cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i40e_txrx.c (111098B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2013 - 2018 Intel Corporation. */
      3
      4#include <linux/prefetch.h>
      5#include <linux/bpf_trace.h>
      6#include <net/mpls.h>
      7#include <net/xdp.h>
      8#include "i40e.h"
      9#include "i40e_trace.h"
     10#include "i40e_prototype.h"
     11#include "i40e_txrx_common.h"
     12#include "i40e_xsk.h"
     13
     14#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
     15/**
     16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
     17 * @tx_ring: Tx ring to send buffer on
     18 * @fdata: Flow director filter data
     19 * @add: Indicate if we are adding a rule or deleting one
     20 *
     21 **/
     22static void i40e_fdir(struct i40e_ring *tx_ring,
     23		      struct i40e_fdir_filter *fdata, bool add)
     24{
     25	struct i40e_filter_program_desc *fdir_desc;
     26	struct i40e_pf *pf = tx_ring->vsi->back;
     27	u32 flex_ptype, dtype_cmd;
     28	u16 i;
     29
     30	/* grab the next descriptor */
     31	i = tx_ring->next_to_use;
     32	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
     33
     34	i++;
     35	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
     36
     37	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
     38		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
     39
     40	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
     41		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
     42
     43	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
     44		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
     45
     46	/* Use LAN VSI Id if not programmed by user */
     47	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
     48		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
     49		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
     50
     51	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
     52
     53	dtype_cmd |= add ?
     54		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
     55		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
     56		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
     57		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
     58
     59	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
     60		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
     61
     62	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
     63		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
     64
     65	if (fdata->cnt_index) {
     66		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
     67		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
     68			     ((u32)fdata->cnt_index <<
     69			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
     70	}
     71
     72	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
     73	fdir_desc->rsvd = cpu_to_le32(0);
     74	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
     75	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
     76}
     77
     78#define I40E_FD_CLEAN_DELAY 10
     79/**
     80 * i40e_program_fdir_filter - Program a Flow Director filter
     81 * @fdir_data: Packet data that will be filter parameters
     82 * @raw_packet: the pre-allocated packet buffer for FDir
     83 * @pf: The PF pointer
     84 * @add: True for add/update, False for remove
     85 **/
     86static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
     87				    u8 *raw_packet, struct i40e_pf *pf,
     88				    bool add)
     89{
     90	struct i40e_tx_buffer *tx_buf, *first;
     91	struct i40e_tx_desc *tx_desc;
     92	struct i40e_ring *tx_ring;
     93	struct i40e_vsi *vsi;
     94	struct device *dev;
     95	dma_addr_t dma;
     96	u32 td_cmd = 0;
     97	u16 i;
     98
     99	/* find existing FDIR VSI */
    100	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
    101	if (!vsi)
    102		return -ENOENT;
    103
    104	tx_ring = vsi->tx_rings[0];
    105	dev = tx_ring->dev;
    106
    107	/* we need two descriptors to add/del a filter and we can wait */
    108	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
    109		if (!i)
    110			return -EAGAIN;
    111		msleep_interruptible(1);
    112	}
    113
    114	dma = dma_map_single(dev, raw_packet,
    115			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
    116	if (dma_mapping_error(dev, dma))
    117		goto dma_fail;
    118
    119	/* grab the next descriptor */
    120	i = tx_ring->next_to_use;
    121	first = &tx_ring->tx_bi[i];
    122	i40e_fdir(tx_ring, fdir_data, add);
    123
    124	/* Now program a dummy descriptor */
    125	i = tx_ring->next_to_use;
    126	tx_desc = I40E_TX_DESC(tx_ring, i);
    127	tx_buf = &tx_ring->tx_bi[i];
    128
    129	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
    130
    131	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
    132
    133	/* record length, and DMA address */
    134	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
    135	dma_unmap_addr_set(tx_buf, dma, dma);
    136
    137	tx_desc->buffer_addr = cpu_to_le64(dma);
    138	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
    139
    140	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
    141	tx_buf->raw_buf = (void *)raw_packet;
    142
    143	tx_desc->cmd_type_offset_bsz =
    144		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
    145
    146	/* Force memory writes to complete before letting h/w
    147	 * know there are new descriptors to fetch.
    148	 */
    149	wmb();
    150
    151	/* Mark the data descriptor to be watched */
    152	first->next_to_watch = tx_desc;
    153
    154	writel(tx_ring->next_to_use, tx_ring->tail);
    155	return 0;
    156
    157dma_fail:
    158	return -1;
    159}
    160
    161/**
    162 * i40e_create_dummy_packet - Constructs dummy packet for HW
    163 * @dummy_packet: preallocated space for dummy packet
    164 * @ipv4: is layer 3 packet of version 4 or 6
    165 * @l4proto: next level protocol used in data portion of l3
    166 * @data: filter data
    167 *
    168 * Returns address of layer 4 protocol dummy packet.
    169 **/
    170static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
    171				      struct i40e_fdir_filter *data)
    172{
    173	bool is_vlan = !!data->vlan_tag;
    174	struct vlan_hdr vlan;
    175	struct ipv6hdr ipv6;
    176	struct ethhdr eth;
    177	struct iphdr ip;
    178	u8 *tmp;
    179
    180	if (ipv4) {
    181		eth.h_proto = cpu_to_be16(ETH_P_IP);
    182		ip.protocol = l4proto;
    183		ip.version = 0x4;
    184		ip.ihl = 0x5;
    185
    186		ip.daddr = data->dst_ip;
    187		ip.saddr = data->src_ip;
    188	} else {
    189		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
    190		ipv6.nexthdr = l4proto;
    191		ipv6.version = 0x6;
    192
    193		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
    194		       sizeof(__be32) * 4);
    195		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
    196		       sizeof(__be32) * 4);
    197	}
    198
    199	if (is_vlan) {
    200		vlan.h_vlan_TCI = data->vlan_tag;
    201		vlan.h_vlan_encapsulated_proto = eth.h_proto;
    202		eth.h_proto = data->vlan_etype;
    203	}
    204
    205	tmp = dummy_packet;
    206	memcpy(tmp, &eth, sizeof(eth));
    207	tmp += sizeof(eth);
    208
    209	if (is_vlan) {
    210		memcpy(tmp, &vlan, sizeof(vlan));
    211		tmp += sizeof(vlan);
    212	}
    213
    214	if (ipv4) {
    215		memcpy(tmp, &ip, sizeof(ip));
    216		tmp += sizeof(ip);
    217	} else {
    218		memcpy(tmp, &ipv6, sizeof(ipv6));
    219		tmp += sizeof(ipv6);
    220	}
    221
    222	return tmp;
    223}
    224
    225/**
    226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
    227 * @raw_packet: preallocated space for dummy packet
    228 * @ipv4: is layer 3 packet of version 4 or 6
    229 * @l4proto: next level protocol used in data portion of l3
    230 * @data: filter data
    231 *
    232 * Helper function to populate udp fields.
    233 **/
    234static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
    235					 struct i40e_fdir_filter *data)
    236{
    237	struct udphdr *udp;
    238	u8 *tmp;
    239
    240	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
    241	udp = (struct udphdr *)(tmp);
    242	udp->dest = data->dst_port;
    243	udp->source = data->src_port;
    244}
    245
    246/**
    247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
    248 * @raw_packet: preallocated space for dummy packet
    249 * @ipv4: is layer 3 packet of version 4 or 6
    250 * @l4proto: next level protocol used in data portion of l3
    251 * @data: filter data
    252 *
    253 * Helper function to populate tcp fields.
    254 **/
    255static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
    256					 struct i40e_fdir_filter *data)
    257{
    258	struct tcphdr *tcp;
    259	u8 *tmp;
    260	/* Dummy tcp packet */
    261	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    262		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
    263
    264	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
    265
    266	tcp = (struct tcphdr *)tmp;
    267	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
    268	tcp->dest = data->dst_port;
    269	tcp->source = data->src_port;
    270}
    271
    272/**
    273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
    274 * @raw_packet: preallocated space for dummy packet
    275 * @ipv4: is layer 3 packet of version 4 or 6
    276 * @l4proto: next level protocol used in data portion of l3
    277 * @data: filter data
    278 *
    279 * Helper function to populate sctp fields.
    280 **/
    281static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
    282					  u8 l4proto,
    283					  struct i40e_fdir_filter *data)
    284{
    285	struct sctphdr *sctp;
    286	u8 *tmp;
    287
    288	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
    289
    290	sctp = (struct sctphdr *)tmp;
    291	sctp->dest = data->dst_port;
    292	sctp->source = data->src_port;
    293}
    294
    295/**
    296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
    297 * @pf: physical function to attach filter to
    298 * @fd_data: filter data
    299 * @add: add or delete filter
    300 * @packet_addr: address of dummy packet, used in filtering
    301 * @payload_offset: offset from dummy packet address to user defined data
    302 * @pctype: Packet type for which filter is used
    303 *
    304 * Helper function to offset data of dummy packet, program it and
    305 * handle errors.
    306 **/
    307static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
    308				    struct i40e_fdir_filter *fd_data,
    309				    bool add, char *packet_addr,
    310				    int payload_offset, u8 pctype)
    311{
    312	int ret;
    313
    314	if (fd_data->flex_filter) {
    315		u8 *payload;
    316		__be16 pattern = fd_data->flex_word;
    317		u16 off = fd_data->flex_offset;
    318
    319		payload = packet_addr + payload_offset;
    320
    321		/* If user provided vlan, offset payload by vlan header length */
    322		if (!!fd_data->vlan_tag)
    323			payload += VLAN_HLEN;
    324
    325		*((__force __be16 *)(payload + off)) = pattern;
    326	}
    327
    328	fd_data->pctype = pctype;
    329	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
    330	if (ret) {
    331		dev_info(&pf->pdev->dev,
    332			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
    333			 fd_data->pctype, fd_data->fd_id, ret);
    334		/* Free the packet buffer since it wasn't added to the ring */
    335		return -EOPNOTSUPP;
    336	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
    337		if (add)
    338			dev_info(&pf->pdev->dev,
    339				 "Filter OK for PCTYPE %d loc = %d\n",
    340				 fd_data->pctype, fd_data->fd_id);
    341		else
    342			dev_info(&pf->pdev->dev,
    343				 "Filter deleted for PCTYPE %d loc = %d\n",
    344				 fd_data->pctype, fd_data->fd_id);
    345	}
    346
    347	return ret;
    348}
    349
    350/**
    351 * i40e_change_filter_num - Prepare and program fdir filter
    352 * @ipv4: is layer 3 packet of version 4 or 6
    353 * @add: add or delete filter
    354 * @ipv4_filter_num: field to update
    355 * @ipv6_filter_num: field to update
    356 *
    357 * Update filter number field for pf.
    358 **/
    359static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
    360				   u16 *ipv6_filter_num)
    361{
    362	if (add) {
    363		if (ipv4)
    364			(*ipv4_filter_num)++;
    365		else
    366			(*ipv6_filter_num)++;
    367	} else {
    368		if (ipv4)
    369			(*ipv4_filter_num)--;
    370		else
    371			(*ipv6_filter_num)--;
    372	}
    373}
    374
    375#define IP_HEADER_OFFSET		14
    376#define I40E_UDPIP_DUMMY_PACKET_LEN	42
    377#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
    378/**
    379 * i40e_add_del_fdir_udp - Add/Remove UDP filters
    380 * @vsi: pointer to the targeted VSI
    381 * @fd_data: the flow director data required for the FDir descriptor
    382 * @add: true adds a filter, false removes it
    383 * @ipv4: true is v4, false is v6
    384 *
    385 * Returns 0 if the filters were successfully added or removed
    386 **/
    387static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
    388				 struct i40e_fdir_filter *fd_data,
    389				 bool add,
    390				 bool ipv4)
    391{
    392	struct i40e_pf *pf = vsi->back;
    393	u8 *raw_packet;
    394	int ret;
    395
    396	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
    397	if (!raw_packet)
    398		return -ENOMEM;
    399
    400	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
    401
    402	if (ipv4)
    403		ret = i40e_prepare_fdir_filter
    404			(pf, fd_data, add, raw_packet,
    405			 I40E_UDPIP_DUMMY_PACKET_LEN,
    406			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
    407	else
    408		ret = i40e_prepare_fdir_filter
    409			(pf, fd_data, add, raw_packet,
    410			 I40E_UDPIP6_DUMMY_PACKET_LEN,
    411			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
    412
    413	if (ret) {
    414		kfree(raw_packet);
    415		return ret;
    416	}
    417
    418	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
    419			       &pf->fd_udp6_filter_cnt);
    420
    421	return 0;
    422}
    423
    424#define I40E_TCPIP_DUMMY_PACKET_LEN	54
    425#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
    426/**
    427 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
    428 * @vsi: pointer to the targeted VSI
    429 * @fd_data: the flow director data required for the FDir descriptor
    430 * @add: true adds a filter, false removes it
    431 * @ipv4: true is v4, false is v6
    432 *
    433 * Returns 0 if the filters were successfully added or removed
    434 **/
    435static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
    436				 struct i40e_fdir_filter *fd_data,
    437				 bool add,
    438				 bool ipv4)
    439{
    440	struct i40e_pf *pf = vsi->back;
    441	u8 *raw_packet;
    442	int ret;
    443
    444	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
    445	if (!raw_packet)
    446		return -ENOMEM;
    447
    448	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
    449	if (ipv4)
    450		ret = i40e_prepare_fdir_filter
    451			(pf, fd_data, add, raw_packet,
    452			 I40E_TCPIP_DUMMY_PACKET_LEN,
    453			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
    454	else
    455		ret = i40e_prepare_fdir_filter
    456			(pf, fd_data, add, raw_packet,
    457			 I40E_TCPIP6_DUMMY_PACKET_LEN,
    458			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
    459
    460	if (ret) {
    461		kfree(raw_packet);
    462		return ret;
    463	}
    464
    465	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
    466			       &pf->fd_tcp6_filter_cnt);
    467
    468	if (add) {
    469		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
    470		    I40E_DEBUG_FD & pf->hw.debug_mask)
    471			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
    472		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
    473	}
    474	return 0;
    475}
    476
    477#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
    478#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
    479/**
    480 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
    481 * a specific flow spec
    482 * @vsi: pointer to the targeted VSI
    483 * @fd_data: the flow director data required for the FDir descriptor
    484 * @add: true adds a filter, false removes it
    485 * @ipv4: true is v4, false is v6
    486 *
    487 * Returns 0 if the filters were successfully added or removed
    488 **/
    489static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
    490				  struct i40e_fdir_filter *fd_data,
    491				  bool add,
    492				  bool ipv4)
    493{
    494	struct i40e_pf *pf = vsi->back;
    495	u8 *raw_packet;
    496	int ret;
    497
    498	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
    499	if (!raw_packet)
    500		return -ENOMEM;
    501
    502	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
    503
    504	if (ipv4)
    505		ret = i40e_prepare_fdir_filter
    506			(pf, fd_data, add, raw_packet,
    507			 I40E_SCTPIP_DUMMY_PACKET_LEN,
    508			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
    509	else
    510		ret = i40e_prepare_fdir_filter
    511			(pf, fd_data, add, raw_packet,
    512			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
    513			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
    514
    515	if (ret) {
    516		kfree(raw_packet);
    517		return ret;
    518	}
    519
    520	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
    521			       &pf->fd_sctp6_filter_cnt);
    522
    523	return 0;
    524}
    525
    526#define I40E_IP_DUMMY_PACKET_LEN	34
    527#define I40E_IP6_DUMMY_PACKET_LEN	54
    528/**
    529 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
    530 * a specific flow spec
    531 * @vsi: pointer to the targeted VSI
    532 * @fd_data: the flow director data required for the FDir descriptor
    533 * @add: true adds a filter, false removes it
    534 * @ipv4: true is v4, false is v6
    535 *
    536 * Returns 0 if the filters were successfully added or removed
    537 **/
    538static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
    539				struct i40e_fdir_filter *fd_data,
    540				bool add,
    541				bool ipv4)
    542{
    543	struct i40e_pf *pf = vsi->back;
    544	int payload_offset;
    545	u8 *raw_packet;
    546	int iter_start;
    547	int iter_end;
    548	int ret;
    549	int i;
    550
    551	if (ipv4) {
    552		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
    553		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
    554	} else {
    555		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
    556		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
    557	}
    558
    559	for (i = iter_start; i <= iter_end; i++) {
    560		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
    561		if (!raw_packet)
    562			return -ENOMEM;
    563
    564		/* IPv6 no header option differs from IPv4 */
    565		(void)i40e_create_dummy_packet
    566			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
    567			 fd_data);
    568
    569		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
    570			I40E_IP6_DUMMY_PACKET_LEN;
    571		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
    572					       payload_offset, i);
    573		if (ret)
    574			goto err;
    575	}
    576
    577	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
    578			       &pf->fd_ip6_filter_cnt);
    579
    580	return 0;
    581err:
    582	kfree(raw_packet);
    583	return ret;
    584}
    585
    586/**
    587 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
    588 * @vsi: pointer to the targeted VSI
    589 * @input: filter to add or delete
    590 * @add: true adds a filter, false removes it
    591 *
    592 **/
    593int i40e_add_del_fdir(struct i40e_vsi *vsi,
    594		      struct i40e_fdir_filter *input, bool add)
    595{
    596	enum ip_ver { ipv6 = 0, ipv4 = 1 };
    597	struct i40e_pf *pf = vsi->back;
    598	int ret;
    599
    600	switch (input->flow_type & ~FLOW_EXT) {
    601	case TCP_V4_FLOW:
    602		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
    603		break;
    604	case UDP_V4_FLOW:
    605		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
    606		break;
    607	case SCTP_V4_FLOW:
    608		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
    609		break;
    610	case TCP_V6_FLOW:
    611		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
    612		break;
    613	case UDP_V6_FLOW:
    614		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
    615		break;
    616	case SCTP_V6_FLOW:
    617		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
    618		break;
    619	case IP_USER_FLOW:
    620		switch (input->ipl4_proto) {
    621		case IPPROTO_TCP:
    622			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
    623			break;
    624		case IPPROTO_UDP:
    625			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
    626			break;
    627		case IPPROTO_SCTP:
    628			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
    629			break;
    630		case IPPROTO_IP:
    631			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
    632			break;
    633		default:
    634			/* We cannot support masking based on protocol */
    635			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
    636				 input->ipl4_proto);
    637			return -EINVAL;
    638		}
    639		break;
    640	case IPV6_USER_FLOW:
    641		switch (input->ipl4_proto) {
    642		case IPPROTO_TCP:
    643			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
    644			break;
    645		case IPPROTO_UDP:
    646			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
    647			break;
    648		case IPPROTO_SCTP:
    649			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
    650			break;
    651		case IPPROTO_IP:
    652			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
    653			break;
    654		default:
    655			/* We cannot support masking based on protocol */
    656			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
    657				 input->ipl4_proto);
    658			return -EINVAL;
    659		}
    660		break;
    661	default:
    662		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
    663			 input->flow_type);
    664		return -EINVAL;
    665	}
    666
    667	/* The buffer allocated here will be normally be freed by
    668	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
    669	 * completion. In the event of an error adding the buffer to the FDIR
    670	 * ring, it will immediately be freed. It may also be freed by
    671	 * i40e_clean_tx_ring() when closing the VSI.
    672	 */
    673	return ret;
    674}
    675
    676/**
    677 * i40e_fd_handle_status - check the Programming Status for FD
    678 * @rx_ring: the Rx ring for this descriptor
    679 * @qword0_raw: qword0
    680 * @qword1: qword1 after le_to_cpu
    681 * @prog_id: the id originally used for programming
    682 *
    683 * This is used to verify if the FD programming or invalidation
    684 * requested by SW to the HW is successful or not and take actions accordingly.
    685 **/
    686static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
    687				  u64 qword1, u8 prog_id)
    688{
    689	struct i40e_pf *pf = rx_ring->vsi->back;
    690	struct pci_dev *pdev = pf->pdev;
    691	struct i40e_16b_rx_wb_qw0 *qw0;
    692	u32 fcnt_prog, fcnt_avail;
    693	u32 error;
    694
    695	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
    696	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
    697		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
    698
    699	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
    700		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
    701		if (qw0->hi_dword.fd_id != 0 ||
    702		    (I40E_DEBUG_FD & pf->hw.debug_mask))
    703			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
    704				 pf->fd_inv);
    705
    706		/* Check if the programming error is for ATR.
    707		 * If so, auto disable ATR and set a state for
    708		 * flush in progress. Next time we come here if flush is in
    709		 * progress do nothing, once flush is complete the state will
    710		 * be cleared.
    711		 */
    712		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
    713			return;
    714
    715		pf->fd_add_err++;
    716		/* store the current atr filter count */
    717		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
    718
    719		if (qw0->hi_dword.fd_id == 0 &&
    720		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
    721			/* These set_bit() calls aren't atomic with the
    722			 * test_bit() here, but worse case we potentially
    723			 * disable ATR and queue a flush right after SB
    724			 * support is re-enabled. That shouldn't cause an
    725			 * issue in practice
    726			 */
    727			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
    728			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
    729		}
    730
    731		/* filter programming failed most likely due to table full */
    732		fcnt_prog = i40e_get_global_fd_count(pf);
    733		fcnt_avail = pf->fdir_pf_filter_count;
    734		/* If ATR is running fcnt_prog can quickly change,
    735		 * if we are very close to full, it makes sense to disable
    736		 * FD ATR/SB and then re-enable it when there is room.
    737		 */
    738		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
    739			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
    740			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
    741					      pf->state))
    742				if (I40E_DEBUG_FD & pf->hw.debug_mask)
    743					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
    744		}
    745	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
    746		if (I40E_DEBUG_FD & pf->hw.debug_mask)
    747			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
    748				 qw0->hi_dword.fd_id);
    749	}
    750}
    751
    752/**
    753 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
    754 * @ring:      the ring that owns the buffer
    755 * @tx_buffer: the buffer to free
    756 **/
    757static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
    758					    struct i40e_tx_buffer *tx_buffer)
    759{
    760	if (tx_buffer->skb) {
    761		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
    762			kfree(tx_buffer->raw_buf);
    763		else if (ring_is_xdp(ring))
    764			xdp_return_frame(tx_buffer->xdpf);
    765		else
    766			dev_kfree_skb_any(tx_buffer->skb);
    767		if (dma_unmap_len(tx_buffer, len))
    768			dma_unmap_single(ring->dev,
    769					 dma_unmap_addr(tx_buffer, dma),
    770					 dma_unmap_len(tx_buffer, len),
    771					 DMA_TO_DEVICE);
    772	} else if (dma_unmap_len(tx_buffer, len)) {
    773		dma_unmap_page(ring->dev,
    774			       dma_unmap_addr(tx_buffer, dma),
    775			       dma_unmap_len(tx_buffer, len),
    776			       DMA_TO_DEVICE);
    777	}
    778
    779	tx_buffer->next_to_watch = NULL;
    780	tx_buffer->skb = NULL;
    781	dma_unmap_len_set(tx_buffer, len, 0);
    782	/* tx_buffer must be completely set up in the transmit path */
    783}
    784
    785/**
    786 * i40e_clean_tx_ring - Free any empty Tx buffers
    787 * @tx_ring: ring to be cleaned
    788 **/
    789void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
    790{
    791	unsigned long bi_size;
    792	u16 i;
    793
    794	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
    795		i40e_xsk_clean_tx_ring(tx_ring);
    796	} else {
    797		/* ring already cleared, nothing to do */
    798		if (!tx_ring->tx_bi)
    799			return;
    800
    801		/* Free all the Tx ring sk_buffs */
    802		for (i = 0; i < tx_ring->count; i++)
    803			i40e_unmap_and_free_tx_resource(tx_ring,
    804							&tx_ring->tx_bi[i]);
    805	}
    806
    807	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
    808	memset(tx_ring->tx_bi, 0, bi_size);
    809
    810	/* Zero out the descriptor ring */
    811	memset(tx_ring->desc, 0, tx_ring->size);
    812
    813	tx_ring->next_to_use = 0;
    814	tx_ring->next_to_clean = 0;
    815
    816	if (!tx_ring->netdev)
    817		return;
    818
    819	/* cleanup Tx queue statistics */
    820	netdev_tx_reset_queue(txring_txq(tx_ring));
    821}
    822
    823/**
    824 * i40e_free_tx_resources - Free Tx resources per queue
    825 * @tx_ring: Tx descriptor ring for a specific queue
    826 *
    827 * Free all transmit software resources
    828 **/
    829void i40e_free_tx_resources(struct i40e_ring *tx_ring)
    830{
    831	i40e_clean_tx_ring(tx_ring);
    832	kfree(tx_ring->tx_bi);
    833	tx_ring->tx_bi = NULL;
    834
    835	if (tx_ring->desc) {
    836		dma_free_coherent(tx_ring->dev, tx_ring->size,
    837				  tx_ring->desc, tx_ring->dma);
    838		tx_ring->desc = NULL;
    839	}
    840}
    841
    842/**
    843 * i40e_get_tx_pending - how many tx descriptors not processed
    844 * @ring: the ring of descriptors
    845 * @in_sw: use SW variables
    846 *
    847 * Since there is no access to the ring head register
    848 * in XL710, we need to use our local copies
    849 **/
    850u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
    851{
    852	u32 head, tail;
    853
    854	if (!in_sw) {
    855		head = i40e_get_head(ring);
    856		tail = readl(ring->tail);
    857	} else {
    858		head = ring->next_to_clean;
    859		tail = ring->next_to_use;
    860	}
    861
    862	if (head != tail)
    863		return (head < tail) ?
    864			tail - head : (tail + ring->count - head);
    865
    866	return 0;
    867}
    868
    869/**
    870 * i40e_detect_recover_hung - Function to detect and recover hung_queues
    871 * @vsi:  pointer to vsi struct with tx queues
    872 *
    873 * VSI has netdev and netdev has TX queues. This function is to check each of
    874 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
    875 **/
    876void i40e_detect_recover_hung(struct i40e_vsi *vsi)
    877{
    878	struct i40e_ring *tx_ring = NULL;
    879	struct net_device *netdev;
    880	unsigned int i;
    881	int packets;
    882
    883	if (!vsi)
    884		return;
    885
    886	if (test_bit(__I40E_VSI_DOWN, vsi->state))
    887		return;
    888
    889	netdev = vsi->netdev;
    890	if (!netdev)
    891		return;
    892
    893	if (!netif_carrier_ok(netdev))
    894		return;
    895
    896	for (i = 0; i < vsi->num_queue_pairs; i++) {
    897		tx_ring = vsi->tx_rings[i];
    898		if (tx_ring && tx_ring->desc) {
    899			/* If packet counter has not changed the queue is
    900			 * likely stalled, so force an interrupt for this
    901			 * queue.
    902			 *
    903			 * prev_pkt_ctr would be negative if there was no
    904			 * pending work.
    905			 */
    906			packets = tx_ring->stats.packets & INT_MAX;
    907			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
    908				i40e_force_wb(vsi, tx_ring->q_vector);
    909				continue;
    910			}
    911
    912			/* Memory barrier between read of packet count and call
    913			 * to i40e_get_tx_pending()
    914			 */
    915			smp_rmb();
    916			tx_ring->tx_stats.prev_pkt_ctr =
    917			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
    918		}
    919	}
    920}
    921
    922/**
    923 * i40e_clean_tx_irq - Reclaim resources after transmit completes
    924 * @vsi: the VSI we care about
    925 * @tx_ring: Tx ring to clean
    926 * @napi_budget: Used to determine if we are in netpoll
    927 *
    928 * Returns true if there's any budget left (e.g. the clean is finished)
    929 **/
    930static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
    931			      struct i40e_ring *tx_ring, int napi_budget)
    932{
    933	int i = tx_ring->next_to_clean;
    934	struct i40e_tx_buffer *tx_buf;
    935	struct i40e_tx_desc *tx_head;
    936	struct i40e_tx_desc *tx_desc;
    937	unsigned int total_bytes = 0, total_packets = 0;
    938	unsigned int budget = vsi->work_limit;
    939
    940	tx_buf = &tx_ring->tx_bi[i];
    941	tx_desc = I40E_TX_DESC(tx_ring, i);
    942	i -= tx_ring->count;
    943
    944	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
    945
    946	do {
    947		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
    948
    949		/* if next_to_watch is not set then there is no work pending */
    950		if (!eop_desc)
    951			break;
    952
    953		/* prevent any other reads prior to eop_desc */
    954		smp_rmb();
    955
    956		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
    957		/* we have caught up to head, no work left to do */
    958		if (tx_head == tx_desc)
    959			break;
    960
    961		/* clear next_to_watch to prevent false hangs */
    962		tx_buf->next_to_watch = NULL;
    963
    964		/* update the statistics for this packet */
    965		total_bytes += tx_buf->bytecount;
    966		total_packets += tx_buf->gso_segs;
    967
    968		/* free the skb/XDP data */
    969		if (ring_is_xdp(tx_ring))
    970			xdp_return_frame(tx_buf->xdpf);
    971		else
    972			napi_consume_skb(tx_buf->skb, napi_budget);
    973
    974		/* unmap skb header data */
    975		dma_unmap_single(tx_ring->dev,
    976				 dma_unmap_addr(tx_buf, dma),
    977				 dma_unmap_len(tx_buf, len),
    978				 DMA_TO_DEVICE);
    979
    980		/* clear tx_buffer data */
    981		tx_buf->skb = NULL;
    982		dma_unmap_len_set(tx_buf, len, 0);
    983
    984		/* unmap remaining buffers */
    985		while (tx_desc != eop_desc) {
    986			i40e_trace(clean_tx_irq_unmap,
    987				   tx_ring, tx_desc, tx_buf);
    988
    989			tx_buf++;
    990			tx_desc++;
    991			i++;
    992			if (unlikely(!i)) {
    993				i -= tx_ring->count;
    994				tx_buf = tx_ring->tx_bi;
    995				tx_desc = I40E_TX_DESC(tx_ring, 0);
    996			}
    997
    998			/* unmap any remaining paged data */
    999			if (dma_unmap_len(tx_buf, len)) {
   1000				dma_unmap_page(tx_ring->dev,
   1001					       dma_unmap_addr(tx_buf, dma),
   1002					       dma_unmap_len(tx_buf, len),
   1003					       DMA_TO_DEVICE);
   1004				dma_unmap_len_set(tx_buf, len, 0);
   1005			}
   1006		}
   1007
   1008		/* move us one more past the eop_desc for start of next pkt */
   1009		tx_buf++;
   1010		tx_desc++;
   1011		i++;
   1012		if (unlikely(!i)) {
   1013			i -= tx_ring->count;
   1014			tx_buf = tx_ring->tx_bi;
   1015			tx_desc = I40E_TX_DESC(tx_ring, 0);
   1016		}
   1017
   1018		prefetch(tx_desc);
   1019
   1020		/* update budget accounting */
   1021		budget--;
   1022	} while (likely(budget));
   1023
   1024	i += tx_ring->count;
   1025	tx_ring->next_to_clean = i;
   1026	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
   1027	i40e_arm_wb(tx_ring, vsi, budget);
   1028
   1029	if (ring_is_xdp(tx_ring))
   1030		return !!budget;
   1031
   1032	/* notify netdev of completed buffers */
   1033	netdev_tx_completed_queue(txring_txq(tx_ring),
   1034				  total_packets, total_bytes);
   1035
   1036#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
   1037	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
   1038		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
   1039		/* Make sure that anybody stopping the queue after this
   1040		 * sees the new next_to_clean.
   1041		 */
   1042		smp_mb();
   1043		if (__netif_subqueue_stopped(tx_ring->netdev,
   1044					     tx_ring->queue_index) &&
   1045		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
   1046			netif_wake_subqueue(tx_ring->netdev,
   1047					    tx_ring->queue_index);
   1048			++tx_ring->tx_stats.restart_queue;
   1049		}
   1050	}
   1051
   1052	return !!budget;
   1053}
   1054
   1055/**
   1056 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
   1057 * @vsi: the VSI we care about
   1058 * @q_vector: the vector on which to enable writeback
   1059 *
   1060 **/
   1061static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
   1062				  struct i40e_q_vector *q_vector)
   1063{
   1064	u16 flags = q_vector->tx.ring[0].flags;
   1065	u32 val;
   1066
   1067	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
   1068		return;
   1069
   1070	if (q_vector->arm_wb_state)
   1071		return;
   1072
   1073	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
   1074		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
   1075		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
   1076
   1077		wr32(&vsi->back->hw,
   1078		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
   1079		     val);
   1080	} else {
   1081		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
   1082		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
   1083
   1084		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
   1085	}
   1086	q_vector->arm_wb_state = true;
   1087}
   1088
   1089/**
   1090 * i40e_force_wb - Issue SW Interrupt so HW does a wb
   1091 * @vsi: the VSI we care about
   1092 * @q_vector: the vector  on which to force writeback
   1093 *
   1094 **/
   1095void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
   1096{
   1097	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
   1098		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
   1099			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
   1100			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
   1101			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
   1102			  /* allow 00 to be written to the index */
   1103
   1104		wr32(&vsi->back->hw,
   1105		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
   1106	} else {
   1107		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
   1108			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
   1109			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
   1110			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
   1111			/* allow 00 to be written to the index */
   1112
   1113		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
   1114	}
   1115}
   1116
   1117static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
   1118					struct i40e_ring_container *rc)
   1119{
   1120	return &q_vector->rx == rc;
   1121}
   1122
   1123static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
   1124{
   1125	unsigned int divisor;
   1126
   1127	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
   1128	case I40E_LINK_SPEED_40GB:
   1129		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
   1130		break;
   1131	case I40E_LINK_SPEED_25GB:
   1132	case I40E_LINK_SPEED_20GB:
   1133		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
   1134		break;
   1135	default:
   1136	case I40E_LINK_SPEED_10GB:
   1137		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
   1138		break;
   1139	case I40E_LINK_SPEED_1GB:
   1140	case I40E_LINK_SPEED_100MB:
   1141		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
   1142		break;
   1143	}
   1144
   1145	return divisor;
   1146}
   1147
   1148/**
   1149 * i40e_update_itr - update the dynamic ITR value based on statistics
   1150 * @q_vector: structure containing interrupt and ring information
   1151 * @rc: structure containing ring performance data
   1152 *
   1153 * Stores a new ITR value based on packets and byte
   1154 * counts during the last interrupt.  The advantage of per interrupt
   1155 * computation is faster updates and more accurate ITR for the current
   1156 * traffic pattern.  Constants in this function were computed
   1157 * based on theoretical maximum wire speed and thresholds were set based
   1158 * on testing data as well as attempting to minimize response time
   1159 * while increasing bulk throughput.
   1160 **/
   1161static void i40e_update_itr(struct i40e_q_vector *q_vector,
   1162			    struct i40e_ring_container *rc)
   1163{
   1164	unsigned int avg_wire_size, packets, bytes, itr;
   1165	unsigned long next_update = jiffies;
   1166
   1167	/* If we don't have any rings just leave ourselves set for maximum
   1168	 * possible latency so we take ourselves out of the equation.
   1169	 */
   1170	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
   1171		return;
   1172
   1173	/* For Rx we want to push the delay up and default to low latency.
   1174	 * for Tx we want to pull the delay down and default to high latency.
   1175	 */
   1176	itr = i40e_container_is_rx(q_vector, rc) ?
   1177	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
   1178	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
   1179
   1180	/* If we didn't update within up to 1 - 2 jiffies we can assume
   1181	 * that either packets are coming in so slow there hasn't been
   1182	 * any work, or that there is so much work that NAPI is dealing
   1183	 * with interrupt moderation and we don't need to do anything.
   1184	 */
   1185	if (time_after(next_update, rc->next_update))
   1186		goto clear_counts;
   1187
   1188	/* If itr_countdown is set it means we programmed an ITR within
   1189	 * the last 4 interrupt cycles. This has a side effect of us
   1190	 * potentially firing an early interrupt. In order to work around
   1191	 * this we need to throw out any data received for a few
   1192	 * interrupts following the update.
   1193	 */
   1194	if (q_vector->itr_countdown) {
   1195		itr = rc->target_itr;
   1196		goto clear_counts;
   1197	}
   1198
   1199	packets = rc->total_packets;
   1200	bytes = rc->total_bytes;
   1201
   1202	if (i40e_container_is_rx(q_vector, rc)) {
   1203		/* If Rx there are 1 to 4 packets and bytes are less than
   1204		 * 9000 assume insufficient data to use bulk rate limiting
   1205		 * approach unless Tx is already in bulk rate limiting. We
   1206		 * are likely latency driven.
   1207		 */
   1208		if (packets && packets < 4 && bytes < 9000 &&
   1209		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
   1210			itr = I40E_ITR_ADAPTIVE_LATENCY;
   1211			goto adjust_by_size;
   1212		}
   1213	} else if (packets < 4) {
   1214		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
   1215		 * bulk mode and we are receiving 4 or fewer packets just
   1216		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
   1217		 * that the Rx can relax.
   1218		 */
   1219		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
   1220		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
   1221		     I40E_ITR_ADAPTIVE_MAX_USECS)
   1222			goto clear_counts;
   1223	} else if (packets > 32) {
   1224		/* If we have processed over 32 packets in a single interrupt
   1225		 * for Tx assume we need to switch over to "bulk" mode.
   1226		 */
   1227		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
   1228	}
   1229
   1230	/* We have no packets to actually measure against. This means
   1231	 * either one of the other queues on this vector is active or
   1232	 * we are a Tx queue doing TSO with too high of an interrupt rate.
   1233	 *
   1234	 * Between 4 and 56 we can assume that our current interrupt delay
   1235	 * is only slightly too low. As such we should increase it by a small
   1236	 * fixed amount.
   1237	 */
   1238	if (packets < 56) {
   1239		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
   1240		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
   1241			itr &= I40E_ITR_ADAPTIVE_LATENCY;
   1242			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
   1243		}
   1244		goto clear_counts;
   1245	}
   1246
   1247	if (packets <= 256) {
   1248		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
   1249		itr &= I40E_ITR_MASK;
   1250
   1251		/* Between 56 and 112 is our "goldilocks" zone where we are
   1252		 * working out "just right". Just report that our current
   1253		 * ITR is good for us.
   1254		 */
   1255		if (packets <= 112)
   1256			goto clear_counts;
   1257
   1258		/* If packet count is 128 or greater we are likely looking
   1259		 * at a slight overrun of the delay we want. Try halving
   1260		 * our delay to see if that will cut the number of packets
   1261		 * in half per interrupt.
   1262		 */
   1263		itr /= 2;
   1264		itr &= I40E_ITR_MASK;
   1265		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
   1266			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
   1267
   1268		goto clear_counts;
   1269	}
   1270
   1271	/* The paths below assume we are dealing with a bulk ITR since
   1272	 * number of packets is greater than 256. We are just going to have
   1273	 * to compute a value and try to bring the count under control,
   1274	 * though for smaller packet sizes there isn't much we can do as
   1275	 * NAPI polling will likely be kicking in sooner rather than later.
   1276	 */
   1277	itr = I40E_ITR_ADAPTIVE_BULK;
   1278
   1279adjust_by_size:
   1280	/* If packet counts are 256 or greater we can assume we have a gross
   1281	 * overestimation of what the rate should be. Instead of trying to fine
   1282	 * tune it just use the formula below to try and dial in an exact value
   1283	 * give the current packet size of the frame.
   1284	 */
   1285	avg_wire_size = bytes / packets;
   1286
   1287	/* The following is a crude approximation of:
   1288	 *  wmem_default / (size + overhead) = desired_pkts_per_int
   1289	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
   1290	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
   1291	 *
   1292	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
   1293	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
   1294	 * formula down to
   1295	 *
   1296	 *  (170 * (size + 24)) / (size + 640) = ITR
   1297	 *
   1298	 * We first do some math on the packet size and then finally bitshift
   1299	 * by 8 after rounding up. We also have to account for PCIe link speed
   1300	 * difference as ITR scales based on this.
   1301	 */
   1302	if (avg_wire_size <= 60) {
   1303		/* Start at 250k ints/sec */
   1304		avg_wire_size = 4096;
   1305	} else if (avg_wire_size <= 380) {
   1306		/* 250K ints/sec to 60K ints/sec */
   1307		avg_wire_size *= 40;
   1308		avg_wire_size += 1696;
   1309	} else if (avg_wire_size <= 1084) {
   1310		/* 60K ints/sec to 36K ints/sec */
   1311		avg_wire_size *= 15;
   1312		avg_wire_size += 11452;
   1313	} else if (avg_wire_size <= 1980) {
   1314		/* 36K ints/sec to 30K ints/sec */
   1315		avg_wire_size *= 5;
   1316		avg_wire_size += 22420;
   1317	} else {
   1318		/* plateau at a limit of 30K ints/sec */
   1319		avg_wire_size = 32256;
   1320	}
   1321
   1322	/* If we are in low latency mode halve our delay which doubles the
   1323	 * rate to somewhere between 100K to 16K ints/sec
   1324	 */
   1325	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
   1326		avg_wire_size /= 2;
   1327
   1328	/* Resultant value is 256 times larger than it needs to be. This
   1329	 * gives us room to adjust the value as needed to either increase
   1330	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
   1331	 *
   1332	 * Use addition as we have already recorded the new latency flag
   1333	 * for the ITR value.
   1334	 */
   1335	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
   1336	       I40E_ITR_ADAPTIVE_MIN_INC;
   1337
   1338	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
   1339		itr &= I40E_ITR_ADAPTIVE_LATENCY;
   1340		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
   1341	}
   1342
   1343clear_counts:
   1344	/* write back value */
   1345	rc->target_itr = itr;
   1346
   1347	/* next update should occur within next jiffy */
   1348	rc->next_update = next_update + 1;
   1349
   1350	rc->total_bytes = 0;
   1351	rc->total_packets = 0;
   1352}
   1353
   1354static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
   1355{
   1356	return &rx_ring->rx_bi[idx];
   1357}
   1358
   1359/**
   1360 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
   1361 * @rx_ring: rx descriptor ring to store buffers on
   1362 * @old_buff: donor buffer to have page reused
   1363 *
   1364 * Synchronizes page for reuse by the adapter
   1365 **/
   1366static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
   1367			       struct i40e_rx_buffer *old_buff)
   1368{
   1369	struct i40e_rx_buffer *new_buff;
   1370	u16 nta = rx_ring->next_to_alloc;
   1371
   1372	new_buff = i40e_rx_bi(rx_ring, nta);
   1373
   1374	/* update, and store next to alloc */
   1375	nta++;
   1376	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
   1377
   1378	/* transfer page from old buffer to new buffer */
   1379	new_buff->dma		= old_buff->dma;
   1380	new_buff->page		= old_buff->page;
   1381	new_buff->page_offset	= old_buff->page_offset;
   1382	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
   1383
   1384	/* clear contents of buffer_info */
   1385	old_buff->page = NULL;
   1386}
   1387
   1388/**
   1389 * i40e_clean_programming_status - clean the programming status descriptor
   1390 * @rx_ring: the rx ring that has this descriptor
   1391 * @qword0_raw: qword0
   1392 * @qword1: qword1 representing status_error_len in CPU ordering
   1393 *
   1394 * Flow director should handle FD_FILTER_STATUS to check its filter programming
   1395 * status being successful or not and take actions accordingly. FCoE should
   1396 * handle its context/filter programming/invalidation status and take actions.
   1397 *
   1398 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
   1399 **/
   1400void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
   1401				   u64 qword1)
   1402{
   1403	u8 id;
   1404
   1405	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
   1406		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
   1407
   1408	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
   1409		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
   1410}
   1411
   1412/**
   1413 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
   1414 * @tx_ring: the tx ring to set up
   1415 *
   1416 * Return 0 on success, negative on error
   1417 **/
   1418int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
   1419{
   1420	struct device *dev = tx_ring->dev;
   1421	int bi_size;
   1422
   1423	if (!dev)
   1424		return -ENOMEM;
   1425
   1426	/* warn if we are about to overwrite the pointer */
   1427	WARN_ON(tx_ring->tx_bi);
   1428	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
   1429	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
   1430	if (!tx_ring->tx_bi)
   1431		goto err;
   1432
   1433	u64_stats_init(&tx_ring->syncp);
   1434
   1435	/* round up to nearest 4K */
   1436	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
   1437	/* add u32 for head writeback, align after this takes care of
   1438	 * guaranteeing this is at least one cache line in size
   1439	 */
   1440	tx_ring->size += sizeof(u32);
   1441	tx_ring->size = ALIGN(tx_ring->size, 4096);
   1442	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
   1443					   &tx_ring->dma, GFP_KERNEL);
   1444	if (!tx_ring->desc) {
   1445		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
   1446			 tx_ring->size);
   1447		goto err;
   1448	}
   1449
   1450	tx_ring->next_to_use = 0;
   1451	tx_ring->next_to_clean = 0;
   1452	tx_ring->tx_stats.prev_pkt_ctr = -1;
   1453	return 0;
   1454
   1455err:
   1456	kfree(tx_ring->tx_bi);
   1457	tx_ring->tx_bi = NULL;
   1458	return -ENOMEM;
   1459}
   1460
   1461int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
   1462{
   1463	unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
   1464
   1465	rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
   1466	return rx_ring->rx_bi ? 0 : -ENOMEM;
   1467}
   1468
   1469static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
   1470{
   1471	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
   1472}
   1473
   1474/**
   1475 * i40e_clean_rx_ring - Free Rx buffers
   1476 * @rx_ring: ring to be cleaned
   1477 **/
   1478void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
   1479{
   1480	u16 i;
   1481
   1482	/* ring already cleared, nothing to do */
   1483	if (!rx_ring->rx_bi)
   1484		return;
   1485
   1486	if (rx_ring->skb) {
   1487		dev_kfree_skb(rx_ring->skb);
   1488		rx_ring->skb = NULL;
   1489	}
   1490
   1491	if (rx_ring->xsk_pool) {
   1492		i40e_xsk_clean_rx_ring(rx_ring);
   1493		goto skip_free;
   1494	}
   1495
   1496	/* Free all the Rx ring sk_buffs */
   1497	for (i = 0; i < rx_ring->count; i++) {
   1498		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
   1499
   1500		if (!rx_bi->page)
   1501			continue;
   1502
   1503		/* Invalidate cache lines that may have been written to by
   1504		 * device so that we avoid corrupting memory.
   1505		 */
   1506		dma_sync_single_range_for_cpu(rx_ring->dev,
   1507					      rx_bi->dma,
   1508					      rx_bi->page_offset,
   1509					      rx_ring->rx_buf_len,
   1510					      DMA_FROM_DEVICE);
   1511
   1512		/* free resources associated with mapping */
   1513		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
   1514				     i40e_rx_pg_size(rx_ring),
   1515				     DMA_FROM_DEVICE,
   1516				     I40E_RX_DMA_ATTR);
   1517
   1518		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
   1519
   1520		rx_bi->page = NULL;
   1521		rx_bi->page_offset = 0;
   1522	}
   1523
   1524skip_free:
   1525	if (rx_ring->xsk_pool)
   1526		i40e_clear_rx_bi_zc(rx_ring);
   1527	else
   1528		i40e_clear_rx_bi(rx_ring);
   1529
   1530	/* Zero out the descriptor ring */
   1531	memset(rx_ring->desc, 0, rx_ring->size);
   1532
   1533	rx_ring->next_to_alloc = 0;
   1534	rx_ring->next_to_clean = 0;
   1535	rx_ring->next_to_use = 0;
   1536}
   1537
   1538/**
   1539 * i40e_free_rx_resources - Free Rx resources
   1540 * @rx_ring: ring to clean the resources from
   1541 *
   1542 * Free all receive software resources
   1543 **/
   1544void i40e_free_rx_resources(struct i40e_ring *rx_ring)
   1545{
   1546	i40e_clean_rx_ring(rx_ring);
   1547	if (rx_ring->vsi->type == I40E_VSI_MAIN)
   1548		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
   1549	rx_ring->xdp_prog = NULL;
   1550	kfree(rx_ring->rx_bi);
   1551	rx_ring->rx_bi = NULL;
   1552
   1553	if (rx_ring->desc) {
   1554		dma_free_coherent(rx_ring->dev, rx_ring->size,
   1555				  rx_ring->desc, rx_ring->dma);
   1556		rx_ring->desc = NULL;
   1557	}
   1558}
   1559
   1560/**
   1561 * i40e_setup_rx_descriptors - Allocate Rx descriptors
   1562 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
   1563 *
   1564 * Returns 0 on success, negative on failure
   1565 **/
   1566int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
   1567{
   1568	struct device *dev = rx_ring->dev;
   1569	int err;
   1570
   1571	u64_stats_init(&rx_ring->syncp);
   1572
   1573	/* Round up to nearest 4K */
   1574	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
   1575	rx_ring->size = ALIGN(rx_ring->size, 4096);
   1576	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
   1577					   &rx_ring->dma, GFP_KERNEL);
   1578
   1579	if (!rx_ring->desc) {
   1580		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
   1581			 rx_ring->size);
   1582		return -ENOMEM;
   1583	}
   1584
   1585	rx_ring->next_to_alloc = 0;
   1586	rx_ring->next_to_clean = 0;
   1587	rx_ring->next_to_use = 0;
   1588
   1589	/* XDP RX-queue info only needed for RX rings exposed to XDP */
   1590	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
   1591		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
   1592				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
   1593		if (err < 0)
   1594			return err;
   1595	}
   1596
   1597	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
   1598
   1599	return 0;
   1600}
   1601
   1602/**
   1603 * i40e_release_rx_desc - Store the new tail and head values
   1604 * @rx_ring: ring to bump
   1605 * @val: new head index
   1606 **/
   1607void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
   1608{
   1609	rx_ring->next_to_use = val;
   1610
   1611	/* update next to alloc since we have filled the ring */
   1612	rx_ring->next_to_alloc = val;
   1613
   1614	/* Force memory writes to complete before letting h/w
   1615	 * know there are new descriptors to fetch.  (Only
   1616	 * applicable for weak-ordered memory model archs,
   1617	 * such as IA-64).
   1618	 */
   1619	wmb();
   1620	writel(val, rx_ring->tail);
   1621}
   1622
   1623static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
   1624					   unsigned int size)
   1625{
   1626	unsigned int truesize;
   1627
   1628#if (PAGE_SIZE < 8192)
   1629	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
   1630#else
   1631	truesize = rx_ring->rx_offset ?
   1632		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
   1633		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
   1634		SKB_DATA_ALIGN(size);
   1635#endif
   1636	return truesize;
   1637}
   1638
   1639/**
   1640 * i40e_alloc_mapped_page - recycle or make a new page
   1641 * @rx_ring: ring to use
   1642 * @bi: rx_buffer struct to modify
   1643 *
   1644 * Returns true if the page was successfully allocated or
   1645 * reused.
   1646 **/
   1647static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
   1648				   struct i40e_rx_buffer *bi)
   1649{
   1650	struct page *page = bi->page;
   1651	dma_addr_t dma;
   1652
   1653	/* since we are recycling buffers we should seldom need to alloc */
   1654	if (likely(page)) {
   1655		rx_ring->rx_stats.page_reuse_count++;
   1656		return true;
   1657	}
   1658
   1659	/* alloc new page for storage */
   1660	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
   1661	if (unlikely(!page)) {
   1662		rx_ring->rx_stats.alloc_page_failed++;
   1663		return false;
   1664	}
   1665
   1666	rx_ring->rx_stats.page_alloc_count++;
   1667
   1668	/* map page for use */
   1669	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
   1670				 i40e_rx_pg_size(rx_ring),
   1671				 DMA_FROM_DEVICE,
   1672				 I40E_RX_DMA_ATTR);
   1673
   1674	/* if mapping failed free memory back to system since
   1675	 * there isn't much point in holding memory we can't use
   1676	 */
   1677	if (dma_mapping_error(rx_ring->dev, dma)) {
   1678		__free_pages(page, i40e_rx_pg_order(rx_ring));
   1679		rx_ring->rx_stats.alloc_page_failed++;
   1680		return false;
   1681	}
   1682
   1683	bi->dma = dma;
   1684	bi->page = page;
   1685	bi->page_offset = rx_ring->rx_offset;
   1686	page_ref_add(page, USHRT_MAX - 1);
   1687	bi->pagecnt_bias = USHRT_MAX;
   1688
   1689	return true;
   1690}
   1691
   1692/**
   1693 * i40e_alloc_rx_buffers - Replace used receive buffers
   1694 * @rx_ring: ring to place buffers on
   1695 * @cleaned_count: number of buffers to replace
   1696 *
   1697 * Returns false if all allocations were successful, true if any fail
   1698 **/
   1699bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
   1700{
   1701	u16 ntu = rx_ring->next_to_use;
   1702	union i40e_rx_desc *rx_desc;
   1703	struct i40e_rx_buffer *bi;
   1704
   1705	/* do nothing if no valid netdev defined */
   1706	if (!rx_ring->netdev || !cleaned_count)
   1707		return false;
   1708
   1709	rx_desc = I40E_RX_DESC(rx_ring, ntu);
   1710	bi = i40e_rx_bi(rx_ring, ntu);
   1711
   1712	do {
   1713		if (!i40e_alloc_mapped_page(rx_ring, bi))
   1714			goto no_buffers;
   1715
   1716		/* sync the buffer for use by the device */
   1717		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
   1718						 bi->page_offset,
   1719						 rx_ring->rx_buf_len,
   1720						 DMA_FROM_DEVICE);
   1721
   1722		/* Refresh the desc even if buffer_addrs didn't change
   1723		 * because each write-back erases this info.
   1724		 */
   1725		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
   1726
   1727		rx_desc++;
   1728		bi++;
   1729		ntu++;
   1730		if (unlikely(ntu == rx_ring->count)) {
   1731			rx_desc = I40E_RX_DESC(rx_ring, 0);
   1732			bi = i40e_rx_bi(rx_ring, 0);
   1733			ntu = 0;
   1734		}
   1735
   1736		/* clear the status bits for the next_to_use descriptor */
   1737		rx_desc->wb.qword1.status_error_len = 0;
   1738
   1739		cleaned_count--;
   1740	} while (cleaned_count);
   1741
   1742	if (rx_ring->next_to_use != ntu)
   1743		i40e_release_rx_desc(rx_ring, ntu);
   1744
   1745	return false;
   1746
   1747no_buffers:
   1748	if (rx_ring->next_to_use != ntu)
   1749		i40e_release_rx_desc(rx_ring, ntu);
   1750
   1751	/* make sure to come back via polling to try again after
   1752	 * allocation failure
   1753	 */
   1754	return true;
   1755}
   1756
   1757/**
   1758 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
   1759 * @vsi: the VSI we care about
   1760 * @skb: skb currently being received and modified
   1761 * @rx_desc: the receive descriptor
   1762 **/
   1763static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
   1764				    struct sk_buff *skb,
   1765				    union i40e_rx_desc *rx_desc)
   1766{
   1767	struct i40e_rx_ptype_decoded decoded;
   1768	u32 rx_error, rx_status;
   1769	bool ipv4, ipv6;
   1770	u8 ptype;
   1771	u64 qword;
   1772
   1773	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
   1774	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
   1775	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
   1776		   I40E_RXD_QW1_ERROR_SHIFT;
   1777	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
   1778		    I40E_RXD_QW1_STATUS_SHIFT;
   1779	decoded = decode_rx_desc_ptype(ptype);
   1780
   1781	skb->ip_summed = CHECKSUM_NONE;
   1782
   1783	skb_checksum_none_assert(skb);
   1784
   1785	/* Rx csum enabled and ip headers found? */
   1786	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
   1787		return;
   1788
   1789	/* did the hardware decode the packet and checksum? */
   1790	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
   1791		return;
   1792
   1793	/* both known and outer_ip must be set for the below code to work */
   1794	if (!(decoded.known && decoded.outer_ip))
   1795		return;
   1796
   1797	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
   1798	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
   1799	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
   1800	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
   1801
   1802	if (ipv4 &&
   1803	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
   1804			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
   1805		goto checksum_fail;
   1806
   1807	/* likely incorrect csum if alternate IP extension headers found */
   1808	if (ipv6 &&
   1809	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
   1810		/* don't increment checksum err here, non-fatal err */
   1811		return;
   1812
   1813	/* there was some L4 error, count error and punt packet to the stack */
   1814	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
   1815		goto checksum_fail;
   1816
   1817	/* handle packets that were not able to be checksummed due
   1818	 * to arrival speed, in this case the stack can compute
   1819	 * the csum.
   1820	 */
   1821	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
   1822		return;
   1823
   1824	/* If there is an outer header present that might contain a checksum
   1825	 * we need to bump the checksum level by 1 to reflect the fact that
   1826	 * we are indicating we validated the inner checksum.
   1827	 */
   1828	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
   1829		skb->csum_level = 1;
   1830
   1831	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
   1832	switch (decoded.inner_prot) {
   1833	case I40E_RX_PTYPE_INNER_PROT_TCP:
   1834	case I40E_RX_PTYPE_INNER_PROT_UDP:
   1835	case I40E_RX_PTYPE_INNER_PROT_SCTP:
   1836		skb->ip_summed = CHECKSUM_UNNECESSARY;
   1837		fallthrough;
   1838	default:
   1839		break;
   1840	}
   1841
   1842	return;
   1843
   1844checksum_fail:
   1845	vsi->back->hw_csum_rx_error++;
   1846}
   1847
   1848/**
   1849 * i40e_ptype_to_htype - get a hash type
   1850 * @ptype: the ptype value from the descriptor
   1851 *
   1852 * Returns a hash type to be used by skb_set_hash
   1853 **/
   1854static inline int i40e_ptype_to_htype(u8 ptype)
   1855{
   1856	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
   1857
   1858	if (!decoded.known)
   1859		return PKT_HASH_TYPE_NONE;
   1860
   1861	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
   1862	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
   1863		return PKT_HASH_TYPE_L4;
   1864	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
   1865		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
   1866		return PKT_HASH_TYPE_L3;
   1867	else
   1868		return PKT_HASH_TYPE_L2;
   1869}
   1870
   1871/**
   1872 * i40e_rx_hash - set the hash value in the skb
   1873 * @ring: descriptor ring
   1874 * @rx_desc: specific descriptor
   1875 * @skb: skb currently being received and modified
   1876 * @rx_ptype: Rx packet type
   1877 **/
   1878static inline void i40e_rx_hash(struct i40e_ring *ring,
   1879				union i40e_rx_desc *rx_desc,
   1880				struct sk_buff *skb,
   1881				u8 rx_ptype)
   1882{
   1883	u32 hash;
   1884	const __le64 rss_mask =
   1885		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
   1886			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
   1887
   1888	if (!(ring->netdev->features & NETIF_F_RXHASH))
   1889		return;
   1890
   1891	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
   1892		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
   1893		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
   1894	}
   1895}
   1896
   1897/**
   1898 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
   1899 * @rx_ring: rx descriptor ring packet is being transacted on
   1900 * @rx_desc: pointer to the EOP Rx descriptor
   1901 * @skb: pointer to current skb being populated
   1902 *
   1903 * This function checks the ring, descriptor, and packet information in
   1904 * order to populate the hash, checksum, VLAN, protocol, and
   1905 * other fields within the skb.
   1906 **/
   1907void i40e_process_skb_fields(struct i40e_ring *rx_ring,
   1908			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
   1909{
   1910	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
   1911	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
   1912			I40E_RXD_QW1_STATUS_SHIFT;
   1913	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
   1914	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
   1915		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
   1916	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
   1917		      I40E_RXD_QW1_PTYPE_SHIFT;
   1918
   1919	if (unlikely(tsynvalid))
   1920		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
   1921
   1922	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
   1923
   1924	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
   1925
   1926	skb_record_rx_queue(skb, rx_ring->queue_index);
   1927
   1928	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
   1929		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
   1930
   1931		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
   1932				       le16_to_cpu(vlan_tag));
   1933	}
   1934
   1935	/* modifies the skb - consumes the enet header */
   1936	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
   1937}
   1938
   1939/**
   1940 * i40e_cleanup_headers - Correct empty headers
   1941 * @rx_ring: rx descriptor ring packet is being transacted on
   1942 * @skb: pointer to current skb being fixed
   1943 * @rx_desc: pointer to the EOP Rx descriptor
   1944 *
   1945 * In addition if skb is not at least 60 bytes we need to pad it so that
   1946 * it is large enough to qualify as a valid Ethernet frame.
   1947 *
   1948 * Returns true if an error was encountered and skb was freed.
   1949 **/
   1950static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
   1951				 union i40e_rx_desc *rx_desc)
   1952
   1953{
   1954	/* ERR_MASK will only have valid bits if EOP set, and
   1955	 * what we are doing here is actually checking
   1956	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
   1957	 * the error field
   1958	 */
   1959	if (unlikely(i40e_test_staterr(rx_desc,
   1960				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
   1961		dev_kfree_skb_any(skb);
   1962		return true;
   1963	}
   1964
   1965	/* if eth_skb_pad returns an error the skb was freed */
   1966	if (eth_skb_pad(skb))
   1967		return true;
   1968
   1969	return false;
   1970}
   1971
   1972/**
   1973 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
   1974 * @rx_buffer: buffer containing the page
   1975 * @rx_stats: rx stats structure for the rx ring
   1976 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
   1977 *
   1978 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
   1979 * which will assign the current buffer to the buffer that next_to_alloc is
   1980 * pointing to; otherwise, the DMA mapping needs to be destroyed and
   1981 * page freed.
   1982 *
   1983 * rx_stats will be updated to indicate whether the page was waived
   1984 * or busy if it could not be reused.
   1985 */
   1986static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
   1987				   struct i40e_rx_queue_stats *rx_stats,
   1988				   int rx_buffer_pgcnt)
   1989{
   1990	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
   1991	struct page *page = rx_buffer->page;
   1992
   1993	/* Is any reuse possible? */
   1994	if (!dev_page_is_reusable(page)) {
   1995		rx_stats->page_waive_count++;
   1996		return false;
   1997	}
   1998
   1999#if (PAGE_SIZE < 8192)
   2000	/* if we are only owner of page we can reuse it */
   2001	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
   2002		rx_stats->page_busy_count++;
   2003		return false;
   2004	}
   2005#else
   2006#define I40E_LAST_OFFSET \
   2007	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
   2008	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
   2009		rx_stats->page_busy_count++;
   2010		return false;
   2011	}
   2012#endif
   2013
   2014	/* If we have drained the page fragment pool we need to update
   2015	 * the pagecnt_bias and page count so that we fully restock the
   2016	 * number of references the driver holds.
   2017	 */
   2018	if (unlikely(pagecnt_bias == 1)) {
   2019		page_ref_add(page, USHRT_MAX - 1);
   2020		rx_buffer->pagecnt_bias = USHRT_MAX;
   2021	}
   2022
   2023	return true;
   2024}
   2025
   2026/**
   2027 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
   2028 * @rx_ring: rx descriptor ring to transact packets on
   2029 * @rx_buffer: buffer containing page to add
   2030 * @skb: sk_buff to place the data into
   2031 * @size: packet length from rx_desc
   2032 *
   2033 * This function will add the data contained in rx_buffer->page to the skb.
   2034 * It will just attach the page as a frag to the skb.
   2035 *
   2036 * The function will then update the page offset.
   2037 **/
   2038static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
   2039			     struct i40e_rx_buffer *rx_buffer,
   2040			     struct sk_buff *skb,
   2041			     unsigned int size)
   2042{
   2043#if (PAGE_SIZE < 8192)
   2044	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
   2045#else
   2046	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
   2047#endif
   2048
   2049	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
   2050			rx_buffer->page_offset, size, truesize);
   2051
   2052	/* page is being used so we must update the page offset */
   2053#if (PAGE_SIZE < 8192)
   2054	rx_buffer->page_offset ^= truesize;
   2055#else
   2056	rx_buffer->page_offset += truesize;
   2057#endif
   2058}
   2059
   2060/**
   2061 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
   2062 * @rx_ring: rx descriptor ring to transact packets on
   2063 * @size: size of buffer to add to skb
   2064 * @rx_buffer_pgcnt: buffer page refcount
   2065 *
   2066 * This function will pull an Rx buffer from the ring and synchronize it
   2067 * for use by the CPU.
   2068 */
   2069static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
   2070						 const unsigned int size,
   2071						 int *rx_buffer_pgcnt)
   2072{
   2073	struct i40e_rx_buffer *rx_buffer;
   2074
   2075	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
   2076	*rx_buffer_pgcnt =
   2077#if (PAGE_SIZE < 8192)
   2078		page_count(rx_buffer->page);
   2079#else
   2080		0;
   2081#endif
   2082	prefetch_page_address(rx_buffer->page);
   2083
   2084	/* we are reusing so sync this buffer for CPU use */
   2085	dma_sync_single_range_for_cpu(rx_ring->dev,
   2086				      rx_buffer->dma,
   2087				      rx_buffer->page_offset,
   2088				      size,
   2089				      DMA_FROM_DEVICE);
   2090
   2091	/* We have pulled a buffer for use, so decrement pagecnt_bias */
   2092	rx_buffer->pagecnt_bias--;
   2093
   2094	return rx_buffer;
   2095}
   2096
   2097/**
   2098 * i40e_construct_skb - Allocate skb and populate it
   2099 * @rx_ring: rx descriptor ring to transact packets on
   2100 * @rx_buffer: rx buffer to pull data from
   2101 * @xdp: xdp_buff pointing to the data
   2102 *
   2103 * This function allocates an skb.  It then populates it with the page
   2104 * data from the current receive descriptor, taking care to set up the
   2105 * skb correctly.
   2106 */
   2107static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
   2108					  struct i40e_rx_buffer *rx_buffer,
   2109					  struct xdp_buff *xdp)
   2110{
   2111	unsigned int size = xdp->data_end - xdp->data;
   2112#if (PAGE_SIZE < 8192)
   2113	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
   2114#else
   2115	unsigned int truesize = SKB_DATA_ALIGN(size);
   2116#endif
   2117	unsigned int headlen;
   2118	struct sk_buff *skb;
   2119
   2120	/* prefetch first cache line of first page */
   2121	net_prefetch(xdp->data);
   2122
   2123	/* Note, we get here by enabling legacy-rx via:
   2124	 *
   2125	 *    ethtool --set-priv-flags <dev> legacy-rx on
   2126	 *
   2127	 * In this mode, we currently get 0 extra XDP headroom as
   2128	 * opposed to having legacy-rx off, where we process XDP
   2129	 * packets going to stack via i40e_build_skb(). The latter
   2130	 * provides us currently with 192 bytes of headroom.
   2131	 *
   2132	 * For i40e_construct_skb() mode it means that the
   2133	 * xdp->data_meta will always point to xdp->data, since
   2134	 * the helper cannot expand the head. Should this ever
   2135	 * change in future for legacy-rx mode on, then lets also
   2136	 * add xdp->data_meta handling here.
   2137	 */
   2138
   2139	/* allocate a skb to store the frags */
   2140	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
   2141			       I40E_RX_HDR_SIZE,
   2142			       GFP_ATOMIC | __GFP_NOWARN);
   2143	if (unlikely(!skb))
   2144		return NULL;
   2145
   2146	/* Determine available headroom for copy */
   2147	headlen = size;
   2148	if (headlen > I40E_RX_HDR_SIZE)
   2149		headlen = eth_get_headlen(skb->dev, xdp->data,
   2150					  I40E_RX_HDR_SIZE);
   2151
   2152	/* align pull length to size of long to optimize memcpy performance */
   2153	memcpy(__skb_put(skb, headlen), xdp->data,
   2154	       ALIGN(headlen, sizeof(long)));
   2155
   2156	/* update all of the pointers */
   2157	size -= headlen;
   2158	if (size) {
   2159		skb_add_rx_frag(skb, 0, rx_buffer->page,
   2160				rx_buffer->page_offset + headlen,
   2161				size, truesize);
   2162
   2163		/* buffer is used by skb, update page_offset */
   2164#if (PAGE_SIZE < 8192)
   2165		rx_buffer->page_offset ^= truesize;
   2166#else
   2167		rx_buffer->page_offset += truesize;
   2168#endif
   2169	} else {
   2170		/* buffer is unused, reset bias back to rx_buffer */
   2171		rx_buffer->pagecnt_bias++;
   2172	}
   2173
   2174	return skb;
   2175}
   2176
   2177/**
   2178 * i40e_build_skb - Build skb around an existing buffer
   2179 * @rx_ring: Rx descriptor ring to transact packets on
   2180 * @rx_buffer: Rx buffer to pull data from
   2181 * @xdp: xdp_buff pointing to the data
   2182 *
   2183 * This function builds an skb around an existing Rx buffer, taking care
   2184 * to set up the skb correctly and avoid any memcpy overhead.
   2185 */
   2186static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
   2187				      struct i40e_rx_buffer *rx_buffer,
   2188				      struct xdp_buff *xdp)
   2189{
   2190	unsigned int metasize = xdp->data - xdp->data_meta;
   2191#if (PAGE_SIZE < 8192)
   2192	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
   2193#else
   2194	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
   2195				SKB_DATA_ALIGN(xdp->data_end -
   2196					       xdp->data_hard_start);
   2197#endif
   2198	struct sk_buff *skb;
   2199
   2200	/* Prefetch first cache line of first page. If xdp->data_meta
   2201	 * is unused, this points exactly as xdp->data, otherwise we
   2202	 * likely have a consumer accessing first few bytes of meta
   2203	 * data, and then actual data.
   2204	 */
   2205	net_prefetch(xdp->data_meta);
   2206
   2207	/* build an skb around the page buffer */
   2208	skb = napi_build_skb(xdp->data_hard_start, truesize);
   2209	if (unlikely(!skb))
   2210		return NULL;
   2211
   2212	/* update pointers within the skb to store the data */
   2213	skb_reserve(skb, xdp->data - xdp->data_hard_start);
   2214	__skb_put(skb, xdp->data_end - xdp->data);
   2215	if (metasize)
   2216		skb_metadata_set(skb, metasize);
   2217
   2218	/* buffer is used by skb, update page_offset */
   2219#if (PAGE_SIZE < 8192)
   2220	rx_buffer->page_offset ^= truesize;
   2221#else
   2222	rx_buffer->page_offset += truesize;
   2223#endif
   2224
   2225	return skb;
   2226}
   2227
   2228/**
   2229 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
   2230 * @rx_ring: rx descriptor ring to transact packets on
   2231 * @rx_buffer: rx buffer to pull data from
   2232 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
   2233 *
   2234 * This function will clean up the contents of the rx_buffer.  It will
   2235 * either recycle the buffer or unmap it and free the associated resources.
   2236 */
   2237static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
   2238			       struct i40e_rx_buffer *rx_buffer,
   2239			       int rx_buffer_pgcnt)
   2240{
   2241	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
   2242		/* hand second half of page back to the ring */
   2243		i40e_reuse_rx_page(rx_ring, rx_buffer);
   2244	} else {
   2245		/* we are not reusing the buffer so unmap it */
   2246		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
   2247				     i40e_rx_pg_size(rx_ring),
   2248				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
   2249		__page_frag_cache_drain(rx_buffer->page,
   2250					rx_buffer->pagecnt_bias);
   2251		/* clear contents of buffer_info */
   2252		rx_buffer->page = NULL;
   2253	}
   2254}
   2255
   2256/**
   2257 * i40e_is_non_eop - process handling of non-EOP buffers
   2258 * @rx_ring: Rx ring being processed
   2259 * @rx_desc: Rx descriptor for current buffer
   2260 *
   2261 * If the buffer is an EOP buffer, this function exits returning false,
   2262 * otherwise return true indicating that this is in fact a non-EOP buffer.
   2263 */
   2264static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
   2265			    union i40e_rx_desc *rx_desc)
   2266{
   2267	/* if we are the last buffer then there is nothing else to do */
   2268#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
   2269	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
   2270		return false;
   2271
   2272	rx_ring->rx_stats.non_eop_descs++;
   2273
   2274	return true;
   2275}
   2276
   2277static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
   2278			      struct i40e_ring *xdp_ring);
   2279
   2280int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
   2281{
   2282	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
   2283
   2284	if (unlikely(!xdpf))
   2285		return I40E_XDP_CONSUMED;
   2286
   2287	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
   2288}
   2289
   2290/**
   2291 * i40e_run_xdp - run an XDP program
   2292 * @rx_ring: Rx ring being processed
   2293 * @xdp: XDP buffer containing the frame
   2294 **/
   2295static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
   2296{
   2297	int err, result = I40E_XDP_PASS;
   2298	struct i40e_ring *xdp_ring;
   2299	struct bpf_prog *xdp_prog;
   2300	u32 act;
   2301
   2302	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
   2303
   2304	if (!xdp_prog)
   2305		goto xdp_out;
   2306
   2307	prefetchw(xdp->data_hard_start); /* xdp_frame write */
   2308
   2309	act = bpf_prog_run_xdp(xdp_prog, xdp);
   2310	switch (act) {
   2311	case XDP_PASS:
   2312		break;
   2313	case XDP_TX:
   2314		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
   2315		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
   2316		if (result == I40E_XDP_CONSUMED)
   2317			goto out_failure;
   2318		break;
   2319	case XDP_REDIRECT:
   2320		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
   2321		if (err)
   2322			goto out_failure;
   2323		result = I40E_XDP_REDIR;
   2324		break;
   2325	default:
   2326		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
   2327		fallthrough;
   2328	case XDP_ABORTED:
   2329out_failure:
   2330		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
   2331		fallthrough; /* handle aborts by dropping packet */
   2332	case XDP_DROP:
   2333		result = I40E_XDP_CONSUMED;
   2334		break;
   2335	}
   2336xdp_out:
   2337	return result;
   2338}
   2339
   2340/**
   2341 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
   2342 * @rx_ring: Rx ring
   2343 * @rx_buffer: Rx buffer to adjust
   2344 * @size: Size of adjustment
   2345 **/
   2346static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
   2347				struct i40e_rx_buffer *rx_buffer,
   2348				unsigned int size)
   2349{
   2350	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
   2351
   2352#if (PAGE_SIZE < 8192)
   2353	rx_buffer->page_offset ^= truesize;
   2354#else
   2355	rx_buffer->page_offset += truesize;
   2356#endif
   2357}
   2358
   2359/**
   2360 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
   2361 * @xdp_ring: XDP Tx ring
   2362 *
   2363 * This function updates the XDP Tx ring tail register.
   2364 **/
   2365void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
   2366{
   2367	/* Force memory writes to complete before letting h/w
   2368	 * know there are new descriptors to fetch.
   2369	 */
   2370	wmb();
   2371	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
   2372}
   2373
   2374/**
   2375 * i40e_update_rx_stats - Update Rx ring statistics
   2376 * @rx_ring: rx descriptor ring
   2377 * @total_rx_bytes: number of bytes received
   2378 * @total_rx_packets: number of packets received
   2379 *
   2380 * This function updates the Rx ring statistics.
   2381 **/
   2382void i40e_update_rx_stats(struct i40e_ring *rx_ring,
   2383			  unsigned int total_rx_bytes,
   2384			  unsigned int total_rx_packets)
   2385{
   2386	u64_stats_update_begin(&rx_ring->syncp);
   2387	rx_ring->stats.packets += total_rx_packets;
   2388	rx_ring->stats.bytes += total_rx_bytes;
   2389	u64_stats_update_end(&rx_ring->syncp);
   2390	rx_ring->q_vector->rx.total_packets += total_rx_packets;
   2391	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
   2392}
   2393
   2394/**
   2395 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
   2396 * @rx_ring: Rx ring
   2397 * @xdp_res: Result of the receive batch
   2398 *
   2399 * This function bumps XDP Tx tail and/or flush redirect map, and
   2400 * should be called when a batch of packets has been processed in the
   2401 * napi loop.
   2402 **/
   2403void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
   2404{
   2405	if (xdp_res & I40E_XDP_REDIR)
   2406		xdp_do_flush_map();
   2407
   2408	if (xdp_res & I40E_XDP_TX) {
   2409		struct i40e_ring *xdp_ring =
   2410			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
   2411
   2412		i40e_xdp_ring_update_tail(xdp_ring);
   2413	}
   2414}
   2415
   2416/**
   2417 * i40e_inc_ntc: Advance the next_to_clean index
   2418 * @rx_ring: Rx ring
   2419 **/
   2420static void i40e_inc_ntc(struct i40e_ring *rx_ring)
   2421{
   2422	u32 ntc = rx_ring->next_to_clean + 1;
   2423
   2424	ntc = (ntc < rx_ring->count) ? ntc : 0;
   2425	rx_ring->next_to_clean = ntc;
   2426	prefetch(I40E_RX_DESC(rx_ring, ntc));
   2427}
   2428
   2429/**
   2430 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
   2431 * @rx_ring: rx descriptor ring to transact packets on
   2432 * @budget: Total limit on number of packets to process
   2433 *
   2434 * This function provides a "bounce buffer" approach to Rx interrupt
   2435 * processing.  The advantage to this is that on systems that have
   2436 * expensive overhead for IOMMU access this provides a means of avoiding
   2437 * it by maintaining the mapping of the page to the system.
   2438 *
   2439 * Returns amount of work completed
   2440 **/
   2441static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
   2442{
   2443	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
   2444	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
   2445	unsigned int offset = rx_ring->rx_offset;
   2446	struct sk_buff *skb = rx_ring->skb;
   2447	unsigned int xdp_xmit = 0;
   2448	bool failure = false;
   2449	struct xdp_buff xdp;
   2450	int xdp_res = 0;
   2451
   2452#if (PAGE_SIZE < 8192)
   2453	frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
   2454#endif
   2455	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
   2456
   2457	while (likely(total_rx_packets < (unsigned int)budget)) {
   2458		struct i40e_rx_buffer *rx_buffer;
   2459		union i40e_rx_desc *rx_desc;
   2460		int rx_buffer_pgcnt;
   2461		unsigned int size;
   2462		u64 qword;
   2463
   2464		/* return some buffers to hardware, one at a time is too slow */
   2465		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
   2466			failure = failure ||
   2467				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
   2468			cleaned_count = 0;
   2469		}
   2470
   2471		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
   2472
   2473		/* status_error_len will always be zero for unused descriptors
   2474		 * because it's cleared in cleanup, and overlaps with hdr_addr
   2475		 * which is always zero because packet split isn't used, if the
   2476		 * hardware wrote DD then the length will be non-zero
   2477		 */
   2478		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
   2479
   2480		/* This memory barrier is needed to keep us from reading
   2481		 * any other fields out of the rx_desc until we have
   2482		 * verified the descriptor has been written back.
   2483		 */
   2484		dma_rmb();
   2485
   2486		if (i40e_rx_is_programming_status(qword)) {
   2487			i40e_clean_programming_status(rx_ring,
   2488						      rx_desc->raw.qword[0],
   2489						      qword);
   2490			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
   2491			i40e_inc_ntc(rx_ring);
   2492			i40e_reuse_rx_page(rx_ring, rx_buffer);
   2493			cleaned_count++;
   2494			continue;
   2495		}
   2496
   2497		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
   2498		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
   2499		if (!size)
   2500			break;
   2501
   2502		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
   2503		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
   2504
   2505		/* retrieve a buffer from the ring */
   2506		if (!skb) {
   2507			unsigned char *hard_start;
   2508
   2509			hard_start = page_address(rx_buffer->page) +
   2510				     rx_buffer->page_offset - offset;
   2511			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
   2512#if (PAGE_SIZE > 4096)
   2513			/* At larger PAGE_SIZE, frame_sz depend on len size */
   2514			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
   2515#endif
   2516			xdp_res = i40e_run_xdp(rx_ring, &xdp);
   2517		}
   2518
   2519		if (xdp_res) {
   2520			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
   2521				xdp_xmit |= xdp_res;
   2522				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
   2523			} else {
   2524				rx_buffer->pagecnt_bias++;
   2525			}
   2526			total_rx_bytes += size;
   2527			total_rx_packets++;
   2528		} else if (skb) {
   2529			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
   2530		} else if (ring_uses_build_skb(rx_ring)) {
   2531			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
   2532		} else {
   2533			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
   2534		}
   2535
   2536		/* exit if we failed to retrieve a buffer */
   2537		if (!xdp_res && !skb) {
   2538			rx_ring->rx_stats.alloc_buff_failed++;
   2539			rx_buffer->pagecnt_bias++;
   2540			break;
   2541		}
   2542
   2543		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
   2544		cleaned_count++;
   2545
   2546		i40e_inc_ntc(rx_ring);
   2547		if (i40e_is_non_eop(rx_ring, rx_desc))
   2548			continue;
   2549
   2550		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
   2551			skb = NULL;
   2552			continue;
   2553		}
   2554
   2555		/* probably a little skewed due to removing CRC */
   2556		total_rx_bytes += skb->len;
   2557
   2558		/* populate checksum, VLAN, and protocol */
   2559		i40e_process_skb_fields(rx_ring, rx_desc, skb);
   2560
   2561		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
   2562		napi_gro_receive(&rx_ring->q_vector->napi, skb);
   2563		skb = NULL;
   2564
   2565		/* update budget accounting */
   2566		total_rx_packets++;
   2567	}
   2568
   2569	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
   2570	rx_ring->skb = skb;
   2571
   2572	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
   2573
   2574	/* guarantee a trip back through this routine if there was a failure */
   2575	return failure ? budget : (int)total_rx_packets;
   2576}
   2577
   2578static inline u32 i40e_buildreg_itr(const int type, u16 itr)
   2579{
   2580	u32 val;
   2581
   2582	/* We don't bother with setting the CLEARPBA bit as the data sheet
   2583	 * points out doing so is "meaningless since it was already
   2584	 * auto-cleared". The auto-clearing happens when the interrupt is
   2585	 * asserted.
   2586	 *
   2587	 * Hardware errata 28 for also indicates that writing to a
   2588	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
   2589	 * an event in the PBA anyway so we need to rely on the automask
   2590	 * to hold pending events for us until the interrupt is re-enabled
   2591	 *
   2592	 * The itr value is reported in microseconds, and the register
   2593	 * value is recorded in 2 microsecond units. For this reason we
   2594	 * only need to shift by the interval shift - 1 instead of the
   2595	 * full value.
   2596	 */
   2597	itr &= I40E_ITR_MASK;
   2598
   2599	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
   2600	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
   2601	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
   2602
   2603	return val;
   2604}
   2605
   2606/* a small macro to shorten up some long lines */
   2607#define INTREG I40E_PFINT_DYN_CTLN
   2608
   2609/* The act of updating the ITR will cause it to immediately trigger. In order
   2610 * to prevent this from throwing off adaptive update statistics we defer the
   2611 * update so that it can only happen so often. So after either Tx or Rx are
   2612 * updated we make the adaptive scheme wait until either the ITR completely
   2613 * expires via the next_update expiration or we have been through at least
   2614 * 3 interrupts.
   2615 */
   2616#define ITR_COUNTDOWN_START 3
   2617
   2618/**
   2619 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
   2620 * @vsi: the VSI we care about
   2621 * @q_vector: q_vector for which itr is being updated and interrupt enabled
   2622 *
   2623 **/
   2624static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
   2625					  struct i40e_q_vector *q_vector)
   2626{
   2627	struct i40e_hw *hw = &vsi->back->hw;
   2628	u32 intval;
   2629
   2630	/* If we don't have MSIX, then we only need to re-enable icr0 */
   2631	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
   2632		i40e_irq_dynamic_enable_icr0(vsi->back);
   2633		return;
   2634	}
   2635
   2636	/* These will do nothing if dynamic updates are not enabled */
   2637	i40e_update_itr(q_vector, &q_vector->tx);
   2638	i40e_update_itr(q_vector, &q_vector->rx);
   2639
   2640	/* This block of logic allows us to get away with only updating
   2641	 * one ITR value with each interrupt. The idea is to perform a
   2642	 * pseudo-lazy update with the following criteria.
   2643	 *
   2644	 * 1. Rx is given higher priority than Tx if both are in same state
   2645	 * 2. If we must reduce an ITR that is given highest priority.
   2646	 * 3. We then give priority to increasing ITR based on amount.
   2647	 */
   2648	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
   2649		/* Rx ITR needs to be reduced, this is highest priority */
   2650		intval = i40e_buildreg_itr(I40E_RX_ITR,
   2651					   q_vector->rx.target_itr);
   2652		q_vector->rx.current_itr = q_vector->rx.target_itr;
   2653		q_vector->itr_countdown = ITR_COUNTDOWN_START;
   2654	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
   2655		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
   2656		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
   2657		/* Tx ITR needs to be reduced, this is second priority
   2658		 * Tx ITR needs to be increased more than Rx, fourth priority
   2659		 */
   2660		intval = i40e_buildreg_itr(I40E_TX_ITR,
   2661					   q_vector->tx.target_itr);
   2662		q_vector->tx.current_itr = q_vector->tx.target_itr;
   2663		q_vector->itr_countdown = ITR_COUNTDOWN_START;
   2664	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
   2665		/* Rx ITR needs to be increased, third priority */
   2666		intval = i40e_buildreg_itr(I40E_RX_ITR,
   2667					   q_vector->rx.target_itr);
   2668		q_vector->rx.current_itr = q_vector->rx.target_itr;
   2669		q_vector->itr_countdown = ITR_COUNTDOWN_START;
   2670	} else {
   2671		/* No ITR update, lowest priority */
   2672		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
   2673		if (q_vector->itr_countdown)
   2674			q_vector->itr_countdown--;
   2675	}
   2676
   2677	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
   2678		wr32(hw, INTREG(q_vector->reg_idx), intval);
   2679}
   2680
   2681/**
   2682 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
   2683 * @napi: napi struct with our devices info in it
   2684 * @budget: amount of work driver is allowed to do this pass, in packets
   2685 *
   2686 * This function will clean all queues associated with a q_vector.
   2687 *
   2688 * Returns the amount of work done
   2689 **/
   2690int i40e_napi_poll(struct napi_struct *napi, int budget)
   2691{
   2692	struct i40e_q_vector *q_vector =
   2693			       container_of(napi, struct i40e_q_vector, napi);
   2694	struct i40e_vsi *vsi = q_vector->vsi;
   2695	struct i40e_ring *ring;
   2696	bool clean_complete = true;
   2697	bool arm_wb = false;
   2698	int budget_per_ring;
   2699	int work_done = 0;
   2700
   2701	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
   2702		napi_complete(napi);
   2703		return 0;
   2704	}
   2705
   2706	/* Since the actual Tx work is minimal, we can give the Tx a larger
   2707	 * budget and be more aggressive about cleaning up the Tx descriptors.
   2708	 */
   2709	i40e_for_each_ring(ring, q_vector->tx) {
   2710		bool wd = ring->xsk_pool ?
   2711			  i40e_clean_xdp_tx_irq(vsi, ring) :
   2712			  i40e_clean_tx_irq(vsi, ring, budget);
   2713
   2714		if (!wd) {
   2715			clean_complete = false;
   2716			continue;
   2717		}
   2718		arm_wb |= ring->arm_wb;
   2719		ring->arm_wb = false;
   2720	}
   2721
   2722	/* Handle case where we are called by netpoll with a budget of 0 */
   2723	if (budget <= 0)
   2724		goto tx_only;
   2725
   2726	/* normally we have 1 Rx ring per q_vector */
   2727	if (unlikely(q_vector->num_ringpairs > 1))
   2728		/* We attempt to distribute budget to each Rx queue fairly, but
   2729		 * don't allow the budget to go below 1 because that would exit
   2730		 * polling early.
   2731		 */
   2732		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
   2733	else
   2734		/* Max of 1 Rx ring in this q_vector so give it the budget */
   2735		budget_per_ring = budget;
   2736
   2737	i40e_for_each_ring(ring, q_vector->rx) {
   2738		int cleaned = ring->xsk_pool ?
   2739			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
   2740			      i40e_clean_rx_irq(ring, budget_per_ring);
   2741
   2742		work_done += cleaned;
   2743		/* if we clean as many as budgeted, we must not be done */
   2744		if (cleaned >= budget_per_ring)
   2745			clean_complete = false;
   2746	}
   2747
   2748	/* If work not completed, return budget and polling will return */
   2749	if (!clean_complete) {
   2750		int cpu_id = smp_processor_id();
   2751
   2752		/* It is possible that the interrupt affinity has changed but,
   2753		 * if the cpu is pegged at 100%, polling will never exit while
   2754		 * traffic continues and the interrupt will be stuck on this
   2755		 * cpu.  We check to make sure affinity is correct before we
   2756		 * continue to poll, otherwise we must stop polling so the
   2757		 * interrupt can move to the correct cpu.
   2758		 */
   2759		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
   2760			/* Tell napi that we are done polling */
   2761			napi_complete_done(napi, work_done);
   2762
   2763			/* Force an interrupt */
   2764			i40e_force_wb(vsi, q_vector);
   2765
   2766			/* Return budget-1 so that polling stops */
   2767			return budget - 1;
   2768		}
   2769tx_only:
   2770		if (arm_wb) {
   2771			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
   2772			i40e_enable_wb_on_itr(vsi, q_vector);
   2773		}
   2774		return budget;
   2775	}
   2776
   2777	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
   2778		q_vector->arm_wb_state = false;
   2779
   2780	/* Exit the polling mode, but don't re-enable interrupts if stack might
   2781	 * poll us due to busy-polling
   2782	 */
   2783	if (likely(napi_complete_done(napi, work_done)))
   2784		i40e_update_enable_itr(vsi, q_vector);
   2785
   2786	return min(work_done, budget - 1);
   2787}
   2788
   2789/**
   2790 * i40e_atr - Add a Flow Director ATR filter
   2791 * @tx_ring:  ring to add programming descriptor to
   2792 * @skb:      send buffer
   2793 * @tx_flags: send tx flags
   2794 **/
   2795static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
   2796		     u32 tx_flags)
   2797{
   2798	struct i40e_filter_program_desc *fdir_desc;
   2799	struct i40e_pf *pf = tx_ring->vsi->back;
   2800	union {
   2801		unsigned char *network;
   2802		struct iphdr *ipv4;
   2803		struct ipv6hdr *ipv6;
   2804	} hdr;
   2805	struct tcphdr *th;
   2806	unsigned int hlen;
   2807	u32 flex_ptype, dtype_cmd;
   2808	int l4_proto;
   2809	u16 i;
   2810
   2811	/* make sure ATR is enabled */
   2812	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
   2813		return;
   2814
   2815	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
   2816		return;
   2817
   2818	/* if sampling is disabled do nothing */
   2819	if (!tx_ring->atr_sample_rate)
   2820		return;
   2821
   2822	/* Currently only IPv4/IPv6 with TCP is supported */
   2823	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
   2824		return;
   2825
   2826	/* snag network header to get L4 type and address */
   2827	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
   2828		      skb_inner_network_header(skb) : skb_network_header(skb);
   2829
   2830	/* Note: tx_flags gets modified to reflect inner protocols in
   2831	 * tx_enable_csum function if encap is enabled.
   2832	 */
   2833	if (tx_flags & I40E_TX_FLAGS_IPV4) {
   2834		/* access ihl as u8 to avoid unaligned access on ia64 */
   2835		hlen = (hdr.network[0] & 0x0F) << 2;
   2836		l4_proto = hdr.ipv4->protocol;
   2837	} else {
   2838		/* find the start of the innermost ipv6 header */
   2839		unsigned int inner_hlen = hdr.network - skb->data;
   2840		unsigned int h_offset = inner_hlen;
   2841
   2842		/* this function updates h_offset to the end of the header */
   2843		l4_proto =
   2844		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
   2845		/* hlen will contain our best estimate of the tcp header */
   2846		hlen = h_offset - inner_hlen;
   2847	}
   2848
   2849	if (l4_proto != IPPROTO_TCP)
   2850		return;
   2851
   2852	th = (struct tcphdr *)(hdr.network + hlen);
   2853
   2854	/* Due to lack of space, no more new filters can be programmed */
   2855	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
   2856		return;
   2857	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
   2858		/* HW ATR eviction will take care of removing filters on FIN
   2859		 * and RST packets.
   2860		 */
   2861		if (th->fin || th->rst)
   2862			return;
   2863	}
   2864
   2865	tx_ring->atr_count++;
   2866
   2867	/* sample on all syn/fin/rst packets or once every atr sample rate */
   2868	if (!th->fin &&
   2869	    !th->syn &&
   2870	    !th->rst &&
   2871	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
   2872		return;
   2873
   2874	tx_ring->atr_count = 0;
   2875
   2876	/* grab the next descriptor */
   2877	i = tx_ring->next_to_use;
   2878	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
   2879
   2880	i++;
   2881	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
   2882
   2883	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
   2884		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
   2885	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
   2886		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
   2887		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
   2888		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
   2889		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
   2890
   2891	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
   2892
   2893	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
   2894
   2895	dtype_cmd |= (th->fin || th->rst) ?
   2896		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
   2897		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
   2898		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
   2899		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
   2900
   2901	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
   2902		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
   2903
   2904	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
   2905		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
   2906
   2907	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
   2908	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
   2909		dtype_cmd |=
   2910			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
   2911			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
   2912			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
   2913	else
   2914		dtype_cmd |=
   2915			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
   2916			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
   2917			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
   2918
   2919	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
   2920		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
   2921
   2922	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
   2923	fdir_desc->rsvd = cpu_to_le32(0);
   2924	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
   2925	fdir_desc->fd_id = cpu_to_le32(0);
   2926}
   2927
   2928/**
   2929 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
   2930 * @skb:     send buffer
   2931 * @tx_ring: ring to send buffer on
   2932 * @flags:   the tx flags to be set
   2933 *
   2934 * Checks the skb and set up correspondingly several generic transmit flags
   2935 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
   2936 *
   2937 * Returns error code indicate the frame should be dropped upon error and the
   2938 * otherwise  returns 0 to indicate the flags has been set properly.
   2939 **/
   2940static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
   2941					     struct i40e_ring *tx_ring,
   2942					     u32 *flags)
   2943{
   2944	__be16 protocol = skb->protocol;
   2945	u32  tx_flags = 0;
   2946
   2947	if (protocol == htons(ETH_P_8021Q) &&
   2948	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
   2949		/* When HW VLAN acceleration is turned off by the user the
   2950		 * stack sets the protocol to 8021q so that the driver
   2951		 * can take any steps required to support the SW only
   2952		 * VLAN handling.  In our case the driver doesn't need
   2953		 * to take any further steps so just set the protocol
   2954		 * to the encapsulated ethertype.
   2955		 */
   2956		skb->protocol = vlan_get_protocol(skb);
   2957		goto out;
   2958	}
   2959
   2960	/* if we have a HW VLAN tag being added, default to the HW one */
   2961	if (skb_vlan_tag_present(skb)) {
   2962		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
   2963		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
   2964	/* else if it is a SW VLAN, check the next protocol and store the tag */
   2965	} else if (protocol == htons(ETH_P_8021Q)) {
   2966		struct vlan_hdr *vhdr, _vhdr;
   2967
   2968		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
   2969		if (!vhdr)
   2970			return -EINVAL;
   2971
   2972		protocol = vhdr->h_vlan_encapsulated_proto;
   2973		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
   2974		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
   2975	}
   2976
   2977	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
   2978		goto out;
   2979
   2980	/* Insert 802.1p priority into VLAN header */
   2981	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
   2982	    (skb->priority != TC_PRIO_CONTROL)) {
   2983		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
   2984		tx_flags |= (skb->priority & 0x7) <<
   2985				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
   2986		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
   2987			struct vlan_ethhdr *vhdr;
   2988			int rc;
   2989
   2990			rc = skb_cow_head(skb, 0);
   2991			if (rc < 0)
   2992				return rc;
   2993			vhdr = (struct vlan_ethhdr *)skb->data;
   2994			vhdr->h_vlan_TCI = htons(tx_flags >>
   2995						 I40E_TX_FLAGS_VLAN_SHIFT);
   2996		} else {
   2997			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
   2998		}
   2999	}
   3000
   3001out:
   3002	*flags = tx_flags;
   3003	return 0;
   3004}
   3005
   3006/**
   3007 * i40e_tso - set up the tso context descriptor
   3008 * @first:    pointer to first Tx buffer for xmit
   3009 * @hdr_len:  ptr to the size of the packet header
   3010 * @cd_type_cmd_tso_mss: Quad Word 1
   3011 *
   3012 * Returns 0 if no TSO can happen, 1 if tso is going, or error
   3013 **/
   3014static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
   3015		    u64 *cd_type_cmd_tso_mss)
   3016{
   3017	struct sk_buff *skb = first->skb;
   3018	u64 cd_cmd, cd_tso_len, cd_mss;
   3019	__be16 protocol;
   3020	union {
   3021		struct iphdr *v4;
   3022		struct ipv6hdr *v6;
   3023		unsigned char *hdr;
   3024	} ip;
   3025	union {
   3026		struct tcphdr *tcp;
   3027		struct udphdr *udp;
   3028		unsigned char *hdr;
   3029	} l4;
   3030	u32 paylen, l4_offset;
   3031	u16 gso_size;
   3032	int err;
   3033
   3034	if (skb->ip_summed != CHECKSUM_PARTIAL)
   3035		return 0;
   3036
   3037	if (!skb_is_gso(skb))
   3038		return 0;
   3039
   3040	err = skb_cow_head(skb, 0);
   3041	if (err < 0)
   3042		return err;
   3043
   3044	protocol = vlan_get_protocol(skb);
   3045
   3046	if (eth_p_mpls(protocol))
   3047		ip.hdr = skb_inner_network_header(skb);
   3048	else
   3049		ip.hdr = skb_network_header(skb);
   3050	l4.hdr = skb_checksum_start(skb);
   3051
   3052	/* initialize outer IP header fields */
   3053	if (ip.v4->version == 4) {
   3054		ip.v4->tot_len = 0;
   3055		ip.v4->check = 0;
   3056
   3057		first->tx_flags |= I40E_TX_FLAGS_TSO;
   3058	} else {
   3059		ip.v6->payload_len = 0;
   3060		first->tx_flags |= I40E_TX_FLAGS_TSO;
   3061	}
   3062
   3063	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
   3064					 SKB_GSO_GRE_CSUM |
   3065					 SKB_GSO_IPXIP4 |
   3066					 SKB_GSO_IPXIP6 |
   3067					 SKB_GSO_UDP_TUNNEL |
   3068					 SKB_GSO_UDP_TUNNEL_CSUM)) {
   3069		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
   3070		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
   3071			l4.udp->len = 0;
   3072
   3073			/* determine offset of outer transport header */
   3074			l4_offset = l4.hdr - skb->data;
   3075
   3076			/* remove payload length from outer checksum */
   3077			paylen = skb->len - l4_offset;
   3078			csum_replace_by_diff(&l4.udp->check,
   3079					     (__force __wsum)htonl(paylen));
   3080		}
   3081
   3082		/* reset pointers to inner headers */
   3083		ip.hdr = skb_inner_network_header(skb);
   3084		l4.hdr = skb_inner_transport_header(skb);
   3085
   3086		/* initialize inner IP header fields */
   3087		if (ip.v4->version == 4) {
   3088			ip.v4->tot_len = 0;
   3089			ip.v4->check = 0;
   3090		} else {
   3091			ip.v6->payload_len = 0;
   3092		}
   3093	}
   3094
   3095	/* determine offset of inner transport header */
   3096	l4_offset = l4.hdr - skb->data;
   3097
   3098	/* remove payload length from inner checksum */
   3099	paylen = skb->len - l4_offset;
   3100
   3101	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
   3102		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
   3103		/* compute length of segmentation header */
   3104		*hdr_len = sizeof(*l4.udp) + l4_offset;
   3105	} else {
   3106		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
   3107		/* compute length of segmentation header */
   3108		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
   3109	}
   3110
   3111	/* pull values out of skb_shinfo */
   3112	gso_size = skb_shinfo(skb)->gso_size;
   3113
   3114	/* update GSO size and bytecount with header size */
   3115	first->gso_segs = skb_shinfo(skb)->gso_segs;
   3116	first->bytecount += (first->gso_segs - 1) * *hdr_len;
   3117
   3118	/* find the field values */
   3119	cd_cmd = I40E_TX_CTX_DESC_TSO;
   3120	cd_tso_len = skb->len - *hdr_len;
   3121	cd_mss = gso_size;
   3122	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
   3123				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
   3124				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
   3125	return 1;
   3126}
   3127
   3128/**
   3129 * i40e_tsyn - set up the tsyn context descriptor
   3130 * @tx_ring:  ptr to the ring to send
   3131 * @skb:      ptr to the skb we're sending
   3132 * @tx_flags: the collected send information
   3133 * @cd_type_cmd_tso_mss: Quad Word 1
   3134 *
   3135 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
   3136 **/
   3137static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
   3138		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
   3139{
   3140	struct i40e_pf *pf;
   3141
   3142	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
   3143		return 0;
   3144
   3145	/* Tx timestamps cannot be sampled when doing TSO */
   3146	if (tx_flags & I40E_TX_FLAGS_TSO)
   3147		return 0;
   3148
   3149	/* only timestamp the outbound packet if the user has requested it and
   3150	 * we are not already transmitting a packet to be timestamped
   3151	 */
   3152	pf = i40e_netdev_to_pf(tx_ring->netdev);
   3153	if (!(pf->flags & I40E_FLAG_PTP))
   3154		return 0;
   3155
   3156	if (pf->ptp_tx &&
   3157	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
   3158		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
   3159		pf->ptp_tx_start = jiffies;
   3160		pf->ptp_tx_skb = skb_get(skb);
   3161	} else {
   3162		pf->tx_hwtstamp_skipped++;
   3163		return 0;
   3164	}
   3165
   3166	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
   3167				I40E_TXD_CTX_QW1_CMD_SHIFT;
   3168
   3169	return 1;
   3170}
   3171
   3172/**
   3173 * i40e_tx_enable_csum - Enable Tx checksum offloads
   3174 * @skb: send buffer
   3175 * @tx_flags: pointer to Tx flags currently set
   3176 * @td_cmd: Tx descriptor command bits to set
   3177 * @td_offset: Tx descriptor header offsets to set
   3178 * @tx_ring: Tx descriptor ring
   3179 * @cd_tunneling: ptr to context desc bits
   3180 **/
   3181static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
   3182			       u32 *td_cmd, u32 *td_offset,
   3183			       struct i40e_ring *tx_ring,
   3184			       u32 *cd_tunneling)
   3185{
   3186	union {
   3187		struct iphdr *v4;
   3188		struct ipv6hdr *v6;
   3189		unsigned char *hdr;
   3190	} ip;
   3191	union {
   3192		struct tcphdr *tcp;
   3193		struct udphdr *udp;
   3194		unsigned char *hdr;
   3195	} l4;
   3196	unsigned char *exthdr;
   3197	u32 offset, cmd = 0;
   3198	__be16 frag_off;
   3199	__be16 protocol;
   3200	u8 l4_proto = 0;
   3201
   3202	if (skb->ip_summed != CHECKSUM_PARTIAL)
   3203		return 0;
   3204
   3205	protocol = vlan_get_protocol(skb);
   3206
   3207	if (eth_p_mpls(protocol))
   3208		ip.hdr = skb_inner_network_header(skb);
   3209	else
   3210		ip.hdr = skb_network_header(skb);
   3211	l4.hdr = skb_checksum_start(skb);
   3212
   3213	/* set the tx_flags to indicate the IP protocol type. this is
   3214	 * required so that checksum header computation below is accurate.
   3215	 */
   3216	if (ip.v4->version == 4)
   3217		*tx_flags |= I40E_TX_FLAGS_IPV4;
   3218	else
   3219		*tx_flags |= I40E_TX_FLAGS_IPV6;
   3220
   3221	/* compute outer L2 header size */
   3222	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
   3223
   3224	if (skb->encapsulation) {
   3225		u32 tunnel = 0;
   3226		/* define outer network header type */
   3227		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
   3228			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
   3229				  I40E_TX_CTX_EXT_IP_IPV4 :
   3230				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
   3231
   3232			l4_proto = ip.v4->protocol;
   3233		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
   3234			int ret;
   3235
   3236			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
   3237
   3238			exthdr = ip.hdr + sizeof(*ip.v6);
   3239			l4_proto = ip.v6->nexthdr;
   3240			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
   3241					       &l4_proto, &frag_off);
   3242			if (ret < 0)
   3243				return -1;
   3244		}
   3245
   3246		/* define outer transport */
   3247		switch (l4_proto) {
   3248		case IPPROTO_UDP:
   3249			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
   3250			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
   3251			break;
   3252		case IPPROTO_GRE:
   3253			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
   3254			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
   3255			break;
   3256		case IPPROTO_IPIP:
   3257		case IPPROTO_IPV6:
   3258			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
   3259			l4.hdr = skb_inner_network_header(skb);
   3260			break;
   3261		default:
   3262			if (*tx_flags & I40E_TX_FLAGS_TSO)
   3263				return -1;
   3264
   3265			skb_checksum_help(skb);
   3266			return 0;
   3267		}
   3268
   3269		/* compute outer L3 header size */
   3270		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
   3271			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
   3272
   3273		/* switch IP header pointer from outer to inner header */
   3274		ip.hdr = skb_inner_network_header(skb);
   3275
   3276		/* compute tunnel header size */
   3277		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
   3278			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
   3279
   3280		/* indicate if we need to offload outer UDP header */
   3281		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
   3282		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
   3283		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
   3284			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
   3285
   3286		/* record tunnel offload values */
   3287		*cd_tunneling |= tunnel;
   3288
   3289		/* switch L4 header pointer from outer to inner */
   3290		l4.hdr = skb_inner_transport_header(skb);
   3291		l4_proto = 0;
   3292
   3293		/* reset type as we transition from outer to inner headers */
   3294		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
   3295		if (ip.v4->version == 4)
   3296			*tx_flags |= I40E_TX_FLAGS_IPV4;
   3297		if (ip.v6->version == 6)
   3298			*tx_flags |= I40E_TX_FLAGS_IPV6;
   3299	}
   3300
   3301	/* Enable IP checksum offloads */
   3302	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
   3303		l4_proto = ip.v4->protocol;
   3304		/* the stack computes the IP header already, the only time we
   3305		 * need the hardware to recompute it is in the case of TSO.
   3306		 */
   3307		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
   3308		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
   3309		       I40E_TX_DESC_CMD_IIPT_IPV4;
   3310	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
   3311		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
   3312
   3313		exthdr = ip.hdr + sizeof(*ip.v6);
   3314		l4_proto = ip.v6->nexthdr;
   3315		if (l4.hdr != exthdr)
   3316			ipv6_skip_exthdr(skb, exthdr - skb->data,
   3317					 &l4_proto, &frag_off);
   3318	}
   3319
   3320	/* compute inner L3 header size */
   3321	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
   3322
   3323	/* Enable L4 checksum offloads */
   3324	switch (l4_proto) {
   3325	case IPPROTO_TCP:
   3326		/* enable checksum offloads */
   3327		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
   3328		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
   3329		break;
   3330	case IPPROTO_SCTP:
   3331		/* enable SCTP checksum offload */
   3332		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
   3333		offset |= (sizeof(struct sctphdr) >> 2) <<
   3334			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
   3335		break;
   3336	case IPPROTO_UDP:
   3337		/* enable UDP checksum offload */
   3338		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
   3339		offset |= (sizeof(struct udphdr) >> 2) <<
   3340			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
   3341		break;
   3342	default:
   3343		if (*tx_flags & I40E_TX_FLAGS_TSO)
   3344			return -1;
   3345		skb_checksum_help(skb);
   3346		return 0;
   3347	}
   3348
   3349	*td_cmd |= cmd;
   3350	*td_offset |= offset;
   3351
   3352	return 1;
   3353}
   3354
   3355/**
   3356 * i40e_create_tx_ctx - Build the Tx context descriptor
   3357 * @tx_ring:  ring to create the descriptor on
   3358 * @cd_type_cmd_tso_mss: Quad Word 1
   3359 * @cd_tunneling: Quad Word 0 - bits 0-31
   3360 * @cd_l2tag2: Quad Word 0 - bits 32-63
   3361 **/
   3362static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
   3363			       const u64 cd_type_cmd_tso_mss,
   3364			       const u32 cd_tunneling, const u32 cd_l2tag2)
   3365{
   3366	struct i40e_tx_context_desc *context_desc;
   3367	int i = tx_ring->next_to_use;
   3368
   3369	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
   3370	    !cd_tunneling && !cd_l2tag2)
   3371		return;
   3372
   3373	/* grab the next descriptor */
   3374	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
   3375
   3376	i++;
   3377	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
   3378
   3379	/* cpu_to_le32 and assign to struct fields */
   3380	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
   3381	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
   3382	context_desc->rsvd = cpu_to_le16(0);
   3383	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
   3384}
   3385
   3386/**
   3387 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
   3388 * @tx_ring: the ring to be checked
   3389 * @size:    the size buffer we want to assure is available
   3390 *
   3391 * Returns -EBUSY if a stop is needed, else 0
   3392 **/
   3393int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
   3394{
   3395	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
   3396	/* Memory barrier before checking head and tail */
   3397	smp_mb();
   3398
   3399	++tx_ring->tx_stats.tx_stopped;
   3400
   3401	/* Check again in a case another CPU has just made room available. */
   3402	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
   3403		return -EBUSY;
   3404
   3405	/* A reprieve! - use start_queue because it doesn't call schedule */
   3406	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
   3407	++tx_ring->tx_stats.restart_queue;
   3408	return 0;
   3409}
   3410
   3411/**
   3412 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
   3413 * @skb:      send buffer
   3414 *
   3415 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
   3416 * and so we need to figure out the cases where we need to linearize the skb.
   3417 *
   3418 * For TSO we need to count the TSO header and segment payload separately.
   3419 * As such we need to check cases where we have 7 fragments or more as we
   3420 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
   3421 * the segment payload in the first descriptor, and another 7 for the
   3422 * fragments.
   3423 **/
   3424bool __i40e_chk_linearize(struct sk_buff *skb)
   3425{
   3426	const skb_frag_t *frag, *stale;
   3427	int nr_frags, sum;
   3428
   3429	/* no need to check if number of frags is less than 7 */
   3430	nr_frags = skb_shinfo(skb)->nr_frags;
   3431	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
   3432		return false;
   3433
   3434	/* We need to walk through the list and validate that each group
   3435	 * of 6 fragments totals at least gso_size.
   3436	 */
   3437	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
   3438	frag = &skb_shinfo(skb)->frags[0];
   3439
   3440	/* Initialize size to the negative value of gso_size minus 1.  We
   3441	 * use this as the worst case scenerio in which the frag ahead
   3442	 * of us only provides one byte which is why we are limited to 6
   3443	 * descriptors for a single transmit as the header and previous
   3444	 * fragment are already consuming 2 descriptors.
   3445	 */
   3446	sum = 1 - skb_shinfo(skb)->gso_size;
   3447
   3448	/* Add size of frags 0 through 4 to create our initial sum */
   3449	sum += skb_frag_size(frag++);
   3450	sum += skb_frag_size(frag++);
   3451	sum += skb_frag_size(frag++);
   3452	sum += skb_frag_size(frag++);
   3453	sum += skb_frag_size(frag++);
   3454
   3455	/* Walk through fragments adding latest fragment, testing it, and
   3456	 * then removing stale fragments from the sum.
   3457	 */
   3458	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
   3459		int stale_size = skb_frag_size(stale);
   3460
   3461		sum += skb_frag_size(frag++);
   3462
   3463		/* The stale fragment may present us with a smaller
   3464		 * descriptor than the actual fragment size. To account
   3465		 * for that we need to remove all the data on the front and
   3466		 * figure out what the remainder would be in the last
   3467		 * descriptor associated with the fragment.
   3468		 */
   3469		if (stale_size > I40E_MAX_DATA_PER_TXD) {
   3470			int align_pad = -(skb_frag_off(stale)) &
   3471					(I40E_MAX_READ_REQ_SIZE - 1);
   3472
   3473			sum -= align_pad;
   3474			stale_size -= align_pad;
   3475
   3476			do {
   3477				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
   3478				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
   3479			} while (stale_size > I40E_MAX_DATA_PER_TXD);
   3480		}
   3481
   3482		/* if sum is negative we failed to make sufficient progress */
   3483		if (sum < 0)
   3484			return true;
   3485
   3486		if (!nr_frags--)
   3487			break;
   3488
   3489		sum -= stale_size;
   3490	}
   3491
   3492	return false;
   3493}
   3494
   3495/**
   3496 * i40e_tx_map - Build the Tx descriptor
   3497 * @tx_ring:  ring to send buffer on
   3498 * @skb:      send buffer
   3499 * @first:    first buffer info buffer to use
   3500 * @tx_flags: collected send information
   3501 * @hdr_len:  size of the packet header
   3502 * @td_cmd:   the command field in the descriptor
   3503 * @td_offset: offset for checksum or crc
   3504 *
   3505 * Returns 0 on success, -1 on failure to DMA
   3506 **/
   3507static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
   3508			      struct i40e_tx_buffer *first, u32 tx_flags,
   3509			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
   3510{
   3511	unsigned int data_len = skb->data_len;
   3512	unsigned int size = skb_headlen(skb);
   3513	skb_frag_t *frag;
   3514	struct i40e_tx_buffer *tx_bi;
   3515	struct i40e_tx_desc *tx_desc;
   3516	u16 i = tx_ring->next_to_use;
   3517	u32 td_tag = 0;
   3518	dma_addr_t dma;
   3519	u16 desc_count = 1;
   3520
   3521	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
   3522		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
   3523		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
   3524			 I40E_TX_FLAGS_VLAN_SHIFT;
   3525	}
   3526
   3527	first->tx_flags = tx_flags;
   3528
   3529	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
   3530
   3531	tx_desc = I40E_TX_DESC(tx_ring, i);
   3532	tx_bi = first;
   3533
   3534	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
   3535		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
   3536
   3537		if (dma_mapping_error(tx_ring->dev, dma))
   3538			goto dma_error;
   3539
   3540		/* record length, and DMA address */
   3541		dma_unmap_len_set(tx_bi, len, size);
   3542		dma_unmap_addr_set(tx_bi, dma, dma);
   3543
   3544		/* align size to end of page */
   3545		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
   3546		tx_desc->buffer_addr = cpu_to_le64(dma);
   3547
   3548		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
   3549			tx_desc->cmd_type_offset_bsz =
   3550				build_ctob(td_cmd, td_offset,
   3551					   max_data, td_tag);
   3552
   3553			tx_desc++;
   3554			i++;
   3555			desc_count++;
   3556
   3557			if (i == tx_ring->count) {
   3558				tx_desc = I40E_TX_DESC(tx_ring, 0);
   3559				i = 0;
   3560			}
   3561
   3562			dma += max_data;
   3563			size -= max_data;
   3564
   3565			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
   3566			tx_desc->buffer_addr = cpu_to_le64(dma);
   3567		}
   3568
   3569		if (likely(!data_len))
   3570			break;
   3571
   3572		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
   3573							  size, td_tag);
   3574
   3575		tx_desc++;
   3576		i++;
   3577		desc_count++;
   3578
   3579		if (i == tx_ring->count) {
   3580			tx_desc = I40E_TX_DESC(tx_ring, 0);
   3581			i = 0;
   3582		}
   3583
   3584		size = skb_frag_size(frag);
   3585		data_len -= size;
   3586
   3587		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
   3588				       DMA_TO_DEVICE);
   3589
   3590		tx_bi = &tx_ring->tx_bi[i];
   3591	}
   3592
   3593	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
   3594
   3595	i++;
   3596	if (i == tx_ring->count)
   3597		i = 0;
   3598
   3599	tx_ring->next_to_use = i;
   3600
   3601	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
   3602
   3603	/* write last descriptor with EOP bit */
   3604	td_cmd |= I40E_TX_DESC_CMD_EOP;
   3605
   3606	/* We OR these values together to check both against 4 (WB_STRIDE)
   3607	 * below. This is safe since we don't re-use desc_count afterwards.
   3608	 */
   3609	desc_count |= ++tx_ring->packet_stride;
   3610
   3611	if (desc_count >= WB_STRIDE) {
   3612		/* write last descriptor with RS bit set */
   3613		td_cmd |= I40E_TX_DESC_CMD_RS;
   3614		tx_ring->packet_stride = 0;
   3615	}
   3616
   3617	tx_desc->cmd_type_offset_bsz =
   3618			build_ctob(td_cmd, td_offset, size, td_tag);
   3619
   3620	skb_tx_timestamp(skb);
   3621
   3622	/* Force memory writes to complete before letting h/w know there
   3623	 * are new descriptors to fetch.
   3624	 *
   3625	 * We also use this memory barrier to make certain all of the
   3626	 * status bits have been updated before next_to_watch is written.
   3627	 */
   3628	wmb();
   3629
   3630	/* set next_to_watch value indicating a packet is present */
   3631	first->next_to_watch = tx_desc;
   3632
   3633	/* notify HW of packet */
   3634	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
   3635		writel(i, tx_ring->tail);
   3636	}
   3637
   3638	return 0;
   3639
   3640dma_error:
   3641	dev_info(tx_ring->dev, "TX DMA map failed\n");
   3642
   3643	/* clear dma mappings for failed tx_bi map */
   3644	for (;;) {
   3645		tx_bi = &tx_ring->tx_bi[i];
   3646		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
   3647		if (tx_bi == first)
   3648			break;
   3649		if (i == 0)
   3650			i = tx_ring->count;
   3651		i--;
   3652	}
   3653
   3654	tx_ring->next_to_use = i;
   3655
   3656	return -1;
   3657}
   3658
   3659static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
   3660				  const struct sk_buff *skb,
   3661				  u16 num_tx_queues)
   3662{
   3663	u32 jhash_initval_salt = 0xd631614b;
   3664	u32 hash;
   3665
   3666	if (skb->sk && skb->sk->sk_hash)
   3667		hash = skb->sk->sk_hash;
   3668	else
   3669		hash = (__force u16)skb->protocol ^ skb->hash;
   3670
   3671	hash = jhash_1word(hash, jhash_initval_salt);
   3672
   3673	return (u16)(((u64)hash * num_tx_queues) >> 32);
   3674}
   3675
   3676u16 i40e_lan_select_queue(struct net_device *netdev,
   3677			  struct sk_buff *skb,
   3678			  struct net_device __always_unused *sb_dev)
   3679{
   3680	struct i40e_netdev_priv *np = netdev_priv(netdev);
   3681	struct i40e_vsi *vsi = np->vsi;
   3682	struct i40e_hw *hw;
   3683	u16 qoffset;
   3684	u16 qcount;
   3685	u8 tclass;
   3686	u16 hash;
   3687	u8 prio;
   3688
   3689	/* is DCB enabled at all? */
   3690	if (vsi->tc_config.numtc == 1)
   3691		return netdev_pick_tx(netdev, skb, sb_dev);
   3692
   3693	prio = skb->priority;
   3694	hw = &vsi->back->hw;
   3695	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
   3696	/* sanity check */
   3697	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
   3698		tclass = 0;
   3699
   3700	/* select a queue assigned for the given TC */
   3701	qcount = vsi->tc_config.tc_info[tclass].qcount;
   3702	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
   3703
   3704	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
   3705	return qoffset + hash;
   3706}
   3707
   3708/**
   3709 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
   3710 * @xdpf: data to transmit
   3711 * @xdp_ring: XDP Tx ring
   3712 **/
   3713static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
   3714			      struct i40e_ring *xdp_ring)
   3715{
   3716	u16 i = xdp_ring->next_to_use;
   3717	struct i40e_tx_buffer *tx_bi;
   3718	struct i40e_tx_desc *tx_desc;
   3719	void *data = xdpf->data;
   3720	u32 size = xdpf->len;
   3721	dma_addr_t dma;
   3722
   3723	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
   3724		xdp_ring->tx_stats.tx_busy++;
   3725		return I40E_XDP_CONSUMED;
   3726	}
   3727	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
   3728	if (dma_mapping_error(xdp_ring->dev, dma))
   3729		return I40E_XDP_CONSUMED;
   3730
   3731	tx_bi = &xdp_ring->tx_bi[i];
   3732	tx_bi->bytecount = size;
   3733	tx_bi->gso_segs = 1;
   3734	tx_bi->xdpf = xdpf;
   3735
   3736	/* record length, and DMA address */
   3737	dma_unmap_len_set(tx_bi, len, size);
   3738	dma_unmap_addr_set(tx_bi, dma, dma);
   3739
   3740	tx_desc = I40E_TX_DESC(xdp_ring, i);
   3741	tx_desc->buffer_addr = cpu_to_le64(dma);
   3742	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
   3743						  | I40E_TXD_CMD,
   3744						  0, size, 0);
   3745
   3746	/* Make certain all of the status bits have been updated
   3747	 * before next_to_watch is written.
   3748	 */
   3749	smp_wmb();
   3750
   3751	xdp_ring->xdp_tx_active++;
   3752	i++;
   3753	if (i == xdp_ring->count)
   3754		i = 0;
   3755
   3756	tx_bi->next_to_watch = tx_desc;
   3757	xdp_ring->next_to_use = i;
   3758
   3759	return I40E_XDP_TX;
   3760}
   3761
   3762/**
   3763 * i40e_xmit_frame_ring - Sends buffer on Tx ring
   3764 * @skb:     send buffer
   3765 * @tx_ring: ring to send buffer on
   3766 *
   3767 * Returns NETDEV_TX_OK if sent, else an error code
   3768 **/
   3769static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
   3770					struct i40e_ring *tx_ring)
   3771{
   3772	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
   3773	u32 cd_tunneling = 0, cd_l2tag2 = 0;
   3774	struct i40e_tx_buffer *first;
   3775	u32 td_offset = 0;
   3776	u32 tx_flags = 0;
   3777	u32 td_cmd = 0;
   3778	u8 hdr_len = 0;
   3779	int tso, count;
   3780	int tsyn;
   3781
   3782	/* prefetch the data, we'll need it later */
   3783	prefetch(skb->data);
   3784
   3785	i40e_trace(xmit_frame_ring, skb, tx_ring);
   3786
   3787	count = i40e_xmit_descriptor_count(skb);
   3788	if (i40e_chk_linearize(skb, count)) {
   3789		if (__skb_linearize(skb)) {
   3790			dev_kfree_skb_any(skb);
   3791			return NETDEV_TX_OK;
   3792		}
   3793		count = i40e_txd_use_count(skb->len);
   3794		tx_ring->tx_stats.tx_linearize++;
   3795	}
   3796
   3797	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
   3798	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
   3799	 *       + 4 desc gap to avoid the cache line where head is,
   3800	 *       + 1 desc for context descriptor,
   3801	 * otherwise try next time
   3802	 */
   3803	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
   3804		tx_ring->tx_stats.tx_busy++;
   3805		return NETDEV_TX_BUSY;
   3806	}
   3807
   3808	/* record the location of the first descriptor for this packet */
   3809	first = &tx_ring->tx_bi[tx_ring->next_to_use];
   3810	first->skb = skb;
   3811	first->bytecount = skb->len;
   3812	first->gso_segs = 1;
   3813
   3814	/* prepare the xmit flags */
   3815	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
   3816		goto out_drop;
   3817
   3818	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
   3819
   3820	if (tso < 0)
   3821		goto out_drop;
   3822	else if (tso)
   3823		tx_flags |= I40E_TX_FLAGS_TSO;
   3824
   3825	/* Always offload the checksum, since it's in the data descriptor */
   3826	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
   3827				  tx_ring, &cd_tunneling);
   3828	if (tso < 0)
   3829		goto out_drop;
   3830
   3831	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
   3832
   3833	if (tsyn)
   3834		tx_flags |= I40E_TX_FLAGS_TSYN;
   3835
   3836	/* always enable CRC insertion offload */
   3837	td_cmd |= I40E_TX_DESC_CMD_ICRC;
   3838
   3839	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
   3840			   cd_tunneling, cd_l2tag2);
   3841
   3842	/* Add Flow Director ATR if it's enabled.
   3843	 *
   3844	 * NOTE: this must always be directly before the data descriptor.
   3845	 */
   3846	i40e_atr(tx_ring, skb, tx_flags);
   3847
   3848	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
   3849			td_cmd, td_offset))
   3850		goto cleanup_tx_tstamp;
   3851
   3852	return NETDEV_TX_OK;
   3853
   3854out_drop:
   3855	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
   3856	dev_kfree_skb_any(first->skb);
   3857	first->skb = NULL;
   3858cleanup_tx_tstamp:
   3859	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
   3860		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
   3861
   3862		dev_kfree_skb_any(pf->ptp_tx_skb);
   3863		pf->ptp_tx_skb = NULL;
   3864		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
   3865	}
   3866
   3867	return NETDEV_TX_OK;
   3868}
   3869
   3870/**
   3871 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
   3872 * @skb:    send buffer
   3873 * @netdev: network interface device structure
   3874 *
   3875 * Returns NETDEV_TX_OK if sent, else an error code
   3876 **/
   3877netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
   3878{
   3879	struct i40e_netdev_priv *np = netdev_priv(netdev);
   3880	struct i40e_vsi *vsi = np->vsi;
   3881	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
   3882
   3883	/* hardware can't handle really short frames, hardware padding works
   3884	 * beyond this point
   3885	 */
   3886	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
   3887		return NETDEV_TX_OK;
   3888
   3889	return i40e_xmit_frame_ring(skb, tx_ring);
   3890}
   3891
   3892/**
   3893 * i40e_xdp_xmit - Implements ndo_xdp_xmit
   3894 * @dev: netdev
   3895 * @n: number of frames
   3896 * @frames: array of XDP buffer pointers
   3897 * @flags: XDP extra info
   3898 *
   3899 * Returns number of frames successfully sent. Failed frames
   3900 * will be free'ed by XDP core.
   3901 *
   3902 * For error cases, a negative errno code is returned and no-frames
   3903 * are transmitted (caller must handle freeing frames).
   3904 **/
   3905int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
   3906		  u32 flags)
   3907{
   3908	struct i40e_netdev_priv *np = netdev_priv(dev);
   3909	unsigned int queue_index = smp_processor_id();
   3910	struct i40e_vsi *vsi = np->vsi;
   3911	struct i40e_pf *pf = vsi->back;
   3912	struct i40e_ring *xdp_ring;
   3913	int nxmit = 0;
   3914	int i;
   3915
   3916	if (test_bit(__I40E_VSI_DOWN, vsi->state))
   3917		return -ENETDOWN;
   3918
   3919	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
   3920	    test_bit(__I40E_CONFIG_BUSY, pf->state))
   3921		return -ENXIO;
   3922
   3923	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
   3924		return -EINVAL;
   3925
   3926	xdp_ring = vsi->xdp_rings[queue_index];
   3927
   3928	for (i = 0; i < n; i++) {
   3929		struct xdp_frame *xdpf = frames[i];
   3930		int err;
   3931
   3932		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
   3933		if (err != I40E_XDP_TX)
   3934			break;
   3935		nxmit++;
   3936	}
   3937
   3938	if (unlikely(flags & XDP_XMIT_FLUSH))
   3939		i40e_xdp_ring_update_tail(xdp_ring);
   3940
   3941	return nxmit;
   3942}