cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

phy.c (88450B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2018 Intel Corporation. */
      3
      4#include "e1000.h"
      5
      6static s32 e1000_wait_autoneg(struct e1000_hw *hw);
      7static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
      8					  u16 *data, bool read, bool page_set);
      9static u32 e1000_get_phy_addr_for_hv_page(u32 page);
     10static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
     11					  u16 *data, bool read);
     12
     13/* Cable length tables */
     14static const u16 e1000_m88_cable_length_table[] = {
     15	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
     16};
     17
     18#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
     19		ARRAY_SIZE(e1000_m88_cable_length_table)
     20
     21static const u16 e1000_igp_2_cable_length_table[] = {
     22	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
     23	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
     24	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
     25	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
     26	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
     27	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
     28	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
     29	124
     30};
     31
     32#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
     33		ARRAY_SIZE(e1000_igp_2_cable_length_table)
     34
     35/**
     36 *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
     37 *  @hw: pointer to the HW structure
     38 *
     39 *  Read the PHY management control register and check whether a PHY reset
     40 *  is blocked.  If a reset is not blocked return 0, otherwise
     41 *  return E1000_BLK_PHY_RESET (12).
     42 **/
     43s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
     44{
     45	u32 manc;
     46
     47	manc = er32(MANC);
     48
     49	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
     50}
     51
     52/**
     53 *  e1000e_get_phy_id - Retrieve the PHY ID and revision
     54 *  @hw: pointer to the HW structure
     55 *
     56 *  Reads the PHY registers and stores the PHY ID and possibly the PHY
     57 *  revision in the hardware structure.
     58 **/
     59s32 e1000e_get_phy_id(struct e1000_hw *hw)
     60{
     61	struct e1000_phy_info *phy = &hw->phy;
     62	s32 ret_val = 0;
     63	u16 phy_id;
     64	u16 retry_count = 0;
     65
     66	if (!phy->ops.read_reg)
     67		return 0;
     68
     69	while (retry_count < 2) {
     70		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
     71		if (ret_val)
     72			return ret_val;
     73
     74		phy->id = (u32)(phy_id << 16);
     75		usleep_range(20, 40);
     76		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
     77		if (ret_val)
     78			return ret_val;
     79
     80		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
     81		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
     82
     83		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
     84			return 0;
     85
     86		retry_count++;
     87	}
     88
     89	return 0;
     90}
     91
     92/**
     93 *  e1000e_phy_reset_dsp - Reset PHY DSP
     94 *  @hw: pointer to the HW structure
     95 *
     96 *  Reset the digital signal processor.
     97 **/
     98s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
     99{
    100	s32 ret_val;
    101
    102	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
    103	if (ret_val)
    104		return ret_val;
    105
    106	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
    107}
    108
    109/**
    110 *  e1000e_read_phy_reg_mdic - Read MDI control register
    111 *  @hw: pointer to the HW structure
    112 *  @offset: register offset to be read
    113 *  @data: pointer to the read data
    114 *
    115 *  Reads the MDI control register in the PHY at offset and stores the
    116 *  information read to data.
    117 **/
    118s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
    119{
    120	struct e1000_phy_info *phy = &hw->phy;
    121	u32 i, mdic = 0;
    122
    123	if (offset > MAX_PHY_REG_ADDRESS) {
    124		e_dbg("PHY Address %d is out of range\n", offset);
    125		return -E1000_ERR_PARAM;
    126	}
    127
    128	/* Set up Op-code, Phy Address, and register offset in the MDI
    129	 * Control register.  The MAC will take care of interfacing with the
    130	 * PHY to retrieve the desired data.
    131	 */
    132	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
    133		(phy->addr << E1000_MDIC_PHY_SHIFT) |
    134		(E1000_MDIC_OP_READ));
    135
    136	ew32(MDIC, mdic);
    137
    138	/* Poll the ready bit to see if the MDI read completed
    139	 * Increasing the time out as testing showed failures with
    140	 * the lower time out
    141	 */
    142	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
    143		udelay(50);
    144		mdic = er32(MDIC);
    145		if (mdic & E1000_MDIC_READY)
    146			break;
    147	}
    148	if (!(mdic & E1000_MDIC_READY)) {
    149		e_dbg("MDI Read PHY Reg Address %d did not complete\n", offset);
    150		return -E1000_ERR_PHY;
    151	}
    152	if (mdic & E1000_MDIC_ERROR) {
    153		e_dbg("MDI Read PHY Reg Address %d Error\n", offset);
    154		return -E1000_ERR_PHY;
    155	}
    156	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
    157		e_dbg("MDI Read offset error - requested %d, returned %d\n",
    158		      offset,
    159		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
    160		return -E1000_ERR_PHY;
    161	}
    162	*data = (u16)mdic;
    163
    164	/* Allow some time after each MDIC transaction to avoid
    165	 * reading duplicate data in the next MDIC transaction.
    166	 */
    167	if (hw->mac.type == e1000_pch2lan)
    168		udelay(100);
    169
    170	return 0;
    171}
    172
    173/**
    174 *  e1000e_write_phy_reg_mdic - Write MDI control register
    175 *  @hw: pointer to the HW structure
    176 *  @offset: register offset to write to
    177 *  @data: data to write to register at offset
    178 *
    179 *  Writes data to MDI control register in the PHY at offset.
    180 **/
    181s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
    182{
    183	struct e1000_phy_info *phy = &hw->phy;
    184	u32 i, mdic = 0;
    185
    186	if (offset > MAX_PHY_REG_ADDRESS) {
    187		e_dbg("PHY Address %d is out of range\n", offset);
    188		return -E1000_ERR_PARAM;
    189	}
    190
    191	/* Set up Op-code, Phy Address, and register offset in the MDI
    192	 * Control register.  The MAC will take care of interfacing with the
    193	 * PHY to retrieve the desired data.
    194	 */
    195	mdic = (((u32)data) |
    196		(offset << E1000_MDIC_REG_SHIFT) |
    197		(phy->addr << E1000_MDIC_PHY_SHIFT) |
    198		(E1000_MDIC_OP_WRITE));
    199
    200	ew32(MDIC, mdic);
    201
    202	/* Poll the ready bit to see if the MDI read completed
    203	 * Increasing the time out as testing showed failures with
    204	 * the lower time out
    205	 */
    206	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
    207		udelay(50);
    208		mdic = er32(MDIC);
    209		if (mdic & E1000_MDIC_READY)
    210			break;
    211	}
    212	if (!(mdic & E1000_MDIC_READY)) {
    213		e_dbg("MDI Write PHY Reg Address %d did not complete\n", offset);
    214		return -E1000_ERR_PHY;
    215	}
    216	if (mdic & E1000_MDIC_ERROR) {
    217		e_dbg("MDI Write PHY Red Address %d Error\n", offset);
    218		return -E1000_ERR_PHY;
    219	}
    220	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
    221		e_dbg("MDI Write offset error - requested %d, returned %d\n",
    222		      offset,
    223		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
    224		return -E1000_ERR_PHY;
    225	}
    226
    227	/* Allow some time after each MDIC transaction to avoid
    228	 * reading duplicate data in the next MDIC transaction.
    229	 */
    230	if (hw->mac.type == e1000_pch2lan)
    231		udelay(100);
    232
    233	return 0;
    234}
    235
    236/**
    237 *  e1000e_read_phy_reg_m88 - Read m88 PHY register
    238 *  @hw: pointer to the HW structure
    239 *  @offset: register offset to be read
    240 *  @data: pointer to the read data
    241 *
    242 *  Acquires semaphore, if necessary, then reads the PHY register at offset
    243 *  and storing the retrieved information in data.  Release any acquired
    244 *  semaphores before exiting.
    245 **/
    246s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
    247{
    248	s32 ret_val;
    249
    250	ret_val = hw->phy.ops.acquire(hw);
    251	if (ret_val)
    252		return ret_val;
    253
    254	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
    255					   data);
    256
    257	hw->phy.ops.release(hw);
    258
    259	return ret_val;
    260}
    261
    262/**
    263 *  e1000e_write_phy_reg_m88 - Write m88 PHY register
    264 *  @hw: pointer to the HW structure
    265 *  @offset: register offset to write to
    266 *  @data: data to write at register offset
    267 *
    268 *  Acquires semaphore, if necessary, then writes the data to PHY register
    269 *  at the offset.  Release any acquired semaphores before exiting.
    270 **/
    271s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
    272{
    273	s32 ret_val;
    274
    275	ret_val = hw->phy.ops.acquire(hw);
    276	if (ret_val)
    277		return ret_val;
    278
    279	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
    280					    data);
    281
    282	hw->phy.ops.release(hw);
    283
    284	return ret_val;
    285}
    286
    287/**
    288 *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
    289 *  @hw: pointer to the HW structure
    290 *  @page: page to set (shifted left when necessary)
    291 *
    292 *  Sets PHY page required for PHY register access.  Assumes semaphore is
    293 *  already acquired.  Note, this function sets phy.addr to 1 so the caller
    294 *  must set it appropriately (if necessary) after this function returns.
    295 **/
    296s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
    297{
    298	e_dbg("Setting page 0x%x\n", page);
    299
    300	hw->phy.addr = 1;
    301
    302	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
    303}
    304
    305/**
    306 *  __e1000e_read_phy_reg_igp - Read igp PHY register
    307 *  @hw: pointer to the HW structure
    308 *  @offset: register offset to be read
    309 *  @data: pointer to the read data
    310 *  @locked: semaphore has already been acquired or not
    311 *
    312 *  Acquires semaphore, if necessary, then reads the PHY register at offset
    313 *  and stores the retrieved information in data.  Release any acquired
    314 *  semaphores before exiting.
    315 **/
    316static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
    317				     bool locked)
    318{
    319	s32 ret_val = 0;
    320
    321	if (!locked) {
    322		if (!hw->phy.ops.acquire)
    323			return 0;
    324
    325		ret_val = hw->phy.ops.acquire(hw);
    326		if (ret_val)
    327			return ret_val;
    328	}
    329
    330	if (offset > MAX_PHY_MULTI_PAGE_REG)
    331		ret_val = e1000e_write_phy_reg_mdic(hw,
    332						    IGP01E1000_PHY_PAGE_SELECT,
    333						    (u16)offset);
    334	if (!ret_val)
    335		ret_val = e1000e_read_phy_reg_mdic(hw,
    336						   MAX_PHY_REG_ADDRESS & offset,
    337						   data);
    338	if (!locked)
    339		hw->phy.ops.release(hw);
    340
    341	return ret_val;
    342}
    343
    344/**
    345 *  e1000e_read_phy_reg_igp - Read igp PHY register
    346 *  @hw: pointer to the HW structure
    347 *  @offset: register offset to be read
    348 *  @data: pointer to the read data
    349 *
    350 *  Acquires semaphore then reads the PHY register at offset and stores the
    351 *  retrieved information in data.
    352 *  Release the acquired semaphore before exiting.
    353 **/
    354s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
    355{
    356	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
    357}
    358
    359/**
    360 *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
    361 *  @hw: pointer to the HW structure
    362 *  @offset: register offset to be read
    363 *  @data: pointer to the read data
    364 *
    365 *  Reads the PHY register at offset and stores the retrieved information
    366 *  in data.  Assumes semaphore already acquired.
    367 **/
    368s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
    369{
    370	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
    371}
    372
    373/**
    374 *  __e1000e_write_phy_reg_igp - Write igp PHY register
    375 *  @hw: pointer to the HW structure
    376 *  @offset: register offset to write to
    377 *  @data: data to write at register offset
    378 *  @locked: semaphore has already been acquired or not
    379 *
    380 *  Acquires semaphore, if necessary, then writes the data to PHY register
    381 *  at the offset.  Release any acquired semaphores before exiting.
    382 **/
    383static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
    384				      bool locked)
    385{
    386	s32 ret_val = 0;
    387
    388	if (!locked) {
    389		if (!hw->phy.ops.acquire)
    390			return 0;
    391
    392		ret_val = hw->phy.ops.acquire(hw);
    393		if (ret_val)
    394			return ret_val;
    395	}
    396
    397	if (offset > MAX_PHY_MULTI_PAGE_REG)
    398		ret_val = e1000e_write_phy_reg_mdic(hw,
    399						    IGP01E1000_PHY_PAGE_SELECT,
    400						    (u16)offset);
    401	if (!ret_val)
    402		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
    403						    offset, data);
    404	if (!locked)
    405		hw->phy.ops.release(hw);
    406
    407	return ret_val;
    408}
    409
    410/**
    411 *  e1000e_write_phy_reg_igp - Write igp PHY register
    412 *  @hw: pointer to the HW structure
    413 *  @offset: register offset to write to
    414 *  @data: data to write at register offset
    415 *
    416 *  Acquires semaphore then writes the data to PHY register
    417 *  at the offset.  Release any acquired semaphores before exiting.
    418 **/
    419s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
    420{
    421	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
    422}
    423
    424/**
    425 *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
    426 *  @hw: pointer to the HW structure
    427 *  @offset: register offset to write to
    428 *  @data: data to write at register offset
    429 *
    430 *  Writes the data to PHY register at the offset.
    431 *  Assumes semaphore already acquired.
    432 **/
    433s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
    434{
    435	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
    436}
    437
    438/**
    439 *  __e1000_read_kmrn_reg - Read kumeran register
    440 *  @hw: pointer to the HW structure
    441 *  @offset: register offset to be read
    442 *  @data: pointer to the read data
    443 *  @locked: semaphore has already been acquired or not
    444 *
    445 *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
    446 *  using the kumeran interface.  The information retrieved is stored in data.
    447 *  Release any acquired semaphores before exiting.
    448 **/
    449static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
    450				 bool locked)
    451{
    452	u32 kmrnctrlsta;
    453
    454	if (!locked) {
    455		s32 ret_val = 0;
    456
    457		if (!hw->phy.ops.acquire)
    458			return 0;
    459
    460		ret_val = hw->phy.ops.acquire(hw);
    461		if (ret_val)
    462			return ret_val;
    463	}
    464
    465	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
    466		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
    467	ew32(KMRNCTRLSTA, kmrnctrlsta);
    468	e1e_flush();
    469
    470	udelay(2);
    471
    472	kmrnctrlsta = er32(KMRNCTRLSTA);
    473	*data = (u16)kmrnctrlsta;
    474
    475	if (!locked)
    476		hw->phy.ops.release(hw);
    477
    478	return 0;
    479}
    480
    481/**
    482 *  e1000e_read_kmrn_reg -  Read kumeran register
    483 *  @hw: pointer to the HW structure
    484 *  @offset: register offset to be read
    485 *  @data: pointer to the read data
    486 *
    487 *  Acquires semaphore then reads the PHY register at offset using the
    488 *  kumeran interface.  The information retrieved is stored in data.
    489 *  Release the acquired semaphore before exiting.
    490 **/
    491s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
    492{
    493	return __e1000_read_kmrn_reg(hw, offset, data, false);
    494}
    495
    496/**
    497 *  e1000e_read_kmrn_reg_locked -  Read kumeran register
    498 *  @hw: pointer to the HW structure
    499 *  @offset: register offset to be read
    500 *  @data: pointer to the read data
    501 *
    502 *  Reads the PHY register at offset using the kumeran interface.  The
    503 *  information retrieved is stored in data.
    504 *  Assumes semaphore already acquired.
    505 **/
    506s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
    507{
    508	return __e1000_read_kmrn_reg(hw, offset, data, true);
    509}
    510
    511/**
    512 *  __e1000_write_kmrn_reg - Write kumeran register
    513 *  @hw: pointer to the HW structure
    514 *  @offset: register offset to write to
    515 *  @data: data to write at register offset
    516 *  @locked: semaphore has already been acquired or not
    517 *
    518 *  Acquires semaphore, if necessary.  Then write the data to PHY register
    519 *  at the offset using the kumeran interface.  Release any acquired semaphores
    520 *  before exiting.
    521 **/
    522static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
    523				  bool locked)
    524{
    525	u32 kmrnctrlsta;
    526
    527	if (!locked) {
    528		s32 ret_val = 0;
    529
    530		if (!hw->phy.ops.acquire)
    531			return 0;
    532
    533		ret_val = hw->phy.ops.acquire(hw);
    534		if (ret_val)
    535			return ret_val;
    536	}
    537
    538	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
    539		       E1000_KMRNCTRLSTA_OFFSET) | data;
    540	ew32(KMRNCTRLSTA, kmrnctrlsta);
    541	e1e_flush();
    542
    543	udelay(2);
    544
    545	if (!locked)
    546		hw->phy.ops.release(hw);
    547
    548	return 0;
    549}
    550
    551/**
    552 *  e1000e_write_kmrn_reg -  Write kumeran register
    553 *  @hw: pointer to the HW structure
    554 *  @offset: register offset to write to
    555 *  @data: data to write at register offset
    556 *
    557 *  Acquires semaphore then writes the data to the PHY register at the offset
    558 *  using the kumeran interface.  Release the acquired semaphore before exiting.
    559 **/
    560s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
    561{
    562	return __e1000_write_kmrn_reg(hw, offset, data, false);
    563}
    564
    565/**
    566 *  e1000e_write_kmrn_reg_locked -  Write kumeran register
    567 *  @hw: pointer to the HW structure
    568 *  @offset: register offset to write to
    569 *  @data: data to write at register offset
    570 *
    571 *  Write the data to PHY register at the offset using the kumeran interface.
    572 *  Assumes semaphore already acquired.
    573 **/
    574s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
    575{
    576	return __e1000_write_kmrn_reg(hw, offset, data, true);
    577}
    578
    579/**
    580 *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
    581 *  @hw: pointer to the HW structure
    582 *
    583 *  Sets up Master/slave mode
    584 **/
    585static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
    586{
    587	s32 ret_val;
    588	u16 phy_data;
    589
    590	/* Resolve Master/Slave mode */
    591	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
    592	if (ret_val)
    593		return ret_val;
    594
    595	/* load defaults for future use */
    596	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
    597	    ((phy_data & CTL1000_AS_MASTER) ?
    598	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
    599
    600	switch (hw->phy.ms_type) {
    601	case e1000_ms_force_master:
    602		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
    603		break;
    604	case e1000_ms_force_slave:
    605		phy_data |= CTL1000_ENABLE_MASTER;
    606		phy_data &= ~(CTL1000_AS_MASTER);
    607		break;
    608	case e1000_ms_auto:
    609		phy_data &= ~CTL1000_ENABLE_MASTER;
    610		fallthrough;
    611	default:
    612		break;
    613	}
    614
    615	return e1e_wphy(hw, MII_CTRL1000, phy_data);
    616}
    617
    618/**
    619 *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
    620 *  @hw: pointer to the HW structure
    621 *
    622 *  Sets up Carrier-sense on Transmit and downshift values.
    623 **/
    624s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
    625{
    626	s32 ret_val;
    627	u16 phy_data;
    628
    629	/* Enable CRS on Tx. This must be set for half-duplex operation. */
    630	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
    631	if (ret_val)
    632		return ret_val;
    633
    634	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
    635
    636	/* Enable downshift */
    637	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
    638
    639	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
    640	if (ret_val)
    641		return ret_val;
    642
    643	/* Set MDI/MDIX mode */
    644	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
    645	if (ret_val)
    646		return ret_val;
    647	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
    648	/* Options:
    649	 *   0 - Auto (default)
    650	 *   1 - MDI mode
    651	 *   2 - MDI-X mode
    652	 */
    653	switch (hw->phy.mdix) {
    654	case 1:
    655		break;
    656	case 2:
    657		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
    658		break;
    659	case 0:
    660	default:
    661		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
    662		break;
    663	}
    664	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
    665	if (ret_val)
    666		return ret_val;
    667
    668	return e1000_set_master_slave_mode(hw);
    669}
    670
    671/**
    672 *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
    673 *  @hw: pointer to the HW structure
    674 *
    675 *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
    676 *  and downshift values are set also.
    677 **/
    678s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
    679{
    680	struct e1000_phy_info *phy = &hw->phy;
    681	s32 ret_val;
    682	u16 phy_data;
    683
    684	/* Enable CRS on Tx. This must be set for half-duplex operation. */
    685	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
    686	if (ret_val)
    687		return ret_val;
    688
    689	/* For BM PHY this bit is downshift enable */
    690	if (phy->type != e1000_phy_bm)
    691		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
    692
    693	/* Options:
    694	 *   MDI/MDI-X = 0 (default)
    695	 *   0 - Auto for all speeds
    696	 *   1 - MDI mode
    697	 *   2 - MDI-X mode
    698	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
    699	 */
    700	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
    701
    702	switch (phy->mdix) {
    703	case 1:
    704		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
    705		break;
    706	case 2:
    707		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
    708		break;
    709	case 3:
    710		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
    711		break;
    712	case 0:
    713	default:
    714		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
    715		break;
    716	}
    717
    718	/* Options:
    719	 *   disable_polarity_correction = 0 (default)
    720	 *       Automatic Correction for Reversed Cable Polarity
    721	 *   0 - Disabled
    722	 *   1 - Enabled
    723	 */
    724	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
    725	if (phy->disable_polarity_correction)
    726		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
    727
    728	/* Enable downshift on BM (disabled by default) */
    729	if (phy->type == e1000_phy_bm) {
    730		/* For 82574/82583, first disable then enable downshift */
    731		if (phy->id == BME1000_E_PHY_ID_R2) {
    732			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
    733			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
    734					   phy_data);
    735			if (ret_val)
    736				return ret_val;
    737			/* Commit the changes. */
    738			ret_val = phy->ops.commit(hw);
    739			if (ret_val) {
    740				e_dbg("Error committing the PHY changes\n");
    741				return ret_val;
    742			}
    743		}
    744
    745		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
    746	}
    747
    748	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
    749	if (ret_val)
    750		return ret_val;
    751
    752	if ((phy->type == e1000_phy_m88) &&
    753	    (phy->revision < E1000_REVISION_4) &&
    754	    (phy->id != BME1000_E_PHY_ID_R2)) {
    755		/* Force TX_CLK in the Extended PHY Specific Control Register
    756		 * to 25MHz clock.
    757		 */
    758		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
    759		if (ret_val)
    760			return ret_val;
    761
    762		phy_data |= M88E1000_EPSCR_TX_CLK_25;
    763
    764		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
    765			/* 82573L PHY - set the downshift counter to 5x. */
    766			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
    767			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
    768		} else {
    769			/* Configure Master and Slave downshift values */
    770			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
    771				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
    772			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
    773				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
    774		}
    775		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
    776		if (ret_val)
    777			return ret_val;
    778	}
    779
    780	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
    781		/* Set PHY page 0, register 29 to 0x0003 */
    782		ret_val = e1e_wphy(hw, 29, 0x0003);
    783		if (ret_val)
    784			return ret_val;
    785
    786		/* Set PHY page 0, register 30 to 0x0000 */
    787		ret_val = e1e_wphy(hw, 30, 0x0000);
    788		if (ret_val)
    789			return ret_val;
    790	}
    791
    792	/* Commit the changes. */
    793	if (phy->ops.commit) {
    794		ret_val = phy->ops.commit(hw);
    795		if (ret_val) {
    796			e_dbg("Error committing the PHY changes\n");
    797			return ret_val;
    798		}
    799	}
    800
    801	if (phy->type == e1000_phy_82578) {
    802		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
    803		if (ret_val)
    804			return ret_val;
    805
    806		/* 82578 PHY - set the downshift count to 1x. */
    807		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
    808		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
    809		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
    810		if (ret_val)
    811			return ret_val;
    812	}
    813
    814	return 0;
    815}
    816
    817/**
    818 *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
    819 *  @hw: pointer to the HW structure
    820 *
    821 *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
    822 *  igp PHY's.
    823 **/
    824s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
    825{
    826	struct e1000_phy_info *phy = &hw->phy;
    827	s32 ret_val;
    828	u16 data;
    829
    830	ret_val = e1000_phy_hw_reset(hw);
    831	if (ret_val) {
    832		e_dbg("Error resetting the PHY.\n");
    833		return ret_val;
    834	}
    835
    836	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
    837	 * timeout issues when LFS is enabled.
    838	 */
    839	msleep(100);
    840
    841	/* disable lplu d0 during driver init */
    842	if (hw->phy.ops.set_d0_lplu_state) {
    843		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
    844		if (ret_val) {
    845			e_dbg("Error Disabling LPLU D0\n");
    846			return ret_val;
    847		}
    848	}
    849	/* Configure mdi-mdix settings */
    850	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
    851	if (ret_val)
    852		return ret_val;
    853
    854	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
    855
    856	switch (phy->mdix) {
    857	case 1:
    858		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
    859		break;
    860	case 2:
    861		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
    862		break;
    863	case 0:
    864	default:
    865		data |= IGP01E1000_PSCR_AUTO_MDIX;
    866		break;
    867	}
    868	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
    869	if (ret_val)
    870		return ret_val;
    871
    872	/* set auto-master slave resolution settings */
    873	if (hw->mac.autoneg) {
    874		/* when autonegotiation advertisement is only 1000Mbps then we
    875		 * should disable SmartSpeed and enable Auto MasterSlave
    876		 * resolution as hardware default.
    877		 */
    878		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
    879			/* Disable SmartSpeed */
    880			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
    881					   &data);
    882			if (ret_val)
    883				return ret_val;
    884
    885			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
    886			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
    887					   data);
    888			if (ret_val)
    889				return ret_val;
    890
    891			/* Set auto Master/Slave resolution process */
    892			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
    893			if (ret_val)
    894				return ret_val;
    895
    896			data &= ~CTL1000_ENABLE_MASTER;
    897			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
    898			if (ret_val)
    899				return ret_val;
    900		}
    901
    902		ret_val = e1000_set_master_slave_mode(hw);
    903	}
    904
    905	return ret_val;
    906}
    907
    908/**
    909 *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
    910 *  @hw: pointer to the HW structure
    911 *
    912 *  Reads the MII auto-neg advertisement register and/or the 1000T control
    913 *  register and if the PHY is already setup for auto-negotiation, then
    914 *  return successful.  Otherwise, setup advertisement and flow control to
    915 *  the appropriate values for the wanted auto-negotiation.
    916 **/
    917static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
    918{
    919	struct e1000_phy_info *phy = &hw->phy;
    920	s32 ret_val;
    921	u16 mii_autoneg_adv_reg;
    922	u16 mii_1000t_ctrl_reg = 0;
    923
    924	phy->autoneg_advertised &= phy->autoneg_mask;
    925
    926	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
    927	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
    928	if (ret_val)
    929		return ret_val;
    930
    931	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
    932		/* Read the MII 1000Base-T Control Register (Address 9). */
    933		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
    934		if (ret_val)
    935			return ret_val;
    936	}
    937
    938	/* Need to parse both autoneg_advertised and fc and set up
    939	 * the appropriate PHY registers.  First we will parse for
    940	 * autoneg_advertised software override.  Since we can advertise
    941	 * a plethora of combinations, we need to check each bit
    942	 * individually.
    943	 */
    944
    945	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
    946	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
    947	 * the  1000Base-T Control Register (Address 9).
    948	 */
    949	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
    950				 ADVERTISE_100HALF |
    951				 ADVERTISE_10FULL | ADVERTISE_10HALF);
    952	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
    953
    954	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
    955
    956	/* Do we want to advertise 10 Mb Half Duplex? */
    957	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
    958		e_dbg("Advertise 10mb Half duplex\n");
    959		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
    960	}
    961
    962	/* Do we want to advertise 10 Mb Full Duplex? */
    963	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
    964		e_dbg("Advertise 10mb Full duplex\n");
    965		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
    966	}
    967
    968	/* Do we want to advertise 100 Mb Half Duplex? */
    969	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
    970		e_dbg("Advertise 100mb Half duplex\n");
    971		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
    972	}
    973
    974	/* Do we want to advertise 100 Mb Full Duplex? */
    975	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
    976		e_dbg("Advertise 100mb Full duplex\n");
    977		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
    978	}
    979
    980	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
    981	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
    982		e_dbg("Advertise 1000mb Half duplex request denied!\n");
    983
    984	/* Do we want to advertise 1000 Mb Full Duplex? */
    985	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
    986		e_dbg("Advertise 1000mb Full duplex\n");
    987		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
    988	}
    989
    990	/* Check for a software override of the flow control settings, and
    991	 * setup the PHY advertisement registers accordingly.  If
    992	 * auto-negotiation is enabled, then software will have to set the
    993	 * "PAUSE" bits to the correct value in the Auto-Negotiation
    994	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
    995	 * negotiation.
    996	 *
    997	 * The possible values of the "fc" parameter are:
    998	 *      0:  Flow control is completely disabled
    999	 *      1:  Rx flow control is enabled (we can receive pause frames
   1000	 *          but not send pause frames).
   1001	 *      2:  Tx flow control is enabled (we can send pause frames
   1002	 *          but we do not support receiving pause frames).
   1003	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
   1004	 *  other:  No software override.  The flow control configuration
   1005	 *          in the EEPROM is used.
   1006	 */
   1007	switch (hw->fc.current_mode) {
   1008	case e1000_fc_none:
   1009		/* Flow control (Rx & Tx) is completely disabled by a
   1010		 * software over-ride.
   1011		 */
   1012		mii_autoneg_adv_reg &=
   1013		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
   1014		break;
   1015	case e1000_fc_rx_pause:
   1016		/* Rx Flow control is enabled, and Tx Flow control is
   1017		 * disabled, by a software over-ride.
   1018		 *
   1019		 * Since there really isn't a way to advertise that we are
   1020		 * capable of Rx Pause ONLY, we will advertise that we
   1021		 * support both symmetric and asymmetric Rx PAUSE.  Later
   1022		 * (in e1000e_config_fc_after_link_up) we will disable the
   1023		 * hw's ability to send PAUSE frames.
   1024		 */
   1025		mii_autoneg_adv_reg |=
   1026		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
   1027		break;
   1028	case e1000_fc_tx_pause:
   1029		/* Tx Flow control is enabled, and Rx Flow control is
   1030		 * disabled, by a software over-ride.
   1031		 */
   1032		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
   1033		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
   1034		break;
   1035	case e1000_fc_full:
   1036		/* Flow control (both Rx and Tx) is enabled by a software
   1037		 * over-ride.
   1038		 */
   1039		mii_autoneg_adv_reg |=
   1040		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
   1041		break;
   1042	default:
   1043		e_dbg("Flow control param set incorrectly\n");
   1044		return -E1000_ERR_CONFIG;
   1045	}
   1046
   1047	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
   1048	if (ret_val)
   1049		return ret_val;
   1050
   1051	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
   1052
   1053	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
   1054		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
   1055
   1056	return ret_val;
   1057}
   1058
   1059/**
   1060 *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
   1061 *  @hw: pointer to the HW structure
   1062 *
   1063 *  Performs initial bounds checking on autoneg advertisement parameter, then
   1064 *  configure to advertise the full capability.  Setup the PHY to autoneg
   1065 *  and restart the negotiation process between the link partner.  If
   1066 *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
   1067 **/
   1068static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
   1069{
   1070	struct e1000_phy_info *phy = &hw->phy;
   1071	s32 ret_val;
   1072	u16 phy_ctrl;
   1073
   1074	/* Perform some bounds checking on the autoneg advertisement
   1075	 * parameter.
   1076	 */
   1077	phy->autoneg_advertised &= phy->autoneg_mask;
   1078
   1079	/* If autoneg_advertised is zero, we assume it was not defaulted
   1080	 * by the calling code so we set to advertise full capability.
   1081	 */
   1082	if (!phy->autoneg_advertised)
   1083		phy->autoneg_advertised = phy->autoneg_mask;
   1084
   1085	e_dbg("Reconfiguring auto-neg advertisement params\n");
   1086	ret_val = e1000_phy_setup_autoneg(hw);
   1087	if (ret_val) {
   1088		e_dbg("Error Setting up Auto-Negotiation\n");
   1089		return ret_val;
   1090	}
   1091	e_dbg("Restarting Auto-Neg\n");
   1092
   1093	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
   1094	 * the Auto Neg Restart bit in the PHY control register.
   1095	 */
   1096	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
   1097	if (ret_val)
   1098		return ret_val;
   1099
   1100	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
   1101	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
   1102	if (ret_val)
   1103		return ret_val;
   1104
   1105	/* Does the user want to wait for Auto-Neg to complete here, or
   1106	 * check at a later time (for example, callback routine).
   1107	 */
   1108	if (phy->autoneg_wait_to_complete) {
   1109		ret_val = e1000_wait_autoneg(hw);
   1110		if (ret_val) {
   1111			e_dbg("Error while waiting for autoneg to complete\n");
   1112			return ret_val;
   1113		}
   1114	}
   1115
   1116	hw->mac.get_link_status = true;
   1117
   1118	return ret_val;
   1119}
   1120
   1121/**
   1122 *  e1000e_setup_copper_link - Configure copper link settings
   1123 *  @hw: pointer to the HW structure
   1124 *
   1125 *  Calls the appropriate function to configure the link for auto-neg or forced
   1126 *  speed and duplex.  Then we check for link, once link is established calls
   1127 *  to configure collision distance and flow control are called.  If link is
   1128 *  not established, we return -E1000_ERR_PHY (-2).
   1129 **/
   1130s32 e1000e_setup_copper_link(struct e1000_hw *hw)
   1131{
   1132	s32 ret_val;
   1133	bool link;
   1134
   1135	if (hw->mac.autoneg) {
   1136		/* Setup autoneg and flow control advertisement and perform
   1137		 * autonegotiation.
   1138		 */
   1139		ret_val = e1000_copper_link_autoneg(hw);
   1140		if (ret_val)
   1141			return ret_val;
   1142	} else {
   1143		/* PHY will be set to 10H, 10F, 100H or 100F
   1144		 * depending on user settings.
   1145		 */
   1146		e_dbg("Forcing Speed and Duplex\n");
   1147		ret_val = hw->phy.ops.force_speed_duplex(hw);
   1148		if (ret_val) {
   1149			e_dbg("Error Forcing Speed and Duplex\n");
   1150			return ret_val;
   1151		}
   1152	}
   1153
   1154	/* Check link status. Wait up to 100 microseconds for link to become
   1155	 * valid.
   1156	 */
   1157	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
   1158					      &link);
   1159	if (ret_val)
   1160		return ret_val;
   1161
   1162	if (link) {
   1163		e_dbg("Valid link established!!!\n");
   1164		hw->mac.ops.config_collision_dist(hw);
   1165		ret_val = e1000e_config_fc_after_link_up(hw);
   1166	} else {
   1167		e_dbg("Unable to establish link!!!\n");
   1168	}
   1169
   1170	return ret_val;
   1171}
   1172
   1173/**
   1174 *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
   1175 *  @hw: pointer to the HW structure
   1176 *
   1177 *  Calls the PHY setup function to force speed and duplex.  Clears the
   1178 *  auto-crossover to force MDI manually.  Waits for link and returns
   1179 *  successful if link up is successful, else -E1000_ERR_PHY (-2).
   1180 **/
   1181s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
   1182{
   1183	struct e1000_phy_info *phy = &hw->phy;
   1184	s32 ret_val;
   1185	u16 phy_data;
   1186	bool link;
   1187
   1188	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
   1189	if (ret_val)
   1190		return ret_val;
   1191
   1192	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
   1193
   1194	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
   1195	if (ret_val)
   1196		return ret_val;
   1197
   1198	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
   1199	 * forced whenever speed and duplex are forced.
   1200	 */
   1201	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
   1202	if (ret_val)
   1203		return ret_val;
   1204
   1205	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
   1206	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
   1207
   1208	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
   1209	if (ret_val)
   1210		return ret_val;
   1211
   1212	e_dbg("IGP PSCR: %X\n", phy_data);
   1213
   1214	udelay(1);
   1215
   1216	if (phy->autoneg_wait_to_complete) {
   1217		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
   1218
   1219		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   1220						      100000, &link);
   1221		if (ret_val)
   1222			return ret_val;
   1223
   1224		if (!link)
   1225			e_dbg("Link taking longer than expected.\n");
   1226
   1227		/* Try once more */
   1228		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   1229						      100000, &link);
   1230	}
   1231
   1232	return ret_val;
   1233}
   1234
   1235/**
   1236 *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
   1237 *  @hw: pointer to the HW structure
   1238 *
   1239 *  Calls the PHY setup function to force speed and duplex.  Clears the
   1240 *  auto-crossover to force MDI manually.  Resets the PHY to commit the
   1241 *  changes.  If time expires while waiting for link up, we reset the DSP.
   1242 *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
   1243 *  successful completion, else return corresponding error code.
   1244 **/
   1245s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
   1246{
   1247	struct e1000_phy_info *phy = &hw->phy;
   1248	s32 ret_val;
   1249	u16 phy_data;
   1250	bool link;
   1251
   1252	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
   1253	 * forced whenever speed and duplex are forced.
   1254	 */
   1255	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
   1256	if (ret_val)
   1257		return ret_val;
   1258
   1259	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
   1260	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
   1261	if (ret_val)
   1262		return ret_val;
   1263
   1264	e_dbg("M88E1000 PSCR: %X\n", phy_data);
   1265
   1266	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
   1267	if (ret_val)
   1268		return ret_val;
   1269
   1270	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
   1271
   1272	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
   1273	if (ret_val)
   1274		return ret_val;
   1275
   1276	/* Reset the phy to commit changes. */
   1277	if (hw->phy.ops.commit) {
   1278		ret_val = hw->phy.ops.commit(hw);
   1279		if (ret_val)
   1280			return ret_val;
   1281	}
   1282
   1283	if (phy->autoneg_wait_to_complete) {
   1284		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
   1285
   1286		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   1287						      100000, &link);
   1288		if (ret_val)
   1289			return ret_val;
   1290
   1291		if (!link) {
   1292			if (hw->phy.type != e1000_phy_m88) {
   1293				e_dbg("Link taking longer than expected.\n");
   1294			} else {
   1295				/* We didn't get link.
   1296				 * Reset the DSP and cross our fingers.
   1297				 */
   1298				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
   1299						   0x001d);
   1300				if (ret_val)
   1301					return ret_val;
   1302				ret_val = e1000e_phy_reset_dsp(hw);
   1303				if (ret_val)
   1304					return ret_val;
   1305			}
   1306		}
   1307
   1308		/* Try once more */
   1309		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   1310						      100000, &link);
   1311		if (ret_val)
   1312			return ret_val;
   1313	}
   1314
   1315	if (hw->phy.type != e1000_phy_m88)
   1316		return 0;
   1317
   1318	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
   1319	if (ret_val)
   1320		return ret_val;
   1321
   1322	/* Resetting the phy means we need to re-force TX_CLK in the
   1323	 * Extended PHY Specific Control Register to 25MHz clock from
   1324	 * the reset value of 2.5MHz.
   1325	 */
   1326	phy_data |= M88E1000_EPSCR_TX_CLK_25;
   1327	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
   1328	if (ret_val)
   1329		return ret_val;
   1330
   1331	/* In addition, we must re-enable CRS on Tx for both half and full
   1332	 * duplex.
   1333	 */
   1334	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
   1335	if (ret_val)
   1336		return ret_val;
   1337
   1338	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
   1339	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
   1340
   1341	return ret_val;
   1342}
   1343
   1344/**
   1345 *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
   1346 *  @hw: pointer to the HW structure
   1347 *
   1348 *  Forces the speed and duplex settings of the PHY.
   1349 *  This is a function pointer entry point only called by
   1350 *  PHY setup routines.
   1351 **/
   1352s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
   1353{
   1354	struct e1000_phy_info *phy = &hw->phy;
   1355	s32 ret_val;
   1356	u16 data;
   1357	bool link;
   1358
   1359	ret_val = e1e_rphy(hw, MII_BMCR, &data);
   1360	if (ret_val)
   1361		return ret_val;
   1362
   1363	e1000e_phy_force_speed_duplex_setup(hw, &data);
   1364
   1365	ret_val = e1e_wphy(hw, MII_BMCR, data);
   1366	if (ret_val)
   1367		return ret_val;
   1368
   1369	/* Disable MDI-X support for 10/100 */
   1370	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
   1371	if (ret_val)
   1372		return ret_val;
   1373
   1374	data &= ~IFE_PMC_AUTO_MDIX;
   1375	data &= ~IFE_PMC_FORCE_MDIX;
   1376
   1377	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
   1378	if (ret_val)
   1379		return ret_val;
   1380
   1381	e_dbg("IFE PMC: %X\n", data);
   1382
   1383	udelay(1);
   1384
   1385	if (phy->autoneg_wait_to_complete) {
   1386		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
   1387
   1388		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   1389						      100000, &link);
   1390		if (ret_val)
   1391			return ret_val;
   1392
   1393		if (!link)
   1394			e_dbg("Link taking longer than expected.\n");
   1395
   1396		/* Try once more */
   1397		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   1398						      100000, &link);
   1399		if (ret_val)
   1400			return ret_val;
   1401	}
   1402
   1403	return 0;
   1404}
   1405
   1406/**
   1407 *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
   1408 *  @hw: pointer to the HW structure
   1409 *  @phy_ctrl: pointer to current value of MII_BMCR
   1410 *
   1411 *  Forces speed and duplex on the PHY by doing the following: disable flow
   1412 *  control, force speed/duplex on the MAC, disable auto speed detection,
   1413 *  disable auto-negotiation, configure duplex, configure speed, configure
   1414 *  the collision distance, write configuration to CTRL register.  The
   1415 *  caller must write to the MII_BMCR register for these settings to
   1416 *  take affect.
   1417 **/
   1418void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
   1419{
   1420	struct e1000_mac_info *mac = &hw->mac;
   1421	u32 ctrl;
   1422
   1423	/* Turn off flow control when forcing speed/duplex */
   1424	hw->fc.current_mode = e1000_fc_none;
   1425
   1426	/* Force speed/duplex on the mac */
   1427	ctrl = er32(CTRL);
   1428	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
   1429	ctrl &= ~E1000_CTRL_SPD_SEL;
   1430
   1431	/* Disable Auto Speed Detection */
   1432	ctrl &= ~E1000_CTRL_ASDE;
   1433
   1434	/* Disable autoneg on the phy */
   1435	*phy_ctrl &= ~BMCR_ANENABLE;
   1436
   1437	/* Forcing Full or Half Duplex? */
   1438	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
   1439		ctrl &= ~E1000_CTRL_FD;
   1440		*phy_ctrl &= ~BMCR_FULLDPLX;
   1441		e_dbg("Half Duplex\n");
   1442	} else {
   1443		ctrl |= E1000_CTRL_FD;
   1444		*phy_ctrl |= BMCR_FULLDPLX;
   1445		e_dbg("Full Duplex\n");
   1446	}
   1447
   1448	/* Forcing 10mb or 100mb? */
   1449	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
   1450		ctrl |= E1000_CTRL_SPD_100;
   1451		*phy_ctrl |= BMCR_SPEED100;
   1452		*phy_ctrl &= ~BMCR_SPEED1000;
   1453		e_dbg("Forcing 100mb\n");
   1454	} else {
   1455		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
   1456		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
   1457		e_dbg("Forcing 10mb\n");
   1458	}
   1459
   1460	hw->mac.ops.config_collision_dist(hw);
   1461
   1462	ew32(CTRL, ctrl);
   1463}
   1464
   1465/**
   1466 *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
   1467 *  @hw: pointer to the HW structure
   1468 *  @active: boolean used to enable/disable lplu
   1469 *
   1470 *  Success returns 0, Failure returns 1
   1471 *
   1472 *  The low power link up (lplu) state is set to the power management level D3
   1473 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
   1474 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
   1475 *  is used during Dx states where the power conservation is most important.
   1476 *  During driver activity, SmartSpeed should be enabled so performance is
   1477 *  maintained.
   1478 **/
   1479s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
   1480{
   1481	struct e1000_phy_info *phy = &hw->phy;
   1482	s32 ret_val;
   1483	u16 data;
   1484
   1485	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
   1486	if (ret_val)
   1487		return ret_val;
   1488
   1489	if (!active) {
   1490		data &= ~IGP02E1000_PM_D3_LPLU;
   1491		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
   1492		if (ret_val)
   1493			return ret_val;
   1494		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
   1495		 * during Dx states where the power conservation is most
   1496		 * important.  During driver activity we should enable
   1497		 * SmartSpeed, so performance is maintained.
   1498		 */
   1499		if (phy->smart_speed == e1000_smart_speed_on) {
   1500			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
   1501					   &data);
   1502			if (ret_val)
   1503				return ret_val;
   1504
   1505			data |= IGP01E1000_PSCFR_SMART_SPEED;
   1506			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
   1507					   data);
   1508			if (ret_val)
   1509				return ret_val;
   1510		} else if (phy->smart_speed == e1000_smart_speed_off) {
   1511			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
   1512					   &data);
   1513			if (ret_val)
   1514				return ret_val;
   1515
   1516			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
   1517			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
   1518					   data);
   1519			if (ret_val)
   1520				return ret_val;
   1521		}
   1522	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
   1523		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
   1524		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
   1525		data |= IGP02E1000_PM_D3_LPLU;
   1526		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
   1527		if (ret_val)
   1528			return ret_val;
   1529
   1530		/* When LPLU is enabled, we should disable SmartSpeed */
   1531		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
   1532		if (ret_val)
   1533			return ret_val;
   1534
   1535		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
   1536		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
   1537	}
   1538
   1539	return ret_val;
   1540}
   1541
   1542/**
   1543 *  e1000e_check_downshift - Checks whether a downshift in speed occurred
   1544 *  @hw: pointer to the HW structure
   1545 *
   1546 *  Success returns 0, Failure returns 1
   1547 *
   1548 *  A downshift is detected by querying the PHY link health.
   1549 **/
   1550s32 e1000e_check_downshift(struct e1000_hw *hw)
   1551{
   1552	struct e1000_phy_info *phy = &hw->phy;
   1553	s32 ret_val;
   1554	u16 phy_data, offset, mask;
   1555
   1556	switch (phy->type) {
   1557	case e1000_phy_m88:
   1558	case e1000_phy_gg82563:
   1559	case e1000_phy_bm:
   1560	case e1000_phy_82578:
   1561		offset = M88E1000_PHY_SPEC_STATUS;
   1562		mask = M88E1000_PSSR_DOWNSHIFT;
   1563		break;
   1564	case e1000_phy_igp_2:
   1565	case e1000_phy_igp_3:
   1566		offset = IGP01E1000_PHY_LINK_HEALTH;
   1567		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
   1568		break;
   1569	default:
   1570		/* speed downshift not supported */
   1571		phy->speed_downgraded = false;
   1572		return 0;
   1573	}
   1574
   1575	ret_val = e1e_rphy(hw, offset, &phy_data);
   1576
   1577	if (!ret_val)
   1578		phy->speed_downgraded = !!(phy_data & mask);
   1579
   1580	return ret_val;
   1581}
   1582
   1583/**
   1584 *  e1000_check_polarity_m88 - Checks the polarity.
   1585 *  @hw: pointer to the HW structure
   1586 *
   1587 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
   1588 *
   1589 *  Polarity is determined based on the PHY specific status register.
   1590 **/
   1591s32 e1000_check_polarity_m88(struct e1000_hw *hw)
   1592{
   1593	struct e1000_phy_info *phy = &hw->phy;
   1594	s32 ret_val;
   1595	u16 data;
   1596
   1597	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
   1598
   1599	if (!ret_val)
   1600		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
   1601				       ? e1000_rev_polarity_reversed
   1602				       : e1000_rev_polarity_normal);
   1603
   1604	return ret_val;
   1605}
   1606
   1607/**
   1608 *  e1000_check_polarity_igp - Checks the polarity.
   1609 *  @hw: pointer to the HW structure
   1610 *
   1611 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
   1612 *
   1613 *  Polarity is determined based on the PHY port status register, and the
   1614 *  current speed (since there is no polarity at 100Mbps).
   1615 **/
   1616s32 e1000_check_polarity_igp(struct e1000_hw *hw)
   1617{
   1618	struct e1000_phy_info *phy = &hw->phy;
   1619	s32 ret_val;
   1620	u16 data, offset, mask;
   1621
   1622	/* Polarity is determined based on the speed of
   1623	 * our connection.
   1624	 */
   1625	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
   1626	if (ret_val)
   1627		return ret_val;
   1628
   1629	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
   1630	    IGP01E1000_PSSR_SPEED_1000MBPS) {
   1631		offset = IGP01E1000_PHY_PCS_INIT_REG;
   1632		mask = IGP01E1000_PHY_POLARITY_MASK;
   1633	} else {
   1634		/* This really only applies to 10Mbps since
   1635		 * there is no polarity for 100Mbps (always 0).
   1636		 */
   1637		offset = IGP01E1000_PHY_PORT_STATUS;
   1638		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
   1639	}
   1640
   1641	ret_val = e1e_rphy(hw, offset, &data);
   1642
   1643	if (!ret_val)
   1644		phy->cable_polarity = ((data & mask)
   1645				       ? e1000_rev_polarity_reversed
   1646				       : e1000_rev_polarity_normal);
   1647
   1648	return ret_val;
   1649}
   1650
   1651/**
   1652 *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
   1653 *  @hw: pointer to the HW structure
   1654 *
   1655 *  Polarity is determined on the polarity reversal feature being enabled.
   1656 **/
   1657s32 e1000_check_polarity_ife(struct e1000_hw *hw)
   1658{
   1659	struct e1000_phy_info *phy = &hw->phy;
   1660	s32 ret_val;
   1661	u16 phy_data, offset, mask;
   1662
   1663	/* Polarity is determined based on the reversal feature being enabled.
   1664	 */
   1665	if (phy->polarity_correction) {
   1666		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
   1667		mask = IFE_PESC_POLARITY_REVERSED;
   1668	} else {
   1669		offset = IFE_PHY_SPECIAL_CONTROL;
   1670		mask = IFE_PSC_FORCE_POLARITY;
   1671	}
   1672
   1673	ret_val = e1e_rphy(hw, offset, &phy_data);
   1674
   1675	if (!ret_val)
   1676		phy->cable_polarity = ((phy_data & mask)
   1677				       ? e1000_rev_polarity_reversed
   1678				       : e1000_rev_polarity_normal);
   1679
   1680	return ret_val;
   1681}
   1682
   1683/**
   1684 *  e1000_wait_autoneg - Wait for auto-neg completion
   1685 *  @hw: pointer to the HW structure
   1686 *
   1687 *  Waits for auto-negotiation to complete or for the auto-negotiation time
   1688 *  limit to expire, which ever happens first.
   1689 **/
   1690static s32 e1000_wait_autoneg(struct e1000_hw *hw)
   1691{
   1692	s32 ret_val = 0;
   1693	u16 i, phy_status;
   1694
   1695	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
   1696	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
   1697		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
   1698		if (ret_val)
   1699			break;
   1700		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
   1701		if (ret_val)
   1702			break;
   1703		if (phy_status & BMSR_ANEGCOMPLETE)
   1704			break;
   1705		msleep(100);
   1706	}
   1707
   1708	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
   1709	 * has completed.
   1710	 */
   1711	return ret_val;
   1712}
   1713
   1714/**
   1715 *  e1000e_phy_has_link_generic - Polls PHY for link
   1716 *  @hw: pointer to the HW structure
   1717 *  @iterations: number of times to poll for link
   1718 *  @usec_interval: delay between polling attempts
   1719 *  @success: pointer to whether polling was successful or not
   1720 *
   1721 *  Polls the PHY status register for link, 'iterations' number of times.
   1722 **/
   1723s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
   1724				u32 usec_interval, bool *success)
   1725{
   1726	s32 ret_val = 0;
   1727	u16 i, phy_status;
   1728
   1729	*success = false;
   1730	for (i = 0; i < iterations; i++) {
   1731		/* Some PHYs require the MII_BMSR register to be read
   1732		 * twice due to the link bit being sticky.  No harm doing
   1733		 * it across the board.
   1734		 */
   1735		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
   1736		if (ret_val) {
   1737			/* If the first read fails, another entity may have
   1738			 * ownership of the resources, wait and try again to
   1739			 * see if they have relinquished the resources yet.
   1740			 */
   1741			if (usec_interval >= 1000)
   1742				msleep(usec_interval / 1000);
   1743			else
   1744				udelay(usec_interval);
   1745		}
   1746		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
   1747		if (ret_val)
   1748			break;
   1749		if (phy_status & BMSR_LSTATUS) {
   1750			*success = true;
   1751			break;
   1752		}
   1753		if (usec_interval >= 1000)
   1754			msleep(usec_interval / 1000);
   1755		else
   1756			udelay(usec_interval);
   1757	}
   1758
   1759	return ret_val;
   1760}
   1761
   1762/**
   1763 *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
   1764 *  @hw: pointer to the HW structure
   1765 *
   1766 *  Reads the PHY specific status register to retrieve the cable length
   1767 *  information.  The cable length is determined by averaging the minimum and
   1768 *  maximum values to get the "average" cable length.  The m88 PHY has four
   1769 *  possible cable length values, which are:
   1770 *	Register Value		Cable Length
   1771 *	0			< 50 meters
   1772 *	1			50 - 80 meters
   1773 *	2			80 - 110 meters
   1774 *	3			110 - 140 meters
   1775 *	4			> 140 meters
   1776 **/
   1777s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
   1778{
   1779	struct e1000_phy_info *phy = &hw->phy;
   1780	s32 ret_val;
   1781	u16 phy_data, index;
   1782
   1783	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
   1784	if (ret_val)
   1785		return ret_val;
   1786
   1787	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
   1788		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
   1789
   1790	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
   1791		return -E1000_ERR_PHY;
   1792
   1793	phy->min_cable_length = e1000_m88_cable_length_table[index];
   1794	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
   1795
   1796	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
   1797
   1798	return 0;
   1799}
   1800
   1801/**
   1802 *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
   1803 *  @hw: pointer to the HW structure
   1804 *
   1805 *  The automatic gain control (agc) normalizes the amplitude of the
   1806 *  received signal, adjusting for the attenuation produced by the
   1807 *  cable.  By reading the AGC registers, which represent the
   1808 *  combination of coarse and fine gain value, the value can be put
   1809 *  into a lookup table to obtain the approximate cable length
   1810 *  for each channel.
   1811 **/
   1812s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
   1813{
   1814	struct e1000_phy_info *phy = &hw->phy;
   1815	s32 ret_val;
   1816	u16 phy_data, i, agc_value = 0;
   1817	u16 cur_agc_index, max_agc_index = 0;
   1818	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
   1819	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
   1820		IGP02E1000_PHY_AGC_A,
   1821		IGP02E1000_PHY_AGC_B,
   1822		IGP02E1000_PHY_AGC_C,
   1823		IGP02E1000_PHY_AGC_D
   1824	};
   1825
   1826	/* Read the AGC registers for all channels */
   1827	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
   1828		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
   1829		if (ret_val)
   1830			return ret_val;
   1831
   1832		/* Getting bits 15:9, which represent the combination of
   1833		 * coarse and fine gain values.  The result is a number
   1834		 * that can be put into the lookup table to obtain the
   1835		 * approximate cable length.
   1836		 */
   1837		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
   1838				 IGP02E1000_AGC_LENGTH_MASK);
   1839
   1840		/* Array index bound check. */
   1841		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
   1842		    (cur_agc_index == 0))
   1843			return -E1000_ERR_PHY;
   1844
   1845		/* Remove min & max AGC values from calculation. */
   1846		if (e1000_igp_2_cable_length_table[min_agc_index] >
   1847		    e1000_igp_2_cable_length_table[cur_agc_index])
   1848			min_agc_index = cur_agc_index;
   1849		if (e1000_igp_2_cable_length_table[max_agc_index] <
   1850		    e1000_igp_2_cable_length_table[cur_agc_index])
   1851			max_agc_index = cur_agc_index;
   1852
   1853		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
   1854	}
   1855
   1856	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
   1857		      e1000_igp_2_cable_length_table[max_agc_index]);
   1858	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
   1859
   1860	/* Calculate cable length with the error range of +/- 10 meters. */
   1861	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
   1862				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
   1863	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
   1864
   1865	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
   1866
   1867	return 0;
   1868}
   1869
   1870/**
   1871 *  e1000e_get_phy_info_m88 - Retrieve PHY information
   1872 *  @hw: pointer to the HW structure
   1873 *
   1874 *  Valid for only copper links.  Read the PHY status register (sticky read)
   1875 *  to verify that link is up.  Read the PHY special control register to
   1876 *  determine the polarity and 10base-T extended distance.  Read the PHY
   1877 *  special status register to determine MDI/MDIx and current speed.  If
   1878 *  speed is 1000, then determine cable length, local and remote receiver.
   1879 **/
   1880s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
   1881{
   1882	struct e1000_phy_info *phy = &hw->phy;
   1883	s32 ret_val;
   1884	u16 phy_data;
   1885	bool link;
   1886
   1887	if (phy->media_type != e1000_media_type_copper) {
   1888		e_dbg("Phy info is only valid for copper media\n");
   1889		return -E1000_ERR_CONFIG;
   1890	}
   1891
   1892	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
   1893	if (ret_val)
   1894		return ret_val;
   1895
   1896	if (!link) {
   1897		e_dbg("Phy info is only valid if link is up\n");
   1898		return -E1000_ERR_CONFIG;
   1899	}
   1900
   1901	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
   1902	if (ret_val)
   1903		return ret_val;
   1904
   1905	phy->polarity_correction = !!(phy_data &
   1906				      M88E1000_PSCR_POLARITY_REVERSAL);
   1907
   1908	ret_val = e1000_check_polarity_m88(hw);
   1909	if (ret_val)
   1910		return ret_val;
   1911
   1912	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
   1913	if (ret_val)
   1914		return ret_val;
   1915
   1916	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
   1917
   1918	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
   1919		ret_val = hw->phy.ops.get_cable_length(hw);
   1920		if (ret_val)
   1921			return ret_val;
   1922
   1923		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
   1924		if (ret_val)
   1925			return ret_val;
   1926
   1927		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
   1928		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
   1929
   1930		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
   1931		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
   1932	} else {
   1933		/* Set values to "undefined" */
   1934		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
   1935		phy->local_rx = e1000_1000t_rx_status_undefined;
   1936		phy->remote_rx = e1000_1000t_rx_status_undefined;
   1937	}
   1938
   1939	return ret_val;
   1940}
   1941
   1942/**
   1943 *  e1000e_get_phy_info_igp - Retrieve igp PHY information
   1944 *  @hw: pointer to the HW structure
   1945 *
   1946 *  Read PHY status to determine if link is up.  If link is up, then
   1947 *  set/determine 10base-T extended distance and polarity correction.  Read
   1948 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
   1949 *  determine on the cable length, local and remote receiver.
   1950 **/
   1951s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
   1952{
   1953	struct e1000_phy_info *phy = &hw->phy;
   1954	s32 ret_val;
   1955	u16 data;
   1956	bool link;
   1957
   1958	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
   1959	if (ret_val)
   1960		return ret_val;
   1961
   1962	if (!link) {
   1963		e_dbg("Phy info is only valid if link is up\n");
   1964		return -E1000_ERR_CONFIG;
   1965	}
   1966
   1967	phy->polarity_correction = true;
   1968
   1969	ret_val = e1000_check_polarity_igp(hw);
   1970	if (ret_val)
   1971		return ret_val;
   1972
   1973	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
   1974	if (ret_val)
   1975		return ret_val;
   1976
   1977	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
   1978
   1979	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
   1980	    IGP01E1000_PSSR_SPEED_1000MBPS) {
   1981		ret_val = phy->ops.get_cable_length(hw);
   1982		if (ret_val)
   1983			return ret_val;
   1984
   1985		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
   1986		if (ret_val)
   1987			return ret_val;
   1988
   1989		phy->local_rx = (data & LPA_1000LOCALRXOK)
   1990		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
   1991
   1992		phy->remote_rx = (data & LPA_1000REMRXOK)
   1993		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
   1994	} else {
   1995		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
   1996		phy->local_rx = e1000_1000t_rx_status_undefined;
   1997		phy->remote_rx = e1000_1000t_rx_status_undefined;
   1998	}
   1999
   2000	return ret_val;
   2001}
   2002
   2003/**
   2004 *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
   2005 *  @hw: pointer to the HW structure
   2006 *
   2007 *  Populates "phy" structure with various feature states.
   2008 **/
   2009s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
   2010{
   2011	struct e1000_phy_info *phy = &hw->phy;
   2012	s32 ret_val;
   2013	u16 data;
   2014	bool link;
   2015
   2016	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
   2017	if (ret_val)
   2018		return ret_val;
   2019
   2020	if (!link) {
   2021		e_dbg("Phy info is only valid if link is up\n");
   2022		return -E1000_ERR_CONFIG;
   2023	}
   2024
   2025	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
   2026	if (ret_val)
   2027		return ret_val;
   2028	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
   2029
   2030	if (phy->polarity_correction) {
   2031		ret_val = e1000_check_polarity_ife(hw);
   2032		if (ret_val)
   2033			return ret_val;
   2034	} else {
   2035		/* Polarity is forced */
   2036		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
   2037				       ? e1000_rev_polarity_reversed
   2038				       : e1000_rev_polarity_normal);
   2039	}
   2040
   2041	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
   2042	if (ret_val)
   2043		return ret_val;
   2044
   2045	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
   2046
   2047	/* The following parameters are undefined for 10/100 operation. */
   2048	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
   2049	phy->local_rx = e1000_1000t_rx_status_undefined;
   2050	phy->remote_rx = e1000_1000t_rx_status_undefined;
   2051
   2052	return 0;
   2053}
   2054
   2055/**
   2056 *  e1000e_phy_sw_reset - PHY software reset
   2057 *  @hw: pointer to the HW structure
   2058 *
   2059 *  Does a software reset of the PHY by reading the PHY control register and
   2060 *  setting/write the control register reset bit to the PHY.
   2061 **/
   2062s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
   2063{
   2064	s32 ret_val;
   2065	u16 phy_ctrl;
   2066
   2067	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
   2068	if (ret_val)
   2069		return ret_val;
   2070
   2071	phy_ctrl |= BMCR_RESET;
   2072	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
   2073	if (ret_val)
   2074		return ret_val;
   2075
   2076	udelay(1);
   2077
   2078	return ret_val;
   2079}
   2080
   2081/**
   2082 *  e1000e_phy_hw_reset_generic - PHY hardware reset
   2083 *  @hw: pointer to the HW structure
   2084 *
   2085 *  Verify the reset block is not blocking us from resetting.  Acquire
   2086 *  semaphore (if necessary) and read/set/write the device control reset
   2087 *  bit in the PHY.  Wait the appropriate delay time for the device to
   2088 *  reset and release the semaphore (if necessary).
   2089 **/
   2090s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
   2091{
   2092	struct e1000_phy_info *phy = &hw->phy;
   2093	s32 ret_val;
   2094	u32 ctrl;
   2095
   2096	if (phy->ops.check_reset_block) {
   2097		ret_val = phy->ops.check_reset_block(hw);
   2098		if (ret_val)
   2099			return 0;
   2100	}
   2101
   2102	ret_val = phy->ops.acquire(hw);
   2103	if (ret_val)
   2104		return ret_val;
   2105
   2106	ctrl = er32(CTRL);
   2107	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
   2108	e1e_flush();
   2109
   2110	udelay(phy->reset_delay_us);
   2111
   2112	ew32(CTRL, ctrl);
   2113	e1e_flush();
   2114
   2115	usleep_range(150, 300);
   2116
   2117	phy->ops.release(hw);
   2118
   2119	return phy->ops.get_cfg_done(hw);
   2120}
   2121
   2122/**
   2123 *  e1000e_get_cfg_done_generic - Generic configuration done
   2124 *  @hw: pointer to the HW structure
   2125 *
   2126 *  Generic function to wait 10 milli-seconds for configuration to complete
   2127 *  and return success.
   2128 **/
   2129s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
   2130{
   2131	mdelay(10);
   2132
   2133	return 0;
   2134}
   2135
   2136/**
   2137 *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
   2138 *  @hw: pointer to the HW structure
   2139 *
   2140 *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
   2141 **/
   2142s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
   2143{
   2144	e_dbg("Running IGP 3 PHY init script\n");
   2145
   2146	/* PHY init IGP 3 */
   2147	/* Enable rise/fall, 10-mode work in class-A */
   2148	e1e_wphy(hw, 0x2F5B, 0x9018);
   2149	/* Remove all caps from Replica path filter */
   2150	e1e_wphy(hw, 0x2F52, 0x0000);
   2151	/* Bias trimming for ADC, AFE and Driver (Default) */
   2152	e1e_wphy(hw, 0x2FB1, 0x8B24);
   2153	/* Increase Hybrid poly bias */
   2154	e1e_wphy(hw, 0x2FB2, 0xF8F0);
   2155	/* Add 4% to Tx amplitude in Gig mode */
   2156	e1e_wphy(hw, 0x2010, 0x10B0);
   2157	/* Disable trimming (TTT) */
   2158	e1e_wphy(hw, 0x2011, 0x0000);
   2159	/* Poly DC correction to 94.6% + 2% for all channels */
   2160	e1e_wphy(hw, 0x20DD, 0x249A);
   2161	/* ABS DC correction to 95.9% */
   2162	e1e_wphy(hw, 0x20DE, 0x00D3);
   2163	/* BG temp curve trim */
   2164	e1e_wphy(hw, 0x28B4, 0x04CE);
   2165	/* Increasing ADC OPAMP stage 1 currents to max */
   2166	e1e_wphy(hw, 0x2F70, 0x29E4);
   2167	/* Force 1000 ( required for enabling PHY regs configuration) */
   2168	e1e_wphy(hw, 0x0000, 0x0140);
   2169	/* Set upd_freq to 6 */
   2170	e1e_wphy(hw, 0x1F30, 0x1606);
   2171	/* Disable NPDFE */
   2172	e1e_wphy(hw, 0x1F31, 0xB814);
   2173	/* Disable adaptive fixed FFE (Default) */
   2174	e1e_wphy(hw, 0x1F35, 0x002A);
   2175	/* Enable FFE hysteresis */
   2176	e1e_wphy(hw, 0x1F3E, 0x0067);
   2177	/* Fixed FFE for short cable lengths */
   2178	e1e_wphy(hw, 0x1F54, 0x0065);
   2179	/* Fixed FFE for medium cable lengths */
   2180	e1e_wphy(hw, 0x1F55, 0x002A);
   2181	/* Fixed FFE for long cable lengths */
   2182	e1e_wphy(hw, 0x1F56, 0x002A);
   2183	/* Enable Adaptive Clip Threshold */
   2184	e1e_wphy(hw, 0x1F72, 0x3FB0);
   2185	/* AHT reset limit to 1 */
   2186	e1e_wphy(hw, 0x1F76, 0xC0FF);
   2187	/* Set AHT master delay to 127 msec */
   2188	e1e_wphy(hw, 0x1F77, 0x1DEC);
   2189	/* Set scan bits for AHT */
   2190	e1e_wphy(hw, 0x1F78, 0xF9EF);
   2191	/* Set AHT Preset bits */
   2192	e1e_wphy(hw, 0x1F79, 0x0210);
   2193	/* Change integ_factor of channel A to 3 */
   2194	e1e_wphy(hw, 0x1895, 0x0003);
   2195	/* Change prop_factor of channels BCD to 8 */
   2196	e1e_wphy(hw, 0x1796, 0x0008);
   2197	/* Change cg_icount + enable integbp for channels BCD */
   2198	e1e_wphy(hw, 0x1798, 0xD008);
   2199	/* Change cg_icount + enable integbp + change prop_factor_master
   2200	 * to 8 for channel A
   2201	 */
   2202	e1e_wphy(hw, 0x1898, 0xD918);
   2203	/* Disable AHT in Slave mode on channel A */
   2204	e1e_wphy(hw, 0x187A, 0x0800);
   2205	/* Enable LPLU and disable AN to 1000 in non-D0a states,
   2206	 * Enable SPD+B2B
   2207	 */
   2208	e1e_wphy(hw, 0x0019, 0x008D);
   2209	/* Enable restart AN on an1000_dis change */
   2210	e1e_wphy(hw, 0x001B, 0x2080);
   2211	/* Enable wh_fifo read clock in 10/100 modes */
   2212	e1e_wphy(hw, 0x0014, 0x0045);
   2213	/* Restart AN, Speed selection is 1000 */
   2214	e1e_wphy(hw, 0x0000, 0x1340);
   2215
   2216	return 0;
   2217}
   2218
   2219/**
   2220 *  e1000e_get_phy_type_from_id - Get PHY type from id
   2221 *  @phy_id: phy_id read from the phy
   2222 *
   2223 *  Returns the phy type from the id.
   2224 **/
   2225enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
   2226{
   2227	enum e1000_phy_type phy_type = e1000_phy_unknown;
   2228
   2229	switch (phy_id) {
   2230	case M88E1000_I_PHY_ID:
   2231	case M88E1000_E_PHY_ID:
   2232	case M88E1111_I_PHY_ID:
   2233	case M88E1011_I_PHY_ID:
   2234		phy_type = e1000_phy_m88;
   2235		break;
   2236	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
   2237		phy_type = e1000_phy_igp_2;
   2238		break;
   2239	case GG82563_E_PHY_ID:
   2240		phy_type = e1000_phy_gg82563;
   2241		break;
   2242	case IGP03E1000_E_PHY_ID:
   2243		phy_type = e1000_phy_igp_3;
   2244		break;
   2245	case IFE_E_PHY_ID:
   2246	case IFE_PLUS_E_PHY_ID:
   2247	case IFE_C_E_PHY_ID:
   2248		phy_type = e1000_phy_ife;
   2249		break;
   2250	case BME1000_E_PHY_ID:
   2251	case BME1000_E_PHY_ID_R2:
   2252		phy_type = e1000_phy_bm;
   2253		break;
   2254	case I82578_E_PHY_ID:
   2255		phy_type = e1000_phy_82578;
   2256		break;
   2257	case I82577_E_PHY_ID:
   2258		phy_type = e1000_phy_82577;
   2259		break;
   2260	case I82579_E_PHY_ID:
   2261		phy_type = e1000_phy_82579;
   2262		break;
   2263	case I217_E_PHY_ID:
   2264		phy_type = e1000_phy_i217;
   2265		break;
   2266	default:
   2267		phy_type = e1000_phy_unknown;
   2268		break;
   2269	}
   2270	return phy_type;
   2271}
   2272
   2273/**
   2274 *  e1000e_determine_phy_address - Determines PHY address.
   2275 *  @hw: pointer to the HW structure
   2276 *
   2277 *  This uses a trial and error method to loop through possible PHY
   2278 *  addresses. It tests each by reading the PHY ID registers and
   2279 *  checking for a match.
   2280 **/
   2281s32 e1000e_determine_phy_address(struct e1000_hw *hw)
   2282{
   2283	u32 phy_addr = 0;
   2284	u32 i;
   2285	enum e1000_phy_type phy_type = e1000_phy_unknown;
   2286
   2287	hw->phy.id = phy_type;
   2288
   2289	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
   2290		hw->phy.addr = phy_addr;
   2291		i = 0;
   2292
   2293		do {
   2294			e1000e_get_phy_id(hw);
   2295			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
   2296
   2297			/* If phy_type is valid, break - we found our
   2298			 * PHY address
   2299			 */
   2300			if (phy_type != e1000_phy_unknown)
   2301				return 0;
   2302
   2303			usleep_range(1000, 2000);
   2304			i++;
   2305		} while (i < 10);
   2306	}
   2307
   2308	return -E1000_ERR_PHY_TYPE;
   2309}
   2310
   2311/**
   2312 *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
   2313 *  @page: page to access
   2314 *  @reg: register to check
   2315 *
   2316 *  Returns the phy address for the page requested.
   2317 **/
   2318static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
   2319{
   2320	u32 phy_addr = 2;
   2321
   2322	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
   2323		phy_addr = 1;
   2324
   2325	return phy_addr;
   2326}
   2327
   2328/**
   2329 *  e1000e_write_phy_reg_bm - Write BM PHY register
   2330 *  @hw: pointer to the HW structure
   2331 *  @offset: register offset to write to
   2332 *  @data: data to write at register offset
   2333 *
   2334 *  Acquires semaphore, if necessary, then writes the data to PHY register
   2335 *  at the offset.  Release any acquired semaphores before exiting.
   2336 **/
   2337s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
   2338{
   2339	s32 ret_val;
   2340	u32 page = offset >> IGP_PAGE_SHIFT;
   2341
   2342	ret_val = hw->phy.ops.acquire(hw);
   2343	if (ret_val)
   2344		return ret_val;
   2345
   2346	/* Page 800 works differently than the rest so it has its own func */
   2347	if (page == BM_WUC_PAGE) {
   2348		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
   2349							 false, false);
   2350		goto release;
   2351	}
   2352
   2353	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
   2354
   2355	if (offset > MAX_PHY_MULTI_PAGE_REG) {
   2356		u32 page_shift, page_select;
   2357
   2358		/* Page select is register 31 for phy address 1 and 22 for
   2359		 * phy address 2 and 3. Page select is shifted only for
   2360		 * phy address 1.
   2361		 */
   2362		if (hw->phy.addr == 1) {
   2363			page_shift = IGP_PAGE_SHIFT;
   2364			page_select = IGP01E1000_PHY_PAGE_SELECT;
   2365		} else {
   2366			page_shift = 0;
   2367			page_select = BM_PHY_PAGE_SELECT;
   2368		}
   2369
   2370		/* Page is shifted left, PHY expects (page x 32) */
   2371		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
   2372						    (page << page_shift));
   2373		if (ret_val)
   2374			goto release;
   2375	}
   2376
   2377	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
   2378					    data);
   2379
   2380release:
   2381	hw->phy.ops.release(hw);
   2382	return ret_val;
   2383}
   2384
   2385/**
   2386 *  e1000e_read_phy_reg_bm - Read BM PHY register
   2387 *  @hw: pointer to the HW structure
   2388 *  @offset: register offset to be read
   2389 *  @data: pointer to the read data
   2390 *
   2391 *  Acquires semaphore, if necessary, then reads the PHY register at offset
   2392 *  and storing the retrieved information in data.  Release any acquired
   2393 *  semaphores before exiting.
   2394 **/
   2395s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
   2396{
   2397	s32 ret_val;
   2398	u32 page = offset >> IGP_PAGE_SHIFT;
   2399
   2400	ret_val = hw->phy.ops.acquire(hw);
   2401	if (ret_val)
   2402		return ret_val;
   2403
   2404	/* Page 800 works differently than the rest so it has its own func */
   2405	if (page == BM_WUC_PAGE) {
   2406		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
   2407							 true, false);
   2408		goto release;
   2409	}
   2410
   2411	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
   2412
   2413	if (offset > MAX_PHY_MULTI_PAGE_REG) {
   2414		u32 page_shift, page_select;
   2415
   2416		/* Page select is register 31 for phy address 1 and 22 for
   2417		 * phy address 2 and 3. Page select is shifted only for
   2418		 * phy address 1.
   2419		 */
   2420		if (hw->phy.addr == 1) {
   2421			page_shift = IGP_PAGE_SHIFT;
   2422			page_select = IGP01E1000_PHY_PAGE_SELECT;
   2423		} else {
   2424			page_shift = 0;
   2425			page_select = BM_PHY_PAGE_SELECT;
   2426		}
   2427
   2428		/* Page is shifted left, PHY expects (page x 32) */
   2429		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
   2430						    (page << page_shift));
   2431		if (ret_val)
   2432			goto release;
   2433	}
   2434
   2435	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
   2436					   data);
   2437release:
   2438	hw->phy.ops.release(hw);
   2439	return ret_val;
   2440}
   2441
   2442/**
   2443 *  e1000e_read_phy_reg_bm2 - Read BM PHY register
   2444 *  @hw: pointer to the HW structure
   2445 *  @offset: register offset to be read
   2446 *  @data: pointer to the read data
   2447 *
   2448 *  Acquires semaphore, if necessary, then reads the PHY register at offset
   2449 *  and storing the retrieved information in data.  Release any acquired
   2450 *  semaphores before exiting.
   2451 **/
   2452s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
   2453{
   2454	s32 ret_val;
   2455	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
   2456
   2457	ret_val = hw->phy.ops.acquire(hw);
   2458	if (ret_val)
   2459		return ret_val;
   2460
   2461	/* Page 800 works differently than the rest so it has its own func */
   2462	if (page == BM_WUC_PAGE) {
   2463		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
   2464							 true, false);
   2465		goto release;
   2466	}
   2467
   2468	hw->phy.addr = 1;
   2469
   2470	if (offset > MAX_PHY_MULTI_PAGE_REG) {
   2471		/* Page is shifted left, PHY expects (page x 32) */
   2472		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
   2473						    page);
   2474
   2475		if (ret_val)
   2476			goto release;
   2477	}
   2478
   2479	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
   2480					   data);
   2481release:
   2482	hw->phy.ops.release(hw);
   2483	return ret_val;
   2484}
   2485
   2486/**
   2487 *  e1000e_write_phy_reg_bm2 - Write BM PHY register
   2488 *  @hw: pointer to the HW structure
   2489 *  @offset: register offset to write to
   2490 *  @data: data to write at register offset
   2491 *
   2492 *  Acquires semaphore, if necessary, then writes the data to PHY register
   2493 *  at the offset.  Release any acquired semaphores before exiting.
   2494 **/
   2495s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
   2496{
   2497	s32 ret_val;
   2498	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
   2499
   2500	ret_val = hw->phy.ops.acquire(hw);
   2501	if (ret_val)
   2502		return ret_val;
   2503
   2504	/* Page 800 works differently than the rest so it has its own func */
   2505	if (page == BM_WUC_PAGE) {
   2506		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
   2507							 false, false);
   2508		goto release;
   2509	}
   2510
   2511	hw->phy.addr = 1;
   2512
   2513	if (offset > MAX_PHY_MULTI_PAGE_REG) {
   2514		/* Page is shifted left, PHY expects (page x 32) */
   2515		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
   2516						    page);
   2517
   2518		if (ret_val)
   2519			goto release;
   2520	}
   2521
   2522	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
   2523					    data);
   2524
   2525release:
   2526	hw->phy.ops.release(hw);
   2527	return ret_val;
   2528}
   2529
   2530/**
   2531 *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
   2532 *  @hw: pointer to the HW structure
   2533 *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
   2534 *
   2535 *  Assumes semaphore already acquired and phy_reg points to a valid memory
   2536 *  address to store contents of the BM_WUC_ENABLE_REG register.
   2537 **/
   2538s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
   2539{
   2540	s32 ret_val;
   2541	u16 temp;
   2542
   2543	/* All page select, port ctrl and wakeup registers use phy address 1 */
   2544	hw->phy.addr = 1;
   2545
   2546	/* Select Port Control Registers page */
   2547	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
   2548	if (ret_val) {
   2549		e_dbg("Could not set Port Control page\n");
   2550		return ret_val;
   2551	}
   2552
   2553	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
   2554	if (ret_val) {
   2555		e_dbg("Could not read PHY register %d.%d\n",
   2556		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
   2557		return ret_val;
   2558	}
   2559
   2560	/* Enable both PHY wakeup mode and Wakeup register page writes.
   2561	 * Prevent a power state change by disabling ME and Host PHY wakeup.
   2562	 */
   2563	temp = *phy_reg;
   2564	temp |= BM_WUC_ENABLE_BIT;
   2565	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
   2566
   2567	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
   2568	if (ret_val) {
   2569		e_dbg("Could not write PHY register %d.%d\n",
   2570		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
   2571		return ret_val;
   2572	}
   2573
   2574	/* Select Host Wakeup Registers page - caller now able to write
   2575	 * registers on the Wakeup registers page
   2576	 */
   2577	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
   2578}
   2579
   2580/**
   2581 *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
   2582 *  @hw: pointer to the HW structure
   2583 *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
   2584 *
   2585 *  Restore BM_WUC_ENABLE_REG to its original value.
   2586 *
   2587 *  Assumes semaphore already acquired and *phy_reg is the contents of the
   2588 *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
   2589 *  caller.
   2590 **/
   2591s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
   2592{
   2593	s32 ret_val;
   2594
   2595	/* Select Port Control Registers page */
   2596	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
   2597	if (ret_val) {
   2598		e_dbg("Could not set Port Control page\n");
   2599		return ret_val;
   2600	}
   2601
   2602	/* Restore 769.17 to its original value */
   2603	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
   2604	if (ret_val)
   2605		e_dbg("Could not restore PHY register %d.%d\n",
   2606		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
   2607
   2608	return ret_val;
   2609}
   2610
   2611/**
   2612 *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
   2613 *  @hw: pointer to the HW structure
   2614 *  @offset: register offset to be read or written
   2615 *  @data: pointer to the data to read or write
   2616 *  @read: determines if operation is read or write
   2617 *  @page_set: BM_WUC_PAGE already set and access enabled
   2618 *
   2619 *  Read the PHY register at offset and store the retrieved information in
   2620 *  data, or write data to PHY register at offset.  Note the procedure to
   2621 *  access the PHY wakeup registers is different than reading the other PHY
   2622 *  registers. It works as such:
   2623 *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
   2624 *  2) Set page to 800 for host (801 if we were manageability)
   2625 *  3) Write the address using the address opcode (0x11)
   2626 *  4) Read or write the data using the data opcode (0x12)
   2627 *  5) Restore 769.17.2 to its original value
   2628 *
   2629 *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
   2630 *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
   2631 *
   2632 *  Assumes semaphore is already acquired.  When page_set==true, assumes
   2633 *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
   2634 *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
   2635 **/
   2636static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
   2637					  u16 *data, bool read, bool page_set)
   2638{
   2639	s32 ret_val;
   2640	u16 reg = BM_PHY_REG_NUM(offset);
   2641	u16 page = BM_PHY_REG_PAGE(offset);
   2642	u16 phy_reg = 0;
   2643
   2644	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
   2645	if ((hw->mac.type == e1000_pchlan) &&
   2646	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
   2647		e_dbg("Attempting to access page %d while gig enabled.\n",
   2648		      page);
   2649
   2650	if (!page_set) {
   2651		/* Enable access to PHY wakeup registers */
   2652		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
   2653		if (ret_val) {
   2654			e_dbg("Could not enable PHY wakeup reg access\n");
   2655			return ret_val;
   2656		}
   2657	}
   2658
   2659	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
   2660
   2661	/* Write the Wakeup register page offset value using opcode 0x11 */
   2662	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
   2663	if (ret_val) {
   2664		e_dbg("Could not write address opcode to page %d\n", page);
   2665		return ret_val;
   2666	}
   2667
   2668	if (read) {
   2669		/* Read the Wakeup register page value using opcode 0x12 */
   2670		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
   2671						   data);
   2672	} else {
   2673		/* Write the Wakeup register page value using opcode 0x12 */
   2674		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
   2675						    *data);
   2676	}
   2677
   2678	if (ret_val) {
   2679		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
   2680		return ret_val;
   2681	}
   2682
   2683	if (!page_set)
   2684		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
   2685
   2686	return ret_val;
   2687}
   2688
   2689/**
   2690 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
   2691 * @hw: pointer to the HW structure
   2692 *
   2693 * In the case of a PHY power down to save power, or to turn off link during a
   2694 * driver unload, or wake on lan is not enabled, restore the link to previous
   2695 * settings.
   2696 **/
   2697void e1000_power_up_phy_copper(struct e1000_hw *hw)
   2698{
   2699	u16 mii_reg = 0;
   2700
   2701	/* The PHY will retain its settings across a power down/up cycle */
   2702	e1e_rphy(hw, MII_BMCR, &mii_reg);
   2703	mii_reg &= ~BMCR_PDOWN;
   2704	e1e_wphy(hw, MII_BMCR, mii_reg);
   2705}
   2706
   2707/**
   2708 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
   2709 * @hw: pointer to the HW structure
   2710 *
   2711 * In the case of a PHY power down to save power, or to turn off link during a
   2712 * driver unload, or wake on lan is not enabled, restore the link to previous
   2713 * settings.
   2714 **/
   2715void e1000_power_down_phy_copper(struct e1000_hw *hw)
   2716{
   2717	u16 mii_reg = 0;
   2718
   2719	/* The PHY will retain its settings across a power down/up cycle */
   2720	e1e_rphy(hw, MII_BMCR, &mii_reg);
   2721	mii_reg |= BMCR_PDOWN;
   2722	e1e_wphy(hw, MII_BMCR, mii_reg);
   2723	usleep_range(1000, 2000);
   2724}
   2725
   2726/**
   2727 *  __e1000_read_phy_reg_hv -  Read HV PHY register
   2728 *  @hw: pointer to the HW structure
   2729 *  @offset: register offset to be read
   2730 *  @data: pointer to the read data
   2731 *  @locked: semaphore has already been acquired or not
   2732 *  @page_set: BM_WUC_PAGE already set and access enabled
   2733 *
   2734 *  Acquires semaphore, if necessary, then reads the PHY register at offset
   2735 *  and stores the retrieved information in data.  Release any acquired
   2736 *  semaphore before exiting.
   2737 **/
   2738static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
   2739				   bool locked, bool page_set)
   2740{
   2741	s32 ret_val;
   2742	u16 page = BM_PHY_REG_PAGE(offset);
   2743	u16 reg = BM_PHY_REG_NUM(offset);
   2744	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
   2745
   2746	if (!locked) {
   2747		ret_val = hw->phy.ops.acquire(hw);
   2748		if (ret_val)
   2749			return ret_val;
   2750	}
   2751
   2752	/* Page 800 works differently than the rest so it has its own func */
   2753	if (page == BM_WUC_PAGE) {
   2754		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
   2755							 true, page_set);
   2756		goto out;
   2757	}
   2758
   2759	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
   2760		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
   2761							 data, true);
   2762		goto out;
   2763	}
   2764
   2765	if (!page_set) {
   2766		if (page == HV_INTC_FC_PAGE_START)
   2767			page = 0;
   2768
   2769		if (reg > MAX_PHY_MULTI_PAGE_REG) {
   2770			/* Page is shifted left, PHY expects (page x 32) */
   2771			ret_val = e1000_set_page_igp(hw,
   2772						     (page << IGP_PAGE_SHIFT));
   2773
   2774			hw->phy.addr = phy_addr;
   2775
   2776			if (ret_val)
   2777				goto out;
   2778		}
   2779	}
   2780
   2781	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
   2782	      page << IGP_PAGE_SHIFT, reg);
   2783
   2784	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
   2785out:
   2786	if (!locked)
   2787		hw->phy.ops.release(hw);
   2788
   2789	return ret_val;
   2790}
   2791
   2792/**
   2793 *  e1000_read_phy_reg_hv -  Read HV PHY register
   2794 *  @hw: pointer to the HW structure
   2795 *  @offset: register offset to be read
   2796 *  @data: pointer to the read data
   2797 *
   2798 *  Acquires semaphore then reads the PHY register at offset and stores
   2799 *  the retrieved information in data.  Release the acquired semaphore
   2800 *  before exiting.
   2801 **/
   2802s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
   2803{
   2804	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
   2805}
   2806
   2807/**
   2808 *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
   2809 *  @hw: pointer to the HW structure
   2810 *  @offset: register offset to be read
   2811 *  @data: pointer to the read data
   2812 *
   2813 *  Reads the PHY register at offset and stores the retrieved information
   2814 *  in data.  Assumes semaphore already acquired.
   2815 **/
   2816s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
   2817{
   2818	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
   2819}
   2820
   2821/**
   2822 *  e1000_read_phy_reg_page_hv - Read HV PHY register
   2823 *  @hw: pointer to the HW structure
   2824 *  @offset: register offset to write to
   2825 *  @data: data to write at register offset
   2826 *
   2827 *  Reads the PHY register at offset and stores the retrieved information
   2828 *  in data.  Assumes semaphore already acquired and page already set.
   2829 **/
   2830s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
   2831{
   2832	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
   2833}
   2834
   2835/**
   2836 *  __e1000_write_phy_reg_hv - Write HV PHY register
   2837 *  @hw: pointer to the HW structure
   2838 *  @offset: register offset to write to
   2839 *  @data: data to write at register offset
   2840 *  @locked: semaphore has already been acquired or not
   2841 *  @page_set: BM_WUC_PAGE already set and access enabled
   2842 *
   2843 *  Acquires semaphore, if necessary, then writes the data to PHY register
   2844 *  at the offset.  Release any acquired semaphores before exiting.
   2845 **/
   2846static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
   2847				    bool locked, bool page_set)
   2848{
   2849	s32 ret_val;
   2850	u16 page = BM_PHY_REG_PAGE(offset);
   2851	u16 reg = BM_PHY_REG_NUM(offset);
   2852	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
   2853
   2854	if (!locked) {
   2855		ret_val = hw->phy.ops.acquire(hw);
   2856		if (ret_val)
   2857			return ret_val;
   2858	}
   2859
   2860	/* Page 800 works differently than the rest so it has its own func */
   2861	if (page == BM_WUC_PAGE) {
   2862		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
   2863							 false, page_set);
   2864		goto out;
   2865	}
   2866
   2867	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
   2868		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
   2869							 &data, false);
   2870		goto out;
   2871	}
   2872
   2873	if (!page_set) {
   2874		if (page == HV_INTC_FC_PAGE_START)
   2875			page = 0;
   2876
   2877		/* Workaround MDIO accesses being disabled after entering IEEE
   2878		 * Power Down (when bit 11 of the PHY Control register is set)
   2879		 */
   2880		if ((hw->phy.type == e1000_phy_82578) &&
   2881		    (hw->phy.revision >= 1) &&
   2882		    (hw->phy.addr == 2) &&
   2883		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
   2884			u16 data2 = 0x7EFF;
   2885
   2886			ret_val = e1000_access_phy_debug_regs_hv(hw,
   2887								 BIT(6) | 0x3,
   2888								 &data2, false);
   2889			if (ret_val)
   2890				goto out;
   2891		}
   2892
   2893		if (reg > MAX_PHY_MULTI_PAGE_REG) {
   2894			/* Page is shifted left, PHY expects (page x 32) */
   2895			ret_val = e1000_set_page_igp(hw,
   2896						     (page << IGP_PAGE_SHIFT));
   2897
   2898			hw->phy.addr = phy_addr;
   2899
   2900			if (ret_val)
   2901				goto out;
   2902		}
   2903	}
   2904
   2905	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
   2906	      page << IGP_PAGE_SHIFT, reg);
   2907
   2908	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
   2909					    data);
   2910
   2911out:
   2912	if (!locked)
   2913		hw->phy.ops.release(hw);
   2914
   2915	return ret_val;
   2916}
   2917
   2918/**
   2919 *  e1000_write_phy_reg_hv - Write HV PHY register
   2920 *  @hw: pointer to the HW structure
   2921 *  @offset: register offset to write to
   2922 *  @data: data to write at register offset
   2923 *
   2924 *  Acquires semaphore then writes the data to PHY register at the offset.
   2925 *  Release the acquired semaphores before exiting.
   2926 **/
   2927s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
   2928{
   2929	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
   2930}
   2931
   2932/**
   2933 *  e1000_write_phy_reg_hv_locked - Write HV PHY register
   2934 *  @hw: pointer to the HW structure
   2935 *  @offset: register offset to write to
   2936 *  @data: data to write at register offset
   2937 *
   2938 *  Writes the data to PHY register at the offset.  Assumes semaphore
   2939 *  already acquired.
   2940 **/
   2941s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
   2942{
   2943	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
   2944}
   2945
   2946/**
   2947 *  e1000_write_phy_reg_page_hv - Write HV PHY register
   2948 *  @hw: pointer to the HW structure
   2949 *  @offset: register offset to write to
   2950 *  @data: data to write at register offset
   2951 *
   2952 *  Writes the data to PHY register at the offset.  Assumes semaphore
   2953 *  already acquired and page already set.
   2954 **/
   2955s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
   2956{
   2957	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
   2958}
   2959
   2960/**
   2961 *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
   2962 *  @page: page to be accessed
   2963 **/
   2964static u32 e1000_get_phy_addr_for_hv_page(u32 page)
   2965{
   2966	u32 phy_addr = 2;
   2967
   2968	if (page >= HV_INTC_FC_PAGE_START)
   2969		phy_addr = 1;
   2970
   2971	return phy_addr;
   2972}
   2973
   2974/**
   2975 *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
   2976 *  @hw: pointer to the HW structure
   2977 *  @offset: register offset to be read or written
   2978 *  @data: pointer to the data to be read or written
   2979 *  @read: determines if operation is read or write
   2980 *
   2981 *  Reads the PHY register at offset and stores the retrieved information
   2982 *  in data.  Assumes semaphore already acquired.  Note that the procedure
   2983 *  to access these regs uses the address port and data port to read/write.
   2984 *  These accesses done with PHY address 2 and without using pages.
   2985 **/
   2986static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
   2987					  u16 *data, bool read)
   2988{
   2989	s32 ret_val;
   2990	u32 addr_reg;
   2991	u32 data_reg;
   2992
   2993	/* This takes care of the difference with desktop vs mobile phy */
   2994	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
   2995		    I82578_ADDR_REG : I82577_ADDR_REG);
   2996	data_reg = addr_reg + 1;
   2997
   2998	/* All operations in this function are phy address 2 */
   2999	hw->phy.addr = 2;
   3000
   3001	/* masking with 0x3F to remove the page from offset */
   3002	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
   3003	if (ret_val) {
   3004		e_dbg("Could not write the Address Offset port register\n");
   3005		return ret_val;
   3006	}
   3007
   3008	/* Read or write the data value next */
   3009	if (read)
   3010		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
   3011	else
   3012		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
   3013
   3014	if (ret_val)
   3015		e_dbg("Could not access the Data port register\n");
   3016
   3017	return ret_val;
   3018}
   3019
   3020/**
   3021 *  e1000_link_stall_workaround_hv - Si workaround
   3022 *  @hw: pointer to the HW structure
   3023 *
   3024 *  This function works around a Si bug where the link partner can get
   3025 *  a link up indication before the PHY does.  If small packets are sent
   3026 *  by the link partner they can be placed in the packet buffer without
   3027 *  being properly accounted for by the PHY and will stall preventing
   3028 *  further packets from being received.  The workaround is to clear the
   3029 *  packet buffer after the PHY detects link up.
   3030 **/
   3031s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
   3032{
   3033	s32 ret_val = 0;
   3034	u16 data;
   3035
   3036	if (hw->phy.type != e1000_phy_82578)
   3037		return 0;
   3038
   3039	/* Do not apply workaround if in PHY loopback bit 14 set */
   3040	e1e_rphy(hw, MII_BMCR, &data);
   3041	if (data & BMCR_LOOPBACK)
   3042		return 0;
   3043
   3044	/* check if link is up and at 1Gbps */
   3045	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
   3046	if (ret_val)
   3047		return ret_val;
   3048
   3049	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
   3050		 BM_CS_STATUS_SPEED_MASK);
   3051
   3052	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
   3053		     BM_CS_STATUS_SPEED_1000))
   3054		return 0;
   3055
   3056	msleep(200);
   3057
   3058	/* flush the packets in the fifo buffer */
   3059	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
   3060			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
   3061			    HV_MUX_DATA_CTRL_FORCE_SPEED));
   3062	if (ret_val)
   3063		return ret_val;
   3064
   3065	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
   3066}
   3067
   3068/**
   3069 *  e1000_check_polarity_82577 - Checks the polarity.
   3070 *  @hw: pointer to the HW structure
   3071 *
   3072 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
   3073 *
   3074 *  Polarity is determined based on the PHY specific status register.
   3075 **/
   3076s32 e1000_check_polarity_82577(struct e1000_hw *hw)
   3077{
   3078	struct e1000_phy_info *phy = &hw->phy;
   3079	s32 ret_val;
   3080	u16 data;
   3081
   3082	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
   3083
   3084	if (!ret_val)
   3085		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
   3086				       ? e1000_rev_polarity_reversed
   3087				       : e1000_rev_polarity_normal);
   3088
   3089	return ret_val;
   3090}
   3091
   3092/**
   3093 *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
   3094 *  @hw: pointer to the HW structure
   3095 *
   3096 *  Calls the PHY setup function to force speed and duplex.
   3097 **/
   3098s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
   3099{
   3100	struct e1000_phy_info *phy = &hw->phy;
   3101	s32 ret_val;
   3102	u16 phy_data;
   3103	bool link;
   3104
   3105	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
   3106	if (ret_val)
   3107		return ret_val;
   3108
   3109	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
   3110
   3111	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
   3112	if (ret_val)
   3113		return ret_val;
   3114
   3115	udelay(1);
   3116
   3117	if (phy->autoneg_wait_to_complete) {
   3118		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
   3119
   3120		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   3121						      100000, &link);
   3122		if (ret_val)
   3123			return ret_val;
   3124
   3125		if (!link)
   3126			e_dbg("Link taking longer than expected.\n");
   3127
   3128		/* Try once more */
   3129		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
   3130						      100000, &link);
   3131	}
   3132
   3133	return ret_val;
   3134}
   3135
   3136/**
   3137 *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
   3138 *  @hw: pointer to the HW structure
   3139 *
   3140 *  Read PHY status to determine if link is up.  If link is up, then
   3141 *  set/determine 10base-T extended distance and polarity correction.  Read
   3142 *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
   3143 *  determine on the cable length, local and remote receiver.
   3144 **/
   3145s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
   3146{
   3147	struct e1000_phy_info *phy = &hw->phy;
   3148	s32 ret_val;
   3149	u16 data;
   3150	bool link;
   3151
   3152	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
   3153	if (ret_val)
   3154		return ret_val;
   3155
   3156	if (!link) {
   3157		e_dbg("Phy info is only valid if link is up\n");
   3158		return -E1000_ERR_CONFIG;
   3159	}
   3160
   3161	phy->polarity_correction = true;
   3162
   3163	ret_val = e1000_check_polarity_82577(hw);
   3164	if (ret_val)
   3165		return ret_val;
   3166
   3167	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
   3168	if (ret_val)
   3169		return ret_val;
   3170
   3171	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
   3172
   3173	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
   3174	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
   3175		ret_val = hw->phy.ops.get_cable_length(hw);
   3176		if (ret_val)
   3177			return ret_val;
   3178
   3179		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
   3180		if (ret_val)
   3181			return ret_val;
   3182
   3183		phy->local_rx = (data & LPA_1000LOCALRXOK)
   3184		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
   3185
   3186		phy->remote_rx = (data & LPA_1000REMRXOK)
   3187		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
   3188	} else {
   3189		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
   3190		phy->local_rx = e1000_1000t_rx_status_undefined;
   3191		phy->remote_rx = e1000_1000t_rx_status_undefined;
   3192	}
   3193
   3194	return 0;
   3195}
   3196
   3197/**
   3198 *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
   3199 *  @hw: pointer to the HW structure
   3200 *
   3201 * Reads the diagnostic status register and verifies result is valid before
   3202 * placing it in the phy_cable_length field.
   3203 **/
   3204s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
   3205{
   3206	struct e1000_phy_info *phy = &hw->phy;
   3207	s32 ret_val;
   3208	u16 phy_data, length;
   3209
   3210	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
   3211	if (ret_val)
   3212		return ret_val;
   3213
   3214	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
   3215		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
   3216
   3217	if (length == E1000_CABLE_LENGTH_UNDEFINED)
   3218		return -E1000_ERR_PHY;
   3219
   3220	phy->cable_length = length;
   3221
   3222	return 0;
   3223}