cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ice_lib.c (112969B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright (c) 2018, Intel Corporation. */
      3
      4#include "ice.h"
      5#include "ice_base.h"
      6#include "ice_flow.h"
      7#include "ice_lib.h"
      8#include "ice_fltr.h"
      9#include "ice_dcb_lib.h"
     10#include "ice_devlink.h"
     11#include "ice_vsi_vlan_ops.h"
     12
     13/**
     14 * ice_vsi_type_str - maps VSI type enum to string equivalents
     15 * @vsi_type: VSI type enum
     16 */
     17const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
     18{
     19	switch (vsi_type) {
     20	case ICE_VSI_PF:
     21		return "ICE_VSI_PF";
     22	case ICE_VSI_VF:
     23		return "ICE_VSI_VF";
     24	case ICE_VSI_CTRL:
     25		return "ICE_VSI_CTRL";
     26	case ICE_VSI_CHNL:
     27		return "ICE_VSI_CHNL";
     28	case ICE_VSI_LB:
     29		return "ICE_VSI_LB";
     30	case ICE_VSI_SWITCHDEV_CTRL:
     31		return "ICE_VSI_SWITCHDEV_CTRL";
     32	default:
     33		return "unknown";
     34	}
     35}
     36
     37/**
     38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
     39 * @vsi: the VSI being configured
     40 * @ena: start or stop the Rx rings
     41 *
     42 * First enable/disable all of the Rx rings, flush any remaining writes, and
     43 * then verify that they have all been enabled/disabled successfully. This will
     44 * let all of the register writes complete when enabling/disabling the Rx rings
     45 * before waiting for the change in hardware to complete.
     46 */
     47static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
     48{
     49	int ret = 0;
     50	u16 i;
     51
     52	ice_for_each_rxq(vsi, i)
     53		ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
     54
     55	ice_flush(&vsi->back->hw);
     56
     57	ice_for_each_rxq(vsi, i) {
     58		ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
     59		if (ret)
     60			break;
     61	}
     62
     63	return ret;
     64}
     65
     66/**
     67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
     68 * @vsi: VSI pointer
     69 *
     70 * On error: returns error code (negative)
     71 * On success: returns 0
     72 */
     73static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
     74{
     75	struct ice_pf *pf = vsi->back;
     76	struct device *dev;
     77
     78	dev = ice_pf_to_dev(pf);
     79	if (vsi->type == ICE_VSI_CHNL)
     80		return 0;
     81
     82	/* allocate memory for both Tx and Rx ring pointers */
     83	vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
     84				     sizeof(*vsi->tx_rings), GFP_KERNEL);
     85	if (!vsi->tx_rings)
     86		return -ENOMEM;
     87
     88	vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
     89				     sizeof(*vsi->rx_rings), GFP_KERNEL);
     90	if (!vsi->rx_rings)
     91		goto err_rings;
     92
     93	/* txq_map needs to have enough space to track both Tx (stack) rings
     94	 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
     95	 * so use num_possible_cpus() as we want to always provide XDP ring
     96	 * per CPU, regardless of queue count settings from user that might
     97	 * have come from ethtool's set_channels() callback;
     98	 */
     99	vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
    100				    sizeof(*vsi->txq_map), GFP_KERNEL);
    101
    102	if (!vsi->txq_map)
    103		goto err_txq_map;
    104
    105	vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
    106				    sizeof(*vsi->rxq_map), GFP_KERNEL);
    107	if (!vsi->rxq_map)
    108		goto err_rxq_map;
    109
    110	/* There is no need to allocate q_vectors for a loopback VSI. */
    111	if (vsi->type == ICE_VSI_LB)
    112		return 0;
    113
    114	/* allocate memory for q_vector pointers */
    115	vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
    116				      sizeof(*vsi->q_vectors), GFP_KERNEL);
    117	if (!vsi->q_vectors)
    118		goto err_vectors;
    119
    120	vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
    121	if (!vsi->af_xdp_zc_qps)
    122		goto err_zc_qps;
    123
    124	return 0;
    125
    126err_zc_qps:
    127	devm_kfree(dev, vsi->q_vectors);
    128err_vectors:
    129	devm_kfree(dev, vsi->rxq_map);
    130err_rxq_map:
    131	devm_kfree(dev, vsi->txq_map);
    132err_txq_map:
    133	devm_kfree(dev, vsi->rx_rings);
    134err_rings:
    135	devm_kfree(dev, vsi->tx_rings);
    136	return -ENOMEM;
    137}
    138
    139/**
    140 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
    141 * @vsi: the VSI being configured
    142 */
    143static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
    144{
    145	switch (vsi->type) {
    146	case ICE_VSI_PF:
    147	case ICE_VSI_SWITCHDEV_CTRL:
    148	case ICE_VSI_CTRL:
    149	case ICE_VSI_LB:
    150		/* a user could change the values of num_[tr]x_desc using
    151		 * ethtool -G so we should keep those values instead of
    152		 * overwriting them with the defaults.
    153		 */
    154		if (!vsi->num_rx_desc)
    155			vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
    156		if (!vsi->num_tx_desc)
    157			vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
    158		break;
    159	default:
    160		dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
    161			vsi->type);
    162		break;
    163	}
    164}
    165
    166/**
    167 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
    168 * @vsi: the VSI being configured
    169 * @vf: the VF associated with this VSI, if any
    170 *
    171 * Return 0 on success and a negative value on error
    172 */
    173static void ice_vsi_set_num_qs(struct ice_vsi *vsi, struct ice_vf *vf)
    174{
    175	enum ice_vsi_type vsi_type = vsi->type;
    176	struct ice_pf *pf = vsi->back;
    177
    178	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
    179		return;
    180
    181	switch (vsi_type) {
    182	case ICE_VSI_PF:
    183		if (vsi->req_txq) {
    184			vsi->alloc_txq = vsi->req_txq;
    185			vsi->num_txq = vsi->req_txq;
    186		} else {
    187			vsi->alloc_txq = min3(pf->num_lan_msix,
    188					      ice_get_avail_txq_count(pf),
    189					      (u16)num_online_cpus());
    190		}
    191
    192		pf->num_lan_tx = vsi->alloc_txq;
    193
    194		/* only 1 Rx queue unless RSS is enabled */
    195		if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
    196			vsi->alloc_rxq = 1;
    197		} else {
    198			if (vsi->req_rxq) {
    199				vsi->alloc_rxq = vsi->req_rxq;
    200				vsi->num_rxq = vsi->req_rxq;
    201			} else {
    202				vsi->alloc_rxq = min3(pf->num_lan_msix,
    203						      ice_get_avail_rxq_count(pf),
    204						      (u16)num_online_cpus());
    205			}
    206		}
    207
    208		pf->num_lan_rx = vsi->alloc_rxq;
    209
    210		vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
    211					   max_t(int, vsi->alloc_rxq,
    212						 vsi->alloc_txq));
    213		break;
    214	case ICE_VSI_SWITCHDEV_CTRL:
    215		/* The number of queues for ctrl VSI is equal to number of VFs.
    216		 * Each ring is associated to the corresponding VF_PR netdev.
    217		 */
    218		vsi->alloc_txq = ice_get_num_vfs(pf);
    219		vsi->alloc_rxq = vsi->alloc_txq;
    220		vsi->num_q_vectors = 1;
    221		break;
    222	case ICE_VSI_VF:
    223		if (vf->num_req_qs)
    224			vf->num_vf_qs = vf->num_req_qs;
    225		vsi->alloc_txq = vf->num_vf_qs;
    226		vsi->alloc_rxq = vf->num_vf_qs;
    227		/* pf->vfs.num_msix_per includes (VF miscellaneous vector +
    228		 * data queue interrupts). Since vsi->num_q_vectors is number
    229		 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
    230		 * original vector count
    231		 */
    232		vsi->num_q_vectors = pf->vfs.num_msix_per - ICE_NONQ_VECS_VF;
    233		break;
    234	case ICE_VSI_CTRL:
    235		vsi->alloc_txq = 1;
    236		vsi->alloc_rxq = 1;
    237		vsi->num_q_vectors = 1;
    238		break;
    239	case ICE_VSI_CHNL:
    240		vsi->alloc_txq = 0;
    241		vsi->alloc_rxq = 0;
    242		break;
    243	case ICE_VSI_LB:
    244		vsi->alloc_txq = 1;
    245		vsi->alloc_rxq = 1;
    246		break;
    247	default:
    248		dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
    249		break;
    250	}
    251
    252	ice_vsi_set_num_desc(vsi);
    253}
    254
    255/**
    256 * ice_get_free_slot - get the next non-NULL location index in array
    257 * @array: array to search
    258 * @size: size of the array
    259 * @curr: last known occupied index to be used as a search hint
    260 *
    261 * void * is being used to keep the functionality generic. This lets us use this
    262 * function on any array of pointers.
    263 */
    264static int ice_get_free_slot(void *array, int size, int curr)
    265{
    266	int **tmp_array = (int **)array;
    267	int next;
    268
    269	if (curr < (size - 1) && !tmp_array[curr + 1]) {
    270		next = curr + 1;
    271	} else {
    272		int i = 0;
    273
    274		while ((i < size) && (tmp_array[i]))
    275			i++;
    276		if (i == size)
    277			next = ICE_NO_VSI;
    278		else
    279			next = i;
    280	}
    281	return next;
    282}
    283
    284/**
    285 * ice_vsi_delete - delete a VSI from the switch
    286 * @vsi: pointer to VSI being removed
    287 */
    288void ice_vsi_delete(struct ice_vsi *vsi)
    289{
    290	struct ice_pf *pf = vsi->back;
    291	struct ice_vsi_ctx *ctxt;
    292	int status;
    293
    294	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
    295	if (!ctxt)
    296		return;
    297
    298	if (vsi->type == ICE_VSI_VF)
    299		ctxt->vf_num = vsi->vf->vf_id;
    300	ctxt->vsi_num = vsi->vsi_num;
    301
    302	memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
    303
    304	status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
    305	if (status)
    306		dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
    307			vsi->vsi_num, status);
    308
    309	kfree(ctxt);
    310}
    311
    312/**
    313 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
    314 * @vsi: pointer to VSI being cleared
    315 */
    316static void ice_vsi_free_arrays(struct ice_vsi *vsi)
    317{
    318	struct ice_pf *pf = vsi->back;
    319	struct device *dev;
    320
    321	dev = ice_pf_to_dev(pf);
    322
    323	if (vsi->af_xdp_zc_qps) {
    324		bitmap_free(vsi->af_xdp_zc_qps);
    325		vsi->af_xdp_zc_qps = NULL;
    326	}
    327	/* free the ring and vector containers */
    328	if (vsi->q_vectors) {
    329		devm_kfree(dev, vsi->q_vectors);
    330		vsi->q_vectors = NULL;
    331	}
    332	if (vsi->tx_rings) {
    333		devm_kfree(dev, vsi->tx_rings);
    334		vsi->tx_rings = NULL;
    335	}
    336	if (vsi->rx_rings) {
    337		devm_kfree(dev, vsi->rx_rings);
    338		vsi->rx_rings = NULL;
    339	}
    340	if (vsi->txq_map) {
    341		devm_kfree(dev, vsi->txq_map);
    342		vsi->txq_map = NULL;
    343	}
    344	if (vsi->rxq_map) {
    345		devm_kfree(dev, vsi->rxq_map);
    346		vsi->rxq_map = NULL;
    347	}
    348}
    349
    350/**
    351 * ice_vsi_clear - clean up and deallocate the provided VSI
    352 * @vsi: pointer to VSI being cleared
    353 *
    354 * This deallocates the VSI's queue resources, removes it from the PF's
    355 * VSI array if necessary, and deallocates the VSI
    356 *
    357 * Returns 0 on success, negative on failure
    358 */
    359int ice_vsi_clear(struct ice_vsi *vsi)
    360{
    361	struct ice_pf *pf = NULL;
    362	struct device *dev;
    363
    364	if (!vsi)
    365		return 0;
    366
    367	if (!vsi->back)
    368		return -EINVAL;
    369
    370	pf = vsi->back;
    371	dev = ice_pf_to_dev(pf);
    372
    373	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
    374		dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
    375		return -EINVAL;
    376	}
    377
    378	mutex_lock(&pf->sw_mutex);
    379	/* updates the PF for this cleared VSI */
    380
    381	pf->vsi[vsi->idx] = NULL;
    382	if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
    383		pf->next_vsi = vsi->idx;
    384	if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && vsi->vf)
    385		pf->next_vsi = vsi->idx;
    386
    387	ice_vsi_free_arrays(vsi);
    388	mutex_unlock(&pf->sw_mutex);
    389	devm_kfree(dev, vsi);
    390
    391	return 0;
    392}
    393
    394/**
    395 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
    396 * @irq: interrupt number
    397 * @data: pointer to a q_vector
    398 */
    399static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
    400{
    401	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
    402
    403	if (!q_vector->tx.tx_ring)
    404		return IRQ_HANDLED;
    405
    406#define FDIR_RX_DESC_CLEAN_BUDGET 64
    407	ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
    408	ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
    409
    410	return IRQ_HANDLED;
    411}
    412
    413/**
    414 * ice_msix_clean_rings - MSIX mode Interrupt Handler
    415 * @irq: interrupt number
    416 * @data: pointer to a q_vector
    417 */
    418static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
    419{
    420	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
    421
    422	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
    423		return IRQ_HANDLED;
    424
    425	q_vector->total_events++;
    426
    427	napi_schedule(&q_vector->napi);
    428
    429	return IRQ_HANDLED;
    430}
    431
    432static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data)
    433{
    434	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
    435	struct ice_pf *pf = q_vector->vsi->back;
    436	struct ice_vf *vf;
    437	unsigned int bkt;
    438
    439	if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
    440		return IRQ_HANDLED;
    441
    442	rcu_read_lock();
    443	ice_for_each_vf_rcu(pf, bkt, vf)
    444		napi_schedule(&vf->repr->q_vector->napi);
    445	rcu_read_unlock();
    446
    447	return IRQ_HANDLED;
    448}
    449
    450/**
    451 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
    452 * @pf: board private structure
    453 * @vsi_type: type of VSI
    454 * @ch: ptr to channel
    455 * @vf: VF for ICE_VSI_VF and ICE_VSI_CTRL
    456 *
    457 * The VF pointer is used for ICE_VSI_VF and ICE_VSI_CTRL. For ICE_VSI_CTRL,
    458 * it may be NULL in the case there is no association with a VF. For
    459 * ICE_VSI_VF the VF pointer *must not* be NULL.
    460 *
    461 * returns a pointer to a VSI on success, NULL on failure.
    462 */
    463static struct ice_vsi *
    464ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type,
    465	      struct ice_channel *ch, struct ice_vf *vf)
    466{
    467	struct device *dev = ice_pf_to_dev(pf);
    468	struct ice_vsi *vsi = NULL;
    469
    470	if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
    471		return NULL;
    472
    473	/* Need to protect the allocation of the VSIs at the PF level */
    474	mutex_lock(&pf->sw_mutex);
    475
    476	/* If we have already allocated our maximum number of VSIs,
    477	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
    478	 * is available to be populated
    479	 */
    480	if (pf->next_vsi == ICE_NO_VSI) {
    481		dev_dbg(dev, "out of VSI slots!\n");
    482		goto unlock_pf;
    483	}
    484
    485	vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
    486	if (!vsi)
    487		goto unlock_pf;
    488
    489	vsi->type = vsi_type;
    490	vsi->back = pf;
    491	set_bit(ICE_VSI_DOWN, vsi->state);
    492
    493	if (vsi_type == ICE_VSI_VF)
    494		ice_vsi_set_num_qs(vsi, vf);
    495	else if (vsi_type != ICE_VSI_CHNL)
    496		ice_vsi_set_num_qs(vsi, NULL);
    497
    498	switch (vsi->type) {
    499	case ICE_VSI_SWITCHDEV_CTRL:
    500		if (ice_vsi_alloc_arrays(vsi))
    501			goto err_rings;
    502
    503		/* Setup eswitch MSIX irq handler for VSI */
    504		vsi->irq_handler = ice_eswitch_msix_clean_rings;
    505		break;
    506	case ICE_VSI_PF:
    507		if (ice_vsi_alloc_arrays(vsi))
    508			goto err_rings;
    509
    510		/* Setup default MSIX irq handler for VSI */
    511		vsi->irq_handler = ice_msix_clean_rings;
    512		break;
    513	case ICE_VSI_CTRL:
    514		if (ice_vsi_alloc_arrays(vsi))
    515			goto err_rings;
    516
    517		/* Setup ctrl VSI MSIX irq handler */
    518		vsi->irq_handler = ice_msix_clean_ctrl_vsi;
    519
    520		/* For the PF control VSI this is NULL, for the VF control VSI
    521		 * this will be the first VF to allocate it.
    522		 */
    523		vsi->vf = vf;
    524		break;
    525	case ICE_VSI_VF:
    526		if (ice_vsi_alloc_arrays(vsi))
    527			goto err_rings;
    528		vsi->vf = vf;
    529		break;
    530	case ICE_VSI_CHNL:
    531		if (!ch)
    532			goto err_rings;
    533		vsi->num_rxq = ch->num_rxq;
    534		vsi->num_txq = ch->num_txq;
    535		vsi->next_base_q = ch->base_q;
    536		break;
    537	case ICE_VSI_LB:
    538		if (ice_vsi_alloc_arrays(vsi))
    539			goto err_rings;
    540		break;
    541	default:
    542		dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
    543		goto unlock_pf;
    544	}
    545
    546	if (vsi->type == ICE_VSI_CTRL && !vf) {
    547		/* Use the last VSI slot as the index for PF control VSI */
    548		vsi->idx = pf->num_alloc_vsi - 1;
    549		pf->ctrl_vsi_idx = vsi->idx;
    550		pf->vsi[vsi->idx] = vsi;
    551	} else {
    552		/* fill slot and make note of the index */
    553		vsi->idx = pf->next_vsi;
    554		pf->vsi[pf->next_vsi] = vsi;
    555
    556		/* prepare pf->next_vsi for next use */
    557		pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
    558						 pf->next_vsi);
    559	}
    560
    561	if (vsi->type == ICE_VSI_CTRL && vf)
    562		vf->ctrl_vsi_idx = vsi->idx;
    563	goto unlock_pf;
    564
    565err_rings:
    566	devm_kfree(dev, vsi);
    567	vsi = NULL;
    568unlock_pf:
    569	mutex_unlock(&pf->sw_mutex);
    570	return vsi;
    571}
    572
    573/**
    574 * ice_alloc_fd_res - Allocate FD resource for a VSI
    575 * @vsi: pointer to the ice_vsi
    576 *
    577 * This allocates the FD resources
    578 *
    579 * Returns 0 on success, -EPERM on no-op or -EIO on failure
    580 */
    581static int ice_alloc_fd_res(struct ice_vsi *vsi)
    582{
    583	struct ice_pf *pf = vsi->back;
    584	u32 g_val, b_val;
    585
    586	/* Flow Director filters are only allocated/assigned to the PF VSI or
    587	 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
    588	 * add/delete filters so resources are not allocated to it
    589	 */
    590	if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
    591		return -EPERM;
    592
    593	if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
    594	      vsi->type == ICE_VSI_CHNL))
    595		return -EPERM;
    596
    597	/* FD filters from guaranteed pool per VSI */
    598	g_val = pf->hw.func_caps.fd_fltr_guar;
    599	if (!g_val)
    600		return -EPERM;
    601
    602	/* FD filters from best effort pool */
    603	b_val = pf->hw.func_caps.fd_fltr_best_effort;
    604	if (!b_val)
    605		return -EPERM;
    606
    607	/* PF main VSI gets only 64 FD resources from guaranteed pool
    608	 * when ADQ is configured.
    609	 */
    610#define ICE_PF_VSI_GFLTR	64
    611
    612	/* determine FD filter resources per VSI from shared(best effort) and
    613	 * dedicated pool
    614	 */
    615	if (vsi->type == ICE_VSI_PF) {
    616		vsi->num_gfltr = g_val;
    617		/* if MQPRIO is configured, main VSI doesn't get all FD
    618		 * resources from guaranteed pool. PF VSI gets 64 FD resources
    619		 */
    620		if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
    621			if (g_val < ICE_PF_VSI_GFLTR)
    622				return -EPERM;
    623			/* allow bare minimum entries for PF VSI */
    624			vsi->num_gfltr = ICE_PF_VSI_GFLTR;
    625		}
    626
    627		/* each VSI gets same "best_effort" quota */
    628		vsi->num_bfltr = b_val;
    629	} else if (vsi->type == ICE_VSI_VF) {
    630		vsi->num_gfltr = 0;
    631
    632		/* each VSI gets same "best_effort" quota */
    633		vsi->num_bfltr = b_val;
    634	} else {
    635		struct ice_vsi *main_vsi;
    636		int numtc;
    637
    638		main_vsi = ice_get_main_vsi(pf);
    639		if (!main_vsi)
    640			return -EPERM;
    641
    642		if (!main_vsi->all_numtc)
    643			return -EINVAL;
    644
    645		/* figure out ADQ numtc */
    646		numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
    647
    648		/* only one TC but still asking resources for channels,
    649		 * invalid config
    650		 */
    651		if (numtc < ICE_CHNL_START_TC)
    652			return -EPERM;
    653
    654		g_val -= ICE_PF_VSI_GFLTR;
    655		/* channel VSIs gets equal share from guaranteed pool */
    656		vsi->num_gfltr = g_val / numtc;
    657
    658		/* each VSI gets same "best_effort" quota */
    659		vsi->num_bfltr = b_val;
    660	}
    661
    662	return 0;
    663}
    664
    665/**
    666 * ice_vsi_get_qs - Assign queues from PF to VSI
    667 * @vsi: the VSI to assign queues to
    668 *
    669 * Returns 0 on success and a negative value on error
    670 */
    671static int ice_vsi_get_qs(struct ice_vsi *vsi)
    672{
    673	struct ice_pf *pf = vsi->back;
    674	struct ice_qs_cfg tx_qs_cfg = {
    675		.qs_mutex = &pf->avail_q_mutex,
    676		.pf_map = pf->avail_txqs,
    677		.pf_map_size = pf->max_pf_txqs,
    678		.q_count = vsi->alloc_txq,
    679		.scatter_count = ICE_MAX_SCATTER_TXQS,
    680		.vsi_map = vsi->txq_map,
    681		.vsi_map_offset = 0,
    682		.mapping_mode = ICE_VSI_MAP_CONTIG
    683	};
    684	struct ice_qs_cfg rx_qs_cfg = {
    685		.qs_mutex = &pf->avail_q_mutex,
    686		.pf_map = pf->avail_rxqs,
    687		.pf_map_size = pf->max_pf_rxqs,
    688		.q_count = vsi->alloc_rxq,
    689		.scatter_count = ICE_MAX_SCATTER_RXQS,
    690		.vsi_map = vsi->rxq_map,
    691		.vsi_map_offset = 0,
    692		.mapping_mode = ICE_VSI_MAP_CONTIG
    693	};
    694	int ret;
    695
    696	if (vsi->type == ICE_VSI_CHNL)
    697		return 0;
    698
    699	ret = __ice_vsi_get_qs(&tx_qs_cfg);
    700	if (ret)
    701		return ret;
    702	vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
    703
    704	ret = __ice_vsi_get_qs(&rx_qs_cfg);
    705	if (ret)
    706		return ret;
    707	vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
    708
    709	return 0;
    710}
    711
    712/**
    713 * ice_vsi_put_qs - Release queues from VSI to PF
    714 * @vsi: the VSI that is going to release queues
    715 */
    716static void ice_vsi_put_qs(struct ice_vsi *vsi)
    717{
    718	struct ice_pf *pf = vsi->back;
    719	int i;
    720
    721	mutex_lock(&pf->avail_q_mutex);
    722
    723	ice_for_each_alloc_txq(vsi, i) {
    724		clear_bit(vsi->txq_map[i], pf->avail_txqs);
    725		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
    726	}
    727
    728	ice_for_each_alloc_rxq(vsi, i) {
    729		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
    730		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
    731	}
    732
    733	mutex_unlock(&pf->avail_q_mutex);
    734}
    735
    736/**
    737 * ice_is_safe_mode
    738 * @pf: pointer to the PF struct
    739 *
    740 * returns true if driver is in safe mode, false otherwise
    741 */
    742bool ice_is_safe_mode(struct ice_pf *pf)
    743{
    744	return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
    745}
    746
    747/**
    748 * ice_is_rdma_ena
    749 * @pf: pointer to the PF struct
    750 *
    751 * returns true if RDMA is currently supported, false otherwise
    752 */
    753bool ice_is_rdma_ena(struct ice_pf *pf)
    754{
    755	return test_bit(ICE_FLAG_RDMA_ENA, pf->flags);
    756}
    757
    758/**
    759 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
    760 * @vsi: the VSI being cleaned up
    761 *
    762 * This function deletes RSS input set for all flows that were configured
    763 * for this VSI
    764 */
    765static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
    766{
    767	struct ice_pf *pf = vsi->back;
    768	int status;
    769
    770	if (ice_is_safe_mode(pf))
    771		return;
    772
    773	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
    774	if (status)
    775		dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
    776			vsi->vsi_num, status);
    777}
    778
    779/**
    780 * ice_rss_clean - Delete RSS related VSI structures and configuration
    781 * @vsi: the VSI being removed
    782 */
    783static void ice_rss_clean(struct ice_vsi *vsi)
    784{
    785	struct ice_pf *pf = vsi->back;
    786	struct device *dev;
    787
    788	dev = ice_pf_to_dev(pf);
    789
    790	if (vsi->rss_hkey_user)
    791		devm_kfree(dev, vsi->rss_hkey_user);
    792	if (vsi->rss_lut_user)
    793		devm_kfree(dev, vsi->rss_lut_user);
    794
    795	ice_vsi_clean_rss_flow_fld(vsi);
    796	/* remove RSS replay list */
    797	if (!ice_is_safe_mode(pf))
    798		ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
    799}
    800
    801/**
    802 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
    803 * @vsi: the VSI being configured
    804 */
    805static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
    806{
    807	struct ice_hw_common_caps *cap;
    808	struct ice_pf *pf = vsi->back;
    809
    810	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
    811		vsi->rss_size = 1;
    812		return;
    813	}
    814
    815	cap = &pf->hw.func_caps.common_cap;
    816	switch (vsi->type) {
    817	case ICE_VSI_CHNL:
    818	case ICE_VSI_PF:
    819		/* PF VSI will inherit RSS instance of PF */
    820		vsi->rss_table_size = (u16)cap->rss_table_size;
    821		if (vsi->type == ICE_VSI_CHNL)
    822			vsi->rss_size = min_t(u16, vsi->num_rxq,
    823					      BIT(cap->rss_table_entry_width));
    824		else
    825			vsi->rss_size = min_t(u16, num_online_cpus(),
    826					      BIT(cap->rss_table_entry_width));
    827		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
    828		break;
    829	case ICE_VSI_SWITCHDEV_CTRL:
    830		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
    831		vsi->rss_size = min_t(u16, num_online_cpus(),
    832				      BIT(cap->rss_table_entry_width));
    833		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
    834		break;
    835	case ICE_VSI_VF:
    836		/* VF VSI will get a small RSS table.
    837		 * For VSI_LUT, LUT size should be set to 64 bytes.
    838		 */
    839		vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
    840		vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
    841		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
    842		break;
    843	case ICE_VSI_LB:
    844		break;
    845	default:
    846		dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
    847			ice_vsi_type_str(vsi->type));
    848		break;
    849	}
    850}
    851
    852/**
    853 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
    854 * @hw: HW structure used to determine the VLAN mode of the device
    855 * @ctxt: the VSI context being set
    856 *
    857 * This initializes a default VSI context for all sections except the Queues.
    858 */
    859static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
    860{
    861	u32 table = 0;
    862
    863	memset(&ctxt->info, 0, sizeof(ctxt->info));
    864	/* VSI's should be allocated from shared pool */
    865	ctxt->alloc_from_pool = true;
    866	/* Src pruning enabled by default */
    867	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
    868	/* Traffic from VSI can be sent to LAN */
    869	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
    870	/* allow all untagged/tagged packets by default on Tx */
    871	ctxt->info.inner_vlan_flags = ((ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL &
    872				  ICE_AQ_VSI_INNER_VLAN_TX_MODE_M) >>
    873				 ICE_AQ_VSI_INNER_VLAN_TX_MODE_S);
    874	/* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
    875	 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
    876	 *
    877	 * DVM - leave inner VLAN in packet by default
    878	 */
    879	if (ice_is_dvm_ena(hw)) {
    880		ctxt->info.inner_vlan_flags |=
    881			ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
    882		ctxt->info.outer_vlan_flags =
    883			(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
    884			 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
    885			ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
    886		ctxt->info.outer_vlan_flags |=
    887			(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
    888			 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
    889			ICE_AQ_VSI_OUTER_TAG_TYPE_M;
    890	}
    891	/* Have 1:1 UP mapping for both ingress/egress tables */
    892	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
    893	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
    894	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
    895	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
    896	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
    897	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
    898	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
    899	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
    900	ctxt->info.ingress_table = cpu_to_le32(table);
    901	ctxt->info.egress_table = cpu_to_le32(table);
    902	/* Have 1:1 UP mapping for outer to inner UP table */
    903	ctxt->info.outer_up_table = cpu_to_le32(table);
    904	/* No Outer tag support outer_tag_flags remains to zero */
    905}
    906
    907/**
    908 * ice_vsi_setup_q_map - Setup a VSI queue map
    909 * @vsi: the VSI being configured
    910 * @ctxt: VSI context structure
    911 */
    912static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
    913{
    914	u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
    915	u16 num_txq_per_tc, num_rxq_per_tc;
    916	u16 qcount_tx = vsi->alloc_txq;
    917	u16 qcount_rx = vsi->alloc_rxq;
    918	u8 netdev_tc = 0;
    919	int i;
    920
    921	if (!vsi->tc_cfg.numtc) {
    922		/* at least TC0 should be enabled by default */
    923		vsi->tc_cfg.numtc = 1;
    924		vsi->tc_cfg.ena_tc = 1;
    925	}
    926
    927	num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
    928	if (!num_rxq_per_tc)
    929		num_rxq_per_tc = 1;
    930	num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
    931	if (!num_txq_per_tc)
    932		num_txq_per_tc = 1;
    933
    934	/* find the (rounded up) power-of-2 of qcount */
    935	pow = (u16)order_base_2(num_rxq_per_tc);
    936
    937	/* TC mapping is a function of the number of Rx queues assigned to the
    938	 * VSI for each traffic class and the offset of these queues.
    939	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
    940	 * queues allocated to TC0. No:of queues is a power-of-2.
    941	 *
    942	 * If TC is not enabled, the queue offset is set to 0, and allocate one
    943	 * queue, this way, traffic for the given TC will be sent to the default
    944	 * queue.
    945	 *
    946	 * Setup number and offset of Rx queues for all TCs for the VSI
    947	 */
    948	ice_for_each_traffic_class(i) {
    949		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
    950			/* TC is not enabled */
    951			vsi->tc_cfg.tc_info[i].qoffset = 0;
    952			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
    953			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
    954			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
    955			ctxt->info.tc_mapping[i] = 0;
    956			continue;
    957		}
    958
    959		/* TC is enabled */
    960		vsi->tc_cfg.tc_info[i].qoffset = offset;
    961		vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
    962		vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
    963		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
    964
    965		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
    966			ICE_AQ_VSI_TC_Q_OFFSET_M) |
    967			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
    968			 ICE_AQ_VSI_TC_Q_NUM_M);
    969		offset += num_rxq_per_tc;
    970		tx_count += num_txq_per_tc;
    971		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
    972	}
    973
    974	/* if offset is non-zero, means it is calculated correctly based on
    975	 * enabled TCs for a given VSI otherwise qcount_rx will always
    976	 * be correct and non-zero because it is based off - VSI's
    977	 * allocated Rx queues which is at least 1 (hence qcount_tx will be
    978	 * at least 1)
    979	 */
    980	if (offset)
    981		vsi->num_rxq = offset;
    982	else
    983		vsi->num_rxq = num_rxq_per_tc;
    984
    985	if (vsi->num_rxq > vsi->alloc_rxq) {
    986		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
    987			vsi->num_rxq, vsi->alloc_rxq);
    988		return -EINVAL;
    989	}
    990
    991	vsi->num_txq = tx_count;
    992	if (vsi->num_txq > vsi->alloc_txq) {
    993		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
    994			vsi->num_txq, vsi->alloc_txq);
    995		return -EINVAL;
    996	}
    997
    998	if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
    999		dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
   1000		/* since there is a chance that num_rxq could have been changed
   1001		 * in the above for loop, make num_txq equal to num_rxq.
   1002		 */
   1003		vsi->num_txq = vsi->num_rxq;
   1004	}
   1005
   1006	/* Rx queue mapping */
   1007	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
   1008	/* q_mapping buffer holds the info for the first queue allocated for
   1009	 * this VSI in the PF space and also the number of queues associated
   1010	 * with this VSI.
   1011	 */
   1012	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
   1013	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
   1014
   1015	return 0;
   1016}
   1017
   1018/**
   1019 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
   1020 * @ctxt: the VSI context being set
   1021 * @vsi: the VSI being configured
   1022 */
   1023static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
   1024{
   1025	u8 dflt_q_group, dflt_q_prio;
   1026	u16 dflt_q, report_q, val;
   1027
   1028	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
   1029	    vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
   1030		return;
   1031
   1032	val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
   1033	ctxt->info.valid_sections |= cpu_to_le16(val);
   1034	dflt_q = 0;
   1035	dflt_q_group = 0;
   1036	report_q = 0;
   1037	dflt_q_prio = 0;
   1038
   1039	/* enable flow director filtering/programming */
   1040	val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
   1041	ctxt->info.fd_options = cpu_to_le16(val);
   1042	/* max of allocated flow director filters */
   1043	ctxt->info.max_fd_fltr_dedicated =
   1044			cpu_to_le16(vsi->num_gfltr);
   1045	/* max of shared flow director filters any VSI may program */
   1046	ctxt->info.max_fd_fltr_shared =
   1047			cpu_to_le16(vsi->num_bfltr);
   1048	/* default queue index within the VSI of the default FD */
   1049	val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
   1050	       ICE_AQ_VSI_FD_DEF_Q_M);
   1051	/* target queue or queue group to the FD filter */
   1052	val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
   1053		ICE_AQ_VSI_FD_DEF_GRP_M);
   1054	ctxt->info.fd_def_q = cpu_to_le16(val);
   1055	/* queue index on which FD filter completion is reported */
   1056	val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
   1057	       ICE_AQ_VSI_FD_REPORT_Q_M);
   1058	/* priority of the default qindex action */
   1059	val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
   1060		ICE_AQ_VSI_FD_DEF_PRIORITY_M);
   1061	ctxt->info.fd_report_opt = cpu_to_le16(val);
   1062}
   1063
   1064/**
   1065 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
   1066 * @ctxt: the VSI context being set
   1067 * @vsi: the VSI being configured
   1068 */
   1069static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
   1070{
   1071	u8 lut_type, hash_type;
   1072	struct device *dev;
   1073	struct ice_pf *pf;
   1074
   1075	pf = vsi->back;
   1076	dev = ice_pf_to_dev(pf);
   1077
   1078	switch (vsi->type) {
   1079	case ICE_VSI_CHNL:
   1080	case ICE_VSI_PF:
   1081		/* PF VSI will inherit RSS instance of PF */
   1082		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
   1083		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
   1084		break;
   1085	case ICE_VSI_VF:
   1086		/* VF VSI will gets a small RSS table which is a VSI LUT type */
   1087		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
   1088		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
   1089		break;
   1090	default:
   1091		dev_dbg(dev, "Unsupported VSI type %s\n",
   1092			ice_vsi_type_str(vsi->type));
   1093		return;
   1094	}
   1095
   1096	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
   1097				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
   1098				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
   1099				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
   1100}
   1101
   1102static void
   1103ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
   1104{
   1105	struct ice_pf *pf = vsi->back;
   1106	u16 qcount, qmap;
   1107	u8 offset = 0;
   1108	int pow;
   1109
   1110	qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix);
   1111
   1112	pow = order_base_2(qcount);
   1113	qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
   1114		 ICE_AQ_VSI_TC_Q_OFFSET_M) |
   1115		 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
   1116		   ICE_AQ_VSI_TC_Q_NUM_M);
   1117
   1118	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
   1119	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
   1120	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
   1121	ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
   1122}
   1123
   1124/**
   1125 * ice_vsi_init - Create and initialize a VSI
   1126 * @vsi: the VSI being configured
   1127 * @init_vsi: is this call creating a VSI
   1128 *
   1129 * This initializes a VSI context depending on the VSI type to be added and
   1130 * passes it down to the add_vsi aq command to create a new VSI.
   1131 */
   1132static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
   1133{
   1134	struct ice_pf *pf = vsi->back;
   1135	struct ice_hw *hw = &pf->hw;
   1136	struct ice_vsi_ctx *ctxt;
   1137	struct device *dev;
   1138	int ret = 0;
   1139
   1140	dev = ice_pf_to_dev(pf);
   1141	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
   1142	if (!ctxt)
   1143		return -ENOMEM;
   1144
   1145	switch (vsi->type) {
   1146	case ICE_VSI_CTRL:
   1147	case ICE_VSI_LB:
   1148	case ICE_VSI_PF:
   1149		ctxt->flags = ICE_AQ_VSI_TYPE_PF;
   1150		break;
   1151	case ICE_VSI_SWITCHDEV_CTRL:
   1152	case ICE_VSI_CHNL:
   1153		ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
   1154		break;
   1155	case ICE_VSI_VF:
   1156		ctxt->flags = ICE_AQ_VSI_TYPE_VF;
   1157		/* VF number here is the absolute VF number (0-255) */
   1158		ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
   1159		break;
   1160	default:
   1161		ret = -ENODEV;
   1162		goto out;
   1163	}
   1164
   1165	/* Handle VLAN pruning for channel VSI if main VSI has VLAN
   1166	 * prune enabled
   1167	 */
   1168	if (vsi->type == ICE_VSI_CHNL) {
   1169		struct ice_vsi *main_vsi;
   1170
   1171		main_vsi = ice_get_main_vsi(pf);
   1172		if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
   1173			ctxt->info.sw_flags2 |=
   1174				ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
   1175		else
   1176			ctxt->info.sw_flags2 &=
   1177				~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
   1178	}
   1179
   1180	ice_set_dflt_vsi_ctx(hw, ctxt);
   1181	if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
   1182		ice_set_fd_vsi_ctx(ctxt, vsi);
   1183	/* if the switch is in VEB mode, allow VSI loopback */
   1184	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
   1185		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
   1186
   1187	/* Set LUT type and HASH type if RSS is enabled */
   1188	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
   1189	    vsi->type != ICE_VSI_CTRL) {
   1190		ice_set_rss_vsi_ctx(ctxt, vsi);
   1191		/* if updating VSI context, make sure to set valid_section:
   1192		 * to indicate which section of VSI context being updated
   1193		 */
   1194		if (!init_vsi)
   1195			ctxt->info.valid_sections |=
   1196				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
   1197	}
   1198
   1199	ctxt->info.sw_id = vsi->port_info->sw_id;
   1200	if (vsi->type == ICE_VSI_CHNL) {
   1201		ice_chnl_vsi_setup_q_map(vsi, ctxt);
   1202	} else {
   1203		ret = ice_vsi_setup_q_map(vsi, ctxt);
   1204		if (ret)
   1205			goto out;
   1206
   1207		if (!init_vsi) /* means VSI being updated */
   1208			/* must to indicate which section of VSI context are
   1209			 * being modified
   1210			 */
   1211			ctxt->info.valid_sections |=
   1212				cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
   1213	}
   1214
   1215	/* Allow control frames out of main VSI */
   1216	if (vsi->type == ICE_VSI_PF) {
   1217		ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
   1218		ctxt->info.valid_sections |=
   1219			cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
   1220	}
   1221
   1222	if (init_vsi) {
   1223		ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
   1224		if (ret) {
   1225			dev_err(dev, "Add VSI failed, err %d\n", ret);
   1226			ret = -EIO;
   1227			goto out;
   1228		}
   1229	} else {
   1230		ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
   1231		if (ret) {
   1232			dev_err(dev, "Update VSI failed, err %d\n", ret);
   1233			ret = -EIO;
   1234			goto out;
   1235		}
   1236	}
   1237
   1238	/* keep context for update VSI operations */
   1239	vsi->info = ctxt->info;
   1240
   1241	/* record VSI number returned */
   1242	vsi->vsi_num = ctxt->vsi_num;
   1243
   1244out:
   1245	kfree(ctxt);
   1246	return ret;
   1247}
   1248
   1249/**
   1250 * ice_free_res - free a block of resources
   1251 * @res: pointer to the resource
   1252 * @index: starting index previously returned by ice_get_res
   1253 * @id: identifier to track owner
   1254 *
   1255 * Returns number of resources freed
   1256 */
   1257int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
   1258{
   1259	int count = 0;
   1260	int i;
   1261
   1262	if (!res || index >= res->end)
   1263		return -EINVAL;
   1264
   1265	id |= ICE_RES_VALID_BIT;
   1266	for (i = index; i < res->end && res->list[i] == id; i++) {
   1267		res->list[i] = 0;
   1268		count++;
   1269	}
   1270
   1271	return count;
   1272}
   1273
   1274/**
   1275 * ice_search_res - Search the tracker for a block of resources
   1276 * @res: pointer to the resource
   1277 * @needed: size of the block needed
   1278 * @id: identifier to track owner
   1279 *
   1280 * Returns the base item index of the block, or -ENOMEM for error
   1281 */
   1282static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
   1283{
   1284	u16 start = 0, end = 0;
   1285
   1286	if (needed > res->end)
   1287		return -ENOMEM;
   1288
   1289	id |= ICE_RES_VALID_BIT;
   1290
   1291	do {
   1292		/* skip already allocated entries */
   1293		if (res->list[end++] & ICE_RES_VALID_BIT) {
   1294			start = end;
   1295			if ((start + needed) > res->end)
   1296				break;
   1297		}
   1298
   1299		if (end == (start + needed)) {
   1300			int i = start;
   1301
   1302			/* there was enough, so assign it to the requestor */
   1303			while (i != end)
   1304				res->list[i++] = id;
   1305
   1306			return start;
   1307		}
   1308	} while (end < res->end);
   1309
   1310	return -ENOMEM;
   1311}
   1312
   1313/**
   1314 * ice_get_free_res_count - Get free count from a resource tracker
   1315 * @res: Resource tracker instance
   1316 */
   1317static u16 ice_get_free_res_count(struct ice_res_tracker *res)
   1318{
   1319	u16 i, count = 0;
   1320
   1321	for (i = 0; i < res->end; i++)
   1322		if (!(res->list[i] & ICE_RES_VALID_BIT))
   1323			count++;
   1324
   1325	return count;
   1326}
   1327
   1328/**
   1329 * ice_get_res - get a block of resources
   1330 * @pf: board private structure
   1331 * @res: pointer to the resource
   1332 * @needed: size of the block needed
   1333 * @id: identifier to track owner
   1334 *
   1335 * Returns the base item index of the block, or negative for error
   1336 */
   1337int
   1338ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
   1339{
   1340	if (!res || !pf)
   1341		return -EINVAL;
   1342
   1343	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
   1344		dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
   1345			needed, res->num_entries, id);
   1346		return -EINVAL;
   1347	}
   1348
   1349	return ice_search_res(res, needed, id);
   1350}
   1351
   1352/**
   1353 * ice_get_vf_ctrl_res - Get VF control VSI resource
   1354 * @pf: pointer to the PF structure
   1355 * @vsi: the VSI to allocate a resource for
   1356 *
   1357 * Look up whether another VF has already allocated the control VSI resource.
   1358 * If so, re-use this resource so that we share it among all VFs.
   1359 *
   1360 * Otherwise, allocate the resource and return it.
   1361 */
   1362static int ice_get_vf_ctrl_res(struct ice_pf *pf, struct ice_vsi *vsi)
   1363{
   1364	struct ice_vf *vf;
   1365	unsigned int bkt;
   1366	int base;
   1367
   1368	rcu_read_lock();
   1369	ice_for_each_vf_rcu(pf, bkt, vf) {
   1370		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
   1371			base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
   1372			rcu_read_unlock();
   1373			return base;
   1374		}
   1375	}
   1376	rcu_read_unlock();
   1377
   1378	return ice_get_res(pf, pf->irq_tracker, vsi->num_q_vectors,
   1379			   ICE_RES_VF_CTRL_VEC_ID);
   1380}
   1381
   1382/**
   1383 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
   1384 * @vsi: ptr to the VSI
   1385 *
   1386 * This should only be called after ice_vsi_alloc() which allocates the
   1387 * corresponding SW VSI structure and initializes num_queue_pairs for the
   1388 * newly allocated VSI.
   1389 *
   1390 * Returns 0 on success or negative on failure
   1391 */
   1392static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
   1393{
   1394	struct ice_pf *pf = vsi->back;
   1395	struct device *dev;
   1396	u16 num_q_vectors;
   1397	int base;
   1398
   1399	dev = ice_pf_to_dev(pf);
   1400	/* SRIOV doesn't grab irq_tracker entries for each VSI */
   1401	if (vsi->type == ICE_VSI_VF)
   1402		return 0;
   1403	if (vsi->type == ICE_VSI_CHNL)
   1404		return 0;
   1405
   1406	if (vsi->base_vector) {
   1407		dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
   1408			vsi->vsi_num, vsi->base_vector);
   1409		return -EEXIST;
   1410	}
   1411
   1412	num_q_vectors = vsi->num_q_vectors;
   1413	/* reserve slots from OS requested IRQs */
   1414	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
   1415		base = ice_get_vf_ctrl_res(pf, vsi);
   1416	} else {
   1417		base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
   1418				   vsi->idx);
   1419	}
   1420
   1421	if (base < 0) {
   1422		dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
   1423			ice_get_free_res_count(pf->irq_tracker),
   1424			ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
   1425		return -ENOENT;
   1426	}
   1427	vsi->base_vector = (u16)base;
   1428	pf->num_avail_sw_msix -= num_q_vectors;
   1429
   1430	return 0;
   1431}
   1432
   1433/**
   1434 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
   1435 * @vsi: the VSI having rings deallocated
   1436 */
   1437static void ice_vsi_clear_rings(struct ice_vsi *vsi)
   1438{
   1439	int i;
   1440
   1441	/* Avoid stale references by clearing map from vector to ring */
   1442	if (vsi->q_vectors) {
   1443		ice_for_each_q_vector(vsi, i) {
   1444			struct ice_q_vector *q_vector = vsi->q_vectors[i];
   1445
   1446			if (q_vector) {
   1447				q_vector->tx.tx_ring = NULL;
   1448				q_vector->rx.rx_ring = NULL;
   1449			}
   1450		}
   1451	}
   1452
   1453	if (vsi->tx_rings) {
   1454		ice_for_each_alloc_txq(vsi, i) {
   1455			if (vsi->tx_rings[i]) {
   1456				kfree_rcu(vsi->tx_rings[i], rcu);
   1457				WRITE_ONCE(vsi->tx_rings[i], NULL);
   1458			}
   1459		}
   1460	}
   1461	if (vsi->rx_rings) {
   1462		ice_for_each_alloc_rxq(vsi, i) {
   1463			if (vsi->rx_rings[i]) {
   1464				kfree_rcu(vsi->rx_rings[i], rcu);
   1465				WRITE_ONCE(vsi->rx_rings[i], NULL);
   1466			}
   1467		}
   1468	}
   1469}
   1470
   1471/**
   1472 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
   1473 * @vsi: VSI which is having rings allocated
   1474 */
   1475static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
   1476{
   1477	bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
   1478	struct ice_pf *pf = vsi->back;
   1479	struct device *dev;
   1480	u16 i;
   1481
   1482	dev = ice_pf_to_dev(pf);
   1483	/* Allocate Tx rings */
   1484	ice_for_each_alloc_txq(vsi, i) {
   1485		struct ice_tx_ring *ring;
   1486
   1487		/* allocate with kzalloc(), free with kfree_rcu() */
   1488		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
   1489
   1490		if (!ring)
   1491			goto err_out;
   1492
   1493		ring->q_index = i;
   1494		ring->reg_idx = vsi->txq_map[i];
   1495		ring->vsi = vsi;
   1496		ring->tx_tstamps = &pf->ptp.port.tx;
   1497		ring->dev = dev;
   1498		ring->count = vsi->num_tx_desc;
   1499		ring->txq_teid = ICE_INVAL_TEID;
   1500		if (dvm_ena)
   1501			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
   1502		else
   1503			ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
   1504		WRITE_ONCE(vsi->tx_rings[i], ring);
   1505	}
   1506
   1507	/* Allocate Rx rings */
   1508	ice_for_each_alloc_rxq(vsi, i) {
   1509		struct ice_rx_ring *ring;
   1510
   1511		/* allocate with kzalloc(), free with kfree_rcu() */
   1512		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
   1513		if (!ring)
   1514			goto err_out;
   1515
   1516		ring->q_index = i;
   1517		ring->reg_idx = vsi->rxq_map[i];
   1518		ring->vsi = vsi;
   1519		ring->netdev = vsi->netdev;
   1520		ring->dev = dev;
   1521		ring->count = vsi->num_rx_desc;
   1522		WRITE_ONCE(vsi->rx_rings[i], ring);
   1523	}
   1524
   1525	return 0;
   1526
   1527err_out:
   1528	ice_vsi_clear_rings(vsi);
   1529	return -ENOMEM;
   1530}
   1531
   1532/**
   1533 * ice_vsi_manage_rss_lut - disable/enable RSS
   1534 * @vsi: the VSI being changed
   1535 * @ena: boolean value indicating if this is an enable or disable request
   1536 *
   1537 * In the event of disable request for RSS, this function will zero out RSS
   1538 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
   1539 * LUT.
   1540 */
   1541void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
   1542{
   1543	u8 *lut;
   1544
   1545	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
   1546	if (!lut)
   1547		return;
   1548
   1549	if (ena) {
   1550		if (vsi->rss_lut_user)
   1551			memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
   1552		else
   1553			ice_fill_rss_lut(lut, vsi->rss_table_size,
   1554					 vsi->rss_size);
   1555	}
   1556
   1557	ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
   1558	kfree(lut);
   1559}
   1560
   1561/**
   1562 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
   1563 * @vsi: VSI to be configured
   1564 */
   1565int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
   1566{
   1567	struct ice_pf *pf = vsi->back;
   1568	struct device *dev;
   1569	u8 *lut, *key;
   1570	int err;
   1571
   1572	dev = ice_pf_to_dev(pf);
   1573	if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
   1574	    (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
   1575		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
   1576	} else {
   1577		vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
   1578
   1579		/* If orig_rss_size is valid and it is less than determined
   1580		 * main VSI's rss_size, update main VSI's rss_size to be
   1581		 * orig_rss_size so that when tc-qdisc is deleted, main VSI
   1582		 * RSS table gets programmed to be correct (whatever it was
   1583		 * to begin with (prior to setup-tc for ADQ config)
   1584		 */
   1585		if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
   1586		    vsi->orig_rss_size <= vsi->num_rxq) {
   1587			vsi->rss_size = vsi->orig_rss_size;
   1588			/* now orig_rss_size is used, reset it to zero */
   1589			vsi->orig_rss_size = 0;
   1590		}
   1591	}
   1592
   1593	lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
   1594	if (!lut)
   1595		return -ENOMEM;
   1596
   1597	if (vsi->rss_lut_user)
   1598		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
   1599	else
   1600		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
   1601
   1602	err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
   1603	if (err) {
   1604		dev_err(dev, "set_rss_lut failed, error %d\n", err);
   1605		goto ice_vsi_cfg_rss_exit;
   1606	}
   1607
   1608	key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
   1609	if (!key) {
   1610		err = -ENOMEM;
   1611		goto ice_vsi_cfg_rss_exit;
   1612	}
   1613
   1614	if (vsi->rss_hkey_user)
   1615		memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
   1616	else
   1617		netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
   1618
   1619	err = ice_set_rss_key(vsi, key);
   1620	if (err)
   1621		dev_err(dev, "set_rss_key failed, error %d\n", err);
   1622
   1623	kfree(key);
   1624ice_vsi_cfg_rss_exit:
   1625	kfree(lut);
   1626	return err;
   1627}
   1628
   1629/**
   1630 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
   1631 * @vsi: VSI to be configured
   1632 *
   1633 * This function will only be called during the VF VSI setup. Upon successful
   1634 * completion of package download, this function will configure default RSS
   1635 * input sets for VF VSI.
   1636 */
   1637static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
   1638{
   1639	struct ice_pf *pf = vsi->back;
   1640	struct device *dev;
   1641	int status;
   1642
   1643	dev = ice_pf_to_dev(pf);
   1644	if (ice_is_safe_mode(pf)) {
   1645		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
   1646			vsi->vsi_num);
   1647		return;
   1648	}
   1649
   1650	status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
   1651	if (status)
   1652		dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
   1653			vsi->vsi_num, status);
   1654}
   1655
   1656/**
   1657 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
   1658 * @vsi: VSI to be configured
   1659 *
   1660 * This function will only be called after successful download package call
   1661 * during initialization of PF. Since the downloaded package will erase the
   1662 * RSS section, this function will configure RSS input sets for different
   1663 * flow types. The last profile added has the highest priority, therefore 2
   1664 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
   1665 * (i.e. IPv4 src/dst TCP src/dst port).
   1666 */
   1667static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
   1668{
   1669	u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
   1670	struct ice_pf *pf = vsi->back;
   1671	struct ice_hw *hw = &pf->hw;
   1672	struct device *dev;
   1673	int status;
   1674
   1675	dev = ice_pf_to_dev(pf);
   1676	if (ice_is_safe_mode(pf)) {
   1677		dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
   1678			vsi_num);
   1679		return;
   1680	}
   1681	/* configure RSS for IPv4 with input set IP src/dst */
   1682	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
   1683				 ICE_FLOW_SEG_HDR_IPV4);
   1684	if (status)
   1685		dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %d\n",
   1686			vsi_num, status);
   1687
   1688	/* configure RSS for IPv6 with input set IPv6 src/dst */
   1689	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
   1690				 ICE_FLOW_SEG_HDR_IPV6);
   1691	if (status)
   1692		dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %d\n",
   1693			vsi_num, status);
   1694
   1695	/* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
   1696	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
   1697				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
   1698	if (status)
   1699		dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %d\n",
   1700			vsi_num, status);
   1701
   1702	/* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
   1703	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
   1704				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
   1705	if (status)
   1706		dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %d\n",
   1707			vsi_num, status);
   1708
   1709	/* configure RSS for sctp4 with input set IP src/dst */
   1710	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
   1711				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
   1712	if (status)
   1713		dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %d\n",
   1714			vsi_num, status);
   1715
   1716	/* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
   1717	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
   1718				 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
   1719	if (status)
   1720		dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %d\n",
   1721			vsi_num, status);
   1722
   1723	/* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
   1724	status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
   1725				 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
   1726	if (status)
   1727		dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %d\n",
   1728			vsi_num, status);
   1729
   1730	/* configure RSS for sctp6 with input set IPv6 src/dst */
   1731	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
   1732				 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
   1733	if (status)
   1734		dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %d\n",
   1735			vsi_num, status);
   1736
   1737	status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_ESP_SPI,
   1738				 ICE_FLOW_SEG_HDR_ESP);
   1739	if (status)
   1740		dev_dbg(dev, "ice_add_rss_cfg failed for esp/spi flow, vsi = %d, error = %d\n",
   1741			vsi_num, status);
   1742}
   1743
   1744/**
   1745 * ice_pf_state_is_nominal - checks the PF for nominal state
   1746 * @pf: pointer to PF to check
   1747 *
   1748 * Check the PF's state for a collection of bits that would indicate
   1749 * the PF is in a state that would inhibit normal operation for
   1750 * driver functionality.
   1751 *
   1752 * Returns true if PF is in a nominal state, false otherwise
   1753 */
   1754bool ice_pf_state_is_nominal(struct ice_pf *pf)
   1755{
   1756	DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
   1757
   1758	if (!pf)
   1759		return false;
   1760
   1761	bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
   1762	if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
   1763		return false;
   1764
   1765	return true;
   1766}
   1767
   1768/**
   1769 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
   1770 * @vsi: the VSI to be updated
   1771 */
   1772void ice_update_eth_stats(struct ice_vsi *vsi)
   1773{
   1774	struct ice_eth_stats *prev_es, *cur_es;
   1775	struct ice_hw *hw = &vsi->back->hw;
   1776	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
   1777
   1778	prev_es = &vsi->eth_stats_prev;
   1779	cur_es = &vsi->eth_stats;
   1780
   1781	ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
   1782			  &prev_es->rx_bytes, &cur_es->rx_bytes);
   1783
   1784	ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
   1785			  &prev_es->rx_unicast, &cur_es->rx_unicast);
   1786
   1787	ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
   1788			  &prev_es->rx_multicast, &cur_es->rx_multicast);
   1789
   1790	ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
   1791			  &prev_es->rx_broadcast, &cur_es->rx_broadcast);
   1792
   1793	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
   1794			  &prev_es->rx_discards, &cur_es->rx_discards);
   1795
   1796	ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
   1797			  &prev_es->tx_bytes, &cur_es->tx_bytes);
   1798
   1799	ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
   1800			  &prev_es->tx_unicast, &cur_es->tx_unicast);
   1801
   1802	ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
   1803			  &prev_es->tx_multicast, &cur_es->tx_multicast);
   1804
   1805	ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
   1806			  &prev_es->tx_broadcast, &cur_es->tx_broadcast);
   1807
   1808	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
   1809			  &prev_es->tx_errors, &cur_es->tx_errors);
   1810
   1811	vsi->stat_offsets_loaded = true;
   1812}
   1813
   1814/**
   1815 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
   1816 * @vsi: VSI
   1817 */
   1818void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
   1819{
   1820	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
   1821		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
   1822		vsi->rx_buf_len = ICE_RXBUF_2048;
   1823#if (PAGE_SIZE < 8192)
   1824	} else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
   1825		   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
   1826		vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
   1827		vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
   1828#endif
   1829	} else {
   1830		vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
   1831#if (PAGE_SIZE < 8192)
   1832		vsi->rx_buf_len = ICE_RXBUF_3072;
   1833#else
   1834		vsi->rx_buf_len = ICE_RXBUF_2048;
   1835#endif
   1836	}
   1837}
   1838
   1839/**
   1840 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
   1841 * @hw: HW pointer
   1842 * @pf_q: index of the Rx queue in the PF's queue space
   1843 * @rxdid: flexible descriptor RXDID
   1844 * @prio: priority for the RXDID for this queue
   1845 * @ena_ts: true to enable timestamp and false to disable timestamp
   1846 */
   1847void
   1848ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
   1849			bool ena_ts)
   1850{
   1851	int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
   1852
   1853	/* clear any previous values */
   1854	regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
   1855		    QRXFLXP_CNTXT_RXDID_PRIO_M |
   1856		    QRXFLXP_CNTXT_TS_M);
   1857
   1858	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
   1859		QRXFLXP_CNTXT_RXDID_IDX_M;
   1860
   1861	regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
   1862		QRXFLXP_CNTXT_RXDID_PRIO_M;
   1863
   1864	if (ena_ts)
   1865		/* Enable TimeSync on this queue */
   1866		regval |= QRXFLXP_CNTXT_TS_M;
   1867
   1868	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
   1869}
   1870
   1871int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx)
   1872{
   1873	if (q_idx >= vsi->num_rxq)
   1874		return -EINVAL;
   1875
   1876	return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]);
   1877}
   1878
   1879int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_tx_ring **tx_rings, u16 q_idx)
   1880{
   1881	struct ice_aqc_add_tx_qgrp *qg_buf;
   1882	int err;
   1883
   1884	if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx])
   1885		return -EINVAL;
   1886
   1887	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
   1888	if (!qg_buf)
   1889		return -ENOMEM;
   1890
   1891	qg_buf->num_txqs = 1;
   1892
   1893	err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf);
   1894	kfree(qg_buf);
   1895	return err;
   1896}
   1897
   1898/**
   1899 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
   1900 * @vsi: the VSI being configured
   1901 *
   1902 * Return 0 on success and a negative value on error
   1903 * Configure the Rx VSI for operation.
   1904 */
   1905int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
   1906{
   1907	u16 i;
   1908
   1909	if (vsi->type == ICE_VSI_VF)
   1910		goto setup_rings;
   1911
   1912	ice_vsi_cfg_frame_size(vsi);
   1913setup_rings:
   1914	/* set up individual rings */
   1915	ice_for_each_rxq(vsi, i) {
   1916		int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]);
   1917
   1918		if (err)
   1919			return err;
   1920	}
   1921
   1922	return 0;
   1923}
   1924
   1925/**
   1926 * ice_vsi_cfg_txqs - Configure the VSI for Tx
   1927 * @vsi: the VSI being configured
   1928 * @rings: Tx ring array to be configured
   1929 * @count: number of Tx ring array elements
   1930 *
   1931 * Return 0 on success and a negative value on error
   1932 * Configure the Tx VSI for operation.
   1933 */
   1934static int
   1935ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_tx_ring **rings, u16 count)
   1936{
   1937	struct ice_aqc_add_tx_qgrp *qg_buf;
   1938	u16 q_idx = 0;
   1939	int err = 0;
   1940
   1941	qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
   1942	if (!qg_buf)
   1943		return -ENOMEM;
   1944
   1945	qg_buf->num_txqs = 1;
   1946
   1947	for (q_idx = 0; q_idx < count; q_idx++) {
   1948		err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
   1949		if (err)
   1950			goto err_cfg_txqs;
   1951	}
   1952
   1953err_cfg_txqs:
   1954	kfree(qg_buf);
   1955	return err;
   1956}
   1957
   1958/**
   1959 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
   1960 * @vsi: the VSI being configured
   1961 *
   1962 * Return 0 on success and a negative value on error
   1963 * Configure the Tx VSI for operation.
   1964 */
   1965int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
   1966{
   1967	return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
   1968}
   1969
   1970/**
   1971 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
   1972 * @vsi: the VSI being configured
   1973 *
   1974 * Return 0 on success and a negative value on error
   1975 * Configure the Tx queues dedicated for XDP in given VSI for operation.
   1976 */
   1977int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
   1978{
   1979	int ret;
   1980	int i;
   1981
   1982	ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
   1983	if (ret)
   1984		return ret;
   1985
   1986	ice_for_each_xdp_txq(vsi, i)
   1987		vsi->xdp_rings[i]->xsk_pool = ice_tx_xsk_pool(vsi->xdp_rings[i]);
   1988
   1989	return ret;
   1990}
   1991
   1992/**
   1993 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
   1994 * @intrl: interrupt rate limit in usecs
   1995 * @gran: interrupt rate limit granularity in usecs
   1996 *
   1997 * This function converts a decimal interrupt rate limit in usecs to the format
   1998 * expected by firmware.
   1999 */
   2000static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
   2001{
   2002	u32 val = intrl / gran;
   2003
   2004	if (val)
   2005		return val | GLINT_RATE_INTRL_ENA_M;
   2006	return 0;
   2007}
   2008
   2009/**
   2010 * ice_write_intrl - write throttle rate limit to interrupt specific register
   2011 * @q_vector: pointer to interrupt specific structure
   2012 * @intrl: throttle rate limit in microseconds to write
   2013 */
   2014void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
   2015{
   2016	struct ice_hw *hw = &q_vector->vsi->back->hw;
   2017
   2018	wr32(hw, GLINT_RATE(q_vector->reg_idx),
   2019	     ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
   2020}
   2021
   2022static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
   2023{
   2024	switch (rc->type) {
   2025	case ICE_RX_CONTAINER:
   2026		if (rc->rx_ring)
   2027			return rc->rx_ring->q_vector;
   2028		break;
   2029	case ICE_TX_CONTAINER:
   2030		if (rc->tx_ring)
   2031			return rc->tx_ring->q_vector;
   2032		break;
   2033	default:
   2034		break;
   2035	}
   2036
   2037	return NULL;
   2038}
   2039
   2040/**
   2041 * __ice_write_itr - write throttle rate to register
   2042 * @q_vector: pointer to interrupt data structure
   2043 * @rc: pointer to ring container
   2044 * @itr: throttle rate in microseconds to write
   2045 */
   2046static void __ice_write_itr(struct ice_q_vector *q_vector,
   2047			    struct ice_ring_container *rc, u16 itr)
   2048{
   2049	struct ice_hw *hw = &q_vector->vsi->back->hw;
   2050
   2051	wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
   2052	     ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
   2053}
   2054
   2055/**
   2056 * ice_write_itr - write throttle rate to queue specific register
   2057 * @rc: pointer to ring container
   2058 * @itr: throttle rate in microseconds to write
   2059 */
   2060void ice_write_itr(struct ice_ring_container *rc, u16 itr)
   2061{
   2062	struct ice_q_vector *q_vector;
   2063
   2064	q_vector = ice_pull_qvec_from_rc(rc);
   2065	if (!q_vector)
   2066		return;
   2067
   2068	__ice_write_itr(q_vector, rc, itr);
   2069}
   2070
   2071/**
   2072 * ice_set_q_vector_intrl - set up interrupt rate limiting
   2073 * @q_vector: the vector to be configured
   2074 *
   2075 * Interrupt rate limiting is local to the vector, not per-queue so we must
   2076 * detect if either ring container has dynamic moderation enabled to decide
   2077 * what to set the interrupt rate limit to via INTRL settings. In the case that
   2078 * dynamic moderation is disabled on both, write the value with the cached
   2079 * setting to make sure INTRL register matches the user visible value.
   2080 */
   2081void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
   2082{
   2083	if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
   2084		/* in the case of dynamic enabled, cap each vector to no more
   2085		 * than (4 us) 250,000 ints/sec, which allows low latency
   2086		 * but still less than 500,000 interrupts per second, which
   2087		 * reduces CPU a bit in the case of the lowest latency
   2088		 * setting. The 4 here is a value in microseconds.
   2089		 */
   2090		ice_write_intrl(q_vector, 4);
   2091	} else {
   2092		ice_write_intrl(q_vector, q_vector->intrl);
   2093	}
   2094}
   2095
   2096/**
   2097 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
   2098 * @vsi: the VSI being configured
   2099 *
   2100 * This configures MSIX mode interrupts for the PF VSI, and should not be used
   2101 * for the VF VSI.
   2102 */
   2103void ice_vsi_cfg_msix(struct ice_vsi *vsi)
   2104{
   2105	struct ice_pf *pf = vsi->back;
   2106	struct ice_hw *hw = &pf->hw;
   2107	u16 txq = 0, rxq = 0;
   2108	int i, q;
   2109
   2110	ice_for_each_q_vector(vsi, i) {
   2111		struct ice_q_vector *q_vector = vsi->q_vectors[i];
   2112		u16 reg_idx = q_vector->reg_idx;
   2113
   2114		ice_cfg_itr(hw, q_vector);
   2115
   2116		/* Both Transmit Queue Interrupt Cause Control register
   2117		 * and Receive Queue Interrupt Cause control register
   2118		 * expects MSIX_INDX field to be the vector index
   2119		 * within the function space and not the absolute
   2120		 * vector index across PF or across device.
   2121		 * For SR-IOV VF VSIs queue vector index always starts
   2122		 * with 1 since first vector index(0) is used for OICR
   2123		 * in VF space. Since VMDq and other PF VSIs are within
   2124		 * the PF function space, use the vector index that is
   2125		 * tracked for this PF.
   2126		 */
   2127		for (q = 0; q < q_vector->num_ring_tx; q++) {
   2128			ice_cfg_txq_interrupt(vsi, txq, reg_idx,
   2129					      q_vector->tx.itr_idx);
   2130			txq++;
   2131		}
   2132
   2133		for (q = 0; q < q_vector->num_ring_rx; q++) {
   2134			ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
   2135					      q_vector->rx.itr_idx);
   2136			rxq++;
   2137		}
   2138	}
   2139}
   2140
   2141/**
   2142 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
   2143 * @vsi: the VSI whose rings are to be enabled
   2144 *
   2145 * Returns 0 on success and a negative value on error
   2146 */
   2147int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
   2148{
   2149	return ice_vsi_ctrl_all_rx_rings(vsi, true);
   2150}
   2151
   2152/**
   2153 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
   2154 * @vsi: the VSI whose rings are to be disabled
   2155 *
   2156 * Returns 0 on success and a negative value on error
   2157 */
   2158int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
   2159{
   2160	return ice_vsi_ctrl_all_rx_rings(vsi, false);
   2161}
   2162
   2163/**
   2164 * ice_vsi_stop_tx_rings - Disable Tx rings
   2165 * @vsi: the VSI being configured
   2166 * @rst_src: reset source
   2167 * @rel_vmvf_num: Relative ID of VF/VM
   2168 * @rings: Tx ring array to be stopped
   2169 * @count: number of Tx ring array elements
   2170 */
   2171static int
   2172ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
   2173		      u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
   2174{
   2175	u16 q_idx;
   2176
   2177	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
   2178		return -EINVAL;
   2179
   2180	for (q_idx = 0; q_idx < count; q_idx++) {
   2181		struct ice_txq_meta txq_meta = { };
   2182		int status;
   2183
   2184		if (!rings || !rings[q_idx])
   2185			return -EINVAL;
   2186
   2187		ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
   2188		status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
   2189					      rings[q_idx], &txq_meta);
   2190
   2191		if (status)
   2192			return status;
   2193	}
   2194
   2195	return 0;
   2196}
   2197
   2198/**
   2199 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
   2200 * @vsi: the VSI being configured
   2201 * @rst_src: reset source
   2202 * @rel_vmvf_num: Relative ID of VF/VM
   2203 */
   2204int
   2205ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
   2206			  u16 rel_vmvf_num)
   2207{
   2208	return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
   2209}
   2210
   2211/**
   2212 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
   2213 * @vsi: the VSI being configured
   2214 */
   2215int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
   2216{
   2217	return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
   2218}
   2219
   2220/**
   2221 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
   2222 * @vsi: VSI to check whether or not VLAN pruning is enabled.
   2223 *
   2224 * returns true if Rx VLAN pruning is enabled and false otherwise.
   2225 */
   2226bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
   2227{
   2228	if (!vsi)
   2229		return false;
   2230
   2231	return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
   2232}
   2233
   2234static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
   2235{
   2236	if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
   2237		vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
   2238		vsi->tc_cfg.numtc = 1;
   2239		return;
   2240	}
   2241
   2242	/* set VSI TC information based on DCB config */
   2243	ice_vsi_set_dcb_tc_cfg(vsi);
   2244}
   2245
   2246/**
   2247 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
   2248 * @vsi: VSI to set the q_vectors register index on
   2249 */
   2250static int
   2251ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
   2252{
   2253	u16 i;
   2254
   2255	if (!vsi || !vsi->q_vectors)
   2256		return -EINVAL;
   2257
   2258	ice_for_each_q_vector(vsi, i) {
   2259		struct ice_q_vector *q_vector = vsi->q_vectors[i];
   2260
   2261		if (!q_vector) {
   2262			dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
   2263				i, vsi->vsi_num);
   2264			goto clear_reg_idx;
   2265		}
   2266
   2267		if (vsi->type == ICE_VSI_VF) {
   2268			struct ice_vf *vf = vsi->vf;
   2269
   2270			q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
   2271		} else {
   2272			q_vector->reg_idx =
   2273				q_vector->v_idx + vsi->base_vector;
   2274		}
   2275	}
   2276
   2277	return 0;
   2278
   2279clear_reg_idx:
   2280	ice_for_each_q_vector(vsi, i) {
   2281		struct ice_q_vector *q_vector = vsi->q_vectors[i];
   2282
   2283		if (q_vector)
   2284			q_vector->reg_idx = 0;
   2285	}
   2286
   2287	return -EINVAL;
   2288}
   2289
   2290/**
   2291 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
   2292 * @vsi: the VSI being configured
   2293 * @tx: bool to determine Tx or Rx rule
   2294 * @create: bool to determine create or remove Rule
   2295 */
   2296void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
   2297{
   2298	int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
   2299			enum ice_sw_fwd_act_type act);
   2300	struct ice_pf *pf = vsi->back;
   2301	struct device *dev;
   2302	int status;
   2303
   2304	dev = ice_pf_to_dev(pf);
   2305	eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
   2306
   2307	if (tx) {
   2308		status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
   2309				  ICE_DROP_PACKET);
   2310	} else {
   2311		if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
   2312			status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
   2313							  create);
   2314		} else {
   2315			status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
   2316					  ICE_FWD_TO_VSI);
   2317		}
   2318	}
   2319
   2320	if (status)
   2321		dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
   2322			create ? "adding" : "removing", tx ? "TX" : "RX",
   2323			vsi->vsi_num, status);
   2324}
   2325
   2326/**
   2327 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
   2328 * @vsi: pointer to the VSI
   2329 *
   2330 * This function will allocate new scheduler aggregator now if needed and will
   2331 * move specified VSI into it.
   2332 */
   2333static void ice_set_agg_vsi(struct ice_vsi *vsi)
   2334{
   2335	struct device *dev = ice_pf_to_dev(vsi->back);
   2336	struct ice_agg_node *agg_node_iter = NULL;
   2337	u32 agg_id = ICE_INVALID_AGG_NODE_ID;
   2338	struct ice_agg_node *agg_node = NULL;
   2339	int node_offset, max_agg_nodes = 0;
   2340	struct ice_port_info *port_info;
   2341	struct ice_pf *pf = vsi->back;
   2342	u32 agg_node_id_start = 0;
   2343	int status;
   2344
   2345	/* create (as needed) scheduler aggregator node and move VSI into
   2346	 * corresponding aggregator node
   2347	 * - PF aggregator node to contains VSIs of type _PF and _CTRL
   2348	 * - VF aggregator nodes will contain VF VSI
   2349	 */
   2350	port_info = pf->hw.port_info;
   2351	if (!port_info)
   2352		return;
   2353
   2354	switch (vsi->type) {
   2355	case ICE_VSI_CTRL:
   2356	case ICE_VSI_CHNL:
   2357	case ICE_VSI_LB:
   2358	case ICE_VSI_PF:
   2359	case ICE_VSI_SWITCHDEV_CTRL:
   2360		max_agg_nodes = ICE_MAX_PF_AGG_NODES;
   2361		agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
   2362		agg_node_iter = &pf->pf_agg_node[0];
   2363		break;
   2364	case ICE_VSI_VF:
   2365		/* user can create 'n' VFs on a given PF, but since max children
   2366		 * per aggregator node can be only 64. Following code handles
   2367		 * aggregator(s) for VF VSIs, either selects a agg_node which
   2368		 * was already created provided num_vsis < 64, otherwise
   2369		 * select next available node, which will be created
   2370		 */
   2371		max_agg_nodes = ICE_MAX_VF_AGG_NODES;
   2372		agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
   2373		agg_node_iter = &pf->vf_agg_node[0];
   2374		break;
   2375	default:
   2376		/* other VSI type, handle later if needed */
   2377		dev_dbg(dev, "unexpected VSI type %s\n",
   2378			ice_vsi_type_str(vsi->type));
   2379		return;
   2380	}
   2381
   2382	/* find the appropriate aggregator node */
   2383	for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
   2384		/* see if we can find space in previously created
   2385		 * node if num_vsis < 64, otherwise skip
   2386		 */
   2387		if (agg_node_iter->num_vsis &&
   2388		    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
   2389			agg_node_iter++;
   2390			continue;
   2391		}
   2392
   2393		if (agg_node_iter->valid &&
   2394		    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
   2395			agg_id = agg_node_iter->agg_id;
   2396			agg_node = agg_node_iter;
   2397			break;
   2398		}
   2399
   2400		/* find unclaimed agg_id */
   2401		if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
   2402			agg_id = node_offset + agg_node_id_start;
   2403			agg_node = agg_node_iter;
   2404			break;
   2405		}
   2406		/* move to next agg_node */
   2407		agg_node_iter++;
   2408	}
   2409
   2410	if (!agg_node)
   2411		return;
   2412
   2413	/* if selected aggregator node was not created, create it */
   2414	if (!agg_node->valid) {
   2415		status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
   2416				     (u8)vsi->tc_cfg.ena_tc);
   2417		if (status) {
   2418			dev_err(dev, "unable to create aggregator node with agg_id %u\n",
   2419				agg_id);
   2420			return;
   2421		}
   2422		/* aggregator node is created, store the neeeded info */
   2423		agg_node->valid = true;
   2424		agg_node->agg_id = agg_id;
   2425	}
   2426
   2427	/* move VSI to corresponding aggregator node */
   2428	status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
   2429				     (u8)vsi->tc_cfg.ena_tc);
   2430	if (status) {
   2431		dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
   2432			vsi->idx, agg_id);
   2433		return;
   2434	}
   2435
   2436	/* keep active children count for aggregator node */
   2437	agg_node->num_vsis++;
   2438
   2439	/* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
   2440	 * to aggregator node
   2441	 */
   2442	vsi->agg_node = agg_node;
   2443	dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
   2444		vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
   2445		vsi->agg_node->num_vsis);
   2446}
   2447
   2448/**
   2449 * ice_vsi_setup - Set up a VSI by a given type
   2450 * @pf: board private structure
   2451 * @pi: pointer to the port_info instance
   2452 * @vsi_type: VSI type
   2453 * @vf: pointer to VF to which this VSI connects. This field is used primarily
   2454 *      for the ICE_VSI_VF type. Other VSI types should pass NULL.
   2455 * @ch: ptr to channel
   2456 *
   2457 * This allocates the sw VSI structure and its queue resources.
   2458 *
   2459 * Returns pointer to the successfully allocated and configured VSI sw struct on
   2460 * success, NULL on failure.
   2461 */
   2462struct ice_vsi *
   2463ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
   2464	      enum ice_vsi_type vsi_type, struct ice_vf *vf,
   2465	      struct ice_channel *ch)
   2466{
   2467	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
   2468	struct device *dev = ice_pf_to_dev(pf);
   2469	struct ice_vsi *vsi;
   2470	int ret, i;
   2471
   2472	if (vsi_type == ICE_VSI_CHNL)
   2473		vsi = ice_vsi_alloc(pf, vsi_type, ch, NULL);
   2474	else if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
   2475		vsi = ice_vsi_alloc(pf, vsi_type, NULL, vf);
   2476	else
   2477		vsi = ice_vsi_alloc(pf, vsi_type, NULL, NULL);
   2478
   2479	if (!vsi) {
   2480		dev_err(dev, "could not allocate VSI\n");
   2481		return NULL;
   2482	}
   2483
   2484	vsi->port_info = pi;
   2485	vsi->vsw = pf->first_sw;
   2486	if (vsi->type == ICE_VSI_PF)
   2487		vsi->ethtype = ETH_P_PAUSE;
   2488
   2489	ice_alloc_fd_res(vsi);
   2490
   2491	if (vsi_type != ICE_VSI_CHNL) {
   2492		if (ice_vsi_get_qs(vsi)) {
   2493			dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
   2494				vsi->idx);
   2495			goto unroll_vsi_alloc;
   2496		}
   2497	}
   2498
   2499	/* set RSS capabilities */
   2500	ice_vsi_set_rss_params(vsi);
   2501
   2502	/* set TC configuration */
   2503	ice_vsi_set_tc_cfg(vsi);
   2504
   2505	/* create the VSI */
   2506	ret = ice_vsi_init(vsi, true);
   2507	if (ret)
   2508		goto unroll_get_qs;
   2509
   2510	ice_vsi_init_vlan_ops(vsi);
   2511
   2512	switch (vsi->type) {
   2513	case ICE_VSI_CTRL:
   2514	case ICE_VSI_SWITCHDEV_CTRL:
   2515	case ICE_VSI_PF:
   2516		ret = ice_vsi_alloc_q_vectors(vsi);
   2517		if (ret)
   2518			goto unroll_vsi_init;
   2519
   2520		ret = ice_vsi_setup_vector_base(vsi);
   2521		if (ret)
   2522			goto unroll_alloc_q_vector;
   2523
   2524		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
   2525		if (ret)
   2526			goto unroll_vector_base;
   2527
   2528		ret = ice_vsi_alloc_rings(vsi);
   2529		if (ret)
   2530			goto unroll_vector_base;
   2531
   2532		ice_vsi_map_rings_to_vectors(vsi);
   2533
   2534		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
   2535		if (vsi->type != ICE_VSI_CTRL)
   2536			/* Do not exit if configuring RSS had an issue, at
   2537			 * least receive traffic on first queue. Hence no
   2538			 * need to capture return value
   2539			 */
   2540			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
   2541				ice_vsi_cfg_rss_lut_key(vsi);
   2542				ice_vsi_set_rss_flow_fld(vsi);
   2543			}
   2544		ice_init_arfs(vsi);
   2545		break;
   2546	case ICE_VSI_CHNL:
   2547		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
   2548			ice_vsi_cfg_rss_lut_key(vsi);
   2549			ice_vsi_set_rss_flow_fld(vsi);
   2550		}
   2551		break;
   2552	case ICE_VSI_VF:
   2553		/* VF driver will take care of creating netdev for this type and
   2554		 * map queues to vectors through Virtchnl, PF driver only
   2555		 * creates a VSI and corresponding structures for bookkeeping
   2556		 * purpose
   2557		 */
   2558		ret = ice_vsi_alloc_q_vectors(vsi);
   2559		if (ret)
   2560			goto unroll_vsi_init;
   2561
   2562		ret = ice_vsi_alloc_rings(vsi);
   2563		if (ret)
   2564			goto unroll_alloc_q_vector;
   2565
   2566		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
   2567		if (ret)
   2568			goto unroll_vector_base;
   2569
   2570		/* Do not exit if configuring RSS had an issue, at least
   2571		 * receive traffic on first queue. Hence no need to capture
   2572		 * return value
   2573		 */
   2574		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
   2575			ice_vsi_cfg_rss_lut_key(vsi);
   2576			ice_vsi_set_vf_rss_flow_fld(vsi);
   2577		}
   2578		break;
   2579	case ICE_VSI_LB:
   2580		ret = ice_vsi_alloc_rings(vsi);
   2581		if (ret)
   2582			goto unroll_vsi_init;
   2583		break;
   2584	default:
   2585		/* clean up the resources and exit */
   2586		goto unroll_vsi_init;
   2587	}
   2588
   2589	/* configure VSI nodes based on number of queues and TC's */
   2590	ice_for_each_traffic_class(i) {
   2591		if (!(vsi->tc_cfg.ena_tc & BIT(i)))
   2592			continue;
   2593
   2594		if (vsi->type == ICE_VSI_CHNL) {
   2595			if (!vsi->alloc_txq && vsi->num_txq)
   2596				max_txqs[i] = vsi->num_txq;
   2597			else
   2598				max_txqs[i] = pf->num_lan_tx;
   2599		} else {
   2600			max_txqs[i] = vsi->alloc_txq;
   2601		}
   2602	}
   2603
   2604	dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
   2605	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
   2606			      max_txqs);
   2607	if (ret) {
   2608		dev_err(dev, "VSI %d failed lan queue config, error %d\n",
   2609			vsi->vsi_num, ret);
   2610		goto unroll_clear_rings;
   2611	}
   2612
   2613	/* Add switch rule to drop all Tx Flow Control Frames, of look up
   2614	 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
   2615	 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
   2616	 * The rule is added once for PF VSI in order to create appropriate
   2617	 * recipe, since VSI/VSI list is ignored with drop action...
   2618	 * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
   2619	 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
   2620	 * settings in the HW.
   2621	 */
   2622	if (!ice_is_safe_mode(pf))
   2623		if (vsi->type == ICE_VSI_PF) {
   2624			ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
   2625					 ICE_DROP_PACKET);
   2626			ice_cfg_sw_lldp(vsi, true, true);
   2627		}
   2628
   2629	if (!vsi->agg_node)
   2630		ice_set_agg_vsi(vsi);
   2631	return vsi;
   2632
   2633unroll_clear_rings:
   2634	ice_vsi_clear_rings(vsi);
   2635unroll_vector_base:
   2636	/* reclaim SW interrupts back to the common pool */
   2637	ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
   2638	pf->num_avail_sw_msix += vsi->num_q_vectors;
   2639unroll_alloc_q_vector:
   2640	ice_vsi_free_q_vectors(vsi);
   2641unroll_vsi_init:
   2642	ice_vsi_delete(vsi);
   2643unroll_get_qs:
   2644	ice_vsi_put_qs(vsi);
   2645unroll_vsi_alloc:
   2646	if (vsi_type == ICE_VSI_VF)
   2647		ice_enable_lag(pf->lag);
   2648	ice_vsi_clear(vsi);
   2649
   2650	return NULL;
   2651}
   2652
   2653/**
   2654 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
   2655 * @vsi: the VSI being cleaned up
   2656 */
   2657static void ice_vsi_release_msix(struct ice_vsi *vsi)
   2658{
   2659	struct ice_pf *pf = vsi->back;
   2660	struct ice_hw *hw = &pf->hw;
   2661	u32 txq = 0;
   2662	u32 rxq = 0;
   2663	int i, q;
   2664
   2665	ice_for_each_q_vector(vsi, i) {
   2666		struct ice_q_vector *q_vector = vsi->q_vectors[i];
   2667
   2668		ice_write_intrl(q_vector, 0);
   2669		for (q = 0; q < q_vector->num_ring_tx; q++) {
   2670			ice_write_itr(&q_vector->tx, 0);
   2671			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
   2672			if (ice_is_xdp_ena_vsi(vsi)) {
   2673				u32 xdp_txq = txq + vsi->num_xdp_txq;
   2674
   2675				wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
   2676			}
   2677			txq++;
   2678		}
   2679
   2680		for (q = 0; q < q_vector->num_ring_rx; q++) {
   2681			ice_write_itr(&q_vector->rx, 0);
   2682			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
   2683			rxq++;
   2684		}
   2685	}
   2686
   2687	ice_flush(hw);
   2688}
   2689
   2690/**
   2691 * ice_vsi_free_irq - Free the IRQ association with the OS
   2692 * @vsi: the VSI being configured
   2693 */
   2694void ice_vsi_free_irq(struct ice_vsi *vsi)
   2695{
   2696	struct ice_pf *pf = vsi->back;
   2697	int base = vsi->base_vector;
   2698	int i;
   2699
   2700	if (!vsi->q_vectors || !vsi->irqs_ready)
   2701		return;
   2702
   2703	ice_vsi_release_msix(vsi);
   2704	if (vsi->type == ICE_VSI_VF)
   2705		return;
   2706
   2707	vsi->irqs_ready = false;
   2708	ice_free_cpu_rx_rmap(vsi);
   2709
   2710	ice_for_each_q_vector(vsi, i) {
   2711		u16 vector = i + base;
   2712		int irq_num;
   2713
   2714		irq_num = pf->msix_entries[vector].vector;
   2715
   2716		/* free only the irqs that were actually requested */
   2717		if (!vsi->q_vectors[i] ||
   2718		    !(vsi->q_vectors[i]->num_ring_tx ||
   2719		      vsi->q_vectors[i]->num_ring_rx))
   2720			continue;
   2721
   2722		/* clear the affinity notifier in the IRQ descriptor */
   2723		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
   2724			irq_set_affinity_notifier(irq_num, NULL);
   2725
   2726		/* clear the affinity_mask in the IRQ descriptor */
   2727		irq_set_affinity_hint(irq_num, NULL);
   2728		synchronize_irq(irq_num);
   2729		devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
   2730	}
   2731}
   2732
   2733/**
   2734 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
   2735 * @vsi: the VSI having resources freed
   2736 */
   2737void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
   2738{
   2739	int i;
   2740
   2741	if (!vsi->tx_rings)
   2742		return;
   2743
   2744	ice_for_each_txq(vsi, i)
   2745		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
   2746			ice_free_tx_ring(vsi->tx_rings[i]);
   2747}
   2748
   2749/**
   2750 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
   2751 * @vsi: the VSI having resources freed
   2752 */
   2753void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
   2754{
   2755	int i;
   2756
   2757	if (!vsi->rx_rings)
   2758		return;
   2759
   2760	ice_for_each_rxq(vsi, i)
   2761		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
   2762			ice_free_rx_ring(vsi->rx_rings[i]);
   2763}
   2764
   2765/**
   2766 * ice_vsi_close - Shut down a VSI
   2767 * @vsi: the VSI being shut down
   2768 */
   2769void ice_vsi_close(struct ice_vsi *vsi)
   2770{
   2771	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
   2772		ice_down(vsi);
   2773
   2774	ice_vsi_free_irq(vsi);
   2775	ice_vsi_free_tx_rings(vsi);
   2776	ice_vsi_free_rx_rings(vsi);
   2777}
   2778
   2779/**
   2780 * ice_ena_vsi - resume a VSI
   2781 * @vsi: the VSI being resume
   2782 * @locked: is the rtnl_lock already held
   2783 */
   2784int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
   2785{
   2786	int err = 0;
   2787
   2788	if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
   2789		return 0;
   2790
   2791	clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
   2792
   2793	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
   2794		if (netif_running(vsi->netdev)) {
   2795			if (!locked)
   2796				rtnl_lock();
   2797
   2798			err = ice_open_internal(vsi->netdev);
   2799
   2800			if (!locked)
   2801				rtnl_unlock();
   2802		}
   2803	} else if (vsi->type == ICE_VSI_CTRL) {
   2804		err = ice_vsi_open_ctrl(vsi);
   2805	}
   2806
   2807	return err;
   2808}
   2809
   2810/**
   2811 * ice_dis_vsi - pause a VSI
   2812 * @vsi: the VSI being paused
   2813 * @locked: is the rtnl_lock already held
   2814 */
   2815void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
   2816{
   2817	if (test_bit(ICE_VSI_DOWN, vsi->state))
   2818		return;
   2819
   2820	set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
   2821
   2822	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
   2823		if (netif_running(vsi->netdev)) {
   2824			if (!locked)
   2825				rtnl_lock();
   2826
   2827			ice_vsi_close(vsi);
   2828
   2829			if (!locked)
   2830				rtnl_unlock();
   2831		} else {
   2832			ice_vsi_close(vsi);
   2833		}
   2834	} else if (vsi->type == ICE_VSI_CTRL ||
   2835		   vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
   2836		ice_vsi_close(vsi);
   2837	}
   2838}
   2839
   2840/**
   2841 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
   2842 * @vsi: the VSI being un-configured
   2843 */
   2844void ice_vsi_dis_irq(struct ice_vsi *vsi)
   2845{
   2846	int base = vsi->base_vector;
   2847	struct ice_pf *pf = vsi->back;
   2848	struct ice_hw *hw = &pf->hw;
   2849	u32 val;
   2850	int i;
   2851
   2852	/* disable interrupt causation from each queue */
   2853	if (vsi->tx_rings) {
   2854		ice_for_each_txq(vsi, i) {
   2855			if (vsi->tx_rings[i]) {
   2856				u16 reg;
   2857
   2858				reg = vsi->tx_rings[i]->reg_idx;
   2859				val = rd32(hw, QINT_TQCTL(reg));
   2860				val &= ~QINT_TQCTL_CAUSE_ENA_M;
   2861				wr32(hw, QINT_TQCTL(reg), val);
   2862			}
   2863		}
   2864	}
   2865
   2866	if (vsi->rx_rings) {
   2867		ice_for_each_rxq(vsi, i) {
   2868			if (vsi->rx_rings[i]) {
   2869				u16 reg;
   2870
   2871				reg = vsi->rx_rings[i]->reg_idx;
   2872				val = rd32(hw, QINT_RQCTL(reg));
   2873				val &= ~QINT_RQCTL_CAUSE_ENA_M;
   2874				wr32(hw, QINT_RQCTL(reg), val);
   2875			}
   2876		}
   2877	}
   2878
   2879	/* disable each interrupt */
   2880	ice_for_each_q_vector(vsi, i) {
   2881		if (!vsi->q_vectors[i])
   2882			continue;
   2883		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
   2884	}
   2885
   2886	ice_flush(hw);
   2887
   2888	/* don't call synchronize_irq() for VF's from the host */
   2889	if (vsi->type == ICE_VSI_VF)
   2890		return;
   2891
   2892	ice_for_each_q_vector(vsi, i)
   2893		synchronize_irq(pf->msix_entries[i + base].vector);
   2894}
   2895
   2896/**
   2897 * ice_napi_del - Remove NAPI handler for the VSI
   2898 * @vsi: VSI for which NAPI handler is to be removed
   2899 */
   2900void ice_napi_del(struct ice_vsi *vsi)
   2901{
   2902	int v_idx;
   2903
   2904	if (!vsi->netdev)
   2905		return;
   2906
   2907	ice_for_each_q_vector(vsi, v_idx)
   2908		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
   2909}
   2910
   2911/**
   2912 * ice_free_vf_ctrl_res - Free the VF control VSI resource
   2913 * @pf: pointer to PF structure
   2914 * @vsi: the VSI to free resources for
   2915 *
   2916 * Check if the VF control VSI resource is still in use. If no VF is using it
   2917 * any more, release the VSI resource. Otherwise, leave it to be cleaned up
   2918 * once no other VF uses it.
   2919 */
   2920static void ice_free_vf_ctrl_res(struct ice_pf *pf,  struct ice_vsi *vsi)
   2921{
   2922	struct ice_vf *vf;
   2923	unsigned int bkt;
   2924
   2925	rcu_read_lock();
   2926	ice_for_each_vf_rcu(pf, bkt, vf) {
   2927		if (vf != vsi->vf && vf->ctrl_vsi_idx != ICE_NO_VSI) {
   2928			rcu_read_unlock();
   2929			return;
   2930		}
   2931	}
   2932	rcu_read_unlock();
   2933
   2934	/* No other VFs left that have control VSI. It is now safe to reclaim
   2935	 * SW interrupts back to the common pool.
   2936	 */
   2937	ice_free_res(pf->irq_tracker, vsi->base_vector,
   2938		     ICE_RES_VF_CTRL_VEC_ID);
   2939	pf->num_avail_sw_msix += vsi->num_q_vectors;
   2940}
   2941
   2942/**
   2943 * ice_vsi_release - Delete a VSI and free its resources
   2944 * @vsi: the VSI being removed
   2945 *
   2946 * Returns 0 on success or < 0 on error
   2947 */
   2948int ice_vsi_release(struct ice_vsi *vsi)
   2949{
   2950	struct ice_pf *pf;
   2951	int err;
   2952
   2953	if (!vsi->back)
   2954		return -ENODEV;
   2955	pf = vsi->back;
   2956
   2957	/* do not unregister while driver is in the reset recovery pending
   2958	 * state. Since reset/rebuild happens through PF service task workqueue,
   2959	 * it's not a good idea to unregister netdev that is associated to the
   2960	 * PF that is running the work queue items currently. This is done to
   2961	 * avoid check_flush_dependency() warning on this wq
   2962	 */
   2963	if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
   2964	    (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
   2965		unregister_netdev(vsi->netdev);
   2966		clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
   2967	}
   2968
   2969	if (vsi->type == ICE_VSI_PF)
   2970		ice_devlink_destroy_pf_port(pf);
   2971
   2972	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
   2973		ice_rss_clean(vsi);
   2974
   2975	/* Disable VSI and free resources */
   2976	if (vsi->type != ICE_VSI_LB)
   2977		ice_vsi_dis_irq(vsi);
   2978	ice_vsi_close(vsi);
   2979
   2980	/* SR-IOV determines needed MSIX resources all at once instead of per
   2981	 * VSI since when VFs are spawned we know how many VFs there are and how
   2982	 * many interrupts each VF needs. SR-IOV MSIX resources are also
   2983	 * cleared in the same manner.
   2984	 */
   2985	if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
   2986		ice_free_vf_ctrl_res(pf, vsi);
   2987	} else if (vsi->type != ICE_VSI_VF) {
   2988		/* reclaim SW interrupts back to the common pool */
   2989		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
   2990		pf->num_avail_sw_msix += vsi->num_q_vectors;
   2991	}
   2992
   2993	if (!ice_is_safe_mode(pf)) {
   2994		if (vsi->type == ICE_VSI_PF) {
   2995			ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
   2996					    ICE_DROP_PACKET);
   2997			ice_cfg_sw_lldp(vsi, true, false);
   2998			/* The Rx rule will only exist to remove if the LLDP FW
   2999			 * engine is currently stopped
   3000			 */
   3001			if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
   3002				ice_cfg_sw_lldp(vsi, false, false);
   3003		}
   3004	}
   3005
   3006	if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
   3007		ice_clear_dflt_vsi(pf->first_sw);
   3008	ice_fltr_remove_all(vsi);
   3009	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
   3010	err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
   3011	if (err)
   3012		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
   3013			vsi->vsi_num, err);
   3014	ice_vsi_delete(vsi);
   3015	ice_vsi_free_q_vectors(vsi);
   3016
   3017	if (vsi->netdev) {
   3018		if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
   3019			unregister_netdev(vsi->netdev);
   3020			clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
   3021		}
   3022		if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
   3023			free_netdev(vsi->netdev);
   3024			vsi->netdev = NULL;
   3025			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
   3026		}
   3027	}
   3028
   3029	if (vsi->type == ICE_VSI_VF &&
   3030	    vsi->agg_node && vsi->agg_node->valid)
   3031		vsi->agg_node->num_vsis--;
   3032	ice_vsi_clear_rings(vsi);
   3033
   3034	ice_vsi_put_qs(vsi);
   3035
   3036	/* retain SW VSI data structure since it is needed to unregister and
   3037	 * free VSI netdev when PF is not in reset recovery pending state,\
   3038	 * for ex: during rmmod.
   3039	 */
   3040	if (!ice_is_reset_in_progress(pf->state))
   3041		ice_vsi_clear(vsi);
   3042
   3043	return 0;
   3044}
   3045
   3046/**
   3047 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
   3048 * @vsi: VSI connected with q_vectors
   3049 * @coalesce: array of struct with stored coalesce
   3050 *
   3051 * Returns array size.
   3052 */
   3053static int
   3054ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
   3055			     struct ice_coalesce_stored *coalesce)
   3056{
   3057	int i;
   3058
   3059	ice_for_each_q_vector(vsi, i) {
   3060		struct ice_q_vector *q_vector = vsi->q_vectors[i];
   3061
   3062		coalesce[i].itr_tx = q_vector->tx.itr_settings;
   3063		coalesce[i].itr_rx = q_vector->rx.itr_settings;
   3064		coalesce[i].intrl = q_vector->intrl;
   3065
   3066		if (i < vsi->num_txq)
   3067			coalesce[i].tx_valid = true;
   3068		if (i < vsi->num_rxq)
   3069			coalesce[i].rx_valid = true;
   3070	}
   3071
   3072	return vsi->num_q_vectors;
   3073}
   3074
   3075/**
   3076 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
   3077 * @vsi: VSI connected with q_vectors
   3078 * @coalesce: pointer to array of struct with stored coalesce
   3079 * @size: size of coalesce array
   3080 *
   3081 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
   3082 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
   3083 * to default value.
   3084 */
   3085static void
   3086ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
   3087			     struct ice_coalesce_stored *coalesce, int size)
   3088{
   3089	struct ice_ring_container *rc;
   3090	int i;
   3091
   3092	if ((size && !coalesce) || !vsi)
   3093		return;
   3094
   3095	/* There are a couple of cases that have to be handled here:
   3096	 *   1. The case where the number of queue vectors stays the same, but
   3097	 *      the number of Tx or Rx rings changes (the first for loop)
   3098	 *   2. The case where the number of queue vectors increased (the
   3099	 *      second for loop)
   3100	 */
   3101	for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
   3102		/* There are 2 cases to handle here and they are the same for
   3103		 * both Tx and Rx:
   3104		 *   if the entry was valid previously (coalesce[i].[tr]x_valid
   3105		 *   and the loop variable is less than the number of rings
   3106		 *   allocated, then write the previous values
   3107		 *
   3108		 *   if the entry was not valid previously, but the number of
   3109		 *   rings is less than are allocated (this means the number of
   3110		 *   rings increased from previously), then write out the
   3111		 *   values in the first element
   3112		 *
   3113		 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
   3114		 *   as there is no harm because the dynamic algorithm
   3115		 *   will just overwrite.
   3116		 */
   3117		if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
   3118			rc = &vsi->q_vectors[i]->rx;
   3119			rc->itr_settings = coalesce[i].itr_rx;
   3120			ice_write_itr(rc, rc->itr_setting);
   3121		} else if (i < vsi->alloc_rxq) {
   3122			rc = &vsi->q_vectors[i]->rx;
   3123			rc->itr_settings = coalesce[0].itr_rx;
   3124			ice_write_itr(rc, rc->itr_setting);
   3125		}
   3126
   3127		if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
   3128			rc = &vsi->q_vectors[i]->tx;
   3129			rc->itr_settings = coalesce[i].itr_tx;
   3130			ice_write_itr(rc, rc->itr_setting);
   3131		} else if (i < vsi->alloc_txq) {
   3132			rc = &vsi->q_vectors[i]->tx;
   3133			rc->itr_settings = coalesce[0].itr_tx;
   3134			ice_write_itr(rc, rc->itr_setting);
   3135		}
   3136
   3137		vsi->q_vectors[i]->intrl = coalesce[i].intrl;
   3138		ice_set_q_vector_intrl(vsi->q_vectors[i]);
   3139	}
   3140
   3141	/* the number of queue vectors increased so write whatever is in
   3142	 * the first element
   3143	 */
   3144	for (; i < vsi->num_q_vectors; i++) {
   3145		/* transmit */
   3146		rc = &vsi->q_vectors[i]->tx;
   3147		rc->itr_settings = coalesce[0].itr_tx;
   3148		ice_write_itr(rc, rc->itr_setting);
   3149
   3150		/* receive */
   3151		rc = &vsi->q_vectors[i]->rx;
   3152		rc->itr_settings = coalesce[0].itr_rx;
   3153		ice_write_itr(rc, rc->itr_setting);
   3154
   3155		vsi->q_vectors[i]->intrl = coalesce[0].intrl;
   3156		ice_set_q_vector_intrl(vsi->q_vectors[i]);
   3157	}
   3158}
   3159
   3160/**
   3161 * ice_vsi_rebuild - Rebuild VSI after reset
   3162 * @vsi: VSI to be rebuild
   3163 * @init_vsi: is this an initialization or a reconfigure of the VSI
   3164 *
   3165 * Returns 0 on success and negative value on failure
   3166 */
   3167int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
   3168{
   3169	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
   3170	struct ice_coalesce_stored *coalesce;
   3171	int prev_num_q_vectors = 0;
   3172	enum ice_vsi_type vtype;
   3173	struct ice_pf *pf;
   3174	int ret, i;
   3175
   3176	if (!vsi)
   3177		return -EINVAL;
   3178
   3179	pf = vsi->back;
   3180	vtype = vsi->type;
   3181	if (WARN_ON(vtype == ICE_VSI_VF) && !vsi->vf)
   3182		return -EINVAL;
   3183
   3184	ice_vsi_init_vlan_ops(vsi);
   3185
   3186	coalesce = kcalloc(vsi->num_q_vectors,
   3187			   sizeof(struct ice_coalesce_stored), GFP_KERNEL);
   3188	if (!coalesce)
   3189		return -ENOMEM;
   3190
   3191	prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
   3192
   3193	ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
   3194	ret = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
   3195	if (ret)
   3196		dev_err(ice_pf_to_dev(vsi->back), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
   3197			vsi->vsi_num, ret);
   3198	ice_vsi_free_q_vectors(vsi);
   3199
   3200	/* SR-IOV determines needed MSIX resources all at once instead of per
   3201	 * VSI since when VFs are spawned we know how many VFs there are and how
   3202	 * many interrupts each VF needs. SR-IOV MSIX resources are also
   3203	 * cleared in the same manner.
   3204	 */
   3205	if (vtype != ICE_VSI_VF) {
   3206		/* reclaim SW interrupts back to the common pool */
   3207		ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
   3208		pf->num_avail_sw_msix += vsi->num_q_vectors;
   3209		vsi->base_vector = 0;
   3210	}
   3211
   3212	if (ice_is_xdp_ena_vsi(vsi))
   3213		/* return value check can be skipped here, it always returns
   3214		 * 0 if reset is in progress
   3215		 */
   3216		ice_destroy_xdp_rings(vsi);
   3217	ice_vsi_put_qs(vsi);
   3218	ice_vsi_clear_rings(vsi);
   3219	ice_vsi_free_arrays(vsi);
   3220	if (vtype == ICE_VSI_VF)
   3221		ice_vsi_set_num_qs(vsi, vsi->vf);
   3222	else
   3223		ice_vsi_set_num_qs(vsi, NULL);
   3224
   3225	ret = ice_vsi_alloc_arrays(vsi);
   3226	if (ret < 0)
   3227		goto err_vsi;
   3228
   3229	ice_vsi_get_qs(vsi);
   3230
   3231	ice_alloc_fd_res(vsi);
   3232	ice_vsi_set_tc_cfg(vsi);
   3233
   3234	/* Initialize VSI struct elements and create VSI in FW */
   3235	ret = ice_vsi_init(vsi, init_vsi);
   3236	if (ret < 0)
   3237		goto err_vsi;
   3238
   3239	switch (vtype) {
   3240	case ICE_VSI_CTRL:
   3241	case ICE_VSI_SWITCHDEV_CTRL:
   3242	case ICE_VSI_PF:
   3243		ret = ice_vsi_alloc_q_vectors(vsi);
   3244		if (ret)
   3245			goto err_rings;
   3246
   3247		ret = ice_vsi_setup_vector_base(vsi);
   3248		if (ret)
   3249			goto err_vectors;
   3250
   3251		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
   3252		if (ret)
   3253			goto err_vectors;
   3254
   3255		ret = ice_vsi_alloc_rings(vsi);
   3256		if (ret)
   3257			goto err_vectors;
   3258
   3259		ice_vsi_map_rings_to_vectors(vsi);
   3260		if (ice_is_xdp_ena_vsi(vsi)) {
   3261			ret = ice_vsi_determine_xdp_res(vsi);
   3262			if (ret)
   3263				goto err_vectors;
   3264			ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
   3265			if (ret)
   3266				goto err_vectors;
   3267		}
   3268		/* ICE_VSI_CTRL does not need RSS so skip RSS processing */
   3269		if (vtype != ICE_VSI_CTRL)
   3270			/* Do not exit if configuring RSS had an issue, at
   3271			 * least receive traffic on first queue. Hence no
   3272			 * need to capture return value
   3273			 */
   3274			if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
   3275				ice_vsi_cfg_rss_lut_key(vsi);
   3276		break;
   3277	case ICE_VSI_VF:
   3278		ret = ice_vsi_alloc_q_vectors(vsi);
   3279		if (ret)
   3280			goto err_rings;
   3281
   3282		ret = ice_vsi_set_q_vectors_reg_idx(vsi);
   3283		if (ret)
   3284			goto err_vectors;
   3285
   3286		ret = ice_vsi_alloc_rings(vsi);
   3287		if (ret)
   3288			goto err_vectors;
   3289
   3290		break;
   3291	case ICE_VSI_CHNL:
   3292		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
   3293			ice_vsi_cfg_rss_lut_key(vsi);
   3294			ice_vsi_set_rss_flow_fld(vsi);
   3295		}
   3296		break;
   3297	default:
   3298		break;
   3299	}
   3300
   3301	/* configure VSI nodes based on number of queues and TC's */
   3302	for (i = 0; i < vsi->tc_cfg.numtc; i++) {
   3303		/* configure VSI nodes based on number of queues and TC's.
   3304		 * ADQ creates VSIs for each TC/Channel but doesn't
   3305		 * allocate queues instead it reconfigures the PF queues
   3306		 * as per the TC command. So max_txqs should point to the
   3307		 * PF Tx queues.
   3308		 */
   3309		if (vtype == ICE_VSI_CHNL)
   3310			max_txqs[i] = pf->num_lan_tx;
   3311		else
   3312			max_txqs[i] = vsi->alloc_txq;
   3313
   3314		if (ice_is_xdp_ena_vsi(vsi))
   3315			max_txqs[i] += vsi->num_xdp_txq;
   3316	}
   3317
   3318	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
   3319		/* If MQPRIO is set, means channel code path, hence for main
   3320		 * VSI's, use TC as 1
   3321		 */
   3322		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
   3323	else
   3324		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
   3325				      vsi->tc_cfg.ena_tc, max_txqs);
   3326
   3327	if (ret) {
   3328		dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %d\n",
   3329			vsi->vsi_num, ret);
   3330		if (init_vsi) {
   3331			ret = -EIO;
   3332			goto err_vectors;
   3333		} else {
   3334			return ice_schedule_reset(pf, ICE_RESET_PFR);
   3335		}
   3336	}
   3337	ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
   3338	kfree(coalesce);
   3339
   3340	return 0;
   3341
   3342err_vectors:
   3343	ice_vsi_free_q_vectors(vsi);
   3344err_rings:
   3345	if (vsi->netdev) {
   3346		vsi->current_netdev_flags = 0;
   3347		unregister_netdev(vsi->netdev);
   3348		free_netdev(vsi->netdev);
   3349		vsi->netdev = NULL;
   3350	}
   3351err_vsi:
   3352	ice_vsi_clear(vsi);
   3353	set_bit(ICE_RESET_FAILED, pf->state);
   3354	kfree(coalesce);
   3355	return ret;
   3356}
   3357
   3358/**
   3359 * ice_is_reset_in_progress - check for a reset in progress
   3360 * @state: PF state field
   3361 */
   3362bool ice_is_reset_in_progress(unsigned long *state)
   3363{
   3364	return test_bit(ICE_RESET_OICR_RECV, state) ||
   3365	       test_bit(ICE_PFR_REQ, state) ||
   3366	       test_bit(ICE_CORER_REQ, state) ||
   3367	       test_bit(ICE_GLOBR_REQ, state);
   3368}
   3369
   3370/**
   3371 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
   3372 * @pf: pointer to the PF structure
   3373 * @timeout: length of time to wait, in jiffies
   3374 *
   3375 * Wait (sleep) for a short time until the driver finishes cleaning up from
   3376 * a device reset. The caller must be able to sleep. Use this to delay
   3377 * operations that could fail while the driver is cleaning up after a device
   3378 * reset.
   3379 *
   3380 * Returns 0 on success, -EBUSY if the reset is not finished within the
   3381 * timeout, and -ERESTARTSYS if the thread was interrupted.
   3382 */
   3383int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
   3384{
   3385	long ret;
   3386
   3387	ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
   3388					       !ice_is_reset_in_progress(pf->state),
   3389					       timeout);
   3390	if (ret < 0)
   3391		return ret;
   3392	else if (!ret)
   3393		return -EBUSY;
   3394	else
   3395		return 0;
   3396}
   3397
   3398/**
   3399 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
   3400 * @vsi: VSI being configured
   3401 * @ctx: the context buffer returned from AQ VSI update command
   3402 */
   3403static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
   3404{
   3405	vsi->info.mapping_flags = ctx->info.mapping_flags;
   3406	memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
   3407	       sizeof(vsi->info.q_mapping));
   3408	memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
   3409	       sizeof(vsi->info.tc_mapping));
   3410}
   3411
   3412/**
   3413 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
   3414 * @vsi: the VSI being configured
   3415 * @ena_tc: TC map to be enabled
   3416 */
   3417void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
   3418{
   3419	struct net_device *netdev = vsi->netdev;
   3420	struct ice_pf *pf = vsi->back;
   3421	int numtc = vsi->tc_cfg.numtc;
   3422	struct ice_dcbx_cfg *dcbcfg;
   3423	u8 netdev_tc;
   3424	int i;
   3425
   3426	if (!netdev)
   3427		return;
   3428
   3429	/* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
   3430	if (vsi->type == ICE_VSI_CHNL)
   3431		return;
   3432
   3433	if (!ena_tc) {
   3434		netdev_reset_tc(netdev);
   3435		return;
   3436	}
   3437
   3438	if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
   3439		numtc = vsi->all_numtc;
   3440
   3441	if (netdev_set_num_tc(netdev, numtc))
   3442		return;
   3443
   3444	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
   3445
   3446	ice_for_each_traffic_class(i)
   3447		if (vsi->tc_cfg.ena_tc & BIT(i))
   3448			netdev_set_tc_queue(netdev,
   3449					    vsi->tc_cfg.tc_info[i].netdev_tc,
   3450					    vsi->tc_cfg.tc_info[i].qcount_tx,
   3451					    vsi->tc_cfg.tc_info[i].qoffset);
   3452	/* setup TC queue map for CHNL TCs */
   3453	ice_for_each_chnl_tc(i) {
   3454		if (!(vsi->all_enatc & BIT(i)))
   3455			break;
   3456		if (!vsi->mqprio_qopt.qopt.count[i])
   3457			break;
   3458		netdev_set_tc_queue(netdev, i,
   3459				    vsi->mqprio_qopt.qopt.count[i],
   3460				    vsi->mqprio_qopt.qopt.offset[i]);
   3461	}
   3462
   3463	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
   3464		return;
   3465
   3466	for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
   3467		u8 ets_tc = dcbcfg->etscfg.prio_table[i];
   3468
   3469		/* Get the mapped netdev TC# for the UP */
   3470		netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
   3471		netdev_set_prio_tc_map(netdev, i, netdev_tc);
   3472	}
   3473}
   3474
   3475/**
   3476 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
   3477 * @vsi: the VSI being configured,
   3478 * @ctxt: VSI context structure
   3479 * @ena_tc: number of traffic classes to enable
   3480 *
   3481 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
   3482 */
   3483static int
   3484ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
   3485			   u8 ena_tc)
   3486{
   3487	u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
   3488	u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
   3489	int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
   3490	u8 netdev_tc = 0;
   3491	int i;
   3492
   3493	vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
   3494
   3495	pow = order_base_2(tc0_qcount);
   3496	qmap = ((tc0_offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
   3497		ICE_AQ_VSI_TC_Q_OFFSET_M) |
   3498		((pow << ICE_AQ_VSI_TC_Q_NUM_S) & ICE_AQ_VSI_TC_Q_NUM_M);
   3499
   3500	ice_for_each_traffic_class(i) {
   3501		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
   3502			/* TC is not enabled */
   3503			vsi->tc_cfg.tc_info[i].qoffset = 0;
   3504			vsi->tc_cfg.tc_info[i].qcount_rx = 1;
   3505			vsi->tc_cfg.tc_info[i].qcount_tx = 1;
   3506			vsi->tc_cfg.tc_info[i].netdev_tc = 0;
   3507			ctxt->info.tc_mapping[i] = 0;
   3508			continue;
   3509		}
   3510
   3511		offset = vsi->mqprio_qopt.qopt.offset[i];
   3512		qcount_rx = vsi->mqprio_qopt.qopt.count[i];
   3513		qcount_tx = vsi->mqprio_qopt.qopt.count[i];
   3514		vsi->tc_cfg.tc_info[i].qoffset = offset;
   3515		vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
   3516		vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
   3517		vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
   3518	}
   3519
   3520	if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
   3521		ice_for_each_chnl_tc(i) {
   3522			if (!(vsi->all_enatc & BIT(i)))
   3523				continue;
   3524			offset = vsi->mqprio_qopt.qopt.offset[i];
   3525			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
   3526			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
   3527		}
   3528	}
   3529
   3530	/* Set actual Tx/Rx queue pairs */
   3531	vsi->num_txq = offset + qcount_tx;
   3532	if (vsi->num_txq > vsi->alloc_txq) {
   3533		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
   3534			vsi->num_txq, vsi->alloc_txq);
   3535		return -EINVAL;
   3536	}
   3537
   3538	vsi->num_rxq = offset + qcount_rx;
   3539	if (vsi->num_rxq > vsi->alloc_rxq) {
   3540		dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
   3541			vsi->num_rxq, vsi->alloc_rxq);
   3542		return -EINVAL;
   3543	}
   3544
   3545	/* Setup queue TC[0].qmap for given VSI context */
   3546	ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
   3547	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
   3548	ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
   3549
   3550	/* Find queue count available for channel VSIs and starting offset
   3551	 * for channel VSIs
   3552	 */
   3553	if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
   3554		vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
   3555		vsi->next_base_q = tc0_qcount;
   3556	}
   3557	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n",  vsi->num_txq);
   3558	dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n",  vsi->num_rxq);
   3559	dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
   3560		vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
   3561
   3562	return 0;
   3563}
   3564
   3565/**
   3566 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
   3567 * @vsi: VSI to be configured
   3568 * @ena_tc: TC bitmap
   3569 *
   3570 * VSI queues expected to be quiesced before calling this function
   3571 */
   3572int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
   3573{
   3574	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
   3575	struct ice_pf *pf = vsi->back;
   3576	struct ice_vsi_ctx *ctx;
   3577	struct device *dev;
   3578	int i, ret = 0;
   3579	u8 num_tc = 0;
   3580
   3581	dev = ice_pf_to_dev(pf);
   3582	if (vsi->tc_cfg.ena_tc == ena_tc &&
   3583	    vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
   3584		return ret;
   3585
   3586	ice_for_each_traffic_class(i) {
   3587		/* build bitmap of enabled TCs */
   3588		if (ena_tc & BIT(i))
   3589			num_tc++;
   3590		/* populate max_txqs per TC */
   3591		max_txqs[i] = vsi->alloc_txq;
   3592		/* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
   3593		 * zero for CHNL VSI, hence use num_txq instead as max_txqs
   3594		 */
   3595		if (vsi->type == ICE_VSI_CHNL &&
   3596		    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
   3597			max_txqs[i] = vsi->num_txq;
   3598	}
   3599
   3600	vsi->tc_cfg.ena_tc = ena_tc;
   3601	vsi->tc_cfg.numtc = num_tc;
   3602
   3603	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
   3604	if (!ctx)
   3605		return -ENOMEM;
   3606
   3607	ctx->vf_num = 0;
   3608	ctx->info = vsi->info;
   3609
   3610	if (vsi->type == ICE_VSI_PF &&
   3611	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
   3612		ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
   3613	else
   3614		ret = ice_vsi_setup_q_map(vsi, ctx);
   3615
   3616	if (ret)
   3617		goto out;
   3618
   3619	/* must to indicate which section of VSI context are being modified */
   3620	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
   3621	ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
   3622	if (ret) {
   3623		dev_info(dev, "Failed VSI Update\n");
   3624		goto out;
   3625	}
   3626
   3627	if (vsi->type == ICE_VSI_PF &&
   3628	    test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
   3629		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
   3630	else
   3631		ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
   3632				      vsi->tc_cfg.ena_tc, max_txqs);
   3633
   3634	if (ret) {
   3635		dev_err(dev, "VSI %d failed TC config, error %d\n",
   3636			vsi->vsi_num, ret);
   3637		goto out;
   3638	}
   3639	ice_vsi_update_q_map(vsi, ctx);
   3640	vsi->info.valid_sections = 0;
   3641
   3642	ice_vsi_cfg_netdev_tc(vsi, ena_tc);
   3643out:
   3644	kfree(ctx);
   3645	return ret;
   3646}
   3647
   3648/**
   3649 * ice_update_ring_stats - Update ring statistics
   3650 * @stats: stats to be updated
   3651 * @pkts: number of processed packets
   3652 * @bytes: number of processed bytes
   3653 *
   3654 * This function assumes that caller has acquired a u64_stats_sync lock.
   3655 */
   3656static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
   3657{
   3658	stats->bytes += bytes;
   3659	stats->pkts += pkts;
   3660}
   3661
   3662/**
   3663 * ice_update_tx_ring_stats - Update Tx ring specific counters
   3664 * @tx_ring: ring to update
   3665 * @pkts: number of processed packets
   3666 * @bytes: number of processed bytes
   3667 */
   3668void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
   3669{
   3670	u64_stats_update_begin(&tx_ring->syncp);
   3671	ice_update_ring_stats(&tx_ring->stats, pkts, bytes);
   3672	u64_stats_update_end(&tx_ring->syncp);
   3673}
   3674
   3675/**
   3676 * ice_update_rx_ring_stats - Update Rx ring specific counters
   3677 * @rx_ring: ring to update
   3678 * @pkts: number of processed packets
   3679 * @bytes: number of processed bytes
   3680 */
   3681void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
   3682{
   3683	u64_stats_update_begin(&rx_ring->syncp);
   3684	ice_update_ring_stats(&rx_ring->stats, pkts, bytes);
   3685	u64_stats_update_end(&rx_ring->syncp);
   3686}
   3687
   3688/**
   3689 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
   3690 * @sw: switch to check if its default forwarding VSI is free
   3691 *
   3692 * Return true if the default forwarding VSI is already being used, else returns
   3693 * false signalling that it's available to use.
   3694 */
   3695bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
   3696{
   3697	return (sw->dflt_vsi && sw->dflt_vsi_ena);
   3698}
   3699
   3700/**
   3701 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
   3702 * @sw: switch for the default forwarding VSI to compare against
   3703 * @vsi: VSI to compare against default forwarding VSI
   3704 *
   3705 * If this VSI passed in is the default forwarding VSI then return true, else
   3706 * return false
   3707 */
   3708bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
   3709{
   3710	return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
   3711}
   3712
   3713/**
   3714 * ice_set_dflt_vsi - set the default forwarding VSI
   3715 * @sw: switch used to assign the default forwarding VSI
   3716 * @vsi: VSI getting set as the default forwarding VSI on the switch
   3717 *
   3718 * If the VSI passed in is already the default VSI and it's enabled just return
   3719 * success.
   3720 *
   3721 * If there is already a default VSI on the switch and it's enabled then return
   3722 * -EEXIST since there can only be one default VSI per switch.
   3723 *
   3724 *  Otherwise try to set the VSI passed in as the switch's default VSI and
   3725 *  return the result.
   3726 */
   3727int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
   3728{
   3729	struct device *dev;
   3730	int status;
   3731
   3732	if (!sw || !vsi)
   3733		return -EINVAL;
   3734
   3735	dev = ice_pf_to_dev(vsi->back);
   3736
   3737	/* the VSI passed in is already the default VSI */
   3738	if (ice_is_vsi_dflt_vsi(sw, vsi)) {
   3739		dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
   3740			vsi->vsi_num);
   3741		return 0;
   3742	}
   3743
   3744	/* another VSI is already the default VSI for this switch */
   3745	if (ice_is_dflt_vsi_in_use(sw)) {
   3746		dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
   3747			sw->dflt_vsi->vsi_num);
   3748		return -EEXIST;
   3749	}
   3750
   3751	status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
   3752	if (status) {
   3753		dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
   3754			vsi->vsi_num, status);
   3755		return status;
   3756	}
   3757
   3758	sw->dflt_vsi = vsi;
   3759	sw->dflt_vsi_ena = true;
   3760
   3761	return 0;
   3762}
   3763
   3764/**
   3765 * ice_clear_dflt_vsi - clear the default forwarding VSI
   3766 * @sw: switch used to clear the default VSI
   3767 *
   3768 * If the switch has no default VSI or it's not enabled then return error.
   3769 *
   3770 * Otherwise try to clear the default VSI and return the result.
   3771 */
   3772int ice_clear_dflt_vsi(struct ice_sw *sw)
   3773{
   3774	struct ice_vsi *dflt_vsi;
   3775	struct device *dev;
   3776	int status;
   3777
   3778	if (!sw)
   3779		return -EINVAL;
   3780
   3781	dev = ice_pf_to_dev(sw->pf);
   3782
   3783	dflt_vsi = sw->dflt_vsi;
   3784
   3785	/* there is no default VSI configured */
   3786	if (!ice_is_dflt_vsi_in_use(sw))
   3787		return -ENODEV;
   3788
   3789	status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
   3790				  ICE_FLTR_RX);
   3791	if (status) {
   3792		dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
   3793			dflt_vsi->vsi_num, status);
   3794		return -EIO;
   3795	}
   3796
   3797	sw->dflt_vsi = NULL;
   3798	sw->dflt_vsi_ena = false;
   3799
   3800	return 0;
   3801}
   3802
   3803/**
   3804 * ice_get_link_speed_mbps - get link speed in Mbps
   3805 * @vsi: the VSI whose link speed is being queried
   3806 *
   3807 * Return current VSI link speed and 0 if the speed is unknown.
   3808 */
   3809int ice_get_link_speed_mbps(struct ice_vsi *vsi)
   3810{
   3811	switch (vsi->port_info->phy.link_info.link_speed) {
   3812	case ICE_AQ_LINK_SPEED_100GB:
   3813		return SPEED_100000;
   3814	case ICE_AQ_LINK_SPEED_50GB:
   3815		return SPEED_50000;
   3816	case ICE_AQ_LINK_SPEED_40GB:
   3817		return SPEED_40000;
   3818	case ICE_AQ_LINK_SPEED_25GB:
   3819		return SPEED_25000;
   3820	case ICE_AQ_LINK_SPEED_20GB:
   3821		return SPEED_20000;
   3822	case ICE_AQ_LINK_SPEED_10GB:
   3823		return SPEED_10000;
   3824	case ICE_AQ_LINK_SPEED_5GB:
   3825		return SPEED_5000;
   3826	case ICE_AQ_LINK_SPEED_2500MB:
   3827		return SPEED_2500;
   3828	case ICE_AQ_LINK_SPEED_1000MB:
   3829		return SPEED_1000;
   3830	case ICE_AQ_LINK_SPEED_100MB:
   3831		return SPEED_100;
   3832	case ICE_AQ_LINK_SPEED_10MB:
   3833		return SPEED_10;
   3834	case ICE_AQ_LINK_SPEED_UNKNOWN:
   3835	default:
   3836		return 0;
   3837	}
   3838}
   3839
   3840/**
   3841 * ice_get_link_speed_kbps - get link speed in Kbps
   3842 * @vsi: the VSI whose link speed is being queried
   3843 *
   3844 * Return current VSI link speed and 0 if the speed is unknown.
   3845 */
   3846int ice_get_link_speed_kbps(struct ice_vsi *vsi)
   3847{
   3848	int speed_mbps;
   3849
   3850	speed_mbps = ice_get_link_speed_mbps(vsi);
   3851
   3852	return speed_mbps * 1000;
   3853}
   3854
   3855/**
   3856 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
   3857 * @vsi: VSI to be configured
   3858 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
   3859 *
   3860 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
   3861 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
   3862 * on TC 0.
   3863 */
   3864int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
   3865{
   3866	struct ice_pf *pf = vsi->back;
   3867	struct device *dev;
   3868	int status;
   3869	int speed;
   3870
   3871	dev = ice_pf_to_dev(pf);
   3872	if (!vsi->port_info) {
   3873		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
   3874			vsi->idx, vsi->type);
   3875		return -EINVAL;
   3876	}
   3877
   3878	speed = ice_get_link_speed_kbps(vsi);
   3879	if (min_tx_rate > (u64)speed) {
   3880		dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
   3881			min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
   3882			speed);
   3883		return -EINVAL;
   3884	}
   3885
   3886	/* Configure min BW for VSI limit */
   3887	if (min_tx_rate) {
   3888		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
   3889						   ICE_MIN_BW, min_tx_rate);
   3890		if (status) {
   3891			dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
   3892				min_tx_rate, ice_vsi_type_str(vsi->type),
   3893				vsi->idx);
   3894			return status;
   3895		}
   3896
   3897		dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
   3898			min_tx_rate, ice_vsi_type_str(vsi->type));
   3899	} else {
   3900		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
   3901							vsi->idx, 0,
   3902							ICE_MIN_BW);
   3903		if (status) {
   3904			dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
   3905				ice_vsi_type_str(vsi->type), vsi->idx);
   3906			return status;
   3907		}
   3908
   3909		dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
   3910			ice_vsi_type_str(vsi->type), vsi->idx);
   3911	}
   3912
   3913	return 0;
   3914}
   3915
   3916/**
   3917 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
   3918 * @vsi: VSI to be configured
   3919 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
   3920 *
   3921 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
   3922 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
   3923 * on TC 0.
   3924 */
   3925int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
   3926{
   3927	struct ice_pf *pf = vsi->back;
   3928	struct device *dev;
   3929	int status;
   3930	int speed;
   3931
   3932	dev = ice_pf_to_dev(pf);
   3933	if (!vsi->port_info) {
   3934		dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
   3935			vsi->idx, vsi->type);
   3936		return -EINVAL;
   3937	}
   3938
   3939	speed = ice_get_link_speed_kbps(vsi);
   3940	if (max_tx_rate > (u64)speed) {
   3941		dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
   3942			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
   3943			speed);
   3944		return -EINVAL;
   3945	}
   3946
   3947	/* Configure max BW for VSI limit */
   3948	if (max_tx_rate) {
   3949		status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
   3950						   ICE_MAX_BW, max_tx_rate);
   3951		if (status) {
   3952			dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
   3953				max_tx_rate, ice_vsi_type_str(vsi->type),
   3954				vsi->idx);
   3955			return status;
   3956		}
   3957
   3958		dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
   3959			max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
   3960	} else {
   3961		status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
   3962							vsi->idx, 0,
   3963							ICE_MAX_BW);
   3964		if (status) {
   3965			dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
   3966				ice_vsi_type_str(vsi->type), vsi->idx);
   3967			return status;
   3968		}
   3969
   3970		dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
   3971			ice_vsi_type_str(vsi->type), vsi->idx);
   3972	}
   3973
   3974	return 0;
   3975}
   3976
   3977/**
   3978 * ice_set_link - turn on/off physical link
   3979 * @vsi: VSI to modify physical link on
   3980 * @ena: turn on/off physical link
   3981 */
   3982int ice_set_link(struct ice_vsi *vsi, bool ena)
   3983{
   3984	struct device *dev = ice_pf_to_dev(vsi->back);
   3985	struct ice_port_info *pi = vsi->port_info;
   3986	struct ice_hw *hw = pi->hw;
   3987	int status;
   3988
   3989	if (vsi->type != ICE_VSI_PF)
   3990		return -EINVAL;
   3991
   3992	status = ice_aq_set_link_restart_an(pi, ena, NULL);
   3993
   3994	/* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
   3995	 * this is not a fatal error, so print a warning message and return
   3996	 * a success code. Return an error if FW returns an error code other
   3997	 * than ICE_AQ_RC_EMODE
   3998	 */
   3999	if (status == -EIO) {
   4000		if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
   4001			dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
   4002				(ena ? "ON" : "OFF"), status,
   4003				ice_aq_str(hw->adminq.sq_last_status));
   4004	} else if (status) {
   4005		dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
   4006			(ena ? "ON" : "OFF"), status,
   4007			ice_aq_str(hw->adminq.sq_last_status));
   4008		return status;
   4009	}
   4010
   4011	return 0;
   4012}
   4013
   4014/**
   4015 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
   4016 * @vsi: VSI used to add VLAN filters
   4017 *
   4018 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
   4019 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
   4020 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
   4021 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
   4022 *
   4023 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
   4024 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
   4025 * traffic in SVM, since the VLAN TPID isn't part of filtering.
   4026 *
   4027 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
   4028 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
   4029 * part of filtering.
   4030 */
   4031int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
   4032{
   4033	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
   4034	struct ice_vlan vlan;
   4035	int err;
   4036
   4037	vlan = ICE_VLAN(0, 0, 0);
   4038	err = vlan_ops->add_vlan(vsi, &vlan);
   4039	if (err && err != -EEXIST)
   4040		return err;
   4041
   4042	/* in SVM both VLAN 0 filters are identical */
   4043	if (!ice_is_dvm_ena(&vsi->back->hw))
   4044		return 0;
   4045
   4046	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
   4047	err = vlan_ops->add_vlan(vsi, &vlan);
   4048	if (err && err != -EEXIST)
   4049		return err;
   4050
   4051	return 0;
   4052}
   4053
   4054/**
   4055 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
   4056 * @vsi: VSI used to add VLAN filters
   4057 *
   4058 * Delete the VLAN 0 filters in the same manner that they were added in
   4059 * ice_vsi_add_vlan_zero.
   4060 */
   4061int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
   4062{
   4063	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
   4064	struct ice_vlan vlan;
   4065	int err;
   4066
   4067	vlan = ICE_VLAN(0, 0, 0);
   4068	err = vlan_ops->del_vlan(vsi, &vlan);
   4069	if (err && err != -EEXIST)
   4070		return err;
   4071
   4072	/* in SVM both VLAN 0 filters are identical */
   4073	if (!ice_is_dvm_ena(&vsi->back->hw))
   4074		return 0;
   4075
   4076	vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
   4077	err = vlan_ops->del_vlan(vsi, &vlan);
   4078	if (err && err != -EEXIST)
   4079		return err;
   4080
   4081	return 0;
   4082}
   4083
   4084/**
   4085 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
   4086 * @vsi: VSI used to get the VLAN mode
   4087 *
   4088 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
   4089 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
   4090 */
   4091static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
   4092{
   4093#define ICE_DVM_NUM_ZERO_VLAN_FLTRS	2
   4094#define ICE_SVM_NUM_ZERO_VLAN_FLTRS	1
   4095	/* no VLAN 0 filter is created when a port VLAN is active */
   4096	if (vsi->type == ICE_VSI_VF) {
   4097		if (WARN_ON(!vsi->vf))
   4098			return 0;
   4099
   4100		if (ice_vf_is_port_vlan_ena(vsi->vf))
   4101			return 0;
   4102	}
   4103
   4104	if (ice_is_dvm_ena(&vsi->back->hw))
   4105		return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
   4106	else
   4107		return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
   4108}
   4109
   4110/**
   4111 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
   4112 * @vsi: VSI used to determine if any non-zero VLANs have been added
   4113 */
   4114bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
   4115{
   4116	return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
   4117}
   4118
   4119/**
   4120 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
   4121 * @vsi: VSI used to get the number of non-zero VLANs added
   4122 */
   4123u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
   4124{
   4125	return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
   4126}
   4127
   4128/**
   4129 * ice_is_feature_supported
   4130 * @pf: pointer to the struct ice_pf instance
   4131 * @f: feature enum to be checked
   4132 *
   4133 * returns true if feature is supported, false otherwise
   4134 */
   4135bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
   4136{
   4137	if (f < 0 || f >= ICE_F_MAX)
   4138		return false;
   4139
   4140	return test_bit(f, pf->features);
   4141}
   4142
   4143/**
   4144 * ice_set_feature_support
   4145 * @pf: pointer to the struct ice_pf instance
   4146 * @f: feature enum to set
   4147 */
   4148static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
   4149{
   4150	if (f < 0 || f >= ICE_F_MAX)
   4151		return;
   4152
   4153	set_bit(f, pf->features);
   4154}
   4155
   4156/**
   4157 * ice_clear_feature_support
   4158 * @pf: pointer to the struct ice_pf instance
   4159 * @f: feature enum to clear
   4160 */
   4161void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
   4162{
   4163	if (f < 0 || f >= ICE_F_MAX)
   4164		return;
   4165
   4166	clear_bit(f, pf->features);
   4167}
   4168
   4169/**
   4170 * ice_init_feature_support
   4171 * @pf: pointer to the struct ice_pf instance
   4172 *
   4173 * called during init to setup supported feature
   4174 */
   4175void ice_init_feature_support(struct ice_pf *pf)
   4176{
   4177	switch (pf->hw.device_id) {
   4178	case ICE_DEV_ID_E810C_BACKPLANE:
   4179	case ICE_DEV_ID_E810C_QSFP:
   4180	case ICE_DEV_ID_E810C_SFP:
   4181		ice_set_feature_support(pf, ICE_F_DSCP);
   4182		if (ice_is_e810t(&pf->hw)) {
   4183			ice_set_feature_support(pf, ICE_F_SMA_CTRL);
   4184			if (ice_gnss_is_gps_present(&pf->hw))
   4185				ice_set_feature_support(pf, ICE_F_GNSS);
   4186		}
   4187		break;
   4188	default:
   4189		break;
   4190	}
   4191}
   4192
   4193/**
   4194 * ice_vsi_update_security - update security block in VSI
   4195 * @vsi: pointer to VSI structure
   4196 * @fill: function pointer to fill ctx
   4197 */
   4198int
   4199ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
   4200{
   4201	struct ice_vsi_ctx ctx = { 0 };
   4202
   4203	ctx.info = vsi->info;
   4204	ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
   4205	fill(&ctx);
   4206
   4207	if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
   4208		return -ENODEV;
   4209
   4210	vsi->info = ctx.info;
   4211	return 0;
   4212}
   4213
   4214/**
   4215 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
   4216 * @ctx: pointer to VSI ctx structure
   4217 */
   4218void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
   4219{
   4220	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
   4221			       (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
   4222				ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
   4223}
   4224
   4225/**
   4226 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
   4227 * @ctx: pointer to VSI ctx structure
   4228 */
   4229void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
   4230{
   4231	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
   4232			       ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
   4233				 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
   4234}
   4235
   4236/**
   4237 * ice_vsi_ctx_set_allow_override - allow destination override on VSI
   4238 * @ctx: pointer to VSI ctx structure
   4239 */
   4240void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx)
   4241{
   4242	ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
   4243}
   4244
   4245/**
   4246 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI
   4247 * @ctx: pointer to VSI ctx structure
   4248 */
   4249void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx)
   4250{
   4251	ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
   4252}