cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ice_txrx.c (69940B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright (c) 2018, Intel Corporation. */
      3
      4/* The driver transmit and receive code */
      5
      6#include <linux/mm.h>
      7#include <linux/netdevice.h>
      8#include <linux/prefetch.h>
      9#include <linux/bpf_trace.h>
     10#include <net/dsfield.h>
     11#include <net/mpls.h>
     12#include <net/xdp.h>
     13#include "ice_txrx_lib.h"
     14#include "ice_lib.h"
     15#include "ice.h"
     16#include "ice_trace.h"
     17#include "ice_dcb_lib.h"
     18#include "ice_xsk.h"
     19#include "ice_eswitch.h"
     20
     21#define ICE_RX_HDR_SIZE		256
     22
     23#define FDIR_DESC_RXDID 0x40
     24#define ICE_FDIR_CLEAN_DELAY 10
     25
     26/**
     27 * ice_prgm_fdir_fltr - Program a Flow Director filter
     28 * @vsi: VSI to send dummy packet
     29 * @fdir_desc: flow director descriptor
     30 * @raw_packet: allocated buffer for flow director
     31 */
     32int
     33ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
     34		   u8 *raw_packet)
     35{
     36	struct ice_tx_buf *tx_buf, *first;
     37	struct ice_fltr_desc *f_desc;
     38	struct ice_tx_desc *tx_desc;
     39	struct ice_tx_ring *tx_ring;
     40	struct device *dev;
     41	dma_addr_t dma;
     42	u32 td_cmd;
     43	u16 i;
     44
     45	/* VSI and Tx ring */
     46	if (!vsi)
     47		return -ENOENT;
     48	tx_ring = vsi->tx_rings[0];
     49	if (!tx_ring || !tx_ring->desc)
     50		return -ENOENT;
     51	dev = tx_ring->dev;
     52
     53	/* we are using two descriptors to add/del a filter and we can wait */
     54	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
     55		if (!i)
     56			return -EAGAIN;
     57		msleep_interruptible(1);
     58	}
     59
     60	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
     61			     DMA_TO_DEVICE);
     62
     63	if (dma_mapping_error(dev, dma))
     64		return -EINVAL;
     65
     66	/* grab the next descriptor */
     67	i = tx_ring->next_to_use;
     68	first = &tx_ring->tx_buf[i];
     69	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
     70	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
     71
     72	i++;
     73	i = (i < tx_ring->count) ? i : 0;
     74	tx_desc = ICE_TX_DESC(tx_ring, i);
     75	tx_buf = &tx_ring->tx_buf[i];
     76
     77	i++;
     78	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
     79
     80	memset(tx_buf, 0, sizeof(*tx_buf));
     81	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
     82	dma_unmap_addr_set(tx_buf, dma, dma);
     83
     84	tx_desc->buf_addr = cpu_to_le64(dma);
     85	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
     86		 ICE_TX_DESC_CMD_RE;
     87
     88	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
     89	tx_buf->raw_buf = raw_packet;
     90
     91	tx_desc->cmd_type_offset_bsz =
     92		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
     93
     94	/* Force memory write to complete before letting h/w know
     95	 * there are new descriptors to fetch.
     96	 */
     97	wmb();
     98
     99	/* mark the data descriptor to be watched */
    100	first->next_to_watch = tx_desc;
    101
    102	writel(tx_ring->next_to_use, tx_ring->tail);
    103
    104	return 0;
    105}
    106
    107/**
    108 * ice_unmap_and_free_tx_buf - Release a Tx buffer
    109 * @ring: the ring that owns the buffer
    110 * @tx_buf: the buffer to free
    111 */
    112static void
    113ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
    114{
    115	if (tx_buf->skb) {
    116		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
    117			devm_kfree(ring->dev, tx_buf->raw_buf);
    118		else if (ice_ring_is_xdp(ring))
    119			page_frag_free(tx_buf->raw_buf);
    120		else
    121			dev_kfree_skb_any(tx_buf->skb);
    122		if (dma_unmap_len(tx_buf, len))
    123			dma_unmap_single(ring->dev,
    124					 dma_unmap_addr(tx_buf, dma),
    125					 dma_unmap_len(tx_buf, len),
    126					 DMA_TO_DEVICE);
    127	} else if (dma_unmap_len(tx_buf, len)) {
    128		dma_unmap_page(ring->dev,
    129			       dma_unmap_addr(tx_buf, dma),
    130			       dma_unmap_len(tx_buf, len),
    131			       DMA_TO_DEVICE);
    132	}
    133
    134	tx_buf->next_to_watch = NULL;
    135	tx_buf->skb = NULL;
    136	dma_unmap_len_set(tx_buf, len, 0);
    137	/* tx_buf must be completely set up in the transmit path */
    138}
    139
    140static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
    141{
    142	return netdev_get_tx_queue(ring->netdev, ring->q_index);
    143}
    144
    145/**
    146 * ice_clean_tx_ring - Free any empty Tx buffers
    147 * @tx_ring: ring to be cleaned
    148 */
    149void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
    150{
    151	u32 size;
    152	u16 i;
    153
    154	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
    155		ice_xsk_clean_xdp_ring(tx_ring);
    156		goto tx_skip_free;
    157	}
    158
    159	/* ring already cleared, nothing to do */
    160	if (!tx_ring->tx_buf)
    161		return;
    162
    163	/* Free all the Tx ring sk_buffs */
    164	for (i = 0; i < tx_ring->count; i++)
    165		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
    166
    167tx_skip_free:
    168	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
    169
    170	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
    171		     PAGE_SIZE);
    172	/* Zero out the descriptor ring */
    173	memset(tx_ring->desc, 0, size);
    174
    175	tx_ring->next_to_use = 0;
    176	tx_ring->next_to_clean = 0;
    177	tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
    178	tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
    179
    180	if (!tx_ring->netdev)
    181		return;
    182
    183	/* cleanup Tx queue statistics */
    184	netdev_tx_reset_queue(txring_txq(tx_ring));
    185}
    186
    187/**
    188 * ice_free_tx_ring - Free Tx resources per queue
    189 * @tx_ring: Tx descriptor ring for a specific queue
    190 *
    191 * Free all transmit software resources
    192 */
    193void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
    194{
    195	u32 size;
    196
    197	ice_clean_tx_ring(tx_ring);
    198	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
    199	tx_ring->tx_buf = NULL;
    200
    201	if (tx_ring->desc) {
    202		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
    203			     PAGE_SIZE);
    204		dmam_free_coherent(tx_ring->dev, size,
    205				   tx_ring->desc, tx_ring->dma);
    206		tx_ring->desc = NULL;
    207	}
    208}
    209
    210/**
    211 * ice_clean_tx_irq - Reclaim resources after transmit completes
    212 * @tx_ring: Tx ring to clean
    213 * @napi_budget: Used to determine if we are in netpoll
    214 *
    215 * Returns true if there's any budget left (e.g. the clean is finished)
    216 */
    217static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
    218{
    219	unsigned int total_bytes = 0, total_pkts = 0;
    220	unsigned int budget = ICE_DFLT_IRQ_WORK;
    221	struct ice_vsi *vsi = tx_ring->vsi;
    222	s16 i = tx_ring->next_to_clean;
    223	struct ice_tx_desc *tx_desc;
    224	struct ice_tx_buf *tx_buf;
    225
    226	/* get the bql data ready */
    227	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
    228
    229	tx_buf = &tx_ring->tx_buf[i];
    230	tx_desc = ICE_TX_DESC(tx_ring, i);
    231	i -= tx_ring->count;
    232
    233	prefetch(&vsi->state);
    234
    235	do {
    236		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
    237
    238		/* if next_to_watch is not set then there is no work pending */
    239		if (!eop_desc)
    240			break;
    241
    242		/* follow the guidelines of other drivers */
    243		prefetchw(&tx_buf->skb->users);
    244
    245		smp_rmb();	/* prevent any other reads prior to eop_desc */
    246
    247		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
    248		/* if the descriptor isn't done, no work yet to do */
    249		if (!(eop_desc->cmd_type_offset_bsz &
    250		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
    251			break;
    252
    253		/* clear next_to_watch to prevent false hangs */
    254		tx_buf->next_to_watch = NULL;
    255
    256		/* update the statistics for this packet */
    257		total_bytes += tx_buf->bytecount;
    258		total_pkts += tx_buf->gso_segs;
    259
    260		/* free the skb */
    261		napi_consume_skb(tx_buf->skb, napi_budget);
    262
    263		/* unmap skb header data */
    264		dma_unmap_single(tx_ring->dev,
    265				 dma_unmap_addr(tx_buf, dma),
    266				 dma_unmap_len(tx_buf, len),
    267				 DMA_TO_DEVICE);
    268
    269		/* clear tx_buf data */
    270		tx_buf->skb = NULL;
    271		dma_unmap_len_set(tx_buf, len, 0);
    272
    273		/* unmap remaining buffers */
    274		while (tx_desc != eop_desc) {
    275			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
    276			tx_buf++;
    277			tx_desc++;
    278			i++;
    279			if (unlikely(!i)) {
    280				i -= tx_ring->count;
    281				tx_buf = tx_ring->tx_buf;
    282				tx_desc = ICE_TX_DESC(tx_ring, 0);
    283			}
    284
    285			/* unmap any remaining paged data */
    286			if (dma_unmap_len(tx_buf, len)) {
    287				dma_unmap_page(tx_ring->dev,
    288					       dma_unmap_addr(tx_buf, dma),
    289					       dma_unmap_len(tx_buf, len),
    290					       DMA_TO_DEVICE);
    291				dma_unmap_len_set(tx_buf, len, 0);
    292			}
    293		}
    294		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
    295
    296		/* move us one more past the eop_desc for start of next pkt */
    297		tx_buf++;
    298		tx_desc++;
    299		i++;
    300		if (unlikely(!i)) {
    301			i -= tx_ring->count;
    302			tx_buf = tx_ring->tx_buf;
    303			tx_desc = ICE_TX_DESC(tx_ring, 0);
    304		}
    305
    306		prefetch(tx_desc);
    307
    308		/* update budget accounting */
    309		budget--;
    310	} while (likely(budget));
    311
    312	i += tx_ring->count;
    313	tx_ring->next_to_clean = i;
    314
    315	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
    316	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
    317
    318#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
    319	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
    320		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
    321		/* Make sure that anybody stopping the queue after this
    322		 * sees the new next_to_clean.
    323		 */
    324		smp_mb();
    325		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
    326		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
    327			netif_tx_wake_queue(txring_txq(tx_ring));
    328			++tx_ring->tx_stats.restart_q;
    329		}
    330	}
    331
    332	return !!budget;
    333}
    334
    335/**
    336 * ice_setup_tx_ring - Allocate the Tx descriptors
    337 * @tx_ring: the Tx ring to set up
    338 *
    339 * Return 0 on success, negative on error
    340 */
    341int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
    342{
    343	struct device *dev = tx_ring->dev;
    344	u32 size;
    345
    346	if (!dev)
    347		return -ENOMEM;
    348
    349	/* warn if we are about to overwrite the pointer */
    350	WARN_ON(tx_ring->tx_buf);
    351	tx_ring->tx_buf =
    352		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
    353			     GFP_KERNEL);
    354	if (!tx_ring->tx_buf)
    355		return -ENOMEM;
    356
    357	/* round up to nearest page */
    358	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
    359		     PAGE_SIZE);
    360	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
    361					    GFP_KERNEL);
    362	if (!tx_ring->desc) {
    363		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
    364			size);
    365		goto err;
    366	}
    367
    368	tx_ring->next_to_use = 0;
    369	tx_ring->next_to_clean = 0;
    370	tx_ring->tx_stats.prev_pkt = -1;
    371	return 0;
    372
    373err:
    374	devm_kfree(dev, tx_ring->tx_buf);
    375	tx_ring->tx_buf = NULL;
    376	return -ENOMEM;
    377}
    378
    379/**
    380 * ice_clean_rx_ring - Free Rx buffers
    381 * @rx_ring: ring to be cleaned
    382 */
    383void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
    384{
    385	struct device *dev = rx_ring->dev;
    386	u32 size;
    387	u16 i;
    388
    389	/* ring already cleared, nothing to do */
    390	if (!rx_ring->rx_buf)
    391		return;
    392
    393	if (rx_ring->skb) {
    394		dev_kfree_skb(rx_ring->skb);
    395		rx_ring->skb = NULL;
    396	}
    397
    398	if (rx_ring->xsk_pool) {
    399		ice_xsk_clean_rx_ring(rx_ring);
    400		goto rx_skip_free;
    401	}
    402
    403	/* Free all the Rx ring sk_buffs */
    404	for (i = 0; i < rx_ring->count; i++) {
    405		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
    406
    407		if (!rx_buf->page)
    408			continue;
    409
    410		/* Invalidate cache lines that may have been written to by
    411		 * device so that we avoid corrupting memory.
    412		 */
    413		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
    414					      rx_buf->page_offset,
    415					      rx_ring->rx_buf_len,
    416					      DMA_FROM_DEVICE);
    417
    418		/* free resources associated with mapping */
    419		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
    420				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
    421		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
    422
    423		rx_buf->page = NULL;
    424		rx_buf->page_offset = 0;
    425	}
    426
    427rx_skip_free:
    428	if (rx_ring->xsk_pool)
    429		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
    430	else
    431		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
    432
    433	/* Zero out the descriptor ring */
    434	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
    435		     PAGE_SIZE);
    436	memset(rx_ring->desc, 0, size);
    437
    438	rx_ring->next_to_alloc = 0;
    439	rx_ring->next_to_clean = 0;
    440	rx_ring->next_to_use = 0;
    441}
    442
    443/**
    444 * ice_free_rx_ring - Free Rx resources
    445 * @rx_ring: ring to clean the resources from
    446 *
    447 * Free all receive software resources
    448 */
    449void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
    450{
    451	u32 size;
    452
    453	ice_clean_rx_ring(rx_ring);
    454	if (rx_ring->vsi->type == ICE_VSI_PF)
    455		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
    456			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
    457	rx_ring->xdp_prog = NULL;
    458	if (rx_ring->xsk_pool) {
    459		kfree(rx_ring->xdp_buf);
    460		rx_ring->xdp_buf = NULL;
    461	} else {
    462		kfree(rx_ring->rx_buf);
    463		rx_ring->rx_buf = NULL;
    464	}
    465
    466	if (rx_ring->desc) {
    467		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
    468			     PAGE_SIZE);
    469		dmam_free_coherent(rx_ring->dev, size,
    470				   rx_ring->desc, rx_ring->dma);
    471		rx_ring->desc = NULL;
    472	}
    473}
    474
    475/**
    476 * ice_setup_rx_ring - Allocate the Rx descriptors
    477 * @rx_ring: the Rx ring to set up
    478 *
    479 * Return 0 on success, negative on error
    480 */
    481int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
    482{
    483	struct device *dev = rx_ring->dev;
    484	u32 size;
    485
    486	if (!dev)
    487		return -ENOMEM;
    488
    489	/* warn if we are about to overwrite the pointer */
    490	WARN_ON(rx_ring->rx_buf);
    491	rx_ring->rx_buf =
    492		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
    493	if (!rx_ring->rx_buf)
    494		return -ENOMEM;
    495
    496	/* round up to nearest page */
    497	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
    498		     PAGE_SIZE);
    499	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
    500					    GFP_KERNEL);
    501	if (!rx_ring->desc) {
    502		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
    503			size);
    504		goto err;
    505	}
    506
    507	rx_ring->next_to_use = 0;
    508	rx_ring->next_to_clean = 0;
    509
    510	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
    511		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
    512
    513	if (rx_ring->vsi->type == ICE_VSI_PF &&
    514	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
    515		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
    516				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
    517			goto err;
    518	return 0;
    519
    520err:
    521	kfree(rx_ring->rx_buf);
    522	rx_ring->rx_buf = NULL;
    523	return -ENOMEM;
    524}
    525
    526static unsigned int
    527ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size)
    528{
    529	unsigned int truesize;
    530
    531#if (PAGE_SIZE < 8192)
    532	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
    533#else
    534	truesize = rx_ring->rx_offset ?
    535		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
    536		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
    537		SKB_DATA_ALIGN(size);
    538#endif
    539	return truesize;
    540}
    541
    542/**
    543 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
    544 * @rx_ring: Rx ring
    545 * @xdp: xdp_buff used as input to the XDP program
    546 * @xdp_prog: XDP program to run
    547 * @xdp_ring: ring to be used for XDP_TX action
    548 *
    549 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
    550 */
    551static int
    552ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
    553	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
    554{
    555	int err;
    556	u32 act;
    557
    558	act = bpf_prog_run_xdp(xdp_prog, xdp);
    559	switch (act) {
    560	case XDP_PASS:
    561		return ICE_XDP_PASS;
    562	case XDP_TX:
    563		if (static_branch_unlikely(&ice_xdp_locking_key))
    564			spin_lock(&xdp_ring->tx_lock);
    565		err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
    566		if (static_branch_unlikely(&ice_xdp_locking_key))
    567			spin_unlock(&xdp_ring->tx_lock);
    568		if (err == ICE_XDP_CONSUMED)
    569			goto out_failure;
    570		return err;
    571	case XDP_REDIRECT:
    572		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
    573		if (err)
    574			goto out_failure;
    575		return ICE_XDP_REDIR;
    576	default:
    577		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
    578		fallthrough;
    579	case XDP_ABORTED:
    580out_failure:
    581		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
    582		fallthrough;
    583	case XDP_DROP:
    584		return ICE_XDP_CONSUMED;
    585	}
    586}
    587
    588/**
    589 * ice_xdp_xmit - submit packets to XDP ring for transmission
    590 * @dev: netdev
    591 * @n: number of XDP frames to be transmitted
    592 * @frames: XDP frames to be transmitted
    593 * @flags: transmit flags
    594 *
    595 * Returns number of frames successfully sent. Failed frames
    596 * will be free'ed by XDP core.
    597 * For error cases, a negative errno code is returned and no-frames
    598 * are transmitted (caller must handle freeing frames).
    599 */
    600int
    601ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
    602	     u32 flags)
    603{
    604	struct ice_netdev_priv *np = netdev_priv(dev);
    605	unsigned int queue_index = smp_processor_id();
    606	struct ice_vsi *vsi = np->vsi;
    607	struct ice_tx_ring *xdp_ring;
    608	int nxmit = 0, i;
    609
    610	if (test_bit(ICE_VSI_DOWN, vsi->state))
    611		return -ENETDOWN;
    612
    613	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
    614		return -ENXIO;
    615
    616	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
    617		return -EINVAL;
    618
    619	if (static_branch_unlikely(&ice_xdp_locking_key)) {
    620		queue_index %= vsi->num_xdp_txq;
    621		xdp_ring = vsi->xdp_rings[queue_index];
    622		spin_lock(&xdp_ring->tx_lock);
    623	} else {
    624		xdp_ring = vsi->xdp_rings[queue_index];
    625	}
    626
    627	for (i = 0; i < n; i++) {
    628		struct xdp_frame *xdpf = frames[i];
    629		int err;
    630
    631		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
    632		if (err != ICE_XDP_TX)
    633			break;
    634		nxmit++;
    635	}
    636
    637	if (unlikely(flags & XDP_XMIT_FLUSH))
    638		ice_xdp_ring_update_tail(xdp_ring);
    639
    640	if (static_branch_unlikely(&ice_xdp_locking_key))
    641		spin_unlock(&xdp_ring->tx_lock);
    642
    643	return nxmit;
    644}
    645
    646/**
    647 * ice_alloc_mapped_page - recycle or make a new page
    648 * @rx_ring: ring to use
    649 * @bi: rx_buf struct to modify
    650 *
    651 * Returns true if the page was successfully allocated or
    652 * reused.
    653 */
    654static bool
    655ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
    656{
    657	struct page *page = bi->page;
    658	dma_addr_t dma;
    659
    660	/* since we are recycling buffers we should seldom need to alloc */
    661	if (likely(page))
    662		return true;
    663
    664	/* alloc new page for storage */
    665	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
    666	if (unlikely(!page)) {
    667		rx_ring->rx_stats.alloc_page_failed++;
    668		return false;
    669	}
    670
    671	/* map page for use */
    672	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
    673				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
    674
    675	/* if mapping failed free memory back to system since
    676	 * there isn't much point in holding memory we can't use
    677	 */
    678	if (dma_mapping_error(rx_ring->dev, dma)) {
    679		__free_pages(page, ice_rx_pg_order(rx_ring));
    680		rx_ring->rx_stats.alloc_page_failed++;
    681		return false;
    682	}
    683
    684	bi->dma = dma;
    685	bi->page = page;
    686	bi->page_offset = rx_ring->rx_offset;
    687	page_ref_add(page, USHRT_MAX - 1);
    688	bi->pagecnt_bias = USHRT_MAX;
    689
    690	return true;
    691}
    692
    693/**
    694 * ice_alloc_rx_bufs - Replace used receive buffers
    695 * @rx_ring: ring to place buffers on
    696 * @cleaned_count: number of buffers to replace
    697 *
    698 * Returns false if all allocations were successful, true if any fail. Returning
    699 * true signals to the caller that we didn't replace cleaned_count buffers and
    700 * there is more work to do.
    701 *
    702 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
    703 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
    704 * multiple tail writes per call.
    705 */
    706bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
    707{
    708	union ice_32b_rx_flex_desc *rx_desc;
    709	u16 ntu = rx_ring->next_to_use;
    710	struct ice_rx_buf *bi;
    711
    712	/* do nothing if no valid netdev defined */
    713	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
    714	    !cleaned_count)
    715		return false;
    716
    717	/* get the Rx descriptor and buffer based on next_to_use */
    718	rx_desc = ICE_RX_DESC(rx_ring, ntu);
    719	bi = &rx_ring->rx_buf[ntu];
    720
    721	do {
    722		/* if we fail here, we have work remaining */
    723		if (!ice_alloc_mapped_page(rx_ring, bi))
    724			break;
    725
    726		/* sync the buffer for use by the device */
    727		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
    728						 bi->page_offset,
    729						 rx_ring->rx_buf_len,
    730						 DMA_FROM_DEVICE);
    731
    732		/* Refresh the desc even if buffer_addrs didn't change
    733		 * because each write-back erases this info.
    734		 */
    735		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
    736
    737		rx_desc++;
    738		bi++;
    739		ntu++;
    740		if (unlikely(ntu == rx_ring->count)) {
    741			rx_desc = ICE_RX_DESC(rx_ring, 0);
    742			bi = rx_ring->rx_buf;
    743			ntu = 0;
    744		}
    745
    746		/* clear the status bits for the next_to_use descriptor */
    747		rx_desc->wb.status_error0 = 0;
    748
    749		cleaned_count--;
    750	} while (cleaned_count);
    751
    752	if (rx_ring->next_to_use != ntu)
    753		ice_release_rx_desc(rx_ring, ntu);
    754
    755	return !!cleaned_count;
    756}
    757
    758/**
    759 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
    760 * @rx_buf: Rx buffer to adjust
    761 * @size: Size of adjustment
    762 *
    763 * Update the offset within page so that Rx buf will be ready to be reused.
    764 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
    765 * so the second half of page assigned to Rx buffer will be used, otherwise
    766 * the offset is moved by "size" bytes
    767 */
    768static void
    769ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
    770{
    771#if (PAGE_SIZE < 8192)
    772	/* flip page offset to other buffer */
    773	rx_buf->page_offset ^= size;
    774#else
    775	/* move offset up to the next cache line */
    776	rx_buf->page_offset += size;
    777#endif
    778}
    779
    780/**
    781 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
    782 * @rx_buf: buffer containing the page
    783 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
    784 *
    785 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
    786 * which will assign the current buffer to the buffer that next_to_alloc is
    787 * pointing to; otherwise, the DMA mapping needs to be destroyed and
    788 * page freed
    789 */
    790static bool
    791ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
    792{
    793	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
    794	struct page *page = rx_buf->page;
    795
    796	/* avoid re-using remote and pfmemalloc pages */
    797	if (!dev_page_is_reusable(page))
    798		return false;
    799
    800#if (PAGE_SIZE < 8192)
    801	/* if we are only owner of page we can reuse it */
    802	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
    803		return false;
    804#else
    805#define ICE_LAST_OFFSET \
    806	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
    807	if (rx_buf->page_offset > ICE_LAST_OFFSET)
    808		return false;
    809#endif /* PAGE_SIZE < 8192) */
    810
    811	/* If we have drained the page fragment pool we need to update
    812	 * the pagecnt_bias and page count so that we fully restock the
    813	 * number of references the driver holds.
    814	 */
    815	if (unlikely(pagecnt_bias == 1)) {
    816		page_ref_add(page, USHRT_MAX - 1);
    817		rx_buf->pagecnt_bias = USHRT_MAX;
    818	}
    819
    820	return true;
    821}
    822
    823/**
    824 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
    825 * @rx_ring: Rx descriptor ring to transact packets on
    826 * @rx_buf: buffer containing page to add
    827 * @skb: sk_buff to place the data into
    828 * @size: packet length from rx_desc
    829 *
    830 * This function will add the data contained in rx_buf->page to the skb.
    831 * It will just attach the page as a frag to the skb.
    832 * The function will then update the page offset.
    833 */
    834static void
    835ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
    836		struct sk_buff *skb, unsigned int size)
    837{
    838#if (PAGE_SIZE >= 8192)
    839	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
    840#else
    841	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
    842#endif
    843
    844	if (!size)
    845		return;
    846	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
    847			rx_buf->page_offset, size, truesize);
    848
    849	/* page is being used so we must update the page offset */
    850	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
    851}
    852
    853/**
    854 * ice_reuse_rx_page - page flip buffer and store it back on the ring
    855 * @rx_ring: Rx descriptor ring to store buffers on
    856 * @old_buf: donor buffer to have page reused
    857 *
    858 * Synchronizes page for reuse by the adapter
    859 */
    860static void
    861ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
    862{
    863	u16 nta = rx_ring->next_to_alloc;
    864	struct ice_rx_buf *new_buf;
    865
    866	new_buf = &rx_ring->rx_buf[nta];
    867
    868	/* update, and store next to alloc */
    869	nta++;
    870	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
    871
    872	/* Transfer page from old buffer to new buffer.
    873	 * Move each member individually to avoid possible store
    874	 * forwarding stalls and unnecessary copy of skb.
    875	 */
    876	new_buf->dma = old_buf->dma;
    877	new_buf->page = old_buf->page;
    878	new_buf->page_offset = old_buf->page_offset;
    879	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
    880}
    881
    882/**
    883 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
    884 * @rx_ring: Rx descriptor ring to transact packets on
    885 * @size: size of buffer to add to skb
    886 * @rx_buf_pgcnt: rx_buf page refcount
    887 *
    888 * This function will pull an Rx buffer from the ring and synchronize it
    889 * for use by the CPU.
    890 */
    891static struct ice_rx_buf *
    892ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
    893	       int *rx_buf_pgcnt)
    894{
    895	struct ice_rx_buf *rx_buf;
    896
    897	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
    898	*rx_buf_pgcnt =
    899#if (PAGE_SIZE < 8192)
    900		page_count(rx_buf->page);
    901#else
    902		0;
    903#endif
    904	prefetchw(rx_buf->page);
    905
    906	if (!size)
    907		return rx_buf;
    908	/* we are reusing so sync this buffer for CPU use */
    909	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
    910				      rx_buf->page_offset, size,
    911				      DMA_FROM_DEVICE);
    912
    913	/* We have pulled a buffer for use, so decrement pagecnt_bias */
    914	rx_buf->pagecnt_bias--;
    915
    916	return rx_buf;
    917}
    918
    919/**
    920 * ice_build_skb - Build skb around an existing buffer
    921 * @rx_ring: Rx descriptor ring to transact packets on
    922 * @rx_buf: Rx buffer to pull data from
    923 * @xdp: xdp_buff pointing to the data
    924 *
    925 * This function builds an skb around an existing Rx buffer, taking care
    926 * to set up the skb correctly and avoid any memcpy overhead.
    927 */
    928static struct sk_buff *
    929ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
    930	      struct xdp_buff *xdp)
    931{
    932	u8 metasize = xdp->data - xdp->data_meta;
    933#if (PAGE_SIZE < 8192)
    934	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
    935#else
    936	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
    937				SKB_DATA_ALIGN(xdp->data_end -
    938					       xdp->data_hard_start);
    939#endif
    940	struct sk_buff *skb;
    941
    942	/* Prefetch first cache line of first page. If xdp->data_meta
    943	 * is unused, this points exactly as xdp->data, otherwise we
    944	 * likely have a consumer accessing first few bytes of meta
    945	 * data, and then actual data.
    946	 */
    947	net_prefetch(xdp->data_meta);
    948	/* build an skb around the page buffer */
    949	skb = napi_build_skb(xdp->data_hard_start, truesize);
    950	if (unlikely(!skb))
    951		return NULL;
    952
    953	/* must to record Rx queue, otherwise OS features such as
    954	 * symmetric queue won't work
    955	 */
    956	skb_record_rx_queue(skb, rx_ring->q_index);
    957
    958	/* update pointers within the skb to store the data */
    959	skb_reserve(skb, xdp->data - xdp->data_hard_start);
    960	__skb_put(skb, xdp->data_end - xdp->data);
    961	if (metasize)
    962		skb_metadata_set(skb, metasize);
    963
    964	/* buffer is used by skb, update page_offset */
    965	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
    966
    967	return skb;
    968}
    969
    970/**
    971 * ice_construct_skb - Allocate skb and populate it
    972 * @rx_ring: Rx descriptor ring to transact packets on
    973 * @rx_buf: Rx buffer to pull data from
    974 * @xdp: xdp_buff pointing to the data
    975 *
    976 * This function allocates an skb. It then populates it with the page
    977 * data from the current receive descriptor, taking care to set up the
    978 * skb correctly.
    979 */
    980static struct sk_buff *
    981ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
    982		  struct xdp_buff *xdp)
    983{
    984	unsigned int metasize = xdp->data - xdp->data_meta;
    985	unsigned int size = xdp->data_end - xdp->data;
    986	unsigned int headlen;
    987	struct sk_buff *skb;
    988
    989	/* prefetch first cache line of first page */
    990	net_prefetch(xdp->data_meta);
    991
    992	/* allocate a skb to store the frags */
    993	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
    994			       ICE_RX_HDR_SIZE + metasize,
    995			       GFP_ATOMIC | __GFP_NOWARN);
    996	if (unlikely(!skb))
    997		return NULL;
    998
    999	skb_record_rx_queue(skb, rx_ring->q_index);
   1000	/* Determine available headroom for copy */
   1001	headlen = size;
   1002	if (headlen > ICE_RX_HDR_SIZE)
   1003		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
   1004
   1005	/* align pull length to size of long to optimize memcpy performance */
   1006	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
   1007	       ALIGN(headlen + metasize, sizeof(long)));
   1008
   1009	if (metasize) {
   1010		skb_metadata_set(skb, metasize);
   1011		__skb_pull(skb, metasize);
   1012	}
   1013
   1014	/* if we exhaust the linear part then add what is left as a frag */
   1015	size -= headlen;
   1016	if (size) {
   1017#if (PAGE_SIZE >= 8192)
   1018		unsigned int truesize = SKB_DATA_ALIGN(size);
   1019#else
   1020		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
   1021#endif
   1022		skb_add_rx_frag(skb, 0, rx_buf->page,
   1023				rx_buf->page_offset + headlen, size, truesize);
   1024		/* buffer is used by skb, update page_offset */
   1025		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
   1026	} else {
   1027		/* buffer is unused, reset bias back to rx_buf; data was copied
   1028		 * onto skb's linear part so there's no need for adjusting
   1029		 * page offset and we can reuse this buffer as-is
   1030		 */
   1031		rx_buf->pagecnt_bias++;
   1032	}
   1033
   1034	return skb;
   1035}
   1036
   1037/**
   1038 * ice_put_rx_buf - Clean up used buffer and either recycle or free
   1039 * @rx_ring: Rx descriptor ring to transact packets on
   1040 * @rx_buf: Rx buffer to pull data from
   1041 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
   1042 *
   1043 * This function will update next_to_clean and then clean up the contents
   1044 * of the rx_buf. It will either recycle the buffer or unmap it and free
   1045 * the associated resources.
   1046 */
   1047static void
   1048ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
   1049	       int rx_buf_pgcnt)
   1050{
   1051	u16 ntc = rx_ring->next_to_clean + 1;
   1052
   1053	/* fetch, update, and store next to clean */
   1054	ntc = (ntc < rx_ring->count) ? ntc : 0;
   1055	rx_ring->next_to_clean = ntc;
   1056
   1057	if (!rx_buf)
   1058		return;
   1059
   1060	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
   1061		/* hand second half of page back to the ring */
   1062		ice_reuse_rx_page(rx_ring, rx_buf);
   1063	} else {
   1064		/* we are not reusing the buffer so unmap it */
   1065		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
   1066				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
   1067				     ICE_RX_DMA_ATTR);
   1068		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
   1069	}
   1070
   1071	/* clear contents of buffer_info */
   1072	rx_buf->page = NULL;
   1073}
   1074
   1075/**
   1076 * ice_is_non_eop - process handling of non-EOP buffers
   1077 * @rx_ring: Rx ring being processed
   1078 * @rx_desc: Rx descriptor for current buffer
   1079 *
   1080 * If the buffer is an EOP buffer, this function exits returning false,
   1081 * otherwise return true indicating that this is in fact a non-EOP buffer.
   1082 */
   1083static bool
   1084ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
   1085{
   1086	/* if we are the last buffer then there is nothing else to do */
   1087#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
   1088	if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF)))
   1089		return false;
   1090
   1091	rx_ring->rx_stats.non_eop_descs++;
   1092
   1093	return true;
   1094}
   1095
   1096/**
   1097 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
   1098 * @rx_ring: Rx descriptor ring to transact packets on
   1099 * @budget: Total limit on number of packets to process
   1100 *
   1101 * This function provides a "bounce buffer" approach to Rx interrupt
   1102 * processing. The advantage to this is that on systems that have
   1103 * expensive overhead for IOMMU access this provides a means of avoiding
   1104 * it by maintaining the mapping of the page to the system.
   1105 *
   1106 * Returns amount of work completed
   1107 */
   1108int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
   1109{
   1110	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
   1111	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
   1112	unsigned int offset = rx_ring->rx_offset;
   1113	struct ice_tx_ring *xdp_ring = NULL;
   1114	unsigned int xdp_res, xdp_xmit = 0;
   1115	struct sk_buff *skb = rx_ring->skb;
   1116	struct bpf_prog *xdp_prog = NULL;
   1117	struct xdp_buff xdp;
   1118	bool failure;
   1119
   1120	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
   1121#if (PAGE_SIZE < 8192)
   1122	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
   1123#endif
   1124	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
   1125
   1126	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
   1127	if (xdp_prog)
   1128		xdp_ring = rx_ring->xdp_ring;
   1129
   1130	/* start the loop to process Rx packets bounded by 'budget' */
   1131	while (likely(total_rx_pkts < (unsigned int)budget)) {
   1132		union ice_32b_rx_flex_desc *rx_desc;
   1133		struct ice_rx_buf *rx_buf;
   1134		unsigned char *hard_start;
   1135		unsigned int size;
   1136		u16 stat_err_bits;
   1137		int rx_buf_pgcnt;
   1138		u16 vlan_tag = 0;
   1139		u16 rx_ptype;
   1140
   1141		/* get the Rx desc from Rx ring based on 'next_to_clean' */
   1142		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
   1143
   1144		/* status_error_len will always be zero for unused descriptors
   1145		 * because it's cleared in cleanup, and overlaps with hdr_addr
   1146		 * which is always zero because packet split isn't used, if the
   1147		 * hardware wrote DD then it will be non-zero
   1148		 */
   1149		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
   1150		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
   1151			break;
   1152
   1153		/* This memory barrier is needed to keep us from reading
   1154		 * any other fields out of the rx_desc until we know the
   1155		 * DD bit is set.
   1156		 */
   1157		dma_rmb();
   1158
   1159		ice_trace(clean_rx_irq, rx_ring, rx_desc);
   1160		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
   1161			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
   1162
   1163			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
   1164			    ctrl_vsi->vf)
   1165				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
   1166			ice_put_rx_buf(rx_ring, NULL, 0);
   1167			cleaned_count++;
   1168			continue;
   1169		}
   1170
   1171		size = le16_to_cpu(rx_desc->wb.pkt_len) &
   1172			ICE_RX_FLX_DESC_PKT_LEN_M;
   1173
   1174		/* retrieve a buffer from the ring */
   1175		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
   1176
   1177		if (!size) {
   1178			xdp.data = NULL;
   1179			xdp.data_end = NULL;
   1180			xdp.data_hard_start = NULL;
   1181			xdp.data_meta = NULL;
   1182			goto construct_skb;
   1183		}
   1184
   1185		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
   1186			     offset;
   1187		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
   1188#if (PAGE_SIZE > 4096)
   1189		/* At larger PAGE_SIZE, frame_sz depend on len size */
   1190		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
   1191#endif
   1192
   1193		if (!xdp_prog)
   1194			goto construct_skb;
   1195
   1196		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring);
   1197		if (!xdp_res)
   1198			goto construct_skb;
   1199		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
   1200			xdp_xmit |= xdp_res;
   1201			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
   1202		} else {
   1203			rx_buf->pagecnt_bias++;
   1204		}
   1205		total_rx_bytes += size;
   1206		total_rx_pkts++;
   1207
   1208		cleaned_count++;
   1209		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
   1210		continue;
   1211construct_skb:
   1212		if (skb) {
   1213			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
   1214		} else if (likely(xdp.data)) {
   1215			if (ice_ring_uses_build_skb(rx_ring))
   1216				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
   1217			else
   1218				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
   1219		}
   1220		/* exit if we failed to retrieve a buffer */
   1221		if (!skb) {
   1222			rx_ring->rx_stats.alloc_buf_failed++;
   1223			if (rx_buf)
   1224				rx_buf->pagecnt_bias++;
   1225			break;
   1226		}
   1227
   1228		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
   1229		cleaned_count++;
   1230
   1231		/* skip if it is NOP desc */
   1232		if (ice_is_non_eop(rx_ring, rx_desc))
   1233			continue;
   1234
   1235		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
   1236		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
   1237					      stat_err_bits))) {
   1238			dev_kfree_skb_any(skb);
   1239			continue;
   1240		}
   1241
   1242		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
   1243
   1244		/* pad the skb if needed, to make a valid ethernet frame */
   1245		if (eth_skb_pad(skb)) {
   1246			skb = NULL;
   1247			continue;
   1248		}
   1249
   1250		/* probably a little skewed due to removing CRC */
   1251		total_rx_bytes += skb->len;
   1252
   1253		/* populate checksum, VLAN, and protocol */
   1254		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
   1255			ICE_RX_FLEX_DESC_PTYPE_M;
   1256
   1257		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
   1258
   1259		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
   1260		/* send completed skb up the stack */
   1261		ice_receive_skb(rx_ring, skb, vlan_tag);
   1262		skb = NULL;
   1263
   1264		/* update budget accounting */
   1265		total_rx_pkts++;
   1266	}
   1267
   1268	/* return up to cleaned_count buffers to hardware */
   1269	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
   1270
   1271	if (xdp_prog)
   1272		ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
   1273	rx_ring->skb = skb;
   1274
   1275	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
   1276
   1277	/* guarantee a trip back through this routine if there was a failure */
   1278	return failure ? budget : (int)total_rx_pkts;
   1279}
   1280
   1281static void __ice_update_sample(struct ice_q_vector *q_vector,
   1282				struct ice_ring_container *rc,
   1283				struct dim_sample *sample,
   1284				bool is_tx)
   1285{
   1286	u64 packets = 0, bytes = 0;
   1287
   1288	if (is_tx) {
   1289		struct ice_tx_ring *tx_ring;
   1290
   1291		ice_for_each_tx_ring(tx_ring, *rc) {
   1292			packets += tx_ring->stats.pkts;
   1293			bytes += tx_ring->stats.bytes;
   1294		}
   1295	} else {
   1296		struct ice_rx_ring *rx_ring;
   1297
   1298		ice_for_each_rx_ring(rx_ring, *rc) {
   1299			packets += rx_ring->stats.pkts;
   1300			bytes += rx_ring->stats.bytes;
   1301		}
   1302	}
   1303
   1304	dim_update_sample(q_vector->total_events, packets, bytes, sample);
   1305	sample->comp_ctr = 0;
   1306
   1307	/* if dim settings get stale, like when not updated for 1
   1308	 * second or longer, force it to start again. This addresses the
   1309	 * frequent case of an idle queue being switched to by the
   1310	 * scheduler. The 1,000 here means 1,000 milliseconds.
   1311	 */
   1312	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
   1313		rc->dim.state = DIM_START_MEASURE;
   1314}
   1315
   1316/**
   1317 * ice_net_dim - Update net DIM algorithm
   1318 * @q_vector: the vector associated with the interrupt
   1319 *
   1320 * Create a DIM sample and notify net_dim() so that it can possibly decide
   1321 * a new ITR value based on incoming packets, bytes, and interrupts.
   1322 *
   1323 * This function is a no-op if the ring is not configured to dynamic ITR.
   1324 */
   1325static void ice_net_dim(struct ice_q_vector *q_vector)
   1326{
   1327	struct ice_ring_container *tx = &q_vector->tx;
   1328	struct ice_ring_container *rx = &q_vector->rx;
   1329
   1330	if (ITR_IS_DYNAMIC(tx)) {
   1331		struct dim_sample dim_sample;
   1332
   1333		__ice_update_sample(q_vector, tx, &dim_sample, true);
   1334		net_dim(&tx->dim, dim_sample);
   1335	}
   1336
   1337	if (ITR_IS_DYNAMIC(rx)) {
   1338		struct dim_sample dim_sample;
   1339
   1340		__ice_update_sample(q_vector, rx, &dim_sample, false);
   1341		net_dim(&rx->dim, dim_sample);
   1342	}
   1343}
   1344
   1345/**
   1346 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
   1347 * @itr_idx: interrupt throttling index
   1348 * @itr: interrupt throttling value in usecs
   1349 */
   1350static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
   1351{
   1352	/* The ITR value is reported in microseconds, and the register value is
   1353	 * recorded in 2 microsecond units. For this reason we only need to
   1354	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
   1355	 * granularity as a shift instead of division. The mask makes sure the
   1356	 * ITR value is never odd so we don't accidentally write into the field
   1357	 * prior to the ITR field.
   1358	 */
   1359	itr &= ICE_ITR_MASK;
   1360
   1361	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
   1362		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
   1363		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
   1364}
   1365
   1366/**
   1367 * ice_enable_interrupt - re-enable MSI-X interrupt
   1368 * @q_vector: the vector associated with the interrupt to enable
   1369 *
   1370 * If the VSI is down, the interrupt will not be re-enabled. Also,
   1371 * when enabling the interrupt always reset the wb_on_itr to false
   1372 * and trigger a software interrupt to clean out internal state.
   1373 */
   1374static void ice_enable_interrupt(struct ice_q_vector *q_vector)
   1375{
   1376	struct ice_vsi *vsi = q_vector->vsi;
   1377	bool wb_en = q_vector->wb_on_itr;
   1378	u32 itr_val;
   1379
   1380	if (test_bit(ICE_DOWN, vsi->state))
   1381		return;
   1382
   1383	/* trigger an ITR delayed software interrupt when exiting busy poll, to
   1384	 * make sure to catch any pending cleanups that might have been missed
   1385	 * due to interrupt state transition. If busy poll or poll isn't
   1386	 * enabled, then don't update ITR, and just enable the interrupt.
   1387	 */
   1388	if (!wb_en) {
   1389		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
   1390	} else {
   1391		q_vector->wb_on_itr = false;
   1392
   1393		/* do two things here with a single write. Set up the third ITR
   1394		 * index to be used for software interrupt moderation, and then
   1395		 * trigger a software interrupt with a rate limit of 20K on
   1396		 * software interrupts, this will help avoid high interrupt
   1397		 * loads due to frequently polling and exiting polling.
   1398		 */
   1399		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
   1400		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
   1401			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
   1402			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
   1403	}
   1404	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
   1405}
   1406
   1407/**
   1408 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
   1409 * @q_vector: q_vector to set WB_ON_ITR on
   1410 *
   1411 * We need to tell hardware to write-back completed descriptors even when
   1412 * interrupts are disabled. Descriptors will be written back on cache line
   1413 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
   1414 * descriptors may not be written back if they don't fill a cache line until
   1415 * the next interrupt.
   1416 *
   1417 * This sets the write-back frequency to whatever was set previously for the
   1418 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
   1419 * aren't meddling with the INTENA_M bit.
   1420 */
   1421static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
   1422{
   1423	struct ice_vsi *vsi = q_vector->vsi;
   1424
   1425	/* already in wb_on_itr mode no need to change it */
   1426	if (q_vector->wb_on_itr)
   1427		return;
   1428
   1429	/* use previously set ITR values for all of the ITR indices by
   1430	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
   1431	 * be static in non-adaptive mode (user configured)
   1432	 */
   1433	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
   1434	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
   1435	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
   1436	     GLINT_DYN_CTL_WB_ON_ITR_M);
   1437
   1438	q_vector->wb_on_itr = true;
   1439}
   1440
   1441/**
   1442 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
   1443 * @napi: napi struct with our devices info in it
   1444 * @budget: amount of work driver is allowed to do this pass, in packets
   1445 *
   1446 * This function will clean all queues associated with a q_vector.
   1447 *
   1448 * Returns the amount of work done
   1449 */
   1450int ice_napi_poll(struct napi_struct *napi, int budget)
   1451{
   1452	struct ice_q_vector *q_vector =
   1453				container_of(napi, struct ice_q_vector, napi);
   1454	struct ice_tx_ring *tx_ring;
   1455	struct ice_rx_ring *rx_ring;
   1456	bool clean_complete = true;
   1457	int budget_per_ring;
   1458	int work_done = 0;
   1459
   1460	/* Since the actual Tx work is minimal, we can give the Tx a larger
   1461	 * budget and be more aggressive about cleaning up the Tx descriptors.
   1462	 */
   1463	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
   1464		bool wd;
   1465
   1466		if (tx_ring->xsk_pool)
   1467			wd = ice_xmit_zc(tx_ring, ICE_DESC_UNUSED(tx_ring), budget);
   1468		else if (ice_ring_is_xdp(tx_ring))
   1469			wd = true;
   1470		else
   1471			wd = ice_clean_tx_irq(tx_ring, budget);
   1472
   1473		if (!wd)
   1474			clean_complete = false;
   1475	}
   1476
   1477	/* Handle case where we are called by netpoll with a budget of 0 */
   1478	if (unlikely(budget <= 0))
   1479		return budget;
   1480
   1481	/* normally we have 1 Rx ring per q_vector */
   1482	if (unlikely(q_vector->num_ring_rx > 1))
   1483		/* We attempt to distribute budget to each Rx queue fairly, but
   1484		 * don't allow the budget to go below 1 because that would exit
   1485		 * polling early.
   1486		 */
   1487		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
   1488	else
   1489		/* Max of 1 Rx ring in this q_vector so give it the budget */
   1490		budget_per_ring = budget;
   1491
   1492	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
   1493		int cleaned;
   1494
   1495		/* A dedicated path for zero-copy allows making a single
   1496		 * comparison in the irq context instead of many inside the
   1497		 * ice_clean_rx_irq function and makes the codebase cleaner.
   1498		 */
   1499		cleaned = rx_ring->xsk_pool ?
   1500			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
   1501			  ice_clean_rx_irq(rx_ring, budget_per_ring);
   1502		work_done += cleaned;
   1503		/* if we clean as many as budgeted, we must not be done */
   1504		if (cleaned >= budget_per_ring)
   1505			clean_complete = false;
   1506	}
   1507
   1508	/* If work not completed, return budget and polling will return */
   1509	if (!clean_complete) {
   1510		/* Set the writeback on ITR so partial completions of
   1511		 * cache-lines will still continue even if we're polling.
   1512		 */
   1513		ice_set_wb_on_itr(q_vector);
   1514		return budget;
   1515	}
   1516
   1517	/* Exit the polling mode, but don't re-enable interrupts if stack might
   1518	 * poll us due to busy-polling
   1519	 */
   1520	if (napi_complete_done(napi, work_done)) {
   1521		ice_net_dim(q_vector);
   1522		ice_enable_interrupt(q_vector);
   1523	} else {
   1524		ice_set_wb_on_itr(q_vector);
   1525	}
   1526
   1527	return min_t(int, work_done, budget - 1);
   1528}
   1529
   1530/**
   1531 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
   1532 * @tx_ring: the ring to be checked
   1533 * @size: the size buffer we want to assure is available
   1534 *
   1535 * Returns -EBUSY if a stop is needed, else 0
   1536 */
   1537static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
   1538{
   1539	netif_tx_stop_queue(txring_txq(tx_ring));
   1540	/* Memory barrier before checking head and tail */
   1541	smp_mb();
   1542
   1543	/* Check again in a case another CPU has just made room available. */
   1544	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
   1545		return -EBUSY;
   1546
   1547	/* A reprieve! - use start_queue because it doesn't call schedule */
   1548	netif_tx_start_queue(txring_txq(tx_ring));
   1549	++tx_ring->tx_stats.restart_q;
   1550	return 0;
   1551}
   1552
   1553/**
   1554 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
   1555 * @tx_ring: the ring to be checked
   1556 * @size:    the size buffer we want to assure is available
   1557 *
   1558 * Returns 0 if stop is not needed
   1559 */
   1560static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
   1561{
   1562	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
   1563		return 0;
   1564
   1565	return __ice_maybe_stop_tx(tx_ring, size);
   1566}
   1567
   1568/**
   1569 * ice_tx_map - Build the Tx descriptor
   1570 * @tx_ring: ring to send buffer on
   1571 * @first: first buffer info buffer to use
   1572 * @off: pointer to struct that holds offload parameters
   1573 *
   1574 * This function loops over the skb data pointed to by *first
   1575 * and gets a physical address for each memory location and programs
   1576 * it and the length into the transmit descriptor.
   1577 */
   1578static void
   1579ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
   1580	   struct ice_tx_offload_params *off)
   1581{
   1582	u64 td_offset, td_tag, td_cmd;
   1583	u16 i = tx_ring->next_to_use;
   1584	unsigned int data_len, size;
   1585	struct ice_tx_desc *tx_desc;
   1586	struct ice_tx_buf *tx_buf;
   1587	struct sk_buff *skb;
   1588	skb_frag_t *frag;
   1589	dma_addr_t dma;
   1590	bool kick;
   1591
   1592	td_tag = off->td_l2tag1;
   1593	td_cmd = off->td_cmd;
   1594	td_offset = off->td_offset;
   1595	skb = first->skb;
   1596
   1597	data_len = skb->data_len;
   1598	size = skb_headlen(skb);
   1599
   1600	tx_desc = ICE_TX_DESC(tx_ring, i);
   1601
   1602	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
   1603		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
   1604		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
   1605			  ICE_TX_FLAGS_VLAN_S;
   1606	}
   1607
   1608	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
   1609
   1610	tx_buf = first;
   1611
   1612	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
   1613		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
   1614
   1615		if (dma_mapping_error(tx_ring->dev, dma))
   1616			goto dma_error;
   1617
   1618		/* record length, and DMA address */
   1619		dma_unmap_len_set(tx_buf, len, size);
   1620		dma_unmap_addr_set(tx_buf, dma, dma);
   1621
   1622		/* align size to end of page */
   1623		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
   1624		tx_desc->buf_addr = cpu_to_le64(dma);
   1625
   1626		/* account for data chunks larger than the hardware
   1627		 * can handle
   1628		 */
   1629		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
   1630			tx_desc->cmd_type_offset_bsz =
   1631				ice_build_ctob(td_cmd, td_offset, max_data,
   1632					       td_tag);
   1633
   1634			tx_desc++;
   1635			i++;
   1636
   1637			if (i == tx_ring->count) {
   1638				tx_desc = ICE_TX_DESC(tx_ring, 0);
   1639				i = 0;
   1640			}
   1641
   1642			dma += max_data;
   1643			size -= max_data;
   1644
   1645			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
   1646			tx_desc->buf_addr = cpu_to_le64(dma);
   1647		}
   1648
   1649		if (likely(!data_len))
   1650			break;
   1651
   1652		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
   1653							      size, td_tag);
   1654
   1655		tx_desc++;
   1656		i++;
   1657
   1658		if (i == tx_ring->count) {
   1659			tx_desc = ICE_TX_DESC(tx_ring, 0);
   1660			i = 0;
   1661		}
   1662
   1663		size = skb_frag_size(frag);
   1664		data_len -= size;
   1665
   1666		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
   1667				       DMA_TO_DEVICE);
   1668
   1669		tx_buf = &tx_ring->tx_buf[i];
   1670	}
   1671
   1672	/* record SW timestamp if HW timestamp is not available */
   1673	skb_tx_timestamp(first->skb);
   1674
   1675	i++;
   1676	if (i == tx_ring->count)
   1677		i = 0;
   1678
   1679	/* write last descriptor with RS and EOP bits */
   1680	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
   1681	tx_desc->cmd_type_offset_bsz =
   1682			ice_build_ctob(td_cmd, td_offset, size, td_tag);
   1683
   1684	/* Force memory writes to complete before letting h/w know there
   1685	 * are new descriptors to fetch.
   1686	 *
   1687	 * We also use this memory barrier to make certain all of the
   1688	 * status bits have been updated before next_to_watch is written.
   1689	 */
   1690	wmb();
   1691
   1692	/* set next_to_watch value indicating a packet is present */
   1693	first->next_to_watch = tx_desc;
   1694
   1695	tx_ring->next_to_use = i;
   1696
   1697	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
   1698
   1699	/* notify HW of packet */
   1700	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
   1701				      netdev_xmit_more());
   1702	if (kick)
   1703		/* notify HW of packet */
   1704		writel(i, tx_ring->tail);
   1705
   1706	return;
   1707
   1708dma_error:
   1709	/* clear DMA mappings for failed tx_buf map */
   1710	for (;;) {
   1711		tx_buf = &tx_ring->tx_buf[i];
   1712		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
   1713		if (tx_buf == first)
   1714			break;
   1715		if (i == 0)
   1716			i = tx_ring->count;
   1717		i--;
   1718	}
   1719
   1720	tx_ring->next_to_use = i;
   1721}
   1722
   1723/**
   1724 * ice_tx_csum - Enable Tx checksum offloads
   1725 * @first: pointer to the first descriptor
   1726 * @off: pointer to struct that holds offload parameters
   1727 *
   1728 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
   1729 */
   1730static
   1731int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
   1732{
   1733	u32 l4_len = 0, l3_len = 0, l2_len = 0;
   1734	struct sk_buff *skb = first->skb;
   1735	union {
   1736		struct iphdr *v4;
   1737		struct ipv6hdr *v6;
   1738		unsigned char *hdr;
   1739	} ip;
   1740	union {
   1741		struct tcphdr *tcp;
   1742		unsigned char *hdr;
   1743	} l4;
   1744	__be16 frag_off, protocol;
   1745	unsigned char *exthdr;
   1746	u32 offset, cmd = 0;
   1747	u8 l4_proto = 0;
   1748
   1749	if (skb->ip_summed != CHECKSUM_PARTIAL)
   1750		return 0;
   1751
   1752	protocol = vlan_get_protocol(skb);
   1753
   1754	if (eth_p_mpls(protocol))
   1755		ip.hdr = skb_inner_network_header(skb);
   1756	else
   1757		ip.hdr = skb_network_header(skb);
   1758	l4.hdr = skb_checksum_start(skb);
   1759
   1760	/* compute outer L2 header size */
   1761	l2_len = ip.hdr - skb->data;
   1762	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
   1763
   1764	/* set the tx_flags to indicate the IP protocol type. this is
   1765	 * required so that checksum header computation below is accurate.
   1766	 */
   1767	if (ip.v4->version == 4)
   1768		first->tx_flags |= ICE_TX_FLAGS_IPV4;
   1769	else if (ip.v6->version == 6)
   1770		first->tx_flags |= ICE_TX_FLAGS_IPV6;
   1771
   1772	if (skb->encapsulation) {
   1773		bool gso_ena = false;
   1774		u32 tunnel = 0;
   1775
   1776		/* define outer network header type */
   1777		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
   1778			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
   1779				  ICE_TX_CTX_EIPT_IPV4 :
   1780				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
   1781			l4_proto = ip.v4->protocol;
   1782		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
   1783			int ret;
   1784
   1785			tunnel |= ICE_TX_CTX_EIPT_IPV6;
   1786			exthdr = ip.hdr + sizeof(*ip.v6);
   1787			l4_proto = ip.v6->nexthdr;
   1788			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
   1789					       &l4_proto, &frag_off);
   1790			if (ret < 0)
   1791				return -1;
   1792		}
   1793
   1794		/* define outer transport */
   1795		switch (l4_proto) {
   1796		case IPPROTO_UDP:
   1797			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
   1798			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
   1799			break;
   1800		case IPPROTO_GRE:
   1801			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
   1802			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
   1803			break;
   1804		case IPPROTO_IPIP:
   1805		case IPPROTO_IPV6:
   1806			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
   1807			l4.hdr = skb_inner_network_header(skb);
   1808			break;
   1809		default:
   1810			if (first->tx_flags & ICE_TX_FLAGS_TSO)
   1811				return -1;
   1812
   1813			skb_checksum_help(skb);
   1814			return 0;
   1815		}
   1816
   1817		/* compute outer L3 header size */
   1818		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
   1819			  ICE_TXD_CTX_QW0_EIPLEN_S;
   1820
   1821		/* switch IP header pointer from outer to inner header */
   1822		ip.hdr = skb_inner_network_header(skb);
   1823
   1824		/* compute tunnel header size */
   1825		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
   1826			   ICE_TXD_CTX_QW0_NATLEN_S;
   1827
   1828		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
   1829		/* indicate if we need to offload outer UDP header */
   1830		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
   1831		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
   1832			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
   1833
   1834		/* record tunnel offload values */
   1835		off->cd_tunnel_params |= tunnel;
   1836
   1837		/* set DTYP=1 to indicate that it's an Tx context descriptor
   1838		 * in IPsec tunnel mode with Tx offloads in Quad word 1
   1839		 */
   1840		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
   1841
   1842		/* switch L4 header pointer from outer to inner */
   1843		l4.hdr = skb_inner_transport_header(skb);
   1844		l4_proto = 0;
   1845
   1846		/* reset type as we transition from outer to inner headers */
   1847		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
   1848		if (ip.v4->version == 4)
   1849			first->tx_flags |= ICE_TX_FLAGS_IPV4;
   1850		if (ip.v6->version == 6)
   1851			first->tx_flags |= ICE_TX_FLAGS_IPV6;
   1852	}
   1853
   1854	/* Enable IP checksum offloads */
   1855	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
   1856		l4_proto = ip.v4->protocol;
   1857		/* the stack computes the IP header already, the only time we
   1858		 * need the hardware to recompute it is in the case of TSO.
   1859		 */
   1860		if (first->tx_flags & ICE_TX_FLAGS_TSO)
   1861			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
   1862		else
   1863			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
   1864
   1865	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
   1866		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
   1867		exthdr = ip.hdr + sizeof(*ip.v6);
   1868		l4_proto = ip.v6->nexthdr;
   1869		if (l4.hdr != exthdr)
   1870			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
   1871					 &frag_off);
   1872	} else {
   1873		return -1;
   1874	}
   1875
   1876	/* compute inner L3 header size */
   1877	l3_len = l4.hdr - ip.hdr;
   1878	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
   1879
   1880	/* Enable L4 checksum offloads */
   1881	switch (l4_proto) {
   1882	case IPPROTO_TCP:
   1883		/* enable checksum offloads */
   1884		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
   1885		l4_len = l4.tcp->doff;
   1886		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
   1887		break;
   1888	case IPPROTO_UDP:
   1889		/* enable UDP checksum offload */
   1890		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
   1891		l4_len = (sizeof(struct udphdr) >> 2);
   1892		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
   1893		break;
   1894	case IPPROTO_SCTP:
   1895		/* enable SCTP checksum offload */
   1896		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
   1897		l4_len = sizeof(struct sctphdr) >> 2;
   1898		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
   1899		break;
   1900
   1901	default:
   1902		if (first->tx_flags & ICE_TX_FLAGS_TSO)
   1903			return -1;
   1904		skb_checksum_help(skb);
   1905		return 0;
   1906	}
   1907
   1908	off->td_cmd |= cmd;
   1909	off->td_offset |= offset;
   1910	return 1;
   1911}
   1912
   1913/**
   1914 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
   1915 * @tx_ring: ring to send buffer on
   1916 * @first: pointer to struct ice_tx_buf
   1917 *
   1918 * Checks the skb and set up correspondingly several generic transmit flags
   1919 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
   1920 */
   1921static void
   1922ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
   1923{
   1924	struct sk_buff *skb = first->skb;
   1925
   1926	/* nothing left to do, software offloaded VLAN */
   1927	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
   1928		return;
   1929
   1930	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
   1931	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
   1932	 * VLAN offloads exclusively so we only care about the VLAN ID here
   1933	 */
   1934	if (skb_vlan_tag_present(skb)) {
   1935		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
   1936		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
   1937			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
   1938		else
   1939			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
   1940	}
   1941
   1942	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
   1943}
   1944
   1945/**
   1946 * ice_tso - computes mss and TSO length to prepare for TSO
   1947 * @first: pointer to struct ice_tx_buf
   1948 * @off: pointer to struct that holds offload parameters
   1949 *
   1950 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
   1951 */
   1952static
   1953int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
   1954{
   1955	struct sk_buff *skb = first->skb;
   1956	union {
   1957		struct iphdr *v4;
   1958		struct ipv6hdr *v6;
   1959		unsigned char *hdr;
   1960	} ip;
   1961	union {
   1962		struct tcphdr *tcp;
   1963		struct udphdr *udp;
   1964		unsigned char *hdr;
   1965	} l4;
   1966	u64 cd_mss, cd_tso_len;
   1967	__be16 protocol;
   1968	u32 paylen;
   1969	u8 l4_start;
   1970	int err;
   1971
   1972	if (skb->ip_summed != CHECKSUM_PARTIAL)
   1973		return 0;
   1974
   1975	if (!skb_is_gso(skb))
   1976		return 0;
   1977
   1978	err = skb_cow_head(skb, 0);
   1979	if (err < 0)
   1980		return err;
   1981
   1982	/* cppcheck-suppress unreadVariable */
   1983	protocol = vlan_get_protocol(skb);
   1984
   1985	if (eth_p_mpls(protocol))
   1986		ip.hdr = skb_inner_network_header(skb);
   1987	else
   1988		ip.hdr = skb_network_header(skb);
   1989	l4.hdr = skb_checksum_start(skb);
   1990
   1991	/* initialize outer IP header fields */
   1992	if (ip.v4->version == 4) {
   1993		ip.v4->tot_len = 0;
   1994		ip.v4->check = 0;
   1995	} else {
   1996		ip.v6->payload_len = 0;
   1997	}
   1998
   1999	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
   2000					 SKB_GSO_GRE_CSUM |
   2001					 SKB_GSO_IPXIP4 |
   2002					 SKB_GSO_IPXIP6 |
   2003					 SKB_GSO_UDP_TUNNEL |
   2004					 SKB_GSO_UDP_TUNNEL_CSUM)) {
   2005		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
   2006		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
   2007			l4.udp->len = 0;
   2008
   2009			/* determine offset of outer transport header */
   2010			l4_start = (u8)(l4.hdr - skb->data);
   2011
   2012			/* remove payload length from outer checksum */
   2013			paylen = skb->len - l4_start;
   2014			csum_replace_by_diff(&l4.udp->check,
   2015					     (__force __wsum)htonl(paylen));
   2016		}
   2017
   2018		/* reset pointers to inner headers */
   2019
   2020		/* cppcheck-suppress unreadVariable */
   2021		ip.hdr = skb_inner_network_header(skb);
   2022		l4.hdr = skb_inner_transport_header(skb);
   2023
   2024		/* initialize inner IP header fields */
   2025		if (ip.v4->version == 4) {
   2026			ip.v4->tot_len = 0;
   2027			ip.v4->check = 0;
   2028		} else {
   2029			ip.v6->payload_len = 0;
   2030		}
   2031	}
   2032
   2033	/* determine offset of transport header */
   2034	l4_start = (u8)(l4.hdr - skb->data);
   2035
   2036	/* remove payload length from checksum */
   2037	paylen = skb->len - l4_start;
   2038
   2039	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
   2040		csum_replace_by_diff(&l4.udp->check,
   2041				     (__force __wsum)htonl(paylen));
   2042		/* compute length of UDP segmentation header */
   2043		off->header_len = (u8)sizeof(l4.udp) + l4_start;
   2044	} else {
   2045		csum_replace_by_diff(&l4.tcp->check,
   2046				     (__force __wsum)htonl(paylen));
   2047		/* compute length of TCP segmentation header */
   2048		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
   2049	}
   2050
   2051	/* update gso_segs and bytecount */
   2052	first->gso_segs = skb_shinfo(skb)->gso_segs;
   2053	first->bytecount += (first->gso_segs - 1) * off->header_len;
   2054
   2055	cd_tso_len = skb->len - off->header_len;
   2056	cd_mss = skb_shinfo(skb)->gso_size;
   2057
   2058	/* record cdesc_qw1 with TSO parameters */
   2059	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
   2060			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
   2061			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
   2062			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
   2063	first->tx_flags |= ICE_TX_FLAGS_TSO;
   2064	return 1;
   2065}
   2066
   2067/**
   2068 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
   2069 * @size: transmit request size in bytes
   2070 *
   2071 * Due to hardware alignment restrictions (4K alignment), we need to
   2072 * assume that we can have no more than 12K of data per descriptor, even
   2073 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
   2074 * Thus, we need to divide by 12K. But division is slow! Instead,
   2075 * we decompose the operation into shifts and one relatively cheap
   2076 * multiply operation.
   2077 *
   2078 * To divide by 12K, we first divide by 4K, then divide by 3:
   2079 *     To divide by 4K, shift right by 12 bits
   2080 *     To divide by 3, multiply by 85, then divide by 256
   2081 *     (Divide by 256 is done by shifting right by 8 bits)
   2082 * Finally, we add one to round up. Because 256 isn't an exact multiple of
   2083 * 3, we'll underestimate near each multiple of 12K. This is actually more
   2084 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
   2085 * segment. For our purposes this is accurate out to 1M which is orders of
   2086 * magnitude greater than our largest possible GSO size.
   2087 *
   2088 * This would then be implemented as:
   2089 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
   2090 *
   2091 * Since multiplication and division are commutative, we can reorder
   2092 * operations into:
   2093 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
   2094 */
   2095static unsigned int ice_txd_use_count(unsigned int size)
   2096{
   2097	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
   2098}
   2099
   2100/**
   2101 * ice_xmit_desc_count - calculate number of Tx descriptors needed
   2102 * @skb: send buffer
   2103 *
   2104 * Returns number of data descriptors needed for this skb.
   2105 */
   2106static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
   2107{
   2108	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
   2109	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
   2110	unsigned int count = 0, size = skb_headlen(skb);
   2111
   2112	for (;;) {
   2113		count += ice_txd_use_count(size);
   2114
   2115		if (!nr_frags--)
   2116			break;
   2117
   2118		size = skb_frag_size(frag++);
   2119	}
   2120
   2121	return count;
   2122}
   2123
   2124/**
   2125 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
   2126 * @skb: send buffer
   2127 *
   2128 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
   2129 * and so we need to figure out the cases where we need to linearize the skb.
   2130 *
   2131 * For TSO we need to count the TSO header and segment payload separately.
   2132 * As such we need to check cases where we have 7 fragments or more as we
   2133 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
   2134 * the segment payload in the first descriptor, and another 7 for the
   2135 * fragments.
   2136 */
   2137static bool __ice_chk_linearize(struct sk_buff *skb)
   2138{
   2139	const skb_frag_t *frag, *stale;
   2140	int nr_frags, sum;
   2141
   2142	/* no need to check if number of frags is less than 7 */
   2143	nr_frags = skb_shinfo(skb)->nr_frags;
   2144	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
   2145		return false;
   2146
   2147	/* We need to walk through the list and validate that each group
   2148	 * of 6 fragments totals at least gso_size.
   2149	 */
   2150	nr_frags -= ICE_MAX_BUF_TXD - 2;
   2151	frag = &skb_shinfo(skb)->frags[0];
   2152
   2153	/* Initialize size to the negative value of gso_size minus 1. We
   2154	 * use this as the worst case scenario in which the frag ahead
   2155	 * of us only provides one byte which is why we are limited to 6
   2156	 * descriptors for a single transmit as the header and previous
   2157	 * fragment are already consuming 2 descriptors.
   2158	 */
   2159	sum = 1 - skb_shinfo(skb)->gso_size;
   2160
   2161	/* Add size of frags 0 through 4 to create our initial sum */
   2162	sum += skb_frag_size(frag++);
   2163	sum += skb_frag_size(frag++);
   2164	sum += skb_frag_size(frag++);
   2165	sum += skb_frag_size(frag++);
   2166	sum += skb_frag_size(frag++);
   2167
   2168	/* Walk through fragments adding latest fragment, testing it, and
   2169	 * then removing stale fragments from the sum.
   2170	 */
   2171	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
   2172		int stale_size = skb_frag_size(stale);
   2173
   2174		sum += skb_frag_size(frag++);
   2175
   2176		/* The stale fragment may present us with a smaller
   2177		 * descriptor than the actual fragment size. To account
   2178		 * for that we need to remove all the data on the front and
   2179		 * figure out what the remainder would be in the last
   2180		 * descriptor associated with the fragment.
   2181		 */
   2182		if (stale_size > ICE_MAX_DATA_PER_TXD) {
   2183			int align_pad = -(skb_frag_off(stale)) &
   2184					(ICE_MAX_READ_REQ_SIZE - 1);
   2185
   2186			sum -= align_pad;
   2187			stale_size -= align_pad;
   2188
   2189			do {
   2190				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
   2191				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
   2192			} while (stale_size > ICE_MAX_DATA_PER_TXD);
   2193		}
   2194
   2195		/* if sum is negative we failed to make sufficient progress */
   2196		if (sum < 0)
   2197			return true;
   2198
   2199		if (!nr_frags--)
   2200			break;
   2201
   2202		sum -= stale_size;
   2203	}
   2204
   2205	return false;
   2206}
   2207
   2208/**
   2209 * ice_chk_linearize - Check if there are more than 8 fragments per packet
   2210 * @skb:      send buffer
   2211 * @count:    number of buffers used
   2212 *
   2213 * Note: Our HW can't scatter-gather more than 8 fragments to build
   2214 * a packet on the wire and so we need to figure out the cases where we
   2215 * need to linearize the skb.
   2216 */
   2217static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
   2218{
   2219	/* Both TSO and single send will work if count is less than 8 */
   2220	if (likely(count < ICE_MAX_BUF_TXD))
   2221		return false;
   2222
   2223	if (skb_is_gso(skb))
   2224		return __ice_chk_linearize(skb);
   2225
   2226	/* we can support up to 8 data buffers for a single send */
   2227	return count != ICE_MAX_BUF_TXD;
   2228}
   2229
   2230/**
   2231 * ice_tstamp - set up context descriptor for hardware timestamp
   2232 * @tx_ring: pointer to the Tx ring to send buffer on
   2233 * @skb: pointer to the SKB we're sending
   2234 * @first: Tx buffer
   2235 * @off: Tx offload parameters
   2236 */
   2237static void
   2238ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
   2239	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
   2240{
   2241	s8 idx;
   2242
   2243	/* only timestamp the outbound packet if the user has requested it */
   2244	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
   2245		return;
   2246
   2247	if (!tx_ring->ptp_tx)
   2248		return;
   2249
   2250	/* Tx timestamps cannot be sampled when doing TSO */
   2251	if (first->tx_flags & ICE_TX_FLAGS_TSO)
   2252		return;
   2253
   2254	/* Grab an open timestamp slot */
   2255	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
   2256	if (idx < 0)
   2257		return;
   2258
   2259	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
   2260			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
   2261			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
   2262	first->tx_flags |= ICE_TX_FLAGS_TSYN;
   2263}
   2264
   2265/**
   2266 * ice_xmit_frame_ring - Sends buffer on Tx ring
   2267 * @skb: send buffer
   2268 * @tx_ring: ring to send buffer on
   2269 *
   2270 * Returns NETDEV_TX_OK if sent, else an error code
   2271 */
   2272static netdev_tx_t
   2273ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
   2274{
   2275	struct ice_tx_offload_params offload = { 0 };
   2276	struct ice_vsi *vsi = tx_ring->vsi;
   2277	struct ice_tx_buf *first;
   2278	struct ethhdr *eth;
   2279	unsigned int count;
   2280	int tso, csum;
   2281
   2282	ice_trace(xmit_frame_ring, tx_ring, skb);
   2283
   2284	count = ice_xmit_desc_count(skb);
   2285	if (ice_chk_linearize(skb, count)) {
   2286		if (__skb_linearize(skb))
   2287			goto out_drop;
   2288		count = ice_txd_use_count(skb->len);
   2289		tx_ring->tx_stats.tx_linearize++;
   2290	}
   2291
   2292	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
   2293	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
   2294	 *       + 4 desc gap to avoid the cache line where head is,
   2295	 *       + 1 desc for context descriptor,
   2296	 * otherwise try next time
   2297	 */
   2298	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
   2299			      ICE_DESCS_FOR_CTX_DESC)) {
   2300		tx_ring->tx_stats.tx_busy++;
   2301		return NETDEV_TX_BUSY;
   2302	}
   2303
   2304	/* prefetch for bql data which is infrequently used */
   2305	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
   2306
   2307	offload.tx_ring = tx_ring;
   2308
   2309	/* record the location of the first descriptor for this packet */
   2310	first = &tx_ring->tx_buf[tx_ring->next_to_use];
   2311	first->skb = skb;
   2312	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
   2313	first->gso_segs = 1;
   2314	first->tx_flags = 0;
   2315
   2316	/* prepare the VLAN tagging flags for Tx */
   2317	ice_tx_prepare_vlan_flags(tx_ring, first);
   2318	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
   2319		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
   2320					(ICE_TX_CTX_DESC_IL2TAG2 <<
   2321					ICE_TXD_CTX_QW1_CMD_S));
   2322		offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
   2323			ICE_TX_FLAGS_VLAN_S;
   2324	}
   2325
   2326	/* set up TSO offload */
   2327	tso = ice_tso(first, &offload);
   2328	if (tso < 0)
   2329		goto out_drop;
   2330
   2331	/* always set up Tx checksum offload */
   2332	csum = ice_tx_csum(first, &offload);
   2333	if (csum < 0)
   2334		goto out_drop;
   2335
   2336	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
   2337	eth = (struct ethhdr *)skb_mac_header(skb);
   2338	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
   2339		      eth->h_proto == htons(ETH_P_LLDP)) &&
   2340		     vsi->type == ICE_VSI_PF &&
   2341		     vsi->port_info->qos_cfg.is_sw_lldp))
   2342		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
   2343					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
   2344					ICE_TXD_CTX_QW1_CMD_S);
   2345
   2346	ice_tstamp(tx_ring, skb, first, &offload);
   2347	if (ice_is_switchdev_running(vsi->back))
   2348		ice_eswitch_set_target_vsi(skb, &offload);
   2349
   2350	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
   2351		struct ice_tx_ctx_desc *cdesc;
   2352		u16 i = tx_ring->next_to_use;
   2353
   2354		/* grab the next descriptor */
   2355		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
   2356		i++;
   2357		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
   2358
   2359		/* setup context descriptor */
   2360		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
   2361		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
   2362		cdesc->rsvd = cpu_to_le16(0);
   2363		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
   2364	}
   2365
   2366	ice_tx_map(tx_ring, first, &offload);
   2367	return NETDEV_TX_OK;
   2368
   2369out_drop:
   2370	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
   2371	dev_kfree_skb_any(skb);
   2372	return NETDEV_TX_OK;
   2373}
   2374
   2375/**
   2376 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
   2377 * @skb: send buffer
   2378 * @netdev: network interface device structure
   2379 *
   2380 * Returns NETDEV_TX_OK if sent, else an error code
   2381 */
   2382netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
   2383{
   2384	struct ice_netdev_priv *np = netdev_priv(netdev);
   2385	struct ice_vsi *vsi = np->vsi;
   2386	struct ice_tx_ring *tx_ring;
   2387
   2388	tx_ring = vsi->tx_rings[skb->queue_mapping];
   2389
   2390	/* hardware can't handle really short frames, hardware padding works
   2391	 * beyond this point
   2392	 */
   2393	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
   2394		return NETDEV_TX_OK;
   2395
   2396	return ice_xmit_frame_ring(skb, tx_ring);
   2397}
   2398
   2399/**
   2400 * ice_get_dscp_up - return the UP/TC value for a SKB
   2401 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
   2402 * @skb: SKB to query for info to determine UP/TC
   2403 *
   2404 * This function is to only be called when the PF is in L3 DSCP PFC mode
   2405 */
   2406static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
   2407{
   2408	u8 dscp = 0;
   2409
   2410	if (skb->protocol == htons(ETH_P_IP))
   2411		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
   2412	else if (skb->protocol == htons(ETH_P_IPV6))
   2413		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
   2414
   2415	return dcbcfg->dscp_map[dscp];
   2416}
   2417
   2418u16
   2419ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
   2420		 struct net_device *sb_dev)
   2421{
   2422	struct ice_pf *pf = ice_netdev_to_pf(netdev);
   2423	struct ice_dcbx_cfg *dcbcfg;
   2424
   2425	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
   2426	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
   2427		skb->priority = ice_get_dscp_up(dcbcfg, skb);
   2428
   2429	return netdev_pick_tx(netdev, skb, sb_dev);
   2430}
   2431
   2432/**
   2433 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
   2434 * @tx_ring: tx_ring to clean
   2435 */
   2436void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
   2437{
   2438	struct ice_vsi *vsi = tx_ring->vsi;
   2439	s16 i = tx_ring->next_to_clean;
   2440	int budget = ICE_DFLT_IRQ_WORK;
   2441	struct ice_tx_desc *tx_desc;
   2442	struct ice_tx_buf *tx_buf;
   2443
   2444	tx_buf = &tx_ring->tx_buf[i];
   2445	tx_desc = ICE_TX_DESC(tx_ring, i);
   2446	i -= tx_ring->count;
   2447
   2448	do {
   2449		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
   2450
   2451		/* if next_to_watch is not set then there is no pending work */
   2452		if (!eop_desc)
   2453			break;
   2454
   2455		/* prevent any other reads prior to eop_desc */
   2456		smp_rmb();
   2457
   2458		/* if the descriptor isn't done, no work to do */
   2459		if (!(eop_desc->cmd_type_offset_bsz &
   2460		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
   2461			break;
   2462
   2463		/* clear next_to_watch to prevent false hangs */
   2464		tx_buf->next_to_watch = NULL;
   2465		tx_desc->buf_addr = 0;
   2466		tx_desc->cmd_type_offset_bsz = 0;
   2467
   2468		/* move past filter desc */
   2469		tx_buf++;
   2470		tx_desc++;
   2471		i++;
   2472		if (unlikely(!i)) {
   2473			i -= tx_ring->count;
   2474			tx_buf = tx_ring->tx_buf;
   2475			tx_desc = ICE_TX_DESC(tx_ring, 0);
   2476		}
   2477
   2478		/* unmap the data header */
   2479		if (dma_unmap_len(tx_buf, len))
   2480			dma_unmap_single(tx_ring->dev,
   2481					 dma_unmap_addr(tx_buf, dma),
   2482					 dma_unmap_len(tx_buf, len),
   2483					 DMA_TO_DEVICE);
   2484		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
   2485			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
   2486
   2487		/* clear next_to_watch to prevent false hangs */
   2488		tx_buf->raw_buf = NULL;
   2489		tx_buf->tx_flags = 0;
   2490		tx_buf->next_to_watch = NULL;
   2491		dma_unmap_len_set(tx_buf, len, 0);
   2492		tx_desc->buf_addr = 0;
   2493		tx_desc->cmd_type_offset_bsz = 0;
   2494
   2495		/* move past eop_desc for start of next FD desc */
   2496		tx_buf++;
   2497		tx_desc++;
   2498		i++;
   2499		if (unlikely(!i)) {
   2500			i -= tx_ring->count;
   2501			tx_buf = tx_ring->tx_buf;
   2502			tx_desc = ICE_TX_DESC(tx_ring, 0);
   2503		}
   2504
   2505		budget--;
   2506	} while (likely(budget));
   2507
   2508	i += tx_ring->count;
   2509	tx_ring->next_to_clean = i;
   2510
   2511	/* re-enable interrupt if needed */
   2512	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
   2513}