i40e_txrx.h (18003B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* Copyright(c) 2013 - 2018 Intel Corporation. */ 3 4#ifndef _I40E_TXRX_H_ 5#define _I40E_TXRX_H_ 6 7#include <net/xdp.h> 8 9/* Interrupt Throttling and Rate Limiting Goodies */ 10#define I40E_DEFAULT_IRQ_WORK 256 11 12/* The datasheet for the X710 and XL710 indicate that the maximum value for 13 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec 14 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing 15 * the register value which is divided by 2 lets use the actual values and 16 * avoid an excessive amount of translation. 17 */ 18#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ 19#define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */ 20#define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */ 21#define I40E_ITR_20K 50 22#define I40E_ITR_8K 122 23#define I40E_MAX_ITR 8160 /* maximum value as per datasheet */ 24#define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC) 25#define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK) 26#define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC)) 27 28#define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 29#define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC) 30 31/* 0x40 is the enable bit for interrupt rate limiting, and must be set if 32 * the value of the rate limit is non-zero 33 */ 34#define INTRL_ENA BIT(6) 35#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ 36#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) 37 38/** 39 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register 40 * @intrl: interrupt rate limit to convert 41 * 42 * This function converts a decimal interrupt rate limit to the appropriate 43 * register format expected by the firmware when setting interrupt rate limit. 44 */ 45static inline u16 i40e_intrl_usec_to_reg(int intrl) 46{ 47 if (intrl >> 2) 48 return ((intrl >> 2) | INTRL_ENA); 49 else 50 return 0; 51} 52 53#define I40E_QUEUE_END_OF_LIST 0x7FF 54 55/* this enum matches hardware bits and is meant to be used by DYN_CTLN 56 * registers and QINT registers or more generally anywhere in the manual 57 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 58 * register but instead is a special value meaning "don't update" ITR0/1/2. 59 */ 60enum i40e_dyn_idx_t { 61 I40E_IDX_ITR0 = 0, 62 I40E_IDX_ITR1 = 1, 63 I40E_IDX_ITR2 = 2, 64 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 65}; 66 67/* these are indexes into ITRN registers */ 68#define I40E_RX_ITR I40E_IDX_ITR0 69#define I40E_TX_ITR I40E_IDX_ITR1 70 71/* Supported RSS offloads */ 72#define I40E_DEFAULT_RSS_HENA ( \ 73 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ 74 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ 75 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ 76 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ 77 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ 78 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ 79 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ 80 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ 81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ 82 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ 83 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) 84 85#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ 86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ 87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ 88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ 89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ 90 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ 91 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) 92 93#define i40e_pf_get_default_rss_hena(pf) \ 94 (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ 95 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) 96 97/* Supported Rx Buffer Sizes (a multiple of 128) */ 98#define I40E_RXBUFFER_256 256 99#define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */ 100#define I40E_RXBUFFER_2048 2048 101#define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */ 102#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ 103 104/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we 105 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, 106 * this adds up to 512 bytes of extra data meaning the smallest allocation 107 * we could have is 1K. 108 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) 109 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) 110 */ 111#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 112#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 113#define i40e_rx_desc i40e_16byte_rx_desc 114 115#define I40E_RX_DMA_ATTR \ 116 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 117 118/* Attempt to maximize the headroom available for incoming frames. We 119 * use a 2K buffer for receives and need 1536/1534 to store the data for 120 * the frame. This leaves us with 512 bytes of room. From that we need 121 * to deduct the space needed for the shared info and the padding needed 122 * to IP align the frame. 123 * 124 * Note: For cache line sizes 256 or larger this value is going to end 125 * up negative. In these cases we should fall back to the legacy 126 * receive path. 127 */ 128#if (PAGE_SIZE < 8192) 129#define I40E_2K_TOO_SMALL_WITH_PADDING \ 130((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048)) 131 132static inline int i40e_compute_pad(int rx_buf_len) 133{ 134 int page_size, pad_size; 135 136 page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 137 pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; 138 139 return pad_size; 140} 141 142static inline int i40e_skb_pad(void) 143{ 144 int rx_buf_len; 145 146 /* If a 2K buffer cannot handle a standard Ethernet frame then 147 * optimize padding for a 3K buffer instead of a 1.5K buffer. 148 * 149 * For a 3K buffer we need to add enough padding to allow for 150 * tailroom due to NET_IP_ALIGN possibly shifting us out of 151 * cache-line alignment. 152 */ 153 if (I40E_2K_TOO_SMALL_WITH_PADDING) 154 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 155 else 156 rx_buf_len = I40E_RXBUFFER_1536; 157 158 /* if needed make room for NET_IP_ALIGN */ 159 rx_buf_len -= NET_IP_ALIGN; 160 161 return i40e_compute_pad(rx_buf_len); 162} 163 164#define I40E_SKB_PAD i40e_skb_pad() 165#else 166#define I40E_2K_TOO_SMALL_WITH_PADDING false 167#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 168#endif 169 170/** 171 * i40e_test_staterr - tests bits in Rx descriptor status and error fields 172 * @rx_desc: pointer to receive descriptor (in le64 format) 173 * @stat_err_bits: value to mask 174 * 175 * This function does some fast chicanery in order to return the 176 * value of the mask which is really only used for boolean tests. 177 * The status_error_len doesn't need to be shifted because it begins 178 * at offset zero. 179 */ 180static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, 181 const u64 stat_err_bits) 182{ 183 return !!(rx_desc->wb.qword1.status_error_len & 184 cpu_to_le64(stat_err_bits)); 185} 186 187/* How many Rx Buffers do we bundle into one write to the hardware ? */ 188#define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */ 189 190#define I40E_RX_NEXT_DESC(r, i, n) \ 191 do { \ 192 (i)++; \ 193 if ((i) == (r)->count) \ 194 i = 0; \ 195 (n) = I40E_RX_DESC((r), (i)); \ 196 } while (0) 197 198 199#define I40E_MAX_BUFFER_TXD 8 200#define I40E_MIN_TX_LEN 17 201 202/* The size limit for a transmit buffer in a descriptor is (16K - 1). 203 * In order to align with the read requests we will align the value to 204 * the nearest 4K which represents our maximum read request size. 205 */ 206#define I40E_MAX_READ_REQ_SIZE 4096 207#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) 208#define I40E_MAX_DATA_PER_TXD_ALIGNED \ 209 (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) 210 211/** 212 * i40e_txd_use_count - estimate the number of descriptors needed for Tx 213 * @size: transmit request size in bytes 214 * 215 * Due to hardware alignment restrictions (4K alignment), we need to 216 * assume that we can have no more than 12K of data per descriptor, even 217 * though each descriptor can take up to 16K - 1 bytes of aligned memory. 218 * Thus, we need to divide by 12K. But division is slow! Instead, 219 * we decompose the operation into shifts and one relatively cheap 220 * multiply operation. 221 * 222 * To divide by 12K, we first divide by 4K, then divide by 3: 223 * To divide by 4K, shift right by 12 bits 224 * To divide by 3, multiply by 85, then divide by 256 225 * (Divide by 256 is done by shifting right by 8 bits) 226 * Finally, we add one to round up. Because 256 isn't an exact multiple of 227 * 3, we'll underestimate near each multiple of 12K. This is actually more 228 * accurate as we have 4K - 1 of wiggle room that we can fit into the last 229 * segment. For our purposes this is accurate out to 1M which is orders of 230 * magnitude greater than our largest possible GSO size. 231 * 232 * This would then be implemented as: 233 * return (((size >> 12) * 85) >> 8) + 1; 234 * 235 * Since multiplication and division are commutative, we can reorder 236 * operations into: 237 * return ((size * 85) >> 20) + 1; 238 */ 239static inline unsigned int i40e_txd_use_count(unsigned int size) 240{ 241 return ((size * 85) >> 20) + 1; 242} 243 244/* Tx Descriptors needed, worst case */ 245#define DESC_NEEDED (MAX_SKB_FRAGS + 6) 246 247#define I40E_TX_FLAGS_HW_VLAN BIT(1) 248#define I40E_TX_FLAGS_SW_VLAN BIT(2) 249#define I40E_TX_FLAGS_TSO BIT(3) 250#define I40E_TX_FLAGS_IPV4 BIT(4) 251#define I40E_TX_FLAGS_IPV6 BIT(5) 252#define I40E_TX_FLAGS_TSYN BIT(8) 253#define I40E_TX_FLAGS_FD_SB BIT(9) 254#define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) 255#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 256#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 257#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 258#define I40E_TX_FLAGS_VLAN_SHIFT 16 259 260struct i40e_tx_buffer { 261 struct i40e_tx_desc *next_to_watch; 262 union { 263 struct xdp_frame *xdpf; 264 struct sk_buff *skb; 265 void *raw_buf; 266 }; 267 unsigned int bytecount; 268 unsigned short gso_segs; 269 270 DEFINE_DMA_UNMAP_ADDR(dma); 271 DEFINE_DMA_UNMAP_LEN(len); 272 u32 tx_flags; 273}; 274 275struct i40e_rx_buffer { 276 dma_addr_t dma; 277 struct page *page; 278 __u32 page_offset; 279 __u16 pagecnt_bias; 280}; 281 282struct i40e_queue_stats { 283 u64 packets; 284 u64 bytes; 285}; 286 287struct i40e_tx_queue_stats { 288 u64 restart_queue; 289 u64 tx_busy; 290 u64 tx_done_old; 291 u64 tx_linearize; 292 u64 tx_force_wb; 293 u64 tx_stopped; 294 int prev_pkt_ctr; 295}; 296 297struct i40e_rx_queue_stats { 298 u64 non_eop_descs; 299 u64 alloc_page_failed; 300 u64 alloc_buff_failed; 301 u64 page_reuse_count; 302 u64 page_alloc_count; 303 u64 page_waive_count; 304 u64 page_busy_count; 305}; 306 307enum i40e_ring_state_t { 308 __I40E_TX_FDIR_INIT_DONE, 309 __I40E_TX_XPS_INIT_DONE, 310 __I40E_RING_STATE_NBITS /* must be last */ 311}; 312 313/* some useful defines for virtchannel interface, which 314 * is the only remaining user of header split 315 */ 316#define I40E_RX_DTYPE_HEADER_SPLIT 1 317#define I40E_RX_SPLIT_L2 0x1 318#define I40E_RX_SPLIT_IP 0x2 319#define I40E_RX_SPLIT_TCP_UDP 0x4 320#define I40E_RX_SPLIT_SCTP 0x8 321 322/* struct that defines a descriptor ring, associated with a VSI */ 323struct i40e_ring { 324 struct i40e_ring *next; /* pointer to next ring in q_vector */ 325 void *desc; /* Descriptor ring memory */ 326 struct device *dev; /* Used for DMA mapping */ 327 struct net_device *netdev; /* netdev ring maps to */ 328 struct bpf_prog *xdp_prog; 329 union { 330 struct i40e_tx_buffer *tx_bi; 331 struct i40e_rx_buffer *rx_bi; 332 struct xdp_buff **rx_bi_zc; 333 }; 334 DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS); 335 u16 queue_index; /* Queue number of ring */ 336 u8 dcb_tc; /* Traffic class of ring */ 337 u8 __iomem *tail; 338 339 /* high bit set means dynamic, use accessor routines to read/write. 340 * hardware only supports 2us resolution for the ITR registers. 341 * these values always store the USER setting, and must be converted 342 * before programming to a register. 343 */ 344 u16 itr_setting; 345 346 u16 count; /* Number of descriptors */ 347 u16 reg_idx; /* HW register index of the ring */ 348 u16 rx_buf_len; 349 350 /* used in interrupt processing */ 351 u16 next_to_use; 352 u16 next_to_clean; 353 u16 xdp_tx_active; 354 355 u8 atr_sample_rate; 356 u8 atr_count; 357 358 bool ring_active; /* is ring online or not */ 359 bool arm_wb; /* do something to arm write back */ 360 u8 packet_stride; 361 362 u16 flags; 363#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) 364#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1) 365#define I40E_TXR_FLAGS_XDP BIT(2) 366 367 /* stats structs */ 368 struct i40e_queue_stats stats; 369 struct u64_stats_sync syncp; 370 union { 371 struct i40e_tx_queue_stats tx_stats; 372 struct i40e_rx_queue_stats rx_stats; 373 }; 374 375 unsigned int size; /* length of descriptor ring in bytes */ 376 dma_addr_t dma; /* physical address of ring */ 377 378 struct i40e_vsi *vsi; /* Backreference to associated VSI */ 379 struct i40e_q_vector *q_vector; /* Backreference to associated vector */ 380 381 struct rcu_head rcu; /* to avoid race on free */ 382 u16 next_to_alloc; 383 struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must 384 * return before it sees the EOP for 385 * the current packet, we save that skb 386 * here and resume receiving this 387 * packet the next time 388 * i40e_clean_rx_ring_irq() is called 389 * for this ring. 390 */ 391 392 struct i40e_channel *ch; 393 u16 rx_offset; 394 struct xdp_rxq_info xdp_rxq; 395 struct xsk_buff_pool *xsk_pool; 396} ____cacheline_internodealigned_in_smp; 397 398static inline bool ring_uses_build_skb(struct i40e_ring *ring) 399{ 400 return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED); 401} 402 403static inline void set_ring_build_skb_enabled(struct i40e_ring *ring) 404{ 405 ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 406} 407 408static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring) 409{ 410 ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED; 411} 412 413static inline bool ring_is_xdp(struct i40e_ring *ring) 414{ 415 return !!(ring->flags & I40E_TXR_FLAGS_XDP); 416} 417 418static inline void set_ring_xdp(struct i40e_ring *ring) 419{ 420 ring->flags |= I40E_TXR_FLAGS_XDP; 421} 422 423#define I40E_ITR_ADAPTIVE_MIN_INC 0x0002 424#define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002 425#define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e 426#define I40E_ITR_ADAPTIVE_LATENCY 0x8000 427#define I40E_ITR_ADAPTIVE_BULK 0x0000 428 429struct i40e_ring_container { 430 struct i40e_ring *ring; /* pointer to linked list of ring(s) */ 431 unsigned long next_update; /* jiffies value of next update */ 432 unsigned int total_bytes; /* total bytes processed this int */ 433 unsigned int total_packets; /* total packets processed this int */ 434 u16 count; 435 u16 target_itr; /* target ITR setting for ring(s) */ 436 u16 current_itr; /* current ITR setting for ring(s) */ 437}; 438 439/* iterator for handling rings in ring container */ 440#define i40e_for_each_ring(pos, head) \ 441 for (pos = (head).ring; pos != NULL; pos = pos->next) 442 443static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring) 444{ 445#if (PAGE_SIZE < 8192) 446 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 447 return 1; 448#endif 449 return 0; 450} 451 452#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring)) 453 454bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); 455netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 456u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb, 457 struct net_device *sb_dev); 458void i40e_clean_tx_ring(struct i40e_ring *tx_ring); 459void i40e_clean_rx_ring(struct i40e_ring *rx_ring); 460int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); 461int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); 462void i40e_free_tx_resources(struct i40e_ring *tx_ring); 463void i40e_free_rx_resources(struct i40e_ring *rx_ring); 464int i40e_napi_poll(struct napi_struct *napi, int budget); 465void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); 466u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); 467void i40e_detect_recover_hung(struct i40e_vsi *vsi); 468int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); 469bool __i40e_chk_linearize(struct sk_buff *skb); 470int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 471 u32 flags); 472int i40e_alloc_rx_bi(struct i40e_ring *rx_ring); 473 474/** 475 * i40e_get_head - Retrieve head from head writeback 476 * @tx_ring: tx ring to fetch head of 477 * 478 * Returns value of Tx ring head based on value stored 479 * in head write-back location 480 **/ 481static inline u32 i40e_get_head(struct i40e_ring *tx_ring) 482{ 483 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; 484 485 return le32_to_cpu(*(volatile __le32 *)head); 486} 487 488/** 489 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed 490 * @skb: send buffer 491 * 492 * Returns number of data descriptors needed for this skb. Returns 0 to indicate 493 * there is not enough descriptors available in this ring since we need at least 494 * one descriptor. 495 **/ 496static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) 497{ 498 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; 499 unsigned int nr_frags = skb_shinfo(skb)->nr_frags; 500 int count = 0, size = skb_headlen(skb); 501 502 for (;;) { 503 count += i40e_txd_use_count(size); 504 505 if (!nr_frags--) 506 break; 507 508 size = skb_frag_size(frag++); 509 } 510 511 return count; 512} 513 514/** 515 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions 516 * @tx_ring: the ring to be checked 517 * @size: the size buffer we want to assure is available 518 * 519 * Returns 0 if stop is not needed 520 **/ 521static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) 522{ 523 if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) 524 return 0; 525 return __i40e_maybe_stop_tx(tx_ring, size); 526} 527 528/** 529 * i40e_chk_linearize - Check if there are more than 8 fragments per packet 530 * @skb: send buffer 531 * @count: number of buffers used 532 * 533 * Note: Our HW can't scatter-gather more than 8 fragments to build 534 * a packet on the wire and so we need to figure out the cases where we 535 * need to linearize the skb. 536 **/ 537static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) 538{ 539 /* Both TSO and single send will work if count is less than 8 */ 540 if (likely(count < I40E_MAX_BUFFER_TXD)) 541 return false; 542 543 if (skb_is_gso(skb)) 544 return __i40e_chk_linearize(skb); 545 546 /* we can support up to 8 data buffers for a single send */ 547 return count != I40E_MAX_BUFFER_TXD; 548} 549 550/** 551 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring 552 * @ring: Tx ring to find the netdev equivalent of 553 **/ 554static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring) 555{ 556 return netdev_get_tx_queue(ring->netdev, ring->queue_index); 557} 558#endif /* _I40E_TXRX_H_ */