause: 748 /* Rx Flow control is enabled and Tx Flow control is disabled 749 * by a software over-ride. Since there really isn't a way to 750 * advertise that we are capable of Rx Pause ONLY, we will 751 * advertise that we support both symmetric and asymmetric Rx 752 * PAUSE. Later, we will disable the adapter's ability to send 753 * PAUSE frames. 754 */ 755 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 756 break; 757 case e1000_fc_tx_pause: 758 /* Tx Flow control is enabled, and Rx Flow control is disabled, 759 * by a software over-ride. 760 */ 761 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 762 break; 763 case e1000_fc_full: 764 /* Flow control (both Rx and Tx) is enabled by a software 765 * over-ride. 766 */ 767 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 768 break; 769 default: 770 e_dbg("Flow control param set incorrectly\n"); 771 return -E1000_ERR_CONFIG; 772 } 773 774 ew32(TXCW, txcw); 775 mac->txcw = txcw; 776 777 return 0; 778} 779 780/** 781 * e1000_poll_fiber_serdes_link_generic - Poll for link up 782 * @hw: pointer to the HW structure 783 * 784 * Polls for link up by reading the status register, if link fails to come 785 * up with auto-negotiation, then the link is forced if a signal is detected. 786 **/ 787static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) 788{ 789 struct e1000_mac_info *mac = &hw->mac; 790 u32 i, status; 791 s32 ret_val; 792 793 /* If we have a signal (the cable is plugged in, or assumed true for 794 * serdes media) then poll for a "Link-Up" indication in the Device 795 * Status Register. Time-out if a link isn't seen in 500 milliseconds 796 * seconds (Auto-negotiation should complete in less than 500 797 * milliseconds even if the other end is doing it in SW). 798 */ 799 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { 800 usleep_range(10000, 11000); 801 status = er32(STATUS); 802 if (status & E1000_STATUS_LU) 803 break; 804 } 805 if (i == FIBER_LINK_UP_LIMIT) { 806 e_dbg("Never got a valid link from auto-neg!!!\n"); 807 mac->autoneg_failed = true; 808 /* AutoNeg failed to achieve a link, so we'll call 809 * mac->check_for_link. This routine will force the 810 * link up if we detect a signal. This will allow us to 811 * communicate with non-autonegotiating link partners. 812 */ 813 ret_val = mac->ops.check_for_link(hw); 814 if (ret_val) { 815 e_dbg("Error while checking for link\n"); 816 return ret_val; 817 } 818 mac->autoneg_failed = false; 819 } else { 820 mac->autoneg_failed = false; 821 e_dbg("Valid Link Found\n"); 822 } 823 824 return 0; 825} 826 827/** 828 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes 829 * @hw: pointer to the HW structure 830 * 831 * Configures collision distance and flow control for fiber and serdes 832 * links. Upon successful setup, poll for link. 833 **/ 834s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) 835{ 836 u32 ctrl; 837 s32 ret_val; 838 839 ctrl = er32(CTRL); 840 841 /* Take the link out of reset */ 842 ctrl &= ~E1000_CTRL_LRST; 843 844 hw->mac.ops.config_collision_dist(hw); 845 846 ret_val = e1000_commit_fc_settings_generic(hw); 847 if (ret_val) 848 return ret_val; 849 850 /* Since auto-negotiation is enabled, take the link out of reset (the 851 * link will be in reset, because we previously reset the chip). This 852 * will restart auto-negotiation. If auto-negotiation is successful 853 * then the link-up status bit will be set and the flow control enable 854 * bits (RFCE and TFCE) will be set according to their negotiated value. 855 */ 856 e_dbg("Auto-negotiation enabled\n"); 857 858 ew32(CTRL, ctrl); 859 e1e_flush(); 860 usleep_range(1000, 2000); 861 862 /* For these adapters, the SW definable pin 1 is set when the optics 863 * detect a signal. If we have a signal, then poll for a "Link-Up" 864 * indication. 865 */ 866 if (hw->phy.media_type == e1000_media_type_internal_serdes || 867 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { 868 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 869 } else { 870 e_dbg("No signal detected\n"); 871 } 872 873 return ret_val; 874} 875 876/** 877 * e1000e_config_collision_dist_generic - Configure collision distance 878 * @hw: pointer to the HW structure 879 * 880 * Configures the collision distance to the default value and is used 881 * during link setup. 882 **/ 883void e1000e_config_collision_dist_generic(struct e1000_hw *hw) 884{ 885 u32 tctl; 886 887 tctl = er32(TCTL); 888 889 tctl &= ~E1000_TCTL_COLD; 890 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 891 892 ew32(TCTL, tctl); 893 e1e_flush(); 894} 895 896/** 897 * e1000e_set_fc_watermarks - Set flow control high/low watermarks 898 * @hw: pointer to the HW structure 899 * 900 * Sets the flow control high/low threshold (watermark) registers. If 901 * flow control XON frame transmission is enabled, then set XON frame 902 * transmission as well. 903 **/ 904s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) 905{ 906 u32 fcrtl = 0, fcrth = 0; 907 908 /* Set the flow control receive threshold registers. Normally, 909 * these registers will be set to a default threshold that may be 910 * adjusted later by the driver's runtime code. However, if the 911 * ability to transmit pause frames is not enabled, then these 912 * registers will be set to 0. 913 */ 914 if (hw->fc.current_mode & e1000_fc_tx_pause) { 915 /* We need to set up the Receive Threshold high and low water 916 * marks as well as (optionally) enabling the transmission of 917 * XON frames. 918 */ 919 fcrtl = hw->fc.low_water; 920 if (hw->fc.send_xon) 921 fcrtl |= E1000_FCRTL_XONE; 922 923 fcrth = hw->fc.high_water; 924 } 925 ew32(FCRTL, fcrtl); 926 ew32(FCRTH, fcrth); 927 928 return 0; 929} 930 931/** 932 * e1000e_force_mac_fc - Force the MAC's flow control settings 933 * @hw: pointer to the HW structure 934 * 935 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 936 * device control register to reflect the adapter settings. TFCE and RFCE 937 * need to be explicitly set by software when a copper PHY is used because 938 * autonegotiation is managed by the PHY rather than the MAC. Software must 939 * also configure these bits when link is forced on a fiber connection. 940 **/ 941s32 e1000e_force_mac_fc(struct e1000_hw *hw) 942{ 943 u32 ctrl; 944 945 ctrl = er32(CTRL); 946 947 /* Because we didn't get link via the internal auto-negotiation 948 * mechanism (we either forced link or we got link via PHY 949 * auto-neg), we have to manually enable/disable transmit an 950 * receive flow control. 951 * 952 * The "Case" statement below enables/disable flow control 953 * according to the "hw->fc.current_mode" parameter. 954 * 955 * The possible values of the "fc" parameter are: 956 * 0: Flow control is completely disabled 957 * 1: Rx flow control is enabled (we can receive pause 958 * frames but not send pause frames). 959 * 2: Tx flow control is enabled (we can send pause frames 960 * frames but we do not receive pause frames). 961 * 3: Both Rx and Tx flow control (symmetric) is enabled. 962 * other: No other values should be possible at this point. 963 */ 964 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 965 966 switch (hw->fc.current_mode) { 967 case e1000_fc_none: 968 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 969 break; 970 case e1000_fc_rx_pause: 971 ctrl &= (~E1000_CTRL_TFCE); 972 ctrl |= E1000_CTRL_RFCE; 973 break; 974 case e1000_fc_tx_pause: 975 ctrl &= (~E1000_CTRL_RFCE); 976 ctrl |= E1000_CTRL_TFCE; 977 break; 978 case e1000_fc_full: 979 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 980 break; 981 default: 982 e_dbg("Flow control param set incorrectly\n"); 983 return -E1000_ERR_CONFIG; 984 } 985 986 ew32(CTRL, ctrl); 987 988 return 0; 989} 990 991/** 992 * e1000e_config_fc_after_link_up - Configures flow control after link 993 * @hw: pointer to the HW structure 994 * 995 * Checks the status of auto-negotiation after link up to ensure that the 996 * speed and duplex were not forced. If the link needed to be forced, then 997 * flow control needs to be forced also. If auto-negotiation is enabled 998 * and did not fail, then we configure flow control based on our link 999 * partner. 1000 **/ 1001s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) 1002{ 1003 struct e1000_mac_info *mac = &hw->mac; 1004 s32 ret_val = 0; 1005 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; 1006 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 1007 u16 speed, duplex; 1008 1009 /* Check for the case where we have fiber media and auto-neg failed 1010 * so we had to force link. In this case, we need to force the 1011 * configuration of the MAC to match the "fc" parameter. 1012 */ 1013 if (mac->autoneg_failed) { 1014 if (hw->phy.media_type == e1000_media_type_fiber || 1015 hw->phy.media_type == e1000_media_type_internal_serdes) 1016 ret_val = e1000e_force_mac_fc(hw); 1017 } else { 1018 if (hw->phy.media_type == e1000_media_type_copper) 1019 ret_val = e1000e_force_mac_fc(hw); 1020 } 1021 1022 if (ret_val) { 1023 e_dbg("Error forcing flow control settings\n"); 1024 return ret_val; 1025 } 1026 1027 /* Check for the case where we have copper media and auto-neg is 1028 * enabled. In this case, we need to check and see if Auto-Neg 1029 * has completed, and if so, how the PHY and link partner has 1030 * flow control configured. 1031 */ 1032 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 1033 /* Read the MII Status Register and check to see if AutoNeg 1034 * has completed. We read this twice because this reg has 1035 * some "sticky" (latched) bits. 1036 */ 1037 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); 1038 if (ret_val) 1039 return ret_val; 1040 ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); 1041 if (ret_val) 1042 return ret_val; 1043 1044 if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) { 1045 e_dbg("Copper PHY and Auto Neg has not completed.\n"); 1046 return ret_val; 1047 } 1048 1049 /* The AutoNeg process has completed, so we now need to 1050 * read both the Auto Negotiation Advertisement 1051 * Register (Address 4) and the Auto_Negotiation Base 1052 * Page Ability Register (Address 5) to determine how 1053 * flow control was negotiated. 1054 */ 1055 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg); 1056 if (ret_val) 1057 return ret_val; 1058 ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg); 1059 if (ret_val) 1060 return ret_val; 1061 1062 /* Two bits in the Auto Negotiation Advertisement Register 1063 * (Address 4) and two bits in the Auto Negotiation Base 1064 * Page Ability Register (Address 5) determine flow control 1065 * for both the PHY and the link partner. The following 1066 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1067 * 1999, describes these PAUSE resolution bits and how flow 1068 * control is determined based upon these settings. 1069 * NOTE: DC = Don't Care 1070 * 1071 * LOCAL DEVICE | LINK PARTNER 1072 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1073 *-------|---------|-------|---------|-------------------- 1074 * 0 | 0 | DC | DC | e1000_fc_none 1075 * 0 | 1 | 0 | DC | e1000_fc_none 1076 * 0 | 1 | 1 | 0 | e1000_fc_none 1077 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1078 * 1 | 0 | 0 | DC | e1000_fc_none 1079 * 1 | DC | 1 | DC | e1000_fc_full 1080 * 1 | 1 | 0 | 0 | e1000_fc_none 1081 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1082 * 1083 * Are both PAUSE bits set to 1? If so, this implies 1084 * Symmetric Flow Control is enabled at both ends. The 1085 * ASM_DIR bits are irrelevant per the spec. 1086 * 1087 * For Symmetric Flow Control: 1088 * 1089 * LOCAL DEVICE | LINK PARTNER 1090 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1091 *-------|---------|-------|---------|-------------------- 1092 * 1 | DC | 1 | DC | E1000_fc_full 1093 * 1094 */ 1095 if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1096 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) { 1097 /* Now we need to check if the user selected Rx ONLY 1098 * of pause frames. In this case, we had to advertise 1099 * FULL flow control because we could not advertise Rx 1100 * ONLY. Hence, we must now check to see if we need to 1101 * turn OFF the TRANSMISSION of PAUSE frames. 1102 */ 1103 if (hw->fc.requested_mode == e1000_fc_full) { 1104 hw->fc.current_mode = e1000_fc_full; 1105 e_dbg("Flow Control = FULL.\n"); 1106 } else { 1107 hw->fc.current_mode = e1000_fc_rx_pause; 1108 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1109 } 1110 } 1111 /* For receiving PAUSE frames ONLY. 1112 * 1113 * LOCAL DEVICE | LINK PARTNER 1114 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1115 *-------|---------|-------|---------|-------------------- 1116 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1117 */ 1118 else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1119 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && 1120 (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && 1121 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { 1122 hw->fc.current_mode = e1000_fc_tx_pause; 1123 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1124 } 1125 /* For transmitting PAUSE frames ONLY. 1126 * 1127 * LOCAL DEVICE | LINK PARTNER 1128 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1129 *-------|---------|-------|---------|-------------------- 1130 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1131 */ 1132 else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && 1133 (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && 1134 !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && 1135 (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { 1136 hw->fc.current_mode = e1000_fc_rx_pause; 1137 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1138 } else { 1139 /* Per the IEEE spec, at this point flow control 1140 * should be disabled. 1141 */ 1142 hw->fc.current_mode = e1000_fc_none; 1143 e_dbg("Flow Control = NONE.\n"); 1144 } 1145 1146 /* Now we need to do one last check... If we auto- 1147 * negotiated to HALF DUPLEX, flow control should not be 1148 * enabled per IEEE 802.3 spec. 1149 */ 1150 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1151 if (ret_val) { 1152 e_dbg("Error getting link speed and duplex\n"); 1153 return ret_val; 1154 } 1155 1156 if (duplex == HALF_DUPLEX) 1157 hw->fc.current_mode = e1000_fc_none; 1158 1159 /* Now we call a subroutine to actually force the MAC 1160 * controller to use the correct flow control settings. 1161 */ 1162 ret_val = e1000e_force_mac_fc(hw); 1163 if (ret_val) { 1164 e_dbg("Error forcing flow control settings\n"); 1165 return ret_val; 1166 } 1167 } 1168 1169 /* Check for the case where we have SerDes media and auto-neg is 1170 * enabled. In this case, we need to check and see if Auto-Neg 1171 * has completed, and if so, how the PHY and link partner has 1172 * flow control configured. 1173 */ 1174 if ((hw->phy.media_type == e1000_media_type_internal_serdes) && 1175 mac->autoneg) { 1176 /* Read the PCS_LSTS and check to see if AutoNeg 1177 * has completed. 1178 */ 1179 pcs_status_reg = er32(PCS_LSTAT); 1180 1181 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { 1182 e_dbg("PCS Auto Neg has not completed.\n"); 1183 return ret_val; 1184 } 1185 1186 /* The AutoNeg process has completed, so we now need to 1187 * read both the Auto Negotiation Advertisement 1188 * Register (PCS_ANADV) and the Auto_Negotiation Base 1189 * Page Ability Register (PCS_LPAB) to determine how 1190 * flow control was negotiated. 1191 */ 1192 pcs_adv_reg = er32(PCS_ANADV); 1193 pcs_lp_ability_reg = er32(PCS_LPAB); 1194 1195 /* Two bits in the Auto Negotiation Advertisement Register 1196 * (PCS_ANADV) and two bits in the Auto Negotiation Base 1197 * Page Ability Register (PCS_LPAB) determine flow control 1198 * for both the PHY and the link partner. The following 1199 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1200 * 1999, describes these PAUSE resolution bits and how flow 1201 * control is determined based upon these settings. 1202 * NOTE: DC = Don't Care 1203 * 1204 * LOCAL DEVICE | LINK PARTNER 1205 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1206 *-------|---------|-------|---------|-------------------- 1207 * 0 | 0 | DC | DC | e1000_fc_none 1208 * 0 | 1 | 0 | DC | e1000_fc_none 1209 * 0 | 1 | 1 | 0 | e1000_fc_none 1210 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1211 * 1 | 0 | 0 | DC | e1000_fc_none 1212 * 1 | DC | 1 | DC | e1000_fc_full 1213 * 1 | 1 | 0 | 0 | e1000_fc_none 1214 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1215 * 1216 * Are both PAUSE bits set to 1? If so, this implies 1217 * Symmetric Flow Control is enabled at both ends. The 1218 * ASM_DIR bits are irrelevant per the spec. 1219 * 1220 * For Symmetric Flow Control: 1221 * 1222 * LOCAL DEVICE | LINK PARTNER 1223 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1224 *-------|---------|-------|---------|-------------------- 1225 * 1 | DC | 1 | DC | e1000_fc_full 1226 * 1227 */ 1228 if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1229 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { 1230 /* Now we need to check if the user selected Rx ONLY 1231 * of pause frames. In this case, we had to advertise 1232 * FULL flow control because we could not advertise Rx 1233 * ONLY. Hence, we must now check to see if we need to 1234 * turn OFF the TRANSMISSION of PAUSE frames. 1235 */ 1236 if (hw->fc.requested_mode == e1000_fc_full) { 1237 hw->fc.current_mode = e1000_fc_full; 1238 e_dbg("Flow Control = FULL.\n"); 1239 } else { 1240 hw->fc.current_mode = e1000_fc_rx_pause; 1241 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1242 } 1243 } 1244 /* For receiving PAUSE frames ONLY. 1245 * 1246 * LOCAL DEVICE | LINK PARTNER 1247 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1248 *-------|---------|-------|---------|-------------------- 1249 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1250 */ 1251 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && 1252 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1253 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1254 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1255 hw->fc.current_mode = e1000_fc_tx_pause; 1256 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1257 } 1258 /* For transmitting PAUSE frames ONLY. 1259 * 1260 * LOCAL DEVICE | LINK PARTNER 1261 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1262 *-------|---------|-------|---------|-------------------- 1263 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1264 */ 1265 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1266 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1267 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1268 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1269 hw->fc.current_mode = e1000_fc_rx_pause; 1270 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1271 } else { 1272 /* Per the IEEE spec, at this point flow control 1273 * should be disabled. 1274 */ 1275 hw->fc.current_mode = e1000_fc_none; 1276 e_dbg("Flow Control = NONE.\n"); 1277 } 1278 1279 /* Now we call a subroutine to actually force the MAC 1280 * controller to use the correct flow control settings. 1281 */ 1282 pcs_ctrl_reg = er32(PCS_LCTL); 1283 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1284 ew32(PCS_LCTL, pcs_ctrl_reg); 1285 1286 ret_val = e1000e_force_mac_fc(hw); 1287 if (ret_val) { 1288 e_dbg("Error forcing flow control settings\n"); 1289 return ret_val; 1290 } 1291 } 1292 1293 return 0; 1294} 1295 1296/** 1297 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex 1298 * @hw: pointer to the HW structure 1299 * @speed: stores the current speed 1300 * @duplex: stores the current duplex 1301 * 1302 * Read the status register for the current speed/duplex and store the current 1303 * speed and duplex for copper connections. 1304 **/ 1305s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, 1306 u16 *duplex) 1307{ 1308 u32 status; 1309 1310 status = er32(STATUS); 1311 if (status & E1000_STATUS_SPEED_1000) 1312 *speed = SPEED_1000; 1313 else if (status & E1000_STATUS_SPEED_100) 1314 *speed = SPEED_100; 1315 else 1316 *speed = SPEED_10; 1317 1318 if (status & E1000_STATUS_FD) 1319 *duplex = FULL_DUPLEX; 1320 else 1321 *duplex = HALF_DUPLEX; 1322 1323 e_dbg("%u Mbps, %s Duplex\n", 1324 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, 1325 *duplex == FULL_DUPLEX ? "Full" : "Half"); 1326 1327 return 0; 1328} 1329 1330/** 1331 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex 1332 * @hw: pointer to the HW structure 1333 * @speed: stores the current speed 1334 * @duplex: stores the current duplex 1335 * 1336 * Sets the speed and duplex to gigabit full duplex (the only possible option) 1337 * for fiber/serdes links. 1338 **/ 1339s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused 1340 *hw, u16 *speed, u16 *duplex) 1341{ 1342 *speed = SPEED_1000; 1343 *duplex = FULL_DUPLEX; 1344 1345 return 0; 1346} 1347 1348/** 1349 * e1000e_get_hw_semaphore - Acquire hardware semaphore 1350 * @hw: pointer to the HW structure 1351 * 1352 * Acquire the HW semaphore to access the PHY or NVM 1353 **/ 1354s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) 1355{ 1356 u32 swsm; 1357 s32 timeout = hw->nvm.word_size + 1; 1358 s32 i = 0; 1359 1360 /* Get the SW semaphore */ 1361 while (i < timeout) { 1362 swsm = er32(SWSM); 1363 if (!(swsm & E1000_SWSM_SMBI)) 1364 break; 1365 1366 udelay(100); 1367 i++; 1368 } 1369 1370 if (i == timeout) { 1371 e_dbg("Driver can't access device - SMBI bit is set.\n"); 1372 return -E1000_ERR_NVM; 1373 } 1374 1375 /* Get the FW semaphore. */ 1376 for (i = 0; i < timeout; i++) { 1377 swsm = er32(SWSM); 1378 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 1379 1380 /* Semaphore acquired if bit latched */ 1381 if (er32(SWSM) & E1000_SWSM_SWESMBI) 1382 break; 1383 1384 udelay(100); 1385 } 1386 1387 if (i == timeout) { 1388 /* Release semaphores */ 1389 e1000e_put_hw_semaphore(hw); 1390 e_dbg("Driver can't access the NVM\n"); 1391 return -E1000_ERR_NVM; 1392 } 1393 1394 return 0; 1395} 1396 1397/** 1398 * e1000e_put_hw_semaphore - Release hardware semaphore 1399 * @hw: pointer to the HW structure 1400 * 1401 * Release hardware semaphore used to access the PHY or NVM 1402 **/ 1403void e1000e_put_hw_semaphore(struct e1000_hw *hw) 1404{ 1405 u32 swsm; 1406 1407 swsm = er32(SWSM); 1408 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1409 ew32(SWSM, swsm); 1410} 1411 1412/** 1413 * e1000e_get_auto_rd_done - Check for auto read completion 1414 * @hw: pointer to the HW structure 1415 * 1416 * Check EEPROM for Auto Read done bit. 1417 **/ 1418s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) 1419{ 1420 s32 i = 0; 1421 1422 while (i < AUTO_READ_DONE_TIMEOUT) { 1423 if (er32(EECD) & E1000_EECD_AUTO_RD) 1424 break; 1425 usleep_range(1000, 2000); 1426 i++; 1427 } 1428 1429 if (i == AUTO_READ_DONE_TIMEOUT) { 1430 e_dbg("Auto read by HW from NVM has not completed.\n"); 1431 return -E1000_ERR_RESET; 1432 } 1433 1434 return 0; 1435} 1436 1437/** 1438 * e1000e_valid_led_default - Verify a valid default LED config 1439 * @hw: pointer to the HW structure 1440 * @data: pointer to the NVM (EEPROM) 1441 * 1442 * Read the EEPROM for the current default LED configuration. If the 1443 * LED configuration is not valid, set to a valid LED configuration. 1444 **/ 1445s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) 1446{ 1447 s32 ret_val; 1448 1449 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1450 if (ret_val) { 1451 e_dbg("NVM Read Error\n"); 1452 return ret_val; 1453 } 1454 1455 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 1456 *data = ID_LED_DEFAULT; 1457 1458 return 0; 1459} 1460 1461/** 1462 * e1000e_id_led_init_generic - 1463 * @hw: pointer to the HW structure 1464 * 1465 **/ 1466s32 e1000e_id_led_init_generic(struct e1000_hw *hw) 1467{ 1468 struct e1000_mac_info *mac = &hw->mac; 1469 s32 ret_val; 1470 const u32 ledctl_mask = 0x000000FF; 1471 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1472 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1473 u16 data, i, temp; 1474 const u16 led_mask = 0x0F; 1475 1476 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 1477 if (ret_val) 1478 return ret_val; 1479 1480 mac->ledctl_default = er32(LEDCTL); 1481 mac->ledctl_mode1 = mac->ledctl_default; 1482 mac->ledctl_mode2 = mac->ledctl_default; 1483 1484 for (i = 0; i < 4; i++) { 1485 temp = (data >> (i << 2)) & led_mask; 1486 switch (temp) { 1487 case ID_LED_ON1_DEF2: 1488 case ID_LED_ON1_ON2: 1489 case ID_LED_ON1_OFF2: 1490 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1491 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1492 break; 1493 case ID_LED_OFF1_DEF2: 1494 case ID_LED_OFF1_ON2: 1495 case ID_LED_OFF1_OFF2: 1496 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1497 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1498 break; 1499 default: 1500 /* Do nothing */ 1501 break; 1502 } 1503 switch (temp) { 1504 case ID_LED_DEF1_ON2: 1505 case ID_LED_ON1_ON2: 1506 case ID_LED_OFF1_ON2: 1507 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1508 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1509 break; 1510 case ID_LED_DEF1_OFF2: 1511 case ID_LED_ON1_OFF2: 1512 case ID_LED_OFF1_OFF2: 1513 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1514 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1515 break; 1516 default: 1517 /* Do nothing */ 1518 break; 1519 } 1520 } 1521 1522 return 0; 1523} 1524 1525/** 1526 * e1000e_setup_led_generic - Configures SW controllable LED 1527 * @hw: pointer to the HW structure 1528 * 1529 * This prepares the SW controllable LED for use and saves the current state 1530 * of the LED so it can be later restored. 1531 **/ 1532s32 e1000e_setup_led_generic(struct e1000_hw *hw) 1533{ 1534 u32 ledctl; 1535 1536 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) 1537 return -E1000_ERR_CONFIG; 1538 1539 if (hw->phy.media_type == e1000_media_type_fiber) { 1540 ledctl = er32(LEDCTL); 1541 hw->mac.ledctl_default = ledctl; 1542 /* Turn off LED0 */ 1543 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | 1544 E1000_LEDCTL_LED0_MODE_MASK); 1545 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 1546 E1000_LEDCTL_LED0_MODE_SHIFT); 1547 ew32(LEDCTL, ledctl); 1548 } else if (hw->phy.media_type == e1000_media_type_copper) { 1549 ew32(LEDCTL, hw->mac.ledctl_mode1); 1550 } 1551 1552 return 0; 1553} 1554 1555/** 1556 * e1000e_cleanup_led_generic - Set LED config to default operation 1557 * @hw: pointer to the HW structure 1558 * 1559 * Remove the current LED configuration and set the LED configuration 1560 * to the default value, saved from the EEPROM. 1561 **/ 1562s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) 1563{ 1564 ew32(LEDCTL, hw->mac.ledctl_default); 1565 return 0; 1566} 1567 1568/** 1569 * e1000e_blink_led_generic - Blink LED 1570 * @hw: pointer to the HW structure 1571 * 1572 * Blink the LEDs which are set to be on. 1573 **/ 1574s32 e1000e_blink_led_generic(struct e1000_hw *hw) 1575{ 1576 u32 ledctl_blink = 0; 1577 u32 i; 1578 1579 if (hw->phy.media_type == e1000_media_type_fiber) { 1580 /* always blink LED0 for PCI-E fiber */ 1581 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1582 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1583 } else { 1584 /* Set the blink bit for each LED that's "on" (0x0E) 1585 * (or "off" if inverted) in ledctl_mode2. The blink 1586 * logic in hardware only works when mode is set to "on" 1587 * so it must be changed accordingly when the mode is 1588 * "off" and inverted. 1589 */ 1590 ledctl_blink = hw->mac.ledctl_mode2; 1591 for (i = 0; i < 32; i += 8) { 1592 u32 mode = (hw->mac.ledctl_mode2 >> i) & 1593 E1000_LEDCTL_LED0_MODE_MASK; 1594 u32 led_default = hw->mac.ledctl_default >> i; 1595 1596 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && 1597 (mode == E1000_LEDCTL_MODE_LED_ON)) || 1598 ((led_default & E1000_LEDCTL_LED0_IVRT) && 1599 (mode == E1000_LEDCTL_MODE_LED_OFF))) { 1600 ledctl_blink &= 1601 ~(E1000_LEDCTL_LED0_MODE_MASK << i); 1602 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | 1603 E1000_LEDCTL_MODE_LED_ON) << i; 1604 } 1605 } 1606 } 1607 1608 ew32(LEDCTL, ledctl_blink); 1609 1610 return 0; 1611} 1612 1613/** 1614 * e1000e_led_on_generic - Turn LED on 1615 * @hw: pointer to the HW structure 1616 * 1617 * Turn LED on. 1618 **/ 1619s32 e1000e_led_on_generic(struct e1000_hw *hw) 1620{ 1621 u32 ctrl; 1622 1623 switch (hw->phy.media_type) { 1624 case e1000_media_type_fiber: 1625 ctrl = er32(CTRL); 1626 ctrl &= ~E1000_CTRL_SWDPIN0; 1627 ctrl |= E1000_CTRL_SWDPIO0; 1628 ew32(CTRL, ctrl); 1629 break; 1630 case e1000_media_type_copper: 1631 ew32(LEDCTL, hw->mac.ledctl_mode2); 1632 break; 1633 default: 1634 break; 1635 } 1636 1637 return 0; 1638} 1639 1640/** 1641 * e1000e_led_off_generic - Turn LED off 1642 * @hw: pointer to the HW structure 1643 * 1644 * Turn LED off. 1645 **/ 1646s32 e1000e_led_off_generic(struct e1000_hw *hw) 1647{ 1648 u32 ctrl; 1649 1650 switch (hw->phy.media_type) { 1651 case e1000_media_type_fiber: 1652 ctrl = er32(CTRL); 1653 ctrl |= E1000_CTRL_SWDPIN0; 1654 ctrl |= E1000_CTRL_SWDPIO0; 1655 ew32(CTRL, ctrl); 1656 break; 1657 case e1000_media_type_copper: 1658 ew32(LEDCTL, hw->mac.ledctl_mode1); 1659 break; 1660 default: 1661 break; 1662 } 1663 1664 return 0; 1665} 1666 1667/** 1668 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities 1669 * @hw: pointer to the HW structure 1670 * @no_snoop: bitmap of snoop events 1671 * 1672 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. 1673 **/ 1674void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) 1675{ 1676 u32 gcr; 1677 1678 if (no_snoop) { 1679 gcr = er32(GCR); 1680 gcr &= ~(PCIE_NO_SNOOP_ALL); 1681 gcr |= no_snoop; 1682 ew32(GCR, gcr); 1683 } 1684} 1685 1686/** 1687 * e1000e_disable_pcie_master - Disables PCI-express master access 1688 * @hw: pointer to the HW structure 1689 * 1690 * Returns 0 if successful, else returns -10 1691 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1692 * the master requests to be disabled. 1693 * 1694 * Disables PCI-Express master access and verifies there are no pending 1695 * requests. 1696 **/ 1697s32 e1000e_disable_pcie_master(struct e1000_hw *hw) 1698{ 1699 u32 ctrl; 1700 s32 timeout = MASTER_DISABLE_TIMEOUT; 1701 1702 ctrl = er32(CTRL); 1703 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1704 ew32(CTRL, ctrl); 1705 1706 while (timeout) { 1707 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) 1708 break; 1709 usleep_range(100, 200); 1710 timeout--; 1711 } 1712 1713 if (!timeout) { 1714 e_dbg("Master requests are pending.\n"); 1715 return -E1000_ERR_MASTER_REQUESTS_PENDING; 1716 } 1717 1718 return 0; 1719} 1720 1721/** 1722 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing 1723 * @hw: pointer to the HW structure 1724 * 1725 * Reset the Adaptive Interframe Spacing throttle to default values. 1726 **/ 1727void e1000e_reset_adaptive(struct e1000_hw *hw) 1728{ 1729 struct e1000_mac_info *mac = &hw->mac; 1730 1731 if (!mac->adaptive_ifs) { 1732 e_dbg("Not in Adaptive IFS mode!\n"); 1733 return; 1734 } 1735 1736 mac->current_ifs_val = 0; 1737 mac->ifs_min_val = IFS_MIN; 1738 mac->ifs_max_val = IFS_MAX; 1739 mac->ifs_step_size = IFS_STEP; 1740 mac->ifs_ratio = IFS_RATIO; 1741 1742 mac->in_ifs_mode = false; 1743 ew32(AIT, 0); 1744} 1745 1746/** 1747 * e1000e_update_adaptive - Update Adaptive Interframe Spacing 1748 * @hw: pointer to the HW structure 1749 * 1750 * Update the Adaptive Interframe Spacing Throttle value based on the 1751 * time between transmitted packets and time between collisions. 1752 **/ 1753void e1000e_update_adaptive(struct e1000_hw *hw) 1754{ 1755 struct e1000_mac_info *mac = &hw->mac; 1756 1757 if (!mac->adaptive_ifs) { 1758 e_dbg("Not in Adaptive IFS mode!\n"); 1759 return; 1760 } 1761 1762 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { 1763 if (mac->tx_packet_delta > MIN_NUM_XMITS) { 1764 mac->in_ifs_mode = true; 1765 if (mac->current_ifs_val < mac->ifs_max_val) { 1766 if (!mac->current_ifs_val) 1767 mac->current_ifs_val = mac->ifs_min_val; 1768 else 1769 mac->current_ifs_val += 1770 mac->ifs_step_size; 1771 ew32(AIT, mac->current_ifs_val); 1772 } 1773 } 1774 } else { 1775 if (mac->in_ifs_mode && 1776 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { 1777 mac->current_ifs_val = 0; 1778 mac->in_ifs_mode = false; 1779 ew32(AIT, 0); 1780 } 1781 } 1782}