cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fm10k_pf.c (57637B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2013 - 2019 Intel Corporation. */
      3
      4#include "fm10k_pf.h"
      5#include "fm10k_vf.h"
      6
      7/**
      8 *  fm10k_reset_hw_pf - PF hardware reset
      9 *  @hw: pointer to hardware structure
     10 *
     11 *  This function should return the hardware to a state similar to the
     12 *  one it is in after being powered on.
     13 **/
     14static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
     15{
     16	s32 err;
     17	u32 reg;
     18	u16 i;
     19
     20	/* Disable interrupts */
     21	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
     22
     23	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
     24	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
     25	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
     26
     27	/* We assume here Tx and Rx queue 0 are owned by the PF */
     28
     29	/* Shut off VF access to their queues forcing them to queue 0 */
     30	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
     31		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
     32		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
     33	}
     34
     35	/* shut down all rings */
     36	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
     37	if (err == FM10K_ERR_REQUESTS_PENDING) {
     38		hw->mac.reset_while_pending++;
     39		goto force_reset;
     40	} else if (err) {
     41		return err;
     42	}
     43
     44	/* Verify that DMA is no longer active */
     45	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
     46	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
     47		return FM10K_ERR_DMA_PENDING;
     48
     49force_reset:
     50	/* Inititate data path reset */
     51	reg = FM10K_DMA_CTRL_DATAPATH_RESET;
     52	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
     53
     54	/* Flush write and allow 100us for reset to complete */
     55	fm10k_write_flush(hw);
     56	udelay(FM10K_RESET_TIMEOUT);
     57
     58	/* Verify we made it out of reset */
     59	reg = fm10k_read_reg(hw, FM10K_IP);
     60	if (!(reg & FM10K_IP_NOTINRESET))
     61		return FM10K_ERR_RESET_FAILED;
     62
     63	return 0;
     64}
     65
     66/**
     67 *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
     68 *  @hw: pointer to hardware structure
     69 *
     70 *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
     71 **/
     72static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
     73{
     74	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
     75
     76	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
     77}
     78
     79/**
     80 *  fm10k_init_hw_pf - PF hardware initialization
     81 *  @hw: pointer to hardware structure
     82 *
     83 **/
     84static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
     85{
     86	u32 dma_ctrl, txqctl;
     87	u16 i;
     88
     89	/* Establish default VSI as valid */
     90	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
     91	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
     92			FM10K_DGLORTMAP_ANY);
     93
     94	/* Invalidate all other GLORT entries */
     95	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
     96		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
     97
     98	/* reset ITR2(0) to point to itself */
     99	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
    100
    101	/* reset VF ITR2(0) to point to 0 avoid PF registers */
    102	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
    103
    104	/* loop through all PF ITR2 registers pointing them to the previous */
    105	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
    106		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
    107
    108	/* Enable interrupt moderator if not already enabled */
    109	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
    110
    111	/* compute the default txqctl configuration */
    112	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
    113		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
    114
    115	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
    116		/* configure rings for 256 Queue / 32 Descriptor cache mode */
    117		fm10k_write_reg(hw, FM10K_TQDLOC(i),
    118				(i * FM10K_TQDLOC_BASE_32_DESC) |
    119				FM10K_TQDLOC_SIZE_32_DESC);
    120		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
    121
    122		/* configure rings to provide TPH processing hints */
    123		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
    124				FM10K_TPH_TXCTRL_DESC_TPHEN |
    125				FM10K_TPH_TXCTRL_DESC_RROEN |
    126				FM10K_TPH_TXCTRL_DESC_WROEN |
    127				FM10K_TPH_TXCTRL_DATA_RROEN);
    128		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
    129				FM10K_TPH_RXCTRL_DESC_TPHEN |
    130				FM10K_TPH_RXCTRL_DESC_RROEN |
    131				FM10K_TPH_RXCTRL_DATA_WROEN |
    132				FM10K_TPH_RXCTRL_HDR_WROEN);
    133	}
    134
    135	/* set max hold interval to align with 1.024 usec in all modes and
    136	 * store ITR scale
    137	 */
    138	switch (hw->bus.speed) {
    139	case fm10k_bus_speed_2500:
    140		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
    141		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1;
    142		break;
    143	case fm10k_bus_speed_5000:
    144		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
    145		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2;
    146		break;
    147	case fm10k_bus_speed_8000:
    148		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
    149		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
    150		break;
    151	default:
    152		dma_ctrl = 0;
    153		/* just in case, assume Gen3 ITR scale */
    154		hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3;
    155		break;
    156	}
    157
    158	/* Configure TSO flags */
    159	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
    160	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
    161
    162	/* Enable DMA engine
    163	 * Set Rx Descriptor size to 32
    164	 * Set Minimum MSS to 64
    165	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
    166	 */
    167	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
    168		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
    169		    FM10K_DMA_CTRL_32_DESC;
    170
    171	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
    172
    173	/* record maximum queue count, we limit ourselves to 128 */
    174	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
    175
    176	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
    177	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
    178
    179	return 0;
    180}
    181
    182/**
    183 *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
    184 *  @hw: pointer to hardware structure
    185 *  @vid: VLAN ID to add to table
    186 *  @vsi: Index indicating VF ID or PF ID in table
    187 *  @set: Indicates if this is a set or clear operation
    188 *
    189 *  This function adds or removes the corresponding VLAN ID from the VLAN
    190 *  filter table for the corresponding function.  In addition to the
    191 *  standard set/clear that supports one bit a multi-bit write is
    192 *  supported to set 64 bits at a time.
    193 **/
    194static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
    195{
    196	u32 vlan_table, reg, mask, bit, len;
    197
    198	/* verify the VSI index is valid */
    199	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
    200		return FM10K_ERR_PARAM;
    201
    202	/* VLAN multi-bit write:
    203	 * The multi-bit write has several parts to it.
    204	 *               24              16               8               0
    205	 *  7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
    206	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    207	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
    208	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    209	 *
    210	 * VLAN ID: Vlan Starting value
    211	 * RSVD0: Reserved section, must be 0
    212	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
    213	 * Length: Number of times to repeat the bit being set
    214	 */
    215	len = vid >> 16;
    216	vid = (vid << 17) >> 17;
    217
    218	/* verify the reserved 0 fields are 0 */
    219	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
    220		return FM10K_ERR_PARAM;
    221
    222	/* Loop through the table updating all required VLANs */
    223	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
    224	     len < FM10K_VLAN_TABLE_VID_MAX;
    225	     len -= 32 - bit, reg++, bit = 0) {
    226		/* record the initial state of the register */
    227		vlan_table = fm10k_read_reg(hw, reg);
    228
    229		/* truncate mask if we are at the start or end of the run */
    230		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
    231
    232		/* make necessary modifications to the register */
    233		mask &= set ? ~vlan_table : vlan_table;
    234		if (mask)
    235			fm10k_write_reg(hw, reg, vlan_table ^ mask);
    236	}
    237
    238	return 0;
    239}
    240
    241/**
    242 *  fm10k_read_mac_addr_pf - Read device MAC address
    243 *  @hw: pointer to the HW structure
    244 *
    245 *  Reads the device MAC address from the SM_AREA and stores the value.
    246 **/
    247static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
    248{
    249	u8 perm_addr[ETH_ALEN];
    250	u32 serial_num;
    251
    252	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
    253
    254	/* last byte should be all 1's */
    255	if ((~serial_num) << 24)
    256		return  FM10K_ERR_INVALID_MAC_ADDR;
    257
    258	perm_addr[0] = (u8)(serial_num >> 24);
    259	perm_addr[1] = (u8)(serial_num >> 16);
    260	perm_addr[2] = (u8)(serial_num >> 8);
    261
    262	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
    263
    264	/* first byte should be all 1's */
    265	if ((~serial_num) >> 24)
    266		return  FM10K_ERR_INVALID_MAC_ADDR;
    267
    268	perm_addr[3] = (u8)(serial_num >> 16);
    269	perm_addr[4] = (u8)(serial_num >> 8);
    270	perm_addr[5] = (u8)(serial_num);
    271
    272	ether_addr_copy(hw->mac.perm_addr, perm_addr);
    273	ether_addr_copy(hw->mac.addr, perm_addr);
    274
    275	return 0;
    276}
    277
    278/**
    279 *  fm10k_glort_valid_pf - Validate that the provided glort is valid
    280 *  @hw: pointer to the HW structure
    281 *  @glort: base glort to be validated
    282 *
    283 *  This function will return an error if the provided glort is invalid
    284 **/
    285bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
    286{
    287	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
    288
    289	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
    290}
    291
    292/**
    293 *  fm10k_update_xc_addr_pf - Update device addresses
    294 *  @hw: pointer to the HW structure
    295 *  @glort: base resource tag for this request
    296 *  @mac: MAC address to add/remove from table
    297 *  @vid: VLAN ID to add/remove from table
    298 *  @add: Indicates if this is an add or remove operation
    299 *  @flags: flags field to indicate add and secure
    300 *
    301 *  This function generates a message to the Switch API requesting
    302 *  that the given logical port add/remove the given L2 MAC/VLAN address.
    303 **/
    304static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
    305				   const u8 *mac, u16 vid, bool add, u8 flags)
    306{
    307	struct fm10k_mbx_info *mbx = &hw->mbx;
    308	struct fm10k_mac_update mac_update;
    309	u32 msg[5];
    310
    311	/* clear set bit from VLAN ID */
    312	vid &= ~FM10K_VLAN_CLEAR;
    313
    314	/* if glort or VLAN are not valid return error */
    315	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
    316		return FM10K_ERR_PARAM;
    317
    318	/* record fields */
    319	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
    320						 ((u32)mac[3] << 16) |
    321						 ((u32)mac[4] << 8) |
    322						 ((u32)mac[5]));
    323	mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) |
    324					   ((u16)mac[1]));
    325	mac_update.vlan = cpu_to_le16(vid);
    326	mac_update.glort = cpu_to_le16(glort);
    327	mac_update.action = add ? 0 : 1;
    328	mac_update.flags = flags;
    329
    330	/* populate mac_update fields */
    331	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
    332	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
    333				     &mac_update, sizeof(mac_update));
    334
    335	/* load onto outgoing mailbox */
    336	return mbx->ops.enqueue_tx(hw, mbx, msg);
    337}
    338
    339/**
    340 *  fm10k_update_uc_addr_pf - Update device unicast addresses
    341 *  @hw: pointer to the HW structure
    342 *  @glort: base resource tag for this request
    343 *  @mac: MAC address to add/remove from table
    344 *  @vid: VLAN ID to add/remove from table
    345 *  @add: Indicates if this is an add or remove operation
    346 *  @flags: flags field to indicate add and secure
    347 *
    348 *  This function is used to add or remove unicast addresses for
    349 *  the PF.
    350 **/
    351static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
    352				   const u8 *mac, u16 vid, bool add, u8 flags)
    353{
    354	/* verify MAC address is valid */
    355	if (!is_valid_ether_addr(mac))
    356		return FM10K_ERR_PARAM;
    357
    358	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
    359}
    360
    361/**
    362 *  fm10k_update_mc_addr_pf - Update device multicast addresses
    363 *  @hw: pointer to the HW structure
    364 *  @glort: base resource tag for this request
    365 *  @mac: MAC address to add/remove from table
    366 *  @vid: VLAN ID to add/remove from table
    367 *  @add: Indicates if this is an add or remove operation
    368 *
    369 *  This function is used to add or remove multicast MAC addresses for
    370 *  the PF.
    371 **/
    372static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
    373				   const u8 *mac, u16 vid, bool add)
    374{
    375	/* verify multicast address is valid */
    376	if (!is_multicast_ether_addr(mac))
    377		return FM10K_ERR_PARAM;
    378
    379	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
    380}
    381
    382/**
    383 *  fm10k_update_xcast_mode_pf - Request update of multicast mode
    384 *  @hw: pointer to hardware structure
    385 *  @glort: base resource tag for this request
    386 *  @mode: integer value indicating mode being requested
    387 *
    388 *  This function will attempt to request a higher mode for the port
    389 *  so that it can enable either multicast, multicast promiscuous, or
    390 *  promiscuous mode of operation.
    391 **/
    392static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
    393{
    394	struct fm10k_mbx_info *mbx = &hw->mbx;
    395	u32 msg[3], xcast_mode;
    396
    397	if (mode > FM10K_XCAST_MODE_NONE)
    398		return FM10K_ERR_PARAM;
    399
    400	/* if glort is not valid return error */
    401	if (!fm10k_glort_valid_pf(hw, glort))
    402		return FM10K_ERR_PARAM;
    403
    404	/* write xcast mode as a single u32 value,
    405	 * lower 16 bits: glort
    406	 * upper 16 bits: mode
    407	 */
    408	xcast_mode = ((u32)mode << 16) | glort;
    409
    410	/* generate message requesting to change xcast mode */
    411	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
    412	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
    413
    414	/* load onto outgoing mailbox */
    415	return mbx->ops.enqueue_tx(hw, mbx, msg);
    416}
    417
    418/**
    419 *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
    420 *  @hw: pointer to hardware structure
    421 *
    422 *  This function walks through the MSI-X vector table to determine the
    423 *  number of active interrupts and based on that information updates the
    424 *  interrupt moderator linked list.
    425 **/
    426static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
    427{
    428	u32 i;
    429
    430	/* Disable interrupt moderator */
    431	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
    432
    433	/* loop through PF from last to first looking enabled vectors */
    434	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
    435		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
    436			break;
    437	}
    438
    439	/* always reset VFITR2[0] to point to last enabled PF vector */
    440	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
    441
    442	/* reset ITR2[0] to point to last enabled PF vector */
    443	if (!hw->iov.num_vfs)
    444		fm10k_write_reg(hw, FM10K_ITR2(0), i);
    445
    446	/* Enable interrupt moderator */
    447	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
    448}
    449
    450/**
    451 *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
    452 *  @hw: pointer to the HW structure
    453 *  @glort: base resource tag for this request
    454 *  @count: number of logical ports being updated
    455 *  @enable: boolean value indicating enable or disable
    456 *
    457 *  This function is used to add/remove a logical port from the switch.
    458 **/
    459static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
    460				       u16 count, bool enable)
    461{
    462	struct fm10k_mbx_info *mbx = &hw->mbx;
    463	u32 msg[3], lport_msg;
    464
    465	/* do nothing if we are being asked to create or destroy 0 ports */
    466	if (!count)
    467		return 0;
    468
    469	/* if glort is not valid return error */
    470	if (!fm10k_glort_valid_pf(hw, glort))
    471		return FM10K_ERR_PARAM;
    472
    473	/* reset multicast mode if deleting lport */
    474	if (!enable)
    475		fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE);
    476
    477	/* construct the lport message from the 2 pieces of data we have */
    478	lport_msg = ((u32)count << 16) | glort;
    479
    480	/* generate lport create/delete message */
    481	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
    482					 FM10K_PF_MSG_ID_LPORT_DELETE);
    483	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
    484
    485	/* load onto outgoing mailbox */
    486	return mbx->ops.enqueue_tx(hw, mbx, msg);
    487}
    488
    489/**
    490 *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
    491 *  @hw: pointer to hardware structure
    492 *  @dglort: pointer to dglort configuration structure
    493 *
    494 *  Reads the configuration structure contained in dglort_cfg and uses
    495 *  that information to then populate a DGLORTMAP/DEC entry and the queues
    496 *  to which it has been assigned.
    497 **/
    498static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
    499					 struct fm10k_dglort_cfg *dglort)
    500{
    501	u16 glort, queue_count, vsi_count, pc_count;
    502	u16 vsi, queue, pc, q_idx;
    503	u32 txqctl, dglortdec, dglortmap;
    504
    505	/* verify the dglort pointer */
    506	if (!dglort)
    507		return FM10K_ERR_PARAM;
    508
    509	/* verify the dglort values */
    510	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
    511	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
    512	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
    513		return FM10K_ERR_PARAM;
    514
    515	/* determine count of VSIs and queues */
    516	queue_count = BIT(dglort->rss_l + dglort->pc_l);
    517	vsi_count = BIT(dglort->vsi_l + dglort->queue_l);
    518	glort = dglort->glort;
    519	q_idx = dglort->queue_b;
    520
    521	/* configure SGLORT for queues */
    522	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
    523		for (queue = 0; queue < queue_count; queue++, q_idx++) {
    524			if (q_idx >= FM10K_MAX_QUEUES)
    525				break;
    526
    527			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
    528			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
    529		}
    530	}
    531
    532	/* determine count of PCs and queues */
    533	queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l);
    534	pc_count = BIT(dglort->pc_l);
    535
    536	/* configure PC for Tx queues */
    537	for (pc = 0; pc < pc_count; pc++) {
    538		q_idx = pc + dglort->queue_b;
    539		for (queue = 0; queue < queue_count; queue++) {
    540			if (q_idx >= FM10K_MAX_QUEUES)
    541				break;
    542
    543			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
    544			txqctl &= ~FM10K_TXQCTL_PC_MASK;
    545			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
    546			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
    547
    548			q_idx += pc_count;
    549		}
    550	}
    551
    552	/* configure DGLORTDEC */
    553	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
    554		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
    555		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
    556		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
    557		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
    558		    ((u32)(dglort->queue_l));
    559	if (dglort->inner_rss)
    560		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
    561
    562	/* configure DGLORTMAP */
    563	dglortmap = (dglort->idx == fm10k_dglort_default) ?
    564			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
    565	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
    566	dglortmap |= dglort->glort;
    567
    568	/* write values to hardware */
    569	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
    570	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
    571
    572	return 0;
    573}
    574
    575u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
    576{
    577	u16 num_pools = hw->iov.num_pools;
    578
    579	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
    580	       8 : FM10K_MAX_QUEUES_POOL;
    581}
    582
    583u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
    584{
    585	u16 num_vfs = hw->iov.num_vfs;
    586	u16 vf_q_idx = FM10K_MAX_QUEUES;
    587
    588	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
    589
    590	return vf_q_idx;
    591}
    592
    593static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
    594{
    595	u16 num_pools = hw->iov.num_pools;
    596
    597	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
    598	       FM10K_MAX_VECTORS_POOL;
    599}
    600
    601static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
    602{
    603	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
    604
    605	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
    606
    607	return vf_v_idx;
    608}
    609
    610/**
    611 *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
    612 *  @hw: pointer to the HW structure
    613 *  @num_vfs: number of VFs to be allocated
    614 *  @num_pools: number of virtualization pools to be allocated
    615 *
    616 *  Allocates queues and traffic classes to virtualization entities to prepare
    617 *  the PF for SR-IOV and VMDq
    618 **/
    619static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
    620					 u16 num_pools)
    621{
    622	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
    623	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
    624	int i, j;
    625
    626	/* hardware only supports up to 64 pools */
    627	if (num_pools > 64)
    628		return FM10K_ERR_PARAM;
    629
    630	/* the number of VFs cannot exceed the number of pools */
    631	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
    632		return FM10K_ERR_PARAM;
    633
    634	/* record number of virtualization entities */
    635	hw->iov.num_vfs = num_vfs;
    636	hw->iov.num_pools = num_pools;
    637
    638	/* determine qmap offsets and counts */
    639	qmap_stride = (num_vfs > 8) ? 32 : 256;
    640	qpp = fm10k_queues_per_pool(hw);
    641	vpp = fm10k_vectors_per_pool(hw);
    642
    643	/* calculate starting index for queues */
    644	vf_q_idx = fm10k_vf_queue_index(hw, 0);
    645	qmap_idx = 0;
    646
    647	/* establish TCs with -1 credits and no quanta to prevent transmit */
    648	for (i = 0; i < num_vfs; i++) {
    649		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
    650		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
    651		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
    652				FM10K_TC_CREDIT_CREDIT_MASK);
    653	}
    654
    655	/* zero out all mbmem registers */
    656	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
    657		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
    658
    659	/* clear event notification of VF FLR */
    660	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
    661	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
    662
    663	/* loop through unallocated rings assigning them back to PF */
    664	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
    665		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
    666		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
    667				FM10K_TXQCTL_UNLIMITED_BW | vid);
    668		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
    669	}
    670
    671	/* PF should have already updated VFITR2[0] */
    672
    673	/* update all ITR registers to flow to VFITR2[0] */
    674	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
    675		if (!(i & (vpp - 1)))
    676			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
    677		else
    678			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
    679	}
    680
    681	/* update PF ITR2[0] to reference the last vector */
    682	fm10k_write_reg(hw, FM10K_ITR2(0),
    683			fm10k_vf_vector_index(hw, num_vfs - 1));
    684
    685	/* loop through rings populating rings and TCs */
    686	for (i = 0; i < num_vfs; i++) {
    687		/* record index for VF queue 0 for use in end of loop */
    688		vf_q_idx0 = vf_q_idx;
    689
    690		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
    691			/* assign VF and locked TC to queues */
    692			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
    693			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
    694					(i << FM10K_TXQCTL_TC_SHIFT) | i |
    695					FM10K_TXQCTL_VF | vid);
    696			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
    697					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
    698					FM10K_RXDCTL_DROP_ON_EMPTY);
    699			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
    700					(i << FM10K_RXQCTL_VF_SHIFT) |
    701					FM10K_RXQCTL_VF);
    702
    703			/* map queue pair to VF */
    704			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
    705			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
    706		}
    707
    708		/* repeat the first ring for all of the remaining VF rings */
    709		for (; j < qmap_stride; j++, qmap_idx++) {
    710			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
    711			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
    712		}
    713	}
    714
    715	/* loop through remaining indexes assigning all to queue 0 */
    716	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
    717		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
    718		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
    719		qmap_idx++;
    720	}
    721
    722	return 0;
    723}
    724
    725/**
    726 *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
    727 *  @hw: pointer to the HW structure
    728 *  @vf_idx: index of VF receiving GLORT
    729 *  @rate: Rate indicated in Mb/s
    730 *
    731 *  Configured the TC for a given VF to allow only up to a given number
    732 *  of Mb/s of outgoing Tx throughput.
    733 **/
    734static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
    735{
    736	/* configure defaults */
    737	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
    738	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
    739
    740	/* verify vf is in range */
    741	if (vf_idx >= hw->iov.num_vfs)
    742		return FM10K_ERR_PARAM;
    743
    744	/* set interval to align with 4.096 usec in all modes */
    745	switch (hw->bus.speed) {
    746	case fm10k_bus_speed_2500:
    747		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
    748		break;
    749	case fm10k_bus_speed_5000:
    750		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
    751		break;
    752	default:
    753		break;
    754	}
    755
    756	if (rate) {
    757		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
    758			return FM10K_ERR_PARAM;
    759
    760		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
    761		 * The rate is provided in Mbits per second
    762		 * To tralslate from rate to quanta we need to multiply the
    763		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
    764		 * dealing with floating point we can round the values up
    765		 * to the nearest whole number ratio which gives us 128 / 125.
    766		 */
    767		tc_rate = (rate * 128) / 125;
    768
    769		/* try to keep the rate limiting accurate by increasing
    770		 * the number of credits and interval for rates less than 4Gb/s
    771		 */
    772		if (rate < 4000)
    773			interval <<= 1;
    774		else
    775			tc_rate >>= 1;
    776	}
    777
    778	/* update rate limiter with new values */
    779	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
    780	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
    781	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
    782
    783	return 0;
    784}
    785
    786/**
    787 *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
    788 *  @hw: pointer to the HW structure
    789 *  @vf_idx: index of VF receiving GLORT
    790 *
    791 *  Update the interrupt moderator linked list to include any MSI-X
    792 *  interrupts which the VF has enabled in the MSI-X vector table.
    793 **/
    794static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
    795{
    796	u16 vf_v_idx, vf_v_limit, i;
    797
    798	/* verify vf is in range */
    799	if (vf_idx >= hw->iov.num_vfs)
    800		return FM10K_ERR_PARAM;
    801
    802	/* determine vector offset and count */
    803	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
    804	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
    805
    806	/* search for first vector that is not masked */
    807	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
    808		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
    809			break;
    810	}
    811
    812	/* reset linked list so it now includes our active vectors */
    813	if (vf_idx == (hw->iov.num_vfs - 1))
    814		fm10k_write_reg(hw, FM10K_ITR2(0), i);
    815	else
    816		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
    817
    818	return 0;
    819}
    820
    821/**
    822 *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
    823 *  @hw: pointer to the HW structure
    824 *  @vf_info: pointer to VF information structure
    825 *
    826 *  Assign a MAC address and default VLAN to a VF and notify it of the update
    827 **/
    828static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
    829						struct fm10k_vf_info *vf_info)
    830{
    831	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
    832	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
    833	s32 err = 0;
    834	u16 vf_idx, vf_vid;
    835
    836	/* verify vf is in range */
    837	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
    838		return FM10K_ERR_PARAM;
    839
    840	/* determine qmap offsets and counts */
    841	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
    842	queues_per_pool = fm10k_queues_per_pool(hw);
    843
    844	/* calculate starting index for queues */
    845	vf_idx = vf_info->vf_idx;
    846	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
    847	qmap_idx = qmap_stride * vf_idx;
    848
    849	/* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is
    850	 * used here to indicate to the VF that it will not have privilege to
    851	 * write VLAN_TABLE. All policy is enforced on the PF but this allows
    852	 * the VF to correctly report errors to userspace requests.
    853	 */
    854	if (vf_info->pf_vid)
    855		vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE;
    856	else
    857		vf_vid = vf_info->sw_vid;
    858
    859	/* generate MAC_ADDR request */
    860	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
    861	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
    862				    vf_info->mac, vf_vid);
    863
    864	/* Configure Queue control register with new VLAN ID. The TXQCTL
    865	 * register is RO from the VF, so the PF must do this even in the
    866	 * case of notifying the VF of a new VID via the mailbox.
    867	 */
    868	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
    869		 FM10K_TXQCTL_VID_MASK;
    870	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
    871		  FM10K_TXQCTL_VF | vf_idx;
    872
    873	for (i = 0; i < queues_per_pool; i++)
    874		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
    875
    876	/* try loading a message onto outgoing mailbox first */
    877	if (vf_info->mbx.ops.enqueue_tx) {
    878		err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
    879		if (err != FM10K_MBX_ERR_NO_MBX)
    880			return err;
    881		err = 0;
    882	}
    883
    884	/* If we aren't connected to a mailbox, this is most likely because
    885	 * the VF driver is not running. It should thus be safe to re-map
    886	 * queues and use the registers to pass the MAC address so that the VF
    887	 * driver gets correct information during its initialization.
    888	 */
    889
    890	/* MAP Tx queue back to 0 temporarily, and disable it */
    891	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
    892	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
    893
    894	/* verify ring has disabled before modifying base address registers */
    895	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
    896	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
    897		/* limit ourselves to a 1ms timeout */
    898		if (timeout == 10) {
    899			err = FM10K_ERR_DMA_PENDING;
    900			goto err_out;
    901		}
    902
    903		usleep_range(100, 200);
    904		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
    905	}
    906
    907	/* Update base address registers to contain MAC address */
    908	if (is_valid_ether_addr(vf_info->mac)) {
    909		tdbal = (((u32)vf_info->mac[3]) << 24) |
    910			(((u32)vf_info->mac[4]) << 16) |
    911			(((u32)vf_info->mac[5]) << 8);
    912
    913		tdbah = (((u32)0xFF)	        << 24) |
    914			(((u32)vf_info->mac[0]) << 16) |
    915			(((u32)vf_info->mac[1]) << 8) |
    916			((u32)vf_info->mac[2]);
    917	}
    918
    919	/* Record the base address into queue 0 */
    920	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
    921	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
    922
    923	/* Provide the VF the ITR scale, using software-defined fields in TDLEN
    924	 * to pass the information during VF initialization. See definition of
    925	 * FM10K_TDLEN_ITR_SCALE_SHIFT for more details.
    926	 */
    927	fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale <<
    928						   FM10K_TDLEN_ITR_SCALE_SHIFT);
    929
    930err_out:
    931	/* restore the queue back to VF ownership */
    932	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
    933	return err;
    934}
    935
    936/**
    937 *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
    938 *  @hw: pointer to the HW structure
    939 *  @vf_info: pointer to VF information structure
    940 *
    941 *  Reassign the interrupts and queues to a VF following an FLR
    942 **/
    943static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
    944					struct fm10k_vf_info *vf_info)
    945{
    946	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
    947	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
    948	u16 vf_v_idx, vf_v_limit, vf_vid;
    949	u8 vf_idx = vf_info->vf_idx;
    950	int i;
    951
    952	/* verify vf is in range */
    953	if (vf_idx >= hw->iov.num_vfs)
    954		return FM10K_ERR_PARAM;
    955
    956	/* clear event notification of VF FLR */
    957	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32));
    958
    959	/* force timeout and then disconnect the mailbox */
    960	vf_info->mbx.timeout = 0;
    961	if (vf_info->mbx.ops.disconnect)
    962		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
    963
    964	/* determine vector offset and count */
    965	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
    966	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
    967
    968	/* determine qmap offsets and counts */
    969	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
    970	queues_per_pool = fm10k_queues_per_pool(hw);
    971	qmap_idx = qmap_stride * vf_idx;
    972
    973	/* make all the queues inaccessible to the VF */
    974	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
    975		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
    976		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
    977	}
    978
    979	/* calculate starting index for queues */
    980	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
    981
    982	/* determine correct default VLAN ID */
    983	if (vf_info->pf_vid)
    984		vf_vid = vf_info->pf_vid;
    985	else
    986		vf_vid = vf_info->sw_vid;
    987
    988	/* configure Queue control register */
    989	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
    990		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
    991		 FM10K_TXQCTL_VF | vf_idx;
    992	rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF;
    993
    994	/* stop further DMA and reset queue ownership back to VF */
    995	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
    996		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
    997		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
    998		fm10k_write_reg(hw, FM10K_RXDCTL(i),
    999				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
   1000				FM10K_RXDCTL_DROP_ON_EMPTY);
   1001		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
   1002	}
   1003
   1004	/* reset TC with -1 credits and no quanta to prevent transmit */
   1005	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
   1006	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
   1007	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
   1008			FM10K_TC_CREDIT_CREDIT_MASK);
   1009
   1010	/* update our first entry in the table based on previous VF */
   1011	if (!vf_idx)
   1012		hw->mac.ops.update_int_moderator(hw);
   1013	else
   1014		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
   1015
   1016	/* reset linked list so it now includes our active vectors */
   1017	if (vf_idx == (hw->iov.num_vfs - 1))
   1018		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
   1019	else
   1020		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
   1021
   1022	/* link remaining vectors so that next points to previous */
   1023	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
   1024		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
   1025
   1026	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
   1027	for (i = FM10K_VFMBMEM_LEN; i--;)
   1028		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
   1029	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
   1030		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
   1031	for (i = FM10K_RETA_SIZE; i--;)
   1032		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
   1033	for (i = FM10K_RSSRK_SIZE; i--;)
   1034		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
   1035	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
   1036
   1037	/* Update base address registers to contain MAC address */
   1038	if (is_valid_ether_addr(vf_info->mac)) {
   1039		tdbal = (((u32)vf_info->mac[3]) << 24) |
   1040			(((u32)vf_info->mac[4]) << 16) |
   1041			(((u32)vf_info->mac[5]) << 8);
   1042		tdbah = (((u32)0xFF)	   << 24) |
   1043			(((u32)vf_info->mac[0]) << 16) |
   1044			(((u32)vf_info->mac[1]) << 8) |
   1045			((u32)vf_info->mac[2]);
   1046	}
   1047
   1048	/* map queue pairs back to VF from last to first */
   1049	for (i = queues_per_pool; i--;) {
   1050		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
   1051		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
   1052		/* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an
   1053		 * explanation of how TDLEN is used.
   1054		 */
   1055		fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i),
   1056				hw->mac.itr_scale <<
   1057				FM10K_TDLEN_ITR_SCALE_SHIFT);
   1058		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
   1059		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
   1060	}
   1061
   1062	/* repeat the first ring for all the remaining VF rings */
   1063	for (i = queues_per_pool; i < qmap_stride; i++) {
   1064		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
   1065		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
   1066	}
   1067
   1068	return 0;
   1069}
   1070
   1071/**
   1072 *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
   1073 *  @hw: pointer to hardware structure
   1074 *  @vf_info: pointer to VF information structure
   1075 *  @lport_idx: Logical port offset from the hardware glort
   1076 *  @flags: Set of capability flags to extend port beyond basic functionality
   1077 *
   1078 *  This function allows enabling a VF port by assigning it a GLORT and
   1079 *  setting the flags so that it can enable an Rx mode.
   1080 **/
   1081static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
   1082				  struct fm10k_vf_info *vf_info,
   1083				  u16 lport_idx, u8 flags)
   1084{
   1085	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
   1086
   1087	/* if glort is not valid return error */
   1088	if (!fm10k_glort_valid_pf(hw, glort))
   1089		return FM10K_ERR_PARAM;
   1090
   1091	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
   1092	vf_info->glort = glort;
   1093
   1094	return 0;
   1095}
   1096
   1097/**
   1098 *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
   1099 *  @hw: pointer to hardware structure
   1100 *  @vf_info: pointer to VF information structure
   1101 *
   1102 *  This function disables a VF port by stripping it of a GLORT and
   1103 *  setting the flags so that it cannot enable any Rx mode.
   1104 **/
   1105static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
   1106				     struct fm10k_vf_info *vf_info)
   1107{
   1108	u32 msg[1];
   1109
   1110	/* need to disable the port if it is already enabled */
   1111	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
   1112		/* notify switch that this port has been disabled */
   1113		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
   1114
   1115		/* generate port state response to notify VF it is not ready */
   1116		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
   1117		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
   1118	}
   1119
   1120	/* clear flags and glort if it exists */
   1121	vf_info->vf_flags = 0;
   1122	vf_info->glort = 0;
   1123}
   1124
   1125/**
   1126 *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
   1127 *  @hw: pointer to hardware structure
   1128 *  @q: stats for all queues of a VF
   1129 *  @vf_idx: index of VF
   1130 *
   1131 *  This function collects queue stats for VFs.
   1132 **/
   1133static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
   1134				      struct fm10k_hw_stats_q *q,
   1135				      u16 vf_idx)
   1136{
   1137	u32 idx, qpp;
   1138
   1139	/* get stats for all of the queues */
   1140	qpp = fm10k_queues_per_pool(hw);
   1141	idx = fm10k_vf_queue_index(hw, vf_idx);
   1142	fm10k_update_hw_stats_q(hw, q, idx, qpp);
   1143}
   1144
   1145/**
   1146 *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
   1147 *  @hw: Pointer to hardware structure
   1148 *  @results: Pointer array to message, results[0] is pointer to message
   1149 *  @mbx: Pointer to mailbox information structure
   1150 *
   1151 *  This function is a default handler for MSI-X requests from the VF. The
   1152 *  assumption is that in this case it is acceptable to just directly
   1153 *  hand off the message from the VF to the underlying shared code.
   1154 **/
   1155s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 __always_unused **results,
   1156			  struct fm10k_mbx_info *mbx)
   1157{
   1158	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
   1159	u8 vf_idx = vf_info->vf_idx;
   1160
   1161	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
   1162}
   1163
   1164/**
   1165 * fm10k_iov_select_vid - Select correct default VLAN ID
   1166 * @vf_info: pointer to VF information structure
   1167 * @vid: VLAN ID to correct
   1168 *
   1169 * Will report an error if the VLAN ID is out of range. For VID = 0, it will
   1170 * return either the pf_vid or sw_vid depending on which one is set.
   1171 */
   1172s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid)
   1173{
   1174	if (!vid)
   1175		return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid;
   1176	else if (vf_info->pf_vid && vid != vf_info->pf_vid)
   1177		return FM10K_ERR_PARAM;
   1178	else
   1179		return vid;
   1180}
   1181
   1182/**
   1183 *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
   1184 *  @hw: Pointer to hardware structure
   1185 *  @results: Pointer array to message, results[0] is pointer to message
   1186 *  @mbx: Pointer to mailbox information structure
   1187 *
   1188 *  This function is a default handler for MAC/VLAN requests from the VF.
   1189 *  The assumption is that in this case it is acceptable to just directly
   1190 *  hand off the message from the VF to the underlying shared code.
   1191 **/
   1192s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
   1193			      struct fm10k_mbx_info *mbx)
   1194{
   1195	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
   1196	u8 mac[ETH_ALEN];
   1197	u32 *result;
   1198	int err = 0;
   1199	bool set;
   1200	u16 vlan;
   1201	u32 vid;
   1202
   1203	/* we shouldn't be updating rules on a disabled interface */
   1204	if (!FM10K_VF_FLAG_ENABLED(vf_info))
   1205		err = FM10K_ERR_PARAM;
   1206
   1207	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
   1208		result = results[FM10K_MAC_VLAN_MSG_VLAN];
   1209
   1210		/* record VLAN id requested */
   1211		err = fm10k_tlv_attr_get_u32(result, &vid);
   1212		if (err)
   1213			return err;
   1214
   1215		set = !(vid & FM10K_VLAN_CLEAR);
   1216		vid &= ~FM10K_VLAN_CLEAR;
   1217
   1218		/* if the length field has been set, this is a multi-bit
   1219		 * update request. For multi-bit requests, simply disallow
   1220		 * them when the pf_vid has been set. In this case, the PF
   1221		 * should have already cleared the VLAN_TABLE, and if we
   1222		 * allowed them, it could allow a rogue VF to receive traffic
   1223		 * on a VLAN it was not assigned. In the single-bit case, we
   1224		 * need to modify requests for VLAN 0 to use the default PF or
   1225		 * SW vid when assigned.
   1226		 */
   1227
   1228		if (vid >> 16) {
   1229			/* prevent multi-bit requests when PF has
   1230			 * administratively set the VLAN for this VF
   1231			 */
   1232			if (vf_info->pf_vid)
   1233				return FM10K_ERR_PARAM;
   1234		} else {
   1235			err = fm10k_iov_select_vid(vf_info, (u16)vid);
   1236			if (err < 0)
   1237				return err;
   1238
   1239			vid = err;
   1240		}
   1241
   1242		/* update VSI info for VF in regards to VLAN table */
   1243		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set);
   1244	}
   1245
   1246	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
   1247		result = results[FM10K_MAC_VLAN_MSG_MAC];
   1248
   1249		/* record unicast MAC address requested */
   1250		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
   1251		if (err)
   1252			return err;
   1253
   1254		/* block attempts to set MAC for a locked device */
   1255		if (is_valid_ether_addr(vf_info->mac) &&
   1256		    !ether_addr_equal(mac, vf_info->mac))
   1257			return FM10K_ERR_PARAM;
   1258
   1259		set = !(vlan & FM10K_VLAN_CLEAR);
   1260		vlan &= ~FM10K_VLAN_CLEAR;
   1261
   1262		err = fm10k_iov_select_vid(vf_info, vlan);
   1263		if (err < 0)
   1264			return err;
   1265
   1266		vlan = (u16)err;
   1267
   1268		/* notify switch of request for new unicast address */
   1269		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort,
   1270						 mac, vlan, set, 0);
   1271	}
   1272
   1273	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
   1274		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
   1275
   1276		/* record multicast MAC address requested */
   1277		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
   1278		if (err)
   1279			return err;
   1280
   1281		/* verify that the VF is allowed to request multicast */
   1282		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
   1283			return FM10K_ERR_PARAM;
   1284
   1285		set = !(vlan & FM10K_VLAN_CLEAR);
   1286		vlan &= ~FM10K_VLAN_CLEAR;
   1287
   1288		err = fm10k_iov_select_vid(vf_info, vlan);
   1289		if (err < 0)
   1290			return err;
   1291
   1292		vlan = (u16)err;
   1293
   1294		/* notify switch of request for new multicast address */
   1295		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort,
   1296						 mac, vlan, set);
   1297	}
   1298
   1299	return err;
   1300}
   1301
   1302/**
   1303 *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
   1304 *  @vf_info: VF info structure containing capability flags
   1305 *  @mode: Requested xcast mode
   1306 *
   1307 *  This function outputs the mode that most closely matches the requested
   1308 *  mode.  If not modes match it will request we disable the port
   1309 **/
   1310static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
   1311					    u8 mode)
   1312{
   1313	u8 vf_flags = vf_info->vf_flags;
   1314
   1315	/* match up mode to capabilities as best as possible */
   1316	switch (mode) {
   1317	case FM10K_XCAST_MODE_PROMISC:
   1318		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
   1319			return FM10K_XCAST_MODE_PROMISC;
   1320		fallthrough;
   1321	case FM10K_XCAST_MODE_ALLMULTI:
   1322		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
   1323			return FM10K_XCAST_MODE_ALLMULTI;
   1324		fallthrough;
   1325	case FM10K_XCAST_MODE_MULTI:
   1326		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
   1327			return FM10K_XCAST_MODE_MULTI;
   1328		fallthrough;
   1329	case FM10K_XCAST_MODE_NONE:
   1330		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
   1331			return FM10K_XCAST_MODE_NONE;
   1332		fallthrough;
   1333	default:
   1334		break;
   1335	}
   1336
   1337	/* disable interface as it should not be able to request any */
   1338	return FM10K_XCAST_MODE_DISABLE;
   1339}
   1340
   1341/**
   1342 *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
   1343 *  @hw: Pointer to hardware structure
   1344 *  @results: Pointer array to message, results[0] is pointer to message
   1345 *  @mbx: Pointer to mailbox information structure
   1346 *
   1347 *  This function is a default handler for port state requests.  The port
   1348 *  state requests for now are basic and consist of enabling or disabling
   1349 *  the port.
   1350 **/
   1351s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
   1352				 struct fm10k_mbx_info *mbx)
   1353{
   1354	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
   1355	s32 err = 0;
   1356	u32 msg[2];
   1357	u8 mode = 0;
   1358
   1359	/* verify VF is allowed to enable even minimal mode */
   1360	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
   1361		return FM10K_ERR_PARAM;
   1362
   1363	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
   1364		u32 *result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
   1365
   1366		/* XCAST mode update requested */
   1367		err = fm10k_tlv_attr_get_u8(result, &mode);
   1368		if (err)
   1369			return FM10K_ERR_PARAM;
   1370
   1371		/* prep for possible demotion depending on capabilities */
   1372		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
   1373
   1374		/* if mode is not currently enabled, enable it */
   1375		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode)))
   1376			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
   1377
   1378		/* swap mode back to a bit flag */
   1379		mode = FM10K_VF_FLAG_SET_MODE(mode);
   1380	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
   1381		/* need to disable the port if it is already enabled */
   1382		if (FM10K_VF_FLAG_ENABLED(vf_info))
   1383			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
   1384							  1, false);
   1385
   1386		/* we need to clear VF_FLAG_ENABLED flags in order to ensure
   1387		 * that we actually re-enable the LPORT state below. Note that
   1388		 * this has no impact if the VF is already disabled, as the
   1389		 * flags are already cleared.
   1390		 */
   1391		if (!err)
   1392			vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
   1393
   1394		/* when enabling the port we should reset the rate limiters */
   1395		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
   1396
   1397		/* set mode for minimal functionality */
   1398		mode = FM10K_VF_FLAG_SET_MODE_NONE;
   1399
   1400		/* generate port state response to notify VF it is ready */
   1401		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
   1402		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
   1403		mbx->ops.enqueue_tx(hw, mbx, msg);
   1404	}
   1405
   1406	/* if enable state toggled note the update */
   1407	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
   1408		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
   1409						  !!mode);
   1410
   1411	/* if state change succeeded, then update our stored state */
   1412	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
   1413	if (!err)
   1414		vf_info->vf_flags = mode;
   1415
   1416	return err;
   1417}
   1418
   1419/**
   1420 *  fm10k_update_hw_stats_pf - Updates hardware related statistics of PF
   1421 *  @hw: pointer to hardware structure
   1422 *  @stats: pointer to the stats structure to update
   1423 *
   1424 *  This function collects and aggregates global and per queue hardware
   1425 *  statistics.
   1426 **/
   1427static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
   1428				     struct fm10k_hw_stats *stats)
   1429{
   1430	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
   1431	u32 id, id_prev;
   1432
   1433	/* Use Tx queue 0 as a canary to detect a reset */
   1434	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
   1435
   1436	/* Read Global Statistics */
   1437	do {
   1438		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
   1439						  &stats->timeout);
   1440		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
   1441		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
   1442		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
   1443		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
   1444		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
   1445						    &stats->vlan_drop);
   1446		loopback_drop =
   1447			fm10k_read_hw_stats_32b(hw,
   1448						FM10K_STATS_LOOPBACK_DROP,
   1449						&stats->loopback_drop);
   1450		nodesc_drop = fm10k_read_hw_stats_32b(hw,
   1451						      FM10K_STATS_NODESC_DROP,
   1452						      &stats->nodesc_drop);
   1453
   1454		/* if value has not changed then we have consistent data */
   1455		id_prev = id;
   1456		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
   1457	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
   1458
   1459	/* drop non-ID bits and set VALID ID bit */
   1460	id &= FM10K_TXQCTL_ID_MASK;
   1461	id |= FM10K_STAT_VALID;
   1462
   1463	/* Update Global Statistics */
   1464	if (stats->stats_idx == id) {
   1465		stats->timeout.count += timeout;
   1466		stats->ur.count += ur;
   1467		stats->ca.count += ca;
   1468		stats->um.count += um;
   1469		stats->xec.count += xec;
   1470		stats->vlan_drop.count += vlan_drop;
   1471		stats->loopback_drop.count += loopback_drop;
   1472		stats->nodesc_drop.count += nodesc_drop;
   1473	}
   1474
   1475	/* Update bases and record current PF id */
   1476	fm10k_update_hw_base_32b(&stats->timeout, timeout);
   1477	fm10k_update_hw_base_32b(&stats->ur, ur);
   1478	fm10k_update_hw_base_32b(&stats->ca, ca);
   1479	fm10k_update_hw_base_32b(&stats->um, um);
   1480	fm10k_update_hw_base_32b(&stats->xec, xec);
   1481	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
   1482	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
   1483	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
   1484	stats->stats_idx = id;
   1485
   1486	/* Update Queue Statistics */
   1487	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
   1488}
   1489
   1490/**
   1491 *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
   1492 *  @hw: pointer to hardware structure
   1493 *  @stats: pointer to the stats structure to update
   1494 *
   1495 *  This function resets the base for global and per queue hardware
   1496 *  statistics.
   1497 **/
   1498static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
   1499				     struct fm10k_hw_stats *stats)
   1500{
   1501	/* Unbind Global Statistics */
   1502	fm10k_unbind_hw_stats_32b(&stats->timeout);
   1503	fm10k_unbind_hw_stats_32b(&stats->ur);
   1504	fm10k_unbind_hw_stats_32b(&stats->ca);
   1505	fm10k_unbind_hw_stats_32b(&stats->um);
   1506	fm10k_unbind_hw_stats_32b(&stats->xec);
   1507	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
   1508	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
   1509	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
   1510
   1511	/* Unbind Queue Statistics */
   1512	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
   1513
   1514	/* Reinitialize bases for all stats */
   1515	fm10k_update_hw_stats_pf(hw, stats);
   1516}
   1517
   1518/**
   1519 *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
   1520 *  @hw: pointer to hardware structure
   1521 *  @dma_mask: 64 bit DMA mask required for platform
   1522 *
   1523 *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
   1524 *  to limit the access to memory beyond what is physically in the system.
   1525 **/
   1526static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
   1527{
   1528	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
   1529	u32 phyaddr = (u32)(dma_mask >> 32);
   1530
   1531	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
   1532}
   1533
   1534/**
   1535 *  fm10k_get_fault_pf - Record a fault in one of the interface units
   1536 *  @hw: pointer to hardware structure
   1537 *  @type: pointer to fault type register offset
   1538 *  @fault: pointer to memory location to record the fault
   1539 *
   1540 *  Record the fault register contents to the fault data structure and
   1541 *  clear the entry from the register.
   1542 *
   1543 *  Returns ERR_PARAM if invalid register is specified or no error is present.
   1544 **/
   1545static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
   1546			      struct fm10k_fault *fault)
   1547{
   1548	u32 func;
   1549
   1550	/* verify the fault register is in range and is aligned */
   1551	switch (type) {
   1552	case FM10K_PCA_FAULT:
   1553	case FM10K_THI_FAULT:
   1554	case FM10K_FUM_FAULT:
   1555		break;
   1556	default:
   1557		return FM10K_ERR_PARAM;
   1558	}
   1559
   1560	/* only service faults that are valid */
   1561	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
   1562	if (!(func & FM10K_FAULT_FUNC_VALID))
   1563		return FM10K_ERR_PARAM;
   1564
   1565	/* read remaining fields */
   1566	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
   1567	fault->address <<= 32;
   1568	fault->address |= fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
   1569	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
   1570
   1571	/* clear valid bit to allow for next error */
   1572	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
   1573
   1574	/* Record which function triggered the error */
   1575	if (func & FM10K_FAULT_FUNC_PF)
   1576		fault->func = 0;
   1577	else
   1578		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
   1579				   FM10K_FAULT_FUNC_VF_SHIFT);
   1580
   1581	/* record fault type */
   1582	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
   1583
   1584	return 0;
   1585}
   1586
   1587/**
   1588 *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
   1589 *  @hw: pointer to hardware structure
   1590 *
   1591 **/
   1592static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
   1593{
   1594	struct fm10k_mbx_info *mbx = &hw->mbx;
   1595	u32 msg[1];
   1596
   1597	/* issue request asking for LPORT map */
   1598	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
   1599
   1600	/* load onto outgoing mailbox */
   1601	return mbx->ops.enqueue_tx(hw, mbx, msg);
   1602}
   1603
   1604/**
   1605 *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
   1606 *  @hw: pointer to hardware structure
   1607 *  @switch_ready: pointer to boolean value that will record switch state
   1608 *
   1609 *  This function will check the DMA_CTRL2 register and mailbox in order
   1610 *  to determine if the switch is ready for the PF to begin requesting
   1611 *  addresses and mapping traffic to the local interface.
   1612 **/
   1613static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
   1614{
   1615	u32 dma_ctrl2;
   1616
   1617	/* verify the switch is ready for interaction */
   1618	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
   1619	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
   1620		return 0;
   1621
   1622	/* retrieve generic host state info */
   1623	return fm10k_get_host_state_generic(hw, switch_ready);
   1624}
   1625
   1626/* This structure defines the attibutes to be parsed below */
   1627const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
   1628	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
   1629				 sizeof(struct fm10k_swapi_error)),
   1630	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
   1631	FM10K_TLV_ATTR_LAST
   1632};
   1633
   1634/**
   1635 *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
   1636 *  @hw: Pointer to hardware structure
   1637 *  @results: pointer array containing parsed data
   1638 *  @mbx: Pointer to mailbox information structure
   1639 *
   1640 *  This handler configures the lport mapping based on the reply from the
   1641 *  switch API.
   1642 **/
   1643s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
   1644			   struct fm10k_mbx_info __always_unused *mbx)
   1645{
   1646	u16 glort, mask;
   1647	u32 dglort_map;
   1648	s32 err;
   1649
   1650	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
   1651				     &dglort_map);
   1652	if (err)
   1653		return err;
   1654
   1655	/* extract values out of the header */
   1656	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
   1657	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
   1658
   1659	/* verify mask is set and none of the masked bits in glort are set */
   1660	if (!mask || (glort & ~mask))
   1661		return FM10K_ERR_PARAM;
   1662
   1663	/* verify the mask is contiguous, and that it is 1's followed by 0's */
   1664	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
   1665		return FM10K_ERR_PARAM;
   1666
   1667	/* record the glort, mask, and port count */
   1668	hw->mac.dglort_map = dglort_map;
   1669
   1670	return 0;
   1671}
   1672
   1673const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
   1674	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
   1675	FM10K_TLV_ATTR_LAST
   1676};
   1677
   1678/**
   1679 *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
   1680 *  @hw: Pointer to hardware structure
   1681 *  @results: pointer array containing parsed data
   1682 *  @mbx: Pointer to mailbox information structure
   1683 *
   1684 *  This handler configures the default VLAN for the PF
   1685 **/
   1686static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
   1687				    struct fm10k_mbx_info __always_unused *mbx)
   1688{
   1689	u16 glort, pvid;
   1690	u32 pvid_update;
   1691	s32 err;
   1692
   1693	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
   1694				     &pvid_update);
   1695	if (err)
   1696		return err;
   1697
   1698	/* extract values from the pvid update */
   1699	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
   1700	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
   1701
   1702	/* if glort is not valid return error */
   1703	if (!fm10k_glort_valid_pf(hw, glort))
   1704		return FM10K_ERR_PARAM;
   1705
   1706	/* verify VLAN ID is valid */
   1707	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
   1708		return FM10K_ERR_PARAM;
   1709
   1710	/* record the port VLAN ID value */
   1711	hw->mac.default_vid = pvid;
   1712
   1713	return 0;
   1714}
   1715
   1716/**
   1717 *  fm10k_record_global_table_data - Move global table data to swapi table info
   1718 *  @from: pointer to source table data structure
   1719 *  @to: pointer to destination table info structure
   1720 *
   1721 *  This function is will copy table_data to the table_info contained in
   1722 *  the hw struct.
   1723 **/
   1724static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
   1725					   struct fm10k_swapi_table_info *to)
   1726{
   1727	/* convert from le32 struct to CPU byte ordered values */
   1728	to->used = le32_to_cpu(from->used);
   1729	to->avail = le32_to_cpu(from->avail);
   1730}
   1731
   1732const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
   1733	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
   1734				 sizeof(struct fm10k_swapi_error)),
   1735	FM10K_TLV_ATTR_LAST
   1736};
   1737
   1738/**
   1739 *  fm10k_msg_err_pf - Message handler for error reply
   1740 *  @hw: Pointer to hardware structure
   1741 *  @results: pointer array containing parsed data
   1742 *  @mbx: Pointer to mailbox information structure
   1743 *
   1744 *  This handler will capture the data for any error replies to previous
   1745 *  messages that the PF has sent.
   1746 **/
   1747s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
   1748		     struct fm10k_mbx_info __always_unused *mbx)
   1749{
   1750	struct fm10k_swapi_error err_msg;
   1751	s32 err;
   1752
   1753	/* extract structure from message */
   1754	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
   1755					   &err_msg, sizeof(err_msg));
   1756	if (err)
   1757		return err;
   1758
   1759	/* record table status */
   1760	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
   1761	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
   1762	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
   1763
   1764	/* record SW API status value */
   1765	hw->swapi.status = le32_to_cpu(err_msg.status);
   1766
   1767	return 0;
   1768}
   1769
   1770static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
   1771	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
   1772	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
   1773	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
   1774	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
   1775	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
   1776	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
   1777	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
   1778};
   1779
   1780static const struct fm10k_mac_ops mac_ops_pf = {
   1781	.get_bus_info		= fm10k_get_bus_info_generic,
   1782	.reset_hw		= fm10k_reset_hw_pf,
   1783	.init_hw		= fm10k_init_hw_pf,
   1784	.start_hw		= fm10k_start_hw_generic,
   1785	.stop_hw		= fm10k_stop_hw_generic,
   1786	.update_vlan		= fm10k_update_vlan_pf,
   1787	.read_mac_addr		= fm10k_read_mac_addr_pf,
   1788	.update_uc_addr		= fm10k_update_uc_addr_pf,
   1789	.update_mc_addr		= fm10k_update_mc_addr_pf,
   1790	.update_xcast_mode	= fm10k_update_xcast_mode_pf,
   1791	.update_int_moderator	= fm10k_update_int_moderator_pf,
   1792	.update_lport_state	= fm10k_update_lport_state_pf,
   1793	.update_hw_stats	= fm10k_update_hw_stats_pf,
   1794	.rebind_hw_stats	= fm10k_rebind_hw_stats_pf,
   1795	.configure_dglort_map	= fm10k_configure_dglort_map_pf,
   1796	.set_dma_mask		= fm10k_set_dma_mask_pf,
   1797	.get_fault		= fm10k_get_fault_pf,
   1798	.get_host_state		= fm10k_get_host_state_pf,
   1799	.request_lport_map	= fm10k_request_lport_map_pf,
   1800};
   1801
   1802static const struct fm10k_iov_ops iov_ops_pf = {
   1803	.assign_resources		= fm10k_iov_assign_resources_pf,
   1804	.configure_tc			= fm10k_iov_configure_tc_pf,
   1805	.assign_int_moderator		= fm10k_iov_assign_int_moderator_pf,
   1806	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
   1807	.reset_resources		= fm10k_iov_reset_resources_pf,
   1808	.set_lport			= fm10k_iov_set_lport_pf,
   1809	.reset_lport			= fm10k_iov_reset_lport_pf,
   1810	.update_stats			= fm10k_iov_update_stats_pf,
   1811};
   1812
   1813static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
   1814{
   1815	fm10k_get_invariants_generic(hw);
   1816
   1817	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
   1818}
   1819
   1820const struct fm10k_info fm10k_pf_info = {
   1821	.mac		= fm10k_mac_pf,
   1822	.get_invariants	= fm10k_get_invariants_pf,
   1823	.mac_ops	= &mac_ops_pf,
   1824	.iov_ops	= &iov_ops_pf,
   1825};