cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nvm.c (14907B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2018 Intel Corporation. */
      3
      4#include "e1000.h"
      5
      6/**
      7 *  e1000_raise_eec_clk - Raise EEPROM clock
      8 *  @hw: pointer to the HW structure
      9 *  @eecd: pointer to the EEPROM
     10 *
     11 *  Enable/Raise the EEPROM clock bit.
     12 **/
     13static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
     14{
     15	*eecd = *eecd | E1000_EECD_SK;
     16	ew32(EECD, *eecd);
     17	e1e_flush();
     18	udelay(hw->nvm.delay_usec);
     19}
     20
     21/**
     22 *  e1000_lower_eec_clk - Lower EEPROM clock
     23 *  @hw: pointer to the HW structure
     24 *  @eecd: pointer to the EEPROM
     25 *
     26 *  Clear/Lower the EEPROM clock bit.
     27 **/
     28static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
     29{
     30	*eecd = *eecd & ~E1000_EECD_SK;
     31	ew32(EECD, *eecd);
     32	e1e_flush();
     33	udelay(hw->nvm.delay_usec);
     34}
     35
     36/**
     37 *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
     38 *  @hw: pointer to the HW structure
     39 *  @data: data to send to the EEPROM
     40 *  @count: number of bits to shift out
     41 *
     42 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
     43 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
     44 *  In order to do this, "data" must be broken down into bits.
     45 **/
     46static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
     47{
     48	struct e1000_nvm_info *nvm = &hw->nvm;
     49	u32 eecd = er32(EECD);
     50	u32 mask;
     51
     52	mask = BIT(count - 1);
     53	if (nvm->type == e1000_nvm_eeprom_spi)
     54		eecd |= E1000_EECD_DO;
     55
     56	do {
     57		eecd &= ~E1000_EECD_DI;
     58
     59		if (data & mask)
     60			eecd |= E1000_EECD_DI;
     61
     62		ew32(EECD, eecd);
     63		e1e_flush();
     64
     65		udelay(nvm->delay_usec);
     66
     67		e1000_raise_eec_clk(hw, &eecd);
     68		e1000_lower_eec_clk(hw, &eecd);
     69
     70		mask >>= 1;
     71	} while (mask);
     72
     73	eecd &= ~E1000_EECD_DI;
     74	ew32(EECD, eecd);
     75}
     76
     77/**
     78 *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
     79 *  @hw: pointer to the HW structure
     80 *  @count: number of bits to shift in
     81 *
     82 *  In order to read a register from the EEPROM, we need to shift 'count' bits
     83 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
     84 *  the EEPROM (setting the SK bit), and then reading the value of the data out
     85 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
     86 *  always be clear.
     87 **/
     88static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
     89{
     90	u32 eecd;
     91	u32 i;
     92	u16 data;
     93
     94	eecd = er32(EECD);
     95	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
     96	data = 0;
     97
     98	for (i = 0; i < count; i++) {
     99		data <<= 1;
    100		e1000_raise_eec_clk(hw, &eecd);
    101
    102		eecd = er32(EECD);
    103
    104		eecd &= ~E1000_EECD_DI;
    105		if (eecd & E1000_EECD_DO)
    106			data |= 1;
    107
    108		e1000_lower_eec_clk(hw, &eecd);
    109	}
    110
    111	return data;
    112}
    113
    114/**
    115 *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
    116 *  @hw: pointer to the HW structure
    117 *  @ee_reg: EEPROM flag for polling
    118 *
    119 *  Polls the EEPROM status bit for either read or write completion based
    120 *  upon the value of 'ee_reg'.
    121 **/
    122s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
    123{
    124	u32 attempts = 100000;
    125	u32 i, reg = 0;
    126
    127	for (i = 0; i < attempts; i++) {
    128		if (ee_reg == E1000_NVM_POLL_READ)
    129			reg = er32(EERD);
    130		else
    131			reg = er32(EEWR);
    132
    133		if (reg & E1000_NVM_RW_REG_DONE)
    134			return 0;
    135
    136		udelay(5);
    137	}
    138
    139	return -E1000_ERR_NVM;
    140}
    141
    142/**
    143 *  e1000e_acquire_nvm - Generic request for access to EEPROM
    144 *  @hw: pointer to the HW structure
    145 *
    146 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
    147 *  Return successful if access grant bit set, else clear the request for
    148 *  EEPROM access and return -E1000_ERR_NVM (-1).
    149 **/
    150s32 e1000e_acquire_nvm(struct e1000_hw *hw)
    151{
    152	u32 eecd = er32(EECD);
    153	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
    154
    155	ew32(EECD, eecd | E1000_EECD_REQ);
    156	eecd = er32(EECD);
    157
    158	while (timeout) {
    159		if (eecd & E1000_EECD_GNT)
    160			break;
    161		udelay(5);
    162		eecd = er32(EECD);
    163		timeout--;
    164	}
    165
    166	if (!timeout) {
    167		eecd &= ~E1000_EECD_REQ;
    168		ew32(EECD, eecd);
    169		e_dbg("Could not acquire NVM grant\n");
    170		return -E1000_ERR_NVM;
    171	}
    172
    173	return 0;
    174}
    175
    176/**
    177 *  e1000_standby_nvm - Return EEPROM to standby state
    178 *  @hw: pointer to the HW structure
    179 *
    180 *  Return the EEPROM to a standby state.
    181 **/
    182static void e1000_standby_nvm(struct e1000_hw *hw)
    183{
    184	struct e1000_nvm_info *nvm = &hw->nvm;
    185	u32 eecd = er32(EECD);
    186
    187	if (nvm->type == e1000_nvm_eeprom_spi) {
    188		/* Toggle CS to flush commands */
    189		eecd |= E1000_EECD_CS;
    190		ew32(EECD, eecd);
    191		e1e_flush();
    192		udelay(nvm->delay_usec);
    193		eecd &= ~E1000_EECD_CS;
    194		ew32(EECD, eecd);
    195		e1e_flush();
    196		udelay(nvm->delay_usec);
    197	}
    198}
    199
    200/**
    201 *  e1000_stop_nvm - Terminate EEPROM command
    202 *  @hw: pointer to the HW structure
    203 *
    204 *  Terminates the current command by inverting the EEPROM's chip select pin.
    205 **/
    206static void e1000_stop_nvm(struct e1000_hw *hw)
    207{
    208	u32 eecd;
    209
    210	eecd = er32(EECD);
    211	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
    212		/* Pull CS high */
    213		eecd |= E1000_EECD_CS;
    214		e1000_lower_eec_clk(hw, &eecd);
    215	}
    216}
    217
    218/**
    219 *  e1000e_release_nvm - Release exclusive access to EEPROM
    220 *  @hw: pointer to the HW structure
    221 *
    222 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
    223 **/
    224void e1000e_release_nvm(struct e1000_hw *hw)
    225{
    226	u32 eecd;
    227
    228	e1000_stop_nvm(hw);
    229
    230	eecd = er32(EECD);
    231	eecd &= ~E1000_EECD_REQ;
    232	ew32(EECD, eecd);
    233}
    234
    235/**
    236 *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
    237 *  @hw: pointer to the HW structure
    238 *
    239 *  Setups the EEPROM for reading and writing.
    240 **/
    241static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
    242{
    243	struct e1000_nvm_info *nvm = &hw->nvm;
    244	u32 eecd = er32(EECD);
    245	u8 spi_stat_reg;
    246
    247	if (nvm->type == e1000_nvm_eeprom_spi) {
    248		u16 timeout = NVM_MAX_RETRY_SPI;
    249
    250		/* Clear SK and CS */
    251		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
    252		ew32(EECD, eecd);
    253		e1e_flush();
    254		udelay(1);
    255
    256		/* Read "Status Register" repeatedly until the LSB is cleared.
    257		 * The EEPROM will signal that the command has been completed
    258		 * by clearing bit 0 of the internal status register.  If it's
    259		 * not cleared within 'timeout', then error out.
    260		 */
    261		while (timeout) {
    262			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
    263						 hw->nvm.opcode_bits);
    264			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
    265			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
    266				break;
    267
    268			udelay(5);
    269			e1000_standby_nvm(hw);
    270			timeout--;
    271		}
    272
    273		if (!timeout) {
    274			e_dbg("SPI NVM Status error\n");
    275			return -E1000_ERR_NVM;
    276		}
    277	}
    278
    279	return 0;
    280}
    281
    282/**
    283 *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
    284 *  @hw: pointer to the HW structure
    285 *  @offset: offset of word in the EEPROM to read
    286 *  @words: number of words to read
    287 *  @data: word read from the EEPROM
    288 *
    289 *  Reads a 16 bit word from the EEPROM using the EERD register.
    290 **/
    291s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
    292{
    293	struct e1000_nvm_info *nvm = &hw->nvm;
    294	u32 i, eerd = 0;
    295	s32 ret_val = 0;
    296
    297	/* A check for invalid values:  offset too large, too many words,
    298	 * too many words for the offset, and not enough words.
    299	 */
    300	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    301	    (words == 0)) {
    302		e_dbg("nvm parameter(s) out of bounds\n");
    303		return -E1000_ERR_NVM;
    304	}
    305
    306	for (i = 0; i < words; i++) {
    307		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
    308		    E1000_NVM_RW_REG_START;
    309
    310		ew32(EERD, eerd);
    311		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
    312		if (ret_val) {
    313			e_dbg("NVM read error: %d\n", ret_val);
    314			break;
    315		}
    316
    317		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
    318	}
    319
    320	return ret_val;
    321}
    322
    323/**
    324 *  e1000e_write_nvm_spi - Write to EEPROM using SPI
    325 *  @hw: pointer to the HW structure
    326 *  @offset: offset within the EEPROM to be written to
    327 *  @words: number of words to write
    328 *  @data: 16 bit word(s) to be written to the EEPROM
    329 *
    330 *  Writes data to EEPROM at offset using SPI interface.
    331 *
    332 *  If e1000e_update_nvm_checksum is not called after this function , the
    333 *  EEPROM will most likely contain an invalid checksum.
    334 **/
    335s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
    336{
    337	struct e1000_nvm_info *nvm = &hw->nvm;
    338	s32 ret_val = -E1000_ERR_NVM;
    339	u16 widx = 0;
    340
    341	/* A check for invalid values:  offset too large, too many words,
    342	 * and not enough words.
    343	 */
    344	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    345	    (words == 0)) {
    346		e_dbg("nvm parameter(s) out of bounds\n");
    347		return -E1000_ERR_NVM;
    348	}
    349
    350	while (widx < words) {
    351		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
    352
    353		ret_val = nvm->ops.acquire(hw);
    354		if (ret_val)
    355			return ret_val;
    356
    357		ret_val = e1000_ready_nvm_eeprom(hw);
    358		if (ret_val) {
    359			nvm->ops.release(hw);
    360			return ret_val;
    361		}
    362
    363		e1000_standby_nvm(hw);
    364
    365		/* Send the WRITE ENABLE command (8 bit opcode) */
    366		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
    367					 nvm->opcode_bits);
    368
    369		e1000_standby_nvm(hw);
    370
    371		/* Some SPI eeproms use the 8th address bit embedded in the
    372		 * opcode
    373		 */
    374		if ((nvm->address_bits == 8) && (offset >= 128))
    375			write_opcode |= NVM_A8_OPCODE_SPI;
    376
    377		/* Send the Write command (8-bit opcode + addr) */
    378		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
    379		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
    380					 nvm->address_bits);
    381
    382		/* Loop to allow for up to whole page write of eeprom */
    383		while (widx < words) {
    384			u16 word_out = data[widx];
    385
    386			word_out = (word_out >> 8) | (word_out << 8);
    387			e1000_shift_out_eec_bits(hw, word_out, 16);
    388			widx++;
    389
    390			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
    391				e1000_standby_nvm(hw);
    392				break;
    393			}
    394		}
    395		usleep_range(10000, 11000);
    396		nvm->ops.release(hw);
    397	}
    398
    399	return ret_val;
    400}
    401
    402/**
    403 *  e1000_read_pba_string_generic - Read device part number
    404 *  @hw: pointer to the HW structure
    405 *  @pba_num: pointer to device part number
    406 *  @pba_num_size: size of part number buffer
    407 *
    408 *  Reads the product board assembly (PBA) number from the EEPROM and stores
    409 *  the value in pba_num.
    410 **/
    411s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
    412				  u32 pba_num_size)
    413{
    414	s32 ret_val;
    415	u16 nvm_data;
    416	u16 pba_ptr;
    417	u16 offset;
    418	u16 length;
    419
    420	if (pba_num == NULL) {
    421		e_dbg("PBA string buffer was null\n");
    422		return -E1000_ERR_INVALID_ARGUMENT;
    423	}
    424
    425	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
    426	if (ret_val) {
    427		e_dbg("NVM Read Error\n");
    428		return ret_val;
    429	}
    430
    431	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
    432	if (ret_val) {
    433		e_dbg("NVM Read Error\n");
    434		return ret_val;
    435	}
    436
    437	/* if nvm_data is not ptr guard the PBA must be in legacy format which
    438	 * means pba_ptr is actually our second data word for the PBA number
    439	 * and we can decode it into an ascii string
    440	 */
    441	if (nvm_data != NVM_PBA_PTR_GUARD) {
    442		e_dbg("NVM PBA number is not stored as string\n");
    443
    444		/* make sure callers buffer is big enough to store the PBA */
    445		if (pba_num_size < E1000_PBANUM_LENGTH) {
    446			e_dbg("PBA string buffer too small\n");
    447			return E1000_ERR_NO_SPACE;
    448		}
    449
    450		/* extract hex string from data and pba_ptr */
    451		pba_num[0] = (nvm_data >> 12) & 0xF;
    452		pba_num[1] = (nvm_data >> 8) & 0xF;
    453		pba_num[2] = (nvm_data >> 4) & 0xF;
    454		pba_num[3] = nvm_data & 0xF;
    455		pba_num[4] = (pba_ptr >> 12) & 0xF;
    456		pba_num[5] = (pba_ptr >> 8) & 0xF;
    457		pba_num[6] = '-';
    458		pba_num[7] = 0;
    459		pba_num[8] = (pba_ptr >> 4) & 0xF;
    460		pba_num[9] = pba_ptr & 0xF;
    461
    462		/* put a null character on the end of our string */
    463		pba_num[10] = '\0';
    464
    465		/* switch all the data but the '-' to hex char */
    466		for (offset = 0; offset < 10; offset++) {
    467			if (pba_num[offset] < 0xA)
    468				pba_num[offset] += '0';
    469			else if (pba_num[offset] < 0x10)
    470				pba_num[offset] += 'A' - 0xA;
    471		}
    472
    473		return 0;
    474	}
    475
    476	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
    477	if (ret_val) {
    478		e_dbg("NVM Read Error\n");
    479		return ret_val;
    480	}
    481
    482	if (length == 0xFFFF || length == 0) {
    483		e_dbg("NVM PBA number section invalid length\n");
    484		return -E1000_ERR_NVM_PBA_SECTION;
    485	}
    486	/* check if pba_num buffer is big enough */
    487	if (pba_num_size < (((u32)length * 2) - 1)) {
    488		e_dbg("PBA string buffer too small\n");
    489		return -E1000_ERR_NO_SPACE;
    490	}
    491
    492	/* trim pba length from start of string */
    493	pba_ptr++;
    494	length--;
    495
    496	for (offset = 0; offset < length; offset++) {
    497		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
    498		if (ret_val) {
    499			e_dbg("NVM Read Error\n");
    500			return ret_val;
    501		}
    502		pba_num[offset * 2] = (u8)(nvm_data >> 8);
    503		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
    504	}
    505	pba_num[offset * 2] = '\0';
    506
    507	return 0;
    508}
    509
    510/**
    511 *  e1000_read_mac_addr_generic - Read device MAC address
    512 *  @hw: pointer to the HW structure
    513 *
    514 *  Reads the device MAC address from the EEPROM and stores the value.
    515 *  Since devices with two ports use the same EEPROM, we increment the
    516 *  last bit in the MAC address for the second port.
    517 **/
    518s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
    519{
    520	u32 rar_high;
    521	u32 rar_low;
    522	u16 i;
    523
    524	rar_high = er32(RAH(0));
    525	rar_low = er32(RAL(0));
    526
    527	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
    528		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
    529
    530	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
    531		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
    532
    533	for (i = 0; i < ETH_ALEN; i++)
    534		hw->mac.addr[i] = hw->mac.perm_addr[i];
    535
    536	return 0;
    537}
    538
    539/**
    540 *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
    541 *  @hw: pointer to the HW structure
    542 *
    543 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
    544 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
    545 **/
    546s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
    547{
    548	s32 ret_val;
    549	u16 checksum = 0;
    550	u16 i, nvm_data;
    551
    552	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
    553		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
    554		if (ret_val) {
    555			e_dbg("NVM Read Error\n");
    556			return ret_val;
    557		}
    558		checksum += nvm_data;
    559	}
    560
    561	if (checksum != (u16)NVM_SUM) {
    562		e_dbg("NVM Checksum Invalid\n");
    563		return -E1000_ERR_NVM;
    564	}
    565
    566	return 0;
    567}
    568
    569/**
    570 *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
    571 *  @hw: pointer to the HW structure
    572 *
    573 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
    574 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
    575 *  value to the EEPROM.
    576 **/
    577s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
    578{
    579	s32 ret_val;
    580	u16 checksum = 0;
    581	u16 i, nvm_data;
    582
    583	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
    584		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
    585		if (ret_val) {
    586			e_dbg("NVM Read Error while updating checksum.\n");
    587			return ret_val;
    588		}
    589		checksum += nvm_data;
    590	}
    591	checksum = (u16)NVM_SUM - checksum;
    592	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
    593	if (ret_val)
    594		e_dbg("NVM Write Error while updating checksum.\n");
    595
    596	return ret_val;
    597}
    598
    599/**
    600 *  e1000e_reload_nvm_generic - Reloads EEPROM
    601 *  @hw: pointer to the HW structure
    602 *
    603 *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
    604 *  extended control register.
    605 **/
    606void e1000e_reload_nvm_generic(struct e1000_hw *hw)
    607{
    608	u32 ctrl_ext;
    609
    610	usleep_range(10, 20);
    611	ctrl_ext = er32(CTRL_EXT);
    612	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
    613	ew32(CTRL_EXT, ctrl_ext);
    614	e1e_flush();
    615}