cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ice_flex_pipe.c (161979B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright (c) 2019, Intel Corporation. */
      3
      4#include "ice_common.h"
      5#include "ice_flex_pipe.h"
      6#include "ice_flow.h"
      7#include "ice.h"
      8
      9/* For supporting double VLAN mode, it is necessary to enable or disable certain
     10 * boost tcam entries. The metadata labels names that match the following
     11 * prefixes will be saved to allow enabling double VLAN mode.
     12 */
     13#define ICE_DVM_PRE	"BOOST_MAC_VLAN_DVM"	/* enable these entries */
     14#define ICE_SVM_PRE	"BOOST_MAC_VLAN_SVM"	/* disable these entries */
     15
     16/* To support tunneling entries by PF, the package will append the PF number to
     17 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
     18 */
     19#define ICE_TNL_PRE	"TNL_"
     20static const struct ice_tunnel_type_scan tnls[] = {
     21	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
     22	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
     23	{ TNL_LAST,		"" }
     24};
     25
     26static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
     27	/* SWITCH */
     28	{
     29		ICE_SID_XLT0_SW,
     30		ICE_SID_XLT_KEY_BUILDER_SW,
     31		ICE_SID_XLT1_SW,
     32		ICE_SID_XLT2_SW,
     33		ICE_SID_PROFID_TCAM_SW,
     34		ICE_SID_PROFID_REDIR_SW,
     35		ICE_SID_FLD_VEC_SW,
     36		ICE_SID_CDID_KEY_BUILDER_SW,
     37		ICE_SID_CDID_REDIR_SW
     38	},
     39
     40	/* ACL */
     41	{
     42		ICE_SID_XLT0_ACL,
     43		ICE_SID_XLT_KEY_BUILDER_ACL,
     44		ICE_SID_XLT1_ACL,
     45		ICE_SID_XLT2_ACL,
     46		ICE_SID_PROFID_TCAM_ACL,
     47		ICE_SID_PROFID_REDIR_ACL,
     48		ICE_SID_FLD_VEC_ACL,
     49		ICE_SID_CDID_KEY_BUILDER_ACL,
     50		ICE_SID_CDID_REDIR_ACL
     51	},
     52
     53	/* FD */
     54	{
     55		ICE_SID_XLT0_FD,
     56		ICE_SID_XLT_KEY_BUILDER_FD,
     57		ICE_SID_XLT1_FD,
     58		ICE_SID_XLT2_FD,
     59		ICE_SID_PROFID_TCAM_FD,
     60		ICE_SID_PROFID_REDIR_FD,
     61		ICE_SID_FLD_VEC_FD,
     62		ICE_SID_CDID_KEY_BUILDER_FD,
     63		ICE_SID_CDID_REDIR_FD
     64	},
     65
     66	/* RSS */
     67	{
     68		ICE_SID_XLT0_RSS,
     69		ICE_SID_XLT_KEY_BUILDER_RSS,
     70		ICE_SID_XLT1_RSS,
     71		ICE_SID_XLT2_RSS,
     72		ICE_SID_PROFID_TCAM_RSS,
     73		ICE_SID_PROFID_REDIR_RSS,
     74		ICE_SID_FLD_VEC_RSS,
     75		ICE_SID_CDID_KEY_BUILDER_RSS,
     76		ICE_SID_CDID_REDIR_RSS
     77	},
     78
     79	/* PE */
     80	{
     81		ICE_SID_XLT0_PE,
     82		ICE_SID_XLT_KEY_BUILDER_PE,
     83		ICE_SID_XLT1_PE,
     84		ICE_SID_XLT2_PE,
     85		ICE_SID_PROFID_TCAM_PE,
     86		ICE_SID_PROFID_REDIR_PE,
     87		ICE_SID_FLD_VEC_PE,
     88		ICE_SID_CDID_KEY_BUILDER_PE,
     89		ICE_SID_CDID_REDIR_PE
     90	}
     91};
     92
     93/**
     94 * ice_sect_id - returns section ID
     95 * @blk: block type
     96 * @sect: section type
     97 *
     98 * This helper function returns the proper section ID given a block type and a
     99 * section type.
    100 */
    101static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
    102{
    103	return ice_sect_lkup[blk][sect];
    104}
    105
    106/**
    107 * ice_pkg_val_buf
    108 * @buf: pointer to the ice buffer
    109 *
    110 * This helper function validates a buffer's header.
    111 */
    112static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
    113{
    114	struct ice_buf_hdr *hdr;
    115	u16 section_count;
    116	u16 data_end;
    117
    118	hdr = (struct ice_buf_hdr *)buf->buf;
    119	/* verify data */
    120	section_count = le16_to_cpu(hdr->section_count);
    121	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
    122		return NULL;
    123
    124	data_end = le16_to_cpu(hdr->data_end);
    125	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
    126		return NULL;
    127
    128	return hdr;
    129}
    130
    131/**
    132 * ice_find_buf_table
    133 * @ice_seg: pointer to the ice segment
    134 *
    135 * Returns the address of the buffer table within the ice segment.
    136 */
    137static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
    138{
    139	struct ice_nvm_table *nvms;
    140
    141	nvms = (struct ice_nvm_table *)
    142		(ice_seg->device_table +
    143		 le32_to_cpu(ice_seg->device_table_count));
    144
    145	return (__force struct ice_buf_table *)
    146		(nvms->vers + le32_to_cpu(nvms->table_count));
    147}
    148
    149/**
    150 * ice_pkg_enum_buf
    151 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
    152 * @state: pointer to the enum state
    153 *
    154 * This function will enumerate all the buffers in the ice segment. The first
    155 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
    156 * ice_seg is set to NULL which continues the enumeration. When the function
    157 * returns a NULL pointer, then the end of the buffers has been reached, or an
    158 * unexpected value has been detected (for example an invalid section count or
    159 * an invalid buffer end value).
    160 */
    161static struct ice_buf_hdr *
    162ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
    163{
    164	if (ice_seg) {
    165		state->buf_table = ice_find_buf_table(ice_seg);
    166		if (!state->buf_table)
    167			return NULL;
    168
    169		state->buf_idx = 0;
    170		return ice_pkg_val_buf(state->buf_table->buf_array);
    171	}
    172
    173	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
    174		return ice_pkg_val_buf(state->buf_table->buf_array +
    175				       state->buf_idx);
    176	else
    177		return NULL;
    178}
    179
    180/**
    181 * ice_pkg_advance_sect
    182 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
    183 * @state: pointer to the enum state
    184 *
    185 * This helper function will advance the section within the ice segment,
    186 * also advancing the buffer if needed.
    187 */
    188static bool
    189ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
    190{
    191	if (!ice_seg && !state->buf)
    192		return false;
    193
    194	if (!ice_seg && state->buf)
    195		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
    196			return true;
    197
    198	state->buf = ice_pkg_enum_buf(ice_seg, state);
    199	if (!state->buf)
    200		return false;
    201
    202	/* start of new buffer, reset section index */
    203	state->sect_idx = 0;
    204	return true;
    205}
    206
    207/**
    208 * ice_pkg_enum_section
    209 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
    210 * @state: pointer to the enum state
    211 * @sect_type: section type to enumerate
    212 *
    213 * This function will enumerate all the sections of a particular type in the
    214 * ice segment. The first call is made with the ice_seg parameter non-NULL;
    215 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
    216 * When the function returns a NULL pointer, then the end of the matching
    217 * sections has been reached.
    218 */
    219static void *
    220ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
    221		     u32 sect_type)
    222{
    223	u16 offset, size;
    224
    225	if (ice_seg)
    226		state->type = sect_type;
    227
    228	if (!ice_pkg_advance_sect(ice_seg, state))
    229		return NULL;
    230
    231	/* scan for next matching section */
    232	while (state->buf->section_entry[state->sect_idx].type !=
    233	       cpu_to_le32(state->type))
    234		if (!ice_pkg_advance_sect(NULL, state))
    235			return NULL;
    236
    237	/* validate section */
    238	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
    239	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
    240		return NULL;
    241
    242	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
    243	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
    244		return NULL;
    245
    246	/* make sure the section fits in the buffer */
    247	if (offset + size > ICE_PKG_BUF_SIZE)
    248		return NULL;
    249
    250	state->sect_type =
    251		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
    252
    253	/* calc pointer to this section */
    254	state->sect = ((u8 *)state->buf) +
    255		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
    256
    257	return state->sect;
    258}
    259
    260/**
    261 * ice_pkg_enum_entry
    262 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
    263 * @state: pointer to the enum state
    264 * @sect_type: section type to enumerate
    265 * @offset: pointer to variable that receives the offset in the table (optional)
    266 * @handler: function that handles access to the entries into the section type
    267 *
    268 * This function will enumerate all the entries in particular section type in
    269 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
    270 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
    271 * When the function returns a NULL pointer, then the end of the entries has
    272 * been reached.
    273 *
    274 * Since each section may have a different header and entry size, the handler
    275 * function is needed to determine the number and location entries in each
    276 * section.
    277 *
    278 * The offset parameter is optional, but should be used for sections that
    279 * contain an offset for each section table. For such cases, the section handler
    280 * function must return the appropriate offset + index to give the absolution
    281 * offset for each entry. For example, if the base for a section's header
    282 * indicates a base offset of 10, and the index for the entry is 2, then
    283 * section handler function should set the offset to 10 + 2 = 12.
    284 */
    285static void *
    286ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
    287		   u32 sect_type, u32 *offset,
    288		   void *(*handler)(u32 sect_type, void *section,
    289				    u32 index, u32 *offset))
    290{
    291	void *entry;
    292
    293	if (ice_seg) {
    294		if (!handler)
    295			return NULL;
    296
    297		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
    298			return NULL;
    299
    300		state->entry_idx = 0;
    301		state->handler = handler;
    302	} else {
    303		state->entry_idx++;
    304	}
    305
    306	if (!state->handler)
    307		return NULL;
    308
    309	/* get entry */
    310	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
    311			       offset);
    312	if (!entry) {
    313		/* end of a section, look for another section of this type */
    314		if (!ice_pkg_enum_section(NULL, state, 0))
    315			return NULL;
    316
    317		state->entry_idx = 0;
    318		entry = state->handler(state->sect_type, state->sect,
    319				       state->entry_idx, offset);
    320	}
    321
    322	return entry;
    323}
    324
    325/**
    326 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
    327 * @hw: pointer to the HW structure
    328 * @ptype: the hardware PTYPE
    329 */
    330bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
    331{
    332	return ptype < ICE_FLOW_PTYPE_MAX &&
    333	       test_bit(ptype, hw->hw_ptype);
    334}
    335
    336/**
    337 * ice_marker_ptype_tcam_handler
    338 * @sect_type: section type
    339 * @section: pointer to section
    340 * @index: index of the Marker PType TCAM entry to be returned
    341 * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
    342 *
    343 * This is a callback function that can be passed to ice_pkg_enum_entry.
    344 * Handles enumeration of individual Marker PType TCAM entries.
    345 */
    346static void *
    347ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
    348			      u32 *offset)
    349{
    350	struct ice_marker_ptype_tcam_section *marker_ptype;
    351
    352	if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
    353		return NULL;
    354
    355	if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
    356		return NULL;
    357
    358	if (offset)
    359		*offset = 0;
    360
    361	marker_ptype = section;
    362	if (index >= le16_to_cpu(marker_ptype->count))
    363		return NULL;
    364
    365	return marker_ptype->tcam + index;
    366}
    367
    368/**
    369 * ice_fill_hw_ptype - fill the enabled PTYPE bit information
    370 * @hw: pointer to the HW structure
    371 */
    372static void ice_fill_hw_ptype(struct ice_hw *hw)
    373{
    374	struct ice_marker_ptype_tcam_entry *tcam;
    375	struct ice_seg *seg = hw->seg;
    376	struct ice_pkg_enum state;
    377
    378	bitmap_zero(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
    379	if (!seg)
    380		return;
    381
    382	memset(&state, 0, sizeof(state));
    383
    384	do {
    385		tcam = ice_pkg_enum_entry(seg, &state,
    386					  ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
    387					  ice_marker_ptype_tcam_handler);
    388		if (tcam &&
    389		    le16_to_cpu(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
    390		    le16_to_cpu(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
    391			set_bit(le16_to_cpu(tcam->ptype), hw->hw_ptype);
    392
    393		seg = NULL;
    394	} while (tcam);
    395}
    396
    397/**
    398 * ice_boost_tcam_handler
    399 * @sect_type: section type
    400 * @section: pointer to section
    401 * @index: index of the boost TCAM entry to be returned
    402 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
    403 *
    404 * This is a callback function that can be passed to ice_pkg_enum_entry.
    405 * Handles enumeration of individual boost TCAM entries.
    406 */
    407static void *
    408ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
    409{
    410	struct ice_boost_tcam_section *boost;
    411
    412	if (!section)
    413		return NULL;
    414
    415	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
    416		return NULL;
    417
    418	/* cppcheck-suppress nullPointer */
    419	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
    420		return NULL;
    421
    422	if (offset)
    423		*offset = 0;
    424
    425	boost = section;
    426	if (index >= le16_to_cpu(boost->count))
    427		return NULL;
    428
    429	return boost->tcam + index;
    430}
    431
    432/**
    433 * ice_find_boost_entry
    434 * @ice_seg: pointer to the ice segment (non-NULL)
    435 * @addr: Boost TCAM address of entry to search for
    436 * @entry: returns pointer to the entry
    437 *
    438 * Finds a particular Boost TCAM entry and returns a pointer to that entry
    439 * if it is found. The ice_seg parameter must not be NULL since the first call
    440 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
    441 */
    442static int
    443ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
    444		     struct ice_boost_tcam_entry **entry)
    445{
    446	struct ice_boost_tcam_entry *tcam;
    447	struct ice_pkg_enum state;
    448
    449	memset(&state, 0, sizeof(state));
    450
    451	if (!ice_seg)
    452		return -EINVAL;
    453
    454	do {
    455		tcam = ice_pkg_enum_entry(ice_seg, &state,
    456					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
    457					  ice_boost_tcam_handler);
    458		if (tcam && le16_to_cpu(tcam->addr) == addr) {
    459			*entry = tcam;
    460			return 0;
    461		}
    462
    463		ice_seg = NULL;
    464	} while (tcam);
    465
    466	*entry = NULL;
    467	return -EIO;
    468}
    469
    470/**
    471 * ice_label_enum_handler
    472 * @sect_type: section type
    473 * @section: pointer to section
    474 * @index: index of the label entry to be returned
    475 * @offset: pointer to receive absolute offset, always zero for label sections
    476 *
    477 * This is a callback function that can be passed to ice_pkg_enum_entry.
    478 * Handles enumeration of individual label entries.
    479 */
    480static void *
    481ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
    482		       u32 *offset)
    483{
    484	struct ice_label_section *labels;
    485
    486	if (!section)
    487		return NULL;
    488
    489	/* cppcheck-suppress nullPointer */
    490	if (index > ICE_MAX_LABELS_IN_BUF)
    491		return NULL;
    492
    493	if (offset)
    494		*offset = 0;
    495
    496	labels = section;
    497	if (index >= le16_to_cpu(labels->count))
    498		return NULL;
    499
    500	return labels->label + index;
    501}
    502
    503/**
    504 * ice_enum_labels
    505 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
    506 * @type: the section type that will contain the label (0 on subsequent calls)
    507 * @state: ice_pkg_enum structure that will hold the state of the enumeration
    508 * @value: pointer to a value that will return the label's value if found
    509 *
    510 * Enumerates a list of labels in the package. The caller will call
    511 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
    512 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
    513 * the end of the list has been reached.
    514 */
    515static char *
    516ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
    517		u16 *value)
    518{
    519	struct ice_label *label;
    520
    521	/* Check for valid label section on first call */
    522	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
    523		return NULL;
    524
    525	label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
    526				   ice_label_enum_handler);
    527	if (!label)
    528		return NULL;
    529
    530	*value = le16_to_cpu(label->value);
    531	return label->name;
    532}
    533
    534/**
    535 * ice_add_tunnel_hint
    536 * @hw: pointer to the HW structure
    537 * @label_name: label text
    538 * @val: value of the tunnel port boost entry
    539 */
    540static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
    541{
    542	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
    543		u16 i;
    544
    545		for (i = 0; tnls[i].type != TNL_LAST; i++) {
    546			size_t len = strlen(tnls[i].label_prefix);
    547
    548			/* Look for matching label start, before continuing */
    549			if (strncmp(label_name, tnls[i].label_prefix, len))
    550				continue;
    551
    552			/* Make sure this label matches our PF. Note that the PF
    553			 * character ('0' - '7') will be located where our
    554			 * prefix string's null terminator is located.
    555			 */
    556			if ((label_name[len] - '0') == hw->pf_id) {
    557				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
    558				hw->tnl.tbl[hw->tnl.count].valid = false;
    559				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
    560				hw->tnl.tbl[hw->tnl.count].port = 0;
    561				hw->tnl.count++;
    562				break;
    563			}
    564		}
    565	}
    566}
    567
    568/**
    569 * ice_add_dvm_hint
    570 * @hw: pointer to the HW structure
    571 * @val: value of the boost entry
    572 * @enable: true if entry needs to be enabled, or false if needs to be disabled
    573 */
    574static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
    575{
    576	if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
    577		hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
    578		hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
    579		hw->dvm_upd.count++;
    580	}
    581}
    582
    583/**
    584 * ice_init_pkg_hints
    585 * @hw: pointer to the HW structure
    586 * @ice_seg: pointer to the segment of the package scan (non-NULL)
    587 *
    588 * This function will scan the package and save off relevant information
    589 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
    590 * since the first call to ice_enum_labels requires a pointer to an actual
    591 * ice_seg structure.
    592 */
    593static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
    594{
    595	struct ice_pkg_enum state;
    596	char *label_name;
    597	u16 val;
    598	int i;
    599
    600	memset(&hw->tnl, 0, sizeof(hw->tnl));
    601	memset(&state, 0, sizeof(state));
    602
    603	if (!ice_seg)
    604		return;
    605
    606	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
    607				     &val);
    608
    609	while (label_name) {
    610		if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
    611			/* check for a tunnel entry */
    612			ice_add_tunnel_hint(hw, label_name, val);
    613
    614		/* check for a dvm mode entry */
    615		else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
    616			ice_add_dvm_hint(hw, val, true);
    617
    618		/* check for a svm mode entry */
    619		else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
    620			ice_add_dvm_hint(hw, val, false);
    621
    622		label_name = ice_enum_labels(NULL, 0, &state, &val);
    623	}
    624
    625	/* Cache the appropriate boost TCAM entry pointers for tunnels */
    626	for (i = 0; i < hw->tnl.count; i++) {
    627		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
    628				     &hw->tnl.tbl[i].boost_entry);
    629		if (hw->tnl.tbl[i].boost_entry) {
    630			hw->tnl.tbl[i].valid = true;
    631			if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
    632				hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
    633		}
    634	}
    635
    636	/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
    637	for (i = 0; i < hw->dvm_upd.count; i++)
    638		ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
    639				     &hw->dvm_upd.tbl[i].boost_entry);
    640}
    641
    642/* Key creation */
    643
    644#define ICE_DC_KEY	0x1	/* don't care */
    645#define ICE_DC_KEYINV	0x1
    646#define ICE_NM_KEY	0x0	/* never match */
    647#define ICE_NM_KEYINV	0x0
    648#define ICE_0_KEY	0x1	/* match 0 */
    649#define ICE_0_KEYINV	0x0
    650#define ICE_1_KEY	0x0	/* match 1 */
    651#define ICE_1_KEYINV	0x1
    652
    653/**
    654 * ice_gen_key_word - generate 16-bits of a key/mask word
    655 * @val: the value
    656 * @valid: valid bits mask (change only the valid bits)
    657 * @dont_care: don't care mask
    658 * @nvr_mtch: never match mask
    659 * @key: pointer to an array of where the resulting key portion
    660 * @key_inv: pointer to an array of where the resulting key invert portion
    661 *
    662 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
    663 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
    664 * of key and 8 bits of key invert.
    665 *
    666 *     '0' =    b01, always match a 0 bit
    667 *     '1' =    b10, always match a 1 bit
    668 *     '?' =    b11, don't care bit (always matches)
    669 *     '~' =    b00, never match bit
    670 *
    671 * Input:
    672 *          val:         b0  1  0  1  0  1
    673 *          dont_care:   b0  0  1  1  0  0
    674 *          never_mtch:  b0  0  0  0  1  1
    675 *          ------------------------------
    676 * Result:  key:        b01 10 11 11 00 00
    677 */
    678static int
    679ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
    680		 u8 *key_inv)
    681{
    682	u8 in_key = *key, in_key_inv = *key_inv;
    683	u8 i;
    684
    685	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
    686	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
    687		return -EIO;
    688
    689	*key = 0;
    690	*key_inv = 0;
    691
    692	/* encode the 8 bits into 8-bit key and 8-bit key invert */
    693	for (i = 0; i < 8; i++) {
    694		*key >>= 1;
    695		*key_inv >>= 1;
    696
    697		if (!(valid & 0x1)) { /* change only valid bits */
    698			*key |= (in_key & 0x1) << 7;
    699			*key_inv |= (in_key_inv & 0x1) << 7;
    700		} else if (dont_care & 0x1) { /* don't care bit */
    701			*key |= ICE_DC_KEY << 7;
    702			*key_inv |= ICE_DC_KEYINV << 7;
    703		} else if (nvr_mtch & 0x1) { /* never match bit */
    704			*key |= ICE_NM_KEY << 7;
    705			*key_inv |= ICE_NM_KEYINV << 7;
    706		} else if (val & 0x01) { /* exact 1 match */
    707			*key |= ICE_1_KEY << 7;
    708			*key_inv |= ICE_1_KEYINV << 7;
    709		} else { /* exact 0 match */
    710			*key |= ICE_0_KEY << 7;
    711			*key_inv |= ICE_0_KEYINV << 7;
    712		}
    713
    714		dont_care >>= 1;
    715		nvr_mtch >>= 1;
    716		valid >>= 1;
    717		val >>= 1;
    718		in_key >>= 1;
    719		in_key_inv >>= 1;
    720	}
    721
    722	return 0;
    723}
    724
    725/**
    726 * ice_bits_max_set - determine if the number of bits set is within a maximum
    727 * @mask: pointer to the byte array which is the mask
    728 * @size: the number of bytes in the mask
    729 * @max: the max number of set bits
    730 *
    731 * This function determines if there are at most 'max' number of bits set in an
    732 * array. Returns true if the number for bits set is <= max or will return false
    733 * otherwise.
    734 */
    735static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
    736{
    737	u16 count = 0;
    738	u16 i;
    739
    740	/* check each byte */
    741	for (i = 0; i < size; i++) {
    742		/* if 0, go to next byte */
    743		if (!mask[i])
    744			continue;
    745
    746		/* We know there is at least one set bit in this byte because of
    747		 * the above check; if we already have found 'max' number of
    748		 * bits set, then we can return failure now.
    749		 */
    750		if (count == max)
    751			return false;
    752
    753		/* count the bits in this byte, checking threshold */
    754		count += hweight8(mask[i]);
    755		if (count > max)
    756			return false;
    757	}
    758
    759	return true;
    760}
    761
    762/**
    763 * ice_set_key - generate a variable sized key with multiples of 16-bits
    764 * @key: pointer to where the key will be stored
    765 * @size: the size of the complete key in bytes (must be even)
    766 * @val: array of 8-bit values that makes up the value portion of the key
    767 * @upd: array of 8-bit masks that determine what key portion to update
    768 * @dc: array of 8-bit masks that make up the don't care mask
    769 * @nm: array of 8-bit masks that make up the never match mask
    770 * @off: the offset of the first byte in the key to update
    771 * @len: the number of bytes in the key update
    772 *
    773 * This function generates a key from a value, a don't care mask and a never
    774 * match mask.
    775 * upd, dc, and nm are optional parameters, and can be NULL:
    776 *	upd == NULL --> upd mask is all 1's (update all bits)
    777 *	dc == NULL --> dc mask is all 0's (no don't care bits)
    778 *	nm == NULL --> nm mask is all 0's (no never match bits)
    779 */
    780static int
    781ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
    782	    u16 len)
    783{
    784	u16 half_size;
    785	u16 i;
    786
    787	/* size must be a multiple of 2 bytes. */
    788	if (size % 2)
    789		return -EIO;
    790
    791	half_size = size / 2;
    792	if (off + len > half_size)
    793		return -EIO;
    794
    795	/* Make sure at most one bit is set in the never match mask. Having more
    796	 * than one never match mask bit set will cause HW to consume excessive
    797	 * power otherwise; this is a power management efficiency check.
    798	 */
    799#define ICE_NVR_MTCH_BITS_MAX	1
    800	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
    801		return -EIO;
    802
    803	for (i = 0; i < len; i++)
    804		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
    805				     dc ? dc[i] : 0, nm ? nm[i] : 0,
    806				     key + off + i, key + half_size + off + i))
    807			return -EIO;
    808
    809	return 0;
    810}
    811
    812/**
    813 * ice_acquire_global_cfg_lock
    814 * @hw: pointer to the HW structure
    815 * @access: access type (read or write)
    816 *
    817 * This function will request ownership of the global config lock for reading
    818 * or writing of the package. When attempting to obtain write access, the
    819 * caller must check for the following two return values:
    820 *
    821 * 0         -  Means the caller has acquired the global config lock
    822 *              and can perform writing of the package.
    823 * -EALREADY - Indicates another driver has already written the
    824 *             package or has found that no update was necessary; in
    825 *             this case, the caller can just skip performing any
    826 *             update of the package.
    827 */
    828static int
    829ice_acquire_global_cfg_lock(struct ice_hw *hw,
    830			    enum ice_aq_res_access_type access)
    831{
    832	int status;
    833
    834	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
    835				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
    836
    837	if (!status)
    838		mutex_lock(&ice_global_cfg_lock_sw);
    839	else if (status == -EALREADY)
    840		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
    841
    842	return status;
    843}
    844
    845/**
    846 * ice_release_global_cfg_lock
    847 * @hw: pointer to the HW structure
    848 *
    849 * This function will release the global config lock.
    850 */
    851static void ice_release_global_cfg_lock(struct ice_hw *hw)
    852{
    853	mutex_unlock(&ice_global_cfg_lock_sw);
    854	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
    855}
    856
    857/**
    858 * ice_acquire_change_lock
    859 * @hw: pointer to the HW structure
    860 * @access: access type (read or write)
    861 *
    862 * This function will request ownership of the change lock.
    863 */
    864int
    865ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
    866{
    867	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
    868			       ICE_CHANGE_LOCK_TIMEOUT);
    869}
    870
    871/**
    872 * ice_release_change_lock
    873 * @hw: pointer to the HW structure
    874 *
    875 * This function will release the change lock using the proper Admin Command.
    876 */
    877void ice_release_change_lock(struct ice_hw *hw)
    878{
    879	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
    880}
    881
    882/**
    883 * ice_aq_download_pkg
    884 * @hw: pointer to the hardware structure
    885 * @pkg_buf: the package buffer to transfer
    886 * @buf_size: the size of the package buffer
    887 * @last_buf: last buffer indicator
    888 * @error_offset: returns error offset
    889 * @error_info: returns error information
    890 * @cd: pointer to command details structure or NULL
    891 *
    892 * Download Package (0x0C40)
    893 */
    894static int
    895ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
    896		    u16 buf_size, bool last_buf, u32 *error_offset,
    897		    u32 *error_info, struct ice_sq_cd *cd)
    898{
    899	struct ice_aqc_download_pkg *cmd;
    900	struct ice_aq_desc desc;
    901	int status;
    902
    903	if (error_offset)
    904		*error_offset = 0;
    905	if (error_info)
    906		*error_info = 0;
    907
    908	cmd = &desc.params.download_pkg;
    909	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
    910	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
    911
    912	if (last_buf)
    913		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
    914
    915	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
    916	if (status == -EIO) {
    917		/* Read error from buffer only when the FW returned an error */
    918		struct ice_aqc_download_pkg_resp *resp;
    919
    920		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
    921		if (error_offset)
    922			*error_offset = le32_to_cpu(resp->error_offset);
    923		if (error_info)
    924			*error_info = le32_to_cpu(resp->error_info);
    925	}
    926
    927	return status;
    928}
    929
    930/**
    931 * ice_aq_upload_section
    932 * @hw: pointer to the hardware structure
    933 * @pkg_buf: the package buffer which will receive the section
    934 * @buf_size: the size of the package buffer
    935 * @cd: pointer to command details structure or NULL
    936 *
    937 * Upload Section (0x0C41)
    938 */
    939int
    940ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
    941		      u16 buf_size, struct ice_sq_cd *cd)
    942{
    943	struct ice_aq_desc desc;
    944
    945	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
    946	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
    947
    948	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
    949}
    950
    951/**
    952 * ice_aq_update_pkg
    953 * @hw: pointer to the hardware structure
    954 * @pkg_buf: the package cmd buffer
    955 * @buf_size: the size of the package cmd buffer
    956 * @last_buf: last buffer indicator
    957 * @error_offset: returns error offset
    958 * @error_info: returns error information
    959 * @cd: pointer to command details structure or NULL
    960 *
    961 * Update Package (0x0C42)
    962 */
    963static int
    964ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
    965		  bool last_buf, u32 *error_offset, u32 *error_info,
    966		  struct ice_sq_cd *cd)
    967{
    968	struct ice_aqc_download_pkg *cmd;
    969	struct ice_aq_desc desc;
    970	int status;
    971
    972	if (error_offset)
    973		*error_offset = 0;
    974	if (error_info)
    975		*error_info = 0;
    976
    977	cmd = &desc.params.download_pkg;
    978	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
    979	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
    980
    981	if (last_buf)
    982		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
    983
    984	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
    985	if (status == -EIO) {
    986		/* Read error from buffer only when the FW returned an error */
    987		struct ice_aqc_download_pkg_resp *resp;
    988
    989		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
    990		if (error_offset)
    991			*error_offset = le32_to_cpu(resp->error_offset);
    992		if (error_info)
    993			*error_info = le32_to_cpu(resp->error_info);
    994	}
    995
    996	return status;
    997}
    998
    999/**
   1000 * ice_find_seg_in_pkg
   1001 * @hw: pointer to the hardware structure
   1002 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
   1003 * @pkg_hdr: pointer to the package header to be searched
   1004 *
   1005 * This function searches a package file for a particular segment type. On
   1006 * success it returns a pointer to the segment header, otherwise it will
   1007 * return NULL.
   1008 */
   1009static struct ice_generic_seg_hdr *
   1010ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
   1011		    struct ice_pkg_hdr *pkg_hdr)
   1012{
   1013	u32 i;
   1014
   1015	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
   1016		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
   1017		  pkg_hdr->pkg_format_ver.update,
   1018		  pkg_hdr->pkg_format_ver.draft);
   1019
   1020	/* Search all package segments for the requested segment type */
   1021	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
   1022		struct ice_generic_seg_hdr *seg;
   1023
   1024		seg = (struct ice_generic_seg_hdr *)
   1025			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
   1026
   1027		if (le32_to_cpu(seg->seg_type) == seg_type)
   1028			return seg;
   1029	}
   1030
   1031	return NULL;
   1032}
   1033
   1034/**
   1035 * ice_update_pkg_no_lock
   1036 * @hw: pointer to the hardware structure
   1037 * @bufs: pointer to an array of buffers
   1038 * @count: the number of buffers in the array
   1039 */
   1040static int
   1041ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
   1042{
   1043	int status = 0;
   1044	u32 i;
   1045
   1046	for (i = 0; i < count; i++) {
   1047		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
   1048		bool last = ((i + 1) == count);
   1049		u32 offset, info;
   1050
   1051		status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
   1052					   last, &offset, &info, NULL);
   1053
   1054		if (status) {
   1055			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
   1056				  status, offset, info);
   1057			break;
   1058		}
   1059	}
   1060
   1061	return status;
   1062}
   1063
   1064/**
   1065 * ice_update_pkg
   1066 * @hw: pointer to the hardware structure
   1067 * @bufs: pointer to an array of buffers
   1068 * @count: the number of buffers in the array
   1069 *
   1070 * Obtains change lock and updates package.
   1071 */
   1072static int ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
   1073{
   1074	int status;
   1075
   1076	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
   1077	if (status)
   1078		return status;
   1079
   1080	status = ice_update_pkg_no_lock(hw, bufs, count);
   1081
   1082	ice_release_change_lock(hw);
   1083
   1084	return status;
   1085}
   1086
   1087static enum ice_ddp_state ice_map_aq_err_to_ddp_state(enum ice_aq_err aq_err)
   1088{
   1089	switch (aq_err) {
   1090	case ICE_AQ_RC_ENOSEC:
   1091	case ICE_AQ_RC_EBADSIG:
   1092		return ICE_DDP_PKG_FILE_SIGNATURE_INVALID;
   1093	case ICE_AQ_RC_ESVN:
   1094		return ICE_DDP_PKG_FILE_REVISION_TOO_LOW;
   1095	case ICE_AQ_RC_EBADMAN:
   1096	case ICE_AQ_RC_EBADBUF:
   1097		return ICE_DDP_PKG_LOAD_ERROR;
   1098	default:
   1099		return ICE_DDP_PKG_ERR;
   1100	}
   1101}
   1102
   1103/**
   1104 * ice_dwnld_cfg_bufs
   1105 * @hw: pointer to the hardware structure
   1106 * @bufs: pointer to an array of buffers
   1107 * @count: the number of buffers in the array
   1108 *
   1109 * Obtains global config lock and downloads the package configuration buffers
   1110 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
   1111 * found indicates that the rest of the buffers are all metadata buffers.
   1112 */
   1113static enum ice_ddp_state
   1114ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
   1115{
   1116	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
   1117	struct ice_buf_hdr *bh;
   1118	enum ice_aq_err err;
   1119	u32 offset, info, i;
   1120	int status;
   1121
   1122	if (!bufs || !count)
   1123		return ICE_DDP_PKG_ERR;
   1124
   1125	/* If the first buffer's first section has its metadata bit set
   1126	 * then there are no buffers to be downloaded, and the operation is
   1127	 * considered a success.
   1128	 */
   1129	bh = (struct ice_buf_hdr *)bufs;
   1130	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
   1131		return ICE_DDP_PKG_SUCCESS;
   1132
   1133	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
   1134	if (status) {
   1135		if (status == -EALREADY)
   1136			return ICE_DDP_PKG_ALREADY_LOADED;
   1137		return ice_map_aq_err_to_ddp_state(hw->adminq.sq_last_status);
   1138	}
   1139
   1140	for (i = 0; i < count; i++) {
   1141		bool last = ((i + 1) == count);
   1142
   1143		if (!last) {
   1144			/* check next buffer for metadata flag */
   1145			bh = (struct ice_buf_hdr *)(bufs + i + 1);
   1146
   1147			/* A set metadata flag in the next buffer will signal
   1148			 * that the current buffer will be the last buffer
   1149			 * downloaded
   1150			 */
   1151			if (le16_to_cpu(bh->section_count))
   1152				if (le32_to_cpu(bh->section_entry[0].type) &
   1153				    ICE_METADATA_BUF)
   1154					last = true;
   1155		}
   1156
   1157		bh = (struct ice_buf_hdr *)(bufs + i);
   1158
   1159		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
   1160					     &offset, &info, NULL);
   1161
   1162		/* Save AQ status from download package */
   1163		if (status) {
   1164			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
   1165				  status, offset, info);
   1166			err = hw->adminq.sq_last_status;
   1167			state = ice_map_aq_err_to_ddp_state(err);
   1168			break;
   1169		}
   1170
   1171		if (last)
   1172			break;
   1173	}
   1174
   1175	if (!status) {
   1176		status = ice_set_vlan_mode(hw);
   1177		if (status)
   1178			ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
   1179				  status);
   1180	}
   1181
   1182	ice_release_global_cfg_lock(hw);
   1183
   1184	return state;
   1185}
   1186
   1187/**
   1188 * ice_aq_get_pkg_info_list
   1189 * @hw: pointer to the hardware structure
   1190 * @pkg_info: the buffer which will receive the information list
   1191 * @buf_size: the size of the pkg_info information buffer
   1192 * @cd: pointer to command details structure or NULL
   1193 *
   1194 * Get Package Info List (0x0C43)
   1195 */
   1196static int
   1197ice_aq_get_pkg_info_list(struct ice_hw *hw,
   1198			 struct ice_aqc_get_pkg_info_resp *pkg_info,
   1199			 u16 buf_size, struct ice_sq_cd *cd)
   1200{
   1201	struct ice_aq_desc desc;
   1202
   1203	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
   1204
   1205	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
   1206}
   1207
   1208/**
   1209 * ice_download_pkg
   1210 * @hw: pointer to the hardware structure
   1211 * @ice_seg: pointer to the segment of the package to be downloaded
   1212 *
   1213 * Handles the download of a complete package.
   1214 */
   1215static enum ice_ddp_state
   1216ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
   1217{
   1218	struct ice_buf_table *ice_buf_tbl;
   1219	int status;
   1220
   1221	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
   1222		  ice_seg->hdr.seg_format_ver.major,
   1223		  ice_seg->hdr.seg_format_ver.minor,
   1224		  ice_seg->hdr.seg_format_ver.update,
   1225		  ice_seg->hdr.seg_format_ver.draft);
   1226
   1227	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
   1228		  le32_to_cpu(ice_seg->hdr.seg_type),
   1229		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
   1230
   1231	ice_buf_tbl = ice_find_buf_table(ice_seg);
   1232
   1233	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
   1234		  le32_to_cpu(ice_buf_tbl->buf_count));
   1235
   1236	status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
   1237				    le32_to_cpu(ice_buf_tbl->buf_count));
   1238
   1239	ice_post_pkg_dwnld_vlan_mode_cfg(hw);
   1240
   1241	return status;
   1242}
   1243
   1244/**
   1245 * ice_init_pkg_info
   1246 * @hw: pointer to the hardware structure
   1247 * @pkg_hdr: pointer to the driver's package hdr
   1248 *
   1249 * Saves off the package details into the HW structure.
   1250 */
   1251static enum ice_ddp_state
   1252ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
   1253{
   1254	struct ice_generic_seg_hdr *seg_hdr;
   1255
   1256	if (!pkg_hdr)
   1257		return ICE_DDP_PKG_ERR;
   1258
   1259	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
   1260	if (seg_hdr) {
   1261		struct ice_meta_sect *meta;
   1262		struct ice_pkg_enum state;
   1263
   1264		memset(&state, 0, sizeof(state));
   1265
   1266		/* Get package information from the Metadata Section */
   1267		meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
   1268					    ICE_SID_METADATA);
   1269		if (!meta) {
   1270			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
   1271			return ICE_DDP_PKG_INVALID_FILE;
   1272		}
   1273
   1274		hw->pkg_ver = meta->ver;
   1275		memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
   1276
   1277		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
   1278			  meta->ver.major, meta->ver.minor, meta->ver.update,
   1279			  meta->ver.draft, meta->name);
   1280
   1281		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
   1282		memcpy(hw->ice_seg_id, seg_hdr->seg_id,
   1283		       sizeof(hw->ice_seg_id));
   1284
   1285		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
   1286			  seg_hdr->seg_format_ver.major,
   1287			  seg_hdr->seg_format_ver.minor,
   1288			  seg_hdr->seg_format_ver.update,
   1289			  seg_hdr->seg_format_ver.draft,
   1290			  seg_hdr->seg_id);
   1291	} else {
   1292		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
   1293		return ICE_DDP_PKG_INVALID_FILE;
   1294	}
   1295
   1296	return ICE_DDP_PKG_SUCCESS;
   1297}
   1298
   1299/**
   1300 * ice_get_pkg_info
   1301 * @hw: pointer to the hardware structure
   1302 *
   1303 * Store details of the package currently loaded in HW into the HW structure.
   1304 */
   1305static enum ice_ddp_state ice_get_pkg_info(struct ice_hw *hw)
   1306{
   1307	enum ice_ddp_state state = ICE_DDP_PKG_SUCCESS;
   1308	struct ice_aqc_get_pkg_info_resp *pkg_info;
   1309	u16 size;
   1310	u32 i;
   1311
   1312	size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
   1313	pkg_info = kzalloc(size, GFP_KERNEL);
   1314	if (!pkg_info)
   1315		return ICE_DDP_PKG_ERR;
   1316
   1317	if (ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL)) {
   1318		state = ICE_DDP_PKG_ERR;
   1319		goto init_pkg_free_alloc;
   1320	}
   1321
   1322	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
   1323#define ICE_PKG_FLAG_COUNT	4
   1324		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
   1325		u8 place = 0;
   1326
   1327		if (pkg_info->pkg_info[i].is_active) {
   1328			flags[place++] = 'A';
   1329			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
   1330			hw->active_track_id =
   1331				le32_to_cpu(pkg_info->pkg_info[i].track_id);
   1332			memcpy(hw->active_pkg_name,
   1333			       pkg_info->pkg_info[i].name,
   1334			       sizeof(pkg_info->pkg_info[i].name));
   1335			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
   1336		}
   1337		if (pkg_info->pkg_info[i].is_active_at_boot)
   1338			flags[place++] = 'B';
   1339		if (pkg_info->pkg_info[i].is_modified)
   1340			flags[place++] = 'M';
   1341		if (pkg_info->pkg_info[i].is_in_nvm)
   1342			flags[place++] = 'N';
   1343
   1344		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
   1345			  i, pkg_info->pkg_info[i].ver.major,
   1346			  pkg_info->pkg_info[i].ver.minor,
   1347			  pkg_info->pkg_info[i].ver.update,
   1348			  pkg_info->pkg_info[i].ver.draft,
   1349			  pkg_info->pkg_info[i].name, flags);
   1350	}
   1351
   1352init_pkg_free_alloc:
   1353	kfree(pkg_info);
   1354
   1355	return state;
   1356}
   1357
   1358/**
   1359 * ice_verify_pkg - verify package
   1360 * @pkg: pointer to the package buffer
   1361 * @len: size of the package buffer
   1362 *
   1363 * Verifies various attributes of the package file, including length, format
   1364 * version, and the requirement of at least one segment.
   1365 */
   1366static enum ice_ddp_state ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
   1367{
   1368	u32 seg_count;
   1369	u32 i;
   1370
   1371	if (len < struct_size(pkg, seg_offset, 1))
   1372		return ICE_DDP_PKG_INVALID_FILE;
   1373
   1374	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
   1375	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
   1376	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
   1377	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
   1378		return ICE_DDP_PKG_INVALID_FILE;
   1379
   1380	/* pkg must have at least one segment */
   1381	seg_count = le32_to_cpu(pkg->seg_count);
   1382	if (seg_count < 1)
   1383		return ICE_DDP_PKG_INVALID_FILE;
   1384
   1385	/* make sure segment array fits in package length */
   1386	if (len < struct_size(pkg, seg_offset, seg_count))
   1387		return ICE_DDP_PKG_INVALID_FILE;
   1388
   1389	/* all segments must fit within length */
   1390	for (i = 0; i < seg_count; i++) {
   1391		u32 off = le32_to_cpu(pkg->seg_offset[i]);
   1392		struct ice_generic_seg_hdr *seg;
   1393
   1394		/* segment header must fit */
   1395		if (len < off + sizeof(*seg))
   1396			return ICE_DDP_PKG_INVALID_FILE;
   1397
   1398		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
   1399
   1400		/* segment body must fit */
   1401		if (len < off + le32_to_cpu(seg->seg_size))
   1402			return ICE_DDP_PKG_INVALID_FILE;
   1403	}
   1404
   1405	return ICE_DDP_PKG_SUCCESS;
   1406}
   1407
   1408/**
   1409 * ice_free_seg - free package segment pointer
   1410 * @hw: pointer to the hardware structure
   1411 *
   1412 * Frees the package segment pointer in the proper manner, depending on if the
   1413 * segment was allocated or just the passed in pointer was stored.
   1414 */
   1415void ice_free_seg(struct ice_hw *hw)
   1416{
   1417	if (hw->pkg_copy) {
   1418		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
   1419		hw->pkg_copy = NULL;
   1420		hw->pkg_size = 0;
   1421	}
   1422	hw->seg = NULL;
   1423}
   1424
   1425/**
   1426 * ice_init_pkg_regs - initialize additional package registers
   1427 * @hw: pointer to the hardware structure
   1428 */
   1429static void ice_init_pkg_regs(struct ice_hw *hw)
   1430{
   1431#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
   1432#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
   1433#define ICE_SW_BLK_IDX	0
   1434
   1435	/* setup Switch block input mask, which is 48-bits in two parts */
   1436	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
   1437	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
   1438}
   1439
   1440/**
   1441 * ice_chk_pkg_version - check package version for compatibility with driver
   1442 * @pkg_ver: pointer to a version structure to check
   1443 *
   1444 * Check to make sure that the package about to be downloaded is compatible with
   1445 * the driver. To be compatible, the major and minor components of the package
   1446 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
   1447 * definitions.
   1448 */
   1449static enum ice_ddp_state ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
   1450{
   1451	if (pkg_ver->major > ICE_PKG_SUPP_VER_MAJ ||
   1452	    (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
   1453	     pkg_ver->minor > ICE_PKG_SUPP_VER_MNR))
   1454		return ICE_DDP_PKG_FILE_VERSION_TOO_HIGH;
   1455	else if (pkg_ver->major < ICE_PKG_SUPP_VER_MAJ ||
   1456		 (pkg_ver->major == ICE_PKG_SUPP_VER_MAJ &&
   1457		  pkg_ver->minor < ICE_PKG_SUPP_VER_MNR))
   1458		return ICE_DDP_PKG_FILE_VERSION_TOO_LOW;
   1459
   1460	return ICE_DDP_PKG_SUCCESS;
   1461}
   1462
   1463/**
   1464 * ice_chk_pkg_compat
   1465 * @hw: pointer to the hardware structure
   1466 * @ospkg: pointer to the package hdr
   1467 * @seg: pointer to the package segment hdr
   1468 *
   1469 * This function checks the package version compatibility with driver and NVM
   1470 */
   1471static enum ice_ddp_state
   1472ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
   1473		   struct ice_seg **seg)
   1474{
   1475	struct ice_aqc_get_pkg_info_resp *pkg;
   1476	enum ice_ddp_state state;
   1477	u16 size;
   1478	u32 i;
   1479
   1480	/* Check package version compatibility */
   1481	state = ice_chk_pkg_version(&hw->pkg_ver);
   1482	if (state) {
   1483		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
   1484		return state;
   1485	}
   1486
   1487	/* find ICE segment in given package */
   1488	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
   1489						     ospkg);
   1490	if (!*seg) {
   1491		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
   1492		return ICE_DDP_PKG_INVALID_FILE;
   1493	}
   1494
   1495	/* Check if FW is compatible with the OS package */
   1496	size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
   1497	pkg = kzalloc(size, GFP_KERNEL);
   1498	if (!pkg)
   1499		return ICE_DDP_PKG_ERR;
   1500
   1501	if (ice_aq_get_pkg_info_list(hw, pkg, size, NULL)) {
   1502		state = ICE_DDP_PKG_LOAD_ERROR;
   1503		goto fw_ddp_compat_free_alloc;
   1504	}
   1505
   1506	for (i = 0; i < le32_to_cpu(pkg->count); i++) {
   1507		/* loop till we find the NVM package */
   1508		if (!pkg->pkg_info[i].is_in_nvm)
   1509			continue;
   1510		if ((*seg)->hdr.seg_format_ver.major !=
   1511			pkg->pkg_info[i].ver.major ||
   1512		    (*seg)->hdr.seg_format_ver.minor >
   1513			pkg->pkg_info[i].ver.minor) {
   1514			state = ICE_DDP_PKG_FW_MISMATCH;
   1515			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
   1516		}
   1517		/* done processing NVM package so break */
   1518		break;
   1519	}
   1520fw_ddp_compat_free_alloc:
   1521	kfree(pkg);
   1522	return state;
   1523}
   1524
   1525/**
   1526 * ice_sw_fv_handler
   1527 * @sect_type: section type
   1528 * @section: pointer to section
   1529 * @index: index of the field vector entry to be returned
   1530 * @offset: ptr to variable that receives the offset in the field vector table
   1531 *
   1532 * This is a callback function that can be passed to ice_pkg_enum_entry.
   1533 * This function treats the given section as of type ice_sw_fv_section and
   1534 * enumerates offset field. "offset" is an index into the field vector table.
   1535 */
   1536static void *
   1537ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
   1538{
   1539	struct ice_sw_fv_section *fv_section = section;
   1540
   1541	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
   1542		return NULL;
   1543	if (index >= le16_to_cpu(fv_section->count))
   1544		return NULL;
   1545	if (offset)
   1546		/* "index" passed in to this function is relative to a given
   1547		 * 4k block. To get to the true index into the field vector
   1548		 * table need to add the relative index to the base_offset
   1549		 * field of this section
   1550		 */
   1551		*offset = le16_to_cpu(fv_section->base_offset) + index;
   1552	return fv_section->fv + index;
   1553}
   1554
   1555/**
   1556 * ice_get_prof_index_max - get the max profile index for used profile
   1557 * @hw: pointer to the HW struct
   1558 *
   1559 * Calling this function will get the max profile index for used profile
   1560 * and store the index number in struct ice_switch_info *switch_info
   1561 * in HW for following use.
   1562 */
   1563static int ice_get_prof_index_max(struct ice_hw *hw)
   1564{
   1565	u16 prof_index = 0, j, max_prof_index = 0;
   1566	struct ice_pkg_enum state;
   1567	struct ice_seg *ice_seg;
   1568	bool flag = false;
   1569	struct ice_fv *fv;
   1570	u32 offset;
   1571
   1572	memset(&state, 0, sizeof(state));
   1573
   1574	if (!hw->seg)
   1575		return -EINVAL;
   1576
   1577	ice_seg = hw->seg;
   1578
   1579	do {
   1580		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
   1581					&offset, ice_sw_fv_handler);
   1582		if (!fv)
   1583			break;
   1584		ice_seg = NULL;
   1585
   1586		/* in the profile that not be used, the prot_id is set to 0xff
   1587		 * and the off is set to 0x1ff for all the field vectors.
   1588		 */
   1589		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
   1590			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
   1591			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
   1592				flag = true;
   1593		if (flag && prof_index > max_prof_index)
   1594			max_prof_index = prof_index;
   1595
   1596		prof_index++;
   1597		flag = false;
   1598	} while (fv);
   1599
   1600	hw->switch_info->max_used_prof_index = max_prof_index;
   1601
   1602	return 0;
   1603}
   1604
   1605/**
   1606 * ice_get_ddp_pkg_state - get DDP pkg state after download
   1607 * @hw: pointer to the HW struct
   1608 * @already_loaded: indicates if pkg was already loaded onto the device
   1609 */
   1610static enum ice_ddp_state
   1611ice_get_ddp_pkg_state(struct ice_hw *hw, bool already_loaded)
   1612{
   1613	if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
   1614	    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
   1615	    hw->pkg_ver.update == hw->active_pkg_ver.update &&
   1616	    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
   1617	    !memcmp(hw->pkg_name, hw->active_pkg_name, sizeof(hw->pkg_name))) {
   1618		if (already_loaded)
   1619			return ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED;
   1620		else
   1621			return ICE_DDP_PKG_SUCCESS;
   1622	} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
   1623		   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
   1624		return ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED;
   1625	} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
   1626		   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
   1627		return ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED;
   1628	} else {
   1629		return ICE_DDP_PKG_ERR;
   1630	}
   1631}
   1632
   1633/**
   1634 * ice_init_pkg - initialize/download package
   1635 * @hw: pointer to the hardware structure
   1636 * @buf: pointer to the package buffer
   1637 * @len: size of the package buffer
   1638 *
   1639 * This function initializes a package. The package contains HW tables
   1640 * required to do packet processing. First, the function extracts package
   1641 * information such as version. Then it finds the ice configuration segment
   1642 * within the package; this function then saves a copy of the segment pointer
   1643 * within the supplied package buffer. Next, the function will cache any hints
   1644 * from the package, followed by downloading the package itself. Note, that if
   1645 * a previous PF driver has already downloaded the package successfully, then
   1646 * the current driver will not have to download the package again.
   1647 *
   1648 * The local package contents will be used to query default behavior and to
   1649 * update specific sections of the HW's version of the package (e.g. to update
   1650 * the parse graph to understand new protocols).
   1651 *
   1652 * This function stores a pointer to the package buffer memory, and it is
   1653 * expected that the supplied buffer will not be freed immediately. If the
   1654 * package buffer needs to be freed, such as when read from a file, use
   1655 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
   1656 * case.
   1657 */
   1658enum ice_ddp_state ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
   1659{
   1660	bool already_loaded = false;
   1661	enum ice_ddp_state state;
   1662	struct ice_pkg_hdr *pkg;
   1663	struct ice_seg *seg;
   1664
   1665	if (!buf || !len)
   1666		return ICE_DDP_PKG_ERR;
   1667
   1668	pkg = (struct ice_pkg_hdr *)buf;
   1669	state = ice_verify_pkg(pkg, len);
   1670	if (state) {
   1671		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
   1672			  state);
   1673		return state;
   1674	}
   1675
   1676	/* initialize package info */
   1677	state = ice_init_pkg_info(hw, pkg);
   1678	if (state)
   1679		return state;
   1680
   1681	/* before downloading the package, check package version for
   1682	 * compatibility with driver
   1683	 */
   1684	state = ice_chk_pkg_compat(hw, pkg, &seg);
   1685	if (state)
   1686		return state;
   1687
   1688	/* initialize package hints and then download package */
   1689	ice_init_pkg_hints(hw, seg);
   1690	state = ice_download_pkg(hw, seg);
   1691	if (state == ICE_DDP_PKG_ALREADY_LOADED) {
   1692		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
   1693		already_loaded = true;
   1694	}
   1695
   1696	/* Get information on the package currently loaded in HW, then make sure
   1697	 * the driver is compatible with this version.
   1698	 */
   1699	if (!state || state == ICE_DDP_PKG_ALREADY_LOADED) {
   1700		state = ice_get_pkg_info(hw);
   1701		if (!state)
   1702			state = ice_get_ddp_pkg_state(hw, already_loaded);
   1703	}
   1704
   1705	if (ice_is_init_pkg_successful(state)) {
   1706		hw->seg = seg;
   1707		/* on successful package download update other required
   1708		 * registers to support the package and fill HW tables
   1709		 * with package content.
   1710		 */
   1711		ice_init_pkg_regs(hw);
   1712		ice_fill_blk_tbls(hw);
   1713		ice_fill_hw_ptype(hw);
   1714		ice_get_prof_index_max(hw);
   1715	} else {
   1716		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
   1717			  state);
   1718	}
   1719
   1720	return state;
   1721}
   1722
   1723/**
   1724 * ice_copy_and_init_pkg - initialize/download a copy of the package
   1725 * @hw: pointer to the hardware structure
   1726 * @buf: pointer to the package buffer
   1727 * @len: size of the package buffer
   1728 *
   1729 * This function copies the package buffer, and then calls ice_init_pkg() to
   1730 * initialize the copied package contents.
   1731 *
   1732 * The copying is necessary if the package buffer supplied is constant, or if
   1733 * the memory may disappear shortly after calling this function.
   1734 *
   1735 * If the package buffer resides in the data segment and can be modified, the
   1736 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
   1737 *
   1738 * However, if the package buffer needs to be copied first, such as when being
   1739 * read from a file, the caller should use ice_copy_and_init_pkg().
   1740 *
   1741 * This function will first copy the package buffer, before calling
   1742 * ice_init_pkg(). The caller is free to immediately destroy the original
   1743 * package buffer, as the new copy will be managed by this function and
   1744 * related routines.
   1745 */
   1746enum ice_ddp_state
   1747ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
   1748{
   1749	enum ice_ddp_state state;
   1750	u8 *buf_copy;
   1751
   1752	if (!buf || !len)
   1753		return ICE_DDP_PKG_ERR;
   1754
   1755	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
   1756
   1757	state = ice_init_pkg(hw, buf_copy, len);
   1758	if (!ice_is_init_pkg_successful(state)) {
   1759		/* Free the copy, since we failed to initialize the package */
   1760		devm_kfree(ice_hw_to_dev(hw), buf_copy);
   1761	} else {
   1762		/* Track the copied pkg so we can free it later */
   1763		hw->pkg_copy = buf_copy;
   1764		hw->pkg_size = len;
   1765	}
   1766
   1767	return state;
   1768}
   1769
   1770/**
   1771 * ice_is_init_pkg_successful - check if DDP init was successful
   1772 * @state: state of the DDP pkg after download
   1773 */
   1774bool ice_is_init_pkg_successful(enum ice_ddp_state state)
   1775{
   1776	switch (state) {
   1777	case ICE_DDP_PKG_SUCCESS:
   1778	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
   1779	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
   1780		return true;
   1781	default:
   1782		return false;
   1783	}
   1784}
   1785
   1786/**
   1787 * ice_pkg_buf_alloc
   1788 * @hw: pointer to the HW structure
   1789 *
   1790 * Allocates a package buffer and returns a pointer to the buffer header.
   1791 * Note: all package contents must be in Little Endian form.
   1792 */
   1793static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
   1794{
   1795	struct ice_buf_build *bld;
   1796	struct ice_buf_hdr *buf;
   1797
   1798	bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
   1799	if (!bld)
   1800		return NULL;
   1801
   1802	buf = (struct ice_buf_hdr *)bld;
   1803	buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
   1804					     section_entry));
   1805	return bld;
   1806}
   1807
   1808static bool ice_is_gtp_u_profile(u16 prof_idx)
   1809{
   1810	return (prof_idx >= ICE_PROFID_IPV6_GTPU_TEID &&
   1811		prof_idx <= ICE_PROFID_IPV6_GTPU_IPV6_TCP_INNER) ||
   1812	       prof_idx == ICE_PROFID_IPV4_GTPU_TEID;
   1813}
   1814
   1815static bool ice_is_gtp_c_profile(u16 prof_idx)
   1816{
   1817	switch (prof_idx) {
   1818	case ICE_PROFID_IPV4_GTPC_TEID:
   1819	case ICE_PROFID_IPV4_GTPC_NO_TEID:
   1820	case ICE_PROFID_IPV6_GTPC_TEID:
   1821	case ICE_PROFID_IPV6_GTPC_NO_TEID:
   1822		return true;
   1823	default:
   1824		return false;
   1825	}
   1826}
   1827
   1828/**
   1829 * ice_get_sw_prof_type - determine switch profile type
   1830 * @hw: pointer to the HW structure
   1831 * @fv: pointer to the switch field vector
   1832 * @prof_idx: profile index to check
   1833 */
   1834static enum ice_prof_type
   1835ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv, u32 prof_idx)
   1836{
   1837	u16 i;
   1838
   1839	if (ice_is_gtp_c_profile(prof_idx))
   1840		return ICE_PROF_TUN_GTPC;
   1841
   1842	if (ice_is_gtp_u_profile(prof_idx))
   1843		return ICE_PROF_TUN_GTPU;
   1844
   1845	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
   1846		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
   1847		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
   1848		    fv->ew[i].off == ICE_VNI_OFFSET)
   1849			return ICE_PROF_TUN_UDP;
   1850
   1851		/* GRE tunnel will have GRE protocol */
   1852		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
   1853			return ICE_PROF_TUN_GRE;
   1854	}
   1855
   1856	return ICE_PROF_NON_TUN;
   1857}
   1858
   1859/**
   1860 * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
   1861 * @hw: pointer to hardware structure
   1862 * @req_profs: type of profiles requested
   1863 * @bm: pointer to memory for returning the bitmap of field vectors
   1864 */
   1865void
   1866ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
   1867		     unsigned long *bm)
   1868{
   1869	struct ice_pkg_enum state;
   1870	struct ice_seg *ice_seg;
   1871	struct ice_fv *fv;
   1872
   1873	if (req_profs == ICE_PROF_ALL) {
   1874		bitmap_set(bm, 0, ICE_MAX_NUM_PROFILES);
   1875		return;
   1876	}
   1877
   1878	memset(&state, 0, sizeof(state));
   1879	bitmap_zero(bm, ICE_MAX_NUM_PROFILES);
   1880	ice_seg = hw->seg;
   1881	do {
   1882		enum ice_prof_type prof_type;
   1883		u32 offset;
   1884
   1885		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
   1886					&offset, ice_sw_fv_handler);
   1887		ice_seg = NULL;
   1888
   1889		if (fv) {
   1890			/* Determine field vector type */
   1891			prof_type = ice_get_sw_prof_type(hw, fv, offset);
   1892
   1893			if (req_profs & prof_type)
   1894				set_bit((u16)offset, bm);
   1895		}
   1896	} while (fv);
   1897}
   1898
   1899/**
   1900 * ice_get_sw_fv_list
   1901 * @hw: pointer to the HW structure
   1902 * @lkups: list of protocol types
   1903 * @bm: bitmap of field vectors to consider
   1904 * @fv_list: Head of a list
   1905 *
   1906 * Finds all the field vector entries from switch block that contain
   1907 * a given protocol ID and offset and returns a list of structures of type
   1908 * "ice_sw_fv_list_entry". Every structure in the list has a field vector
   1909 * definition and profile ID information
   1910 * NOTE: The caller of the function is responsible for freeing the memory
   1911 * allocated for every list entry.
   1912 */
   1913int
   1914ice_get_sw_fv_list(struct ice_hw *hw, struct ice_prot_lkup_ext *lkups,
   1915		   unsigned long *bm, struct list_head *fv_list)
   1916{
   1917	struct ice_sw_fv_list_entry *fvl;
   1918	struct ice_sw_fv_list_entry *tmp;
   1919	struct ice_pkg_enum state;
   1920	struct ice_seg *ice_seg;
   1921	struct ice_fv *fv;
   1922	u32 offset;
   1923
   1924	memset(&state, 0, sizeof(state));
   1925
   1926	if (!lkups->n_val_words || !hw->seg)
   1927		return -EINVAL;
   1928
   1929	ice_seg = hw->seg;
   1930	do {
   1931		u16 i;
   1932
   1933		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
   1934					&offset, ice_sw_fv_handler);
   1935		if (!fv)
   1936			break;
   1937		ice_seg = NULL;
   1938
   1939		/* If field vector is not in the bitmap list, then skip this
   1940		 * profile.
   1941		 */
   1942		if (!test_bit((u16)offset, bm))
   1943			continue;
   1944
   1945		for (i = 0; i < lkups->n_val_words; i++) {
   1946			int j;
   1947
   1948			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
   1949				if (fv->ew[j].prot_id ==
   1950				    lkups->fv_words[i].prot_id &&
   1951				    fv->ew[j].off == lkups->fv_words[i].off)
   1952					break;
   1953			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
   1954				break;
   1955			if (i + 1 == lkups->n_val_words) {
   1956				fvl = devm_kzalloc(ice_hw_to_dev(hw),
   1957						   sizeof(*fvl), GFP_KERNEL);
   1958				if (!fvl)
   1959					goto err;
   1960				fvl->fv_ptr = fv;
   1961				fvl->profile_id = offset;
   1962				list_add(&fvl->list_entry, fv_list);
   1963				break;
   1964			}
   1965		}
   1966	} while (fv);
   1967	if (list_empty(fv_list))
   1968		return -EIO;
   1969	return 0;
   1970
   1971err:
   1972	list_for_each_entry_safe(fvl, tmp, fv_list, list_entry) {
   1973		list_del(&fvl->list_entry);
   1974		devm_kfree(ice_hw_to_dev(hw), fvl);
   1975	}
   1976
   1977	return -ENOMEM;
   1978}
   1979
   1980/**
   1981 * ice_init_prof_result_bm - Initialize the profile result index bitmap
   1982 * @hw: pointer to hardware structure
   1983 */
   1984void ice_init_prof_result_bm(struct ice_hw *hw)
   1985{
   1986	struct ice_pkg_enum state;
   1987	struct ice_seg *ice_seg;
   1988	struct ice_fv *fv;
   1989
   1990	memset(&state, 0, sizeof(state));
   1991
   1992	if (!hw->seg)
   1993		return;
   1994
   1995	ice_seg = hw->seg;
   1996	do {
   1997		u32 off;
   1998		u16 i;
   1999
   2000		fv = ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
   2001					&off, ice_sw_fv_handler);
   2002		ice_seg = NULL;
   2003		if (!fv)
   2004			break;
   2005
   2006		bitmap_zero(hw->switch_info->prof_res_bm[off],
   2007			    ICE_MAX_FV_WORDS);
   2008
   2009		/* Determine empty field vector indices, these can be
   2010		 * used for recipe results. Skip index 0, since it is
   2011		 * always used for Switch ID.
   2012		 */
   2013		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
   2014			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
   2015			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
   2016				set_bit(i, hw->switch_info->prof_res_bm[off]);
   2017	} while (fv);
   2018}
   2019
   2020/**
   2021 * ice_pkg_buf_free
   2022 * @hw: pointer to the HW structure
   2023 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
   2024 *
   2025 * Frees a package buffer
   2026 */
   2027void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
   2028{
   2029	devm_kfree(ice_hw_to_dev(hw), bld);
   2030}
   2031
   2032/**
   2033 * ice_pkg_buf_reserve_section
   2034 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
   2035 * @count: the number of sections to reserve
   2036 *
   2037 * Reserves one or more section table entries in a package buffer. This routine
   2038 * can be called multiple times as long as they are made before calling
   2039 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
   2040 * is called once, the number of sections that can be allocated will not be able
   2041 * to be increased; not using all reserved sections is fine, but this will
   2042 * result in some wasted space in the buffer.
   2043 * Note: all package contents must be in Little Endian form.
   2044 */
   2045static int
   2046ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
   2047{
   2048	struct ice_buf_hdr *buf;
   2049	u16 section_count;
   2050	u16 data_end;
   2051
   2052	if (!bld)
   2053		return -EINVAL;
   2054
   2055	buf = (struct ice_buf_hdr *)&bld->buf;
   2056
   2057	/* already an active section, can't increase table size */
   2058	section_count = le16_to_cpu(buf->section_count);
   2059	if (section_count > 0)
   2060		return -EIO;
   2061
   2062	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
   2063		return -EIO;
   2064	bld->reserved_section_table_entries += count;
   2065
   2066	data_end = le16_to_cpu(buf->data_end) +
   2067		flex_array_size(buf, section_entry, count);
   2068	buf->data_end = cpu_to_le16(data_end);
   2069
   2070	return 0;
   2071}
   2072
   2073/**
   2074 * ice_pkg_buf_alloc_section
   2075 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
   2076 * @type: the section type value
   2077 * @size: the size of the section to reserve (in bytes)
   2078 *
   2079 * Reserves memory in the buffer for a section's content and updates the
   2080 * buffers' status accordingly. This routine returns a pointer to the first
   2081 * byte of the section start within the buffer, which is used to fill in the
   2082 * section contents.
   2083 * Note: all package contents must be in Little Endian form.
   2084 */
   2085static void *
   2086ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
   2087{
   2088	struct ice_buf_hdr *buf;
   2089	u16 sect_count;
   2090	u16 data_end;
   2091
   2092	if (!bld || !type || !size)
   2093		return NULL;
   2094
   2095	buf = (struct ice_buf_hdr *)&bld->buf;
   2096
   2097	/* check for enough space left in buffer */
   2098	data_end = le16_to_cpu(buf->data_end);
   2099
   2100	/* section start must align on 4 byte boundary */
   2101	data_end = ALIGN(data_end, 4);
   2102
   2103	if ((data_end + size) > ICE_MAX_S_DATA_END)
   2104		return NULL;
   2105
   2106	/* check for more available section table entries */
   2107	sect_count = le16_to_cpu(buf->section_count);
   2108	if (sect_count < bld->reserved_section_table_entries) {
   2109		void *section_ptr = ((u8 *)buf) + data_end;
   2110
   2111		buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
   2112		buf->section_entry[sect_count].size = cpu_to_le16(size);
   2113		buf->section_entry[sect_count].type = cpu_to_le32(type);
   2114
   2115		data_end += size;
   2116		buf->data_end = cpu_to_le16(data_end);
   2117
   2118		buf->section_count = cpu_to_le16(sect_count + 1);
   2119		return section_ptr;
   2120	}
   2121
   2122	/* no free section table entries */
   2123	return NULL;
   2124}
   2125
   2126/**
   2127 * ice_pkg_buf_alloc_single_section
   2128 * @hw: pointer to the HW structure
   2129 * @type: the section type value
   2130 * @size: the size of the section to reserve (in bytes)
   2131 * @section: returns pointer to the section
   2132 *
   2133 * Allocates a package buffer with a single section.
   2134 * Note: all package contents must be in Little Endian form.
   2135 */
   2136struct ice_buf_build *
   2137ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
   2138				 void **section)
   2139{
   2140	struct ice_buf_build *buf;
   2141
   2142	if (!section)
   2143		return NULL;
   2144
   2145	buf = ice_pkg_buf_alloc(hw);
   2146	if (!buf)
   2147		return NULL;
   2148
   2149	if (ice_pkg_buf_reserve_section(buf, 1))
   2150		goto ice_pkg_buf_alloc_single_section_err;
   2151
   2152	*section = ice_pkg_buf_alloc_section(buf, type, size);
   2153	if (!*section)
   2154		goto ice_pkg_buf_alloc_single_section_err;
   2155
   2156	return buf;
   2157
   2158ice_pkg_buf_alloc_single_section_err:
   2159	ice_pkg_buf_free(hw, buf);
   2160	return NULL;
   2161}
   2162
   2163/**
   2164 * ice_pkg_buf_get_active_sections
   2165 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
   2166 *
   2167 * Returns the number of active sections. Before using the package buffer
   2168 * in an update package command, the caller should make sure that there is at
   2169 * least one active section - otherwise, the buffer is not legal and should
   2170 * not be used.
   2171 * Note: all package contents must be in Little Endian form.
   2172 */
   2173static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
   2174{
   2175	struct ice_buf_hdr *buf;
   2176
   2177	if (!bld)
   2178		return 0;
   2179
   2180	buf = (struct ice_buf_hdr *)&bld->buf;
   2181	return le16_to_cpu(buf->section_count);
   2182}
   2183
   2184/**
   2185 * ice_pkg_buf
   2186 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
   2187 *
   2188 * Return a pointer to the buffer's header
   2189 */
   2190struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
   2191{
   2192	if (!bld)
   2193		return NULL;
   2194
   2195	return &bld->buf;
   2196}
   2197
   2198/**
   2199 * ice_get_open_tunnel_port - retrieve an open tunnel port
   2200 * @hw: pointer to the HW structure
   2201 * @port: returns open port
   2202 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
   2203 */
   2204bool
   2205ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
   2206			 enum ice_tunnel_type type)
   2207{
   2208	bool res = false;
   2209	u16 i;
   2210
   2211	mutex_lock(&hw->tnl_lock);
   2212
   2213	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
   2214		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
   2215		    (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
   2216			*port = hw->tnl.tbl[i].port;
   2217			res = true;
   2218			break;
   2219		}
   2220
   2221	mutex_unlock(&hw->tnl_lock);
   2222
   2223	return res;
   2224}
   2225
   2226/**
   2227 * ice_upd_dvm_boost_entry
   2228 * @hw: pointer to the HW structure
   2229 * @entry: pointer to double vlan boost entry info
   2230 */
   2231static int
   2232ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
   2233{
   2234	struct ice_boost_tcam_section *sect_rx, *sect_tx;
   2235	int status = -ENOSPC;
   2236	struct ice_buf_build *bld;
   2237	u8 val, dc, nm;
   2238
   2239	bld = ice_pkg_buf_alloc(hw);
   2240	if (!bld)
   2241		return -ENOMEM;
   2242
   2243	/* allocate 2 sections, one for Rx parser, one for Tx parser */
   2244	if (ice_pkg_buf_reserve_section(bld, 2))
   2245		goto ice_upd_dvm_boost_entry_err;
   2246
   2247	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
   2248					    struct_size(sect_rx, tcam, 1));
   2249	if (!sect_rx)
   2250		goto ice_upd_dvm_boost_entry_err;
   2251	sect_rx->count = cpu_to_le16(1);
   2252
   2253	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
   2254					    struct_size(sect_tx, tcam, 1));
   2255	if (!sect_tx)
   2256		goto ice_upd_dvm_boost_entry_err;
   2257	sect_tx->count = cpu_to_le16(1);
   2258
   2259	/* copy original boost entry to update package buffer */
   2260	memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
   2261
   2262	/* re-write the don't care and never match bits accordingly */
   2263	if (entry->enable) {
   2264		/* all bits are don't care */
   2265		val = 0x00;
   2266		dc = 0xFF;
   2267		nm = 0x00;
   2268	} else {
   2269		/* disable, one never match bit, the rest are don't care */
   2270		val = 0x00;
   2271		dc = 0xF7;
   2272		nm = 0x08;
   2273	}
   2274
   2275	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
   2276		    &val, NULL, &dc, &nm, 0, sizeof(u8));
   2277
   2278	/* exact copy of entry to Tx section entry */
   2279	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
   2280
   2281	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
   2282
   2283ice_upd_dvm_boost_entry_err:
   2284	ice_pkg_buf_free(hw, bld);
   2285
   2286	return status;
   2287}
   2288
   2289/**
   2290 * ice_set_dvm_boost_entries
   2291 * @hw: pointer to the HW structure
   2292 *
   2293 * Enable double vlan by updating the appropriate boost tcam entries.
   2294 */
   2295int ice_set_dvm_boost_entries(struct ice_hw *hw)
   2296{
   2297	int status;
   2298	u16 i;
   2299
   2300	for (i = 0; i < hw->dvm_upd.count; i++) {
   2301		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
   2302		if (status)
   2303			return status;
   2304	}
   2305
   2306	return 0;
   2307}
   2308
   2309/**
   2310 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
   2311 * @hw: pointer to the HW structure
   2312 * @type: type of tunnel
   2313 * @idx: linear index
   2314 *
   2315 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
   2316 * but really the port table may be sprase, and types are mixed, so convert
   2317 * the stack index into the device index.
   2318 */
   2319static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
   2320				   u16 idx)
   2321{
   2322	u16 i;
   2323
   2324	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
   2325		if (hw->tnl.tbl[i].valid &&
   2326		    hw->tnl.tbl[i].type == type &&
   2327		    idx-- == 0)
   2328			return i;
   2329
   2330	WARN_ON_ONCE(1);
   2331	return 0;
   2332}
   2333
   2334/**
   2335 * ice_create_tunnel
   2336 * @hw: pointer to the HW structure
   2337 * @index: device table entry
   2338 * @type: type of tunnel
   2339 * @port: port of tunnel to create
   2340 *
   2341 * Create a tunnel by updating the parse graph in the parser. We do that by
   2342 * creating a package buffer with the tunnel info and issuing an update package
   2343 * command.
   2344 */
   2345static int
   2346ice_create_tunnel(struct ice_hw *hw, u16 index,
   2347		  enum ice_tunnel_type type, u16 port)
   2348{
   2349	struct ice_boost_tcam_section *sect_rx, *sect_tx;
   2350	struct ice_buf_build *bld;
   2351	int status = -ENOSPC;
   2352
   2353	mutex_lock(&hw->tnl_lock);
   2354
   2355	bld = ice_pkg_buf_alloc(hw);
   2356	if (!bld) {
   2357		status = -ENOMEM;
   2358		goto ice_create_tunnel_end;
   2359	}
   2360
   2361	/* allocate 2 sections, one for Rx parser, one for Tx parser */
   2362	if (ice_pkg_buf_reserve_section(bld, 2))
   2363		goto ice_create_tunnel_err;
   2364
   2365	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
   2366					    struct_size(sect_rx, tcam, 1));
   2367	if (!sect_rx)
   2368		goto ice_create_tunnel_err;
   2369	sect_rx->count = cpu_to_le16(1);
   2370
   2371	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
   2372					    struct_size(sect_tx, tcam, 1));
   2373	if (!sect_tx)
   2374		goto ice_create_tunnel_err;
   2375	sect_tx->count = cpu_to_le16(1);
   2376
   2377	/* copy original boost entry to update package buffer */
   2378	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
   2379	       sizeof(*sect_rx->tcam));
   2380
   2381	/* over-write the never-match dest port key bits with the encoded port
   2382	 * bits
   2383	 */
   2384	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
   2385		    (u8 *)&port, NULL, NULL, NULL,
   2386		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
   2387		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
   2388
   2389	/* exact copy of entry to Tx section entry */
   2390	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
   2391
   2392	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
   2393	if (!status)
   2394		hw->tnl.tbl[index].port = port;
   2395
   2396ice_create_tunnel_err:
   2397	ice_pkg_buf_free(hw, bld);
   2398
   2399ice_create_tunnel_end:
   2400	mutex_unlock(&hw->tnl_lock);
   2401
   2402	return status;
   2403}
   2404
   2405/**
   2406 * ice_destroy_tunnel
   2407 * @hw: pointer to the HW structure
   2408 * @index: device table entry
   2409 * @type: type of tunnel
   2410 * @port: port of tunnel to destroy (ignored if the all parameter is true)
   2411 *
   2412 * Destroys a tunnel or all tunnels by creating an update package buffer
   2413 * targeting the specific updates requested and then performing an update
   2414 * package.
   2415 */
   2416static int
   2417ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
   2418		   u16 port)
   2419{
   2420	struct ice_boost_tcam_section *sect_rx, *sect_tx;
   2421	struct ice_buf_build *bld;
   2422	int status = -ENOSPC;
   2423
   2424	mutex_lock(&hw->tnl_lock);
   2425
   2426	if (WARN_ON(!hw->tnl.tbl[index].valid ||
   2427		    hw->tnl.tbl[index].type != type ||
   2428		    hw->tnl.tbl[index].port != port)) {
   2429		status = -EIO;
   2430		goto ice_destroy_tunnel_end;
   2431	}
   2432
   2433	bld = ice_pkg_buf_alloc(hw);
   2434	if (!bld) {
   2435		status = -ENOMEM;
   2436		goto ice_destroy_tunnel_end;
   2437	}
   2438
   2439	/* allocate 2 sections, one for Rx parser, one for Tx parser */
   2440	if (ice_pkg_buf_reserve_section(bld, 2))
   2441		goto ice_destroy_tunnel_err;
   2442
   2443	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
   2444					    struct_size(sect_rx, tcam, 1));
   2445	if (!sect_rx)
   2446		goto ice_destroy_tunnel_err;
   2447	sect_rx->count = cpu_to_le16(1);
   2448
   2449	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
   2450					    struct_size(sect_tx, tcam, 1));
   2451	if (!sect_tx)
   2452		goto ice_destroy_tunnel_err;
   2453	sect_tx->count = cpu_to_le16(1);
   2454
   2455	/* copy original boost entry to update package buffer, one copy to Rx
   2456	 * section, another copy to the Tx section
   2457	 */
   2458	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
   2459	       sizeof(*sect_rx->tcam));
   2460	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
   2461	       sizeof(*sect_tx->tcam));
   2462
   2463	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
   2464	if (!status)
   2465		hw->tnl.tbl[index].port = 0;
   2466
   2467ice_destroy_tunnel_err:
   2468	ice_pkg_buf_free(hw, bld);
   2469
   2470ice_destroy_tunnel_end:
   2471	mutex_unlock(&hw->tnl_lock);
   2472
   2473	return status;
   2474}
   2475
   2476int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
   2477			    unsigned int idx, struct udp_tunnel_info *ti)
   2478{
   2479	struct ice_netdev_priv *np = netdev_priv(netdev);
   2480	struct ice_vsi *vsi = np->vsi;
   2481	struct ice_pf *pf = vsi->back;
   2482	enum ice_tunnel_type tnl_type;
   2483	int status;
   2484	u16 index;
   2485
   2486	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
   2487	index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
   2488
   2489	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
   2490	if (status) {
   2491		netdev_err(netdev, "Error adding UDP tunnel - %d\n",
   2492			   status);
   2493		return -EIO;
   2494	}
   2495
   2496	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
   2497	return 0;
   2498}
   2499
   2500int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
   2501			      unsigned int idx, struct udp_tunnel_info *ti)
   2502{
   2503	struct ice_netdev_priv *np = netdev_priv(netdev);
   2504	struct ice_vsi *vsi = np->vsi;
   2505	struct ice_pf *pf = vsi->back;
   2506	enum ice_tunnel_type tnl_type;
   2507	int status;
   2508
   2509	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
   2510
   2511	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
   2512				    ntohs(ti->port));
   2513	if (status) {
   2514		netdev_err(netdev, "Error removing UDP tunnel - %d\n",
   2515			   status);
   2516		return -EIO;
   2517	}
   2518
   2519	return 0;
   2520}
   2521
   2522/**
   2523 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
   2524 * @hw: pointer to the hardware structure
   2525 * @blk: hardware block
   2526 * @prof: profile ID
   2527 * @fv_idx: field vector word index
   2528 * @prot: variable to receive the protocol ID
   2529 * @off: variable to receive the protocol offset
   2530 */
   2531int
   2532ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
   2533		  u8 *prot, u16 *off)
   2534{
   2535	struct ice_fv_word *fv_ext;
   2536
   2537	if (prof >= hw->blk[blk].es.count)
   2538		return -EINVAL;
   2539
   2540	if (fv_idx >= hw->blk[blk].es.fvw)
   2541		return -EINVAL;
   2542
   2543	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
   2544
   2545	*prot = fv_ext[fv_idx].prot_id;
   2546	*off = fv_ext[fv_idx].off;
   2547
   2548	return 0;
   2549}
   2550
   2551/* PTG Management */
   2552
   2553/**
   2554 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
   2555 * @hw: pointer to the hardware structure
   2556 * @blk: HW block
   2557 * @ptype: the ptype to search for
   2558 * @ptg: pointer to variable that receives the PTG
   2559 *
   2560 * This function will search the PTGs for a particular ptype, returning the
   2561 * PTG ID that contains it through the PTG parameter, with the value of
   2562 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
   2563 */
   2564static int
   2565ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
   2566{
   2567	if (ptype >= ICE_XLT1_CNT || !ptg)
   2568		return -EINVAL;
   2569
   2570	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
   2571	return 0;
   2572}
   2573
   2574/**
   2575 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
   2576 * @hw: pointer to the hardware structure
   2577 * @blk: HW block
   2578 * @ptg: the PTG to allocate
   2579 *
   2580 * This function allocates a given packet type group ID specified by the PTG
   2581 * parameter.
   2582 */
   2583static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
   2584{
   2585	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
   2586}
   2587
   2588/**
   2589 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
   2590 * @hw: pointer to the hardware structure
   2591 * @blk: HW block
   2592 * @ptype: the ptype to remove
   2593 * @ptg: the PTG to remove the ptype from
   2594 *
   2595 * This function will remove the ptype from the specific PTG, and move it to
   2596 * the default PTG (ICE_DEFAULT_PTG).
   2597 */
   2598static int
   2599ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
   2600{
   2601	struct ice_ptg_ptype **ch;
   2602	struct ice_ptg_ptype *p;
   2603
   2604	if (ptype > ICE_XLT1_CNT - 1)
   2605		return -EINVAL;
   2606
   2607	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
   2608		return -ENOENT;
   2609
   2610	/* Should not happen if .in_use is set, bad config */
   2611	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
   2612		return -EIO;
   2613
   2614	/* find the ptype within this PTG, and bypass the link over it */
   2615	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
   2616	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
   2617	while (p) {
   2618		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
   2619			*ch = p->next_ptype;
   2620			break;
   2621		}
   2622
   2623		ch = &p->next_ptype;
   2624		p = p->next_ptype;
   2625	}
   2626
   2627	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
   2628	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
   2629
   2630	return 0;
   2631}
   2632
   2633/**
   2634 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
   2635 * @hw: pointer to the hardware structure
   2636 * @blk: HW block
   2637 * @ptype: the ptype to add or move
   2638 * @ptg: the PTG to add or move the ptype to
   2639 *
   2640 * This function will either add or move a ptype to a particular PTG depending
   2641 * on if the ptype is already part of another group. Note that using a
   2642 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
   2643 * default PTG.
   2644 */
   2645static int
   2646ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
   2647{
   2648	u8 original_ptg;
   2649	int status;
   2650
   2651	if (ptype > ICE_XLT1_CNT - 1)
   2652		return -EINVAL;
   2653
   2654	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
   2655		return -ENOENT;
   2656
   2657	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
   2658	if (status)
   2659		return status;
   2660
   2661	/* Is ptype already in the correct PTG? */
   2662	if (original_ptg == ptg)
   2663		return 0;
   2664
   2665	/* Remove from original PTG and move back to the default PTG */
   2666	if (original_ptg != ICE_DEFAULT_PTG)
   2667		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
   2668
   2669	/* Moving to default PTG? Then we're done with this request */
   2670	if (ptg == ICE_DEFAULT_PTG)
   2671		return 0;
   2672
   2673	/* Add ptype to PTG at beginning of list */
   2674	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
   2675		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
   2676	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
   2677		&hw->blk[blk].xlt1.ptypes[ptype];
   2678
   2679	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
   2680	hw->blk[blk].xlt1.t[ptype] = ptg;
   2681
   2682	return 0;
   2683}
   2684
   2685/* Block / table size info */
   2686struct ice_blk_size_details {
   2687	u16 xlt1;			/* # XLT1 entries */
   2688	u16 xlt2;			/* # XLT2 entries */
   2689	u16 prof_tcam;			/* # profile ID TCAM entries */
   2690	u16 prof_id;			/* # profile IDs */
   2691	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
   2692	u16 prof_redir;			/* # profile redirection entries */
   2693	u16 es;				/* # extraction sequence entries */
   2694	u16 fvw;			/* # field vector words */
   2695	u8 overwrite;			/* overwrite existing entries allowed */
   2696	u8 reverse;			/* reverse FV order */
   2697};
   2698
   2699static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
   2700	/**
   2701	 * Table Definitions
   2702	 * XLT1 - Number of entries in XLT1 table
   2703	 * XLT2 - Number of entries in XLT2 table
   2704	 * TCAM - Number of entries Profile ID TCAM table
   2705	 * CDID - Control Domain ID of the hardware block
   2706	 * PRED - Number of entries in the Profile Redirection Table
   2707	 * FV   - Number of entries in the Field Vector
   2708	 * FVW  - Width (in WORDs) of the Field Vector
   2709	 * OVR  - Overwrite existing table entries
   2710	 * REV  - Reverse FV
   2711	 */
   2712	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
   2713	/*          Overwrite   , Reverse FV */
   2714	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
   2715		    false, false },
   2716	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
   2717		    false, false },
   2718	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
   2719		    false, true  },
   2720	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
   2721		    true,  true  },
   2722	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
   2723		    false, false },
   2724};
   2725
   2726enum ice_sid_all {
   2727	ICE_SID_XLT1_OFF = 0,
   2728	ICE_SID_XLT2_OFF,
   2729	ICE_SID_PR_OFF,
   2730	ICE_SID_PR_REDIR_OFF,
   2731	ICE_SID_ES_OFF,
   2732	ICE_SID_OFF_COUNT,
   2733};
   2734
   2735/* Characteristic handling */
   2736
   2737/**
   2738 * ice_match_prop_lst - determine if properties of two lists match
   2739 * @list1: first properties list
   2740 * @list2: second properties list
   2741 *
   2742 * Count, cookies and the order must match in order to be considered equivalent.
   2743 */
   2744static bool
   2745ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
   2746{
   2747	struct ice_vsig_prof *tmp1;
   2748	struct ice_vsig_prof *tmp2;
   2749	u16 chk_count = 0;
   2750	u16 count = 0;
   2751
   2752	/* compare counts */
   2753	list_for_each_entry(tmp1, list1, list)
   2754		count++;
   2755	list_for_each_entry(tmp2, list2, list)
   2756		chk_count++;
   2757	/* cppcheck-suppress knownConditionTrueFalse */
   2758	if (!count || count != chk_count)
   2759		return false;
   2760
   2761	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
   2762	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
   2763
   2764	/* profile cookies must compare, and in the exact same order to take
   2765	 * into account priority
   2766	 */
   2767	while (count--) {
   2768		if (tmp2->profile_cookie != tmp1->profile_cookie)
   2769			return false;
   2770
   2771		tmp1 = list_next_entry(tmp1, list);
   2772		tmp2 = list_next_entry(tmp2, list);
   2773	}
   2774
   2775	return true;
   2776}
   2777
   2778/* VSIG Management */
   2779
   2780/**
   2781 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
   2782 * @hw: pointer to the hardware structure
   2783 * @blk: HW block
   2784 * @vsi: VSI of interest
   2785 * @vsig: pointer to receive the VSI group
   2786 *
   2787 * This function will lookup the VSI entry in the XLT2 list and return
   2788 * the VSI group its associated with.
   2789 */
   2790static int
   2791ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
   2792{
   2793	if (!vsig || vsi >= ICE_MAX_VSI)
   2794		return -EINVAL;
   2795
   2796	/* As long as there's a default or valid VSIG associated with the input
   2797	 * VSI, the functions returns a success. Any handling of VSIG will be
   2798	 * done by the following add, update or remove functions.
   2799	 */
   2800	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
   2801
   2802	return 0;
   2803}
   2804
   2805/**
   2806 * ice_vsig_alloc_val - allocate a new VSIG by value
   2807 * @hw: pointer to the hardware structure
   2808 * @blk: HW block
   2809 * @vsig: the VSIG to allocate
   2810 *
   2811 * This function will allocate a given VSIG specified by the VSIG parameter.
   2812 */
   2813static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
   2814{
   2815	u16 idx = vsig & ICE_VSIG_IDX_M;
   2816
   2817	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
   2818		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
   2819		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
   2820	}
   2821
   2822	return ICE_VSIG_VALUE(idx, hw->pf_id);
   2823}
   2824
   2825/**
   2826 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
   2827 * @hw: pointer to the hardware structure
   2828 * @blk: HW block
   2829 *
   2830 * This function will iterate through the VSIG list and mark the first
   2831 * unused entry for the new VSIG entry as used and return that value.
   2832 */
   2833static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
   2834{
   2835	u16 i;
   2836
   2837	for (i = 1; i < ICE_MAX_VSIGS; i++)
   2838		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
   2839			return ice_vsig_alloc_val(hw, blk, i);
   2840
   2841	return ICE_DEFAULT_VSIG;
   2842}
   2843
   2844/**
   2845 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
   2846 * @hw: pointer to the hardware structure
   2847 * @blk: HW block
   2848 * @chs: characteristic list
   2849 * @vsig: returns the VSIG with the matching profiles, if found
   2850 *
   2851 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
   2852 * a group have the same characteristic set. To check if there exists a VSIG
   2853 * which has the same characteristics as the input characteristics; this
   2854 * function will iterate through the XLT2 list and return the VSIG that has a
   2855 * matching configuration. In order to make sure that priorities are accounted
   2856 * for, the list must match exactly, including the order in which the
   2857 * characteristics are listed.
   2858 */
   2859static int
   2860ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
   2861			struct list_head *chs, u16 *vsig)
   2862{
   2863	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
   2864	u16 i;
   2865
   2866	for (i = 0; i < xlt2->count; i++)
   2867		if (xlt2->vsig_tbl[i].in_use &&
   2868		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
   2869			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
   2870			return 0;
   2871		}
   2872
   2873	return -ENOENT;
   2874}
   2875
   2876/**
   2877 * ice_vsig_free - free VSI group
   2878 * @hw: pointer to the hardware structure
   2879 * @blk: HW block
   2880 * @vsig: VSIG to remove
   2881 *
   2882 * The function will remove all VSIs associated with the input VSIG and move
   2883 * them to the DEFAULT_VSIG and mark the VSIG available.
   2884 */
   2885static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
   2886{
   2887	struct ice_vsig_prof *dtmp, *del;
   2888	struct ice_vsig_vsi *vsi_cur;
   2889	u16 idx;
   2890
   2891	idx = vsig & ICE_VSIG_IDX_M;
   2892	if (idx >= ICE_MAX_VSIGS)
   2893		return -EINVAL;
   2894
   2895	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
   2896		return -ENOENT;
   2897
   2898	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
   2899
   2900	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
   2901	/* If the VSIG has at least 1 VSI then iterate through the
   2902	 * list and remove the VSIs before deleting the group.
   2903	 */
   2904	if (vsi_cur) {
   2905		/* remove all vsis associated with this VSIG XLT2 entry */
   2906		do {
   2907			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
   2908
   2909			vsi_cur->vsig = ICE_DEFAULT_VSIG;
   2910			vsi_cur->changed = 1;
   2911			vsi_cur->next_vsi = NULL;
   2912			vsi_cur = tmp;
   2913		} while (vsi_cur);
   2914
   2915		/* NULL terminate head of VSI list */
   2916		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
   2917	}
   2918
   2919	/* free characteristic list */
   2920	list_for_each_entry_safe(del, dtmp,
   2921				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   2922				 list) {
   2923		list_del(&del->list);
   2924		devm_kfree(ice_hw_to_dev(hw), del);
   2925	}
   2926
   2927	/* if VSIG characteristic list was cleared for reset
   2928	 * re-initialize the list head
   2929	 */
   2930	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
   2931
   2932	return 0;
   2933}
   2934
   2935/**
   2936 * ice_vsig_remove_vsi - remove VSI from VSIG
   2937 * @hw: pointer to the hardware structure
   2938 * @blk: HW block
   2939 * @vsi: VSI to remove
   2940 * @vsig: VSI group to remove from
   2941 *
   2942 * The function will remove the input VSI from its VSI group and move it
   2943 * to the DEFAULT_VSIG.
   2944 */
   2945static int
   2946ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
   2947{
   2948	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
   2949	u16 idx;
   2950
   2951	idx = vsig & ICE_VSIG_IDX_M;
   2952
   2953	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
   2954		return -EINVAL;
   2955
   2956	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
   2957		return -ENOENT;
   2958
   2959	/* entry already in default VSIG, don't have to remove */
   2960	if (idx == ICE_DEFAULT_VSIG)
   2961		return 0;
   2962
   2963	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
   2964	if (!(*vsi_head))
   2965		return -EIO;
   2966
   2967	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
   2968	vsi_cur = (*vsi_head);
   2969
   2970	/* iterate the VSI list, skip over the entry to be removed */
   2971	while (vsi_cur) {
   2972		if (vsi_tgt == vsi_cur) {
   2973			(*vsi_head) = vsi_cur->next_vsi;
   2974			break;
   2975		}
   2976		vsi_head = &vsi_cur->next_vsi;
   2977		vsi_cur = vsi_cur->next_vsi;
   2978	}
   2979
   2980	/* verify if VSI was removed from group list */
   2981	if (!vsi_cur)
   2982		return -ENOENT;
   2983
   2984	vsi_cur->vsig = ICE_DEFAULT_VSIG;
   2985	vsi_cur->changed = 1;
   2986	vsi_cur->next_vsi = NULL;
   2987
   2988	return 0;
   2989}
   2990
   2991/**
   2992 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
   2993 * @hw: pointer to the hardware structure
   2994 * @blk: HW block
   2995 * @vsi: VSI to move
   2996 * @vsig: destination VSI group
   2997 *
   2998 * This function will move or add the input VSI to the target VSIG.
   2999 * The function will find the original VSIG the VSI belongs to and
   3000 * move the entry to the DEFAULT_VSIG, update the original VSIG and
   3001 * then move entry to the new VSIG.
   3002 */
   3003static int
   3004ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
   3005{
   3006	struct ice_vsig_vsi *tmp;
   3007	u16 orig_vsig, idx;
   3008	int status;
   3009
   3010	idx = vsig & ICE_VSIG_IDX_M;
   3011
   3012	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
   3013		return -EINVAL;
   3014
   3015	/* if VSIG not in use and VSIG is not default type this VSIG
   3016	 * doesn't exist.
   3017	 */
   3018	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
   3019	    vsig != ICE_DEFAULT_VSIG)
   3020		return -ENOENT;
   3021
   3022	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
   3023	if (status)
   3024		return status;
   3025
   3026	/* no update required if vsigs match */
   3027	if (orig_vsig == vsig)
   3028		return 0;
   3029
   3030	if (orig_vsig != ICE_DEFAULT_VSIG) {
   3031		/* remove entry from orig_vsig and add to default VSIG */
   3032		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
   3033		if (status)
   3034			return status;
   3035	}
   3036
   3037	if (idx == ICE_DEFAULT_VSIG)
   3038		return 0;
   3039
   3040	/* Create VSI entry and add VSIG and prop_mask values */
   3041	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
   3042	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
   3043
   3044	/* Add new entry to the head of the VSIG list */
   3045	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
   3046	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
   3047		&hw->blk[blk].xlt2.vsis[vsi];
   3048	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
   3049	hw->blk[blk].xlt2.t[vsi] = vsig;
   3050
   3051	return 0;
   3052}
   3053
   3054/**
   3055 * ice_prof_has_mask_idx - determine if profile index masking is identical
   3056 * @hw: pointer to the hardware structure
   3057 * @blk: HW block
   3058 * @prof: profile to check
   3059 * @idx: profile index to check
   3060 * @mask: mask to match
   3061 */
   3062static bool
   3063ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
   3064		      u16 mask)
   3065{
   3066	bool expect_no_mask = false;
   3067	bool found = false;
   3068	bool match = false;
   3069	u16 i;
   3070
   3071	/* If mask is 0x0000 or 0xffff, then there is no masking */
   3072	if (mask == 0 || mask == 0xffff)
   3073		expect_no_mask = true;
   3074
   3075	/* Scan the enabled masks on this profile, for the specified idx */
   3076	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
   3077	     hw->blk[blk].masks.count; i++)
   3078		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
   3079			if (hw->blk[blk].masks.masks[i].in_use &&
   3080			    hw->blk[blk].masks.masks[i].idx == idx) {
   3081				found = true;
   3082				if (hw->blk[blk].masks.masks[i].mask == mask)
   3083					match = true;
   3084				break;
   3085			}
   3086
   3087	if (expect_no_mask) {
   3088		if (found)
   3089			return false;
   3090	} else {
   3091		if (!match)
   3092			return false;
   3093	}
   3094
   3095	return true;
   3096}
   3097
   3098/**
   3099 * ice_prof_has_mask - determine if profile masking is identical
   3100 * @hw: pointer to the hardware structure
   3101 * @blk: HW block
   3102 * @prof: profile to check
   3103 * @masks: masks to match
   3104 */
   3105static bool
   3106ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
   3107{
   3108	u16 i;
   3109
   3110	/* es->mask_ena[prof] will have the mask */
   3111	for (i = 0; i < hw->blk[blk].es.fvw; i++)
   3112		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
   3113			return false;
   3114
   3115	return true;
   3116}
   3117
   3118/**
   3119 * ice_find_prof_id_with_mask - find profile ID for a given field vector
   3120 * @hw: pointer to the hardware structure
   3121 * @blk: HW block
   3122 * @fv: field vector to search for
   3123 * @masks: masks for FV
   3124 * @prof_id: receives the profile ID
   3125 */
   3126static int
   3127ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
   3128			   struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
   3129{
   3130	struct ice_es *es = &hw->blk[blk].es;
   3131	u8 i;
   3132
   3133	/* For FD, we don't want to re-use a existed profile with the same
   3134	 * field vector and mask. This will cause rule interference.
   3135	 */
   3136	if (blk == ICE_BLK_FD)
   3137		return -ENOENT;
   3138
   3139	for (i = 0; i < (u8)es->count; i++) {
   3140		u16 off = i * es->fvw;
   3141
   3142		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
   3143			continue;
   3144
   3145		/* check if masks settings are the same for this profile */
   3146		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
   3147			continue;
   3148
   3149		*prof_id = i;
   3150		return 0;
   3151	}
   3152
   3153	return -ENOENT;
   3154}
   3155
   3156/**
   3157 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
   3158 * @blk: the block type
   3159 * @rsrc_type: pointer to variable to receive the resource type
   3160 */
   3161static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
   3162{
   3163	switch (blk) {
   3164	case ICE_BLK_FD:
   3165		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
   3166		break;
   3167	case ICE_BLK_RSS:
   3168		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
   3169		break;
   3170	default:
   3171		return false;
   3172	}
   3173	return true;
   3174}
   3175
   3176/**
   3177 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
   3178 * @blk: the block type
   3179 * @rsrc_type: pointer to variable to receive the resource type
   3180 */
   3181static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
   3182{
   3183	switch (blk) {
   3184	case ICE_BLK_FD:
   3185		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
   3186		break;
   3187	case ICE_BLK_RSS:
   3188		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
   3189		break;
   3190	default:
   3191		return false;
   3192	}
   3193	return true;
   3194}
   3195
   3196/**
   3197 * ice_alloc_tcam_ent - allocate hardware TCAM entry
   3198 * @hw: pointer to the HW struct
   3199 * @blk: the block to allocate the TCAM for
   3200 * @btm: true to allocate from bottom of table, false to allocate from top
   3201 * @tcam_idx: pointer to variable to receive the TCAM entry
   3202 *
   3203 * This function allocates a new entry in a Profile ID TCAM for a specific
   3204 * block.
   3205 */
   3206static int
   3207ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
   3208		   u16 *tcam_idx)
   3209{
   3210	u16 res_type;
   3211
   3212	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
   3213		return -EINVAL;
   3214
   3215	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
   3216}
   3217
   3218/**
   3219 * ice_free_tcam_ent - free hardware TCAM entry
   3220 * @hw: pointer to the HW struct
   3221 * @blk: the block from which to free the TCAM entry
   3222 * @tcam_idx: the TCAM entry to free
   3223 *
   3224 * This function frees an entry in a Profile ID TCAM for a specific block.
   3225 */
   3226static int
   3227ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
   3228{
   3229	u16 res_type;
   3230
   3231	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
   3232		return -EINVAL;
   3233
   3234	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
   3235}
   3236
   3237/**
   3238 * ice_alloc_prof_id - allocate profile ID
   3239 * @hw: pointer to the HW struct
   3240 * @blk: the block to allocate the profile ID for
   3241 * @prof_id: pointer to variable to receive the profile ID
   3242 *
   3243 * This function allocates a new profile ID, which also corresponds to a Field
   3244 * Vector (Extraction Sequence) entry.
   3245 */
   3246static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
   3247{
   3248	u16 res_type;
   3249	u16 get_prof;
   3250	int status;
   3251
   3252	if (!ice_prof_id_rsrc_type(blk, &res_type))
   3253		return -EINVAL;
   3254
   3255	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
   3256	if (!status)
   3257		*prof_id = (u8)get_prof;
   3258
   3259	return status;
   3260}
   3261
   3262/**
   3263 * ice_free_prof_id - free profile ID
   3264 * @hw: pointer to the HW struct
   3265 * @blk: the block from which to free the profile ID
   3266 * @prof_id: the profile ID to free
   3267 *
   3268 * This function frees a profile ID, which also corresponds to a Field Vector.
   3269 */
   3270static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
   3271{
   3272	u16 tmp_prof_id = (u16)prof_id;
   3273	u16 res_type;
   3274
   3275	if (!ice_prof_id_rsrc_type(blk, &res_type))
   3276		return -EINVAL;
   3277
   3278	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
   3279}
   3280
   3281/**
   3282 * ice_prof_inc_ref - increment reference count for profile
   3283 * @hw: pointer to the HW struct
   3284 * @blk: the block from which to free the profile ID
   3285 * @prof_id: the profile ID for which to increment the reference count
   3286 */
   3287static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
   3288{
   3289	if (prof_id > hw->blk[blk].es.count)
   3290		return -EINVAL;
   3291
   3292	hw->blk[blk].es.ref_count[prof_id]++;
   3293
   3294	return 0;
   3295}
   3296
   3297/**
   3298 * ice_write_prof_mask_reg - write profile mask register
   3299 * @hw: pointer to the HW struct
   3300 * @blk: hardware block
   3301 * @mask_idx: mask index
   3302 * @idx: index of the FV which will use the mask
   3303 * @mask: the 16-bit mask
   3304 */
   3305static void
   3306ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
   3307			u16 idx, u16 mask)
   3308{
   3309	u32 offset;
   3310	u32 val;
   3311
   3312	switch (blk) {
   3313	case ICE_BLK_RSS:
   3314		offset = GLQF_HMASK(mask_idx);
   3315		val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
   3316		val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
   3317		break;
   3318	case ICE_BLK_FD:
   3319		offset = GLQF_FDMASK(mask_idx);
   3320		val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
   3321		val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
   3322		break;
   3323	default:
   3324		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
   3325			  blk);
   3326		return;
   3327	}
   3328
   3329	wr32(hw, offset, val);
   3330	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
   3331		  blk, idx, offset, val);
   3332}
   3333
   3334/**
   3335 * ice_write_prof_mask_enable_res - write profile mask enable register
   3336 * @hw: pointer to the HW struct
   3337 * @blk: hardware block
   3338 * @prof_id: profile ID
   3339 * @enable_mask: enable mask
   3340 */
   3341static void
   3342ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
   3343			       u16 prof_id, u32 enable_mask)
   3344{
   3345	u32 offset;
   3346
   3347	switch (blk) {
   3348	case ICE_BLK_RSS:
   3349		offset = GLQF_HMASK_SEL(prof_id);
   3350		break;
   3351	case ICE_BLK_FD:
   3352		offset = GLQF_FDMASK_SEL(prof_id);
   3353		break;
   3354	default:
   3355		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
   3356			  blk);
   3357		return;
   3358	}
   3359
   3360	wr32(hw, offset, enable_mask);
   3361	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
   3362		  blk, prof_id, offset, enable_mask);
   3363}
   3364
   3365/**
   3366 * ice_init_prof_masks - initial prof masks
   3367 * @hw: pointer to the HW struct
   3368 * @blk: hardware block
   3369 */
   3370static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
   3371{
   3372	u16 per_pf;
   3373	u16 i;
   3374
   3375	mutex_init(&hw->blk[blk].masks.lock);
   3376
   3377	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
   3378
   3379	hw->blk[blk].masks.count = per_pf;
   3380	hw->blk[blk].masks.first = hw->pf_id * per_pf;
   3381
   3382	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
   3383
   3384	for (i = hw->blk[blk].masks.first;
   3385	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
   3386		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
   3387}
   3388
   3389/**
   3390 * ice_init_all_prof_masks - initialize all prof masks
   3391 * @hw: pointer to the HW struct
   3392 */
   3393static void ice_init_all_prof_masks(struct ice_hw *hw)
   3394{
   3395	ice_init_prof_masks(hw, ICE_BLK_RSS);
   3396	ice_init_prof_masks(hw, ICE_BLK_FD);
   3397}
   3398
   3399/**
   3400 * ice_alloc_prof_mask - allocate profile mask
   3401 * @hw: pointer to the HW struct
   3402 * @blk: hardware block
   3403 * @idx: index of FV which will use the mask
   3404 * @mask: the 16-bit mask
   3405 * @mask_idx: variable to receive the mask index
   3406 */
   3407static int
   3408ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
   3409		    u16 *mask_idx)
   3410{
   3411	bool found_unused = false, found_copy = false;
   3412	u16 unused_idx = 0, copy_idx = 0;
   3413	int status = -ENOSPC;
   3414	u16 i;
   3415
   3416	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
   3417		return -EINVAL;
   3418
   3419	mutex_lock(&hw->blk[blk].masks.lock);
   3420
   3421	for (i = hw->blk[blk].masks.first;
   3422	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
   3423		if (hw->blk[blk].masks.masks[i].in_use) {
   3424			/* if mask is in use and it exactly duplicates the
   3425			 * desired mask and index, then in can be reused
   3426			 */
   3427			if (hw->blk[blk].masks.masks[i].mask == mask &&
   3428			    hw->blk[blk].masks.masks[i].idx == idx) {
   3429				found_copy = true;
   3430				copy_idx = i;
   3431				break;
   3432			}
   3433		} else {
   3434			/* save off unused index, but keep searching in case
   3435			 * there is an exact match later on
   3436			 */
   3437			if (!found_unused) {
   3438				found_unused = true;
   3439				unused_idx = i;
   3440			}
   3441		}
   3442
   3443	if (found_copy)
   3444		i = copy_idx;
   3445	else if (found_unused)
   3446		i = unused_idx;
   3447	else
   3448		goto err_ice_alloc_prof_mask;
   3449
   3450	/* update mask for a new entry */
   3451	if (found_unused) {
   3452		hw->blk[blk].masks.masks[i].in_use = true;
   3453		hw->blk[blk].masks.masks[i].mask = mask;
   3454		hw->blk[blk].masks.masks[i].idx = idx;
   3455		hw->blk[blk].masks.masks[i].ref = 0;
   3456		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
   3457	}
   3458
   3459	hw->blk[blk].masks.masks[i].ref++;
   3460	*mask_idx = i;
   3461	status = 0;
   3462
   3463err_ice_alloc_prof_mask:
   3464	mutex_unlock(&hw->blk[blk].masks.lock);
   3465
   3466	return status;
   3467}
   3468
   3469/**
   3470 * ice_free_prof_mask - free profile mask
   3471 * @hw: pointer to the HW struct
   3472 * @blk: hardware block
   3473 * @mask_idx: index of mask
   3474 */
   3475static int
   3476ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
   3477{
   3478	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
   3479		return -EINVAL;
   3480
   3481	if (!(mask_idx >= hw->blk[blk].masks.first &&
   3482	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
   3483		return -ENOENT;
   3484
   3485	mutex_lock(&hw->blk[blk].masks.lock);
   3486
   3487	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
   3488		goto exit_ice_free_prof_mask;
   3489
   3490	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
   3491		hw->blk[blk].masks.masks[mask_idx].ref--;
   3492		goto exit_ice_free_prof_mask;
   3493	}
   3494
   3495	/* remove mask */
   3496	hw->blk[blk].masks.masks[mask_idx].in_use = false;
   3497	hw->blk[blk].masks.masks[mask_idx].mask = 0;
   3498	hw->blk[blk].masks.masks[mask_idx].idx = 0;
   3499
   3500	/* update mask as unused entry */
   3501	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
   3502		  mask_idx);
   3503	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
   3504
   3505exit_ice_free_prof_mask:
   3506	mutex_unlock(&hw->blk[blk].masks.lock);
   3507
   3508	return 0;
   3509}
   3510
   3511/**
   3512 * ice_free_prof_masks - free all profile masks for a profile
   3513 * @hw: pointer to the HW struct
   3514 * @blk: hardware block
   3515 * @prof_id: profile ID
   3516 */
   3517static int
   3518ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
   3519{
   3520	u32 mask_bm;
   3521	u16 i;
   3522
   3523	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
   3524		return -EINVAL;
   3525
   3526	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
   3527	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
   3528		if (mask_bm & BIT(i))
   3529			ice_free_prof_mask(hw, blk, i);
   3530
   3531	return 0;
   3532}
   3533
   3534/**
   3535 * ice_shutdown_prof_masks - releases lock for masking
   3536 * @hw: pointer to the HW struct
   3537 * @blk: hardware block
   3538 *
   3539 * This should be called before unloading the driver
   3540 */
   3541static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
   3542{
   3543	u16 i;
   3544
   3545	mutex_lock(&hw->blk[blk].masks.lock);
   3546
   3547	for (i = hw->blk[blk].masks.first;
   3548	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
   3549		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
   3550
   3551		hw->blk[blk].masks.masks[i].in_use = false;
   3552		hw->blk[blk].masks.masks[i].idx = 0;
   3553		hw->blk[blk].masks.masks[i].mask = 0;
   3554	}
   3555
   3556	mutex_unlock(&hw->blk[blk].masks.lock);
   3557	mutex_destroy(&hw->blk[blk].masks.lock);
   3558}
   3559
   3560/**
   3561 * ice_shutdown_all_prof_masks - releases all locks for masking
   3562 * @hw: pointer to the HW struct
   3563 *
   3564 * This should be called before unloading the driver
   3565 */
   3566static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
   3567{
   3568	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
   3569	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
   3570}
   3571
   3572/**
   3573 * ice_update_prof_masking - set registers according to masking
   3574 * @hw: pointer to the HW struct
   3575 * @blk: hardware block
   3576 * @prof_id: profile ID
   3577 * @masks: masks
   3578 */
   3579static int
   3580ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
   3581			u16 *masks)
   3582{
   3583	bool err = false;
   3584	u32 ena_mask = 0;
   3585	u16 idx;
   3586	u16 i;
   3587
   3588	/* Only support FD and RSS masking, otherwise nothing to be done */
   3589	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
   3590		return 0;
   3591
   3592	for (i = 0; i < hw->blk[blk].es.fvw; i++)
   3593		if (masks[i] && masks[i] != 0xFFFF) {
   3594			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
   3595				ena_mask |= BIT(idx);
   3596			} else {
   3597				/* not enough bitmaps */
   3598				err = true;
   3599				break;
   3600			}
   3601		}
   3602
   3603	if (err) {
   3604		/* free any bitmaps we have allocated */
   3605		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
   3606			if (ena_mask & BIT(i))
   3607				ice_free_prof_mask(hw, blk, i);
   3608
   3609		return -EIO;
   3610	}
   3611
   3612	/* enable the masks for this profile */
   3613	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
   3614
   3615	/* store enabled masks with profile so that they can be freed later */
   3616	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
   3617
   3618	return 0;
   3619}
   3620
   3621/**
   3622 * ice_write_es - write an extraction sequence to hardware
   3623 * @hw: pointer to the HW struct
   3624 * @blk: the block in which to write the extraction sequence
   3625 * @prof_id: the profile ID to write
   3626 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
   3627 */
   3628static void
   3629ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
   3630	     struct ice_fv_word *fv)
   3631{
   3632	u16 off;
   3633
   3634	off = prof_id * hw->blk[blk].es.fvw;
   3635	if (!fv) {
   3636		memset(&hw->blk[blk].es.t[off], 0,
   3637		       hw->blk[blk].es.fvw * sizeof(*fv));
   3638		hw->blk[blk].es.written[prof_id] = false;
   3639	} else {
   3640		memcpy(&hw->blk[blk].es.t[off], fv,
   3641		       hw->blk[blk].es.fvw * sizeof(*fv));
   3642	}
   3643}
   3644
   3645/**
   3646 * ice_prof_dec_ref - decrement reference count for profile
   3647 * @hw: pointer to the HW struct
   3648 * @blk: the block from which to free the profile ID
   3649 * @prof_id: the profile ID for which to decrement the reference count
   3650 */
   3651static int
   3652ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
   3653{
   3654	if (prof_id > hw->blk[blk].es.count)
   3655		return -EINVAL;
   3656
   3657	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
   3658		if (!--hw->blk[blk].es.ref_count[prof_id]) {
   3659			ice_write_es(hw, blk, prof_id, NULL);
   3660			ice_free_prof_masks(hw, blk, prof_id);
   3661			return ice_free_prof_id(hw, blk, prof_id);
   3662		}
   3663	}
   3664
   3665	return 0;
   3666}
   3667
   3668/* Block / table section IDs */
   3669static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
   3670	/* SWITCH */
   3671	{	ICE_SID_XLT1_SW,
   3672		ICE_SID_XLT2_SW,
   3673		ICE_SID_PROFID_TCAM_SW,
   3674		ICE_SID_PROFID_REDIR_SW,
   3675		ICE_SID_FLD_VEC_SW
   3676	},
   3677
   3678	/* ACL */
   3679	{	ICE_SID_XLT1_ACL,
   3680		ICE_SID_XLT2_ACL,
   3681		ICE_SID_PROFID_TCAM_ACL,
   3682		ICE_SID_PROFID_REDIR_ACL,
   3683		ICE_SID_FLD_VEC_ACL
   3684	},
   3685
   3686	/* FD */
   3687	{	ICE_SID_XLT1_FD,
   3688		ICE_SID_XLT2_FD,
   3689		ICE_SID_PROFID_TCAM_FD,
   3690		ICE_SID_PROFID_REDIR_FD,
   3691		ICE_SID_FLD_VEC_FD
   3692	},
   3693
   3694	/* RSS */
   3695	{	ICE_SID_XLT1_RSS,
   3696		ICE_SID_XLT2_RSS,
   3697		ICE_SID_PROFID_TCAM_RSS,
   3698		ICE_SID_PROFID_REDIR_RSS,
   3699		ICE_SID_FLD_VEC_RSS
   3700	},
   3701
   3702	/* PE */
   3703	{	ICE_SID_XLT1_PE,
   3704		ICE_SID_XLT2_PE,
   3705		ICE_SID_PROFID_TCAM_PE,
   3706		ICE_SID_PROFID_REDIR_PE,
   3707		ICE_SID_FLD_VEC_PE
   3708	}
   3709};
   3710
   3711/**
   3712 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
   3713 * @hw: pointer to the hardware structure
   3714 * @blk: the HW block to initialize
   3715 */
   3716static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
   3717{
   3718	u16 pt;
   3719
   3720	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
   3721		u8 ptg;
   3722
   3723		ptg = hw->blk[blk].xlt1.t[pt];
   3724		if (ptg != ICE_DEFAULT_PTG) {
   3725			ice_ptg_alloc_val(hw, blk, ptg);
   3726			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
   3727		}
   3728	}
   3729}
   3730
   3731/**
   3732 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
   3733 * @hw: pointer to the hardware structure
   3734 * @blk: the HW block to initialize
   3735 */
   3736static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
   3737{
   3738	u16 vsi;
   3739
   3740	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
   3741		u16 vsig;
   3742
   3743		vsig = hw->blk[blk].xlt2.t[vsi];
   3744		if (vsig) {
   3745			ice_vsig_alloc_val(hw, blk, vsig);
   3746			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
   3747			/* no changes at this time, since this has been
   3748			 * initialized from the original package
   3749			 */
   3750			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
   3751		}
   3752	}
   3753}
   3754
   3755/**
   3756 * ice_init_sw_db - init software database from HW tables
   3757 * @hw: pointer to the hardware structure
   3758 */
   3759static void ice_init_sw_db(struct ice_hw *hw)
   3760{
   3761	u16 i;
   3762
   3763	for (i = 0; i < ICE_BLK_COUNT; i++) {
   3764		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
   3765		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
   3766	}
   3767}
   3768
   3769/**
   3770 * ice_fill_tbl - Reads content of a single table type into database
   3771 * @hw: pointer to the hardware structure
   3772 * @block_id: Block ID of the table to copy
   3773 * @sid: Section ID of the table to copy
   3774 *
   3775 * Will attempt to read the entire content of a given table of a single block
   3776 * into the driver database. We assume that the buffer will always
   3777 * be as large or larger than the data contained in the package. If
   3778 * this condition is not met, there is most likely an error in the package
   3779 * contents.
   3780 */
   3781static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
   3782{
   3783	u32 dst_len, sect_len, offset = 0;
   3784	struct ice_prof_redir_section *pr;
   3785	struct ice_prof_id_section *pid;
   3786	struct ice_xlt1_section *xlt1;
   3787	struct ice_xlt2_section *xlt2;
   3788	struct ice_sw_fv_section *es;
   3789	struct ice_pkg_enum state;
   3790	u8 *src, *dst;
   3791	void *sect;
   3792
   3793	/* if the HW segment pointer is null then the first iteration of
   3794	 * ice_pkg_enum_section() will fail. In this case the HW tables will
   3795	 * not be filled and return success.
   3796	 */
   3797	if (!hw->seg) {
   3798		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
   3799		return;
   3800	}
   3801
   3802	memset(&state, 0, sizeof(state));
   3803
   3804	sect = ice_pkg_enum_section(hw->seg, &state, sid);
   3805
   3806	while (sect) {
   3807		switch (sid) {
   3808		case ICE_SID_XLT1_SW:
   3809		case ICE_SID_XLT1_FD:
   3810		case ICE_SID_XLT1_RSS:
   3811		case ICE_SID_XLT1_ACL:
   3812		case ICE_SID_XLT1_PE:
   3813			xlt1 = sect;
   3814			src = xlt1->value;
   3815			sect_len = le16_to_cpu(xlt1->count) *
   3816				sizeof(*hw->blk[block_id].xlt1.t);
   3817			dst = hw->blk[block_id].xlt1.t;
   3818			dst_len = hw->blk[block_id].xlt1.count *
   3819				sizeof(*hw->blk[block_id].xlt1.t);
   3820			break;
   3821		case ICE_SID_XLT2_SW:
   3822		case ICE_SID_XLT2_FD:
   3823		case ICE_SID_XLT2_RSS:
   3824		case ICE_SID_XLT2_ACL:
   3825		case ICE_SID_XLT2_PE:
   3826			xlt2 = sect;
   3827			src = (__force u8 *)xlt2->value;
   3828			sect_len = le16_to_cpu(xlt2->count) *
   3829				sizeof(*hw->blk[block_id].xlt2.t);
   3830			dst = (u8 *)hw->blk[block_id].xlt2.t;
   3831			dst_len = hw->blk[block_id].xlt2.count *
   3832				sizeof(*hw->blk[block_id].xlt2.t);
   3833			break;
   3834		case ICE_SID_PROFID_TCAM_SW:
   3835		case ICE_SID_PROFID_TCAM_FD:
   3836		case ICE_SID_PROFID_TCAM_RSS:
   3837		case ICE_SID_PROFID_TCAM_ACL:
   3838		case ICE_SID_PROFID_TCAM_PE:
   3839			pid = sect;
   3840			src = (u8 *)pid->entry;
   3841			sect_len = le16_to_cpu(pid->count) *
   3842				sizeof(*hw->blk[block_id].prof.t);
   3843			dst = (u8 *)hw->blk[block_id].prof.t;
   3844			dst_len = hw->blk[block_id].prof.count *
   3845				sizeof(*hw->blk[block_id].prof.t);
   3846			break;
   3847		case ICE_SID_PROFID_REDIR_SW:
   3848		case ICE_SID_PROFID_REDIR_FD:
   3849		case ICE_SID_PROFID_REDIR_RSS:
   3850		case ICE_SID_PROFID_REDIR_ACL:
   3851		case ICE_SID_PROFID_REDIR_PE:
   3852			pr = sect;
   3853			src = pr->redir_value;
   3854			sect_len = le16_to_cpu(pr->count) *
   3855				sizeof(*hw->blk[block_id].prof_redir.t);
   3856			dst = hw->blk[block_id].prof_redir.t;
   3857			dst_len = hw->blk[block_id].prof_redir.count *
   3858				sizeof(*hw->blk[block_id].prof_redir.t);
   3859			break;
   3860		case ICE_SID_FLD_VEC_SW:
   3861		case ICE_SID_FLD_VEC_FD:
   3862		case ICE_SID_FLD_VEC_RSS:
   3863		case ICE_SID_FLD_VEC_ACL:
   3864		case ICE_SID_FLD_VEC_PE:
   3865			es = sect;
   3866			src = (u8 *)es->fv;
   3867			sect_len = (u32)(le16_to_cpu(es->count) *
   3868					 hw->blk[block_id].es.fvw) *
   3869				sizeof(*hw->blk[block_id].es.t);
   3870			dst = (u8 *)hw->blk[block_id].es.t;
   3871			dst_len = (u32)(hw->blk[block_id].es.count *
   3872					hw->blk[block_id].es.fvw) *
   3873				sizeof(*hw->blk[block_id].es.t);
   3874			break;
   3875		default:
   3876			return;
   3877		}
   3878
   3879		/* if the section offset exceeds destination length, terminate
   3880		 * table fill.
   3881		 */
   3882		if (offset > dst_len)
   3883			return;
   3884
   3885		/* if the sum of section size and offset exceed destination size
   3886		 * then we are out of bounds of the HW table size for that PF.
   3887		 * Changing section length to fill the remaining table space
   3888		 * of that PF.
   3889		 */
   3890		if ((offset + sect_len) > dst_len)
   3891			sect_len = dst_len - offset;
   3892
   3893		memcpy(dst + offset, src, sect_len);
   3894		offset += sect_len;
   3895		sect = ice_pkg_enum_section(NULL, &state, sid);
   3896	}
   3897}
   3898
   3899/**
   3900 * ice_fill_blk_tbls - Read package context for tables
   3901 * @hw: pointer to the hardware structure
   3902 *
   3903 * Reads the current package contents and populates the driver
   3904 * database with the data iteratively for all advanced feature
   3905 * blocks. Assume that the HW tables have been allocated.
   3906 */
   3907void ice_fill_blk_tbls(struct ice_hw *hw)
   3908{
   3909	u8 i;
   3910
   3911	for (i = 0; i < ICE_BLK_COUNT; i++) {
   3912		enum ice_block blk_id = (enum ice_block)i;
   3913
   3914		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
   3915		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
   3916		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
   3917		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
   3918		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
   3919	}
   3920
   3921	ice_init_sw_db(hw);
   3922}
   3923
   3924/**
   3925 * ice_free_prof_map - free profile map
   3926 * @hw: pointer to the hardware structure
   3927 * @blk_idx: HW block index
   3928 */
   3929static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
   3930{
   3931	struct ice_es *es = &hw->blk[blk_idx].es;
   3932	struct ice_prof_map *del, *tmp;
   3933
   3934	mutex_lock(&es->prof_map_lock);
   3935	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
   3936		list_del(&del->list);
   3937		devm_kfree(ice_hw_to_dev(hw), del);
   3938	}
   3939	INIT_LIST_HEAD(&es->prof_map);
   3940	mutex_unlock(&es->prof_map_lock);
   3941}
   3942
   3943/**
   3944 * ice_free_flow_profs - free flow profile entries
   3945 * @hw: pointer to the hardware structure
   3946 * @blk_idx: HW block index
   3947 */
   3948static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
   3949{
   3950	struct ice_flow_prof *p, *tmp;
   3951
   3952	mutex_lock(&hw->fl_profs_locks[blk_idx]);
   3953	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
   3954		struct ice_flow_entry *e, *t;
   3955
   3956		list_for_each_entry_safe(e, t, &p->entries, l_entry)
   3957			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
   3958					   ICE_FLOW_ENTRY_HNDL(e));
   3959
   3960		list_del(&p->l_entry);
   3961
   3962		mutex_destroy(&p->entries_lock);
   3963		devm_kfree(ice_hw_to_dev(hw), p);
   3964	}
   3965	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
   3966
   3967	/* if driver is in reset and tables are being cleared
   3968	 * re-initialize the flow profile list heads
   3969	 */
   3970	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
   3971}
   3972
   3973/**
   3974 * ice_free_vsig_tbl - free complete VSIG table entries
   3975 * @hw: pointer to the hardware structure
   3976 * @blk: the HW block on which to free the VSIG table entries
   3977 */
   3978static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
   3979{
   3980	u16 i;
   3981
   3982	if (!hw->blk[blk].xlt2.vsig_tbl)
   3983		return;
   3984
   3985	for (i = 1; i < ICE_MAX_VSIGS; i++)
   3986		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
   3987			ice_vsig_free(hw, blk, i);
   3988}
   3989
   3990/**
   3991 * ice_free_hw_tbls - free hardware table memory
   3992 * @hw: pointer to the hardware structure
   3993 */
   3994void ice_free_hw_tbls(struct ice_hw *hw)
   3995{
   3996	struct ice_rss_cfg *r, *rt;
   3997	u8 i;
   3998
   3999	for (i = 0; i < ICE_BLK_COUNT; i++) {
   4000		if (hw->blk[i].is_list_init) {
   4001			struct ice_es *es = &hw->blk[i].es;
   4002
   4003			ice_free_prof_map(hw, i);
   4004			mutex_destroy(&es->prof_map_lock);
   4005
   4006			ice_free_flow_profs(hw, i);
   4007			mutex_destroy(&hw->fl_profs_locks[i]);
   4008
   4009			hw->blk[i].is_list_init = false;
   4010		}
   4011		ice_free_vsig_tbl(hw, (enum ice_block)i);
   4012		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
   4013		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
   4014		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
   4015		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
   4016		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
   4017		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
   4018		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
   4019		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
   4020		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
   4021		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
   4022		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
   4023		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
   4024	}
   4025
   4026	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
   4027		list_del(&r->l_entry);
   4028		devm_kfree(ice_hw_to_dev(hw), r);
   4029	}
   4030	mutex_destroy(&hw->rss_locks);
   4031	ice_shutdown_all_prof_masks(hw);
   4032	memset(hw->blk, 0, sizeof(hw->blk));
   4033}
   4034
   4035/**
   4036 * ice_init_flow_profs - init flow profile locks and list heads
   4037 * @hw: pointer to the hardware structure
   4038 * @blk_idx: HW block index
   4039 */
   4040static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
   4041{
   4042	mutex_init(&hw->fl_profs_locks[blk_idx]);
   4043	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
   4044}
   4045
   4046/**
   4047 * ice_clear_hw_tbls - clear HW tables and flow profiles
   4048 * @hw: pointer to the hardware structure
   4049 */
   4050void ice_clear_hw_tbls(struct ice_hw *hw)
   4051{
   4052	u8 i;
   4053
   4054	for (i = 0; i < ICE_BLK_COUNT; i++) {
   4055		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
   4056		struct ice_prof_tcam *prof = &hw->blk[i].prof;
   4057		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
   4058		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
   4059		struct ice_es *es = &hw->blk[i].es;
   4060
   4061		if (hw->blk[i].is_list_init) {
   4062			ice_free_prof_map(hw, i);
   4063			ice_free_flow_profs(hw, i);
   4064		}
   4065
   4066		ice_free_vsig_tbl(hw, (enum ice_block)i);
   4067
   4068		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
   4069		memset(xlt1->ptg_tbl, 0,
   4070		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
   4071		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
   4072
   4073		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
   4074		memset(xlt2->vsig_tbl, 0,
   4075		       xlt2->count * sizeof(*xlt2->vsig_tbl));
   4076		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
   4077
   4078		memset(prof->t, 0, prof->count * sizeof(*prof->t));
   4079		memset(prof_redir->t, 0,
   4080		       prof_redir->count * sizeof(*prof_redir->t));
   4081
   4082		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
   4083		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
   4084		memset(es->written, 0, es->count * sizeof(*es->written));
   4085		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
   4086	}
   4087}
   4088
   4089/**
   4090 * ice_init_hw_tbls - init hardware table memory
   4091 * @hw: pointer to the hardware structure
   4092 */
   4093int ice_init_hw_tbls(struct ice_hw *hw)
   4094{
   4095	u8 i;
   4096
   4097	mutex_init(&hw->rss_locks);
   4098	INIT_LIST_HEAD(&hw->rss_list_head);
   4099	ice_init_all_prof_masks(hw);
   4100	for (i = 0; i < ICE_BLK_COUNT; i++) {
   4101		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
   4102		struct ice_prof_tcam *prof = &hw->blk[i].prof;
   4103		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
   4104		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
   4105		struct ice_es *es = &hw->blk[i].es;
   4106		u16 j;
   4107
   4108		if (hw->blk[i].is_list_init)
   4109			continue;
   4110
   4111		ice_init_flow_profs(hw, i);
   4112		mutex_init(&es->prof_map_lock);
   4113		INIT_LIST_HEAD(&es->prof_map);
   4114		hw->blk[i].is_list_init = true;
   4115
   4116		hw->blk[i].overwrite = blk_sizes[i].overwrite;
   4117		es->reverse = blk_sizes[i].reverse;
   4118
   4119		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
   4120		xlt1->count = blk_sizes[i].xlt1;
   4121
   4122		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
   4123					    sizeof(*xlt1->ptypes), GFP_KERNEL);
   4124
   4125		if (!xlt1->ptypes)
   4126			goto err;
   4127
   4128		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
   4129					     sizeof(*xlt1->ptg_tbl),
   4130					     GFP_KERNEL);
   4131
   4132		if (!xlt1->ptg_tbl)
   4133			goto err;
   4134
   4135		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
   4136				       sizeof(*xlt1->t), GFP_KERNEL);
   4137		if (!xlt1->t)
   4138			goto err;
   4139
   4140		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
   4141		xlt2->count = blk_sizes[i].xlt2;
   4142
   4143		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
   4144					  sizeof(*xlt2->vsis), GFP_KERNEL);
   4145
   4146		if (!xlt2->vsis)
   4147			goto err;
   4148
   4149		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
   4150					      sizeof(*xlt2->vsig_tbl),
   4151					      GFP_KERNEL);
   4152		if (!xlt2->vsig_tbl)
   4153			goto err;
   4154
   4155		for (j = 0; j < xlt2->count; j++)
   4156			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
   4157
   4158		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
   4159				       sizeof(*xlt2->t), GFP_KERNEL);
   4160		if (!xlt2->t)
   4161			goto err;
   4162
   4163		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
   4164		prof->count = blk_sizes[i].prof_tcam;
   4165		prof->max_prof_id = blk_sizes[i].prof_id;
   4166		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
   4167		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
   4168				       sizeof(*prof->t), GFP_KERNEL);
   4169
   4170		if (!prof->t)
   4171			goto err;
   4172
   4173		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
   4174		prof_redir->count = blk_sizes[i].prof_redir;
   4175		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
   4176					     prof_redir->count,
   4177					     sizeof(*prof_redir->t),
   4178					     GFP_KERNEL);
   4179
   4180		if (!prof_redir->t)
   4181			goto err;
   4182
   4183		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
   4184		es->count = blk_sizes[i].es;
   4185		es->fvw = blk_sizes[i].fvw;
   4186		es->t = devm_kcalloc(ice_hw_to_dev(hw),
   4187				     (u32)(es->count * es->fvw),
   4188				     sizeof(*es->t), GFP_KERNEL);
   4189		if (!es->t)
   4190			goto err;
   4191
   4192		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
   4193					     sizeof(*es->ref_count),
   4194					     GFP_KERNEL);
   4195		if (!es->ref_count)
   4196			goto err;
   4197
   4198		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
   4199					   sizeof(*es->written), GFP_KERNEL);
   4200		if (!es->written)
   4201			goto err;
   4202
   4203		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
   4204					    sizeof(*es->mask_ena), GFP_KERNEL);
   4205		if (!es->mask_ena)
   4206			goto err;
   4207	}
   4208	return 0;
   4209
   4210err:
   4211	ice_free_hw_tbls(hw);
   4212	return -ENOMEM;
   4213}
   4214
   4215/**
   4216 * ice_prof_gen_key - generate profile ID key
   4217 * @hw: pointer to the HW struct
   4218 * @blk: the block in which to write profile ID to
   4219 * @ptg: packet type group (PTG) portion of key
   4220 * @vsig: VSIG portion of key
   4221 * @cdid: CDID portion of key
   4222 * @flags: flag portion of key
   4223 * @vl_msk: valid mask
   4224 * @dc_msk: don't care mask
   4225 * @nm_msk: never match mask
   4226 * @key: output of profile ID key
   4227 */
   4228static int
   4229ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
   4230		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
   4231		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
   4232		 u8 key[ICE_TCAM_KEY_SZ])
   4233{
   4234	struct ice_prof_id_key inkey;
   4235
   4236	inkey.xlt1 = ptg;
   4237	inkey.xlt2_cdid = cpu_to_le16(vsig);
   4238	inkey.flags = cpu_to_le16(flags);
   4239
   4240	switch (hw->blk[blk].prof.cdid_bits) {
   4241	case 0:
   4242		break;
   4243	case 2:
   4244#define ICE_CD_2_M 0xC000U
   4245#define ICE_CD_2_S 14
   4246		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
   4247		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
   4248		break;
   4249	case 4:
   4250#define ICE_CD_4_M 0xF000U
   4251#define ICE_CD_4_S 12
   4252		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
   4253		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
   4254		break;
   4255	case 8:
   4256#define ICE_CD_8_M 0xFF00U
   4257#define ICE_CD_8_S 16
   4258		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
   4259		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
   4260		break;
   4261	default:
   4262		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
   4263		break;
   4264	}
   4265
   4266	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
   4267			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
   4268}
   4269
   4270/**
   4271 * ice_tcam_write_entry - write TCAM entry
   4272 * @hw: pointer to the HW struct
   4273 * @blk: the block in which to write profile ID to
   4274 * @idx: the entry index to write to
   4275 * @prof_id: profile ID
   4276 * @ptg: packet type group (PTG) portion of key
   4277 * @vsig: VSIG portion of key
   4278 * @cdid: CDID portion of key
   4279 * @flags: flag portion of key
   4280 * @vl_msk: valid mask
   4281 * @dc_msk: don't care mask
   4282 * @nm_msk: never match mask
   4283 */
   4284static int
   4285ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
   4286		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
   4287		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
   4288		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
   4289		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
   4290{
   4291	struct ice_prof_tcam_entry;
   4292	int status;
   4293
   4294	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
   4295				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
   4296	if (!status) {
   4297		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
   4298		hw->blk[blk].prof.t[idx].prof_id = prof_id;
   4299	}
   4300
   4301	return status;
   4302}
   4303
   4304/**
   4305 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
   4306 * @hw: pointer to the hardware structure
   4307 * @blk: HW block
   4308 * @vsig: VSIG to query
   4309 * @refs: pointer to variable to receive the reference count
   4310 */
   4311static int
   4312ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
   4313{
   4314	u16 idx = vsig & ICE_VSIG_IDX_M;
   4315	struct ice_vsig_vsi *ptr;
   4316
   4317	*refs = 0;
   4318
   4319	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
   4320		return -ENOENT;
   4321
   4322	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
   4323	while (ptr) {
   4324		(*refs)++;
   4325		ptr = ptr->next_vsi;
   4326	}
   4327
   4328	return 0;
   4329}
   4330
   4331/**
   4332 * ice_has_prof_vsig - check to see if VSIG has a specific profile
   4333 * @hw: pointer to the hardware structure
   4334 * @blk: HW block
   4335 * @vsig: VSIG to check against
   4336 * @hdl: profile handle
   4337 */
   4338static bool
   4339ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
   4340{
   4341	u16 idx = vsig & ICE_VSIG_IDX_M;
   4342	struct ice_vsig_prof *ent;
   4343
   4344	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   4345			    list)
   4346		if (ent->profile_cookie == hdl)
   4347			return true;
   4348
   4349	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
   4350		  vsig);
   4351	return false;
   4352}
   4353
   4354/**
   4355 * ice_prof_bld_es - build profile ID extraction sequence changes
   4356 * @hw: pointer to the HW struct
   4357 * @blk: hardware block
   4358 * @bld: the update package buffer build to add to
   4359 * @chgs: the list of changes to make in hardware
   4360 */
   4361static int
   4362ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
   4363		struct ice_buf_build *bld, struct list_head *chgs)
   4364{
   4365	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
   4366	struct ice_chs_chg *tmp;
   4367
   4368	list_for_each_entry(tmp, chgs, list_entry)
   4369		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
   4370			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
   4371			struct ice_pkg_es *p;
   4372			u32 id;
   4373
   4374			id = ice_sect_id(blk, ICE_VEC_TBL);
   4375			p = ice_pkg_buf_alloc_section(bld, id,
   4376						      struct_size(p, es, 1) +
   4377						      vec_size -
   4378						      sizeof(p->es[0]));
   4379
   4380			if (!p)
   4381				return -ENOSPC;
   4382
   4383			p->count = cpu_to_le16(1);
   4384			p->offset = cpu_to_le16(tmp->prof_id);
   4385
   4386			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
   4387		}
   4388
   4389	return 0;
   4390}
   4391
   4392/**
   4393 * ice_prof_bld_tcam - build profile ID TCAM changes
   4394 * @hw: pointer to the HW struct
   4395 * @blk: hardware block
   4396 * @bld: the update package buffer build to add to
   4397 * @chgs: the list of changes to make in hardware
   4398 */
   4399static int
   4400ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
   4401		  struct ice_buf_build *bld, struct list_head *chgs)
   4402{
   4403	struct ice_chs_chg *tmp;
   4404
   4405	list_for_each_entry(tmp, chgs, list_entry)
   4406		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
   4407			struct ice_prof_id_section *p;
   4408			u32 id;
   4409
   4410			id = ice_sect_id(blk, ICE_PROF_TCAM);
   4411			p = ice_pkg_buf_alloc_section(bld, id,
   4412						      struct_size(p, entry, 1));
   4413
   4414			if (!p)
   4415				return -ENOSPC;
   4416
   4417			p->count = cpu_to_le16(1);
   4418			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
   4419			p->entry[0].prof_id = tmp->prof_id;
   4420
   4421			memcpy(p->entry[0].key,
   4422			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
   4423			       sizeof(hw->blk[blk].prof.t->key));
   4424		}
   4425
   4426	return 0;
   4427}
   4428
   4429/**
   4430 * ice_prof_bld_xlt1 - build XLT1 changes
   4431 * @blk: hardware block
   4432 * @bld: the update package buffer build to add to
   4433 * @chgs: the list of changes to make in hardware
   4434 */
   4435static int
   4436ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
   4437		  struct list_head *chgs)
   4438{
   4439	struct ice_chs_chg *tmp;
   4440
   4441	list_for_each_entry(tmp, chgs, list_entry)
   4442		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
   4443			struct ice_xlt1_section *p;
   4444			u32 id;
   4445
   4446			id = ice_sect_id(blk, ICE_XLT1);
   4447			p = ice_pkg_buf_alloc_section(bld, id,
   4448						      struct_size(p, value, 1));
   4449
   4450			if (!p)
   4451				return -ENOSPC;
   4452
   4453			p->count = cpu_to_le16(1);
   4454			p->offset = cpu_to_le16(tmp->ptype);
   4455			p->value[0] = tmp->ptg;
   4456		}
   4457
   4458	return 0;
   4459}
   4460
   4461/**
   4462 * ice_prof_bld_xlt2 - build XLT2 changes
   4463 * @blk: hardware block
   4464 * @bld: the update package buffer build to add to
   4465 * @chgs: the list of changes to make in hardware
   4466 */
   4467static int
   4468ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
   4469		  struct list_head *chgs)
   4470{
   4471	struct ice_chs_chg *tmp;
   4472
   4473	list_for_each_entry(tmp, chgs, list_entry) {
   4474		struct ice_xlt2_section *p;
   4475		u32 id;
   4476
   4477		switch (tmp->type) {
   4478		case ICE_VSIG_ADD:
   4479		case ICE_VSI_MOVE:
   4480		case ICE_VSIG_REM:
   4481			id = ice_sect_id(blk, ICE_XLT2);
   4482			p = ice_pkg_buf_alloc_section(bld, id,
   4483						      struct_size(p, value, 1));
   4484
   4485			if (!p)
   4486				return -ENOSPC;
   4487
   4488			p->count = cpu_to_le16(1);
   4489			p->offset = cpu_to_le16(tmp->vsi);
   4490			p->value[0] = cpu_to_le16(tmp->vsig);
   4491			break;
   4492		default:
   4493			break;
   4494		}
   4495	}
   4496
   4497	return 0;
   4498}
   4499
   4500/**
   4501 * ice_upd_prof_hw - update hardware using the change list
   4502 * @hw: pointer to the HW struct
   4503 * @blk: hardware block
   4504 * @chgs: the list of changes to make in hardware
   4505 */
   4506static int
   4507ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
   4508		struct list_head *chgs)
   4509{
   4510	struct ice_buf_build *b;
   4511	struct ice_chs_chg *tmp;
   4512	u16 pkg_sects;
   4513	u16 xlt1 = 0;
   4514	u16 xlt2 = 0;
   4515	u16 tcam = 0;
   4516	u16 es = 0;
   4517	int status;
   4518	u16 sects;
   4519
   4520	/* count number of sections we need */
   4521	list_for_each_entry(tmp, chgs, list_entry) {
   4522		switch (tmp->type) {
   4523		case ICE_PTG_ES_ADD:
   4524			if (tmp->add_ptg)
   4525				xlt1++;
   4526			if (tmp->add_prof)
   4527				es++;
   4528			break;
   4529		case ICE_TCAM_ADD:
   4530			tcam++;
   4531			break;
   4532		case ICE_VSIG_ADD:
   4533		case ICE_VSI_MOVE:
   4534		case ICE_VSIG_REM:
   4535			xlt2++;
   4536			break;
   4537		default:
   4538			break;
   4539		}
   4540	}
   4541	sects = xlt1 + xlt2 + tcam + es;
   4542
   4543	if (!sects)
   4544		return 0;
   4545
   4546	/* Build update package buffer */
   4547	b = ice_pkg_buf_alloc(hw);
   4548	if (!b)
   4549		return -ENOMEM;
   4550
   4551	status = ice_pkg_buf_reserve_section(b, sects);
   4552	if (status)
   4553		goto error_tmp;
   4554
   4555	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
   4556	if (es) {
   4557		status = ice_prof_bld_es(hw, blk, b, chgs);
   4558		if (status)
   4559			goto error_tmp;
   4560	}
   4561
   4562	if (tcam) {
   4563		status = ice_prof_bld_tcam(hw, blk, b, chgs);
   4564		if (status)
   4565			goto error_tmp;
   4566	}
   4567
   4568	if (xlt1) {
   4569		status = ice_prof_bld_xlt1(blk, b, chgs);
   4570		if (status)
   4571			goto error_tmp;
   4572	}
   4573
   4574	if (xlt2) {
   4575		status = ice_prof_bld_xlt2(blk, b, chgs);
   4576		if (status)
   4577			goto error_tmp;
   4578	}
   4579
   4580	/* After package buffer build check if the section count in buffer is
   4581	 * non-zero and matches the number of sections detected for package
   4582	 * update.
   4583	 */
   4584	pkg_sects = ice_pkg_buf_get_active_sections(b);
   4585	if (!pkg_sects || pkg_sects != sects) {
   4586		status = -EINVAL;
   4587		goto error_tmp;
   4588	}
   4589
   4590	/* update package */
   4591	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
   4592	if (status == -EIO)
   4593		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
   4594
   4595error_tmp:
   4596	ice_pkg_buf_free(hw, b);
   4597	return status;
   4598}
   4599
   4600/**
   4601 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
   4602 * @hw: pointer to the HW struct
   4603 * @prof_id: profile ID
   4604 * @mask_sel: mask select
   4605 *
   4606 * This function enable any of the masks selected by the mask select parameter
   4607 * for the profile specified.
   4608 */
   4609static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
   4610{
   4611	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
   4612
   4613	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
   4614		  GLQF_FDMASK_SEL(prof_id), mask_sel);
   4615}
   4616
   4617struct ice_fd_src_dst_pair {
   4618	u8 prot_id;
   4619	u8 count;
   4620	u16 off;
   4621};
   4622
   4623static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
   4624	/* These are defined in pairs */
   4625	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
   4626	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
   4627
   4628	{ ICE_PROT_IPV4_IL, 2, 12 },
   4629	{ ICE_PROT_IPV4_IL, 2, 16 },
   4630
   4631	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
   4632	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
   4633
   4634	{ ICE_PROT_IPV6_IL, 8, 8 },
   4635	{ ICE_PROT_IPV6_IL, 8, 24 },
   4636
   4637	{ ICE_PROT_TCP_IL, 1, 0 },
   4638	{ ICE_PROT_TCP_IL, 1, 2 },
   4639
   4640	{ ICE_PROT_UDP_OF, 1, 0 },
   4641	{ ICE_PROT_UDP_OF, 1, 2 },
   4642
   4643	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
   4644	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
   4645
   4646	{ ICE_PROT_SCTP_IL, 1, 0 },
   4647	{ ICE_PROT_SCTP_IL, 1, 2 }
   4648};
   4649
   4650#define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
   4651
   4652/**
   4653 * ice_update_fd_swap - set register appropriately for a FD FV extraction
   4654 * @hw: pointer to the HW struct
   4655 * @prof_id: profile ID
   4656 * @es: extraction sequence (length of array is determined by the block)
   4657 */
   4658static int
   4659ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
   4660{
   4661	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
   4662	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
   4663#define ICE_FD_FV_NOT_FOUND (-2)
   4664	s8 first_free = ICE_FD_FV_NOT_FOUND;
   4665	u8 used[ICE_MAX_FV_WORDS] = { 0 };
   4666	s8 orig_free, si;
   4667	u32 mask_sel = 0;
   4668	u8 i, j, k;
   4669
   4670	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
   4671
   4672	/* This code assumes that the Flow Director field vectors are assigned
   4673	 * from the end of the FV indexes working towards the zero index, that
   4674	 * only complete fields will be included and will be consecutive, and
   4675	 * that there are no gaps between valid indexes.
   4676	 */
   4677
   4678	/* Determine swap fields present */
   4679	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
   4680		/* Find the first free entry, assuming right to left population.
   4681		 * This is where we can start adding additional pairs if needed.
   4682		 */
   4683		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
   4684		    ICE_PROT_INVALID)
   4685			first_free = i - 1;
   4686
   4687		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
   4688			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
   4689			    es[i].off == ice_fd_pairs[j].off) {
   4690				__set_bit(j, pair_list);
   4691				pair_start[j] = i;
   4692			}
   4693	}
   4694
   4695	orig_free = first_free;
   4696
   4697	/* determine missing swap fields that need to be added */
   4698	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
   4699		u8 bit1 = test_bit(i + 1, pair_list);
   4700		u8 bit0 = test_bit(i, pair_list);
   4701
   4702		if (bit0 ^ bit1) {
   4703			u8 index;
   4704
   4705			/* add the appropriate 'paired' entry */
   4706			if (!bit0)
   4707				index = i;
   4708			else
   4709				index = i + 1;
   4710
   4711			/* check for room */
   4712			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
   4713				return -ENOSPC;
   4714
   4715			/* place in extraction sequence */
   4716			for (k = 0; k < ice_fd_pairs[index].count; k++) {
   4717				es[first_free - k].prot_id =
   4718					ice_fd_pairs[index].prot_id;
   4719				es[first_free - k].off =
   4720					ice_fd_pairs[index].off + (k * 2);
   4721
   4722				if (k > first_free)
   4723					return -EIO;
   4724
   4725				/* keep track of non-relevant fields */
   4726				mask_sel |= BIT(first_free - k);
   4727			}
   4728
   4729			pair_start[index] = first_free;
   4730			first_free -= ice_fd_pairs[index].count;
   4731		}
   4732	}
   4733
   4734	/* fill in the swap array */
   4735	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
   4736	while (si >= 0) {
   4737		u8 indexes_used = 1;
   4738
   4739		/* assume flat at this index */
   4740#define ICE_SWAP_VALID	0x80
   4741		used[si] = si | ICE_SWAP_VALID;
   4742
   4743		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
   4744			si -= indexes_used;
   4745			continue;
   4746		}
   4747
   4748		/* check for a swap location */
   4749		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
   4750			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
   4751			    es[si].off == ice_fd_pairs[j].off) {
   4752				u8 idx;
   4753
   4754				/* determine the appropriate matching field */
   4755				idx = j + ((j % 2) ? -1 : 1);
   4756
   4757				indexes_used = ice_fd_pairs[idx].count;
   4758				for (k = 0; k < indexes_used; k++) {
   4759					used[si - k] = (pair_start[idx] - k) |
   4760						ICE_SWAP_VALID;
   4761				}
   4762
   4763				break;
   4764			}
   4765
   4766		si -= indexes_used;
   4767	}
   4768
   4769	/* for each set of 4 swap and 4 inset indexes, write the appropriate
   4770	 * register
   4771	 */
   4772	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
   4773		u32 raw_swap = 0;
   4774		u32 raw_in = 0;
   4775
   4776		for (k = 0; k < 4; k++) {
   4777			u8 idx;
   4778
   4779			idx = (j * 4) + k;
   4780			if (used[idx] && !(mask_sel & BIT(idx))) {
   4781				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
   4782#define ICE_INSET_DFLT 0x9f
   4783				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
   4784			}
   4785		}
   4786
   4787		/* write the appropriate swap register set */
   4788		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
   4789
   4790		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
   4791			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
   4792
   4793		/* write the appropriate inset register set */
   4794		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
   4795
   4796		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
   4797			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
   4798	}
   4799
   4800	/* initially clear the mask select for this profile */
   4801	ice_update_fd_mask(hw, prof_id, 0);
   4802
   4803	return 0;
   4804}
   4805
   4806/* The entries here needs to match the order of enum ice_ptype_attrib */
   4807static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
   4808	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
   4809	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
   4810	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
   4811	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
   4812};
   4813
   4814/**
   4815 * ice_get_ptype_attrib_info - get PTYPE attribute information
   4816 * @type: attribute type
   4817 * @info: pointer to variable to the attribute information
   4818 */
   4819static void
   4820ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
   4821			  struct ice_ptype_attrib_info *info)
   4822{
   4823	*info = ice_ptype_attributes[type];
   4824}
   4825
   4826/**
   4827 * ice_add_prof_attrib - add any PTG with attributes to profile
   4828 * @prof: pointer to the profile to which PTG entries will be added
   4829 * @ptg: PTG to be added
   4830 * @ptype: PTYPE that needs to be looked up
   4831 * @attr: array of attributes that will be considered
   4832 * @attr_cnt: number of elements in the attribute array
   4833 */
   4834static int
   4835ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
   4836		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
   4837{
   4838	bool found = false;
   4839	u16 i;
   4840
   4841	for (i = 0; i < attr_cnt; i++)
   4842		if (attr[i].ptype == ptype) {
   4843			found = true;
   4844
   4845			prof->ptg[prof->ptg_cnt] = ptg;
   4846			ice_get_ptype_attrib_info(attr[i].attrib,
   4847						  &prof->attr[prof->ptg_cnt]);
   4848
   4849			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
   4850				return -ENOSPC;
   4851		}
   4852
   4853	if (!found)
   4854		return -ENOENT;
   4855
   4856	return 0;
   4857}
   4858
   4859/**
   4860 * ice_add_prof - add profile
   4861 * @hw: pointer to the HW struct
   4862 * @blk: hardware block
   4863 * @id: profile tracking ID
   4864 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
   4865 * @attr: array of attributes
   4866 * @attr_cnt: number of elements in attr array
   4867 * @es: extraction sequence (length of array is determined by the block)
   4868 * @masks: mask for extraction sequence
   4869 *
   4870 * This function registers a profile, which matches a set of PTYPES with a
   4871 * particular extraction sequence. While the hardware profile is allocated
   4872 * it will not be written until the first call to ice_add_flow that specifies
   4873 * the ID value used here.
   4874 */
   4875int
   4876ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
   4877	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
   4878	     struct ice_fv_word *es, u16 *masks)
   4879{
   4880	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
   4881	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
   4882	struct ice_prof_map *prof;
   4883	u8 byte = 0;
   4884	u8 prof_id;
   4885	int status;
   4886
   4887	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
   4888
   4889	mutex_lock(&hw->blk[blk].es.prof_map_lock);
   4890
   4891	/* search for existing profile */
   4892	status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
   4893	if (status) {
   4894		/* allocate profile ID */
   4895		status = ice_alloc_prof_id(hw, blk, &prof_id);
   4896		if (status)
   4897			goto err_ice_add_prof;
   4898		if (blk == ICE_BLK_FD) {
   4899			/* For Flow Director block, the extraction sequence may
   4900			 * need to be altered in the case where there are paired
   4901			 * fields that have no match. This is necessary because
   4902			 * for Flow Director, src and dest fields need to paired
   4903			 * for filter programming and these values are swapped
   4904			 * during Tx.
   4905			 */
   4906			status = ice_update_fd_swap(hw, prof_id, es);
   4907			if (status)
   4908				goto err_ice_add_prof;
   4909		}
   4910		status = ice_update_prof_masking(hw, blk, prof_id, masks);
   4911		if (status)
   4912			goto err_ice_add_prof;
   4913
   4914		/* and write new es */
   4915		ice_write_es(hw, blk, prof_id, es);
   4916	}
   4917
   4918	ice_prof_inc_ref(hw, blk, prof_id);
   4919
   4920	/* add profile info */
   4921	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
   4922	if (!prof) {
   4923		status = -ENOMEM;
   4924		goto err_ice_add_prof;
   4925	}
   4926
   4927	prof->profile_cookie = id;
   4928	prof->prof_id = prof_id;
   4929	prof->ptg_cnt = 0;
   4930	prof->context = 0;
   4931
   4932	/* build list of ptgs */
   4933	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
   4934		u8 bit;
   4935
   4936		if (!ptypes[byte]) {
   4937			bytes--;
   4938			byte++;
   4939			continue;
   4940		}
   4941
   4942		/* Examine 8 bits per byte */
   4943		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
   4944				 BITS_PER_BYTE) {
   4945			u16 ptype;
   4946			u8 ptg;
   4947
   4948			ptype = byte * BITS_PER_BYTE + bit;
   4949
   4950			/* The package should place all ptypes in a non-zero
   4951			 * PTG, so the following call should never fail.
   4952			 */
   4953			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
   4954				continue;
   4955
   4956			/* If PTG is already added, skip and continue */
   4957			if (test_bit(ptg, ptgs_used))
   4958				continue;
   4959
   4960			__set_bit(ptg, ptgs_used);
   4961			/* Check to see there are any attributes for
   4962			 * this PTYPE, and add them if found.
   4963			 */
   4964			status = ice_add_prof_attrib(prof, ptg, ptype,
   4965						     attr, attr_cnt);
   4966			if (status == -ENOSPC)
   4967				break;
   4968			if (status) {
   4969				/* This is simple a PTYPE/PTG with no
   4970				 * attribute
   4971				 */
   4972				prof->ptg[prof->ptg_cnt] = ptg;
   4973				prof->attr[prof->ptg_cnt].flags = 0;
   4974				prof->attr[prof->ptg_cnt].mask = 0;
   4975
   4976				if (++prof->ptg_cnt >=
   4977				    ICE_MAX_PTG_PER_PROFILE)
   4978					break;
   4979			}
   4980		}
   4981
   4982		bytes--;
   4983		byte++;
   4984	}
   4985
   4986	list_add(&prof->list, &hw->blk[blk].es.prof_map);
   4987	status = 0;
   4988
   4989err_ice_add_prof:
   4990	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
   4991	return status;
   4992}
   4993
   4994/**
   4995 * ice_search_prof_id - Search for a profile tracking ID
   4996 * @hw: pointer to the HW struct
   4997 * @blk: hardware block
   4998 * @id: profile tracking ID
   4999 *
   5000 * This will search for a profile tracking ID which was previously added.
   5001 * The profile map lock should be held before calling this function.
   5002 */
   5003static struct ice_prof_map *
   5004ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
   5005{
   5006	struct ice_prof_map *entry = NULL;
   5007	struct ice_prof_map *map;
   5008
   5009	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
   5010		if (map->profile_cookie == id) {
   5011			entry = map;
   5012			break;
   5013		}
   5014
   5015	return entry;
   5016}
   5017
   5018/**
   5019 * ice_vsig_prof_id_count - count profiles in a VSIG
   5020 * @hw: pointer to the HW struct
   5021 * @blk: hardware block
   5022 * @vsig: VSIG to remove the profile from
   5023 */
   5024static u16
   5025ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
   5026{
   5027	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
   5028	struct ice_vsig_prof *p;
   5029
   5030	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   5031			    list)
   5032		count++;
   5033
   5034	return count;
   5035}
   5036
   5037/**
   5038 * ice_rel_tcam_idx - release a TCAM index
   5039 * @hw: pointer to the HW struct
   5040 * @blk: hardware block
   5041 * @idx: the index to release
   5042 */
   5043static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
   5044{
   5045	/* Masks to invoke a never match entry */
   5046	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
   5047	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
   5048	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
   5049	int status;
   5050
   5051	/* write the TCAM entry */
   5052	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
   5053				      dc_msk, nm_msk);
   5054	if (status)
   5055		return status;
   5056
   5057	/* release the TCAM entry */
   5058	status = ice_free_tcam_ent(hw, blk, idx);
   5059
   5060	return status;
   5061}
   5062
   5063/**
   5064 * ice_rem_prof_id - remove one profile from a VSIG
   5065 * @hw: pointer to the HW struct
   5066 * @blk: hardware block
   5067 * @prof: pointer to profile structure to remove
   5068 */
   5069static int
   5070ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
   5071		struct ice_vsig_prof *prof)
   5072{
   5073	int status;
   5074	u16 i;
   5075
   5076	for (i = 0; i < prof->tcam_count; i++)
   5077		if (prof->tcam[i].in_use) {
   5078			prof->tcam[i].in_use = false;
   5079			status = ice_rel_tcam_idx(hw, blk,
   5080						  prof->tcam[i].tcam_idx);
   5081			if (status)
   5082				return -EIO;
   5083		}
   5084
   5085	return 0;
   5086}
   5087
   5088/**
   5089 * ice_rem_vsig - remove VSIG
   5090 * @hw: pointer to the HW struct
   5091 * @blk: hardware block
   5092 * @vsig: the VSIG to remove
   5093 * @chg: the change list
   5094 */
   5095static int
   5096ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
   5097	     struct list_head *chg)
   5098{
   5099	u16 idx = vsig & ICE_VSIG_IDX_M;
   5100	struct ice_vsig_vsi *vsi_cur;
   5101	struct ice_vsig_prof *d, *t;
   5102	int status;
   5103
   5104	/* remove TCAM entries */
   5105	list_for_each_entry_safe(d, t,
   5106				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   5107				 list) {
   5108		status = ice_rem_prof_id(hw, blk, d);
   5109		if (status)
   5110			return status;
   5111
   5112		list_del(&d->list);
   5113		devm_kfree(ice_hw_to_dev(hw), d);
   5114	}
   5115
   5116	/* Move all VSIS associated with this VSIG to the default VSIG */
   5117	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
   5118	/* If the VSIG has at least 1 VSI then iterate through the list
   5119	 * and remove the VSIs before deleting the group.
   5120	 */
   5121	if (vsi_cur)
   5122		do {
   5123			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
   5124			struct ice_chs_chg *p;
   5125
   5126			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
   5127					 GFP_KERNEL);
   5128			if (!p)
   5129				return -ENOMEM;
   5130
   5131			p->type = ICE_VSIG_REM;
   5132			p->orig_vsig = vsig;
   5133			p->vsig = ICE_DEFAULT_VSIG;
   5134			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
   5135
   5136			list_add(&p->list_entry, chg);
   5137
   5138			vsi_cur = tmp;
   5139		} while (vsi_cur);
   5140
   5141	return ice_vsig_free(hw, blk, vsig);
   5142}
   5143
   5144/**
   5145 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
   5146 * @hw: pointer to the HW struct
   5147 * @blk: hardware block
   5148 * @vsig: VSIG to remove the profile from
   5149 * @hdl: profile handle indicating which profile to remove
   5150 * @chg: list to receive a record of changes
   5151 */
   5152static int
   5153ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
   5154		     struct list_head *chg)
   5155{
   5156	u16 idx = vsig & ICE_VSIG_IDX_M;
   5157	struct ice_vsig_prof *p, *t;
   5158	int status;
   5159
   5160	list_for_each_entry_safe(p, t,
   5161				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   5162				 list)
   5163		if (p->profile_cookie == hdl) {
   5164			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
   5165				/* this is the last profile, remove the VSIG */
   5166				return ice_rem_vsig(hw, blk, vsig, chg);
   5167
   5168			status = ice_rem_prof_id(hw, blk, p);
   5169			if (!status) {
   5170				list_del(&p->list);
   5171				devm_kfree(ice_hw_to_dev(hw), p);
   5172			}
   5173			return status;
   5174		}
   5175
   5176	return -ENOENT;
   5177}
   5178
   5179/**
   5180 * ice_rem_flow_all - remove all flows with a particular profile
   5181 * @hw: pointer to the HW struct
   5182 * @blk: hardware block
   5183 * @id: profile tracking ID
   5184 */
   5185static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
   5186{
   5187	struct ice_chs_chg *del, *tmp;
   5188	struct list_head chg;
   5189	int status;
   5190	u16 i;
   5191
   5192	INIT_LIST_HEAD(&chg);
   5193
   5194	for (i = 1; i < ICE_MAX_VSIGS; i++)
   5195		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
   5196			if (ice_has_prof_vsig(hw, blk, i, id)) {
   5197				status = ice_rem_prof_id_vsig(hw, blk, i, id,
   5198							      &chg);
   5199				if (status)
   5200					goto err_ice_rem_flow_all;
   5201			}
   5202		}
   5203
   5204	status = ice_upd_prof_hw(hw, blk, &chg);
   5205
   5206err_ice_rem_flow_all:
   5207	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
   5208		list_del(&del->list_entry);
   5209		devm_kfree(ice_hw_to_dev(hw), del);
   5210	}
   5211
   5212	return status;
   5213}
   5214
   5215/**
   5216 * ice_rem_prof - remove profile
   5217 * @hw: pointer to the HW struct
   5218 * @blk: hardware block
   5219 * @id: profile tracking ID
   5220 *
   5221 * This will remove the profile specified by the ID parameter, which was
   5222 * previously created through ice_add_prof. If any existing entries
   5223 * are associated with this profile, they will be removed as well.
   5224 */
   5225int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
   5226{
   5227	struct ice_prof_map *pmap;
   5228	int status;
   5229
   5230	mutex_lock(&hw->blk[blk].es.prof_map_lock);
   5231
   5232	pmap = ice_search_prof_id(hw, blk, id);
   5233	if (!pmap) {
   5234		status = -ENOENT;
   5235		goto err_ice_rem_prof;
   5236	}
   5237
   5238	/* remove all flows with this profile */
   5239	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
   5240	if (status)
   5241		goto err_ice_rem_prof;
   5242
   5243	/* dereference profile, and possibly remove */
   5244	ice_prof_dec_ref(hw, blk, pmap->prof_id);
   5245
   5246	list_del(&pmap->list);
   5247	devm_kfree(ice_hw_to_dev(hw), pmap);
   5248
   5249err_ice_rem_prof:
   5250	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
   5251	return status;
   5252}
   5253
   5254/**
   5255 * ice_get_prof - get profile
   5256 * @hw: pointer to the HW struct
   5257 * @blk: hardware block
   5258 * @hdl: profile handle
   5259 * @chg: change list
   5260 */
   5261static int
   5262ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
   5263	     struct list_head *chg)
   5264{
   5265	struct ice_prof_map *map;
   5266	struct ice_chs_chg *p;
   5267	int status = 0;
   5268	u16 i;
   5269
   5270	mutex_lock(&hw->blk[blk].es.prof_map_lock);
   5271	/* Get the details on the profile specified by the handle ID */
   5272	map = ice_search_prof_id(hw, blk, hdl);
   5273	if (!map) {
   5274		status = -ENOENT;
   5275		goto err_ice_get_prof;
   5276	}
   5277
   5278	for (i = 0; i < map->ptg_cnt; i++)
   5279		if (!hw->blk[blk].es.written[map->prof_id]) {
   5280			/* add ES to change list */
   5281			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
   5282					 GFP_KERNEL);
   5283			if (!p) {
   5284				status = -ENOMEM;
   5285				goto err_ice_get_prof;
   5286			}
   5287
   5288			p->type = ICE_PTG_ES_ADD;
   5289			p->ptype = 0;
   5290			p->ptg = map->ptg[i];
   5291			p->add_ptg = 0;
   5292
   5293			p->add_prof = 1;
   5294			p->prof_id = map->prof_id;
   5295
   5296			hw->blk[blk].es.written[map->prof_id] = true;
   5297
   5298			list_add(&p->list_entry, chg);
   5299		}
   5300
   5301err_ice_get_prof:
   5302	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
   5303	/* let caller clean up the change list */
   5304	return status;
   5305}
   5306
   5307/**
   5308 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
   5309 * @hw: pointer to the HW struct
   5310 * @blk: hardware block
   5311 * @vsig: VSIG from which to copy the list
   5312 * @lst: output list
   5313 *
   5314 * This routine makes a copy of the list of profiles in the specified VSIG.
   5315 */
   5316static int
   5317ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
   5318		   struct list_head *lst)
   5319{
   5320	struct ice_vsig_prof *ent1, *ent2;
   5321	u16 idx = vsig & ICE_VSIG_IDX_M;
   5322
   5323	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   5324			    list) {
   5325		struct ice_vsig_prof *p;
   5326
   5327		/* copy to the input list */
   5328		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
   5329				 GFP_KERNEL);
   5330		if (!p)
   5331			goto err_ice_get_profs_vsig;
   5332
   5333		list_add_tail(&p->list, lst);
   5334	}
   5335
   5336	return 0;
   5337
   5338err_ice_get_profs_vsig:
   5339	list_for_each_entry_safe(ent1, ent2, lst, list) {
   5340		list_del(&ent1->list);
   5341		devm_kfree(ice_hw_to_dev(hw), ent1);
   5342	}
   5343
   5344	return -ENOMEM;
   5345}
   5346
   5347/**
   5348 * ice_add_prof_to_lst - add profile entry to a list
   5349 * @hw: pointer to the HW struct
   5350 * @blk: hardware block
   5351 * @lst: the list to be added to
   5352 * @hdl: profile handle of entry to add
   5353 */
   5354static int
   5355ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
   5356		    struct list_head *lst, u64 hdl)
   5357{
   5358	struct ice_prof_map *map;
   5359	struct ice_vsig_prof *p;
   5360	int status = 0;
   5361	u16 i;
   5362
   5363	mutex_lock(&hw->blk[blk].es.prof_map_lock);
   5364	map = ice_search_prof_id(hw, blk, hdl);
   5365	if (!map) {
   5366		status = -ENOENT;
   5367		goto err_ice_add_prof_to_lst;
   5368	}
   5369
   5370	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
   5371	if (!p) {
   5372		status = -ENOMEM;
   5373		goto err_ice_add_prof_to_lst;
   5374	}
   5375
   5376	p->profile_cookie = map->profile_cookie;
   5377	p->prof_id = map->prof_id;
   5378	p->tcam_count = map->ptg_cnt;
   5379
   5380	for (i = 0; i < map->ptg_cnt; i++) {
   5381		p->tcam[i].prof_id = map->prof_id;
   5382		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
   5383		p->tcam[i].ptg = map->ptg[i];
   5384	}
   5385
   5386	list_add(&p->list, lst);
   5387
   5388err_ice_add_prof_to_lst:
   5389	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
   5390	return status;
   5391}
   5392
   5393/**
   5394 * ice_move_vsi - move VSI to another VSIG
   5395 * @hw: pointer to the HW struct
   5396 * @blk: hardware block
   5397 * @vsi: the VSI to move
   5398 * @vsig: the VSIG to move the VSI to
   5399 * @chg: the change list
   5400 */
   5401static int
   5402ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
   5403	     struct list_head *chg)
   5404{
   5405	struct ice_chs_chg *p;
   5406	u16 orig_vsig;
   5407	int status;
   5408
   5409	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
   5410	if (!p)
   5411		return -ENOMEM;
   5412
   5413	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
   5414	if (!status)
   5415		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
   5416
   5417	if (status) {
   5418		devm_kfree(ice_hw_to_dev(hw), p);
   5419		return status;
   5420	}
   5421
   5422	p->type = ICE_VSI_MOVE;
   5423	p->vsi = vsi;
   5424	p->orig_vsig = orig_vsig;
   5425	p->vsig = vsig;
   5426
   5427	list_add(&p->list_entry, chg);
   5428
   5429	return 0;
   5430}
   5431
   5432/**
   5433 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
   5434 * @hw: pointer to the HW struct
   5435 * @idx: the index of the TCAM entry to remove
   5436 * @chg: the list of change structures to search
   5437 */
   5438static void
   5439ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
   5440{
   5441	struct ice_chs_chg *pos, *tmp;
   5442
   5443	list_for_each_entry_safe(tmp, pos, chg, list_entry)
   5444		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
   5445			list_del(&tmp->list_entry);
   5446			devm_kfree(ice_hw_to_dev(hw), tmp);
   5447		}
   5448}
   5449
   5450/**
   5451 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
   5452 * @hw: pointer to the HW struct
   5453 * @blk: hardware block
   5454 * @enable: true to enable, false to disable
   5455 * @vsig: the VSIG of the TCAM entry
   5456 * @tcam: pointer the TCAM info structure of the TCAM to disable
   5457 * @chg: the change list
   5458 *
   5459 * This function appends an enable or disable TCAM entry in the change log
   5460 */
   5461static int
   5462ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
   5463		      u16 vsig, struct ice_tcam_inf *tcam,
   5464		      struct list_head *chg)
   5465{
   5466	struct ice_chs_chg *p;
   5467	int status;
   5468
   5469	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
   5470	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
   5471	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
   5472
   5473	/* if disabling, free the TCAM */
   5474	if (!enable) {
   5475		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
   5476
   5477		/* if we have already created a change for this TCAM entry, then
   5478		 * we need to remove that entry, in order to prevent writing to
   5479		 * a TCAM entry we no longer will have ownership of.
   5480		 */
   5481		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
   5482		tcam->tcam_idx = 0;
   5483		tcam->in_use = 0;
   5484		return status;
   5485	}
   5486
   5487	/* for re-enabling, reallocate a TCAM */
   5488	/* for entries with empty attribute masks, allocate entry from
   5489	 * the bottom of the TCAM table; otherwise, allocate from the
   5490	 * top of the table in order to give it higher priority
   5491	 */
   5492	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
   5493				    &tcam->tcam_idx);
   5494	if (status)
   5495		return status;
   5496
   5497	/* add TCAM to change list */
   5498	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
   5499	if (!p)
   5500		return -ENOMEM;
   5501
   5502	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
   5503				      tcam->ptg, vsig, 0, tcam->attr.flags,
   5504				      vl_msk, dc_msk, nm_msk);
   5505	if (status)
   5506		goto err_ice_prof_tcam_ena_dis;
   5507
   5508	tcam->in_use = 1;
   5509
   5510	p->type = ICE_TCAM_ADD;
   5511	p->add_tcam_idx = true;
   5512	p->prof_id = tcam->prof_id;
   5513	p->ptg = tcam->ptg;
   5514	p->vsig = 0;
   5515	p->tcam_idx = tcam->tcam_idx;
   5516
   5517	/* log change */
   5518	list_add(&p->list_entry, chg);
   5519
   5520	return 0;
   5521
   5522err_ice_prof_tcam_ena_dis:
   5523	devm_kfree(ice_hw_to_dev(hw), p);
   5524	return status;
   5525}
   5526
   5527/**
   5528 * ice_adj_prof_priorities - adjust profile based on priorities
   5529 * @hw: pointer to the HW struct
   5530 * @blk: hardware block
   5531 * @vsig: the VSIG for which to adjust profile priorities
   5532 * @chg: the change list
   5533 */
   5534static int
   5535ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
   5536			struct list_head *chg)
   5537{
   5538	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
   5539	struct ice_vsig_prof *t;
   5540	int status;
   5541	u16 idx;
   5542
   5543	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
   5544	idx = vsig & ICE_VSIG_IDX_M;
   5545
   5546	/* Priority is based on the order in which the profiles are added. The
   5547	 * newest added profile has highest priority and the oldest added
   5548	 * profile has the lowest priority. Since the profile property list for
   5549	 * a VSIG is sorted from newest to oldest, this code traverses the list
   5550	 * in order and enables the first of each PTG that it finds (that is not
   5551	 * already enabled); it also disables any duplicate PTGs that it finds
   5552	 * in the older profiles (that are currently enabled).
   5553	 */
   5554
   5555	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
   5556			    list) {
   5557		u16 i;
   5558
   5559		for (i = 0; i < t->tcam_count; i++) {
   5560			/* Scan the priorities from newest to oldest.
   5561			 * Make sure that the newest profiles take priority.
   5562			 */
   5563			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
   5564			    t->tcam[i].in_use) {
   5565				/* need to mark this PTG as never match, as it
   5566				 * was already in use and therefore duplicate
   5567				 * (and lower priority)
   5568				 */
   5569				status = ice_prof_tcam_ena_dis(hw, blk, false,
   5570							       vsig,
   5571							       &t->tcam[i],
   5572							       chg);
   5573				if (status)
   5574					return status;
   5575			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
   5576				   !t->tcam[i].in_use) {
   5577				/* need to enable this PTG, as it in not in use
   5578				 * and not enabled (highest priority)
   5579				 */
   5580				status = ice_prof_tcam_ena_dis(hw, blk, true,
   5581							       vsig,
   5582							       &t->tcam[i],
   5583							       chg);
   5584				if (status)
   5585					return status;
   5586			}
   5587
   5588			/* keep track of used ptgs */
   5589			__set_bit(t->tcam[i].ptg, ptgs_used);
   5590		}
   5591	}
   5592
   5593	return 0;
   5594}
   5595
   5596/**
   5597 * ice_add_prof_id_vsig - add profile to VSIG
   5598 * @hw: pointer to the HW struct
   5599 * @blk: hardware block
   5600 * @vsig: the VSIG to which this profile is to be added
   5601 * @hdl: the profile handle indicating the profile to add
   5602 * @rev: true to add entries to the end of the list
   5603 * @chg: the change list
   5604 */
   5605static int
   5606ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
   5607		     bool rev, struct list_head *chg)
   5608{
   5609	/* Masks that ignore flags */
   5610	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
   5611	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
   5612	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
   5613	struct ice_prof_map *map;
   5614	struct ice_vsig_prof *t;
   5615	struct ice_chs_chg *p;
   5616	u16 vsig_idx, i;
   5617	int status = 0;
   5618
   5619	/* Error, if this VSIG already has this profile */
   5620	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
   5621		return -EEXIST;
   5622
   5623	/* new VSIG profile structure */
   5624	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
   5625	if (!t)
   5626		return -ENOMEM;
   5627
   5628	mutex_lock(&hw->blk[blk].es.prof_map_lock);
   5629	/* Get the details on the profile specified by the handle ID */
   5630	map = ice_search_prof_id(hw, blk, hdl);
   5631	if (!map) {
   5632		status = -ENOENT;
   5633		goto err_ice_add_prof_id_vsig;
   5634	}
   5635
   5636	t->profile_cookie = map->profile_cookie;
   5637	t->prof_id = map->prof_id;
   5638	t->tcam_count = map->ptg_cnt;
   5639
   5640	/* create TCAM entries */
   5641	for (i = 0; i < map->ptg_cnt; i++) {
   5642		u16 tcam_idx;
   5643
   5644		/* add TCAM to change list */
   5645		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
   5646		if (!p) {
   5647			status = -ENOMEM;
   5648			goto err_ice_add_prof_id_vsig;
   5649		}
   5650
   5651		/* allocate the TCAM entry index */
   5652		/* for entries with empty attribute masks, allocate entry from
   5653		 * the bottom of the TCAM table; otherwise, allocate from the
   5654		 * top of the table in order to give it higher priority
   5655		 */
   5656		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
   5657					    &tcam_idx);
   5658		if (status) {
   5659			devm_kfree(ice_hw_to_dev(hw), p);
   5660			goto err_ice_add_prof_id_vsig;
   5661		}
   5662
   5663		t->tcam[i].ptg = map->ptg[i];
   5664		t->tcam[i].prof_id = map->prof_id;
   5665		t->tcam[i].tcam_idx = tcam_idx;
   5666		t->tcam[i].attr = map->attr[i];
   5667		t->tcam[i].in_use = true;
   5668
   5669		p->type = ICE_TCAM_ADD;
   5670		p->add_tcam_idx = true;
   5671		p->prof_id = t->tcam[i].prof_id;
   5672		p->ptg = t->tcam[i].ptg;
   5673		p->vsig = vsig;
   5674		p->tcam_idx = t->tcam[i].tcam_idx;
   5675
   5676		/* write the TCAM entry */
   5677		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
   5678					      t->tcam[i].prof_id,
   5679					      t->tcam[i].ptg, vsig, 0, 0,
   5680					      vl_msk, dc_msk, nm_msk);
   5681		if (status) {
   5682			devm_kfree(ice_hw_to_dev(hw), p);
   5683			goto err_ice_add_prof_id_vsig;
   5684		}
   5685
   5686		/* log change */
   5687		list_add(&p->list_entry, chg);
   5688	}
   5689
   5690	/* add profile to VSIG */
   5691	vsig_idx = vsig & ICE_VSIG_IDX_M;
   5692	if (rev)
   5693		list_add_tail(&t->list,
   5694			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
   5695	else
   5696		list_add(&t->list,
   5697			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
   5698
   5699	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
   5700	return status;
   5701
   5702err_ice_add_prof_id_vsig:
   5703	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
   5704	/* let caller clean up the change list */
   5705	devm_kfree(ice_hw_to_dev(hw), t);
   5706	return status;
   5707}
   5708
   5709/**
   5710 * ice_create_prof_id_vsig - add a new VSIG with a single profile
   5711 * @hw: pointer to the HW struct
   5712 * @blk: hardware block
   5713 * @vsi: the initial VSI that will be in VSIG
   5714 * @hdl: the profile handle of the profile that will be added to the VSIG
   5715 * @chg: the change list
   5716 */
   5717static int
   5718ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
   5719			struct list_head *chg)
   5720{
   5721	struct ice_chs_chg *p;
   5722	u16 new_vsig;
   5723	int status;
   5724
   5725	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
   5726	if (!p)
   5727		return -ENOMEM;
   5728
   5729	new_vsig = ice_vsig_alloc(hw, blk);
   5730	if (!new_vsig) {
   5731		status = -EIO;
   5732		goto err_ice_create_prof_id_vsig;
   5733	}
   5734
   5735	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
   5736	if (status)
   5737		goto err_ice_create_prof_id_vsig;
   5738
   5739	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
   5740	if (status)
   5741		goto err_ice_create_prof_id_vsig;
   5742
   5743	p->type = ICE_VSIG_ADD;
   5744	p->vsi = vsi;
   5745	p->orig_vsig = ICE_DEFAULT_VSIG;
   5746	p->vsig = new_vsig;
   5747
   5748	list_add(&p->list_entry, chg);
   5749
   5750	return 0;
   5751
   5752err_ice_create_prof_id_vsig:
   5753	/* let caller clean up the change list */
   5754	devm_kfree(ice_hw_to_dev(hw), p);
   5755	return status;
   5756}
   5757
   5758/**
   5759 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
   5760 * @hw: pointer to the HW struct
   5761 * @blk: hardware block
   5762 * @vsi: the initial VSI that will be in VSIG
   5763 * @lst: the list of profile that will be added to the VSIG
   5764 * @new_vsig: return of new VSIG
   5765 * @chg: the change list
   5766 */
   5767static int
   5768ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
   5769			 struct list_head *lst, u16 *new_vsig,
   5770			 struct list_head *chg)
   5771{
   5772	struct ice_vsig_prof *t;
   5773	int status;
   5774	u16 vsig;
   5775
   5776	vsig = ice_vsig_alloc(hw, blk);
   5777	if (!vsig)
   5778		return -EIO;
   5779
   5780	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
   5781	if (status)
   5782		return status;
   5783
   5784	list_for_each_entry(t, lst, list) {
   5785		/* Reverse the order here since we are copying the list */
   5786		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
   5787					      true, chg);
   5788		if (status)
   5789			return status;
   5790	}
   5791
   5792	*new_vsig = vsig;
   5793
   5794	return 0;
   5795}
   5796
   5797/**
   5798 * ice_find_prof_vsig - find a VSIG with a specific profile handle
   5799 * @hw: pointer to the HW struct
   5800 * @blk: hardware block
   5801 * @hdl: the profile handle of the profile to search for
   5802 * @vsig: returns the VSIG with the matching profile
   5803 */
   5804static bool
   5805ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
   5806{
   5807	struct ice_vsig_prof *t;
   5808	struct list_head lst;
   5809	int status;
   5810
   5811	INIT_LIST_HEAD(&lst);
   5812
   5813	t = kzalloc(sizeof(*t), GFP_KERNEL);
   5814	if (!t)
   5815		return false;
   5816
   5817	t->profile_cookie = hdl;
   5818	list_add(&t->list, &lst);
   5819
   5820	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
   5821
   5822	list_del(&t->list);
   5823	kfree(t);
   5824
   5825	return !status;
   5826}
   5827
   5828/**
   5829 * ice_add_prof_id_flow - add profile flow
   5830 * @hw: pointer to the HW struct
   5831 * @blk: hardware block
   5832 * @vsi: the VSI to enable with the profile specified by ID
   5833 * @hdl: profile handle
   5834 *
   5835 * Calling this function will update the hardware tables to enable the
   5836 * profile indicated by the ID parameter for the VSIs specified in the VSI
   5837 * array. Once successfully called, the flow will be enabled.
   5838 */
   5839int
   5840ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
   5841{
   5842	struct ice_vsig_prof *tmp1, *del1;
   5843	struct ice_chs_chg *tmp, *del;
   5844	struct list_head union_lst;
   5845	struct list_head chg;
   5846	int status;
   5847	u16 vsig;
   5848
   5849	INIT_LIST_HEAD(&union_lst);
   5850	INIT_LIST_HEAD(&chg);
   5851
   5852	/* Get profile */
   5853	status = ice_get_prof(hw, blk, hdl, &chg);
   5854	if (status)
   5855		return status;
   5856
   5857	/* determine if VSI is already part of a VSIG */
   5858	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
   5859	if (!status && vsig) {
   5860		bool only_vsi;
   5861		u16 or_vsig;
   5862		u16 ref;
   5863
   5864		/* found in VSIG */
   5865		or_vsig = vsig;
   5866
   5867		/* make sure that there is no overlap/conflict between the new
   5868		 * characteristics and the existing ones; we don't support that
   5869		 * scenario
   5870		 */
   5871		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
   5872			status = -EEXIST;
   5873			goto err_ice_add_prof_id_flow;
   5874		}
   5875
   5876		/* last VSI in the VSIG? */
   5877		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
   5878		if (status)
   5879			goto err_ice_add_prof_id_flow;
   5880		only_vsi = (ref == 1);
   5881
   5882		/* create a union of the current profiles and the one being
   5883		 * added
   5884		 */
   5885		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
   5886		if (status)
   5887			goto err_ice_add_prof_id_flow;
   5888
   5889		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
   5890		if (status)
   5891			goto err_ice_add_prof_id_flow;
   5892
   5893		/* search for an existing VSIG with an exact charc match */
   5894		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
   5895		if (!status) {
   5896			/* move VSI to the VSIG that matches */
   5897			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
   5898			if (status)
   5899				goto err_ice_add_prof_id_flow;
   5900
   5901			/* VSI has been moved out of or_vsig. If the or_vsig had
   5902			 * only that VSI it is now empty and can be removed.
   5903			 */
   5904			if (only_vsi) {
   5905				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
   5906				if (status)
   5907					goto err_ice_add_prof_id_flow;
   5908			}
   5909		} else if (only_vsi) {
   5910			/* If the original VSIG only contains one VSI, then it
   5911			 * will be the requesting VSI. In this case the VSI is
   5912			 * not sharing entries and we can simply add the new
   5913			 * profile to the VSIG.
   5914			 */
   5915			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
   5916						      &chg);
   5917			if (status)
   5918				goto err_ice_add_prof_id_flow;
   5919
   5920			/* Adjust priorities */
   5921			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
   5922			if (status)
   5923				goto err_ice_add_prof_id_flow;
   5924		} else {
   5925			/* No match, so we need a new VSIG */
   5926			status = ice_create_vsig_from_lst(hw, blk, vsi,
   5927							  &union_lst, &vsig,
   5928							  &chg);
   5929			if (status)
   5930				goto err_ice_add_prof_id_flow;
   5931
   5932			/* Adjust priorities */
   5933			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
   5934			if (status)
   5935				goto err_ice_add_prof_id_flow;
   5936		}
   5937	} else {
   5938		/* need to find or add a VSIG */
   5939		/* search for an existing VSIG with an exact charc match */
   5940		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
   5941			/* found an exact match */
   5942			/* add or move VSI to the VSIG that matches */
   5943			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
   5944			if (status)
   5945				goto err_ice_add_prof_id_flow;
   5946		} else {
   5947			/* we did not find an exact match */
   5948			/* we need to add a VSIG */
   5949			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
   5950							 &chg);
   5951			if (status)
   5952				goto err_ice_add_prof_id_flow;
   5953		}
   5954	}
   5955
   5956	/* update hardware */
   5957	if (!status)
   5958		status = ice_upd_prof_hw(hw, blk, &chg);
   5959
   5960err_ice_add_prof_id_flow:
   5961	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
   5962		list_del(&del->list_entry);
   5963		devm_kfree(ice_hw_to_dev(hw), del);
   5964	}
   5965
   5966	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
   5967		list_del(&del1->list);
   5968		devm_kfree(ice_hw_to_dev(hw), del1);
   5969	}
   5970
   5971	return status;
   5972}
   5973
   5974/**
   5975 * ice_rem_prof_from_list - remove a profile from list
   5976 * @hw: pointer to the HW struct
   5977 * @lst: list to remove the profile from
   5978 * @hdl: the profile handle indicating the profile to remove
   5979 */
   5980static int
   5981ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
   5982{
   5983	struct ice_vsig_prof *ent, *tmp;
   5984
   5985	list_for_each_entry_safe(ent, tmp, lst, list)
   5986		if (ent->profile_cookie == hdl) {
   5987			list_del(&ent->list);
   5988			devm_kfree(ice_hw_to_dev(hw), ent);
   5989			return 0;
   5990		}
   5991
   5992	return -ENOENT;
   5993}
   5994
   5995/**
   5996 * ice_rem_prof_id_flow - remove flow
   5997 * @hw: pointer to the HW struct
   5998 * @blk: hardware block
   5999 * @vsi: the VSI from which to remove the profile specified by ID
   6000 * @hdl: profile tracking handle
   6001 *
   6002 * Calling this function will update the hardware tables to remove the
   6003 * profile indicated by the ID parameter for the VSIs specified in the VSI
   6004 * array. Once successfully called, the flow will be disabled.
   6005 */
   6006int
   6007ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
   6008{
   6009	struct ice_vsig_prof *tmp1, *del1;
   6010	struct ice_chs_chg *tmp, *del;
   6011	struct list_head chg, copy;
   6012	int status;
   6013	u16 vsig;
   6014
   6015	INIT_LIST_HEAD(&copy);
   6016	INIT_LIST_HEAD(&chg);
   6017
   6018	/* determine if VSI is already part of a VSIG */
   6019	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
   6020	if (!status && vsig) {
   6021		bool last_profile;
   6022		bool only_vsi;
   6023		u16 ref;
   6024
   6025		/* found in VSIG */
   6026		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
   6027		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
   6028		if (status)
   6029			goto err_ice_rem_prof_id_flow;
   6030		only_vsi = (ref == 1);
   6031
   6032		if (only_vsi) {
   6033			/* If the original VSIG only contains one reference,
   6034			 * which will be the requesting VSI, then the VSI is not
   6035			 * sharing entries and we can simply remove the specific
   6036			 * characteristics from the VSIG.
   6037			 */
   6038
   6039			if (last_profile) {
   6040				/* If there are no profiles left for this VSIG,
   6041				 * then simply remove the VSIG.
   6042				 */
   6043				status = ice_rem_vsig(hw, blk, vsig, &chg);
   6044				if (status)
   6045					goto err_ice_rem_prof_id_flow;
   6046			} else {
   6047				status = ice_rem_prof_id_vsig(hw, blk, vsig,
   6048							      hdl, &chg);
   6049				if (status)
   6050					goto err_ice_rem_prof_id_flow;
   6051
   6052				/* Adjust priorities */
   6053				status = ice_adj_prof_priorities(hw, blk, vsig,
   6054								 &chg);
   6055				if (status)
   6056					goto err_ice_rem_prof_id_flow;
   6057			}
   6058
   6059		} else {
   6060			/* Make a copy of the VSIG's list of Profiles */
   6061			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
   6062			if (status)
   6063				goto err_ice_rem_prof_id_flow;
   6064
   6065			/* Remove specified profile entry from the list */
   6066			status = ice_rem_prof_from_list(hw, &copy, hdl);
   6067			if (status)
   6068				goto err_ice_rem_prof_id_flow;
   6069
   6070			if (list_empty(&copy)) {
   6071				status = ice_move_vsi(hw, blk, vsi,
   6072						      ICE_DEFAULT_VSIG, &chg);
   6073				if (status)
   6074					goto err_ice_rem_prof_id_flow;
   6075
   6076			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
   6077							    &vsig)) {
   6078				/* found an exact match */
   6079				/* add or move VSI to the VSIG that matches */
   6080				/* Search for a VSIG with a matching profile
   6081				 * list
   6082				 */
   6083
   6084				/* Found match, move VSI to the matching VSIG */
   6085				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
   6086				if (status)
   6087					goto err_ice_rem_prof_id_flow;
   6088			} else {
   6089				/* since no existing VSIG supports this
   6090				 * characteristic pattern, we need to create a
   6091				 * new VSIG and TCAM entries
   6092				 */
   6093				status = ice_create_vsig_from_lst(hw, blk, vsi,
   6094								  &copy, &vsig,
   6095								  &chg);
   6096				if (status)
   6097					goto err_ice_rem_prof_id_flow;
   6098
   6099				/* Adjust priorities */
   6100				status = ice_adj_prof_priorities(hw, blk, vsig,
   6101								 &chg);
   6102				if (status)
   6103					goto err_ice_rem_prof_id_flow;
   6104			}
   6105		}
   6106	} else {
   6107		status = -ENOENT;
   6108	}
   6109
   6110	/* update hardware tables */
   6111	if (!status)
   6112		status = ice_upd_prof_hw(hw, blk, &chg);
   6113
   6114err_ice_rem_prof_id_flow:
   6115	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
   6116		list_del(&del->list_entry);
   6117		devm_kfree(ice_hw_to_dev(hw), del);
   6118	}
   6119
   6120	list_for_each_entry_safe(del1, tmp1, &copy, list) {
   6121		list_del(&del1->list);
   6122		devm_kfree(ice_hw_to_dev(hw), del1);
   6123	}
   6124
   6125	return status;
   6126}