cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fm10k_main.c (54388B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2013 - 2019 Intel Corporation. */
      3
      4#include <linux/types.h>
      5#include <linux/module.h>
      6#include <net/ipv6.h>
      7#include <net/ip.h>
      8#include <net/tcp.h>
      9#include <linux/if_macvlan.h>
     10#include <linux/prefetch.h>
     11
     12#include "fm10k.h"
     13
     14#define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
     15char fm10k_driver_name[] = "fm10k";
     16static const char fm10k_driver_string[] = DRV_SUMMARY;
     17static const char fm10k_copyright[] =
     18	"Copyright(c) 2013 - 2019 Intel Corporation.";
     19
     20MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
     21MODULE_DESCRIPTION(DRV_SUMMARY);
     22MODULE_LICENSE("GPL v2");
     23
     24/* single workqueue for entire fm10k driver */
     25struct workqueue_struct *fm10k_workqueue;
     26
     27/**
     28 * fm10k_init_module - Driver Registration Routine
     29 *
     30 * fm10k_init_module is the first routine called when the driver is
     31 * loaded.  All it does is register with the PCI subsystem.
     32 **/
     33static int __init fm10k_init_module(void)
     34{
     35	pr_info("%s\n", fm10k_driver_string);
     36	pr_info("%s\n", fm10k_copyright);
     37
     38	/* create driver workqueue */
     39	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
     40					  fm10k_driver_name);
     41	if (!fm10k_workqueue)
     42		return -ENOMEM;
     43
     44	fm10k_dbg_init();
     45
     46	return fm10k_register_pci_driver();
     47}
     48module_init(fm10k_init_module);
     49
     50/**
     51 * fm10k_exit_module - Driver Exit Cleanup Routine
     52 *
     53 * fm10k_exit_module is called just before the driver is removed
     54 * from memory.
     55 **/
     56static void __exit fm10k_exit_module(void)
     57{
     58	fm10k_unregister_pci_driver();
     59
     60	fm10k_dbg_exit();
     61
     62	/* destroy driver workqueue */
     63	destroy_workqueue(fm10k_workqueue);
     64}
     65module_exit(fm10k_exit_module);
     66
     67static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
     68				    struct fm10k_rx_buffer *bi)
     69{
     70	struct page *page = bi->page;
     71	dma_addr_t dma;
     72
     73	/* Only page will be NULL if buffer was consumed */
     74	if (likely(page))
     75		return true;
     76
     77	/* alloc new page for storage */
     78	page = dev_alloc_page();
     79	if (unlikely(!page)) {
     80		rx_ring->rx_stats.alloc_failed++;
     81		return false;
     82	}
     83
     84	/* map page for use */
     85	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
     86
     87	/* if mapping failed free memory back to system since
     88	 * there isn't much point in holding memory we can't use
     89	 */
     90	if (dma_mapping_error(rx_ring->dev, dma)) {
     91		__free_page(page);
     92
     93		rx_ring->rx_stats.alloc_failed++;
     94		return false;
     95	}
     96
     97	bi->dma = dma;
     98	bi->page = page;
     99	bi->page_offset = 0;
    100
    101	return true;
    102}
    103
    104/**
    105 * fm10k_alloc_rx_buffers - Replace used receive buffers
    106 * @rx_ring: ring to place buffers on
    107 * @cleaned_count: number of buffers to replace
    108 **/
    109void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
    110{
    111	union fm10k_rx_desc *rx_desc;
    112	struct fm10k_rx_buffer *bi;
    113	u16 i = rx_ring->next_to_use;
    114
    115	/* nothing to do */
    116	if (!cleaned_count)
    117		return;
    118
    119	rx_desc = FM10K_RX_DESC(rx_ring, i);
    120	bi = &rx_ring->rx_buffer[i];
    121	i -= rx_ring->count;
    122
    123	do {
    124		if (!fm10k_alloc_mapped_page(rx_ring, bi))
    125			break;
    126
    127		/* Refresh the desc even if buffer_addrs didn't change
    128		 * because each write-back erases this info.
    129		 */
    130		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
    131
    132		rx_desc++;
    133		bi++;
    134		i++;
    135		if (unlikely(!i)) {
    136			rx_desc = FM10K_RX_DESC(rx_ring, 0);
    137			bi = rx_ring->rx_buffer;
    138			i -= rx_ring->count;
    139		}
    140
    141		/* clear the status bits for the next_to_use descriptor */
    142		rx_desc->d.staterr = 0;
    143
    144		cleaned_count--;
    145	} while (cleaned_count);
    146
    147	i += rx_ring->count;
    148
    149	if (rx_ring->next_to_use != i) {
    150		/* record the next descriptor to use */
    151		rx_ring->next_to_use = i;
    152
    153		/* update next to alloc since we have filled the ring */
    154		rx_ring->next_to_alloc = i;
    155
    156		/* Force memory writes to complete before letting h/w
    157		 * know there are new descriptors to fetch.  (Only
    158		 * applicable for weak-ordered memory model archs,
    159		 * such as IA-64).
    160		 */
    161		wmb();
    162
    163		/* notify hardware of new descriptors */
    164		writel(i, rx_ring->tail);
    165	}
    166}
    167
    168/**
    169 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
    170 * @rx_ring: rx descriptor ring to store buffers on
    171 * @old_buff: donor buffer to have page reused
    172 *
    173 * Synchronizes page for reuse by the interface
    174 **/
    175static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
    176				struct fm10k_rx_buffer *old_buff)
    177{
    178	struct fm10k_rx_buffer *new_buff;
    179	u16 nta = rx_ring->next_to_alloc;
    180
    181	new_buff = &rx_ring->rx_buffer[nta];
    182
    183	/* update, and store next to alloc */
    184	nta++;
    185	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
    186
    187	/* transfer page from old buffer to new buffer */
    188	*new_buff = *old_buff;
    189
    190	/* sync the buffer for use by the device */
    191	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
    192					 old_buff->page_offset,
    193					 FM10K_RX_BUFSZ,
    194					 DMA_FROM_DEVICE);
    195}
    196
    197static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
    198				    struct page *page,
    199				    unsigned int __maybe_unused truesize)
    200{
    201	/* avoid re-using remote and pfmemalloc pages */
    202	if (!dev_page_is_reusable(page))
    203		return false;
    204
    205#if (PAGE_SIZE < 8192)
    206	/* if we are only owner of page we can reuse it */
    207	if (unlikely(page_count(page) != 1))
    208		return false;
    209
    210	/* flip page offset to other buffer */
    211	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
    212#else
    213	/* move offset up to the next cache line */
    214	rx_buffer->page_offset += truesize;
    215
    216	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
    217		return false;
    218#endif
    219
    220	/* Even if we own the page, we are not allowed to use atomic_set()
    221	 * This would break get_page_unless_zero() users.
    222	 */
    223	page_ref_inc(page);
    224
    225	return true;
    226}
    227
    228/**
    229 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
    230 * @rx_buffer: buffer containing page to add
    231 * @size: packet size from rx_desc
    232 * @rx_desc: descriptor containing length of buffer written by hardware
    233 * @skb: sk_buff to place the data into
    234 *
    235 * This function will add the data contained in rx_buffer->page to the skb.
    236 * This is done either through a direct copy if the data in the buffer is
    237 * less than the skb header size, otherwise it will just attach the page as
    238 * a frag to the skb.
    239 *
    240 * The function will then update the page offset if necessary and return
    241 * true if the buffer can be reused by the interface.
    242 **/
    243static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
    244			      unsigned int size,
    245			      union fm10k_rx_desc *rx_desc,
    246			      struct sk_buff *skb)
    247{
    248	struct page *page = rx_buffer->page;
    249	unsigned char *va = page_address(page) + rx_buffer->page_offset;
    250#if (PAGE_SIZE < 8192)
    251	unsigned int truesize = FM10K_RX_BUFSZ;
    252#else
    253	unsigned int truesize = ALIGN(size, 512);
    254#endif
    255	unsigned int pull_len;
    256
    257	if (unlikely(skb_is_nonlinear(skb)))
    258		goto add_tail_frag;
    259
    260	if (likely(size <= FM10K_RX_HDR_LEN)) {
    261		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
    262
    263		/* page is reusable, we can reuse buffer as-is */
    264		if (dev_page_is_reusable(page))
    265			return true;
    266
    267		/* this page cannot be reused so discard it */
    268		__free_page(page);
    269		return false;
    270	}
    271
    272	/* we need the header to contain the greater of either ETH_HLEN or
    273	 * 60 bytes if the skb->len is less than 60 for skb_pad.
    274	 */
    275	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
    276
    277	/* align pull length to size of long to optimize memcpy performance */
    278	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
    279
    280	/* update all of the pointers */
    281	va += pull_len;
    282	size -= pull_len;
    283
    284add_tail_frag:
    285	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
    286			(unsigned long)va & ~PAGE_MASK, size, truesize);
    287
    288	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
    289}
    290
    291static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
    292					     union fm10k_rx_desc *rx_desc,
    293					     struct sk_buff *skb)
    294{
    295	unsigned int size = le16_to_cpu(rx_desc->w.length);
    296	struct fm10k_rx_buffer *rx_buffer;
    297	struct page *page;
    298
    299	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
    300	page = rx_buffer->page;
    301	prefetchw(page);
    302
    303	if (likely(!skb)) {
    304		void *page_addr = page_address(page) +
    305				  rx_buffer->page_offset;
    306
    307		/* prefetch first cache line of first page */
    308		net_prefetch(page_addr);
    309
    310		/* allocate a skb to store the frags */
    311		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
    312				     FM10K_RX_HDR_LEN);
    313		if (unlikely(!skb)) {
    314			rx_ring->rx_stats.alloc_failed++;
    315			return NULL;
    316		}
    317
    318		/* we will be copying header into skb->data in
    319		 * pskb_may_pull so it is in our interest to prefetch
    320		 * it now to avoid a possible cache miss
    321		 */
    322		prefetchw(skb->data);
    323	}
    324
    325	/* we are reusing so sync this buffer for CPU use */
    326	dma_sync_single_range_for_cpu(rx_ring->dev,
    327				      rx_buffer->dma,
    328				      rx_buffer->page_offset,
    329				      size,
    330				      DMA_FROM_DEVICE);
    331
    332	/* pull page into skb */
    333	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
    334		/* hand second half of page back to the ring */
    335		fm10k_reuse_rx_page(rx_ring, rx_buffer);
    336	} else {
    337		/* we are not reusing the buffer so unmap it */
    338		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
    339			       PAGE_SIZE, DMA_FROM_DEVICE);
    340	}
    341
    342	/* clear contents of rx_buffer */
    343	rx_buffer->page = NULL;
    344
    345	return skb;
    346}
    347
    348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
    349				     union fm10k_rx_desc *rx_desc,
    350				     struct sk_buff *skb)
    351{
    352	skb_checksum_none_assert(skb);
    353
    354	/* Rx checksum disabled via ethtool */
    355	if (!(ring->netdev->features & NETIF_F_RXCSUM))
    356		return;
    357
    358	/* TCP/UDP checksum error bit is set */
    359	if (fm10k_test_staterr(rx_desc,
    360			       FM10K_RXD_STATUS_L4E |
    361			       FM10K_RXD_STATUS_L4E2 |
    362			       FM10K_RXD_STATUS_IPE |
    363			       FM10K_RXD_STATUS_IPE2)) {
    364		ring->rx_stats.csum_err++;
    365		return;
    366	}
    367
    368	/* It must be a TCP or UDP packet with a valid checksum */
    369	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
    370		skb->encapsulation = true;
    371	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
    372		return;
    373
    374	skb->ip_summed = CHECKSUM_UNNECESSARY;
    375
    376	ring->rx_stats.csum_good++;
    377}
    378
    379#define FM10K_RSS_L4_TYPES_MASK \
    380	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
    381	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
    382	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
    383	 BIT(FM10K_RSSTYPE_IPV6_UDP))
    384
    385static inline void fm10k_rx_hash(struct fm10k_ring *ring,
    386				 union fm10k_rx_desc *rx_desc,
    387				 struct sk_buff *skb)
    388{
    389	u16 rss_type;
    390
    391	if (!(ring->netdev->features & NETIF_F_RXHASH))
    392		return;
    393
    394	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
    395	if (!rss_type)
    396		return;
    397
    398	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
    399		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
    400		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
    401}
    402
    403static void fm10k_type_trans(struct fm10k_ring *rx_ring,
    404			     union fm10k_rx_desc __maybe_unused *rx_desc,
    405			     struct sk_buff *skb)
    406{
    407	struct net_device *dev = rx_ring->netdev;
    408	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
    409
    410	/* check to see if DGLORT belongs to a MACVLAN */
    411	if (l2_accel) {
    412		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
    413
    414		idx -= l2_accel->dglort;
    415		if (idx < l2_accel->size && l2_accel->macvlan[idx])
    416			dev = l2_accel->macvlan[idx];
    417		else
    418			l2_accel = NULL;
    419	}
    420
    421	/* Record Rx queue, or update macvlan statistics */
    422	if (!l2_accel)
    423		skb_record_rx_queue(skb, rx_ring->queue_index);
    424	else
    425		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
    426				 false);
    427
    428	skb->protocol = eth_type_trans(skb, dev);
    429}
    430
    431/**
    432 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
    433 * @rx_ring: rx descriptor ring packet is being transacted on
    434 * @rx_desc: pointer to the EOP Rx descriptor
    435 * @skb: pointer to current skb being populated
    436 *
    437 * This function checks the ring, descriptor, and packet information in
    438 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
    439 * other fields within the skb.
    440 **/
    441static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
    442					     union fm10k_rx_desc *rx_desc,
    443					     struct sk_buff *skb)
    444{
    445	unsigned int len = skb->len;
    446
    447	fm10k_rx_hash(rx_ring, rx_desc, skb);
    448
    449	fm10k_rx_checksum(rx_ring, rx_desc, skb);
    450
    451	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
    452
    453	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
    454
    455	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
    456
    457	if (rx_desc->w.vlan) {
    458		u16 vid = le16_to_cpu(rx_desc->w.vlan);
    459
    460		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
    461			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
    462		else if (vid & VLAN_PRIO_MASK)
    463			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
    464					       vid & VLAN_PRIO_MASK);
    465	}
    466
    467	fm10k_type_trans(rx_ring, rx_desc, skb);
    468
    469	return len;
    470}
    471
    472/**
    473 * fm10k_is_non_eop - process handling of non-EOP buffers
    474 * @rx_ring: Rx ring being processed
    475 * @rx_desc: Rx descriptor for current buffer
    476 *
    477 * This function updates next to clean.  If the buffer is an EOP buffer
    478 * this function exits returning false, otherwise it will place the
    479 * sk_buff in the next buffer to be chained and return true indicating
    480 * that this is in fact a non-EOP buffer.
    481 **/
    482static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
    483			     union fm10k_rx_desc *rx_desc)
    484{
    485	u32 ntc = rx_ring->next_to_clean + 1;
    486
    487	/* fetch, update, and store next to clean */
    488	ntc = (ntc < rx_ring->count) ? ntc : 0;
    489	rx_ring->next_to_clean = ntc;
    490
    491	prefetch(FM10K_RX_DESC(rx_ring, ntc));
    492
    493	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
    494		return false;
    495
    496	return true;
    497}
    498
    499/**
    500 * fm10k_cleanup_headers - Correct corrupted or empty headers
    501 * @rx_ring: rx descriptor ring packet is being transacted on
    502 * @rx_desc: pointer to the EOP Rx descriptor
    503 * @skb: pointer to current skb being fixed
    504 *
    505 * Address the case where we are pulling data in on pages only
    506 * and as such no data is present in the skb header.
    507 *
    508 * In addition if skb is not at least 60 bytes we need to pad it so that
    509 * it is large enough to qualify as a valid Ethernet frame.
    510 *
    511 * Returns true if an error was encountered and skb was freed.
    512 **/
    513static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
    514				  union fm10k_rx_desc *rx_desc,
    515				  struct sk_buff *skb)
    516{
    517	if (unlikely((fm10k_test_staterr(rx_desc,
    518					 FM10K_RXD_STATUS_RXE)))) {
    519#define FM10K_TEST_RXD_BIT(rxd, bit) \
    520	((rxd)->w.csum_err & cpu_to_le16(bit))
    521		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
    522			rx_ring->rx_stats.switch_errors++;
    523		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
    524			rx_ring->rx_stats.drops++;
    525		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
    526			rx_ring->rx_stats.pp_errors++;
    527		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
    528			rx_ring->rx_stats.link_errors++;
    529		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
    530			rx_ring->rx_stats.length_errors++;
    531		dev_kfree_skb_any(skb);
    532		rx_ring->rx_stats.errors++;
    533		return true;
    534	}
    535
    536	/* if eth_skb_pad returns an error the skb was freed */
    537	if (eth_skb_pad(skb))
    538		return true;
    539
    540	return false;
    541}
    542
    543/**
    544 * fm10k_receive_skb - helper function to handle rx indications
    545 * @q_vector: structure containing interrupt and ring information
    546 * @skb: packet to send up
    547 **/
    548static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
    549			      struct sk_buff *skb)
    550{
    551	napi_gro_receive(&q_vector->napi, skb);
    552}
    553
    554static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
    555			      struct fm10k_ring *rx_ring,
    556			      int budget)
    557{
    558	struct sk_buff *skb = rx_ring->skb;
    559	unsigned int total_bytes = 0, total_packets = 0;
    560	u16 cleaned_count = fm10k_desc_unused(rx_ring);
    561
    562	while (likely(total_packets < budget)) {
    563		union fm10k_rx_desc *rx_desc;
    564
    565		/* return some buffers to hardware, one at a time is too slow */
    566		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
    567			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
    568			cleaned_count = 0;
    569		}
    570
    571		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
    572
    573		if (!rx_desc->d.staterr)
    574			break;
    575
    576		/* This memory barrier is needed to keep us from reading
    577		 * any other fields out of the rx_desc until we know the
    578		 * descriptor has been written back
    579		 */
    580		dma_rmb();
    581
    582		/* retrieve a buffer from the ring */
    583		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
    584
    585		/* exit if we failed to retrieve a buffer */
    586		if (!skb)
    587			break;
    588
    589		cleaned_count++;
    590
    591		/* fetch next buffer in frame if non-eop */
    592		if (fm10k_is_non_eop(rx_ring, rx_desc))
    593			continue;
    594
    595		/* verify the packet layout is correct */
    596		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
    597			skb = NULL;
    598			continue;
    599		}
    600
    601		/* populate checksum, timestamp, VLAN, and protocol */
    602		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
    603
    604		fm10k_receive_skb(q_vector, skb);
    605
    606		/* reset skb pointer */
    607		skb = NULL;
    608
    609		/* update budget accounting */
    610		total_packets++;
    611	}
    612
    613	/* place incomplete frames back on ring for completion */
    614	rx_ring->skb = skb;
    615
    616	u64_stats_update_begin(&rx_ring->syncp);
    617	rx_ring->stats.packets += total_packets;
    618	rx_ring->stats.bytes += total_bytes;
    619	u64_stats_update_end(&rx_ring->syncp);
    620	q_vector->rx.total_packets += total_packets;
    621	q_vector->rx.total_bytes += total_bytes;
    622
    623	return total_packets;
    624}
    625
    626#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
    627static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
    628{
    629	struct fm10k_intfc *interface = netdev_priv(skb->dev);
    630
    631	if (interface->vxlan_port != udp_hdr(skb)->dest)
    632		return NULL;
    633
    634	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
    635	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
    636}
    637
    638#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
    639#define NVGRE_TNI htons(0x2000)
    640struct fm10k_nvgre_hdr {
    641	__be16 flags;
    642	__be16 proto;
    643	__be32 tni;
    644};
    645
    646static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
    647{
    648	struct fm10k_nvgre_hdr *nvgre_hdr;
    649	int hlen = ip_hdrlen(skb);
    650
    651	/* currently only IPv4 is supported due to hlen above */
    652	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
    653		return NULL;
    654
    655	/* our transport header should be NVGRE */
    656	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
    657
    658	/* verify all reserved flags are 0 */
    659	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
    660		return NULL;
    661
    662	/* report start of ethernet header */
    663	if (nvgre_hdr->flags & NVGRE_TNI)
    664		return (struct ethhdr *)(nvgre_hdr + 1);
    665
    666	return (struct ethhdr *)(&nvgre_hdr->tni);
    667}
    668
    669__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
    670{
    671	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
    672	struct ethhdr *eth_hdr;
    673
    674	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
    675	    skb->inner_protocol != htons(ETH_P_TEB))
    676		return 0;
    677
    678	switch (vlan_get_protocol(skb)) {
    679	case htons(ETH_P_IP):
    680		l4_hdr = ip_hdr(skb)->protocol;
    681		break;
    682	case htons(ETH_P_IPV6):
    683		l4_hdr = ipv6_hdr(skb)->nexthdr;
    684		break;
    685	default:
    686		return 0;
    687	}
    688
    689	switch (l4_hdr) {
    690	case IPPROTO_UDP:
    691		eth_hdr = fm10k_port_is_vxlan(skb);
    692		break;
    693	case IPPROTO_GRE:
    694		eth_hdr = fm10k_gre_is_nvgre(skb);
    695		break;
    696	default:
    697		return 0;
    698	}
    699
    700	if (!eth_hdr)
    701		return 0;
    702
    703	switch (eth_hdr->h_proto) {
    704	case htons(ETH_P_IP):
    705		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
    706		break;
    707	case htons(ETH_P_IPV6):
    708		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
    709		break;
    710	default:
    711		return 0;
    712	}
    713
    714	switch (inner_l4_hdr) {
    715	case IPPROTO_TCP:
    716		inner_l4_hlen = inner_tcp_hdrlen(skb);
    717		break;
    718	case IPPROTO_UDP:
    719		inner_l4_hlen = 8;
    720		break;
    721	default:
    722		return 0;
    723	}
    724
    725	/* The hardware allows tunnel offloads only if the combined inner and
    726	 * outer header is 184 bytes or less
    727	 */
    728	if (skb_inner_transport_header(skb) + inner_l4_hlen -
    729	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
    730		return 0;
    731
    732	return eth_hdr->h_proto;
    733}
    734
    735static int fm10k_tso(struct fm10k_ring *tx_ring,
    736		     struct fm10k_tx_buffer *first)
    737{
    738	struct sk_buff *skb = first->skb;
    739	struct fm10k_tx_desc *tx_desc;
    740	unsigned char *th;
    741	u8 hdrlen;
    742
    743	if (skb->ip_summed != CHECKSUM_PARTIAL)
    744		return 0;
    745
    746	if (!skb_is_gso(skb))
    747		return 0;
    748
    749	/* compute header lengths */
    750	if (skb->encapsulation) {
    751		if (!fm10k_tx_encap_offload(skb))
    752			goto err_vxlan;
    753		th = skb_inner_transport_header(skb);
    754	} else {
    755		th = skb_transport_header(skb);
    756	}
    757
    758	/* compute offset from SOF to transport header and add header len */
    759	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
    760
    761	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
    762
    763	/* update gso size and bytecount with header size */
    764	first->gso_segs = skb_shinfo(skb)->gso_segs;
    765	first->bytecount += (first->gso_segs - 1) * hdrlen;
    766
    767	/* populate Tx descriptor header size and mss */
    768	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
    769	tx_desc->hdrlen = hdrlen;
    770	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
    771
    772	return 1;
    773
    774err_vxlan:
    775	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
    776	if (net_ratelimit())
    777		netdev_err(tx_ring->netdev,
    778			   "TSO requested for unsupported tunnel, disabling offload\n");
    779	return -1;
    780}
    781
    782static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
    783			  struct fm10k_tx_buffer *first)
    784{
    785	struct sk_buff *skb = first->skb;
    786	struct fm10k_tx_desc *tx_desc;
    787	union {
    788		struct iphdr *ipv4;
    789		struct ipv6hdr *ipv6;
    790		u8 *raw;
    791	} network_hdr;
    792	u8 *transport_hdr;
    793	__be16 frag_off;
    794	__be16 protocol;
    795	u8 l4_hdr = 0;
    796
    797	if (skb->ip_summed != CHECKSUM_PARTIAL)
    798		goto no_csum;
    799
    800	if (skb->encapsulation) {
    801		protocol = fm10k_tx_encap_offload(skb);
    802		if (!protocol) {
    803			if (skb_checksum_help(skb)) {
    804				dev_warn(tx_ring->dev,
    805					 "failed to offload encap csum!\n");
    806				tx_ring->tx_stats.csum_err++;
    807			}
    808			goto no_csum;
    809		}
    810		network_hdr.raw = skb_inner_network_header(skb);
    811		transport_hdr = skb_inner_transport_header(skb);
    812	} else {
    813		protocol = vlan_get_protocol(skb);
    814		network_hdr.raw = skb_network_header(skb);
    815		transport_hdr = skb_transport_header(skb);
    816	}
    817
    818	switch (protocol) {
    819	case htons(ETH_P_IP):
    820		l4_hdr = network_hdr.ipv4->protocol;
    821		break;
    822	case htons(ETH_P_IPV6):
    823		l4_hdr = network_hdr.ipv6->nexthdr;
    824		if (likely((transport_hdr - network_hdr.raw) ==
    825			   sizeof(struct ipv6hdr)))
    826			break;
    827		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
    828				      sizeof(struct ipv6hdr),
    829				 &l4_hdr, &frag_off);
    830		if (unlikely(frag_off))
    831			l4_hdr = NEXTHDR_FRAGMENT;
    832		break;
    833	default:
    834		break;
    835	}
    836
    837	switch (l4_hdr) {
    838	case IPPROTO_TCP:
    839	case IPPROTO_UDP:
    840		break;
    841	case IPPROTO_GRE:
    842		if (skb->encapsulation)
    843			break;
    844		fallthrough;
    845	default:
    846		if (unlikely(net_ratelimit())) {
    847			dev_warn(tx_ring->dev,
    848				 "partial checksum, version=%d l4 proto=%x\n",
    849				 protocol, l4_hdr);
    850		}
    851		skb_checksum_help(skb);
    852		tx_ring->tx_stats.csum_err++;
    853		goto no_csum;
    854	}
    855
    856	/* update TX checksum flag */
    857	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
    858	tx_ring->tx_stats.csum_good++;
    859
    860no_csum:
    861	/* populate Tx descriptor header size and mss */
    862	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
    863	tx_desc->hdrlen = 0;
    864	tx_desc->mss = 0;
    865}
    866
    867#define FM10K_SET_FLAG(_input, _flag, _result) \
    868	((_flag <= _result) ? \
    869	 ((u32)(_input & _flag) * (_result / _flag)) : \
    870	 ((u32)(_input & _flag) / (_flag / _result)))
    871
    872static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
    873{
    874	/* set type for advanced descriptor with frame checksum insertion */
    875	u32 desc_flags = 0;
    876
    877	/* set checksum offload bits */
    878	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
    879				     FM10K_TXD_FLAG_CSUM);
    880
    881	return desc_flags;
    882}
    883
    884static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
    885			       struct fm10k_tx_desc *tx_desc, u16 i,
    886			       dma_addr_t dma, unsigned int size, u8 desc_flags)
    887{
    888	/* set RS and INT for last frame in a cache line */
    889	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
    890		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
    891
    892	/* record values to descriptor */
    893	tx_desc->buffer_addr = cpu_to_le64(dma);
    894	tx_desc->flags = desc_flags;
    895	tx_desc->buflen = cpu_to_le16(size);
    896
    897	/* return true if we just wrapped the ring */
    898	return i == tx_ring->count;
    899}
    900
    901static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
    902{
    903	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
    904
    905	/* Memory barrier before checking head and tail */
    906	smp_mb();
    907
    908	/* Check again in a case another CPU has just made room available */
    909	if (likely(fm10k_desc_unused(tx_ring) < size))
    910		return -EBUSY;
    911
    912	/* A reprieve! - use start_queue because it doesn't call schedule */
    913	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
    914	++tx_ring->tx_stats.restart_queue;
    915	return 0;
    916}
    917
    918static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
    919{
    920	if (likely(fm10k_desc_unused(tx_ring) >= size))
    921		return 0;
    922	return __fm10k_maybe_stop_tx(tx_ring, size);
    923}
    924
    925static void fm10k_tx_map(struct fm10k_ring *tx_ring,
    926			 struct fm10k_tx_buffer *first)
    927{
    928	struct sk_buff *skb = first->skb;
    929	struct fm10k_tx_buffer *tx_buffer;
    930	struct fm10k_tx_desc *tx_desc;
    931	skb_frag_t *frag;
    932	unsigned char *data;
    933	dma_addr_t dma;
    934	unsigned int data_len, size;
    935	u32 tx_flags = first->tx_flags;
    936	u16 i = tx_ring->next_to_use;
    937	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
    938
    939	tx_desc = FM10K_TX_DESC(tx_ring, i);
    940
    941	/* add HW VLAN tag */
    942	if (skb_vlan_tag_present(skb))
    943		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
    944	else
    945		tx_desc->vlan = 0;
    946
    947	size = skb_headlen(skb);
    948	data = skb->data;
    949
    950	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
    951
    952	data_len = skb->data_len;
    953	tx_buffer = first;
    954
    955	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
    956		if (dma_mapping_error(tx_ring->dev, dma))
    957			goto dma_error;
    958
    959		/* record length, and DMA address */
    960		dma_unmap_len_set(tx_buffer, len, size);
    961		dma_unmap_addr_set(tx_buffer, dma, dma);
    962
    963		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
    964			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
    965					       FM10K_MAX_DATA_PER_TXD, flags)) {
    966				tx_desc = FM10K_TX_DESC(tx_ring, 0);
    967				i = 0;
    968			}
    969
    970			dma += FM10K_MAX_DATA_PER_TXD;
    971			size -= FM10K_MAX_DATA_PER_TXD;
    972		}
    973
    974		if (likely(!data_len))
    975			break;
    976
    977		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
    978				       dma, size, flags)) {
    979			tx_desc = FM10K_TX_DESC(tx_ring, 0);
    980			i = 0;
    981		}
    982
    983		size = skb_frag_size(frag);
    984		data_len -= size;
    985
    986		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
    987				       DMA_TO_DEVICE);
    988
    989		tx_buffer = &tx_ring->tx_buffer[i];
    990	}
    991
    992	/* write last descriptor with LAST bit set */
    993	flags |= FM10K_TXD_FLAG_LAST;
    994
    995	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
    996		i = 0;
    997
    998	/* record bytecount for BQL */
    999	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
   1000
   1001	/* record SW timestamp if HW timestamp is not available */
   1002	skb_tx_timestamp(first->skb);
   1003
   1004	/* Force memory writes to complete before letting h/w know there
   1005	 * are new descriptors to fetch.  (Only applicable for weak-ordered
   1006	 * memory model archs, such as IA-64).
   1007	 *
   1008	 * We also need this memory barrier to make certain all of the
   1009	 * status bits have been updated before next_to_watch is written.
   1010	 */
   1011	wmb();
   1012
   1013	/* set next_to_watch value indicating a packet is present */
   1014	first->next_to_watch = tx_desc;
   1015
   1016	tx_ring->next_to_use = i;
   1017
   1018	/* Make sure there is space in the ring for the next send. */
   1019	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
   1020
   1021	/* notify HW of packet */
   1022	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
   1023		writel(i, tx_ring->tail);
   1024	}
   1025
   1026	return;
   1027dma_error:
   1028	dev_err(tx_ring->dev, "TX DMA map failed\n");
   1029
   1030	/* clear dma mappings for failed tx_buffer map */
   1031	for (;;) {
   1032		tx_buffer = &tx_ring->tx_buffer[i];
   1033		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
   1034		if (tx_buffer == first)
   1035			break;
   1036		if (i == 0)
   1037			i = tx_ring->count;
   1038		i--;
   1039	}
   1040
   1041	tx_ring->next_to_use = i;
   1042}
   1043
   1044netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
   1045				  struct fm10k_ring *tx_ring)
   1046{
   1047	u16 count = TXD_USE_COUNT(skb_headlen(skb));
   1048	struct fm10k_tx_buffer *first;
   1049	unsigned short f;
   1050	u32 tx_flags = 0;
   1051	int tso;
   1052
   1053	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
   1054	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
   1055	 *       + 2 desc gap to keep tail from touching head
   1056	 * otherwise try next time
   1057	 */
   1058	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
   1059		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
   1060
   1061		count += TXD_USE_COUNT(skb_frag_size(frag));
   1062	}
   1063
   1064	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
   1065		tx_ring->tx_stats.tx_busy++;
   1066		return NETDEV_TX_BUSY;
   1067	}
   1068
   1069	/* record the location of the first descriptor for this packet */
   1070	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
   1071	first->skb = skb;
   1072	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
   1073	first->gso_segs = 1;
   1074
   1075	/* record initial flags and protocol */
   1076	first->tx_flags = tx_flags;
   1077
   1078	tso = fm10k_tso(tx_ring, first);
   1079	if (tso < 0)
   1080		goto out_drop;
   1081	else if (!tso)
   1082		fm10k_tx_csum(tx_ring, first);
   1083
   1084	fm10k_tx_map(tx_ring, first);
   1085
   1086	return NETDEV_TX_OK;
   1087
   1088out_drop:
   1089	dev_kfree_skb_any(first->skb);
   1090	first->skb = NULL;
   1091
   1092	return NETDEV_TX_OK;
   1093}
   1094
   1095static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
   1096{
   1097	return ring->stats.packets;
   1098}
   1099
   1100/**
   1101 * fm10k_get_tx_pending - how many Tx descriptors not processed
   1102 * @ring: the ring structure
   1103 * @in_sw: is tx_pending being checked in SW or in HW?
   1104 */
   1105u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
   1106{
   1107	struct fm10k_intfc *interface = ring->q_vector->interface;
   1108	struct fm10k_hw *hw = &interface->hw;
   1109	u32 head, tail;
   1110
   1111	if (likely(in_sw)) {
   1112		head = ring->next_to_clean;
   1113		tail = ring->next_to_use;
   1114	} else {
   1115		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
   1116		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
   1117	}
   1118
   1119	return ((head <= tail) ? tail : tail + ring->count) - head;
   1120}
   1121
   1122bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
   1123{
   1124	u32 tx_done = fm10k_get_tx_completed(tx_ring);
   1125	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
   1126	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
   1127
   1128	clear_check_for_tx_hang(tx_ring);
   1129
   1130	/* Check for a hung queue, but be thorough. This verifies
   1131	 * that a transmit has been completed since the previous
   1132	 * check AND there is at least one packet pending. By
   1133	 * requiring this to fail twice we avoid races with
   1134	 * clearing the ARMED bit and conditions where we
   1135	 * run the check_tx_hang logic with a transmit completion
   1136	 * pending but without time to complete it yet.
   1137	 */
   1138	if (!tx_pending || (tx_done_old != tx_done)) {
   1139		/* update completed stats and continue */
   1140		tx_ring->tx_stats.tx_done_old = tx_done;
   1141		/* reset the countdown */
   1142		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
   1143
   1144		return false;
   1145	}
   1146
   1147	/* make sure it is true for two checks in a row */
   1148	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
   1149}
   1150
   1151/**
   1152 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
   1153 * @interface: driver private struct
   1154 **/
   1155void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
   1156{
   1157	/* Do the reset outside of interrupt context */
   1158	if (!test_bit(__FM10K_DOWN, interface->state)) {
   1159		interface->tx_timeout_count++;
   1160		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
   1161		fm10k_service_event_schedule(interface);
   1162	}
   1163}
   1164
   1165/**
   1166 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
   1167 * @q_vector: structure containing interrupt and ring information
   1168 * @tx_ring: tx ring to clean
   1169 * @napi_budget: Used to determine if we are in netpoll
   1170 **/
   1171static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
   1172			       struct fm10k_ring *tx_ring, int napi_budget)
   1173{
   1174	struct fm10k_intfc *interface = q_vector->interface;
   1175	struct fm10k_tx_buffer *tx_buffer;
   1176	struct fm10k_tx_desc *tx_desc;
   1177	unsigned int total_bytes = 0, total_packets = 0;
   1178	unsigned int budget = q_vector->tx.work_limit;
   1179	unsigned int i = tx_ring->next_to_clean;
   1180
   1181	if (test_bit(__FM10K_DOWN, interface->state))
   1182		return true;
   1183
   1184	tx_buffer = &tx_ring->tx_buffer[i];
   1185	tx_desc = FM10K_TX_DESC(tx_ring, i);
   1186	i -= tx_ring->count;
   1187
   1188	do {
   1189		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
   1190
   1191		/* if next_to_watch is not set then there is no work pending */
   1192		if (!eop_desc)
   1193			break;
   1194
   1195		/* prevent any other reads prior to eop_desc */
   1196		smp_rmb();
   1197
   1198		/* if DD is not set pending work has not been completed */
   1199		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
   1200			break;
   1201
   1202		/* clear next_to_watch to prevent false hangs */
   1203		tx_buffer->next_to_watch = NULL;
   1204
   1205		/* update the statistics for this packet */
   1206		total_bytes += tx_buffer->bytecount;
   1207		total_packets += tx_buffer->gso_segs;
   1208
   1209		/* free the skb */
   1210		napi_consume_skb(tx_buffer->skb, napi_budget);
   1211
   1212		/* unmap skb header data */
   1213		dma_unmap_single(tx_ring->dev,
   1214				 dma_unmap_addr(tx_buffer, dma),
   1215				 dma_unmap_len(tx_buffer, len),
   1216				 DMA_TO_DEVICE);
   1217
   1218		/* clear tx_buffer data */
   1219		tx_buffer->skb = NULL;
   1220		dma_unmap_len_set(tx_buffer, len, 0);
   1221
   1222		/* unmap remaining buffers */
   1223		while (tx_desc != eop_desc) {
   1224			tx_buffer++;
   1225			tx_desc++;
   1226			i++;
   1227			if (unlikely(!i)) {
   1228				i -= tx_ring->count;
   1229				tx_buffer = tx_ring->tx_buffer;
   1230				tx_desc = FM10K_TX_DESC(tx_ring, 0);
   1231			}
   1232
   1233			/* unmap any remaining paged data */
   1234			if (dma_unmap_len(tx_buffer, len)) {
   1235				dma_unmap_page(tx_ring->dev,
   1236					       dma_unmap_addr(tx_buffer, dma),
   1237					       dma_unmap_len(tx_buffer, len),
   1238					       DMA_TO_DEVICE);
   1239				dma_unmap_len_set(tx_buffer, len, 0);
   1240			}
   1241		}
   1242
   1243		/* move us one more past the eop_desc for start of next pkt */
   1244		tx_buffer++;
   1245		tx_desc++;
   1246		i++;
   1247		if (unlikely(!i)) {
   1248			i -= tx_ring->count;
   1249			tx_buffer = tx_ring->tx_buffer;
   1250			tx_desc = FM10K_TX_DESC(tx_ring, 0);
   1251		}
   1252
   1253		/* issue prefetch for next Tx descriptor */
   1254		prefetch(tx_desc);
   1255
   1256		/* update budget accounting */
   1257		budget--;
   1258	} while (likely(budget));
   1259
   1260	i += tx_ring->count;
   1261	tx_ring->next_to_clean = i;
   1262	u64_stats_update_begin(&tx_ring->syncp);
   1263	tx_ring->stats.bytes += total_bytes;
   1264	tx_ring->stats.packets += total_packets;
   1265	u64_stats_update_end(&tx_ring->syncp);
   1266	q_vector->tx.total_bytes += total_bytes;
   1267	q_vector->tx.total_packets += total_packets;
   1268
   1269	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
   1270		/* schedule immediate reset if we believe we hung */
   1271		struct fm10k_hw *hw = &interface->hw;
   1272
   1273		netif_err(interface, drv, tx_ring->netdev,
   1274			  "Detected Tx Unit Hang\n"
   1275			  "  Tx Queue             <%d>\n"
   1276			  "  TDH, TDT             <%x>, <%x>\n"
   1277			  "  next_to_use          <%x>\n"
   1278			  "  next_to_clean        <%x>\n",
   1279			  tx_ring->queue_index,
   1280			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
   1281			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
   1282			  tx_ring->next_to_use, i);
   1283
   1284		netif_stop_subqueue(tx_ring->netdev,
   1285				    tx_ring->queue_index);
   1286
   1287		netif_info(interface, probe, tx_ring->netdev,
   1288			   "tx hang %d detected on queue %d, resetting interface\n",
   1289			   interface->tx_timeout_count + 1,
   1290			   tx_ring->queue_index);
   1291
   1292		fm10k_tx_timeout_reset(interface);
   1293
   1294		/* the netdev is about to reset, no point in enabling stuff */
   1295		return true;
   1296	}
   1297
   1298	/* notify netdev of completed buffers */
   1299	netdev_tx_completed_queue(txring_txq(tx_ring),
   1300				  total_packets, total_bytes);
   1301
   1302#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
   1303	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
   1304		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
   1305		/* Make sure that anybody stopping the queue after this
   1306		 * sees the new next_to_clean.
   1307		 */
   1308		smp_mb();
   1309		if (__netif_subqueue_stopped(tx_ring->netdev,
   1310					     tx_ring->queue_index) &&
   1311		    !test_bit(__FM10K_DOWN, interface->state)) {
   1312			netif_wake_subqueue(tx_ring->netdev,
   1313					    tx_ring->queue_index);
   1314			++tx_ring->tx_stats.restart_queue;
   1315		}
   1316	}
   1317
   1318	return !!budget;
   1319}
   1320
   1321/**
   1322 * fm10k_update_itr - update the dynamic ITR value based on packet size
   1323 *
   1324 *      Stores a new ITR value based on strictly on packet size.  The
   1325 *      divisors and thresholds used by this function were determined based
   1326 *      on theoretical maximum wire speed and testing data, in order to
   1327 *      minimize response time while increasing bulk throughput.
   1328 *
   1329 * @ring_container: Container for rings to have ITR updated
   1330 **/
   1331static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
   1332{
   1333	unsigned int avg_wire_size, packets, itr_round;
   1334
   1335	/* Only update ITR if we are using adaptive setting */
   1336	if (!ITR_IS_ADAPTIVE(ring_container->itr))
   1337		goto clear_counts;
   1338
   1339	packets = ring_container->total_packets;
   1340	if (!packets)
   1341		goto clear_counts;
   1342
   1343	avg_wire_size = ring_container->total_bytes / packets;
   1344
   1345	/* The following is a crude approximation of:
   1346	 *  wmem_default / (size + overhead) = desired_pkts_per_int
   1347	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
   1348	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
   1349	 *
   1350	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
   1351	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
   1352	 * formula down to
   1353	 *
   1354	 *  (34 * (size + 24)) / (size + 640) = ITR
   1355	 *
   1356	 * We first do some math on the packet size and then finally bitshift
   1357	 * by 8 after rounding up. We also have to account for PCIe link speed
   1358	 * difference as ITR scales based on this.
   1359	 */
   1360	if (avg_wire_size <= 360) {
   1361		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
   1362		avg_wire_size *= 8;
   1363		avg_wire_size += 376;
   1364	} else if (avg_wire_size <= 1152) {
   1365		/* 77K ints/sec to 45K ints/sec */
   1366		avg_wire_size *= 3;
   1367		avg_wire_size += 2176;
   1368	} else if (avg_wire_size <= 1920) {
   1369		/* 45K ints/sec to 38K ints/sec */
   1370		avg_wire_size += 4480;
   1371	} else {
   1372		/* plateau at a limit of 38K ints/sec */
   1373		avg_wire_size = 6656;
   1374	}
   1375
   1376	/* Perform final bitshift for division after rounding up to ensure
   1377	 * that the calculation will never get below a 1. The bit shift
   1378	 * accounts for changes in the ITR due to PCIe link speed.
   1379	 */
   1380	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
   1381	avg_wire_size += BIT(itr_round) - 1;
   1382	avg_wire_size >>= itr_round;
   1383
   1384	/* write back value and retain adaptive flag */
   1385	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
   1386
   1387clear_counts:
   1388	ring_container->total_bytes = 0;
   1389	ring_container->total_packets = 0;
   1390}
   1391
   1392static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
   1393{
   1394	/* Enable auto-mask and clear the current mask */
   1395	u32 itr = FM10K_ITR_ENABLE;
   1396
   1397	/* Update Tx ITR */
   1398	fm10k_update_itr(&q_vector->tx);
   1399
   1400	/* Update Rx ITR */
   1401	fm10k_update_itr(&q_vector->rx);
   1402
   1403	/* Store Tx itr in timer slot 0 */
   1404	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
   1405
   1406	/* Shift Rx itr to timer slot 1 */
   1407	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
   1408
   1409	/* Write the final value to the ITR register */
   1410	writel(itr, q_vector->itr);
   1411}
   1412
   1413static int fm10k_poll(struct napi_struct *napi, int budget)
   1414{
   1415	struct fm10k_q_vector *q_vector =
   1416			       container_of(napi, struct fm10k_q_vector, napi);
   1417	struct fm10k_ring *ring;
   1418	int per_ring_budget, work_done = 0;
   1419	bool clean_complete = true;
   1420
   1421	fm10k_for_each_ring(ring, q_vector->tx) {
   1422		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
   1423			clean_complete = false;
   1424	}
   1425
   1426	/* Handle case where we are called by netpoll with a budget of 0 */
   1427	if (budget <= 0)
   1428		return budget;
   1429
   1430	/* attempt to distribute budget to each queue fairly, but don't
   1431	 * allow the budget to go below 1 because we'll exit polling
   1432	 */
   1433	if (q_vector->rx.count > 1)
   1434		per_ring_budget = max(budget / q_vector->rx.count, 1);
   1435	else
   1436		per_ring_budget = budget;
   1437
   1438	fm10k_for_each_ring(ring, q_vector->rx) {
   1439		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
   1440
   1441		work_done += work;
   1442		if (work >= per_ring_budget)
   1443			clean_complete = false;
   1444	}
   1445
   1446	/* If all work not completed, return budget and keep polling */
   1447	if (!clean_complete)
   1448		return budget;
   1449
   1450	/* Exit the polling mode, but don't re-enable interrupts if stack might
   1451	 * poll us due to busy-polling
   1452	 */
   1453	if (likely(napi_complete_done(napi, work_done)))
   1454		fm10k_qv_enable(q_vector);
   1455
   1456	return min(work_done, budget - 1);
   1457}
   1458
   1459/**
   1460 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
   1461 * @interface: board private structure to initialize
   1462 *
   1463 * When QoS (Quality of Service) is enabled, allocate queues for
   1464 * each traffic class.  If multiqueue isn't available,then abort QoS
   1465 * initialization.
   1466 *
   1467 * This function handles all combinations of Qos and RSS.
   1468 *
   1469 **/
   1470static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
   1471{
   1472	struct net_device *dev = interface->netdev;
   1473	struct fm10k_ring_feature *f;
   1474	int rss_i, i;
   1475	int pcs;
   1476
   1477	/* Map queue offset and counts onto allocated tx queues */
   1478	pcs = netdev_get_num_tc(dev);
   1479
   1480	if (pcs <= 1)
   1481		return false;
   1482
   1483	/* set QoS mask and indices */
   1484	f = &interface->ring_feature[RING_F_QOS];
   1485	f->indices = pcs;
   1486	f->mask = BIT(fls(pcs - 1)) - 1;
   1487
   1488	/* determine the upper limit for our current DCB mode */
   1489	rss_i = interface->hw.mac.max_queues / pcs;
   1490	rss_i = BIT(fls(rss_i) - 1);
   1491
   1492	/* set RSS mask and indices */
   1493	f = &interface->ring_feature[RING_F_RSS];
   1494	rss_i = min_t(u16, rss_i, f->limit);
   1495	f->indices = rss_i;
   1496	f->mask = BIT(fls(rss_i - 1)) - 1;
   1497
   1498	/* configure pause class to queue mapping */
   1499	for (i = 0; i < pcs; i++)
   1500		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
   1501
   1502	interface->num_rx_queues = rss_i * pcs;
   1503	interface->num_tx_queues = rss_i * pcs;
   1504
   1505	return true;
   1506}
   1507
   1508/**
   1509 * fm10k_set_rss_queues: Allocate queues for RSS
   1510 * @interface: board private structure to initialize
   1511 *
   1512 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
   1513 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
   1514 *
   1515 **/
   1516static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
   1517{
   1518	struct fm10k_ring_feature *f;
   1519	u16 rss_i;
   1520
   1521	f = &interface->ring_feature[RING_F_RSS];
   1522	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
   1523
   1524	/* record indices and power of 2 mask for RSS */
   1525	f->indices = rss_i;
   1526	f->mask = BIT(fls(rss_i - 1)) - 1;
   1527
   1528	interface->num_rx_queues = rss_i;
   1529	interface->num_tx_queues = rss_i;
   1530
   1531	return true;
   1532}
   1533
   1534/**
   1535 * fm10k_set_num_queues: Allocate queues for device, feature dependent
   1536 * @interface: board private structure to initialize
   1537 *
   1538 * This is the top level queue allocation routine.  The order here is very
   1539 * important, starting with the "most" number of features turned on at once,
   1540 * and ending with the smallest set of features.  This way large combinations
   1541 * can be allocated if they're turned on, and smaller combinations are the
   1542 * fall through conditions.
   1543 *
   1544 **/
   1545static void fm10k_set_num_queues(struct fm10k_intfc *interface)
   1546{
   1547	/* Attempt to setup QoS and RSS first */
   1548	if (fm10k_set_qos_queues(interface))
   1549		return;
   1550
   1551	/* If we don't have QoS, just fallback to only RSS. */
   1552	fm10k_set_rss_queues(interface);
   1553}
   1554
   1555/**
   1556 * fm10k_reset_num_queues - Reset the number of queues to zero
   1557 * @interface: board private structure
   1558 *
   1559 * This function should be called whenever we need to reset the number of
   1560 * queues after an error condition.
   1561 */
   1562static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
   1563{
   1564	interface->num_tx_queues = 0;
   1565	interface->num_rx_queues = 0;
   1566	interface->num_q_vectors = 0;
   1567}
   1568
   1569/**
   1570 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
   1571 * @interface: board private structure to initialize
   1572 * @v_count: q_vectors allocated on interface, used for ring interleaving
   1573 * @v_idx: index of vector in interface struct
   1574 * @txr_count: total number of Tx rings to allocate
   1575 * @txr_idx: index of first Tx ring to allocate
   1576 * @rxr_count: total number of Rx rings to allocate
   1577 * @rxr_idx: index of first Rx ring to allocate
   1578 *
   1579 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
   1580 **/
   1581static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
   1582				unsigned int v_count, unsigned int v_idx,
   1583				unsigned int txr_count, unsigned int txr_idx,
   1584				unsigned int rxr_count, unsigned int rxr_idx)
   1585{
   1586	struct fm10k_q_vector *q_vector;
   1587	struct fm10k_ring *ring;
   1588	int ring_count;
   1589
   1590	ring_count = txr_count + rxr_count;
   1591
   1592	/* allocate q_vector and rings */
   1593	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
   1594	if (!q_vector)
   1595		return -ENOMEM;
   1596
   1597	/* initialize NAPI */
   1598	netif_napi_add(interface->netdev, &q_vector->napi,
   1599		       fm10k_poll, NAPI_POLL_WEIGHT);
   1600
   1601	/* tie q_vector and interface together */
   1602	interface->q_vector[v_idx] = q_vector;
   1603	q_vector->interface = interface;
   1604	q_vector->v_idx = v_idx;
   1605
   1606	/* initialize pointer to rings */
   1607	ring = q_vector->ring;
   1608
   1609	/* save Tx ring container info */
   1610	q_vector->tx.ring = ring;
   1611	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
   1612	q_vector->tx.itr = interface->tx_itr;
   1613	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
   1614	q_vector->tx.count = txr_count;
   1615
   1616	while (txr_count) {
   1617		/* assign generic ring traits */
   1618		ring->dev = &interface->pdev->dev;
   1619		ring->netdev = interface->netdev;
   1620
   1621		/* configure backlink on ring */
   1622		ring->q_vector = q_vector;
   1623
   1624		/* apply Tx specific ring traits */
   1625		ring->count = interface->tx_ring_count;
   1626		ring->queue_index = txr_idx;
   1627
   1628		/* assign ring to interface */
   1629		interface->tx_ring[txr_idx] = ring;
   1630
   1631		/* update count and index */
   1632		txr_count--;
   1633		txr_idx += v_count;
   1634
   1635		/* push pointer to next ring */
   1636		ring++;
   1637	}
   1638
   1639	/* save Rx ring container info */
   1640	q_vector->rx.ring = ring;
   1641	q_vector->rx.itr = interface->rx_itr;
   1642	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
   1643	q_vector->rx.count = rxr_count;
   1644
   1645	while (rxr_count) {
   1646		/* assign generic ring traits */
   1647		ring->dev = &interface->pdev->dev;
   1648		ring->netdev = interface->netdev;
   1649		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
   1650
   1651		/* configure backlink on ring */
   1652		ring->q_vector = q_vector;
   1653
   1654		/* apply Rx specific ring traits */
   1655		ring->count = interface->rx_ring_count;
   1656		ring->queue_index = rxr_idx;
   1657
   1658		/* assign ring to interface */
   1659		interface->rx_ring[rxr_idx] = ring;
   1660
   1661		/* update count and index */
   1662		rxr_count--;
   1663		rxr_idx += v_count;
   1664
   1665		/* push pointer to next ring */
   1666		ring++;
   1667	}
   1668
   1669	fm10k_dbg_q_vector_init(q_vector);
   1670
   1671	return 0;
   1672}
   1673
   1674/**
   1675 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
   1676 * @interface: board private structure to initialize
   1677 * @v_idx: Index of vector to be freed
   1678 *
   1679 * This function frees the memory allocated to the q_vector.  In addition if
   1680 * NAPI is enabled it will delete any references to the NAPI struct prior
   1681 * to freeing the q_vector.
   1682 **/
   1683static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
   1684{
   1685	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
   1686	struct fm10k_ring *ring;
   1687
   1688	fm10k_dbg_q_vector_exit(q_vector);
   1689
   1690	fm10k_for_each_ring(ring, q_vector->tx)
   1691		interface->tx_ring[ring->queue_index] = NULL;
   1692
   1693	fm10k_for_each_ring(ring, q_vector->rx)
   1694		interface->rx_ring[ring->queue_index] = NULL;
   1695
   1696	interface->q_vector[v_idx] = NULL;
   1697	netif_napi_del(&q_vector->napi);
   1698	kfree_rcu(q_vector, rcu);
   1699}
   1700
   1701/**
   1702 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
   1703 * @interface: board private structure to initialize
   1704 *
   1705 * We allocate one q_vector per queue interrupt.  If allocation fails we
   1706 * return -ENOMEM.
   1707 **/
   1708static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
   1709{
   1710	unsigned int q_vectors = interface->num_q_vectors;
   1711	unsigned int rxr_remaining = interface->num_rx_queues;
   1712	unsigned int txr_remaining = interface->num_tx_queues;
   1713	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
   1714	int err;
   1715
   1716	if (q_vectors >= (rxr_remaining + txr_remaining)) {
   1717		for (; rxr_remaining; v_idx++) {
   1718			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
   1719						   0, 0, 1, rxr_idx);
   1720			if (err)
   1721				goto err_out;
   1722
   1723			/* update counts and index */
   1724			rxr_remaining--;
   1725			rxr_idx++;
   1726		}
   1727	}
   1728
   1729	for (; v_idx < q_vectors; v_idx++) {
   1730		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
   1731		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
   1732
   1733		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
   1734					   tqpv, txr_idx,
   1735					   rqpv, rxr_idx);
   1736
   1737		if (err)
   1738			goto err_out;
   1739
   1740		/* update counts and index */
   1741		rxr_remaining -= rqpv;
   1742		txr_remaining -= tqpv;
   1743		rxr_idx++;
   1744		txr_idx++;
   1745	}
   1746
   1747	return 0;
   1748
   1749err_out:
   1750	fm10k_reset_num_queues(interface);
   1751
   1752	while (v_idx--)
   1753		fm10k_free_q_vector(interface, v_idx);
   1754
   1755	return -ENOMEM;
   1756}
   1757
   1758/**
   1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
   1760 * @interface: board private structure to initialize
   1761 *
   1762 * This function frees the memory allocated to the q_vectors.  In addition if
   1763 * NAPI is enabled it will delete any references to the NAPI struct prior
   1764 * to freeing the q_vector.
   1765 **/
   1766static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
   1767{
   1768	int v_idx = interface->num_q_vectors;
   1769
   1770	fm10k_reset_num_queues(interface);
   1771
   1772	while (v_idx--)
   1773		fm10k_free_q_vector(interface, v_idx);
   1774}
   1775
   1776/**
   1777 * fm10k_reset_msix_capability - reset MSI-X capability
   1778 * @interface: board private structure to initialize
   1779 *
   1780 * Reset the MSI-X capability back to its starting state
   1781 **/
   1782static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
   1783{
   1784	pci_disable_msix(interface->pdev);
   1785	kfree(interface->msix_entries);
   1786	interface->msix_entries = NULL;
   1787}
   1788
   1789/**
   1790 * fm10k_init_msix_capability - configure MSI-X capability
   1791 * @interface: board private structure to initialize
   1792 *
   1793 * Attempt to configure the interrupts using the best available
   1794 * capabilities of the hardware and the kernel.
   1795 **/
   1796static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
   1797{
   1798	struct fm10k_hw *hw = &interface->hw;
   1799	int v_budget, vector;
   1800
   1801	/* It's easy to be greedy for MSI-X vectors, but it really
   1802	 * doesn't do us much good if we have a lot more vectors
   1803	 * than CPU's.  So let's be conservative and only ask for
   1804	 * (roughly) the same number of vectors as there are CPU's.
   1805	 * the default is to use pairs of vectors
   1806	 */
   1807	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
   1808	v_budget = min_t(u16, v_budget, num_online_cpus());
   1809
   1810	/* account for vectors not related to queues */
   1811	v_budget += NON_Q_VECTORS;
   1812
   1813	/* At the same time, hardware can only support a maximum of
   1814	 * hw.mac->max_msix_vectors vectors.  With features
   1815	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
   1816	 * descriptor queues supported by our device.  Thus, we cap it off in
   1817	 * those rare cases where the cpu count also exceeds our vector limit.
   1818	 */
   1819	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
   1820
   1821	/* A failure in MSI-X entry allocation is fatal. */
   1822	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
   1823					  GFP_KERNEL);
   1824	if (!interface->msix_entries)
   1825		return -ENOMEM;
   1826
   1827	/* populate entry values */
   1828	for (vector = 0; vector < v_budget; vector++)
   1829		interface->msix_entries[vector].entry = vector;
   1830
   1831	/* Attempt to enable MSI-X with requested value */
   1832	v_budget = pci_enable_msix_range(interface->pdev,
   1833					 interface->msix_entries,
   1834					 MIN_MSIX_COUNT(hw),
   1835					 v_budget);
   1836	if (v_budget < 0) {
   1837		kfree(interface->msix_entries);
   1838		interface->msix_entries = NULL;
   1839		return v_budget;
   1840	}
   1841
   1842	/* record the number of queues available for q_vectors */
   1843	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
   1844
   1845	return 0;
   1846}
   1847
   1848/**
   1849 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
   1850 * @interface: Interface structure continaining rings and devices
   1851 *
   1852 * Cache the descriptor ring offsets for Qos
   1853 **/
   1854static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
   1855{
   1856	struct net_device *dev = interface->netdev;
   1857	int pc, offset, rss_i, i;
   1858	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
   1859	u8 num_pcs = netdev_get_num_tc(dev);
   1860
   1861	if (num_pcs <= 1)
   1862		return false;
   1863
   1864	rss_i = interface->ring_feature[RING_F_RSS].indices;
   1865
   1866	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
   1867		int q_idx = pc;
   1868
   1869		for (i = 0; i < rss_i; i++) {
   1870			interface->tx_ring[offset + i]->reg_idx = q_idx;
   1871			interface->tx_ring[offset + i]->qos_pc = pc;
   1872			interface->rx_ring[offset + i]->reg_idx = q_idx;
   1873			interface->rx_ring[offset + i]->qos_pc = pc;
   1874			q_idx += pc_stride;
   1875		}
   1876	}
   1877
   1878	return true;
   1879}
   1880
   1881/**
   1882 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
   1883 * @interface: Interface structure continaining rings and devices
   1884 *
   1885 * Cache the descriptor ring offsets for RSS
   1886 **/
   1887static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
   1888{
   1889	int i;
   1890
   1891	for (i = 0; i < interface->num_rx_queues; i++)
   1892		interface->rx_ring[i]->reg_idx = i;
   1893
   1894	for (i = 0; i < interface->num_tx_queues; i++)
   1895		interface->tx_ring[i]->reg_idx = i;
   1896}
   1897
   1898/**
   1899 * fm10k_assign_rings - Map rings to network devices
   1900 * @interface: Interface structure containing rings and devices
   1901 *
   1902 * This function is meant to go though and configure both the network
   1903 * devices so that they contain rings, and configure the rings so that
   1904 * they function with their network devices.
   1905 **/
   1906static void fm10k_assign_rings(struct fm10k_intfc *interface)
   1907{
   1908	if (fm10k_cache_ring_qos(interface))
   1909		return;
   1910
   1911	fm10k_cache_ring_rss(interface);
   1912}
   1913
   1914static void fm10k_init_reta(struct fm10k_intfc *interface)
   1915{
   1916	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
   1917	u32 reta;
   1918
   1919	/* If the Rx flow indirection table has been configured manually, we
   1920	 * need to maintain it when possible.
   1921	 */
   1922	if (netif_is_rxfh_configured(interface->netdev)) {
   1923		for (i = FM10K_RETA_SIZE; i--;) {
   1924			reta = interface->reta[i];
   1925			if ((((reta << 24) >> 24) < rss_i) &&
   1926			    (((reta << 16) >> 24) < rss_i) &&
   1927			    (((reta <<  8) >> 24) < rss_i) &&
   1928			    (((reta)       >> 24) < rss_i))
   1929				continue;
   1930
   1931			/* this should never happen */
   1932			dev_err(&interface->pdev->dev,
   1933				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
   1934			goto repopulate_reta;
   1935		}
   1936
   1937		/* do nothing if all of the elements are in bounds */
   1938		return;
   1939	}
   1940
   1941repopulate_reta:
   1942	fm10k_write_reta(interface, NULL);
   1943}
   1944
   1945/**
   1946 * fm10k_init_queueing_scheme - Determine proper queueing scheme
   1947 * @interface: board private structure to initialize
   1948 *
   1949 * We determine which queueing scheme to use based on...
   1950 * - Hardware queue count (num_*_queues)
   1951 *   - defined by miscellaneous hardware support/features (RSS, etc.)
   1952 **/
   1953int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
   1954{
   1955	int err;
   1956
   1957	/* Number of supported queues */
   1958	fm10k_set_num_queues(interface);
   1959
   1960	/* Configure MSI-X capability */
   1961	err = fm10k_init_msix_capability(interface);
   1962	if (err) {
   1963		dev_err(&interface->pdev->dev,
   1964			"Unable to initialize MSI-X capability\n");
   1965		goto err_init_msix;
   1966	}
   1967
   1968	/* Allocate memory for queues */
   1969	err = fm10k_alloc_q_vectors(interface);
   1970	if (err) {
   1971		dev_err(&interface->pdev->dev,
   1972			"Unable to allocate queue vectors\n");
   1973		goto err_alloc_q_vectors;
   1974	}
   1975
   1976	/* Map rings to devices, and map devices to physical queues */
   1977	fm10k_assign_rings(interface);
   1978
   1979	/* Initialize RSS redirection table */
   1980	fm10k_init_reta(interface);
   1981
   1982	return 0;
   1983
   1984err_alloc_q_vectors:
   1985	fm10k_reset_msix_capability(interface);
   1986err_init_msix:
   1987	fm10k_reset_num_queues(interface);
   1988	return err;
   1989}
   1990
   1991/**
   1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
   1993 * @interface: board private structure to clear queueing scheme on
   1994 *
   1995 * We go through and clear queueing specific resources and reset the structure
   1996 * to pre-load conditions
   1997 **/
   1998void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
   1999{
   2000	fm10k_free_q_vectors(interface);
   2001	fm10k_reset_msix_capability(interface);
   2002}