ice_txrx.h (13127B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* Copyright (c) 2018, Intel Corporation. */ 3 4#ifndef _ICE_TXRX_H_ 5#define _ICE_TXRX_H_ 6 7#include "ice_type.h" 8 9#define ICE_DFLT_IRQ_WORK 256 10#define ICE_RXBUF_3072 3072 11#define ICE_RXBUF_2048 2048 12#define ICE_RXBUF_1536 1536 13#define ICE_MAX_CHAINED_RX_BUFS 5 14#define ICE_MAX_BUF_TXD 8 15#define ICE_MIN_TX_LEN 17 16 17/* The size limit for a transmit buffer in a descriptor is (16K - 1). 18 * In order to align with the read requests we will align the value to 19 * the nearest 4K which represents our maximum read request size. 20 */ 21#define ICE_MAX_READ_REQ_SIZE 4096 22#define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) 23#define ICE_MAX_DATA_PER_TXD_ALIGNED \ 24 (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) 25 26#define ICE_MAX_TXQ_PER_TXQG 128 27 28/* Attempt to maximize the headroom available for incoming frames. We use a 2K 29 * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. 30 * This leaves us with 512 bytes of room. From that we need to deduct the 31 * space needed for the shared info and the padding needed to IP align the 32 * frame. 33 * 34 * Note: For cache line sizes 256 or larger this value is going to end 35 * up negative. In these cases we should fall back to the legacy 36 * receive path. 37 */ 38#if (PAGE_SIZE < 8192) 39#define ICE_2K_TOO_SMALL_WITH_PADDING \ 40 ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ 41 SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) 42 43/** 44 * ice_compute_pad - compute the padding 45 * @rx_buf_len: buffer length 46 * 47 * Figure out the size of half page based on given buffer length and 48 * then subtract the skb_shared_info followed by subtraction of the 49 * actual buffer length; this in turn results in the actual space that 50 * is left for padding usage 51 */ 52static inline int ice_compute_pad(int rx_buf_len) 53{ 54 int half_page_size; 55 56 half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); 57 return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; 58} 59 60/** 61 * ice_skb_pad - determine the padding that we can supply 62 * 63 * Figure out the right Rx buffer size and based on that calculate the 64 * padding 65 */ 66static inline int ice_skb_pad(void) 67{ 68 int rx_buf_len; 69 70 /* If a 2K buffer cannot handle a standard Ethernet frame then 71 * optimize padding for a 3K buffer instead of a 1.5K buffer. 72 * 73 * For a 3K buffer we need to add enough padding to allow for 74 * tailroom due to NET_IP_ALIGN possibly shifting us out of 75 * cache-line alignment. 76 */ 77 if (ICE_2K_TOO_SMALL_WITH_PADDING) 78 rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); 79 else 80 rx_buf_len = ICE_RXBUF_1536; 81 82 /* if needed make room for NET_IP_ALIGN */ 83 rx_buf_len -= NET_IP_ALIGN; 84 85 return ice_compute_pad(rx_buf_len); 86} 87 88#define ICE_SKB_PAD ice_skb_pad() 89#else 90#define ICE_2K_TOO_SMALL_WITH_PADDING false 91#define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) 92#endif 93 94/* We are assuming that the cache line is always 64 Bytes here for ice. 95 * In order to make sure that is a correct assumption there is a check in probe 96 * to print a warning if the read from GLPCI_CNF2 tells us that the cache line 97 * size is 128 bytes. We do it this way because we do not want to read the 98 * GLPCI_CNF2 register or a variable containing the value on every pass through 99 * the Tx path. 100 */ 101#define ICE_CACHE_LINE_BYTES 64 102#define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ 103 sizeof(struct ice_tx_desc)) 104#define ICE_DESCS_FOR_CTX_DESC 1 105#define ICE_DESCS_FOR_SKB_DATA_PTR 1 106/* Tx descriptors needed, worst case */ 107#define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ 108 ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) 109#define ICE_DESC_UNUSED(R) \ 110 (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ 111 (R)->next_to_clean - (R)->next_to_use - 1) 112 113#define ICE_RING_QUARTER(R) ((R)->count >> 2) 114 115#define ICE_TX_FLAGS_TSO BIT(0) 116#define ICE_TX_FLAGS_HW_VLAN BIT(1) 117#define ICE_TX_FLAGS_SW_VLAN BIT(2) 118/* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be 119 * freed instead of returned like skb packets. 120 */ 121#define ICE_TX_FLAGS_DUMMY_PKT BIT(3) 122#define ICE_TX_FLAGS_TSYN BIT(4) 123#define ICE_TX_FLAGS_IPV4 BIT(5) 124#define ICE_TX_FLAGS_IPV6 BIT(6) 125#define ICE_TX_FLAGS_TUNNEL BIT(7) 126#define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(8) 127#define ICE_TX_FLAGS_VLAN_M 0xffff0000 128#define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000 129#define ICE_TX_FLAGS_VLAN_PR_S 29 130#define ICE_TX_FLAGS_VLAN_S 16 131 132#define ICE_XDP_PASS 0 133#define ICE_XDP_CONSUMED BIT(0) 134#define ICE_XDP_TX BIT(1) 135#define ICE_XDP_REDIR BIT(2) 136#define ICE_XDP_EXIT BIT(3) 137 138#define ICE_RX_DMA_ATTR \ 139 (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) 140 141#define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) 142 143#define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) 144 145struct ice_tx_buf { 146 struct ice_tx_desc *next_to_watch; 147 union { 148 struct sk_buff *skb; 149 void *raw_buf; /* used for XDP */ 150 }; 151 unsigned int bytecount; 152 unsigned short gso_segs; 153 u32 tx_flags; 154 DEFINE_DMA_UNMAP_LEN(len); 155 DEFINE_DMA_UNMAP_ADDR(dma); 156}; 157 158struct ice_tx_offload_params { 159 u64 cd_qw1; 160 struct ice_tx_ring *tx_ring; 161 u32 td_cmd; 162 u32 td_offset; 163 u32 td_l2tag1; 164 u32 cd_tunnel_params; 165 u16 cd_l2tag2; 166 u8 header_len; 167}; 168 169struct ice_rx_buf { 170 dma_addr_t dma; 171 struct page *page; 172 unsigned int page_offset; 173 u16 pagecnt_bias; 174}; 175 176struct ice_q_stats { 177 u64 pkts; 178 u64 bytes; 179}; 180 181struct ice_txq_stats { 182 u64 restart_q; 183 u64 tx_busy; 184 u64 tx_linearize; 185 int prev_pkt; /* negative if no pending Tx descriptors */ 186}; 187 188struct ice_rxq_stats { 189 u64 non_eop_descs; 190 u64 alloc_page_failed; 191 u64 alloc_buf_failed; 192}; 193 194enum ice_ring_state_t { 195 ICE_TX_XPS_INIT_DONE, 196 ICE_TX_NBITS, 197}; 198 199/* this enum matches hardware bits and is meant to be used by DYN_CTLN 200 * registers and QINT registers or more generally anywhere in the manual 201 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any 202 * register but instead is a special value meaning "don't update" ITR0/1/2. 203 */ 204enum ice_dyn_idx_t { 205 ICE_IDX_ITR0 = 0, 206 ICE_IDX_ITR1 = 1, 207 ICE_IDX_ITR2 = 2, 208 ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ 209}; 210 211/* Header split modes defined by DTYPE field of Rx RLAN context */ 212enum ice_rx_dtype { 213 ICE_RX_DTYPE_NO_SPLIT = 0, 214 ICE_RX_DTYPE_HEADER_SPLIT = 1, 215 ICE_RX_DTYPE_SPLIT_ALWAYS = 2, 216}; 217 218/* indices into GLINT_ITR registers */ 219#define ICE_RX_ITR ICE_IDX_ITR0 220#define ICE_TX_ITR ICE_IDX_ITR1 221#define ICE_ITR_8K 124 222#define ICE_ITR_20K 50 223#define ICE_ITR_MAX 8160 /* 0x1FE0 */ 224#define ICE_DFLT_TX_ITR ICE_ITR_20K 225#define ICE_DFLT_RX_ITR ICE_ITR_20K 226enum ice_dynamic_itr { 227 ITR_STATIC = 0, 228 ITR_DYNAMIC = 1 229}; 230 231#define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC) 232#define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ 233#define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) 234#define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ 235#define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) 236 237#define ICE_DFLT_INTRL 0 238#define ICE_MAX_INTRL 236 239 240#define ICE_IN_WB_ON_ITR_MODE 255 241/* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows 242 * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, 243 * set the write-back latency to the usecs passed in. 244 */ 245#define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ 246 ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ 247 GLINT_DYN_CTL_INTERVAL_M) | \ 248 (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ 249 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ 250 GLINT_DYN_CTL_WB_ON_ITR_M) 251 252/* Legacy or Advanced Mode Queue */ 253#define ICE_TX_ADVANCED 0 254#define ICE_TX_LEGACY 1 255 256/* descriptor ring, associated with a VSI */ 257struct ice_rx_ring { 258 /* CL1 - 1st cacheline starts here */ 259 struct ice_rx_ring *next; /* pointer to next ring in q_vector */ 260 void *desc; /* Descriptor ring memory */ 261 struct device *dev; /* Used for DMA mapping */ 262 struct net_device *netdev; /* netdev ring maps to */ 263 struct ice_vsi *vsi; /* Backreference to associated VSI */ 264 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 265 u8 __iomem *tail; 266 union { 267 struct ice_rx_buf *rx_buf; 268 struct xdp_buff **xdp_buf; 269 }; 270 /* CL2 - 2nd cacheline starts here */ 271 struct xdp_rxq_info xdp_rxq; 272 /* CL3 - 3rd cacheline starts here */ 273 u16 q_index; /* Queue number of ring */ 274 275 u16 count; /* Number of descriptors */ 276 u16 reg_idx; /* HW register index of the ring */ 277 278 /* used in interrupt processing */ 279 u16 next_to_use; 280 u16 next_to_clean; 281 u16 next_to_alloc; 282 u16 rx_offset; 283 u16 rx_buf_len; 284 285 /* stats structs */ 286 struct ice_rxq_stats rx_stats; 287 struct ice_q_stats stats; 288 struct u64_stats_sync syncp; 289 290 struct rcu_head rcu; /* to avoid race on free */ 291 /* CL4 - 3rd cacheline starts here */ 292 struct ice_channel *ch; 293 struct bpf_prog *xdp_prog; 294 struct ice_tx_ring *xdp_ring; 295 struct xsk_buff_pool *xsk_pool; 296 struct sk_buff *skb; 297 dma_addr_t dma; /* physical address of ring */ 298#define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) 299 u64 cached_phctime; 300 u8 dcb_tc; /* Traffic class of ring */ 301 u8 ptp_rx; 302 u8 flags; 303} ____cacheline_internodealigned_in_smp; 304 305struct ice_tx_ring { 306 /* CL1 - 1st cacheline starts here */ 307 struct ice_tx_ring *next; /* pointer to next ring in q_vector */ 308 void *desc; /* Descriptor ring memory */ 309 struct device *dev; /* Used for DMA mapping */ 310 u8 __iomem *tail; 311 struct ice_tx_buf *tx_buf; 312 struct ice_q_vector *q_vector; /* Backreference to associated vector */ 313 struct net_device *netdev; /* netdev ring maps to */ 314 struct ice_vsi *vsi; /* Backreference to associated VSI */ 315 /* CL2 - 2nd cacheline starts here */ 316 dma_addr_t dma; /* physical address of ring */ 317 struct xsk_buff_pool *xsk_pool; 318 u16 next_to_use; 319 u16 next_to_clean; 320 u16 next_rs; 321 u16 next_dd; 322 u16 q_handle; /* Queue handle per TC */ 323 u16 reg_idx; /* HW register index of the ring */ 324 u16 count; /* Number of descriptors */ 325 u16 q_index; /* Queue number of ring */ 326 /* stats structs */ 327 struct ice_txq_stats tx_stats; 328 /* CL3 - 3rd cacheline starts here */ 329 struct ice_q_stats stats; 330 struct u64_stats_sync syncp; 331 struct rcu_head rcu; /* to avoid race on free */ 332 DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */ 333 struct ice_channel *ch; 334 struct ice_ptp_tx *tx_tstamps; 335 spinlock_t tx_lock; 336 u32 txq_teid; /* Added Tx queue TEID */ 337 /* CL4 - 4th cacheline starts here */ 338 u16 xdp_tx_active; 339#define ICE_TX_FLAGS_RING_XDP BIT(0) 340#define ICE_TX_FLAGS_RING_VLAN_L2TAG1 BIT(1) 341#define ICE_TX_FLAGS_RING_VLAN_L2TAG2 BIT(2) 342 u8 flags; 343 u8 dcb_tc; /* Traffic class of ring */ 344 u8 ptp_tx; 345} ____cacheline_internodealigned_in_smp; 346 347static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring) 348{ 349 return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); 350} 351 352static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring) 353{ 354 ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; 355} 356 357static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring) 358{ 359 ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; 360} 361 362static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring) 363{ 364 return !!ring->ch; 365} 366 367static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring) 368{ 369 return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); 370} 371 372enum ice_container_type { 373 ICE_RX_CONTAINER, 374 ICE_TX_CONTAINER, 375}; 376 377struct ice_ring_container { 378 /* head of linked-list of rings */ 379 union { 380 struct ice_rx_ring *rx_ring; 381 struct ice_tx_ring *tx_ring; 382 }; 383 struct dim dim; /* data for net_dim algorithm */ 384 u16 itr_idx; /* index in the interrupt vector */ 385 /* this matches the maximum number of ITR bits, but in usec 386 * values, so it is shifted left one bit (bit zero is ignored) 387 */ 388 union { 389 struct { 390 u16 itr_setting:13; 391 u16 itr_reserved:2; 392 u16 itr_mode:1; 393 }; 394 u16 itr_settings; 395 }; 396 enum ice_container_type type; 397}; 398 399struct ice_coalesce_stored { 400 u16 itr_tx; 401 u16 itr_rx; 402 u8 intrl; 403 u8 tx_valid; 404 u8 rx_valid; 405}; 406 407/* iterator for handling rings in ring container */ 408#define ice_for_each_rx_ring(pos, head) \ 409 for (pos = (head).rx_ring; pos; pos = pos->next) 410 411#define ice_for_each_tx_ring(pos, head) \ 412 for (pos = (head).tx_ring; pos; pos = pos->next) 413 414static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring) 415{ 416#if (PAGE_SIZE < 8192) 417 if (ring->rx_buf_len > (PAGE_SIZE / 2)) 418 return 1; 419#endif 420 return 0; 421} 422 423#define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) 424 425union ice_32b_rx_flex_desc; 426 427bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, u16 cleaned_count); 428netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); 429u16 430ice_select_queue(struct net_device *dev, struct sk_buff *skb, 431 struct net_device *sb_dev); 432void ice_clean_tx_ring(struct ice_tx_ring *tx_ring); 433void ice_clean_rx_ring(struct ice_rx_ring *rx_ring); 434int ice_setup_tx_ring(struct ice_tx_ring *tx_ring); 435int ice_setup_rx_ring(struct ice_rx_ring *rx_ring); 436void ice_free_tx_ring(struct ice_tx_ring *tx_ring); 437void ice_free_rx_ring(struct ice_rx_ring *rx_ring); 438int ice_napi_poll(struct napi_struct *napi, int budget); 439int 440ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, 441 u8 *raw_packet); 442int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget); 443void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring); 444#endif /* _ICE_TXRX_H_ */