cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

iavf_main.c (140707B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2013 - 2018 Intel Corporation. */
      3
      4#include "iavf.h"
      5#include "iavf_prototype.h"
      6#include "iavf_client.h"
      7/* All iavf tracepoints are defined by the include below, which must
      8 * be included exactly once across the whole kernel with
      9 * CREATE_TRACE_POINTS defined
     10 */
     11#define CREATE_TRACE_POINTS
     12#include "iavf_trace.h"
     13
     14static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
     15static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
     16static int iavf_close(struct net_device *netdev);
     17static void iavf_init_get_resources(struct iavf_adapter *adapter);
     18static int iavf_check_reset_complete(struct iavf_hw *hw);
     19
     20char iavf_driver_name[] = "iavf";
     21static const char iavf_driver_string[] =
     22	"Intel(R) Ethernet Adaptive Virtual Function Network Driver";
     23
     24static const char iavf_copyright[] =
     25	"Copyright (c) 2013 - 2018 Intel Corporation.";
     26
     27/* iavf_pci_tbl - PCI Device ID Table
     28 *
     29 * Wildcard entries (PCI_ANY_ID) should come last
     30 * Last entry must be all 0s
     31 *
     32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
     33 *   Class, Class Mask, private data (not used) }
     34 */
     35static const struct pci_device_id iavf_pci_tbl[] = {
     36	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
     37	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
     38	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
     39	{PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
     40	/* required last entry */
     41	{0, }
     42};
     43
     44MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
     45
     46MODULE_ALIAS("i40evf");
     47MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
     48MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
     49MODULE_LICENSE("GPL v2");
     50
     51static const struct net_device_ops iavf_netdev_ops;
     52struct workqueue_struct *iavf_wq;
     53
     54int iavf_status_to_errno(enum iavf_status status)
     55{
     56	switch (status) {
     57	case IAVF_SUCCESS:
     58		return 0;
     59	case IAVF_ERR_PARAM:
     60	case IAVF_ERR_MAC_TYPE:
     61	case IAVF_ERR_INVALID_MAC_ADDR:
     62	case IAVF_ERR_INVALID_LINK_SETTINGS:
     63	case IAVF_ERR_INVALID_PD_ID:
     64	case IAVF_ERR_INVALID_QP_ID:
     65	case IAVF_ERR_INVALID_CQ_ID:
     66	case IAVF_ERR_INVALID_CEQ_ID:
     67	case IAVF_ERR_INVALID_AEQ_ID:
     68	case IAVF_ERR_INVALID_SIZE:
     69	case IAVF_ERR_INVALID_ARP_INDEX:
     70	case IAVF_ERR_INVALID_FPM_FUNC_ID:
     71	case IAVF_ERR_QP_INVALID_MSG_SIZE:
     72	case IAVF_ERR_INVALID_FRAG_COUNT:
     73	case IAVF_ERR_INVALID_ALIGNMENT:
     74	case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
     75	case IAVF_ERR_INVALID_IMM_DATA_SIZE:
     76	case IAVF_ERR_INVALID_VF_ID:
     77	case IAVF_ERR_INVALID_HMCFN_ID:
     78	case IAVF_ERR_INVALID_PBLE_INDEX:
     79	case IAVF_ERR_INVALID_SD_INDEX:
     80	case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
     81	case IAVF_ERR_INVALID_SD_TYPE:
     82	case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
     83	case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
     84	case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
     85		return -EINVAL;
     86	case IAVF_ERR_NVM:
     87	case IAVF_ERR_NVM_CHECKSUM:
     88	case IAVF_ERR_PHY:
     89	case IAVF_ERR_CONFIG:
     90	case IAVF_ERR_UNKNOWN_PHY:
     91	case IAVF_ERR_LINK_SETUP:
     92	case IAVF_ERR_ADAPTER_STOPPED:
     93	case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
     94	case IAVF_ERR_AUTONEG_NOT_COMPLETE:
     95	case IAVF_ERR_RESET_FAILED:
     96	case IAVF_ERR_BAD_PTR:
     97	case IAVF_ERR_SWFW_SYNC:
     98	case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
     99	case IAVF_ERR_QUEUE_EMPTY:
    100	case IAVF_ERR_FLUSHED_QUEUE:
    101	case IAVF_ERR_OPCODE_MISMATCH:
    102	case IAVF_ERR_CQP_COMPL_ERROR:
    103	case IAVF_ERR_BACKING_PAGE_ERROR:
    104	case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
    105	case IAVF_ERR_MEMCPY_FAILED:
    106	case IAVF_ERR_SRQ_ENABLED:
    107	case IAVF_ERR_ADMIN_QUEUE_ERROR:
    108	case IAVF_ERR_ADMIN_QUEUE_FULL:
    109	case IAVF_ERR_BAD_IWARP_CQE:
    110	case IAVF_ERR_NVM_BLANK_MODE:
    111	case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
    112	case IAVF_ERR_DIAG_TEST_FAILED:
    113	case IAVF_ERR_FIRMWARE_API_VERSION:
    114	case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
    115		return -EIO;
    116	case IAVF_ERR_DEVICE_NOT_SUPPORTED:
    117		return -ENODEV;
    118	case IAVF_ERR_NO_AVAILABLE_VSI:
    119	case IAVF_ERR_RING_FULL:
    120		return -ENOSPC;
    121	case IAVF_ERR_NO_MEMORY:
    122		return -ENOMEM;
    123	case IAVF_ERR_TIMEOUT:
    124	case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
    125		return -ETIMEDOUT;
    126	case IAVF_ERR_NOT_IMPLEMENTED:
    127	case IAVF_NOT_SUPPORTED:
    128		return -EOPNOTSUPP;
    129	case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
    130		return -EALREADY;
    131	case IAVF_ERR_NOT_READY:
    132		return -EBUSY;
    133	case IAVF_ERR_BUF_TOO_SHORT:
    134		return -EMSGSIZE;
    135	}
    136
    137	return -EIO;
    138}
    139
    140int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
    141{
    142	switch (v_status) {
    143	case VIRTCHNL_STATUS_SUCCESS:
    144		return 0;
    145	case VIRTCHNL_STATUS_ERR_PARAM:
    146	case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
    147		return -EINVAL;
    148	case VIRTCHNL_STATUS_ERR_NO_MEMORY:
    149		return -ENOMEM;
    150	case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
    151	case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
    152	case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
    153		return -EIO;
    154	case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
    155		return -EOPNOTSUPP;
    156	}
    157
    158	return -EIO;
    159}
    160
    161/**
    162 * iavf_pdev_to_adapter - go from pci_dev to adapter
    163 * @pdev: pci_dev pointer
    164 */
    165static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
    166{
    167	return netdev_priv(pci_get_drvdata(pdev));
    168}
    169
    170/**
    171 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
    172 * @hw:   pointer to the HW structure
    173 * @mem:  ptr to mem struct to fill out
    174 * @size: size of memory requested
    175 * @alignment: what to align the allocation to
    176 **/
    177enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
    178					 struct iavf_dma_mem *mem,
    179					 u64 size, u32 alignment)
    180{
    181	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
    182
    183	if (!mem)
    184		return IAVF_ERR_PARAM;
    185
    186	mem->size = ALIGN(size, alignment);
    187	mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
    188				     (dma_addr_t *)&mem->pa, GFP_KERNEL);
    189	if (mem->va)
    190		return 0;
    191	else
    192		return IAVF_ERR_NO_MEMORY;
    193}
    194
    195/**
    196 * iavf_free_dma_mem_d - OS specific memory free for shared code
    197 * @hw:   pointer to the HW structure
    198 * @mem:  ptr to mem struct to free
    199 **/
    200enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
    201				     struct iavf_dma_mem *mem)
    202{
    203	struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
    204
    205	if (!mem || !mem->va)
    206		return IAVF_ERR_PARAM;
    207	dma_free_coherent(&adapter->pdev->dev, mem->size,
    208			  mem->va, (dma_addr_t)mem->pa);
    209	return 0;
    210}
    211
    212/**
    213 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
    214 * @hw:   pointer to the HW structure
    215 * @mem:  ptr to mem struct to fill out
    216 * @size: size of memory requested
    217 **/
    218enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
    219					  struct iavf_virt_mem *mem, u32 size)
    220{
    221	if (!mem)
    222		return IAVF_ERR_PARAM;
    223
    224	mem->size = size;
    225	mem->va = kzalloc(size, GFP_KERNEL);
    226
    227	if (mem->va)
    228		return 0;
    229	else
    230		return IAVF_ERR_NO_MEMORY;
    231}
    232
    233/**
    234 * iavf_free_virt_mem_d - OS specific memory free for shared code
    235 * @hw:   pointer to the HW structure
    236 * @mem:  ptr to mem struct to free
    237 **/
    238enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
    239				      struct iavf_virt_mem *mem)
    240{
    241	if (!mem)
    242		return IAVF_ERR_PARAM;
    243
    244	/* it's ok to kfree a NULL pointer */
    245	kfree(mem->va);
    246
    247	return 0;
    248}
    249
    250/**
    251 * iavf_lock_timeout - try to lock mutex but give up after timeout
    252 * @lock: mutex that should be locked
    253 * @msecs: timeout in msecs
    254 *
    255 * Returns 0 on success, negative on failure
    256 **/
    257int iavf_lock_timeout(struct mutex *lock, unsigned int msecs)
    258{
    259	unsigned int wait, delay = 10;
    260
    261	for (wait = 0; wait < msecs; wait += delay) {
    262		if (mutex_trylock(lock))
    263			return 0;
    264
    265		msleep(delay);
    266	}
    267
    268	return -1;
    269}
    270
    271/**
    272 * iavf_schedule_reset - Set the flags and schedule a reset event
    273 * @adapter: board private structure
    274 **/
    275void iavf_schedule_reset(struct iavf_adapter *adapter)
    276{
    277	if (!(adapter->flags &
    278	      (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
    279		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
    280		queue_work(iavf_wq, &adapter->reset_task);
    281	}
    282}
    283
    284/**
    285 * iavf_schedule_request_stats - Set the flags and schedule statistics request
    286 * @adapter: board private structure
    287 *
    288 * Sets IAVF_FLAG_AQ_REQUEST_STATS flag so iavf_watchdog_task() will explicitly
    289 * request and refresh ethtool stats
    290 **/
    291void iavf_schedule_request_stats(struct iavf_adapter *adapter)
    292{
    293	adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_STATS;
    294	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
    295}
    296
    297/**
    298 * iavf_tx_timeout - Respond to a Tx Hang
    299 * @netdev: network interface device structure
    300 * @txqueue: queue number that is timing out
    301 **/
    302static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
    303{
    304	struct iavf_adapter *adapter = netdev_priv(netdev);
    305
    306	adapter->tx_timeout_count++;
    307	iavf_schedule_reset(adapter);
    308}
    309
    310/**
    311 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
    312 * @adapter: board private structure
    313 **/
    314static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
    315{
    316	struct iavf_hw *hw = &adapter->hw;
    317
    318	if (!adapter->msix_entries)
    319		return;
    320
    321	wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
    322
    323	iavf_flush(hw);
    324
    325	synchronize_irq(adapter->msix_entries[0].vector);
    326}
    327
    328/**
    329 * iavf_misc_irq_enable - Enable default interrupt generation settings
    330 * @adapter: board private structure
    331 **/
    332static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
    333{
    334	struct iavf_hw *hw = &adapter->hw;
    335
    336	wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
    337				       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
    338	wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
    339
    340	iavf_flush(hw);
    341}
    342
    343/**
    344 * iavf_irq_disable - Mask off interrupt generation on the NIC
    345 * @adapter: board private structure
    346 **/
    347static void iavf_irq_disable(struct iavf_adapter *adapter)
    348{
    349	int i;
    350	struct iavf_hw *hw = &adapter->hw;
    351
    352	if (!adapter->msix_entries)
    353		return;
    354
    355	for (i = 1; i < adapter->num_msix_vectors; i++) {
    356		wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
    357		synchronize_irq(adapter->msix_entries[i].vector);
    358	}
    359	iavf_flush(hw);
    360}
    361
    362/**
    363 * iavf_irq_enable_queues - Enable interrupt for specified queues
    364 * @adapter: board private structure
    365 * @mask: bitmap of queues to enable
    366 **/
    367void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
    368{
    369	struct iavf_hw *hw = &adapter->hw;
    370	int i;
    371
    372	for (i = 1; i < adapter->num_msix_vectors; i++) {
    373		if (mask & BIT(i - 1)) {
    374			wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
    375			     IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
    376			     IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
    377		}
    378	}
    379}
    380
    381/**
    382 * iavf_irq_enable - Enable default interrupt generation settings
    383 * @adapter: board private structure
    384 * @flush: boolean value whether to run rd32()
    385 **/
    386void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
    387{
    388	struct iavf_hw *hw = &adapter->hw;
    389
    390	iavf_misc_irq_enable(adapter);
    391	iavf_irq_enable_queues(adapter, ~0);
    392
    393	if (flush)
    394		iavf_flush(hw);
    395}
    396
    397/**
    398 * iavf_msix_aq - Interrupt handler for vector 0
    399 * @irq: interrupt number
    400 * @data: pointer to netdev
    401 **/
    402static irqreturn_t iavf_msix_aq(int irq, void *data)
    403{
    404	struct net_device *netdev = data;
    405	struct iavf_adapter *adapter = netdev_priv(netdev);
    406	struct iavf_hw *hw = &adapter->hw;
    407
    408	/* handle non-queue interrupts, these reads clear the registers */
    409	rd32(hw, IAVF_VFINT_ICR01);
    410	rd32(hw, IAVF_VFINT_ICR0_ENA1);
    411
    412	if (adapter->state != __IAVF_REMOVE)
    413		/* schedule work on the private workqueue */
    414		queue_work(iavf_wq, &adapter->adminq_task);
    415
    416	return IRQ_HANDLED;
    417}
    418
    419/**
    420 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
    421 * @irq: interrupt number
    422 * @data: pointer to a q_vector
    423 **/
    424static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
    425{
    426	struct iavf_q_vector *q_vector = data;
    427
    428	if (!q_vector->tx.ring && !q_vector->rx.ring)
    429		return IRQ_HANDLED;
    430
    431	napi_schedule_irqoff(&q_vector->napi);
    432
    433	return IRQ_HANDLED;
    434}
    435
    436/**
    437 * iavf_map_vector_to_rxq - associate irqs with rx queues
    438 * @adapter: board private structure
    439 * @v_idx: interrupt number
    440 * @r_idx: queue number
    441 **/
    442static void
    443iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
    444{
    445	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
    446	struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
    447	struct iavf_hw *hw = &adapter->hw;
    448
    449	rx_ring->q_vector = q_vector;
    450	rx_ring->next = q_vector->rx.ring;
    451	rx_ring->vsi = &adapter->vsi;
    452	q_vector->rx.ring = rx_ring;
    453	q_vector->rx.count++;
    454	q_vector->rx.next_update = jiffies + 1;
    455	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
    456	q_vector->ring_mask |= BIT(r_idx);
    457	wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
    458	     q_vector->rx.current_itr >> 1);
    459	q_vector->rx.current_itr = q_vector->rx.target_itr;
    460}
    461
    462/**
    463 * iavf_map_vector_to_txq - associate irqs with tx queues
    464 * @adapter: board private structure
    465 * @v_idx: interrupt number
    466 * @t_idx: queue number
    467 **/
    468static void
    469iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
    470{
    471	struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
    472	struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
    473	struct iavf_hw *hw = &adapter->hw;
    474
    475	tx_ring->q_vector = q_vector;
    476	tx_ring->next = q_vector->tx.ring;
    477	tx_ring->vsi = &adapter->vsi;
    478	q_vector->tx.ring = tx_ring;
    479	q_vector->tx.count++;
    480	q_vector->tx.next_update = jiffies + 1;
    481	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
    482	q_vector->num_ringpairs++;
    483	wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
    484	     q_vector->tx.target_itr >> 1);
    485	q_vector->tx.current_itr = q_vector->tx.target_itr;
    486}
    487
    488/**
    489 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
    490 * @adapter: board private structure to initialize
    491 *
    492 * This function maps descriptor rings to the queue-specific vectors
    493 * we were allotted through the MSI-X enabling code.  Ideally, we'd have
    494 * one vector per ring/queue, but on a constrained vector budget, we
    495 * group the rings as "efficiently" as possible.  You would add new
    496 * mapping configurations in here.
    497 **/
    498static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
    499{
    500	int rings_remaining = adapter->num_active_queues;
    501	int ridx = 0, vidx = 0;
    502	int q_vectors;
    503
    504	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
    505
    506	for (; ridx < rings_remaining; ridx++) {
    507		iavf_map_vector_to_rxq(adapter, vidx, ridx);
    508		iavf_map_vector_to_txq(adapter, vidx, ridx);
    509
    510		/* In the case where we have more queues than vectors, continue
    511		 * round-robin on vectors until all queues are mapped.
    512		 */
    513		if (++vidx >= q_vectors)
    514			vidx = 0;
    515	}
    516
    517	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
    518}
    519
    520/**
    521 * iavf_irq_affinity_notify - Callback for affinity changes
    522 * @notify: context as to what irq was changed
    523 * @mask: the new affinity mask
    524 *
    525 * This is a callback function used by the irq_set_affinity_notifier function
    526 * so that we may register to receive changes to the irq affinity masks.
    527 **/
    528static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
    529				     const cpumask_t *mask)
    530{
    531	struct iavf_q_vector *q_vector =
    532		container_of(notify, struct iavf_q_vector, affinity_notify);
    533
    534	cpumask_copy(&q_vector->affinity_mask, mask);
    535}
    536
    537/**
    538 * iavf_irq_affinity_release - Callback for affinity notifier release
    539 * @ref: internal core kernel usage
    540 *
    541 * This is a callback function used by the irq_set_affinity_notifier function
    542 * to inform the current notification subscriber that they will no longer
    543 * receive notifications.
    544 **/
    545static void iavf_irq_affinity_release(struct kref *ref) {}
    546
    547/**
    548 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
    549 * @adapter: board private structure
    550 * @basename: device basename
    551 *
    552 * Allocates MSI-X vectors for tx and rx handling, and requests
    553 * interrupts from the kernel.
    554 **/
    555static int
    556iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
    557{
    558	unsigned int vector, q_vectors;
    559	unsigned int rx_int_idx = 0, tx_int_idx = 0;
    560	int irq_num, err;
    561	int cpu;
    562
    563	iavf_irq_disable(adapter);
    564	/* Decrement for Other and TCP Timer vectors */
    565	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
    566
    567	for (vector = 0; vector < q_vectors; vector++) {
    568		struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
    569
    570		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
    571
    572		if (q_vector->tx.ring && q_vector->rx.ring) {
    573			snprintf(q_vector->name, sizeof(q_vector->name),
    574				 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
    575			tx_int_idx++;
    576		} else if (q_vector->rx.ring) {
    577			snprintf(q_vector->name, sizeof(q_vector->name),
    578				 "iavf-%s-rx-%u", basename, rx_int_idx++);
    579		} else if (q_vector->tx.ring) {
    580			snprintf(q_vector->name, sizeof(q_vector->name),
    581				 "iavf-%s-tx-%u", basename, tx_int_idx++);
    582		} else {
    583			/* skip this unused q_vector */
    584			continue;
    585		}
    586		err = request_irq(irq_num,
    587				  iavf_msix_clean_rings,
    588				  0,
    589				  q_vector->name,
    590				  q_vector);
    591		if (err) {
    592			dev_info(&adapter->pdev->dev,
    593				 "Request_irq failed, error: %d\n", err);
    594			goto free_queue_irqs;
    595		}
    596		/* register for affinity change notifications */
    597		q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
    598		q_vector->affinity_notify.release =
    599						   iavf_irq_affinity_release;
    600		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
    601		/* Spread the IRQ affinity hints across online CPUs. Note that
    602		 * get_cpu_mask returns a mask with a permanent lifetime so
    603		 * it's safe to use as a hint for irq_update_affinity_hint.
    604		 */
    605		cpu = cpumask_local_spread(q_vector->v_idx, -1);
    606		irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
    607	}
    608
    609	return 0;
    610
    611free_queue_irqs:
    612	while (vector) {
    613		vector--;
    614		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
    615		irq_set_affinity_notifier(irq_num, NULL);
    616		irq_update_affinity_hint(irq_num, NULL);
    617		free_irq(irq_num, &adapter->q_vectors[vector]);
    618	}
    619	return err;
    620}
    621
    622/**
    623 * iavf_request_misc_irq - Initialize MSI-X interrupts
    624 * @adapter: board private structure
    625 *
    626 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
    627 * vector is only for the admin queue, and stays active even when the netdev
    628 * is closed.
    629 **/
    630static int iavf_request_misc_irq(struct iavf_adapter *adapter)
    631{
    632	struct net_device *netdev = adapter->netdev;
    633	int err;
    634
    635	snprintf(adapter->misc_vector_name,
    636		 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
    637		 dev_name(&adapter->pdev->dev));
    638	err = request_irq(adapter->msix_entries[0].vector,
    639			  &iavf_msix_aq, 0,
    640			  adapter->misc_vector_name, netdev);
    641	if (err) {
    642		dev_err(&adapter->pdev->dev,
    643			"request_irq for %s failed: %d\n",
    644			adapter->misc_vector_name, err);
    645		free_irq(adapter->msix_entries[0].vector, netdev);
    646	}
    647	return err;
    648}
    649
    650/**
    651 * iavf_free_traffic_irqs - Free MSI-X interrupts
    652 * @adapter: board private structure
    653 *
    654 * Frees all MSI-X vectors other than 0.
    655 **/
    656static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
    657{
    658	int vector, irq_num, q_vectors;
    659
    660	if (!adapter->msix_entries)
    661		return;
    662
    663	q_vectors = adapter->num_msix_vectors - NONQ_VECS;
    664
    665	for (vector = 0; vector < q_vectors; vector++) {
    666		irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
    667		irq_set_affinity_notifier(irq_num, NULL);
    668		irq_update_affinity_hint(irq_num, NULL);
    669		free_irq(irq_num, &adapter->q_vectors[vector]);
    670	}
    671}
    672
    673/**
    674 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
    675 * @adapter: board private structure
    676 *
    677 * Frees MSI-X vector 0.
    678 **/
    679static void iavf_free_misc_irq(struct iavf_adapter *adapter)
    680{
    681	struct net_device *netdev = adapter->netdev;
    682
    683	if (!adapter->msix_entries)
    684		return;
    685
    686	free_irq(adapter->msix_entries[0].vector, netdev);
    687}
    688
    689/**
    690 * iavf_configure_tx - Configure Transmit Unit after Reset
    691 * @adapter: board private structure
    692 *
    693 * Configure the Tx unit of the MAC after a reset.
    694 **/
    695static void iavf_configure_tx(struct iavf_adapter *adapter)
    696{
    697	struct iavf_hw *hw = &adapter->hw;
    698	int i;
    699
    700	for (i = 0; i < adapter->num_active_queues; i++)
    701		adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
    702}
    703
    704/**
    705 * iavf_configure_rx - Configure Receive Unit after Reset
    706 * @adapter: board private structure
    707 *
    708 * Configure the Rx unit of the MAC after a reset.
    709 **/
    710static void iavf_configure_rx(struct iavf_adapter *adapter)
    711{
    712	unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
    713	struct iavf_hw *hw = &adapter->hw;
    714	int i;
    715
    716	/* Legacy Rx will always default to a 2048 buffer size. */
    717#if (PAGE_SIZE < 8192)
    718	if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
    719		struct net_device *netdev = adapter->netdev;
    720
    721		/* For jumbo frames on systems with 4K pages we have to use
    722		 * an order 1 page, so we might as well increase the size
    723		 * of our Rx buffer to make better use of the available space
    724		 */
    725		rx_buf_len = IAVF_RXBUFFER_3072;
    726
    727		/* We use a 1536 buffer size for configurations with
    728		 * standard Ethernet mtu.  On x86 this gives us enough room
    729		 * for shared info and 192 bytes of padding.
    730		 */
    731		if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
    732		    (netdev->mtu <= ETH_DATA_LEN))
    733			rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
    734	}
    735#endif
    736
    737	for (i = 0; i < adapter->num_active_queues; i++) {
    738		adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
    739		adapter->rx_rings[i].rx_buf_len = rx_buf_len;
    740
    741		if (adapter->flags & IAVF_FLAG_LEGACY_RX)
    742			clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
    743		else
    744			set_ring_build_skb_enabled(&adapter->rx_rings[i]);
    745	}
    746}
    747
    748/**
    749 * iavf_find_vlan - Search filter list for specific vlan filter
    750 * @adapter: board private structure
    751 * @vlan: vlan tag
    752 *
    753 * Returns ptr to the filter object or NULL. Must be called while holding the
    754 * mac_vlan_list_lock.
    755 **/
    756static struct
    757iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
    758				 struct iavf_vlan vlan)
    759{
    760	struct iavf_vlan_filter *f;
    761
    762	list_for_each_entry(f, &adapter->vlan_filter_list, list) {
    763		if (f->vlan.vid == vlan.vid &&
    764		    f->vlan.tpid == vlan.tpid)
    765			return f;
    766	}
    767
    768	return NULL;
    769}
    770
    771/**
    772 * iavf_add_vlan - Add a vlan filter to the list
    773 * @adapter: board private structure
    774 * @vlan: VLAN tag
    775 *
    776 * Returns ptr to the filter object or NULL when no memory available.
    777 **/
    778static struct
    779iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
    780				struct iavf_vlan vlan)
    781{
    782	struct iavf_vlan_filter *f = NULL;
    783
    784	spin_lock_bh(&adapter->mac_vlan_list_lock);
    785
    786	f = iavf_find_vlan(adapter, vlan);
    787	if (!f) {
    788		f = kzalloc(sizeof(*f), GFP_ATOMIC);
    789		if (!f)
    790			goto clearout;
    791
    792		f->vlan = vlan;
    793
    794		list_add_tail(&f->list, &adapter->vlan_filter_list);
    795		f->add = true;
    796		adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
    797	}
    798
    799clearout:
    800	spin_unlock_bh(&adapter->mac_vlan_list_lock);
    801	return f;
    802}
    803
    804/**
    805 * iavf_del_vlan - Remove a vlan filter from the list
    806 * @adapter: board private structure
    807 * @vlan: VLAN tag
    808 **/
    809static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
    810{
    811	struct iavf_vlan_filter *f;
    812
    813	spin_lock_bh(&adapter->mac_vlan_list_lock);
    814
    815	f = iavf_find_vlan(adapter, vlan);
    816	if (f) {
    817		f->remove = true;
    818		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
    819	}
    820
    821	spin_unlock_bh(&adapter->mac_vlan_list_lock);
    822}
    823
    824/**
    825 * iavf_restore_filters
    826 * @adapter: board private structure
    827 *
    828 * Restore existing non MAC filters when VF netdev comes back up
    829 **/
    830static void iavf_restore_filters(struct iavf_adapter *adapter)
    831{
    832	u16 vid;
    833
    834	/* re-add all VLAN filters */
    835	for_each_set_bit(vid, adapter->vsi.active_cvlans, VLAN_N_VID)
    836		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021Q));
    837
    838	for_each_set_bit(vid, adapter->vsi.active_svlans, VLAN_N_VID)
    839		iavf_add_vlan(adapter, IAVF_VLAN(vid, ETH_P_8021AD));
    840}
    841
    842/**
    843 * iavf_get_num_vlans_added - get number of VLANs added
    844 * @adapter: board private structure
    845 */
    846static u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
    847{
    848	return bitmap_weight(adapter->vsi.active_cvlans, VLAN_N_VID) +
    849		bitmap_weight(adapter->vsi.active_svlans, VLAN_N_VID);
    850}
    851
    852/**
    853 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
    854 * @adapter: board private structure
    855 *
    856 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
    857 * do not impose a limit as that maintains current behavior and for
    858 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
    859 **/
    860static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
    861{
    862	/* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
    863	 * never been a limit on the VF driver side
    864	 */
    865	if (VLAN_ALLOWED(adapter))
    866		return VLAN_N_VID;
    867	else if (VLAN_V2_ALLOWED(adapter))
    868		return adapter->vlan_v2_caps.filtering.max_filters;
    869
    870	return 0;
    871}
    872
    873/**
    874 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
    875 * @adapter: board private structure
    876 **/
    877static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
    878{
    879	if (iavf_get_num_vlans_added(adapter) <
    880	    iavf_get_max_vlans_allowed(adapter))
    881		return false;
    882
    883	return true;
    884}
    885
    886/**
    887 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
    888 * @netdev: network device struct
    889 * @proto: unused protocol data
    890 * @vid: VLAN tag
    891 **/
    892static int iavf_vlan_rx_add_vid(struct net_device *netdev,
    893				__always_unused __be16 proto, u16 vid)
    894{
    895	struct iavf_adapter *adapter = netdev_priv(netdev);
    896
    897	if (!VLAN_FILTERING_ALLOWED(adapter))
    898		return -EIO;
    899
    900	if (iavf_max_vlans_added(adapter)) {
    901		netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
    902			   iavf_get_max_vlans_allowed(adapter));
    903		return -EIO;
    904	}
    905
    906	if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
    907		return -ENOMEM;
    908
    909	if (proto == cpu_to_be16(ETH_P_8021Q))
    910		set_bit(vid, adapter->vsi.active_cvlans);
    911	else
    912		set_bit(vid, adapter->vsi.active_svlans);
    913
    914	return 0;
    915}
    916
    917/**
    918 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
    919 * @netdev: network device struct
    920 * @proto: unused protocol data
    921 * @vid: VLAN tag
    922 **/
    923static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
    924				 __always_unused __be16 proto, u16 vid)
    925{
    926	struct iavf_adapter *adapter = netdev_priv(netdev);
    927
    928	iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
    929	if (proto == cpu_to_be16(ETH_P_8021Q))
    930		clear_bit(vid, adapter->vsi.active_cvlans);
    931	else
    932		clear_bit(vid, adapter->vsi.active_svlans);
    933
    934	return 0;
    935}
    936
    937/**
    938 * iavf_find_filter - Search filter list for specific mac filter
    939 * @adapter: board private structure
    940 * @macaddr: the MAC address
    941 *
    942 * Returns ptr to the filter object or NULL. Must be called while holding the
    943 * mac_vlan_list_lock.
    944 **/
    945static struct
    946iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
    947				  const u8 *macaddr)
    948{
    949	struct iavf_mac_filter *f;
    950
    951	if (!macaddr)
    952		return NULL;
    953
    954	list_for_each_entry(f, &adapter->mac_filter_list, list) {
    955		if (ether_addr_equal(macaddr, f->macaddr))
    956			return f;
    957	}
    958	return NULL;
    959}
    960
    961/**
    962 * iavf_add_filter - Add a mac filter to the filter list
    963 * @adapter: board private structure
    964 * @macaddr: the MAC address
    965 *
    966 * Returns ptr to the filter object or NULL when no memory available.
    967 **/
    968struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
    969					const u8 *macaddr)
    970{
    971	struct iavf_mac_filter *f;
    972
    973	if (!macaddr)
    974		return NULL;
    975
    976	f = iavf_find_filter(adapter, macaddr);
    977	if (!f) {
    978		f = kzalloc(sizeof(*f), GFP_ATOMIC);
    979		if (!f)
    980			return f;
    981
    982		ether_addr_copy(f->macaddr, macaddr);
    983
    984		list_add_tail(&f->list, &adapter->mac_filter_list);
    985		f->add = true;
    986		f->is_new_mac = true;
    987		f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
    988		adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
    989	} else {
    990		f->remove = false;
    991	}
    992
    993	return f;
    994}
    995
    996/**
    997 * iavf_set_mac - NDO callback to set port mac address
    998 * @netdev: network interface device structure
    999 * @p: pointer to an address structure
   1000 *
   1001 * Returns 0 on success, negative on failure
   1002 **/
   1003static int iavf_set_mac(struct net_device *netdev, void *p)
   1004{
   1005	struct iavf_adapter *adapter = netdev_priv(netdev);
   1006	struct iavf_hw *hw = &adapter->hw;
   1007	struct iavf_mac_filter *f;
   1008	struct sockaddr *addr = p;
   1009
   1010	if (!is_valid_ether_addr(addr->sa_data))
   1011		return -EADDRNOTAVAIL;
   1012
   1013	if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
   1014		return 0;
   1015
   1016	spin_lock_bh(&adapter->mac_vlan_list_lock);
   1017
   1018	f = iavf_find_filter(adapter, hw->mac.addr);
   1019	if (f) {
   1020		f->remove = true;
   1021		f->is_primary = true;
   1022		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
   1023	}
   1024
   1025	f = iavf_add_filter(adapter, addr->sa_data);
   1026	if (f) {
   1027		f->is_primary = true;
   1028		ether_addr_copy(hw->mac.addr, addr->sa_data);
   1029	}
   1030
   1031	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   1032
   1033	/* schedule the watchdog task to immediately process the request */
   1034	if (f)
   1035		queue_work(iavf_wq, &adapter->watchdog_task.work);
   1036
   1037	return (f == NULL) ? -ENOMEM : 0;
   1038}
   1039
   1040/**
   1041 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
   1042 * @netdev: the netdevice
   1043 * @addr: address to add
   1044 *
   1045 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
   1046 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
   1047 */
   1048static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
   1049{
   1050	struct iavf_adapter *adapter = netdev_priv(netdev);
   1051
   1052	if (iavf_add_filter(adapter, addr))
   1053		return 0;
   1054	else
   1055		return -ENOMEM;
   1056}
   1057
   1058/**
   1059 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
   1060 * @netdev: the netdevice
   1061 * @addr: address to add
   1062 *
   1063 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
   1064 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
   1065 */
   1066static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
   1067{
   1068	struct iavf_adapter *adapter = netdev_priv(netdev);
   1069	struct iavf_mac_filter *f;
   1070
   1071	/* Under some circumstances, we might receive a request to delete
   1072	 * our own device address from our uc list. Because we store the
   1073	 * device address in the VSI's MAC/VLAN filter list, we need to ignore
   1074	 * such requests and not delete our device address from this list.
   1075	 */
   1076	if (ether_addr_equal(addr, netdev->dev_addr))
   1077		return 0;
   1078
   1079	f = iavf_find_filter(adapter, addr);
   1080	if (f) {
   1081		f->remove = true;
   1082		adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
   1083	}
   1084	return 0;
   1085}
   1086
   1087/**
   1088 * iavf_set_rx_mode - NDO callback to set the netdev filters
   1089 * @netdev: network interface device structure
   1090 **/
   1091static void iavf_set_rx_mode(struct net_device *netdev)
   1092{
   1093	struct iavf_adapter *adapter = netdev_priv(netdev);
   1094
   1095	spin_lock_bh(&adapter->mac_vlan_list_lock);
   1096	__dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
   1097	__dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
   1098	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   1099
   1100	if (netdev->flags & IFF_PROMISC &&
   1101	    !(adapter->flags & IAVF_FLAG_PROMISC_ON))
   1102		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
   1103	else if (!(netdev->flags & IFF_PROMISC) &&
   1104		 adapter->flags & IAVF_FLAG_PROMISC_ON)
   1105		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
   1106
   1107	if (netdev->flags & IFF_ALLMULTI &&
   1108	    !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
   1109		adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
   1110	else if (!(netdev->flags & IFF_ALLMULTI) &&
   1111		 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
   1112		adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
   1113}
   1114
   1115/**
   1116 * iavf_napi_enable_all - enable NAPI on all queue vectors
   1117 * @adapter: board private structure
   1118 **/
   1119static void iavf_napi_enable_all(struct iavf_adapter *adapter)
   1120{
   1121	int q_idx;
   1122	struct iavf_q_vector *q_vector;
   1123	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
   1124
   1125	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
   1126		struct napi_struct *napi;
   1127
   1128		q_vector = &adapter->q_vectors[q_idx];
   1129		napi = &q_vector->napi;
   1130		napi_enable(napi);
   1131	}
   1132}
   1133
   1134/**
   1135 * iavf_napi_disable_all - disable NAPI on all queue vectors
   1136 * @adapter: board private structure
   1137 **/
   1138static void iavf_napi_disable_all(struct iavf_adapter *adapter)
   1139{
   1140	int q_idx;
   1141	struct iavf_q_vector *q_vector;
   1142	int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
   1143
   1144	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
   1145		q_vector = &adapter->q_vectors[q_idx];
   1146		napi_disable(&q_vector->napi);
   1147	}
   1148}
   1149
   1150/**
   1151 * iavf_configure - set up transmit and receive data structures
   1152 * @adapter: board private structure
   1153 **/
   1154static void iavf_configure(struct iavf_adapter *adapter)
   1155{
   1156	struct net_device *netdev = adapter->netdev;
   1157	int i;
   1158
   1159	iavf_set_rx_mode(netdev);
   1160
   1161	iavf_configure_tx(adapter);
   1162	iavf_configure_rx(adapter);
   1163	adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
   1164
   1165	for (i = 0; i < adapter->num_active_queues; i++) {
   1166		struct iavf_ring *ring = &adapter->rx_rings[i];
   1167
   1168		iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
   1169	}
   1170}
   1171
   1172/**
   1173 * iavf_up_complete - Finish the last steps of bringing up a connection
   1174 * @adapter: board private structure
   1175 *
   1176 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
   1177 **/
   1178static void iavf_up_complete(struct iavf_adapter *adapter)
   1179{
   1180	iavf_change_state(adapter, __IAVF_RUNNING);
   1181	clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
   1182
   1183	iavf_napi_enable_all(adapter);
   1184
   1185	adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
   1186	if (CLIENT_ENABLED(adapter))
   1187		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
   1188	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
   1189}
   1190
   1191/**
   1192 * iavf_down - Shutdown the connection processing
   1193 * @adapter: board private structure
   1194 *
   1195 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
   1196 **/
   1197void iavf_down(struct iavf_adapter *adapter)
   1198{
   1199	struct net_device *netdev = adapter->netdev;
   1200	struct iavf_vlan_filter *vlf;
   1201	struct iavf_cloud_filter *cf;
   1202	struct iavf_fdir_fltr *fdir;
   1203	struct iavf_mac_filter *f;
   1204	struct iavf_adv_rss *rss;
   1205
   1206	if (adapter->state <= __IAVF_DOWN_PENDING)
   1207		return;
   1208
   1209	netif_carrier_off(netdev);
   1210	netif_tx_disable(netdev);
   1211	adapter->link_up = false;
   1212	iavf_napi_disable_all(adapter);
   1213	iavf_irq_disable(adapter);
   1214
   1215	spin_lock_bh(&adapter->mac_vlan_list_lock);
   1216
   1217	/* clear the sync flag on all filters */
   1218	__dev_uc_unsync(adapter->netdev, NULL);
   1219	__dev_mc_unsync(adapter->netdev, NULL);
   1220
   1221	/* remove all MAC filters */
   1222	list_for_each_entry(f, &adapter->mac_filter_list, list) {
   1223		f->remove = true;
   1224	}
   1225
   1226	/* remove all VLAN filters */
   1227	list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
   1228		vlf->remove = true;
   1229	}
   1230
   1231	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   1232
   1233	/* remove all cloud filters */
   1234	spin_lock_bh(&adapter->cloud_filter_list_lock);
   1235	list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
   1236		cf->del = true;
   1237	}
   1238	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   1239
   1240	/* remove all Flow Director filters */
   1241	spin_lock_bh(&adapter->fdir_fltr_lock);
   1242	list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
   1243		fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
   1244	}
   1245	spin_unlock_bh(&adapter->fdir_fltr_lock);
   1246
   1247	/* remove all advance RSS configuration */
   1248	spin_lock_bh(&adapter->adv_rss_lock);
   1249	list_for_each_entry(rss, &adapter->adv_rss_list_head, list)
   1250		rss->state = IAVF_ADV_RSS_DEL_REQUEST;
   1251	spin_unlock_bh(&adapter->adv_rss_lock);
   1252
   1253	if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)) {
   1254		/* cancel any current operation */
   1255		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
   1256		/* Schedule operations to close down the HW. Don't wait
   1257		 * here for this to complete. The watchdog is still running
   1258		 * and it will take care of this.
   1259		 */
   1260		adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
   1261		adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
   1262		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
   1263		adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
   1264		adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
   1265		adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
   1266	}
   1267
   1268	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
   1269}
   1270
   1271/**
   1272 * iavf_acquire_msix_vectors - Setup the MSIX capability
   1273 * @adapter: board private structure
   1274 * @vectors: number of vectors to request
   1275 *
   1276 * Work with the OS to set up the MSIX vectors needed.
   1277 *
   1278 * Returns 0 on success, negative on failure
   1279 **/
   1280static int
   1281iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
   1282{
   1283	int err, vector_threshold;
   1284
   1285	/* We'll want at least 3 (vector_threshold):
   1286	 * 0) Other (Admin Queue and link, mostly)
   1287	 * 1) TxQ[0] Cleanup
   1288	 * 2) RxQ[0] Cleanup
   1289	 */
   1290	vector_threshold = MIN_MSIX_COUNT;
   1291
   1292	/* The more we get, the more we will assign to Tx/Rx Cleanup
   1293	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
   1294	 * Right now, we simply care about how many we'll get; we'll
   1295	 * set them up later while requesting irq's.
   1296	 */
   1297	err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
   1298				    vector_threshold, vectors);
   1299	if (err < 0) {
   1300		dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
   1301		kfree(adapter->msix_entries);
   1302		adapter->msix_entries = NULL;
   1303		return err;
   1304	}
   1305
   1306	/* Adjust for only the vectors we'll use, which is minimum
   1307	 * of max_msix_q_vectors + NONQ_VECS, or the number of
   1308	 * vectors we were allocated.
   1309	 */
   1310	adapter->num_msix_vectors = err;
   1311	return 0;
   1312}
   1313
   1314/**
   1315 * iavf_free_queues - Free memory for all rings
   1316 * @adapter: board private structure to initialize
   1317 *
   1318 * Free all of the memory associated with queue pairs.
   1319 **/
   1320static void iavf_free_queues(struct iavf_adapter *adapter)
   1321{
   1322	if (!adapter->vsi_res)
   1323		return;
   1324	adapter->num_active_queues = 0;
   1325	kfree(adapter->tx_rings);
   1326	adapter->tx_rings = NULL;
   1327	kfree(adapter->rx_rings);
   1328	adapter->rx_rings = NULL;
   1329}
   1330
   1331/**
   1332 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
   1333 * @adapter: board private structure
   1334 *
   1335 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
   1336 * stripped in certain descriptor fields. Instead of checking the offload
   1337 * capability bits in the hot path, cache the location the ring specific
   1338 * flags.
   1339 */
   1340void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
   1341{
   1342	int i;
   1343
   1344	for (i = 0; i < adapter->num_active_queues; i++) {
   1345		struct iavf_ring *tx_ring = &adapter->tx_rings[i];
   1346		struct iavf_ring *rx_ring = &adapter->rx_rings[i];
   1347
   1348		/* prevent multiple L2TAG bits being set after VFR */
   1349		tx_ring->flags &=
   1350			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
   1351			  IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
   1352		rx_ring->flags &=
   1353			~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
   1354			  IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
   1355
   1356		if (VLAN_ALLOWED(adapter)) {
   1357			tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
   1358			rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
   1359		} else if (VLAN_V2_ALLOWED(adapter)) {
   1360			struct virtchnl_vlan_supported_caps *stripping_support;
   1361			struct virtchnl_vlan_supported_caps *insertion_support;
   1362
   1363			stripping_support =
   1364				&adapter->vlan_v2_caps.offloads.stripping_support;
   1365			insertion_support =
   1366				&adapter->vlan_v2_caps.offloads.insertion_support;
   1367
   1368			if (stripping_support->outer) {
   1369				if (stripping_support->outer &
   1370				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
   1371					rx_ring->flags |=
   1372						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
   1373				else if (stripping_support->outer &
   1374					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
   1375					rx_ring->flags |=
   1376						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
   1377			} else if (stripping_support->inner) {
   1378				if (stripping_support->inner &
   1379				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
   1380					rx_ring->flags |=
   1381						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
   1382				else if (stripping_support->inner &
   1383					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
   1384					rx_ring->flags |=
   1385						IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
   1386			}
   1387
   1388			if (insertion_support->outer) {
   1389				if (insertion_support->outer &
   1390				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
   1391					tx_ring->flags |=
   1392						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
   1393				else if (insertion_support->outer &
   1394					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
   1395					tx_ring->flags |=
   1396						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
   1397			} else if (insertion_support->inner) {
   1398				if (insertion_support->inner &
   1399				    VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
   1400					tx_ring->flags |=
   1401						IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
   1402				else if (insertion_support->inner &
   1403					 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
   1404					tx_ring->flags |=
   1405						IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
   1406			}
   1407		}
   1408	}
   1409}
   1410
   1411/**
   1412 * iavf_alloc_queues - Allocate memory for all rings
   1413 * @adapter: board private structure to initialize
   1414 *
   1415 * We allocate one ring per queue at run-time since we don't know the
   1416 * number of queues at compile-time.  The polling_netdev array is
   1417 * intended for Multiqueue, but should work fine with a single queue.
   1418 **/
   1419static int iavf_alloc_queues(struct iavf_adapter *adapter)
   1420{
   1421	int i, num_active_queues;
   1422
   1423	/* If we're in reset reallocating queues we don't actually know yet for
   1424	 * certain the PF gave us the number of queues we asked for but we'll
   1425	 * assume it did.  Once basic reset is finished we'll confirm once we
   1426	 * start negotiating config with PF.
   1427	 */
   1428	if (adapter->num_req_queues)
   1429		num_active_queues = adapter->num_req_queues;
   1430	else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
   1431		 adapter->num_tc)
   1432		num_active_queues = adapter->ch_config.total_qps;
   1433	else
   1434		num_active_queues = min_t(int,
   1435					  adapter->vsi_res->num_queue_pairs,
   1436					  (int)(num_online_cpus()));
   1437
   1438
   1439	adapter->tx_rings = kcalloc(num_active_queues,
   1440				    sizeof(struct iavf_ring), GFP_KERNEL);
   1441	if (!adapter->tx_rings)
   1442		goto err_out;
   1443	adapter->rx_rings = kcalloc(num_active_queues,
   1444				    sizeof(struct iavf_ring), GFP_KERNEL);
   1445	if (!adapter->rx_rings)
   1446		goto err_out;
   1447
   1448	for (i = 0; i < num_active_queues; i++) {
   1449		struct iavf_ring *tx_ring;
   1450		struct iavf_ring *rx_ring;
   1451
   1452		tx_ring = &adapter->tx_rings[i];
   1453
   1454		tx_ring->queue_index = i;
   1455		tx_ring->netdev = adapter->netdev;
   1456		tx_ring->dev = &adapter->pdev->dev;
   1457		tx_ring->count = adapter->tx_desc_count;
   1458		tx_ring->itr_setting = IAVF_ITR_TX_DEF;
   1459		if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
   1460			tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
   1461
   1462		rx_ring = &adapter->rx_rings[i];
   1463		rx_ring->queue_index = i;
   1464		rx_ring->netdev = adapter->netdev;
   1465		rx_ring->dev = &adapter->pdev->dev;
   1466		rx_ring->count = adapter->rx_desc_count;
   1467		rx_ring->itr_setting = IAVF_ITR_RX_DEF;
   1468	}
   1469
   1470	adapter->num_active_queues = num_active_queues;
   1471
   1472	iavf_set_queue_vlan_tag_loc(adapter);
   1473
   1474	return 0;
   1475
   1476err_out:
   1477	iavf_free_queues(adapter);
   1478	return -ENOMEM;
   1479}
   1480
   1481/**
   1482 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
   1483 * @adapter: board private structure to initialize
   1484 *
   1485 * Attempt to configure the interrupts using the best available
   1486 * capabilities of the hardware and the kernel.
   1487 **/
   1488static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
   1489{
   1490	int vector, v_budget;
   1491	int pairs = 0;
   1492	int err = 0;
   1493
   1494	if (!adapter->vsi_res) {
   1495		err = -EIO;
   1496		goto out;
   1497	}
   1498	pairs = adapter->num_active_queues;
   1499
   1500	/* It's easy to be greedy for MSI-X vectors, but it really doesn't do
   1501	 * us much good if we have more vectors than CPUs. However, we already
   1502	 * limit the total number of queues by the number of CPUs so we do not
   1503	 * need any further limiting here.
   1504	 */
   1505	v_budget = min_t(int, pairs + NONQ_VECS,
   1506			 (int)adapter->vf_res->max_vectors);
   1507
   1508	adapter->msix_entries = kcalloc(v_budget,
   1509					sizeof(struct msix_entry), GFP_KERNEL);
   1510	if (!adapter->msix_entries) {
   1511		err = -ENOMEM;
   1512		goto out;
   1513	}
   1514
   1515	for (vector = 0; vector < v_budget; vector++)
   1516		adapter->msix_entries[vector].entry = vector;
   1517
   1518	err = iavf_acquire_msix_vectors(adapter, v_budget);
   1519
   1520out:
   1521	netif_set_real_num_rx_queues(adapter->netdev, pairs);
   1522	netif_set_real_num_tx_queues(adapter->netdev, pairs);
   1523	return err;
   1524}
   1525
   1526/**
   1527 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
   1528 * @adapter: board private structure
   1529 *
   1530 * Return 0 on success, negative on failure
   1531 **/
   1532static int iavf_config_rss_aq(struct iavf_adapter *adapter)
   1533{
   1534	struct iavf_aqc_get_set_rss_key_data *rss_key =
   1535		(struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
   1536	struct iavf_hw *hw = &adapter->hw;
   1537	enum iavf_status status;
   1538
   1539	if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
   1540		/* bail because we already have a command pending */
   1541		dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
   1542			adapter->current_op);
   1543		return -EBUSY;
   1544	}
   1545
   1546	status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
   1547	if (status) {
   1548		dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
   1549			iavf_stat_str(hw, status),
   1550			iavf_aq_str(hw, hw->aq.asq_last_status));
   1551		return iavf_status_to_errno(status);
   1552
   1553	}
   1554
   1555	status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
   1556				     adapter->rss_lut, adapter->rss_lut_size);
   1557	if (status) {
   1558		dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
   1559			iavf_stat_str(hw, status),
   1560			iavf_aq_str(hw, hw->aq.asq_last_status));
   1561		return iavf_status_to_errno(status);
   1562	}
   1563
   1564	return 0;
   1565
   1566}
   1567
   1568/**
   1569 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
   1570 * @adapter: board private structure
   1571 *
   1572 * Returns 0 on success, negative on failure
   1573 **/
   1574static int iavf_config_rss_reg(struct iavf_adapter *adapter)
   1575{
   1576	struct iavf_hw *hw = &adapter->hw;
   1577	u32 *dw;
   1578	u16 i;
   1579
   1580	dw = (u32 *)adapter->rss_key;
   1581	for (i = 0; i <= adapter->rss_key_size / 4; i++)
   1582		wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
   1583
   1584	dw = (u32 *)adapter->rss_lut;
   1585	for (i = 0; i <= adapter->rss_lut_size / 4; i++)
   1586		wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
   1587
   1588	iavf_flush(hw);
   1589
   1590	return 0;
   1591}
   1592
   1593/**
   1594 * iavf_config_rss - Configure RSS keys and lut
   1595 * @adapter: board private structure
   1596 *
   1597 * Returns 0 on success, negative on failure
   1598 **/
   1599int iavf_config_rss(struct iavf_adapter *adapter)
   1600{
   1601
   1602	if (RSS_PF(adapter)) {
   1603		adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
   1604					IAVF_FLAG_AQ_SET_RSS_KEY;
   1605		return 0;
   1606	} else if (RSS_AQ(adapter)) {
   1607		return iavf_config_rss_aq(adapter);
   1608	} else {
   1609		return iavf_config_rss_reg(adapter);
   1610	}
   1611}
   1612
   1613/**
   1614 * iavf_fill_rss_lut - Fill the lut with default values
   1615 * @adapter: board private structure
   1616 **/
   1617static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
   1618{
   1619	u16 i;
   1620
   1621	for (i = 0; i < adapter->rss_lut_size; i++)
   1622		adapter->rss_lut[i] = i % adapter->num_active_queues;
   1623}
   1624
   1625/**
   1626 * iavf_init_rss - Prepare for RSS
   1627 * @adapter: board private structure
   1628 *
   1629 * Return 0 on success, negative on failure
   1630 **/
   1631static int iavf_init_rss(struct iavf_adapter *adapter)
   1632{
   1633	struct iavf_hw *hw = &adapter->hw;
   1634
   1635	if (!RSS_PF(adapter)) {
   1636		/* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
   1637		if (adapter->vf_res->vf_cap_flags &
   1638		    VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
   1639			adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
   1640		else
   1641			adapter->hena = IAVF_DEFAULT_RSS_HENA;
   1642
   1643		wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
   1644		wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
   1645	}
   1646
   1647	iavf_fill_rss_lut(adapter);
   1648	netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
   1649
   1650	return iavf_config_rss(adapter);
   1651}
   1652
   1653/**
   1654 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
   1655 * @adapter: board private structure to initialize
   1656 *
   1657 * We allocate one q_vector per queue interrupt.  If allocation fails we
   1658 * return -ENOMEM.
   1659 **/
   1660static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
   1661{
   1662	int q_idx = 0, num_q_vectors;
   1663	struct iavf_q_vector *q_vector;
   1664
   1665	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
   1666	adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
   1667				     GFP_KERNEL);
   1668	if (!adapter->q_vectors)
   1669		return -ENOMEM;
   1670
   1671	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
   1672		q_vector = &adapter->q_vectors[q_idx];
   1673		q_vector->adapter = adapter;
   1674		q_vector->vsi = &adapter->vsi;
   1675		q_vector->v_idx = q_idx;
   1676		q_vector->reg_idx = q_idx;
   1677		cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
   1678		netif_napi_add(adapter->netdev, &q_vector->napi,
   1679			       iavf_napi_poll, NAPI_POLL_WEIGHT);
   1680	}
   1681
   1682	return 0;
   1683}
   1684
   1685/**
   1686 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
   1687 * @adapter: board private structure to initialize
   1688 *
   1689 * This function frees the memory allocated to the q_vectors.  In addition if
   1690 * NAPI is enabled it will delete any references to the NAPI struct prior
   1691 * to freeing the q_vector.
   1692 **/
   1693static void iavf_free_q_vectors(struct iavf_adapter *adapter)
   1694{
   1695	int q_idx, num_q_vectors;
   1696	int napi_vectors;
   1697
   1698	if (!adapter->q_vectors)
   1699		return;
   1700
   1701	num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
   1702	napi_vectors = adapter->num_active_queues;
   1703
   1704	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
   1705		struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
   1706
   1707		if (q_idx < napi_vectors)
   1708			netif_napi_del(&q_vector->napi);
   1709	}
   1710	kfree(adapter->q_vectors);
   1711	adapter->q_vectors = NULL;
   1712}
   1713
   1714/**
   1715 * iavf_reset_interrupt_capability - Reset MSIX setup
   1716 * @adapter: board private structure
   1717 *
   1718 **/
   1719void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
   1720{
   1721	if (!adapter->msix_entries)
   1722		return;
   1723
   1724	pci_disable_msix(adapter->pdev);
   1725	kfree(adapter->msix_entries);
   1726	adapter->msix_entries = NULL;
   1727}
   1728
   1729/**
   1730 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
   1731 * @adapter: board private structure to initialize
   1732 *
   1733 **/
   1734int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
   1735{
   1736	int err;
   1737
   1738	err = iavf_alloc_queues(adapter);
   1739	if (err) {
   1740		dev_err(&adapter->pdev->dev,
   1741			"Unable to allocate memory for queues\n");
   1742		goto err_alloc_queues;
   1743	}
   1744
   1745	rtnl_lock();
   1746	err = iavf_set_interrupt_capability(adapter);
   1747	rtnl_unlock();
   1748	if (err) {
   1749		dev_err(&adapter->pdev->dev,
   1750			"Unable to setup interrupt capabilities\n");
   1751		goto err_set_interrupt;
   1752	}
   1753
   1754	err = iavf_alloc_q_vectors(adapter);
   1755	if (err) {
   1756		dev_err(&adapter->pdev->dev,
   1757			"Unable to allocate memory for queue vectors\n");
   1758		goto err_alloc_q_vectors;
   1759	}
   1760
   1761	/* If we've made it so far while ADq flag being ON, then we haven't
   1762	 * bailed out anywhere in middle. And ADq isn't just enabled but actual
   1763	 * resources have been allocated in the reset path.
   1764	 * Now we can truly claim that ADq is enabled.
   1765	 */
   1766	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
   1767	    adapter->num_tc)
   1768		dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
   1769			 adapter->num_tc);
   1770
   1771	dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
   1772		 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
   1773		 adapter->num_active_queues);
   1774
   1775	return 0;
   1776err_alloc_q_vectors:
   1777	iavf_reset_interrupt_capability(adapter);
   1778err_set_interrupt:
   1779	iavf_free_queues(adapter);
   1780err_alloc_queues:
   1781	return err;
   1782}
   1783
   1784/**
   1785 * iavf_free_rss - Free memory used by RSS structs
   1786 * @adapter: board private structure
   1787 **/
   1788static void iavf_free_rss(struct iavf_adapter *adapter)
   1789{
   1790	kfree(adapter->rss_key);
   1791	adapter->rss_key = NULL;
   1792
   1793	kfree(adapter->rss_lut);
   1794	adapter->rss_lut = NULL;
   1795}
   1796
   1797/**
   1798 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
   1799 * @adapter: board private structure
   1800 *
   1801 * Returns 0 on success, negative on failure
   1802 **/
   1803static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
   1804{
   1805	struct net_device *netdev = adapter->netdev;
   1806	int err;
   1807
   1808	if (netif_running(netdev))
   1809		iavf_free_traffic_irqs(adapter);
   1810	iavf_free_misc_irq(adapter);
   1811	iavf_reset_interrupt_capability(adapter);
   1812	iavf_free_q_vectors(adapter);
   1813	iavf_free_queues(adapter);
   1814
   1815	err =  iavf_init_interrupt_scheme(adapter);
   1816	if (err)
   1817		goto err;
   1818
   1819	netif_tx_stop_all_queues(netdev);
   1820
   1821	err = iavf_request_misc_irq(adapter);
   1822	if (err)
   1823		goto err;
   1824
   1825	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
   1826
   1827	iavf_map_rings_to_vectors(adapter);
   1828err:
   1829	return err;
   1830}
   1831
   1832/**
   1833 * iavf_process_aq_command - process aq_required flags
   1834 * and sends aq command
   1835 * @adapter: pointer to iavf adapter structure
   1836 *
   1837 * Returns 0 on success
   1838 * Returns error code if no command was sent
   1839 * or error code if the command failed.
   1840 **/
   1841static int iavf_process_aq_command(struct iavf_adapter *adapter)
   1842{
   1843	if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
   1844		return iavf_send_vf_config_msg(adapter);
   1845	if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
   1846		return iavf_send_vf_offload_vlan_v2_msg(adapter);
   1847	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
   1848		iavf_disable_queues(adapter);
   1849		return 0;
   1850	}
   1851
   1852	if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
   1853		iavf_map_queues(adapter);
   1854		return 0;
   1855	}
   1856
   1857	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
   1858		iavf_add_ether_addrs(adapter);
   1859		return 0;
   1860	}
   1861
   1862	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
   1863		iavf_add_vlans(adapter);
   1864		return 0;
   1865	}
   1866
   1867	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
   1868		iavf_del_ether_addrs(adapter);
   1869		return 0;
   1870	}
   1871
   1872	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
   1873		iavf_del_vlans(adapter);
   1874		return 0;
   1875	}
   1876
   1877	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
   1878		iavf_enable_vlan_stripping(adapter);
   1879		return 0;
   1880	}
   1881
   1882	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
   1883		iavf_disable_vlan_stripping(adapter);
   1884		return 0;
   1885	}
   1886
   1887	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
   1888		iavf_configure_queues(adapter);
   1889		return 0;
   1890	}
   1891
   1892	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
   1893		iavf_enable_queues(adapter);
   1894		return 0;
   1895	}
   1896
   1897	if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
   1898		/* This message goes straight to the firmware, not the
   1899		 * PF, so we don't have to set current_op as we will
   1900		 * not get a response through the ARQ.
   1901		 */
   1902		adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
   1903		return 0;
   1904	}
   1905	if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
   1906		iavf_get_hena(adapter);
   1907		return 0;
   1908	}
   1909	if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
   1910		iavf_set_hena(adapter);
   1911		return 0;
   1912	}
   1913	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
   1914		iavf_set_rss_key(adapter);
   1915		return 0;
   1916	}
   1917	if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
   1918		iavf_set_rss_lut(adapter);
   1919		return 0;
   1920	}
   1921
   1922	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
   1923		iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
   1924				       FLAG_VF_MULTICAST_PROMISC);
   1925		return 0;
   1926	}
   1927
   1928	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
   1929		iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
   1930		return 0;
   1931	}
   1932	if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) ||
   1933	    (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
   1934		iavf_set_promiscuous(adapter, 0);
   1935		return 0;
   1936	}
   1937
   1938	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
   1939		iavf_enable_channels(adapter);
   1940		return 0;
   1941	}
   1942
   1943	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
   1944		iavf_disable_channels(adapter);
   1945		return 0;
   1946	}
   1947	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
   1948		iavf_add_cloud_filter(adapter);
   1949		return 0;
   1950	}
   1951
   1952	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
   1953		iavf_del_cloud_filter(adapter);
   1954		return 0;
   1955	}
   1956	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
   1957		iavf_del_cloud_filter(adapter);
   1958		return 0;
   1959	}
   1960	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
   1961		iavf_add_cloud_filter(adapter);
   1962		return 0;
   1963	}
   1964	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
   1965		iavf_add_fdir_filter(adapter);
   1966		return IAVF_SUCCESS;
   1967	}
   1968	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
   1969		iavf_del_fdir_filter(adapter);
   1970		return IAVF_SUCCESS;
   1971	}
   1972	if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
   1973		iavf_add_adv_rss_cfg(adapter);
   1974		return 0;
   1975	}
   1976	if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
   1977		iavf_del_adv_rss_cfg(adapter);
   1978		return 0;
   1979	}
   1980	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
   1981		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
   1982		return 0;
   1983	}
   1984	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
   1985		iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
   1986		return 0;
   1987	}
   1988	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
   1989		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
   1990		return 0;
   1991	}
   1992	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
   1993		iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
   1994		return 0;
   1995	}
   1996	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
   1997		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
   1998		return 0;
   1999	}
   2000	if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
   2001		iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
   2002		return 0;
   2003	}
   2004	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
   2005		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
   2006		return 0;
   2007	}
   2008	if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
   2009		iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
   2010		return 0;
   2011	}
   2012
   2013	if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
   2014		iavf_request_stats(adapter);
   2015		return 0;
   2016	}
   2017
   2018	return -EAGAIN;
   2019}
   2020
   2021/**
   2022 * iavf_set_vlan_offload_features - set VLAN offload configuration
   2023 * @adapter: board private structure
   2024 * @prev_features: previous features used for comparison
   2025 * @features: updated features used for configuration
   2026 *
   2027 * Set the aq_required bit(s) based on the requested features passed in to
   2028 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
   2029 * the watchdog if any changes are requested to expedite the request via
   2030 * virtchnl.
   2031 **/
   2032void
   2033iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
   2034			       netdev_features_t prev_features,
   2035			       netdev_features_t features)
   2036{
   2037	bool enable_stripping = true, enable_insertion = true;
   2038	u16 vlan_ethertype = 0;
   2039	u64 aq_required = 0;
   2040
   2041	/* keep cases separate because one ethertype for offloads can be
   2042	 * disabled at the same time as another is disabled, so check for an
   2043	 * enabled ethertype first, then check for disabled. Default to
   2044	 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
   2045	 * stripping.
   2046	 */
   2047	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
   2048		vlan_ethertype = ETH_P_8021AD;
   2049	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
   2050		vlan_ethertype = ETH_P_8021Q;
   2051	else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
   2052		vlan_ethertype = ETH_P_8021AD;
   2053	else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
   2054		vlan_ethertype = ETH_P_8021Q;
   2055	else
   2056		vlan_ethertype = ETH_P_8021Q;
   2057
   2058	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
   2059		enable_stripping = false;
   2060	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
   2061		enable_insertion = false;
   2062
   2063	if (VLAN_ALLOWED(adapter)) {
   2064		/* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
   2065		 * stripping via virtchnl. VLAN insertion can be toggled on the
   2066		 * netdev, but it doesn't require a virtchnl message
   2067		 */
   2068		if (enable_stripping)
   2069			aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
   2070		else
   2071			aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
   2072
   2073	} else if (VLAN_V2_ALLOWED(adapter)) {
   2074		switch (vlan_ethertype) {
   2075		case ETH_P_8021Q:
   2076			if (enable_stripping)
   2077				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
   2078			else
   2079				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
   2080
   2081			if (enable_insertion)
   2082				aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
   2083			else
   2084				aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
   2085			break;
   2086		case ETH_P_8021AD:
   2087			if (enable_stripping)
   2088				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
   2089			else
   2090				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
   2091
   2092			if (enable_insertion)
   2093				aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
   2094			else
   2095				aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
   2096			break;
   2097		}
   2098	}
   2099
   2100	if (aq_required) {
   2101		adapter->aq_required |= aq_required;
   2102		mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
   2103	}
   2104}
   2105
   2106/**
   2107 * iavf_startup - first step of driver startup
   2108 * @adapter: board private structure
   2109 *
   2110 * Function process __IAVF_STARTUP driver state.
   2111 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
   2112 * when fails the state is changed to __IAVF_INIT_FAILED
   2113 **/
   2114static void iavf_startup(struct iavf_adapter *adapter)
   2115{
   2116	struct pci_dev *pdev = adapter->pdev;
   2117	struct iavf_hw *hw = &adapter->hw;
   2118	enum iavf_status status;
   2119	int ret;
   2120
   2121	WARN_ON(adapter->state != __IAVF_STARTUP);
   2122
   2123	/* driver loaded, probe complete */
   2124	adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
   2125	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
   2126	status = iavf_set_mac_type(hw);
   2127	if (status) {
   2128		dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
   2129		goto err;
   2130	}
   2131
   2132	ret = iavf_check_reset_complete(hw);
   2133	if (ret) {
   2134		dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
   2135			 ret);
   2136		goto err;
   2137	}
   2138	hw->aq.num_arq_entries = IAVF_AQ_LEN;
   2139	hw->aq.num_asq_entries = IAVF_AQ_LEN;
   2140	hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
   2141	hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
   2142
   2143	status = iavf_init_adminq(hw);
   2144	if (status) {
   2145		dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
   2146			status);
   2147		goto err;
   2148	}
   2149	ret = iavf_send_api_ver(adapter);
   2150	if (ret) {
   2151		dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
   2152		iavf_shutdown_adminq(hw);
   2153		goto err;
   2154	}
   2155	iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
   2156	return;
   2157err:
   2158	iavf_change_state(adapter, __IAVF_INIT_FAILED);
   2159}
   2160
   2161/**
   2162 * iavf_init_version_check - second step of driver startup
   2163 * @adapter: board private structure
   2164 *
   2165 * Function process __IAVF_INIT_VERSION_CHECK driver state.
   2166 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
   2167 * when fails the state is changed to __IAVF_INIT_FAILED
   2168 **/
   2169static void iavf_init_version_check(struct iavf_adapter *adapter)
   2170{
   2171	struct pci_dev *pdev = adapter->pdev;
   2172	struct iavf_hw *hw = &adapter->hw;
   2173	int err = -EAGAIN;
   2174
   2175	WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
   2176
   2177	if (!iavf_asq_done(hw)) {
   2178		dev_err(&pdev->dev, "Admin queue command never completed\n");
   2179		iavf_shutdown_adminq(hw);
   2180		iavf_change_state(adapter, __IAVF_STARTUP);
   2181		goto err;
   2182	}
   2183
   2184	/* aq msg sent, awaiting reply */
   2185	err = iavf_verify_api_ver(adapter);
   2186	if (err) {
   2187		if (err == -EALREADY)
   2188			err = iavf_send_api_ver(adapter);
   2189		else
   2190			dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
   2191				adapter->pf_version.major,
   2192				adapter->pf_version.minor,
   2193				VIRTCHNL_VERSION_MAJOR,
   2194				VIRTCHNL_VERSION_MINOR);
   2195		goto err;
   2196	}
   2197	err = iavf_send_vf_config_msg(adapter);
   2198	if (err) {
   2199		dev_err(&pdev->dev, "Unable to send config request (%d)\n",
   2200			err);
   2201		goto err;
   2202	}
   2203	iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
   2204	return;
   2205err:
   2206	iavf_change_state(adapter, __IAVF_INIT_FAILED);
   2207}
   2208
   2209/**
   2210 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
   2211 * @adapter: board private structure
   2212 */
   2213int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
   2214{
   2215	int i, num_req_queues = adapter->num_req_queues;
   2216	struct iavf_vsi *vsi = &adapter->vsi;
   2217
   2218	for (i = 0; i < adapter->vf_res->num_vsis; i++) {
   2219		if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
   2220			adapter->vsi_res = &adapter->vf_res->vsi_res[i];
   2221	}
   2222	if (!adapter->vsi_res) {
   2223		dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
   2224		return -ENODEV;
   2225	}
   2226
   2227	if (num_req_queues &&
   2228	    num_req_queues > adapter->vsi_res->num_queue_pairs) {
   2229		/* Problem.  The PF gave us fewer queues than what we had
   2230		 * negotiated in our request.  Need a reset to see if we can't
   2231		 * get back to a working state.
   2232		 */
   2233		dev_err(&adapter->pdev->dev,
   2234			"Requested %d queues, but PF only gave us %d.\n",
   2235			num_req_queues,
   2236			adapter->vsi_res->num_queue_pairs);
   2237		adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
   2238		adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
   2239		iavf_schedule_reset(adapter);
   2240
   2241		return -EAGAIN;
   2242	}
   2243	adapter->num_req_queues = 0;
   2244	adapter->vsi.id = adapter->vsi_res->vsi_id;
   2245
   2246	adapter->vsi.back = adapter;
   2247	adapter->vsi.base_vector = 1;
   2248	adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
   2249	vsi->netdev = adapter->netdev;
   2250	vsi->qs_handle = adapter->vsi_res->qset_handle;
   2251	if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
   2252		adapter->rss_key_size = adapter->vf_res->rss_key_size;
   2253		adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
   2254	} else {
   2255		adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
   2256		adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
   2257	}
   2258
   2259	return 0;
   2260}
   2261
   2262/**
   2263 * iavf_init_get_resources - third step of driver startup
   2264 * @adapter: board private structure
   2265 *
   2266 * Function process __IAVF_INIT_GET_RESOURCES driver state and
   2267 * finishes driver initialization procedure.
   2268 * When success the state is changed to __IAVF_DOWN
   2269 * when fails the state is changed to __IAVF_INIT_FAILED
   2270 **/
   2271static void iavf_init_get_resources(struct iavf_adapter *adapter)
   2272{
   2273	struct pci_dev *pdev = adapter->pdev;
   2274	struct iavf_hw *hw = &adapter->hw;
   2275	int err;
   2276
   2277	WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
   2278	/* aq msg sent, awaiting reply */
   2279	if (!adapter->vf_res) {
   2280		adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
   2281					  GFP_KERNEL);
   2282		if (!adapter->vf_res) {
   2283			err = -ENOMEM;
   2284			goto err;
   2285		}
   2286	}
   2287	err = iavf_get_vf_config(adapter);
   2288	if (err == -EALREADY) {
   2289		err = iavf_send_vf_config_msg(adapter);
   2290		goto err_alloc;
   2291	} else if (err == -EINVAL) {
   2292		/* We only get -EINVAL if the device is in a very bad
   2293		 * state or if we've been disabled for previous bad
   2294		 * behavior. Either way, we're done now.
   2295		 */
   2296		iavf_shutdown_adminq(hw);
   2297		dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
   2298		return;
   2299	}
   2300	if (err) {
   2301		dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
   2302		goto err_alloc;
   2303	}
   2304
   2305	err = iavf_parse_vf_resource_msg(adapter);
   2306	if (err) {
   2307		dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
   2308			err);
   2309		goto err_alloc;
   2310	}
   2311	/* Some features require additional messages to negotiate extended
   2312	 * capabilities. These are processed in sequence by the
   2313	 * __IAVF_INIT_EXTENDED_CAPS driver state.
   2314	 */
   2315	adapter->extended_caps = IAVF_EXTENDED_CAPS;
   2316
   2317	iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
   2318	return;
   2319
   2320err_alloc:
   2321	kfree(adapter->vf_res);
   2322	adapter->vf_res = NULL;
   2323err:
   2324	iavf_change_state(adapter, __IAVF_INIT_FAILED);
   2325}
   2326
   2327/**
   2328 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
   2329 * @adapter: board private structure
   2330 *
   2331 * Function processes send of the extended VLAN V2 capability message to the
   2332 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
   2333 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
   2334 */
   2335static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
   2336{
   2337	int ret;
   2338
   2339	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
   2340
   2341	ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
   2342	if (ret && ret == -EOPNOTSUPP) {
   2343		/* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
   2344		 * we did not send the capability exchange message and do not
   2345		 * expect a response.
   2346		 */
   2347		adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
   2348	}
   2349
   2350	/* We sent the message, so move on to the next step */
   2351	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
   2352}
   2353
   2354/**
   2355 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
   2356 * @adapter: board private structure
   2357 *
   2358 * Function processes receipt of the extended VLAN V2 capability message from
   2359 * the PF.
   2360 **/
   2361static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
   2362{
   2363	int ret;
   2364
   2365	WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
   2366
   2367	memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
   2368
   2369	ret = iavf_get_vf_vlan_v2_caps(adapter);
   2370	if (ret)
   2371		goto err;
   2372
   2373	/* We've processed receipt of the VLAN V2 caps message */
   2374	adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
   2375	return;
   2376err:
   2377	/* We didn't receive a reply. Make sure we try sending again when
   2378	 * __IAVF_INIT_FAILED attempts to recover.
   2379	 */
   2380	adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
   2381	iavf_change_state(adapter, __IAVF_INIT_FAILED);
   2382}
   2383
   2384/**
   2385 * iavf_init_process_extended_caps - Part of driver startup
   2386 * @adapter: board private structure
   2387 *
   2388 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
   2389 * handles negotiating capabilities for features which require an additional
   2390 * message.
   2391 *
   2392 * Once all extended capabilities exchanges are finished, the driver will
   2393 * transition into __IAVF_INIT_CONFIG_ADAPTER.
   2394 */
   2395static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
   2396{
   2397	WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
   2398
   2399	/* Process capability exchange for VLAN V2 */
   2400	if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
   2401		iavf_init_send_offload_vlan_v2_caps(adapter);
   2402		return;
   2403	} else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
   2404		iavf_init_recv_offload_vlan_v2_caps(adapter);
   2405		return;
   2406	}
   2407
   2408	/* When we reach here, no further extended capabilities exchanges are
   2409	 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
   2410	 */
   2411	iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
   2412}
   2413
   2414/**
   2415 * iavf_init_config_adapter - last part of driver startup
   2416 * @adapter: board private structure
   2417 *
   2418 * After all the supported capabilities are negotiated, then the
   2419 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
   2420 */
   2421static void iavf_init_config_adapter(struct iavf_adapter *adapter)
   2422{
   2423	struct net_device *netdev = adapter->netdev;
   2424	struct pci_dev *pdev = adapter->pdev;
   2425	int err;
   2426
   2427	WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
   2428
   2429	if (iavf_process_config(adapter))
   2430		goto err;
   2431
   2432	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
   2433
   2434	adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
   2435
   2436	netdev->netdev_ops = &iavf_netdev_ops;
   2437	iavf_set_ethtool_ops(netdev);
   2438	netdev->watchdog_timeo = 5 * HZ;
   2439
   2440	/* MTU range: 68 - 9710 */
   2441	netdev->min_mtu = ETH_MIN_MTU;
   2442	netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
   2443
   2444	if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
   2445		dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
   2446			 adapter->hw.mac.addr);
   2447		eth_hw_addr_random(netdev);
   2448		ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
   2449	} else {
   2450		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
   2451		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
   2452	}
   2453
   2454	adapter->tx_desc_count = IAVF_DEFAULT_TXD;
   2455	adapter->rx_desc_count = IAVF_DEFAULT_RXD;
   2456	err = iavf_init_interrupt_scheme(adapter);
   2457	if (err)
   2458		goto err_sw_init;
   2459	iavf_map_rings_to_vectors(adapter);
   2460	if (adapter->vf_res->vf_cap_flags &
   2461		VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
   2462		adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
   2463
   2464	err = iavf_request_misc_irq(adapter);
   2465	if (err)
   2466		goto err_sw_init;
   2467
   2468	netif_carrier_off(netdev);
   2469	adapter->link_up = false;
   2470
   2471	/* set the semaphore to prevent any callbacks after device registration
   2472	 * up to time when state of driver will be set to __IAVF_DOWN
   2473	 */
   2474	rtnl_lock();
   2475	if (!adapter->netdev_registered) {
   2476		err = register_netdevice(netdev);
   2477		if (err) {
   2478			rtnl_unlock();
   2479			goto err_register;
   2480		}
   2481	}
   2482
   2483	adapter->netdev_registered = true;
   2484
   2485	netif_tx_stop_all_queues(netdev);
   2486	if (CLIENT_ALLOWED(adapter)) {
   2487		err = iavf_lan_add_device(adapter);
   2488		if (err)
   2489			dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
   2490				 err);
   2491	}
   2492	dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
   2493	if (netdev->features & NETIF_F_GRO)
   2494		dev_info(&pdev->dev, "GRO is enabled\n");
   2495
   2496	iavf_change_state(adapter, __IAVF_DOWN);
   2497	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
   2498	rtnl_unlock();
   2499
   2500	iavf_misc_irq_enable(adapter);
   2501	wake_up(&adapter->down_waitqueue);
   2502
   2503	adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
   2504	adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
   2505	if (!adapter->rss_key || !adapter->rss_lut) {
   2506		err = -ENOMEM;
   2507		goto err_mem;
   2508	}
   2509	if (RSS_AQ(adapter))
   2510		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
   2511	else
   2512		iavf_init_rss(adapter);
   2513
   2514	if (VLAN_V2_ALLOWED(adapter))
   2515		/* request initial VLAN offload settings */
   2516		iavf_set_vlan_offload_features(adapter, 0, netdev->features);
   2517
   2518	return;
   2519err_mem:
   2520	iavf_free_rss(adapter);
   2521err_register:
   2522	iavf_free_misc_irq(adapter);
   2523err_sw_init:
   2524	iavf_reset_interrupt_capability(adapter);
   2525err:
   2526	iavf_change_state(adapter, __IAVF_INIT_FAILED);
   2527}
   2528
   2529/**
   2530 * iavf_watchdog_task - Periodic call-back task
   2531 * @work: pointer to work_struct
   2532 **/
   2533static void iavf_watchdog_task(struct work_struct *work)
   2534{
   2535	struct iavf_adapter *adapter = container_of(work,
   2536						    struct iavf_adapter,
   2537						    watchdog_task.work);
   2538	struct iavf_hw *hw = &adapter->hw;
   2539	u32 reg_val;
   2540
   2541	if (!mutex_trylock(&adapter->crit_lock)) {
   2542		if (adapter->state == __IAVF_REMOVE)
   2543			return;
   2544
   2545		goto restart_watchdog;
   2546	}
   2547
   2548	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
   2549		iavf_change_state(adapter, __IAVF_COMM_FAILED);
   2550
   2551	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
   2552		adapter->aq_required = 0;
   2553		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
   2554		mutex_unlock(&adapter->crit_lock);
   2555		queue_work(iavf_wq, &adapter->reset_task);
   2556		return;
   2557	}
   2558
   2559	switch (adapter->state) {
   2560	case __IAVF_STARTUP:
   2561		iavf_startup(adapter);
   2562		mutex_unlock(&adapter->crit_lock);
   2563		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   2564				   msecs_to_jiffies(30));
   2565		return;
   2566	case __IAVF_INIT_VERSION_CHECK:
   2567		iavf_init_version_check(adapter);
   2568		mutex_unlock(&adapter->crit_lock);
   2569		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   2570				   msecs_to_jiffies(30));
   2571		return;
   2572	case __IAVF_INIT_GET_RESOURCES:
   2573		iavf_init_get_resources(adapter);
   2574		mutex_unlock(&adapter->crit_lock);
   2575		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   2576				   msecs_to_jiffies(1));
   2577		return;
   2578	case __IAVF_INIT_EXTENDED_CAPS:
   2579		iavf_init_process_extended_caps(adapter);
   2580		mutex_unlock(&adapter->crit_lock);
   2581		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   2582				   msecs_to_jiffies(1));
   2583		return;
   2584	case __IAVF_INIT_CONFIG_ADAPTER:
   2585		iavf_init_config_adapter(adapter);
   2586		mutex_unlock(&adapter->crit_lock);
   2587		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   2588				   msecs_to_jiffies(1));
   2589		return;
   2590	case __IAVF_INIT_FAILED:
   2591		if (test_bit(__IAVF_IN_REMOVE_TASK,
   2592			     &adapter->crit_section)) {
   2593			/* Do not update the state and do not reschedule
   2594			 * watchdog task, iavf_remove should handle this state
   2595			 * as it can loop forever
   2596			 */
   2597			mutex_unlock(&adapter->crit_lock);
   2598			return;
   2599		}
   2600		if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
   2601			dev_err(&adapter->pdev->dev,
   2602				"Failed to communicate with PF; waiting before retry\n");
   2603			adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
   2604			iavf_shutdown_adminq(hw);
   2605			mutex_unlock(&adapter->crit_lock);
   2606			queue_delayed_work(iavf_wq,
   2607					   &adapter->watchdog_task, (5 * HZ));
   2608			return;
   2609		}
   2610		/* Try again from failed step*/
   2611		iavf_change_state(adapter, adapter->last_state);
   2612		mutex_unlock(&adapter->crit_lock);
   2613		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ);
   2614		return;
   2615	case __IAVF_COMM_FAILED:
   2616		if (test_bit(__IAVF_IN_REMOVE_TASK,
   2617			     &adapter->crit_section)) {
   2618			/* Set state to __IAVF_INIT_FAILED and perform remove
   2619			 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
   2620			 * doesn't bring the state back to __IAVF_COMM_FAILED.
   2621			 */
   2622			iavf_change_state(adapter, __IAVF_INIT_FAILED);
   2623			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
   2624			mutex_unlock(&adapter->crit_lock);
   2625			return;
   2626		}
   2627		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
   2628			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
   2629		if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
   2630		    reg_val == VIRTCHNL_VFR_COMPLETED) {
   2631			/* A chance for redemption! */
   2632			dev_err(&adapter->pdev->dev,
   2633				"Hardware came out of reset. Attempting reinit.\n");
   2634			/* When init task contacts the PF and
   2635			 * gets everything set up again, it'll restart the
   2636			 * watchdog for us. Down, boy. Sit. Stay. Woof.
   2637			 */
   2638			iavf_change_state(adapter, __IAVF_STARTUP);
   2639			adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
   2640		}
   2641		adapter->aq_required = 0;
   2642		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
   2643		mutex_unlock(&adapter->crit_lock);
   2644		queue_delayed_work(iavf_wq,
   2645				   &adapter->watchdog_task,
   2646				   msecs_to_jiffies(10));
   2647		return;
   2648	case __IAVF_RESETTING:
   2649		mutex_unlock(&adapter->crit_lock);
   2650		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
   2651		return;
   2652	case __IAVF_DOWN:
   2653	case __IAVF_DOWN_PENDING:
   2654	case __IAVF_TESTING:
   2655	case __IAVF_RUNNING:
   2656		if (adapter->current_op) {
   2657			if (!iavf_asq_done(hw)) {
   2658				dev_dbg(&adapter->pdev->dev,
   2659					"Admin queue timeout\n");
   2660				iavf_send_api_ver(adapter);
   2661			}
   2662		} else {
   2663			int ret = iavf_process_aq_command(adapter);
   2664
   2665			/* An error will be returned if no commands were
   2666			 * processed; use this opportunity to update stats
   2667			 * if the error isn't -ENOTSUPP
   2668			 */
   2669			if (ret && ret != -EOPNOTSUPP &&
   2670			    adapter->state == __IAVF_RUNNING)
   2671				iavf_request_stats(adapter);
   2672		}
   2673		if (adapter->state == __IAVF_RUNNING)
   2674			iavf_detect_recover_hung(&adapter->vsi);
   2675		break;
   2676	case __IAVF_REMOVE:
   2677	default:
   2678		mutex_unlock(&adapter->crit_lock);
   2679		return;
   2680	}
   2681
   2682	/* check for hw reset */
   2683	reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
   2684	if (!reg_val) {
   2685		adapter->flags |= IAVF_FLAG_RESET_PENDING;
   2686		adapter->aq_required = 0;
   2687		adapter->current_op = VIRTCHNL_OP_UNKNOWN;
   2688		dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
   2689		queue_work(iavf_wq, &adapter->reset_task);
   2690		mutex_unlock(&adapter->crit_lock);
   2691		queue_delayed_work(iavf_wq,
   2692				   &adapter->watchdog_task, HZ * 2);
   2693		return;
   2694	}
   2695
   2696	schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
   2697	mutex_unlock(&adapter->crit_lock);
   2698restart_watchdog:
   2699	if (adapter->state >= __IAVF_DOWN)
   2700		queue_work(iavf_wq, &adapter->adminq_task);
   2701	if (adapter->aq_required)
   2702		queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   2703				   msecs_to_jiffies(20));
   2704	else
   2705		queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
   2706}
   2707
   2708/**
   2709 * iavf_disable_vf - disable VF
   2710 * @adapter: board private structure
   2711 *
   2712 * Set communication failed flag and free all resources.
   2713 * NOTE: This function is expected to be called with crit_lock being held.
   2714 **/
   2715static void iavf_disable_vf(struct iavf_adapter *adapter)
   2716{
   2717	struct iavf_mac_filter *f, *ftmp;
   2718	struct iavf_vlan_filter *fv, *fvtmp;
   2719	struct iavf_cloud_filter *cf, *cftmp;
   2720
   2721	adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
   2722
   2723	/* We don't use netif_running() because it may be true prior to
   2724	 * ndo_open() returning, so we can't assume it means all our open
   2725	 * tasks have finished, since we're not holding the rtnl_lock here.
   2726	 */
   2727	if (adapter->state == __IAVF_RUNNING) {
   2728		set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
   2729		netif_carrier_off(adapter->netdev);
   2730		netif_tx_disable(adapter->netdev);
   2731		adapter->link_up = false;
   2732		iavf_napi_disable_all(adapter);
   2733		iavf_irq_disable(adapter);
   2734		iavf_free_traffic_irqs(adapter);
   2735		iavf_free_all_tx_resources(adapter);
   2736		iavf_free_all_rx_resources(adapter);
   2737	}
   2738
   2739	spin_lock_bh(&adapter->mac_vlan_list_lock);
   2740
   2741	/* Delete all of the filters */
   2742	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
   2743		list_del(&f->list);
   2744		kfree(f);
   2745	}
   2746
   2747	list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
   2748		list_del(&fv->list);
   2749		kfree(fv);
   2750	}
   2751
   2752	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   2753
   2754	spin_lock_bh(&adapter->cloud_filter_list_lock);
   2755	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
   2756		list_del(&cf->list);
   2757		kfree(cf);
   2758		adapter->num_cloud_filters--;
   2759	}
   2760	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   2761
   2762	iavf_free_misc_irq(adapter);
   2763	iavf_reset_interrupt_capability(adapter);
   2764	iavf_free_q_vectors(adapter);
   2765	iavf_free_queues(adapter);
   2766	memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
   2767	iavf_shutdown_adminq(&adapter->hw);
   2768	adapter->netdev->flags &= ~IFF_UP;
   2769	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
   2770	iavf_change_state(adapter, __IAVF_DOWN);
   2771	wake_up(&adapter->down_waitqueue);
   2772	dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
   2773}
   2774
   2775/**
   2776 * iavf_reset_task - Call-back task to handle hardware reset
   2777 * @work: pointer to work_struct
   2778 *
   2779 * During reset we need to shut down and reinitialize the admin queue
   2780 * before we can use it to communicate with the PF again. We also clear
   2781 * and reinit the rings because that context is lost as well.
   2782 **/
   2783static void iavf_reset_task(struct work_struct *work)
   2784{
   2785	struct iavf_adapter *adapter = container_of(work,
   2786						      struct iavf_adapter,
   2787						      reset_task);
   2788	struct virtchnl_vf_resource *vfres = adapter->vf_res;
   2789	struct net_device *netdev = adapter->netdev;
   2790	struct iavf_hw *hw = &adapter->hw;
   2791	struct iavf_mac_filter *f, *ftmp;
   2792	struct iavf_cloud_filter *cf;
   2793	enum iavf_status status;
   2794	u32 reg_val;
   2795	int i = 0, err;
   2796	bool running;
   2797
   2798	/* When device is being removed it doesn't make sense to run the reset
   2799	 * task, just return in such a case.
   2800	 */
   2801	if (!mutex_trylock(&adapter->crit_lock)) {
   2802		if (adapter->state != __IAVF_REMOVE)
   2803			queue_work(iavf_wq, &adapter->reset_task);
   2804
   2805		return;
   2806	}
   2807
   2808	while (!mutex_trylock(&adapter->client_lock))
   2809		usleep_range(500, 1000);
   2810	if (CLIENT_ENABLED(adapter)) {
   2811		adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
   2812				    IAVF_FLAG_CLIENT_NEEDS_CLOSE |
   2813				    IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
   2814				    IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
   2815		cancel_delayed_work_sync(&adapter->client_task);
   2816		iavf_notify_client_close(&adapter->vsi, true);
   2817	}
   2818	iavf_misc_irq_disable(adapter);
   2819	if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
   2820		adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
   2821		/* Restart the AQ here. If we have been reset but didn't
   2822		 * detect it, or if the PF had to reinit, our AQ will be hosed.
   2823		 */
   2824		iavf_shutdown_adminq(hw);
   2825		iavf_init_adminq(hw);
   2826		iavf_request_reset(adapter);
   2827	}
   2828	adapter->flags |= IAVF_FLAG_RESET_PENDING;
   2829
   2830	/* poll until we see the reset actually happen */
   2831	for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
   2832		reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
   2833			  IAVF_VF_ARQLEN1_ARQENABLE_MASK;
   2834		if (!reg_val)
   2835			break;
   2836		usleep_range(5000, 10000);
   2837	}
   2838	if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
   2839		dev_info(&adapter->pdev->dev, "Never saw reset\n");
   2840		goto continue_reset; /* act like the reset happened */
   2841	}
   2842
   2843	/* wait until the reset is complete and the PF is responding to us */
   2844	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
   2845		/* sleep first to make sure a minimum wait time is met */
   2846		msleep(IAVF_RESET_WAIT_MS);
   2847
   2848		reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
   2849			  IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
   2850		if (reg_val == VIRTCHNL_VFR_VFACTIVE)
   2851			break;
   2852	}
   2853
   2854	pci_set_master(adapter->pdev);
   2855	pci_restore_msi_state(adapter->pdev);
   2856
   2857	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
   2858		dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
   2859			reg_val);
   2860		iavf_disable_vf(adapter);
   2861		mutex_unlock(&adapter->client_lock);
   2862		mutex_unlock(&adapter->crit_lock);
   2863		return; /* Do not attempt to reinit. It's dead, Jim. */
   2864	}
   2865
   2866continue_reset:
   2867	/* We don't use netif_running() because it may be true prior to
   2868	 * ndo_open() returning, so we can't assume it means all our open
   2869	 * tasks have finished, since we're not holding the rtnl_lock here.
   2870	 */
   2871	running = adapter->state == __IAVF_RUNNING;
   2872
   2873	if (running) {
   2874		netif_carrier_off(netdev);
   2875		netif_tx_stop_all_queues(netdev);
   2876		adapter->link_up = false;
   2877		iavf_napi_disable_all(adapter);
   2878	}
   2879	iavf_irq_disable(adapter);
   2880
   2881	iavf_change_state(adapter, __IAVF_RESETTING);
   2882	adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
   2883
   2884	/* free the Tx/Rx rings and descriptors, might be better to just
   2885	 * re-use them sometime in the future
   2886	 */
   2887	iavf_free_all_rx_resources(adapter);
   2888	iavf_free_all_tx_resources(adapter);
   2889
   2890	adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
   2891	/* kill and reinit the admin queue */
   2892	iavf_shutdown_adminq(hw);
   2893	adapter->current_op = VIRTCHNL_OP_UNKNOWN;
   2894	status = iavf_init_adminq(hw);
   2895	if (status) {
   2896		dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
   2897			 status);
   2898		goto reset_err;
   2899	}
   2900	adapter->aq_required = 0;
   2901
   2902	if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
   2903	    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
   2904		err = iavf_reinit_interrupt_scheme(adapter);
   2905		if (err)
   2906			goto reset_err;
   2907	}
   2908
   2909	if (RSS_AQ(adapter)) {
   2910		adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
   2911	} else {
   2912		err = iavf_init_rss(adapter);
   2913		if (err)
   2914			goto reset_err;
   2915	}
   2916
   2917	adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
   2918	/* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
   2919	 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
   2920	 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
   2921	 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
   2922	 * been successfully sent and negotiated
   2923	 */
   2924	adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
   2925	adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
   2926
   2927	spin_lock_bh(&adapter->mac_vlan_list_lock);
   2928
   2929	/* Delete filter for the current MAC address, it could have
   2930	 * been changed by the PF via administratively set MAC.
   2931	 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
   2932	 */
   2933	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
   2934		if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
   2935			list_del(&f->list);
   2936			kfree(f);
   2937		}
   2938	}
   2939	/* re-add all MAC filters */
   2940	list_for_each_entry(f, &adapter->mac_filter_list, list) {
   2941		f->add = true;
   2942	}
   2943	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   2944
   2945	/* check if TCs are running and re-add all cloud filters */
   2946	spin_lock_bh(&adapter->cloud_filter_list_lock);
   2947	if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
   2948	    adapter->num_tc) {
   2949		list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
   2950			cf->add = true;
   2951		}
   2952	}
   2953	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   2954
   2955	adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
   2956	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
   2957	iavf_misc_irq_enable(adapter);
   2958
   2959	mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
   2960
   2961	/* We were running when the reset started, so we need to restore some
   2962	 * state here.
   2963	 */
   2964	if (running) {
   2965		/* allocate transmit descriptors */
   2966		err = iavf_setup_all_tx_resources(adapter);
   2967		if (err)
   2968			goto reset_err;
   2969
   2970		/* allocate receive descriptors */
   2971		err = iavf_setup_all_rx_resources(adapter);
   2972		if (err)
   2973			goto reset_err;
   2974
   2975		if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
   2976		    (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
   2977			err = iavf_request_traffic_irqs(adapter, netdev->name);
   2978			if (err)
   2979				goto reset_err;
   2980
   2981			adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
   2982		}
   2983
   2984		iavf_configure(adapter);
   2985
   2986		/* iavf_up_complete() will switch device back
   2987		 * to __IAVF_RUNNING
   2988		 */
   2989		iavf_up_complete(adapter);
   2990
   2991		iavf_irq_enable(adapter, true);
   2992	} else {
   2993		iavf_change_state(adapter, __IAVF_DOWN);
   2994		wake_up(&adapter->down_waitqueue);
   2995	}
   2996
   2997	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
   2998
   2999	mutex_unlock(&adapter->client_lock);
   3000	mutex_unlock(&adapter->crit_lock);
   3001
   3002	return;
   3003reset_err:
   3004	mutex_unlock(&adapter->client_lock);
   3005	mutex_unlock(&adapter->crit_lock);
   3006	if (running)
   3007		iavf_change_state(adapter, __IAVF_RUNNING);
   3008	dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
   3009	iavf_close(netdev);
   3010}
   3011
   3012/**
   3013 * iavf_adminq_task - worker thread to clean the admin queue
   3014 * @work: pointer to work_struct containing our data
   3015 **/
   3016static void iavf_adminq_task(struct work_struct *work)
   3017{
   3018	struct iavf_adapter *adapter =
   3019		container_of(work, struct iavf_adapter, adminq_task);
   3020	struct iavf_hw *hw = &adapter->hw;
   3021	struct iavf_arq_event_info event;
   3022	enum virtchnl_ops v_op;
   3023	enum iavf_status ret, v_ret;
   3024	u32 val, oldval;
   3025	u16 pending;
   3026
   3027	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
   3028		goto out;
   3029
   3030	if (!mutex_trylock(&adapter->crit_lock)) {
   3031		if (adapter->state == __IAVF_REMOVE)
   3032			return;
   3033
   3034		queue_work(iavf_wq, &adapter->adminq_task);
   3035		goto out;
   3036	}
   3037
   3038	event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
   3039	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
   3040	if (!event.msg_buf)
   3041		goto out;
   3042
   3043	do {
   3044		ret = iavf_clean_arq_element(hw, &event, &pending);
   3045		v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
   3046		v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
   3047
   3048		if (ret || !v_op)
   3049			break; /* No event to process or error cleaning ARQ */
   3050
   3051		iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
   3052					 event.msg_len);
   3053		if (pending != 0)
   3054			memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
   3055	} while (pending);
   3056	mutex_unlock(&adapter->crit_lock);
   3057
   3058	if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES)) {
   3059		if (adapter->netdev_registered ||
   3060		    !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
   3061			struct net_device *netdev = adapter->netdev;
   3062
   3063			rtnl_lock();
   3064			netdev_update_features(netdev);
   3065			rtnl_unlock();
   3066			/* Request VLAN offload settings */
   3067			if (VLAN_V2_ALLOWED(adapter))
   3068				iavf_set_vlan_offload_features
   3069					(adapter, 0, netdev->features);
   3070
   3071			iavf_set_queue_vlan_tag_loc(adapter);
   3072		}
   3073
   3074		adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
   3075	}
   3076	if ((adapter->flags &
   3077	     (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
   3078	    adapter->state == __IAVF_RESETTING)
   3079		goto freedom;
   3080
   3081	/* check for error indications */
   3082	val = rd32(hw, hw->aq.arq.len);
   3083	if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
   3084		goto freedom;
   3085	oldval = val;
   3086	if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
   3087		dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
   3088		val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
   3089	}
   3090	if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
   3091		dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
   3092		val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
   3093	}
   3094	if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
   3095		dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
   3096		val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
   3097	}
   3098	if (oldval != val)
   3099		wr32(hw, hw->aq.arq.len, val);
   3100
   3101	val = rd32(hw, hw->aq.asq.len);
   3102	oldval = val;
   3103	if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
   3104		dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
   3105		val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
   3106	}
   3107	if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
   3108		dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
   3109		val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
   3110	}
   3111	if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
   3112		dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
   3113		val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
   3114	}
   3115	if (oldval != val)
   3116		wr32(hw, hw->aq.asq.len, val);
   3117
   3118freedom:
   3119	kfree(event.msg_buf);
   3120out:
   3121	/* re-enable Admin queue interrupt cause */
   3122	iavf_misc_irq_enable(adapter);
   3123}
   3124
   3125/**
   3126 * iavf_client_task - worker thread to perform client work
   3127 * @work: pointer to work_struct containing our data
   3128 *
   3129 * This task handles client interactions. Because client calls can be
   3130 * reentrant, we can't handle them in the watchdog.
   3131 **/
   3132static void iavf_client_task(struct work_struct *work)
   3133{
   3134	struct iavf_adapter *adapter =
   3135		container_of(work, struct iavf_adapter, client_task.work);
   3136
   3137	/* If we can't get the client bit, just give up. We'll be rescheduled
   3138	 * later.
   3139	 */
   3140
   3141	if (!mutex_trylock(&adapter->client_lock))
   3142		return;
   3143
   3144	if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
   3145		iavf_client_subtask(adapter);
   3146		adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
   3147		goto out;
   3148	}
   3149	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
   3150		iavf_notify_client_l2_params(&adapter->vsi);
   3151		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
   3152		goto out;
   3153	}
   3154	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
   3155		iavf_notify_client_close(&adapter->vsi, false);
   3156		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
   3157		goto out;
   3158	}
   3159	if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
   3160		iavf_notify_client_open(&adapter->vsi);
   3161		adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
   3162	}
   3163out:
   3164	mutex_unlock(&adapter->client_lock);
   3165}
   3166
   3167/**
   3168 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
   3169 * @adapter: board private structure
   3170 *
   3171 * Free all transmit software resources
   3172 **/
   3173void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
   3174{
   3175	int i;
   3176
   3177	if (!adapter->tx_rings)
   3178		return;
   3179
   3180	for (i = 0; i < adapter->num_active_queues; i++)
   3181		if (adapter->tx_rings[i].desc)
   3182			iavf_free_tx_resources(&adapter->tx_rings[i]);
   3183}
   3184
   3185/**
   3186 * iavf_setup_all_tx_resources - allocate all queues Tx resources
   3187 * @adapter: board private structure
   3188 *
   3189 * If this function returns with an error, then it's possible one or
   3190 * more of the rings is populated (while the rest are not).  It is the
   3191 * callers duty to clean those orphaned rings.
   3192 *
   3193 * Return 0 on success, negative on failure
   3194 **/
   3195static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
   3196{
   3197	int i, err = 0;
   3198
   3199	for (i = 0; i < adapter->num_active_queues; i++) {
   3200		adapter->tx_rings[i].count = adapter->tx_desc_count;
   3201		err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
   3202		if (!err)
   3203			continue;
   3204		dev_err(&adapter->pdev->dev,
   3205			"Allocation for Tx Queue %u failed\n", i);
   3206		break;
   3207	}
   3208
   3209	return err;
   3210}
   3211
   3212/**
   3213 * iavf_setup_all_rx_resources - allocate all queues Rx resources
   3214 * @adapter: board private structure
   3215 *
   3216 * If this function returns with an error, then it's possible one or
   3217 * more of the rings is populated (while the rest are not).  It is the
   3218 * callers duty to clean those orphaned rings.
   3219 *
   3220 * Return 0 on success, negative on failure
   3221 **/
   3222static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
   3223{
   3224	int i, err = 0;
   3225
   3226	for (i = 0; i < adapter->num_active_queues; i++) {
   3227		adapter->rx_rings[i].count = adapter->rx_desc_count;
   3228		err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
   3229		if (!err)
   3230			continue;
   3231		dev_err(&adapter->pdev->dev,
   3232			"Allocation for Rx Queue %u failed\n", i);
   3233		break;
   3234	}
   3235	return err;
   3236}
   3237
   3238/**
   3239 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
   3240 * @adapter: board private structure
   3241 *
   3242 * Free all receive software resources
   3243 **/
   3244void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
   3245{
   3246	int i;
   3247
   3248	if (!adapter->rx_rings)
   3249		return;
   3250
   3251	for (i = 0; i < adapter->num_active_queues; i++)
   3252		if (adapter->rx_rings[i].desc)
   3253			iavf_free_rx_resources(&adapter->rx_rings[i]);
   3254}
   3255
   3256/**
   3257 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
   3258 * @adapter: board private structure
   3259 * @max_tx_rate: max Tx bw for a tc
   3260 **/
   3261static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
   3262				      u64 max_tx_rate)
   3263{
   3264	int speed = 0, ret = 0;
   3265
   3266	if (ADV_LINK_SUPPORT(adapter)) {
   3267		if (adapter->link_speed_mbps < U32_MAX) {
   3268			speed = adapter->link_speed_mbps;
   3269			goto validate_bw;
   3270		} else {
   3271			dev_err(&adapter->pdev->dev, "Unknown link speed\n");
   3272			return -EINVAL;
   3273		}
   3274	}
   3275
   3276	switch (adapter->link_speed) {
   3277	case VIRTCHNL_LINK_SPEED_40GB:
   3278		speed = SPEED_40000;
   3279		break;
   3280	case VIRTCHNL_LINK_SPEED_25GB:
   3281		speed = SPEED_25000;
   3282		break;
   3283	case VIRTCHNL_LINK_SPEED_20GB:
   3284		speed = SPEED_20000;
   3285		break;
   3286	case VIRTCHNL_LINK_SPEED_10GB:
   3287		speed = SPEED_10000;
   3288		break;
   3289	case VIRTCHNL_LINK_SPEED_5GB:
   3290		speed = SPEED_5000;
   3291		break;
   3292	case VIRTCHNL_LINK_SPEED_2_5GB:
   3293		speed = SPEED_2500;
   3294		break;
   3295	case VIRTCHNL_LINK_SPEED_1GB:
   3296		speed = SPEED_1000;
   3297		break;
   3298	case VIRTCHNL_LINK_SPEED_100MB:
   3299		speed = SPEED_100;
   3300		break;
   3301	default:
   3302		break;
   3303	}
   3304
   3305validate_bw:
   3306	if (max_tx_rate > speed) {
   3307		dev_err(&adapter->pdev->dev,
   3308			"Invalid tx rate specified\n");
   3309		ret = -EINVAL;
   3310	}
   3311
   3312	return ret;
   3313}
   3314
   3315/**
   3316 * iavf_validate_ch_config - validate queue mapping info
   3317 * @adapter: board private structure
   3318 * @mqprio_qopt: queue parameters
   3319 *
   3320 * This function validates if the config provided by the user to
   3321 * configure queue channels is valid or not. Returns 0 on a valid
   3322 * config.
   3323 **/
   3324static int iavf_validate_ch_config(struct iavf_adapter *adapter,
   3325				   struct tc_mqprio_qopt_offload *mqprio_qopt)
   3326{
   3327	u64 total_max_rate = 0;
   3328	int i, num_qps = 0;
   3329	u64 tx_rate = 0;
   3330	int ret = 0;
   3331
   3332	if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
   3333	    mqprio_qopt->qopt.num_tc < 1)
   3334		return -EINVAL;
   3335
   3336	for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
   3337		if (!mqprio_qopt->qopt.count[i] ||
   3338		    mqprio_qopt->qopt.offset[i] != num_qps)
   3339			return -EINVAL;
   3340		if (mqprio_qopt->min_rate[i]) {
   3341			dev_err(&adapter->pdev->dev,
   3342				"Invalid min tx rate (greater than 0) specified\n");
   3343			return -EINVAL;
   3344		}
   3345		/*convert to Mbps */
   3346		tx_rate = div_u64(mqprio_qopt->max_rate[i],
   3347				  IAVF_MBPS_DIVISOR);
   3348		total_max_rate += tx_rate;
   3349		num_qps += mqprio_qopt->qopt.count[i];
   3350	}
   3351	if (num_qps > adapter->num_active_queues) {
   3352		dev_err(&adapter->pdev->dev,
   3353			"Cannot support requested number of queues\n");
   3354		return -EINVAL;
   3355	}
   3356
   3357	ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
   3358	return ret;
   3359}
   3360
   3361/**
   3362 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
   3363 * @adapter: board private structure
   3364 **/
   3365static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
   3366{
   3367	struct iavf_cloud_filter *cf, *cftmp;
   3368
   3369	spin_lock_bh(&adapter->cloud_filter_list_lock);
   3370	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
   3371				 list) {
   3372		list_del(&cf->list);
   3373		kfree(cf);
   3374		adapter->num_cloud_filters--;
   3375	}
   3376	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   3377}
   3378
   3379/**
   3380 * __iavf_setup_tc - configure multiple traffic classes
   3381 * @netdev: network interface device structure
   3382 * @type_data: tc offload data
   3383 *
   3384 * This function processes the config information provided by the
   3385 * user to configure traffic classes/queue channels and packages the
   3386 * information to request the PF to setup traffic classes.
   3387 *
   3388 * Returns 0 on success.
   3389 **/
   3390static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
   3391{
   3392	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
   3393	struct iavf_adapter *adapter = netdev_priv(netdev);
   3394	struct virtchnl_vf_resource *vfres = adapter->vf_res;
   3395	u8 num_tc = 0, total_qps = 0;
   3396	int ret = 0, netdev_tc = 0;
   3397	u64 max_tx_rate;
   3398	u16 mode;
   3399	int i;
   3400
   3401	num_tc = mqprio_qopt->qopt.num_tc;
   3402	mode = mqprio_qopt->mode;
   3403
   3404	/* delete queue_channel */
   3405	if (!mqprio_qopt->qopt.hw) {
   3406		if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
   3407			/* reset the tc configuration */
   3408			netdev_reset_tc(netdev);
   3409			adapter->num_tc = 0;
   3410			netif_tx_stop_all_queues(netdev);
   3411			netif_tx_disable(netdev);
   3412			iavf_del_all_cloud_filters(adapter);
   3413			adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
   3414			goto exit;
   3415		} else {
   3416			return -EINVAL;
   3417		}
   3418	}
   3419
   3420	/* add queue channel */
   3421	if (mode == TC_MQPRIO_MODE_CHANNEL) {
   3422		if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
   3423			dev_err(&adapter->pdev->dev, "ADq not supported\n");
   3424			return -EOPNOTSUPP;
   3425		}
   3426		if (adapter->ch_config.state != __IAVF_TC_INVALID) {
   3427			dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
   3428			return -EINVAL;
   3429		}
   3430
   3431		ret = iavf_validate_ch_config(adapter, mqprio_qopt);
   3432		if (ret)
   3433			return ret;
   3434		/* Return if same TC config is requested */
   3435		if (adapter->num_tc == num_tc)
   3436			return 0;
   3437		adapter->num_tc = num_tc;
   3438
   3439		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
   3440			if (i < num_tc) {
   3441				adapter->ch_config.ch_info[i].count =
   3442					mqprio_qopt->qopt.count[i];
   3443				adapter->ch_config.ch_info[i].offset =
   3444					mqprio_qopt->qopt.offset[i];
   3445				total_qps += mqprio_qopt->qopt.count[i];
   3446				max_tx_rate = mqprio_qopt->max_rate[i];
   3447				/* convert to Mbps */
   3448				max_tx_rate = div_u64(max_tx_rate,
   3449						      IAVF_MBPS_DIVISOR);
   3450				adapter->ch_config.ch_info[i].max_tx_rate =
   3451					max_tx_rate;
   3452			} else {
   3453				adapter->ch_config.ch_info[i].count = 1;
   3454				adapter->ch_config.ch_info[i].offset = 0;
   3455			}
   3456		}
   3457		adapter->ch_config.total_qps = total_qps;
   3458		netif_tx_stop_all_queues(netdev);
   3459		netif_tx_disable(netdev);
   3460		adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
   3461		netdev_reset_tc(netdev);
   3462		/* Report the tc mapping up the stack */
   3463		netdev_set_num_tc(adapter->netdev, num_tc);
   3464		for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
   3465			u16 qcount = mqprio_qopt->qopt.count[i];
   3466			u16 qoffset = mqprio_qopt->qopt.offset[i];
   3467
   3468			if (i < num_tc)
   3469				netdev_set_tc_queue(netdev, netdev_tc++, qcount,
   3470						    qoffset);
   3471		}
   3472	}
   3473exit:
   3474	return ret;
   3475}
   3476
   3477/**
   3478 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
   3479 * @adapter: board private structure
   3480 * @f: pointer to struct flow_cls_offload
   3481 * @filter: pointer to cloud filter structure
   3482 */
   3483static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
   3484				 struct flow_cls_offload *f,
   3485				 struct iavf_cloud_filter *filter)
   3486{
   3487	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
   3488	struct flow_dissector *dissector = rule->match.dissector;
   3489	u16 n_proto_mask = 0;
   3490	u16 n_proto_key = 0;
   3491	u8 field_flags = 0;
   3492	u16 addr_type = 0;
   3493	u16 n_proto = 0;
   3494	int i = 0;
   3495	struct virtchnl_filter *vf = &filter->f;
   3496
   3497	if (dissector->used_keys &
   3498	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
   3499	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
   3500	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
   3501	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
   3502	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
   3503	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
   3504	      BIT(FLOW_DISSECTOR_KEY_PORTS) |
   3505	      BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
   3506		dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
   3507			dissector->used_keys);
   3508		return -EOPNOTSUPP;
   3509	}
   3510
   3511	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
   3512		struct flow_match_enc_keyid match;
   3513
   3514		flow_rule_match_enc_keyid(rule, &match);
   3515		if (match.mask->keyid != 0)
   3516			field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
   3517	}
   3518
   3519	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
   3520		struct flow_match_basic match;
   3521
   3522		flow_rule_match_basic(rule, &match);
   3523		n_proto_key = ntohs(match.key->n_proto);
   3524		n_proto_mask = ntohs(match.mask->n_proto);
   3525
   3526		if (n_proto_key == ETH_P_ALL) {
   3527			n_proto_key = 0;
   3528			n_proto_mask = 0;
   3529		}
   3530		n_proto = n_proto_key & n_proto_mask;
   3531		if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
   3532			return -EINVAL;
   3533		if (n_proto == ETH_P_IPV6) {
   3534			/* specify flow type as TCP IPv6 */
   3535			vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
   3536		}
   3537
   3538		if (match.key->ip_proto != IPPROTO_TCP) {
   3539			dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
   3540			return -EINVAL;
   3541		}
   3542	}
   3543
   3544	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
   3545		struct flow_match_eth_addrs match;
   3546
   3547		flow_rule_match_eth_addrs(rule, &match);
   3548
   3549		/* use is_broadcast and is_zero to check for all 0xf or 0 */
   3550		if (!is_zero_ether_addr(match.mask->dst)) {
   3551			if (is_broadcast_ether_addr(match.mask->dst)) {
   3552				field_flags |= IAVF_CLOUD_FIELD_OMAC;
   3553			} else {
   3554				dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
   3555					match.mask->dst);
   3556				return -EINVAL;
   3557			}
   3558		}
   3559
   3560		if (!is_zero_ether_addr(match.mask->src)) {
   3561			if (is_broadcast_ether_addr(match.mask->src)) {
   3562				field_flags |= IAVF_CLOUD_FIELD_IMAC;
   3563			} else {
   3564				dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
   3565					match.mask->src);
   3566				return -EINVAL;
   3567			}
   3568		}
   3569
   3570		if (!is_zero_ether_addr(match.key->dst))
   3571			if (is_valid_ether_addr(match.key->dst) ||
   3572			    is_multicast_ether_addr(match.key->dst)) {
   3573				/* set the mask if a valid dst_mac address */
   3574				for (i = 0; i < ETH_ALEN; i++)
   3575					vf->mask.tcp_spec.dst_mac[i] |= 0xff;
   3576				ether_addr_copy(vf->data.tcp_spec.dst_mac,
   3577						match.key->dst);
   3578			}
   3579
   3580		if (!is_zero_ether_addr(match.key->src))
   3581			if (is_valid_ether_addr(match.key->src) ||
   3582			    is_multicast_ether_addr(match.key->src)) {
   3583				/* set the mask if a valid dst_mac address */
   3584				for (i = 0; i < ETH_ALEN; i++)
   3585					vf->mask.tcp_spec.src_mac[i] |= 0xff;
   3586				ether_addr_copy(vf->data.tcp_spec.src_mac,
   3587						match.key->src);
   3588		}
   3589	}
   3590
   3591	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
   3592		struct flow_match_vlan match;
   3593
   3594		flow_rule_match_vlan(rule, &match);
   3595		if (match.mask->vlan_id) {
   3596			if (match.mask->vlan_id == VLAN_VID_MASK) {
   3597				field_flags |= IAVF_CLOUD_FIELD_IVLAN;
   3598			} else {
   3599				dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
   3600					match.mask->vlan_id);
   3601				return -EINVAL;
   3602			}
   3603		}
   3604		vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
   3605		vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
   3606	}
   3607
   3608	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
   3609		struct flow_match_control match;
   3610
   3611		flow_rule_match_control(rule, &match);
   3612		addr_type = match.key->addr_type;
   3613	}
   3614
   3615	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
   3616		struct flow_match_ipv4_addrs match;
   3617
   3618		flow_rule_match_ipv4_addrs(rule, &match);
   3619		if (match.mask->dst) {
   3620			if (match.mask->dst == cpu_to_be32(0xffffffff)) {
   3621				field_flags |= IAVF_CLOUD_FIELD_IIP;
   3622			} else {
   3623				dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
   3624					be32_to_cpu(match.mask->dst));
   3625				return -EINVAL;
   3626			}
   3627		}
   3628
   3629		if (match.mask->src) {
   3630			if (match.mask->src == cpu_to_be32(0xffffffff)) {
   3631				field_flags |= IAVF_CLOUD_FIELD_IIP;
   3632			} else {
   3633				dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
   3634					be32_to_cpu(match.mask->dst));
   3635				return -EINVAL;
   3636			}
   3637		}
   3638
   3639		if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
   3640			dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
   3641			return -EINVAL;
   3642		}
   3643		if (match.key->dst) {
   3644			vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
   3645			vf->data.tcp_spec.dst_ip[0] = match.key->dst;
   3646		}
   3647		if (match.key->src) {
   3648			vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
   3649			vf->data.tcp_spec.src_ip[0] = match.key->src;
   3650		}
   3651	}
   3652
   3653	if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
   3654		struct flow_match_ipv6_addrs match;
   3655
   3656		flow_rule_match_ipv6_addrs(rule, &match);
   3657
   3658		/* validate mask, make sure it is not IPV6_ADDR_ANY */
   3659		if (ipv6_addr_any(&match.mask->dst)) {
   3660			dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
   3661				IPV6_ADDR_ANY);
   3662			return -EINVAL;
   3663		}
   3664
   3665		/* src and dest IPv6 address should not be LOOPBACK
   3666		 * (0:0:0:0:0:0:0:1) which can be represented as ::1
   3667		 */
   3668		if (ipv6_addr_loopback(&match.key->dst) ||
   3669		    ipv6_addr_loopback(&match.key->src)) {
   3670			dev_err(&adapter->pdev->dev,
   3671				"ipv6 addr should not be loopback\n");
   3672			return -EINVAL;
   3673		}
   3674		if (!ipv6_addr_any(&match.mask->dst) ||
   3675		    !ipv6_addr_any(&match.mask->src))
   3676			field_flags |= IAVF_CLOUD_FIELD_IIP;
   3677
   3678		for (i = 0; i < 4; i++)
   3679			vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
   3680		memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
   3681		       sizeof(vf->data.tcp_spec.dst_ip));
   3682		for (i = 0; i < 4; i++)
   3683			vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
   3684		memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
   3685		       sizeof(vf->data.tcp_spec.src_ip));
   3686	}
   3687	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
   3688		struct flow_match_ports match;
   3689
   3690		flow_rule_match_ports(rule, &match);
   3691		if (match.mask->src) {
   3692			if (match.mask->src == cpu_to_be16(0xffff)) {
   3693				field_flags |= IAVF_CLOUD_FIELD_IIP;
   3694			} else {
   3695				dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
   3696					be16_to_cpu(match.mask->src));
   3697				return -EINVAL;
   3698			}
   3699		}
   3700
   3701		if (match.mask->dst) {
   3702			if (match.mask->dst == cpu_to_be16(0xffff)) {
   3703				field_flags |= IAVF_CLOUD_FIELD_IIP;
   3704			} else {
   3705				dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
   3706					be16_to_cpu(match.mask->dst));
   3707				return -EINVAL;
   3708			}
   3709		}
   3710		if (match.key->dst) {
   3711			vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
   3712			vf->data.tcp_spec.dst_port = match.key->dst;
   3713		}
   3714
   3715		if (match.key->src) {
   3716			vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
   3717			vf->data.tcp_spec.src_port = match.key->src;
   3718		}
   3719	}
   3720	vf->field_flags = field_flags;
   3721
   3722	return 0;
   3723}
   3724
   3725/**
   3726 * iavf_handle_tclass - Forward to a traffic class on the device
   3727 * @adapter: board private structure
   3728 * @tc: traffic class index on the device
   3729 * @filter: pointer to cloud filter structure
   3730 */
   3731static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
   3732			      struct iavf_cloud_filter *filter)
   3733{
   3734	if (tc == 0)
   3735		return 0;
   3736	if (tc < adapter->num_tc) {
   3737		if (!filter->f.data.tcp_spec.dst_port) {
   3738			dev_err(&adapter->pdev->dev,
   3739				"Specify destination port to redirect to traffic class other than TC0\n");
   3740			return -EINVAL;
   3741		}
   3742	}
   3743	/* redirect to a traffic class on the same device */
   3744	filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
   3745	filter->f.action_meta = tc;
   3746	return 0;
   3747}
   3748
   3749/**
   3750 * iavf_configure_clsflower - Add tc flower filters
   3751 * @adapter: board private structure
   3752 * @cls_flower: Pointer to struct flow_cls_offload
   3753 */
   3754static int iavf_configure_clsflower(struct iavf_adapter *adapter,
   3755				    struct flow_cls_offload *cls_flower)
   3756{
   3757	int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
   3758	struct iavf_cloud_filter *filter = NULL;
   3759	int err = -EINVAL, count = 50;
   3760
   3761	if (tc < 0) {
   3762		dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
   3763		return -EINVAL;
   3764	}
   3765
   3766	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
   3767	if (!filter)
   3768		return -ENOMEM;
   3769
   3770	while (!mutex_trylock(&adapter->crit_lock)) {
   3771		if (--count == 0) {
   3772			kfree(filter);
   3773			return err;
   3774		}
   3775		udelay(1);
   3776	}
   3777
   3778	filter->cookie = cls_flower->cookie;
   3779
   3780	/* set the mask to all zeroes to begin with */
   3781	memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
   3782	/* start out with flow type and eth type IPv4 to begin with */
   3783	filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
   3784	err = iavf_parse_cls_flower(adapter, cls_flower, filter);
   3785	if (err)
   3786		goto err;
   3787
   3788	err = iavf_handle_tclass(adapter, tc, filter);
   3789	if (err)
   3790		goto err;
   3791
   3792	/* add filter to the list */
   3793	spin_lock_bh(&adapter->cloud_filter_list_lock);
   3794	list_add_tail(&filter->list, &adapter->cloud_filter_list);
   3795	adapter->num_cloud_filters++;
   3796	filter->add = true;
   3797	adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
   3798	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   3799err:
   3800	if (err)
   3801		kfree(filter);
   3802
   3803	mutex_unlock(&adapter->crit_lock);
   3804	return err;
   3805}
   3806
   3807/* iavf_find_cf - Find the cloud filter in the list
   3808 * @adapter: Board private structure
   3809 * @cookie: filter specific cookie
   3810 *
   3811 * Returns ptr to the filter object or NULL. Must be called while holding the
   3812 * cloud_filter_list_lock.
   3813 */
   3814static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
   3815					      unsigned long *cookie)
   3816{
   3817	struct iavf_cloud_filter *filter = NULL;
   3818
   3819	if (!cookie)
   3820		return NULL;
   3821
   3822	list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
   3823		if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
   3824			return filter;
   3825	}
   3826	return NULL;
   3827}
   3828
   3829/**
   3830 * iavf_delete_clsflower - Remove tc flower filters
   3831 * @adapter: board private structure
   3832 * @cls_flower: Pointer to struct flow_cls_offload
   3833 */
   3834static int iavf_delete_clsflower(struct iavf_adapter *adapter,
   3835				 struct flow_cls_offload *cls_flower)
   3836{
   3837	struct iavf_cloud_filter *filter = NULL;
   3838	int err = 0;
   3839
   3840	spin_lock_bh(&adapter->cloud_filter_list_lock);
   3841	filter = iavf_find_cf(adapter, &cls_flower->cookie);
   3842	if (filter) {
   3843		filter->del = true;
   3844		adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
   3845	} else {
   3846		err = -EINVAL;
   3847	}
   3848	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   3849
   3850	return err;
   3851}
   3852
   3853/**
   3854 * iavf_setup_tc_cls_flower - flower classifier offloads
   3855 * @adapter: board private structure
   3856 * @cls_flower: pointer to flow_cls_offload struct with flow info
   3857 */
   3858static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
   3859				    struct flow_cls_offload *cls_flower)
   3860{
   3861	switch (cls_flower->command) {
   3862	case FLOW_CLS_REPLACE:
   3863		return iavf_configure_clsflower(adapter, cls_flower);
   3864	case FLOW_CLS_DESTROY:
   3865		return iavf_delete_clsflower(adapter, cls_flower);
   3866	case FLOW_CLS_STATS:
   3867		return -EOPNOTSUPP;
   3868	default:
   3869		return -EOPNOTSUPP;
   3870	}
   3871}
   3872
   3873/**
   3874 * iavf_setup_tc_block_cb - block callback for tc
   3875 * @type: type of offload
   3876 * @type_data: offload data
   3877 * @cb_priv:
   3878 *
   3879 * This function is the block callback for traffic classes
   3880 **/
   3881static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
   3882				  void *cb_priv)
   3883{
   3884	struct iavf_adapter *adapter = cb_priv;
   3885
   3886	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
   3887		return -EOPNOTSUPP;
   3888
   3889	switch (type) {
   3890	case TC_SETUP_CLSFLOWER:
   3891		return iavf_setup_tc_cls_flower(cb_priv, type_data);
   3892	default:
   3893		return -EOPNOTSUPP;
   3894	}
   3895}
   3896
   3897static LIST_HEAD(iavf_block_cb_list);
   3898
   3899/**
   3900 * iavf_setup_tc - configure multiple traffic classes
   3901 * @netdev: network interface device structure
   3902 * @type: type of offload
   3903 * @type_data: tc offload data
   3904 *
   3905 * This function is the callback to ndo_setup_tc in the
   3906 * netdev_ops.
   3907 *
   3908 * Returns 0 on success
   3909 **/
   3910static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
   3911			 void *type_data)
   3912{
   3913	struct iavf_adapter *adapter = netdev_priv(netdev);
   3914
   3915	switch (type) {
   3916	case TC_SETUP_QDISC_MQPRIO:
   3917		return __iavf_setup_tc(netdev, type_data);
   3918	case TC_SETUP_BLOCK:
   3919		return flow_block_cb_setup_simple(type_data,
   3920						  &iavf_block_cb_list,
   3921						  iavf_setup_tc_block_cb,
   3922						  adapter, adapter, true);
   3923	default:
   3924		return -EOPNOTSUPP;
   3925	}
   3926}
   3927
   3928/**
   3929 * iavf_open - Called when a network interface is made active
   3930 * @netdev: network interface device structure
   3931 *
   3932 * Returns 0 on success, negative value on failure
   3933 *
   3934 * The open entry point is called when a network interface is made
   3935 * active by the system (IFF_UP).  At this point all resources needed
   3936 * for transmit and receive operations are allocated, the interrupt
   3937 * handler is registered with the OS, the watchdog is started,
   3938 * and the stack is notified that the interface is ready.
   3939 **/
   3940static int iavf_open(struct net_device *netdev)
   3941{
   3942	struct iavf_adapter *adapter = netdev_priv(netdev);
   3943	int err;
   3944
   3945	if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
   3946		dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
   3947		return -EIO;
   3948	}
   3949
   3950	while (!mutex_trylock(&adapter->crit_lock))
   3951		usleep_range(500, 1000);
   3952
   3953	if (adapter->state != __IAVF_DOWN) {
   3954		err = -EBUSY;
   3955		goto err_unlock;
   3956	}
   3957
   3958	if (adapter->state == __IAVF_RUNNING &&
   3959	    !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
   3960		dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
   3961		err = 0;
   3962		goto err_unlock;
   3963	}
   3964
   3965	/* allocate transmit descriptors */
   3966	err = iavf_setup_all_tx_resources(adapter);
   3967	if (err)
   3968		goto err_setup_tx;
   3969
   3970	/* allocate receive descriptors */
   3971	err = iavf_setup_all_rx_resources(adapter);
   3972	if (err)
   3973		goto err_setup_rx;
   3974
   3975	/* clear any pending interrupts, may auto mask */
   3976	err = iavf_request_traffic_irqs(adapter, netdev->name);
   3977	if (err)
   3978		goto err_req_irq;
   3979
   3980	spin_lock_bh(&adapter->mac_vlan_list_lock);
   3981
   3982	iavf_add_filter(adapter, adapter->hw.mac.addr);
   3983
   3984	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   3985
   3986	/* Restore VLAN filters that were removed with IFF_DOWN */
   3987	iavf_restore_filters(adapter);
   3988
   3989	iavf_configure(adapter);
   3990
   3991	iavf_up_complete(adapter);
   3992
   3993	iavf_irq_enable(adapter, true);
   3994
   3995	mutex_unlock(&adapter->crit_lock);
   3996
   3997	return 0;
   3998
   3999err_req_irq:
   4000	iavf_down(adapter);
   4001	iavf_free_traffic_irqs(adapter);
   4002err_setup_rx:
   4003	iavf_free_all_rx_resources(adapter);
   4004err_setup_tx:
   4005	iavf_free_all_tx_resources(adapter);
   4006err_unlock:
   4007	mutex_unlock(&adapter->crit_lock);
   4008
   4009	return err;
   4010}
   4011
   4012/**
   4013 * iavf_close - Disables a network interface
   4014 * @netdev: network interface device structure
   4015 *
   4016 * Returns 0, this is not allowed to fail
   4017 *
   4018 * The close entry point is called when an interface is de-activated
   4019 * by the OS.  The hardware is still under the drivers control, but
   4020 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
   4021 * are freed, along with all transmit and receive resources.
   4022 **/
   4023static int iavf_close(struct net_device *netdev)
   4024{
   4025	struct iavf_adapter *adapter = netdev_priv(netdev);
   4026	int status;
   4027
   4028	mutex_lock(&adapter->crit_lock);
   4029
   4030	if (adapter->state <= __IAVF_DOWN_PENDING) {
   4031		mutex_unlock(&adapter->crit_lock);
   4032		return 0;
   4033	}
   4034
   4035	set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
   4036	if (CLIENT_ENABLED(adapter))
   4037		adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
   4038
   4039	iavf_down(adapter);
   4040	iavf_change_state(adapter, __IAVF_DOWN_PENDING);
   4041	iavf_free_traffic_irqs(adapter);
   4042
   4043	mutex_unlock(&adapter->crit_lock);
   4044
   4045	/* We explicitly don't free resources here because the hardware is
   4046	 * still active and can DMA into memory. Resources are cleared in
   4047	 * iavf_virtchnl_completion() after we get confirmation from the PF
   4048	 * driver that the rings have been stopped.
   4049	 *
   4050	 * Also, we wait for state to transition to __IAVF_DOWN before
   4051	 * returning. State change occurs in iavf_virtchnl_completion() after
   4052	 * VF resources are released (which occurs after PF driver processes and
   4053	 * responds to admin queue commands).
   4054	 */
   4055
   4056	status = wait_event_timeout(adapter->down_waitqueue,
   4057				    adapter->state == __IAVF_DOWN,
   4058				    msecs_to_jiffies(500));
   4059	if (!status)
   4060		netdev_warn(netdev, "Device resources not yet released\n");
   4061	return 0;
   4062}
   4063
   4064/**
   4065 * iavf_change_mtu - Change the Maximum Transfer Unit
   4066 * @netdev: network interface device structure
   4067 * @new_mtu: new value for maximum frame size
   4068 *
   4069 * Returns 0 on success, negative on failure
   4070 **/
   4071static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
   4072{
   4073	struct iavf_adapter *adapter = netdev_priv(netdev);
   4074
   4075	netdev_dbg(netdev, "changing MTU from %d to %d\n",
   4076		   netdev->mtu, new_mtu);
   4077	netdev->mtu = new_mtu;
   4078	if (CLIENT_ENABLED(adapter)) {
   4079		iavf_notify_client_l2_params(&adapter->vsi);
   4080		adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
   4081	}
   4082
   4083	if (netif_running(netdev)) {
   4084		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
   4085		queue_work(iavf_wq, &adapter->reset_task);
   4086	}
   4087
   4088	return 0;
   4089}
   4090
   4091#define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
   4092					 NETIF_F_HW_VLAN_CTAG_TX | \
   4093					 NETIF_F_HW_VLAN_STAG_RX | \
   4094					 NETIF_F_HW_VLAN_STAG_TX)
   4095
   4096/**
   4097 * iavf_set_features - set the netdev feature flags
   4098 * @netdev: ptr to the netdev being adjusted
   4099 * @features: the feature set that the stack is suggesting
   4100 * Note: expects to be called while under rtnl_lock()
   4101 **/
   4102static int iavf_set_features(struct net_device *netdev,
   4103			     netdev_features_t features)
   4104{
   4105	struct iavf_adapter *adapter = netdev_priv(netdev);
   4106
   4107	/* trigger update on any VLAN feature change */
   4108	if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
   4109	    (features & NETIF_VLAN_OFFLOAD_FEATURES))
   4110		iavf_set_vlan_offload_features(adapter, netdev->features,
   4111					       features);
   4112
   4113	return 0;
   4114}
   4115
   4116/**
   4117 * iavf_features_check - Validate encapsulated packet conforms to limits
   4118 * @skb: skb buff
   4119 * @dev: This physical port's netdev
   4120 * @features: Offload features that the stack believes apply
   4121 **/
   4122static netdev_features_t iavf_features_check(struct sk_buff *skb,
   4123					     struct net_device *dev,
   4124					     netdev_features_t features)
   4125{
   4126	size_t len;
   4127
   4128	/* No point in doing any of this if neither checksum nor GSO are
   4129	 * being requested for this frame.  We can rule out both by just
   4130	 * checking for CHECKSUM_PARTIAL
   4131	 */
   4132	if (skb->ip_summed != CHECKSUM_PARTIAL)
   4133		return features;
   4134
   4135	/* We cannot support GSO if the MSS is going to be less than
   4136	 * 64 bytes.  If it is then we need to drop support for GSO.
   4137	 */
   4138	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
   4139		features &= ~NETIF_F_GSO_MASK;
   4140
   4141	/* MACLEN can support at most 63 words */
   4142	len = skb_network_header(skb) - skb->data;
   4143	if (len & ~(63 * 2))
   4144		goto out_err;
   4145
   4146	/* IPLEN and EIPLEN can support at most 127 dwords */
   4147	len = skb_transport_header(skb) - skb_network_header(skb);
   4148	if (len & ~(127 * 4))
   4149		goto out_err;
   4150
   4151	if (skb->encapsulation) {
   4152		/* L4TUNLEN can support 127 words */
   4153		len = skb_inner_network_header(skb) - skb_transport_header(skb);
   4154		if (len & ~(127 * 2))
   4155			goto out_err;
   4156
   4157		/* IPLEN can support at most 127 dwords */
   4158		len = skb_inner_transport_header(skb) -
   4159		      skb_inner_network_header(skb);
   4160		if (len & ~(127 * 4))
   4161			goto out_err;
   4162	}
   4163
   4164	/* No need to validate L4LEN as TCP is the only protocol with a
   4165	 * a flexible value and we support all possible values supported
   4166	 * by TCP, which is at most 15 dwords
   4167	 */
   4168
   4169	return features;
   4170out_err:
   4171	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
   4172}
   4173
   4174/**
   4175 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
   4176 * @adapter: board private structure
   4177 *
   4178 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
   4179 * were negotiated determine the VLAN features that can be toggled on and off.
   4180 **/
   4181static netdev_features_t
   4182iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
   4183{
   4184	netdev_features_t hw_features = 0;
   4185
   4186	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
   4187		return hw_features;
   4188
   4189	/* Enable VLAN features if supported */
   4190	if (VLAN_ALLOWED(adapter)) {
   4191		hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
   4192				NETIF_F_HW_VLAN_CTAG_RX);
   4193	} else if (VLAN_V2_ALLOWED(adapter)) {
   4194		struct virtchnl_vlan_caps *vlan_v2_caps =
   4195			&adapter->vlan_v2_caps;
   4196		struct virtchnl_vlan_supported_caps *stripping_support =
   4197			&vlan_v2_caps->offloads.stripping_support;
   4198		struct virtchnl_vlan_supported_caps *insertion_support =
   4199			&vlan_v2_caps->offloads.insertion_support;
   4200
   4201		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
   4202		    stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
   4203			if (stripping_support->outer &
   4204			    VIRTCHNL_VLAN_ETHERTYPE_8100)
   4205				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
   4206			if (stripping_support->outer &
   4207			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
   4208				hw_features |= NETIF_F_HW_VLAN_STAG_RX;
   4209		} else if (stripping_support->inner !=
   4210			   VIRTCHNL_VLAN_UNSUPPORTED &&
   4211			   stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
   4212			if (stripping_support->inner &
   4213			    VIRTCHNL_VLAN_ETHERTYPE_8100)
   4214				hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
   4215		}
   4216
   4217		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
   4218		    insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
   4219			if (insertion_support->outer &
   4220			    VIRTCHNL_VLAN_ETHERTYPE_8100)
   4221				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
   4222			if (insertion_support->outer &
   4223			    VIRTCHNL_VLAN_ETHERTYPE_88A8)
   4224				hw_features |= NETIF_F_HW_VLAN_STAG_TX;
   4225		} else if (insertion_support->inner &&
   4226			   insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
   4227			if (insertion_support->inner &
   4228			    VIRTCHNL_VLAN_ETHERTYPE_8100)
   4229				hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
   4230		}
   4231	}
   4232
   4233	return hw_features;
   4234}
   4235
   4236/**
   4237 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
   4238 * @adapter: board private structure
   4239 *
   4240 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
   4241 * were negotiated determine the VLAN features that are enabled by default.
   4242 **/
   4243static netdev_features_t
   4244iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
   4245{
   4246	netdev_features_t features = 0;
   4247
   4248	if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
   4249		return features;
   4250
   4251	if (VLAN_ALLOWED(adapter)) {
   4252		features |= NETIF_F_HW_VLAN_CTAG_FILTER |
   4253			NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
   4254	} else if (VLAN_V2_ALLOWED(adapter)) {
   4255		struct virtchnl_vlan_caps *vlan_v2_caps =
   4256			&adapter->vlan_v2_caps;
   4257		struct virtchnl_vlan_supported_caps *filtering_support =
   4258			&vlan_v2_caps->filtering.filtering_support;
   4259		struct virtchnl_vlan_supported_caps *stripping_support =
   4260			&vlan_v2_caps->offloads.stripping_support;
   4261		struct virtchnl_vlan_supported_caps *insertion_support =
   4262			&vlan_v2_caps->offloads.insertion_support;
   4263		u32 ethertype_init;
   4264
   4265		/* give priority to outer stripping and don't support both outer
   4266		 * and inner stripping
   4267		 */
   4268		ethertype_init = vlan_v2_caps->offloads.ethertype_init;
   4269		if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
   4270			if (stripping_support->outer &
   4271			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
   4272			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
   4273				features |= NETIF_F_HW_VLAN_CTAG_RX;
   4274			else if (stripping_support->outer &
   4275				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
   4276				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
   4277				features |= NETIF_F_HW_VLAN_STAG_RX;
   4278		} else if (stripping_support->inner !=
   4279			   VIRTCHNL_VLAN_UNSUPPORTED) {
   4280			if (stripping_support->inner &
   4281			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
   4282			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
   4283				features |= NETIF_F_HW_VLAN_CTAG_RX;
   4284		}
   4285
   4286		/* give priority to outer insertion and don't support both outer
   4287		 * and inner insertion
   4288		 */
   4289		if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
   4290			if (insertion_support->outer &
   4291			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
   4292			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
   4293				features |= NETIF_F_HW_VLAN_CTAG_TX;
   4294			else if (insertion_support->outer &
   4295				 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
   4296				 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
   4297				features |= NETIF_F_HW_VLAN_STAG_TX;
   4298		} else if (insertion_support->inner !=
   4299			   VIRTCHNL_VLAN_UNSUPPORTED) {
   4300			if (insertion_support->inner &
   4301			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
   4302			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
   4303				features |= NETIF_F_HW_VLAN_CTAG_TX;
   4304		}
   4305
   4306		/* give priority to outer filtering and don't bother if both
   4307		 * outer and inner filtering are enabled
   4308		 */
   4309		ethertype_init = vlan_v2_caps->filtering.ethertype_init;
   4310		if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
   4311			if (filtering_support->outer &
   4312			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
   4313			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
   4314				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
   4315			if (filtering_support->outer &
   4316			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
   4317			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
   4318				features |= NETIF_F_HW_VLAN_STAG_FILTER;
   4319		} else if (filtering_support->inner !=
   4320			   VIRTCHNL_VLAN_UNSUPPORTED) {
   4321			if (filtering_support->inner &
   4322			    VIRTCHNL_VLAN_ETHERTYPE_8100 &&
   4323			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
   4324				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
   4325			if (filtering_support->inner &
   4326			    VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
   4327			    ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
   4328				features |= NETIF_F_HW_VLAN_STAG_FILTER;
   4329		}
   4330	}
   4331
   4332	return features;
   4333}
   4334
   4335#define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
   4336	(!(((requested) & (feature_bit)) && \
   4337	   !((allowed) & (feature_bit))))
   4338
   4339/**
   4340 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
   4341 * @adapter: board private structure
   4342 * @requested_features: stack requested NETDEV features
   4343 **/
   4344static netdev_features_t
   4345iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
   4346			      netdev_features_t requested_features)
   4347{
   4348	netdev_features_t allowed_features;
   4349
   4350	allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
   4351		iavf_get_netdev_vlan_features(adapter);
   4352
   4353	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
   4354					      allowed_features,
   4355					      NETIF_F_HW_VLAN_CTAG_TX))
   4356		requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
   4357
   4358	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
   4359					      allowed_features,
   4360					      NETIF_F_HW_VLAN_CTAG_RX))
   4361		requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
   4362
   4363	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
   4364					      allowed_features,
   4365					      NETIF_F_HW_VLAN_STAG_TX))
   4366		requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
   4367	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
   4368					      allowed_features,
   4369					      NETIF_F_HW_VLAN_STAG_RX))
   4370		requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
   4371
   4372	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
   4373					      allowed_features,
   4374					      NETIF_F_HW_VLAN_CTAG_FILTER))
   4375		requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
   4376
   4377	if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
   4378					      allowed_features,
   4379					      NETIF_F_HW_VLAN_STAG_FILTER))
   4380		requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
   4381
   4382	if ((requested_features &
   4383	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
   4384	    (requested_features &
   4385	     (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
   4386	    adapter->vlan_v2_caps.offloads.ethertype_match ==
   4387	    VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
   4388		netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
   4389		requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
   4390					NETIF_F_HW_VLAN_STAG_TX);
   4391	}
   4392
   4393	return requested_features;
   4394}
   4395
   4396/**
   4397 * iavf_fix_features - fix up the netdev feature bits
   4398 * @netdev: our net device
   4399 * @features: desired feature bits
   4400 *
   4401 * Returns fixed-up features bits
   4402 **/
   4403static netdev_features_t iavf_fix_features(struct net_device *netdev,
   4404					   netdev_features_t features)
   4405{
   4406	struct iavf_adapter *adapter = netdev_priv(netdev);
   4407
   4408	return iavf_fix_netdev_vlan_features(adapter, features);
   4409}
   4410
   4411static const struct net_device_ops iavf_netdev_ops = {
   4412	.ndo_open		= iavf_open,
   4413	.ndo_stop		= iavf_close,
   4414	.ndo_start_xmit		= iavf_xmit_frame,
   4415	.ndo_set_rx_mode	= iavf_set_rx_mode,
   4416	.ndo_validate_addr	= eth_validate_addr,
   4417	.ndo_set_mac_address	= iavf_set_mac,
   4418	.ndo_change_mtu		= iavf_change_mtu,
   4419	.ndo_tx_timeout		= iavf_tx_timeout,
   4420	.ndo_vlan_rx_add_vid	= iavf_vlan_rx_add_vid,
   4421	.ndo_vlan_rx_kill_vid	= iavf_vlan_rx_kill_vid,
   4422	.ndo_features_check	= iavf_features_check,
   4423	.ndo_fix_features	= iavf_fix_features,
   4424	.ndo_set_features	= iavf_set_features,
   4425	.ndo_setup_tc		= iavf_setup_tc,
   4426};
   4427
   4428/**
   4429 * iavf_check_reset_complete - check that VF reset is complete
   4430 * @hw: pointer to hw struct
   4431 *
   4432 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
   4433 **/
   4434static int iavf_check_reset_complete(struct iavf_hw *hw)
   4435{
   4436	u32 rstat;
   4437	int i;
   4438
   4439	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
   4440		rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
   4441			     IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
   4442		if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
   4443		    (rstat == VIRTCHNL_VFR_COMPLETED))
   4444			return 0;
   4445		usleep_range(10, 20);
   4446	}
   4447	return -EBUSY;
   4448}
   4449
   4450/**
   4451 * iavf_process_config - Process the config information we got from the PF
   4452 * @adapter: board private structure
   4453 *
   4454 * Verify that we have a valid config struct, and set up our netdev features
   4455 * and our VSI struct.
   4456 **/
   4457int iavf_process_config(struct iavf_adapter *adapter)
   4458{
   4459	struct virtchnl_vf_resource *vfres = adapter->vf_res;
   4460	netdev_features_t hw_vlan_features, vlan_features;
   4461	struct net_device *netdev = adapter->netdev;
   4462	netdev_features_t hw_enc_features;
   4463	netdev_features_t hw_features;
   4464
   4465	hw_enc_features = NETIF_F_SG			|
   4466			  NETIF_F_IP_CSUM		|
   4467			  NETIF_F_IPV6_CSUM		|
   4468			  NETIF_F_HIGHDMA		|
   4469			  NETIF_F_SOFT_FEATURES	|
   4470			  NETIF_F_TSO			|
   4471			  NETIF_F_TSO_ECN		|
   4472			  NETIF_F_TSO6			|
   4473			  NETIF_F_SCTP_CRC		|
   4474			  NETIF_F_RXHASH		|
   4475			  NETIF_F_RXCSUM		|
   4476			  0;
   4477
   4478	/* advertise to stack only if offloads for encapsulated packets is
   4479	 * supported
   4480	 */
   4481	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
   4482		hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL	|
   4483				   NETIF_F_GSO_GRE		|
   4484				   NETIF_F_GSO_GRE_CSUM		|
   4485				   NETIF_F_GSO_IPXIP4		|
   4486				   NETIF_F_GSO_IPXIP6		|
   4487				   NETIF_F_GSO_UDP_TUNNEL_CSUM	|
   4488				   NETIF_F_GSO_PARTIAL		|
   4489				   0;
   4490
   4491		if (!(vfres->vf_cap_flags &
   4492		      VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
   4493			netdev->gso_partial_features |=
   4494				NETIF_F_GSO_UDP_TUNNEL_CSUM;
   4495
   4496		netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
   4497		netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
   4498		netdev->hw_enc_features |= hw_enc_features;
   4499	}
   4500	/* record features VLANs can make use of */
   4501	netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
   4502
   4503	/* Write features and hw_features separately to avoid polluting
   4504	 * with, or dropping, features that are set when we registered.
   4505	 */
   4506	hw_features = hw_enc_features;
   4507
   4508	/* get HW VLAN features that can be toggled */
   4509	hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
   4510
   4511	/* Enable cloud filter if ADQ is supported */
   4512	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
   4513		hw_features |= NETIF_F_HW_TC;
   4514	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
   4515		hw_features |= NETIF_F_GSO_UDP_L4;
   4516
   4517	netdev->hw_features |= hw_features | hw_vlan_features;
   4518	vlan_features = iavf_get_netdev_vlan_features(adapter);
   4519
   4520	netdev->features |= hw_features | vlan_features;
   4521
   4522	if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
   4523		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
   4524
   4525	netdev->priv_flags |= IFF_UNICAST_FLT;
   4526
   4527	/* Do not turn on offloads when they are requested to be turned off.
   4528	 * TSO needs minimum 576 bytes to work correctly.
   4529	 */
   4530	if (netdev->wanted_features) {
   4531		if (!(netdev->wanted_features & NETIF_F_TSO) ||
   4532		    netdev->mtu < 576)
   4533			netdev->features &= ~NETIF_F_TSO;
   4534		if (!(netdev->wanted_features & NETIF_F_TSO6) ||
   4535		    netdev->mtu < 576)
   4536			netdev->features &= ~NETIF_F_TSO6;
   4537		if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
   4538			netdev->features &= ~NETIF_F_TSO_ECN;
   4539		if (!(netdev->wanted_features & NETIF_F_GRO))
   4540			netdev->features &= ~NETIF_F_GRO;
   4541		if (!(netdev->wanted_features & NETIF_F_GSO))
   4542			netdev->features &= ~NETIF_F_GSO;
   4543	}
   4544
   4545	return 0;
   4546}
   4547
   4548/**
   4549 * iavf_shutdown - Shutdown the device in preparation for a reboot
   4550 * @pdev: pci device structure
   4551 **/
   4552static void iavf_shutdown(struct pci_dev *pdev)
   4553{
   4554	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
   4555	struct net_device *netdev = adapter->netdev;
   4556
   4557	netif_device_detach(netdev);
   4558
   4559	if (netif_running(netdev))
   4560		iavf_close(netdev);
   4561
   4562	if (iavf_lock_timeout(&adapter->crit_lock, 5000))
   4563		dev_warn(&adapter->pdev->dev, "failed to acquire crit_lock in %s\n", __FUNCTION__);
   4564	/* Prevent the watchdog from running. */
   4565	iavf_change_state(adapter, __IAVF_REMOVE);
   4566	adapter->aq_required = 0;
   4567	mutex_unlock(&adapter->crit_lock);
   4568
   4569#ifdef CONFIG_PM
   4570	pci_save_state(pdev);
   4571
   4572#endif
   4573	pci_disable_device(pdev);
   4574}
   4575
   4576/**
   4577 * iavf_probe - Device Initialization Routine
   4578 * @pdev: PCI device information struct
   4579 * @ent: entry in iavf_pci_tbl
   4580 *
   4581 * Returns 0 on success, negative on failure
   4582 *
   4583 * iavf_probe initializes an adapter identified by a pci_dev structure.
   4584 * The OS initialization, configuring of the adapter private structure,
   4585 * and a hardware reset occur.
   4586 **/
   4587static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
   4588{
   4589	struct net_device *netdev;
   4590	struct iavf_adapter *adapter = NULL;
   4591	struct iavf_hw *hw = NULL;
   4592	int err;
   4593
   4594	err = pci_enable_device(pdev);
   4595	if (err)
   4596		return err;
   4597
   4598	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
   4599	if (err) {
   4600		dev_err(&pdev->dev,
   4601			"DMA configuration failed: 0x%x\n", err);
   4602		goto err_dma;
   4603	}
   4604
   4605	err = pci_request_regions(pdev, iavf_driver_name);
   4606	if (err) {
   4607		dev_err(&pdev->dev,
   4608			"pci_request_regions failed 0x%x\n", err);
   4609		goto err_pci_reg;
   4610	}
   4611
   4612	pci_enable_pcie_error_reporting(pdev);
   4613
   4614	pci_set_master(pdev);
   4615
   4616	netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
   4617				   IAVF_MAX_REQ_QUEUES);
   4618	if (!netdev) {
   4619		err = -ENOMEM;
   4620		goto err_alloc_etherdev;
   4621	}
   4622
   4623	SET_NETDEV_DEV(netdev, &pdev->dev);
   4624
   4625	pci_set_drvdata(pdev, netdev);
   4626	adapter = netdev_priv(netdev);
   4627
   4628	adapter->netdev = netdev;
   4629	adapter->pdev = pdev;
   4630
   4631	hw = &adapter->hw;
   4632	hw->back = adapter;
   4633
   4634	adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
   4635	iavf_change_state(adapter, __IAVF_STARTUP);
   4636
   4637	/* Call save state here because it relies on the adapter struct. */
   4638	pci_save_state(pdev);
   4639
   4640	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
   4641			      pci_resource_len(pdev, 0));
   4642	if (!hw->hw_addr) {
   4643		err = -EIO;
   4644		goto err_ioremap;
   4645	}
   4646	hw->vendor_id = pdev->vendor;
   4647	hw->device_id = pdev->device;
   4648	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
   4649	hw->subsystem_vendor_id = pdev->subsystem_vendor;
   4650	hw->subsystem_device_id = pdev->subsystem_device;
   4651	hw->bus.device = PCI_SLOT(pdev->devfn);
   4652	hw->bus.func = PCI_FUNC(pdev->devfn);
   4653	hw->bus.bus_id = pdev->bus->number;
   4654
   4655	/* set up the locks for the AQ, do this only once in probe
   4656	 * and destroy them only once in remove
   4657	 */
   4658	mutex_init(&adapter->crit_lock);
   4659	mutex_init(&adapter->client_lock);
   4660	mutex_init(&hw->aq.asq_mutex);
   4661	mutex_init(&hw->aq.arq_mutex);
   4662
   4663	spin_lock_init(&adapter->mac_vlan_list_lock);
   4664	spin_lock_init(&adapter->cloud_filter_list_lock);
   4665	spin_lock_init(&adapter->fdir_fltr_lock);
   4666	spin_lock_init(&adapter->adv_rss_lock);
   4667
   4668	INIT_LIST_HEAD(&adapter->mac_filter_list);
   4669	INIT_LIST_HEAD(&adapter->vlan_filter_list);
   4670	INIT_LIST_HEAD(&adapter->cloud_filter_list);
   4671	INIT_LIST_HEAD(&adapter->fdir_list_head);
   4672	INIT_LIST_HEAD(&adapter->adv_rss_list_head);
   4673
   4674	INIT_WORK(&adapter->reset_task, iavf_reset_task);
   4675	INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
   4676	INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
   4677	INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
   4678	queue_delayed_work(iavf_wq, &adapter->watchdog_task,
   4679			   msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
   4680
   4681	/* Setup the wait queue for indicating transition to down status */
   4682	init_waitqueue_head(&adapter->down_waitqueue);
   4683
   4684	return 0;
   4685
   4686err_ioremap:
   4687	free_netdev(netdev);
   4688err_alloc_etherdev:
   4689	pci_disable_pcie_error_reporting(pdev);
   4690	pci_release_regions(pdev);
   4691err_pci_reg:
   4692err_dma:
   4693	pci_disable_device(pdev);
   4694	return err;
   4695}
   4696
   4697/**
   4698 * iavf_suspend - Power management suspend routine
   4699 * @dev_d: device info pointer
   4700 *
   4701 * Called when the system (VM) is entering sleep/suspend.
   4702 **/
   4703static int __maybe_unused iavf_suspend(struct device *dev_d)
   4704{
   4705	struct net_device *netdev = dev_get_drvdata(dev_d);
   4706	struct iavf_adapter *adapter = netdev_priv(netdev);
   4707
   4708	netif_device_detach(netdev);
   4709
   4710	while (!mutex_trylock(&adapter->crit_lock))
   4711		usleep_range(500, 1000);
   4712
   4713	if (netif_running(netdev)) {
   4714		rtnl_lock();
   4715		iavf_down(adapter);
   4716		rtnl_unlock();
   4717	}
   4718	iavf_free_misc_irq(adapter);
   4719	iavf_reset_interrupt_capability(adapter);
   4720
   4721	mutex_unlock(&adapter->crit_lock);
   4722
   4723	return 0;
   4724}
   4725
   4726/**
   4727 * iavf_resume - Power management resume routine
   4728 * @dev_d: device info pointer
   4729 *
   4730 * Called when the system (VM) is resumed from sleep/suspend.
   4731 **/
   4732static int __maybe_unused iavf_resume(struct device *dev_d)
   4733{
   4734	struct pci_dev *pdev = to_pci_dev(dev_d);
   4735	struct iavf_adapter *adapter;
   4736	u32 err;
   4737
   4738	adapter = iavf_pdev_to_adapter(pdev);
   4739
   4740	pci_set_master(pdev);
   4741
   4742	rtnl_lock();
   4743	err = iavf_set_interrupt_capability(adapter);
   4744	if (err) {
   4745		rtnl_unlock();
   4746		dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
   4747		return err;
   4748	}
   4749	err = iavf_request_misc_irq(adapter);
   4750	rtnl_unlock();
   4751	if (err) {
   4752		dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
   4753		return err;
   4754	}
   4755
   4756	queue_work(iavf_wq, &adapter->reset_task);
   4757
   4758	netif_device_attach(adapter->netdev);
   4759
   4760	return err;
   4761}
   4762
   4763/**
   4764 * iavf_remove - Device Removal Routine
   4765 * @pdev: PCI device information struct
   4766 *
   4767 * iavf_remove is called by the PCI subsystem to alert the driver
   4768 * that it should release a PCI device.  The could be caused by a
   4769 * Hot-Plug event, or because the driver is going to be removed from
   4770 * memory.
   4771 **/
   4772static void iavf_remove(struct pci_dev *pdev)
   4773{
   4774	struct iavf_adapter *adapter = iavf_pdev_to_adapter(pdev);
   4775	struct net_device *netdev = adapter->netdev;
   4776	struct iavf_fdir_fltr *fdir, *fdirtmp;
   4777	struct iavf_vlan_filter *vlf, *vlftmp;
   4778	struct iavf_adv_rss *rss, *rsstmp;
   4779	struct iavf_mac_filter *f, *ftmp;
   4780	struct iavf_cloud_filter *cf, *cftmp;
   4781	struct iavf_hw *hw = &adapter->hw;
   4782	int err;
   4783
   4784	/* When reboot/shutdown is in progress no need to do anything
   4785	 * as the adapter is already REMOVE state that was set during
   4786	 * iavf_shutdown() callback.
   4787	 */
   4788	if (adapter->state == __IAVF_REMOVE)
   4789		return;
   4790
   4791	set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
   4792	/* Wait until port initialization is complete.
   4793	 * There are flows where register/unregister netdev may race.
   4794	 */
   4795	while (1) {
   4796		mutex_lock(&adapter->crit_lock);
   4797		if (adapter->state == __IAVF_RUNNING ||
   4798		    adapter->state == __IAVF_DOWN ||
   4799		    adapter->state == __IAVF_INIT_FAILED) {
   4800			mutex_unlock(&adapter->crit_lock);
   4801			break;
   4802		}
   4803
   4804		mutex_unlock(&adapter->crit_lock);
   4805		usleep_range(500, 1000);
   4806	}
   4807	cancel_delayed_work_sync(&adapter->watchdog_task);
   4808
   4809	if (adapter->netdev_registered) {
   4810		rtnl_lock();
   4811		unregister_netdevice(netdev);
   4812		adapter->netdev_registered = false;
   4813		rtnl_unlock();
   4814	}
   4815	if (CLIENT_ALLOWED(adapter)) {
   4816		err = iavf_lan_del_device(adapter);
   4817		if (err)
   4818			dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
   4819				 err);
   4820	}
   4821
   4822	mutex_lock(&adapter->crit_lock);
   4823	dev_info(&adapter->pdev->dev, "Remove device\n");
   4824	iavf_change_state(adapter, __IAVF_REMOVE);
   4825
   4826	iavf_request_reset(adapter);
   4827	msleep(50);
   4828	/* If the FW isn't responding, kick it once, but only once. */
   4829	if (!iavf_asq_done(hw)) {
   4830		iavf_request_reset(adapter);
   4831		msleep(50);
   4832	}
   4833
   4834	iavf_misc_irq_disable(adapter);
   4835	/* Shut down all the garbage mashers on the detention level */
   4836	cancel_work_sync(&adapter->reset_task);
   4837	cancel_delayed_work_sync(&adapter->watchdog_task);
   4838	cancel_work_sync(&adapter->adminq_task);
   4839	cancel_delayed_work_sync(&adapter->client_task);
   4840
   4841	adapter->aq_required = 0;
   4842	adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
   4843
   4844	iavf_free_all_tx_resources(adapter);
   4845	iavf_free_all_rx_resources(adapter);
   4846	iavf_free_misc_irq(adapter);
   4847
   4848	iavf_reset_interrupt_capability(adapter);
   4849	iavf_free_q_vectors(adapter);
   4850
   4851	iavf_free_rss(adapter);
   4852
   4853	if (hw->aq.asq.count)
   4854		iavf_shutdown_adminq(hw);
   4855
   4856	/* destroy the locks only once, here */
   4857	mutex_destroy(&hw->aq.arq_mutex);
   4858	mutex_destroy(&hw->aq.asq_mutex);
   4859	mutex_destroy(&adapter->client_lock);
   4860	mutex_unlock(&adapter->crit_lock);
   4861	mutex_destroy(&adapter->crit_lock);
   4862
   4863	iounmap(hw->hw_addr);
   4864	pci_release_regions(pdev);
   4865	iavf_free_queues(adapter);
   4866	kfree(adapter->vf_res);
   4867	spin_lock_bh(&adapter->mac_vlan_list_lock);
   4868	/* If we got removed before an up/down sequence, we've got a filter
   4869	 * hanging out there that we need to get rid of.
   4870	 */
   4871	list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
   4872		list_del(&f->list);
   4873		kfree(f);
   4874	}
   4875	list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
   4876				 list) {
   4877		list_del(&vlf->list);
   4878		kfree(vlf);
   4879	}
   4880
   4881	spin_unlock_bh(&adapter->mac_vlan_list_lock);
   4882
   4883	spin_lock_bh(&adapter->cloud_filter_list_lock);
   4884	list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
   4885		list_del(&cf->list);
   4886		kfree(cf);
   4887	}
   4888	spin_unlock_bh(&adapter->cloud_filter_list_lock);
   4889
   4890	spin_lock_bh(&adapter->fdir_fltr_lock);
   4891	list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
   4892		list_del(&fdir->list);
   4893		kfree(fdir);
   4894	}
   4895	spin_unlock_bh(&adapter->fdir_fltr_lock);
   4896
   4897	spin_lock_bh(&adapter->adv_rss_lock);
   4898	list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
   4899				 list) {
   4900		list_del(&rss->list);
   4901		kfree(rss);
   4902	}
   4903	spin_unlock_bh(&adapter->adv_rss_lock);
   4904
   4905	free_netdev(netdev);
   4906
   4907	pci_disable_pcie_error_reporting(pdev);
   4908
   4909	pci_disable_device(pdev);
   4910}
   4911
   4912static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
   4913
   4914static struct pci_driver iavf_driver = {
   4915	.name      = iavf_driver_name,
   4916	.id_table  = iavf_pci_tbl,
   4917	.probe     = iavf_probe,
   4918	.remove    = iavf_remove,
   4919	.driver.pm = &iavf_pm_ops,
   4920	.shutdown  = iavf_shutdown,
   4921};
   4922
   4923/**
   4924 * iavf_init_module - Driver Registration Routine
   4925 *
   4926 * iavf_init_module is the first routine called when the driver is
   4927 * loaded. All it does is register with the PCI subsystem.
   4928 **/
   4929static int __init iavf_init_module(void)
   4930{
   4931	pr_info("iavf: %s\n", iavf_driver_string);
   4932
   4933	pr_info("%s\n", iavf_copyright);
   4934
   4935	iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
   4936				  iavf_driver_name);
   4937	if (!iavf_wq) {
   4938		pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
   4939		return -ENOMEM;
   4940	}
   4941	return pci_register_driver(&iavf_driver);
   4942}
   4943
   4944module_init(iavf_init_module);
   4945
   4946/**
   4947 * iavf_exit_module - Driver Exit Cleanup Routine
   4948 *
   4949 * iavf_exit_module is called just before the driver is removed
   4950 * from memory.
   4951 **/
   4952static void __exit iavf_exit_module(void)
   4953{
   4954	pci_unregister_driver(&iavf_driver);
   4955	destroy_workqueue(iavf_wq);
   4956}
   4957
   4958module_exit(iavf_exit_module);
   4959
   4960/* iavf_main.c */