cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ice_virtchnl.c (109092B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright (C) 2022, Intel Corporation. */
      3
      4#include "ice_virtchnl.h"
      5#include "ice_vf_lib_private.h"
      6#include "ice.h"
      7#include "ice_base.h"
      8#include "ice_lib.h"
      9#include "ice_fltr.h"
     10#include "ice_virtchnl_allowlist.h"
     11#include "ice_vf_vsi_vlan_ops.h"
     12#include "ice_vlan.h"
     13#include "ice_flex_pipe.h"
     14#include "ice_dcb_lib.h"
     15
     16#define FIELD_SELECTOR(proto_hdr_field) \
     17		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
     18
     19struct ice_vc_hdr_match_type {
     20	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
     21	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
     22};
     23
     24static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
     25	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
     26	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
     27	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
     28	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
     29	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
     30					ICE_FLOW_SEG_HDR_IPV_OTHER},
     31	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
     32					ICE_FLOW_SEG_HDR_IPV_OTHER},
     33	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
     34	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
     35	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
     36	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
     37	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
     38	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
     39	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
     40					ICE_FLOW_SEG_HDR_GTPU_DWN},
     41	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
     42					ICE_FLOW_SEG_HDR_GTPU_UP},
     43	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
     44	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
     45	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
     46	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
     47};
     48
     49struct ice_vc_hash_field_match_type {
     50	u32 vc_hdr;		/* virtchnl headers
     51				 * (VIRTCHNL_PROTO_HDR_XXX)
     52				 */
     53	u32 vc_hash_field;	/* virtchnl hash fields selector
     54				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
     55				 */
     56	u64 ice_hash_field;	/* ice hash fields
     57				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
     58				 */
     59};
     60
     61static const struct
     62ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
     63	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
     64		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
     65	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
     66		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
     67	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
     68		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
     69		ICE_FLOW_HASH_ETH},
     70	{VIRTCHNL_PROTO_HDR_ETH,
     71		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
     72		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
     73	{VIRTCHNL_PROTO_HDR_S_VLAN,
     74		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
     75		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
     76	{VIRTCHNL_PROTO_HDR_C_VLAN,
     77		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
     78		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
     79	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
     80		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
     81	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
     82		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
     83	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
     84		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
     85		ICE_FLOW_HASH_IPV4},
     86	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
     87		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
     88		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
     89		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
     90	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
     91		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
     92		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
     93		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
     94	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
     95		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
     96		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
     97		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
     98	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
     99		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
    100	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
    101		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
    102	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
    103		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
    104	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
    105		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
    106		ICE_FLOW_HASH_IPV6},
    107	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
    108		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
    109		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
    110		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
    111	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
    112		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
    113		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
    114		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
    115	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
    116		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
    117		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
    118		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
    119	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
    120		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
    121	{VIRTCHNL_PROTO_HDR_TCP,
    122		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
    123		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
    124	{VIRTCHNL_PROTO_HDR_TCP,
    125		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
    126		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
    127	{VIRTCHNL_PROTO_HDR_TCP,
    128		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
    129		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
    130		ICE_FLOW_HASH_TCP_PORT},
    131	{VIRTCHNL_PROTO_HDR_UDP,
    132		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
    133		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
    134	{VIRTCHNL_PROTO_HDR_UDP,
    135		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
    136		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
    137	{VIRTCHNL_PROTO_HDR_UDP,
    138		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
    139		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
    140		ICE_FLOW_HASH_UDP_PORT},
    141	{VIRTCHNL_PROTO_HDR_SCTP,
    142		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
    143		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
    144	{VIRTCHNL_PROTO_HDR_SCTP,
    145		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
    146		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
    147	{VIRTCHNL_PROTO_HDR_SCTP,
    148		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
    149		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
    150		ICE_FLOW_HASH_SCTP_PORT},
    151	{VIRTCHNL_PROTO_HDR_PPPOE,
    152		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
    153		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
    154	{VIRTCHNL_PROTO_HDR_GTPU_IP,
    155		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
    156		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
    157	{VIRTCHNL_PROTO_HDR_L2TPV3,
    158		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
    159		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
    160	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
    161		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
    162	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
    163		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
    164	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
    165		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
    166};
    167
    168/**
    169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
    170 * @pf: pointer to the PF structure
    171 * @v_opcode: operation code
    172 * @v_retval: return value
    173 * @msg: pointer to the msg buffer
    174 * @msglen: msg length
    175 */
    176static void
    177ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
    178		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
    179{
    180	struct ice_hw *hw = &pf->hw;
    181	struct ice_vf *vf;
    182	unsigned int bkt;
    183
    184	mutex_lock(&pf->vfs.table_lock);
    185	ice_for_each_vf(pf, bkt, vf) {
    186		/* Not all vfs are enabled so skip the ones that are not */
    187		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
    188		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
    189			continue;
    190
    191		/* Ignore return value on purpose - a given VF may fail, but
    192		 * we need to keep going and send to all of them
    193		 */
    194		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
    195				      msglen, NULL);
    196	}
    197	mutex_unlock(&pf->vfs.table_lock);
    198}
    199
    200/**
    201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
    202 * @vf: pointer to the VF structure
    203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
    204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
    205 * @link_up: whether or not to set the link up/down
    206 */
    207static void
    208ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
    209		 int ice_link_speed, bool link_up)
    210{
    211	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
    212		pfe->event_data.link_event_adv.link_status = link_up;
    213		/* Speed in Mbps */
    214		pfe->event_data.link_event_adv.link_speed =
    215			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
    216	} else {
    217		pfe->event_data.link_event.link_status = link_up;
    218		/* Legacy method for virtchnl link speeds */
    219		pfe->event_data.link_event.link_speed =
    220			(enum virtchnl_link_speed)
    221			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
    222	}
    223}
    224
    225/**
    226 * ice_vc_notify_vf_link_state - Inform a VF of link status
    227 * @vf: pointer to the VF structure
    228 *
    229 * send a link status message to a single VF
    230 */
    231void ice_vc_notify_vf_link_state(struct ice_vf *vf)
    232{
    233	struct virtchnl_pf_event pfe = { 0 };
    234	struct ice_hw *hw = &vf->pf->hw;
    235
    236	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
    237	pfe.severity = PF_EVENT_SEVERITY_INFO;
    238
    239	if (ice_is_vf_link_up(vf))
    240		ice_set_pfe_link(vf, &pfe,
    241				 hw->port_info->phy.link_info.link_speed, true);
    242	else
    243		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
    244
    245	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
    246			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
    247			      sizeof(pfe), NULL);
    248}
    249
    250/**
    251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
    252 * @pf: pointer to the PF structure
    253 */
    254void ice_vc_notify_link_state(struct ice_pf *pf)
    255{
    256	struct ice_vf *vf;
    257	unsigned int bkt;
    258
    259	mutex_lock(&pf->vfs.table_lock);
    260	ice_for_each_vf(pf, bkt, vf)
    261		ice_vc_notify_vf_link_state(vf);
    262	mutex_unlock(&pf->vfs.table_lock);
    263}
    264
    265/**
    266 * ice_vc_notify_reset - Send pending reset message to all VFs
    267 * @pf: pointer to the PF structure
    268 *
    269 * indicate a pending reset to all VFs on a given PF
    270 */
    271void ice_vc_notify_reset(struct ice_pf *pf)
    272{
    273	struct virtchnl_pf_event pfe;
    274
    275	if (!ice_has_vfs(pf))
    276		return;
    277
    278	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
    279	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
    280	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
    281			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
    282}
    283
    284/**
    285 * ice_vc_send_msg_to_vf - Send message to VF
    286 * @vf: pointer to the VF info
    287 * @v_opcode: virtual channel opcode
    288 * @v_retval: virtual channel return value
    289 * @msg: pointer to the msg buffer
    290 * @msglen: msg length
    291 *
    292 * send msg to VF
    293 */
    294int
    295ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
    296		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
    297{
    298	struct device *dev;
    299	struct ice_pf *pf;
    300	int aq_ret;
    301
    302	pf = vf->pf;
    303	dev = ice_pf_to_dev(pf);
    304
    305	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
    306				       msg, msglen, NULL);
    307	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
    308		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
    309			 vf->vf_id, aq_ret,
    310			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
    311		return -EIO;
    312	}
    313
    314	return 0;
    315}
    316
    317/**
    318 * ice_vc_get_ver_msg
    319 * @vf: pointer to the VF info
    320 * @msg: pointer to the msg buffer
    321 *
    322 * called from the VF to request the API version used by the PF
    323 */
    324static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
    325{
    326	struct virtchnl_version_info info = {
    327		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
    328	};
    329
    330	vf->vf_ver = *(struct virtchnl_version_info *)msg;
    331	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
    332	if (VF_IS_V10(&vf->vf_ver))
    333		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
    334
    335	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
    336				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
    337				     sizeof(struct virtchnl_version_info));
    338}
    339
    340/**
    341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
    342 * @vf: VF used to determine max frame size
    343 *
    344 * Max frame size is determined based on the current port's max frame size and
    345 * whether a port VLAN is configured on this VF. The VF is not aware whether
    346 * it's in a port VLAN so the PF needs to account for this in max frame size
    347 * checks and sending the max frame size to the VF.
    348 */
    349static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
    350{
    351	struct ice_port_info *pi = ice_vf_get_port_info(vf);
    352	u16 max_frame_size;
    353
    354	max_frame_size = pi->phy.link_info.max_frame_size;
    355
    356	if (ice_vf_is_port_vlan_ena(vf))
    357		max_frame_size -= VLAN_HLEN;
    358
    359	return max_frame_size;
    360}
    361
    362/**
    363 * ice_vc_get_vf_res_msg
    364 * @vf: pointer to the VF info
    365 * @msg: pointer to the msg buffer
    366 *
    367 * called from the VF to request its resources
    368 */
    369static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
    370{
    371	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
    372	struct virtchnl_vf_resource *vfres = NULL;
    373	struct ice_hw *hw = &vf->pf->hw;
    374	struct ice_vsi *vsi;
    375	int len = 0;
    376	int ret;
    377
    378	if (ice_check_vf_init(vf)) {
    379		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    380		goto err;
    381	}
    382
    383	len = sizeof(struct virtchnl_vf_resource);
    384
    385	vfres = kzalloc(len, GFP_KERNEL);
    386	if (!vfres) {
    387		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
    388		len = 0;
    389		goto err;
    390	}
    391	if (VF_IS_V11(&vf->vf_ver))
    392		vf->driver_caps = *(u32 *)msg;
    393	else
    394		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
    395				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
    396				  VIRTCHNL_VF_OFFLOAD_VLAN;
    397
    398	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
    399	vsi = ice_get_vf_vsi(vf);
    400	if (!vsi) {
    401		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    402		goto err;
    403	}
    404
    405	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
    406		/* VLAN offloads based on current device configuration */
    407		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2;
    408	} else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
    409		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
    410		 * these two conditions, which amounts to guest VLAN filtering
    411		 * and offloads being based on the inner VLAN or the
    412		 * inner/single VLAN respectively and don't allow VF to
    413		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
    414		 */
    415		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
    416			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
    417		} else if (!ice_is_dvm_ena(hw) &&
    418			   !ice_vf_is_port_vlan_ena(vf)) {
    419			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
    420			/* configure backward compatible support for VFs that
    421			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
    422			 * configured in SVM, and no port VLAN is configured
    423			 */
    424			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
    425		} else if (ice_is_dvm_ena(hw)) {
    426			/* configure software offloaded VLAN support when DVM
    427			 * is enabled, but no port VLAN is enabled
    428			 */
    429			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
    430		}
    431	}
    432
    433	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
    434		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
    435	} else {
    436		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
    437			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
    438		else
    439			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
    440	}
    441
    442	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
    443		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
    444
    445	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
    446		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
    447
    448	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
    449		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
    450
    451	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
    452		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
    453
    454	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
    455		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
    456
    457	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
    458		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
    459
    460	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
    461		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
    462
    463	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
    464		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
    465
    466	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
    467		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
    468
    469	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
    470		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
    471
    472	vfres->num_vsis = 1;
    473	/* Tx and Rx queue are equal for VF */
    474	vfres->num_queue_pairs = vsi->num_txq;
    475	vfres->max_vectors = vf->pf->vfs.num_msix_per;
    476	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
    477	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
    478	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
    479
    480	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
    481	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
    482	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
    483	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
    484			vf->hw_lan_addr.addr);
    485
    486	/* match guest capabilities */
    487	vf->driver_caps = vfres->vf_cap_flags;
    488
    489	ice_vc_set_caps_allowlist(vf);
    490	ice_vc_set_working_allowlist(vf);
    491
    492	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
    493
    494err:
    495	/* send the response back to the VF */
    496	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
    497				    (u8 *)vfres, len);
    498
    499	kfree(vfres);
    500	return ret;
    501}
    502
    503/**
    504 * ice_vc_reset_vf_msg
    505 * @vf: pointer to the VF info
    506 *
    507 * called from the VF to reset itself,
    508 * unlike other virtchnl messages, PF driver
    509 * doesn't send the response back to the VF
    510 */
    511static void ice_vc_reset_vf_msg(struct ice_vf *vf)
    512{
    513	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
    514		ice_reset_vf(vf, 0);
    515}
    516
    517/**
    518 * ice_vc_isvalid_vsi_id
    519 * @vf: pointer to the VF info
    520 * @vsi_id: VF relative VSI ID
    521 *
    522 * check for the valid VSI ID
    523 */
    524bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
    525{
    526	struct ice_pf *pf = vf->pf;
    527	struct ice_vsi *vsi;
    528
    529	vsi = ice_find_vsi(pf, vsi_id);
    530
    531	return (vsi && (vsi->vf == vf));
    532}
    533
    534/**
    535 * ice_vc_isvalid_q_id
    536 * @vf: pointer to the VF info
    537 * @vsi_id: VSI ID
    538 * @qid: VSI relative queue ID
    539 *
    540 * check for the valid queue ID
    541 */
    542static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
    543{
    544	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
    545	/* allocated Tx and Rx queues should be always equal for VF VSI */
    546	return (vsi && (qid < vsi->alloc_txq));
    547}
    548
    549/**
    550 * ice_vc_isvalid_ring_len
    551 * @ring_len: length of ring
    552 *
    553 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
    554 * or zero
    555 */
    556static bool ice_vc_isvalid_ring_len(u16 ring_len)
    557{
    558	return ring_len == 0 ||
    559	       (ring_len >= ICE_MIN_NUM_DESC &&
    560		ring_len <= ICE_MAX_NUM_DESC &&
    561		!(ring_len % ICE_REQ_DESC_MULTIPLE));
    562}
    563
    564/**
    565 * ice_vc_validate_pattern
    566 * @vf: pointer to the VF info
    567 * @proto: virtchnl protocol headers
    568 *
    569 * validate the pattern is supported or not.
    570 *
    571 * Return: true on success, false on error.
    572 */
    573bool
    574ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
    575{
    576	bool is_ipv4 = false;
    577	bool is_ipv6 = false;
    578	bool is_udp = false;
    579	u16 ptype = -1;
    580	int i = 0;
    581
    582	while (i < proto->count &&
    583	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
    584		switch (proto->proto_hdr[i].type) {
    585		case VIRTCHNL_PROTO_HDR_ETH:
    586			ptype = ICE_PTYPE_MAC_PAY;
    587			break;
    588		case VIRTCHNL_PROTO_HDR_IPV4:
    589			ptype = ICE_PTYPE_IPV4_PAY;
    590			is_ipv4 = true;
    591			break;
    592		case VIRTCHNL_PROTO_HDR_IPV6:
    593			ptype = ICE_PTYPE_IPV6_PAY;
    594			is_ipv6 = true;
    595			break;
    596		case VIRTCHNL_PROTO_HDR_UDP:
    597			if (is_ipv4)
    598				ptype = ICE_PTYPE_IPV4_UDP_PAY;
    599			else if (is_ipv6)
    600				ptype = ICE_PTYPE_IPV6_UDP_PAY;
    601			is_udp = true;
    602			break;
    603		case VIRTCHNL_PROTO_HDR_TCP:
    604			if (is_ipv4)
    605				ptype = ICE_PTYPE_IPV4_TCP_PAY;
    606			else if (is_ipv6)
    607				ptype = ICE_PTYPE_IPV6_TCP_PAY;
    608			break;
    609		case VIRTCHNL_PROTO_HDR_SCTP:
    610			if (is_ipv4)
    611				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
    612			else if (is_ipv6)
    613				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
    614			break;
    615		case VIRTCHNL_PROTO_HDR_GTPU_IP:
    616		case VIRTCHNL_PROTO_HDR_GTPU_EH:
    617			if (is_ipv4)
    618				ptype = ICE_MAC_IPV4_GTPU;
    619			else if (is_ipv6)
    620				ptype = ICE_MAC_IPV6_GTPU;
    621			goto out;
    622		case VIRTCHNL_PROTO_HDR_L2TPV3:
    623			if (is_ipv4)
    624				ptype = ICE_MAC_IPV4_L2TPV3;
    625			else if (is_ipv6)
    626				ptype = ICE_MAC_IPV6_L2TPV3;
    627			goto out;
    628		case VIRTCHNL_PROTO_HDR_ESP:
    629			if (is_ipv4)
    630				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
    631						ICE_MAC_IPV4_ESP;
    632			else if (is_ipv6)
    633				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
    634						ICE_MAC_IPV6_ESP;
    635			goto out;
    636		case VIRTCHNL_PROTO_HDR_AH:
    637			if (is_ipv4)
    638				ptype = ICE_MAC_IPV4_AH;
    639			else if (is_ipv6)
    640				ptype = ICE_MAC_IPV6_AH;
    641			goto out;
    642		case VIRTCHNL_PROTO_HDR_PFCP:
    643			if (is_ipv4)
    644				ptype = ICE_MAC_IPV4_PFCP_SESSION;
    645			else if (is_ipv6)
    646				ptype = ICE_MAC_IPV6_PFCP_SESSION;
    647			goto out;
    648		default:
    649			break;
    650		}
    651		i++;
    652	}
    653
    654out:
    655	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
    656}
    657
    658/**
    659 * ice_vc_parse_rss_cfg - parses hash fields and headers from
    660 * a specific virtchnl RSS cfg
    661 * @hw: pointer to the hardware
    662 * @rss_cfg: pointer to the virtchnl RSS cfg
    663 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
    664 * to configure
    665 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
    666 *
    667 * Return true if all the protocol header and hash fields in the RSS cfg could
    668 * be parsed, else return false
    669 *
    670 * This function parses the virtchnl RSS cfg to be the intended
    671 * hash fields and the intended header for RSS configuration
    672 */
    673static bool
    674ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
    675		     u32 *addl_hdrs, u64 *hash_flds)
    676{
    677	const struct ice_vc_hash_field_match_type *hf_list;
    678	const struct ice_vc_hdr_match_type *hdr_list;
    679	int i, hf_list_len, hdr_list_len;
    680
    681	hf_list = ice_vc_hash_field_list;
    682	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
    683	hdr_list = ice_vc_hdr_list;
    684	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
    685
    686	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
    687		struct virtchnl_proto_hdr *proto_hdr =
    688					&rss_cfg->proto_hdrs.proto_hdr[i];
    689		bool hdr_found = false;
    690		int j;
    691
    692		/* Find matched ice headers according to virtchnl headers. */
    693		for (j = 0; j < hdr_list_len; j++) {
    694			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
    695
    696			if (proto_hdr->type == hdr_map.vc_hdr) {
    697				*addl_hdrs |= hdr_map.ice_hdr;
    698				hdr_found = true;
    699			}
    700		}
    701
    702		if (!hdr_found)
    703			return false;
    704
    705		/* Find matched ice hash fields according to
    706		 * virtchnl hash fields.
    707		 */
    708		for (j = 0; j < hf_list_len; j++) {
    709			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
    710
    711			if (proto_hdr->type == hf_map.vc_hdr &&
    712			    proto_hdr->field_selector == hf_map.vc_hash_field) {
    713				*hash_flds |= hf_map.ice_hash_field;
    714				break;
    715			}
    716		}
    717	}
    718
    719	return true;
    720}
    721
    722/**
    723 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
    724 * RSS offloads
    725 * @caps: VF driver negotiated capabilities
    726 *
    727 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
    728 * else return false
    729 */
    730static bool ice_vf_adv_rss_offload_ena(u32 caps)
    731{
    732	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
    733}
    734
    735/**
    736 * ice_vc_handle_rss_cfg
    737 * @vf: pointer to the VF info
    738 * @msg: pointer to the message buffer
    739 * @add: add a RSS config if true, otherwise delete a RSS config
    740 *
    741 * This function adds/deletes a RSS config
    742 */
    743static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
    744{
    745	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
    746	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
    747	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
    748	struct device *dev = ice_pf_to_dev(vf->pf);
    749	struct ice_hw *hw = &vf->pf->hw;
    750	struct ice_vsi *vsi;
    751
    752	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
    753		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
    754			vf->vf_id);
    755		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
    756		goto error_param;
    757	}
    758
    759	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
    760		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
    761			vf->vf_id);
    762		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    763		goto error_param;
    764	}
    765
    766	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
    767		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    768		goto error_param;
    769	}
    770
    771	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
    772	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
    773	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
    774		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
    775			vf->vf_id);
    776		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    777		goto error_param;
    778	}
    779
    780	vsi = ice_get_vf_vsi(vf);
    781	if (!vsi) {
    782		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    783		goto error_param;
    784	}
    785
    786	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
    787		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    788		goto error_param;
    789	}
    790
    791	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
    792		struct ice_vsi_ctx *ctx;
    793		u8 lut_type, hash_type;
    794		int status;
    795
    796		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
    797		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
    798				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
    799
    800		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
    801		if (!ctx) {
    802			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
    803			goto error_param;
    804		}
    805
    806		ctx->info.q_opt_rss = ((lut_type <<
    807					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
    808				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
    809				       (hash_type &
    810					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
    811
    812		/* Preserve existing queueing option setting */
    813		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
    814					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
    815		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
    816		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
    817
    818		ctx->info.valid_sections =
    819				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
    820
    821		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
    822		if (status) {
    823			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
    824				status, ice_aq_str(hw->adminq.sq_last_status));
    825			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    826		} else {
    827			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
    828		}
    829
    830		kfree(ctx);
    831	} else {
    832		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
    833		u64 hash_flds = ICE_HASH_INVALID;
    834
    835		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
    836					  &hash_flds)) {
    837			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    838			goto error_param;
    839		}
    840
    841		if (add) {
    842			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
    843					    addl_hdrs)) {
    844				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    845				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
    846					vsi->vsi_num, v_ret);
    847			}
    848		} else {
    849			int status;
    850
    851			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
    852						 addl_hdrs);
    853			/* We just ignore -ENOENT, because if two configurations
    854			 * share the same profile remove one of them actually
    855			 * removes both, since the profile is deleted.
    856			 */
    857			if (status && status != -ENOENT) {
    858				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    859				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
    860					vf->vf_id, status);
    861			}
    862		}
    863	}
    864
    865error_param:
    866	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
    867}
    868
    869/**
    870 * ice_vc_config_rss_key
    871 * @vf: pointer to the VF info
    872 * @msg: pointer to the msg buffer
    873 *
    874 * Configure the VF's RSS key
    875 */
    876static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
    877{
    878	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
    879	struct virtchnl_rss_key *vrk =
    880		(struct virtchnl_rss_key *)msg;
    881	struct ice_vsi *vsi;
    882
    883	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
    884		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    885		goto error_param;
    886	}
    887
    888	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
    889		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    890		goto error_param;
    891	}
    892
    893	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
    894		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    895		goto error_param;
    896	}
    897
    898	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
    899		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    900		goto error_param;
    901	}
    902
    903	vsi = ice_get_vf_vsi(vf);
    904	if (!vsi) {
    905		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    906		goto error_param;
    907	}
    908
    909	if (ice_set_rss_key(vsi, vrk->key))
    910		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
    911error_param:
    912	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
    913				     NULL, 0);
    914}
    915
    916/**
    917 * ice_vc_config_rss_lut
    918 * @vf: pointer to the VF info
    919 * @msg: pointer to the msg buffer
    920 *
    921 * Configure the VF's RSS LUT
    922 */
    923static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
    924{
    925	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
    926	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
    927	struct ice_vsi *vsi;
    928
    929	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
    930		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    931		goto error_param;
    932	}
    933
    934	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
    935		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    936		goto error_param;
    937	}
    938
    939	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
    940		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    941		goto error_param;
    942	}
    943
    944	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
    945		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    946		goto error_param;
    947	}
    948
    949	vsi = ice_get_vf_vsi(vf);
    950	if (!vsi) {
    951		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    952		goto error_param;
    953	}
    954
    955	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
    956		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
    957error_param:
    958	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
    959				     NULL, 0);
    960}
    961
    962/**
    963 * ice_vc_cfg_promiscuous_mode_msg
    964 * @vf: pointer to the VF info
    965 * @msg: pointer to the msg buffer
    966 *
    967 * called from the VF to configure VF VSIs promiscuous mode
    968 */
    969static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
    970{
    971	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
    972	bool rm_promisc, alluni = false, allmulti = false;
    973	struct virtchnl_promisc_info *info =
    974	    (struct virtchnl_promisc_info *)msg;
    975	struct ice_vsi_vlan_ops *vlan_ops;
    976	int mcast_err = 0, ucast_err = 0;
    977	struct ice_pf *pf = vf->pf;
    978	struct ice_vsi *vsi;
    979	struct device *dev;
    980	int ret = 0;
    981
    982	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
    983		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    984		goto error_param;
    985	}
    986
    987	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
    988		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    989		goto error_param;
    990	}
    991
    992	vsi = ice_get_vf_vsi(vf);
    993	if (!vsi) {
    994		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
    995		goto error_param;
    996	}
    997
    998	dev = ice_pf_to_dev(pf);
    999	if (!ice_is_vf_trusted(vf)) {
   1000		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
   1001			vf->vf_id);
   1002		/* Leave v_ret alone, lie to the VF on purpose. */
   1003		goto error_param;
   1004	}
   1005
   1006	if (info->flags & FLAG_VF_UNICAST_PROMISC)
   1007		alluni = true;
   1008
   1009	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
   1010		allmulti = true;
   1011
   1012	rm_promisc = !allmulti && !alluni;
   1013
   1014	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
   1015	if (rm_promisc)
   1016		ret = vlan_ops->ena_rx_filtering(vsi);
   1017	else
   1018		ret = vlan_ops->dis_rx_filtering(vsi);
   1019	if (ret) {
   1020		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
   1021		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1022		goto error_param;
   1023	}
   1024
   1025	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
   1026		bool set_dflt_vsi = alluni || allmulti;
   1027
   1028		if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
   1029			/* only attempt to set the default forwarding VSI if
   1030			 * it's not currently set
   1031			 */
   1032			ret = ice_set_dflt_vsi(pf->first_sw, vsi);
   1033		else if (!set_dflt_vsi &&
   1034			 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
   1035			/* only attempt to free the default forwarding VSI if we
   1036			 * are the owner
   1037			 */
   1038			ret = ice_clear_dflt_vsi(pf->first_sw);
   1039
   1040		if (ret) {
   1041			dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
   1042				set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
   1043			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
   1044			goto error_param;
   1045		}
   1046	} else {
   1047		u8 mcast_m, ucast_m;
   1048
   1049		if (ice_vf_is_port_vlan_ena(vf) ||
   1050		    ice_vsi_has_non_zero_vlans(vsi)) {
   1051			mcast_m = ICE_MCAST_VLAN_PROMISC_BITS;
   1052			ucast_m = ICE_UCAST_VLAN_PROMISC_BITS;
   1053		} else {
   1054			mcast_m = ICE_MCAST_PROMISC_BITS;
   1055			ucast_m = ICE_UCAST_PROMISC_BITS;
   1056		}
   1057
   1058		if (alluni)
   1059			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
   1060		else
   1061			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
   1062
   1063		if (allmulti)
   1064			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
   1065		else
   1066			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
   1067
   1068		if (ucast_err || mcast_err)
   1069			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1070	}
   1071
   1072	if (!mcast_err) {
   1073		if (allmulti &&
   1074		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
   1075			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
   1076				 vf->vf_id);
   1077		else if (!allmulti &&
   1078			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
   1079					    vf->vf_states))
   1080			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
   1081				 vf->vf_id);
   1082	}
   1083
   1084	if (!ucast_err) {
   1085		if (alluni &&
   1086		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
   1087			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
   1088				 vf->vf_id);
   1089		else if (!alluni &&
   1090			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
   1091					    vf->vf_states))
   1092			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
   1093				 vf->vf_id);
   1094	}
   1095
   1096error_param:
   1097	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
   1098				     v_ret, NULL, 0);
   1099}
   1100
   1101/**
   1102 * ice_vc_get_stats_msg
   1103 * @vf: pointer to the VF info
   1104 * @msg: pointer to the msg buffer
   1105 *
   1106 * called from the VF to get VSI stats
   1107 */
   1108static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
   1109{
   1110	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   1111	struct virtchnl_queue_select *vqs =
   1112		(struct virtchnl_queue_select *)msg;
   1113	struct ice_eth_stats stats = { 0 };
   1114	struct ice_vsi *vsi;
   1115
   1116	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   1117		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1118		goto error_param;
   1119	}
   1120
   1121	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
   1122		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1123		goto error_param;
   1124	}
   1125
   1126	vsi = ice_get_vf_vsi(vf);
   1127	if (!vsi) {
   1128		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1129		goto error_param;
   1130	}
   1131
   1132	ice_update_eth_stats(vsi);
   1133
   1134	stats = vsi->eth_stats;
   1135
   1136error_param:
   1137	/* send the response to the VF */
   1138	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
   1139				     (u8 *)&stats, sizeof(stats));
   1140}
   1141
   1142/**
   1143 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
   1144 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
   1145 *
   1146 * Return true on successful validation, else false
   1147 */
   1148static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
   1149{
   1150	if ((!vqs->rx_queues && !vqs->tx_queues) ||
   1151	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
   1152	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
   1153		return false;
   1154
   1155	return true;
   1156}
   1157
   1158/**
   1159 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
   1160 * @vsi: VSI of the VF to configure
   1161 * @q_idx: VF queue index used to determine the queue in the PF's space
   1162 */
   1163static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
   1164{
   1165	struct ice_hw *hw = &vsi->back->hw;
   1166	u32 pfq = vsi->txq_map[q_idx];
   1167	u32 reg;
   1168
   1169	reg = rd32(hw, QINT_TQCTL(pfq));
   1170
   1171	/* MSI-X index 0 in the VF's space is always for the OICR, which means
   1172	 * this is most likely a poll mode VF driver, so don't enable an
   1173	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
   1174	 */
   1175	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
   1176		return;
   1177
   1178	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
   1179}
   1180
   1181/**
   1182 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
   1183 * @vsi: VSI of the VF to configure
   1184 * @q_idx: VF queue index used to determine the queue in the PF's space
   1185 */
   1186static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
   1187{
   1188	struct ice_hw *hw = &vsi->back->hw;
   1189	u32 pfq = vsi->rxq_map[q_idx];
   1190	u32 reg;
   1191
   1192	reg = rd32(hw, QINT_RQCTL(pfq));
   1193
   1194	/* MSI-X index 0 in the VF's space is always for the OICR, which means
   1195	 * this is most likely a poll mode VF driver, so don't enable an
   1196	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
   1197	 */
   1198	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
   1199		return;
   1200
   1201	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
   1202}
   1203
   1204/**
   1205 * ice_vc_ena_qs_msg
   1206 * @vf: pointer to the VF info
   1207 * @msg: pointer to the msg buffer
   1208 *
   1209 * called from the VF to enable all or specific queue(s)
   1210 */
   1211static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
   1212{
   1213	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   1214	struct virtchnl_queue_select *vqs =
   1215	    (struct virtchnl_queue_select *)msg;
   1216	struct ice_vsi *vsi;
   1217	unsigned long q_map;
   1218	u16 vf_q_id;
   1219
   1220	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   1221		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1222		goto error_param;
   1223	}
   1224
   1225	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
   1226		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1227		goto error_param;
   1228	}
   1229
   1230	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
   1231		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1232		goto error_param;
   1233	}
   1234
   1235	vsi = ice_get_vf_vsi(vf);
   1236	if (!vsi) {
   1237		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1238		goto error_param;
   1239	}
   1240
   1241	/* Enable only Rx rings, Tx rings were enabled by the FW when the
   1242	 * Tx queue group list was configured and the context bits were
   1243	 * programmed using ice_vsi_cfg_txqs
   1244	 */
   1245	q_map = vqs->rx_queues;
   1246	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
   1247		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
   1248			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1249			goto error_param;
   1250		}
   1251
   1252		/* Skip queue if enabled */
   1253		if (test_bit(vf_q_id, vf->rxq_ena))
   1254			continue;
   1255
   1256		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
   1257			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
   1258				vf_q_id, vsi->vsi_num);
   1259			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1260			goto error_param;
   1261		}
   1262
   1263		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
   1264		set_bit(vf_q_id, vf->rxq_ena);
   1265	}
   1266
   1267	q_map = vqs->tx_queues;
   1268	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
   1269		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
   1270			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1271			goto error_param;
   1272		}
   1273
   1274		/* Skip queue if enabled */
   1275		if (test_bit(vf_q_id, vf->txq_ena))
   1276			continue;
   1277
   1278		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
   1279		set_bit(vf_q_id, vf->txq_ena);
   1280	}
   1281
   1282	/* Set flag to indicate that queues are enabled */
   1283	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
   1284		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
   1285
   1286error_param:
   1287	/* send the response to the VF */
   1288	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
   1289				     NULL, 0);
   1290}
   1291
   1292/**
   1293 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
   1294 * @vf: VF to disable queue for
   1295 * @vsi: VSI for the VF
   1296 * @q_id: VF relative (0-based) queue ID
   1297 *
   1298 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
   1299 * disabled then clear q_id bit in the enabled queues bitmap and return
   1300 * success. Otherwise return error.
   1301 */
   1302static int
   1303ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
   1304{
   1305	struct ice_txq_meta txq_meta = { 0 };
   1306	struct ice_tx_ring *ring;
   1307	int err;
   1308
   1309	if (!test_bit(q_id, vf->txq_ena))
   1310		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
   1311			q_id, vsi->vsi_num);
   1312
   1313	ring = vsi->tx_rings[q_id];
   1314	if (!ring)
   1315		return -EINVAL;
   1316
   1317	ice_fill_txq_meta(vsi, ring, &txq_meta);
   1318
   1319	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
   1320	if (err) {
   1321		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
   1322			q_id, vsi->vsi_num);
   1323		return err;
   1324	}
   1325
   1326	/* Clear enabled queues flag */
   1327	clear_bit(q_id, vf->txq_ena);
   1328
   1329	return 0;
   1330}
   1331
   1332/**
   1333 * ice_vc_dis_qs_msg
   1334 * @vf: pointer to the VF info
   1335 * @msg: pointer to the msg buffer
   1336 *
   1337 * called from the VF to disable all or specific queue(s)
   1338 */
   1339static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
   1340{
   1341	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   1342	struct virtchnl_queue_select *vqs =
   1343	    (struct virtchnl_queue_select *)msg;
   1344	struct ice_vsi *vsi;
   1345	unsigned long q_map;
   1346	u16 vf_q_id;
   1347
   1348	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
   1349	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
   1350		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1351		goto error_param;
   1352	}
   1353
   1354	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
   1355		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1356		goto error_param;
   1357	}
   1358
   1359	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
   1360		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1361		goto error_param;
   1362	}
   1363
   1364	vsi = ice_get_vf_vsi(vf);
   1365	if (!vsi) {
   1366		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1367		goto error_param;
   1368	}
   1369
   1370	if (vqs->tx_queues) {
   1371		q_map = vqs->tx_queues;
   1372
   1373		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
   1374			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
   1375				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1376				goto error_param;
   1377			}
   1378
   1379			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
   1380				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1381				goto error_param;
   1382			}
   1383		}
   1384	}
   1385
   1386	q_map = vqs->rx_queues;
   1387	/* speed up Rx queue disable by batching them if possible */
   1388	if (q_map &&
   1389	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
   1390		if (ice_vsi_stop_all_rx_rings(vsi)) {
   1391			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
   1392				vsi->vsi_num);
   1393			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1394			goto error_param;
   1395		}
   1396
   1397		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
   1398	} else if (q_map) {
   1399		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
   1400			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
   1401				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1402				goto error_param;
   1403			}
   1404
   1405			/* Skip queue if not enabled */
   1406			if (!test_bit(vf_q_id, vf->rxq_ena))
   1407				continue;
   1408
   1409			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
   1410						     true)) {
   1411				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
   1412					vf_q_id, vsi->vsi_num);
   1413				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1414				goto error_param;
   1415			}
   1416
   1417			/* Clear enabled queues flag */
   1418			clear_bit(vf_q_id, vf->rxq_ena);
   1419		}
   1420	}
   1421
   1422	/* Clear enabled queues flag */
   1423	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
   1424		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
   1425
   1426error_param:
   1427	/* send the response to the VF */
   1428	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
   1429				     NULL, 0);
   1430}
   1431
   1432/**
   1433 * ice_cfg_interrupt
   1434 * @vf: pointer to the VF info
   1435 * @vsi: the VSI being configured
   1436 * @vector_id: vector ID
   1437 * @map: vector map for mapping vectors to queues
   1438 * @q_vector: structure for interrupt vector
   1439 * configure the IRQ to queue map
   1440 */
   1441static int
   1442ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
   1443		  struct virtchnl_vector_map *map,
   1444		  struct ice_q_vector *q_vector)
   1445{
   1446	u16 vsi_q_id, vsi_q_id_idx;
   1447	unsigned long qmap;
   1448
   1449	q_vector->num_ring_rx = 0;
   1450	q_vector->num_ring_tx = 0;
   1451
   1452	qmap = map->rxq_map;
   1453	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
   1454		vsi_q_id = vsi_q_id_idx;
   1455
   1456		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
   1457			return VIRTCHNL_STATUS_ERR_PARAM;
   1458
   1459		q_vector->num_ring_rx++;
   1460		q_vector->rx.itr_idx = map->rxitr_idx;
   1461		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
   1462		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
   1463				      q_vector->rx.itr_idx);
   1464	}
   1465
   1466	qmap = map->txq_map;
   1467	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
   1468		vsi_q_id = vsi_q_id_idx;
   1469
   1470		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
   1471			return VIRTCHNL_STATUS_ERR_PARAM;
   1472
   1473		q_vector->num_ring_tx++;
   1474		q_vector->tx.itr_idx = map->txitr_idx;
   1475		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
   1476		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
   1477				      q_vector->tx.itr_idx);
   1478	}
   1479
   1480	return VIRTCHNL_STATUS_SUCCESS;
   1481}
   1482
   1483/**
   1484 * ice_vc_cfg_irq_map_msg
   1485 * @vf: pointer to the VF info
   1486 * @msg: pointer to the msg buffer
   1487 *
   1488 * called from the VF to configure the IRQ to queue map
   1489 */
   1490static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
   1491{
   1492	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   1493	u16 num_q_vectors_mapped, vsi_id, vector_id;
   1494	struct virtchnl_irq_map_info *irqmap_info;
   1495	struct virtchnl_vector_map *map;
   1496	struct ice_pf *pf = vf->pf;
   1497	struct ice_vsi *vsi;
   1498	int i;
   1499
   1500	irqmap_info = (struct virtchnl_irq_map_info *)msg;
   1501	num_q_vectors_mapped = irqmap_info->num_vectors;
   1502
   1503	/* Check to make sure number of VF vectors mapped is not greater than
   1504	 * number of VF vectors originally allocated, and check that
   1505	 * there is actually at least a single VF queue vector mapped
   1506	 */
   1507	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
   1508	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
   1509	    !num_q_vectors_mapped) {
   1510		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1511		goto error_param;
   1512	}
   1513
   1514	vsi = ice_get_vf_vsi(vf);
   1515	if (!vsi) {
   1516		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1517		goto error_param;
   1518	}
   1519
   1520	for (i = 0; i < num_q_vectors_mapped; i++) {
   1521		struct ice_q_vector *q_vector;
   1522
   1523		map = &irqmap_info->vecmap[i];
   1524
   1525		vector_id = map->vector_id;
   1526		vsi_id = map->vsi_id;
   1527		/* vector_id is always 0-based for each VF, and can never be
   1528		 * larger than or equal to the max allowed interrupts per VF
   1529		 */
   1530		if (!(vector_id < pf->vfs.num_msix_per) ||
   1531		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
   1532		    (!vector_id && (map->rxq_map || map->txq_map))) {
   1533			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1534			goto error_param;
   1535		}
   1536
   1537		/* No need to map VF miscellaneous or rogue vector */
   1538		if (!vector_id)
   1539			continue;
   1540
   1541		/* Subtract non queue vector from vector_id passed by VF
   1542		 * to get actual number of VSI queue vector array index
   1543		 */
   1544		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
   1545		if (!q_vector) {
   1546			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1547			goto error_param;
   1548		}
   1549
   1550		/* lookout for the invalid queue index */
   1551		v_ret = (enum virtchnl_status_code)
   1552			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
   1553		if (v_ret)
   1554			goto error_param;
   1555	}
   1556
   1557error_param:
   1558	/* send the response to the VF */
   1559	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
   1560				     NULL, 0);
   1561}
   1562
   1563/**
   1564 * ice_vc_cfg_qs_msg
   1565 * @vf: pointer to the VF info
   1566 * @msg: pointer to the msg buffer
   1567 *
   1568 * called from the VF to configure the Rx/Tx queues
   1569 */
   1570static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
   1571{
   1572	struct virtchnl_vsi_queue_config_info *qci =
   1573	    (struct virtchnl_vsi_queue_config_info *)msg;
   1574	struct virtchnl_queue_pair_info *qpi;
   1575	struct ice_pf *pf = vf->pf;
   1576	struct ice_vsi *vsi;
   1577	int i = -1, q_idx;
   1578
   1579	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
   1580		goto error_param;
   1581
   1582	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
   1583		goto error_param;
   1584
   1585	vsi = ice_get_vf_vsi(vf);
   1586	if (!vsi)
   1587		goto error_param;
   1588
   1589	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
   1590	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
   1591		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
   1592			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
   1593		goto error_param;
   1594	}
   1595
   1596	for (i = 0; i < qci->num_queue_pairs; i++) {
   1597		qpi = &qci->qpair[i];
   1598		if (qpi->txq.vsi_id != qci->vsi_id ||
   1599		    qpi->rxq.vsi_id != qci->vsi_id ||
   1600		    qpi->rxq.queue_id != qpi->txq.queue_id ||
   1601		    qpi->txq.headwb_enabled ||
   1602		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
   1603		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
   1604		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
   1605			goto error_param;
   1606		}
   1607
   1608		q_idx = qpi->rxq.queue_id;
   1609
   1610		/* make sure selected "q_idx" is in valid range of queues
   1611		 * for selected "vsi"
   1612		 */
   1613		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
   1614			goto error_param;
   1615		}
   1616
   1617		/* copy Tx queue info from VF into VSI */
   1618		if (qpi->txq.ring_len > 0) {
   1619			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
   1620			vsi->tx_rings[i]->count = qpi->txq.ring_len;
   1621
   1622			/* Disable any existing queue first */
   1623			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
   1624				goto error_param;
   1625
   1626			/* Configure a queue with the requested settings */
   1627			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
   1628				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
   1629					 vf->vf_id, i);
   1630				goto error_param;
   1631			}
   1632		}
   1633
   1634		/* copy Rx queue info from VF into VSI */
   1635		if (qpi->rxq.ring_len > 0) {
   1636			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
   1637
   1638			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
   1639			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
   1640
   1641			if (qpi->rxq.databuffer_size != 0 &&
   1642			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
   1643			     qpi->rxq.databuffer_size < 1024))
   1644				goto error_param;
   1645			vsi->rx_buf_len = qpi->rxq.databuffer_size;
   1646			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
   1647			if (qpi->rxq.max_pkt_size > max_frame_size ||
   1648			    qpi->rxq.max_pkt_size < 64)
   1649				goto error_param;
   1650
   1651			vsi->max_frame = qpi->rxq.max_pkt_size;
   1652			/* add space for the port VLAN since the VF driver is
   1653			 * not expected to account for it in the MTU
   1654			 * calculation
   1655			 */
   1656			if (ice_vf_is_port_vlan_ena(vf))
   1657				vsi->max_frame += VLAN_HLEN;
   1658
   1659			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
   1660				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
   1661					 vf->vf_id, i);
   1662				goto error_param;
   1663			}
   1664		}
   1665	}
   1666
   1667	/* send the response to the VF */
   1668	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
   1669				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
   1670error_param:
   1671	/* disable whatever we can */
   1672	for (; i >= 0; i--) {
   1673		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
   1674			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
   1675				vf->vf_id, i);
   1676		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
   1677			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
   1678				vf->vf_id, i);
   1679	}
   1680
   1681	/* send the response to the VF */
   1682	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
   1683				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
   1684}
   1685
   1686/**
   1687 * ice_can_vf_change_mac
   1688 * @vf: pointer to the VF info
   1689 *
   1690 * Return true if the VF is allowed to change its MAC filters, false otherwise
   1691 */
   1692static bool ice_can_vf_change_mac(struct ice_vf *vf)
   1693{
   1694	/* If the VF MAC address has been set administratively (via the
   1695	 * ndo_set_vf_mac command), then deny permission to the VF to
   1696	 * add/delete unicast MAC addresses, unless the VF is trusted
   1697	 */
   1698	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
   1699		return false;
   1700
   1701	return true;
   1702}
   1703
   1704/**
   1705 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
   1706 * @vc_ether_addr: used to extract the type
   1707 */
   1708static u8
   1709ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
   1710{
   1711	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
   1712}
   1713
   1714/**
   1715 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
   1716 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
   1717 */
   1718static bool
   1719ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
   1720{
   1721	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
   1722
   1723	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
   1724}
   1725
   1726/**
   1727 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
   1728 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
   1729 *
   1730 * This function should only be called when the MAC address in
   1731 * virtchnl_ether_addr is a valid unicast MAC
   1732 */
   1733static bool
   1734ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
   1735{
   1736	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
   1737
   1738	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
   1739}
   1740
   1741/**
   1742 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
   1743 * @vf: VF to update
   1744 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
   1745 */
   1746static void
   1747ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
   1748{
   1749	u8 *mac_addr = vc_ether_addr->addr;
   1750
   1751	if (!is_valid_ether_addr(mac_addr))
   1752		return;
   1753
   1754	/* only allow legacy VF drivers to set the device and hardware MAC if it
   1755	 * is zero and allow new VF drivers to set the hardware MAC if the type
   1756	 * was correctly specified over VIRTCHNL
   1757	 */
   1758	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
   1759	     is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
   1760	    ice_is_vc_addr_primary(vc_ether_addr)) {
   1761		ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
   1762		ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
   1763	}
   1764
   1765	/* hardware and device MACs are already set, but its possible that the
   1766	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
   1767	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
   1768	 * away for the legacy VF driver case as it will be updated in the
   1769	 * delete flow for this case
   1770	 */
   1771	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
   1772		ether_addr_copy(vf->legacy_last_added_umac.addr,
   1773				mac_addr);
   1774		vf->legacy_last_added_umac.time_modified = jiffies;
   1775	}
   1776}
   1777
   1778/**
   1779 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
   1780 * @vf: pointer to the VF info
   1781 * @vsi: pointer to the VF's VSI
   1782 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
   1783 */
   1784static int
   1785ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
   1786		    struct virtchnl_ether_addr *vc_ether_addr)
   1787{
   1788	struct device *dev = ice_pf_to_dev(vf->pf);
   1789	u8 *mac_addr = vc_ether_addr->addr;
   1790	int ret;
   1791
   1792	/* device MAC already added */
   1793	if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
   1794		return 0;
   1795
   1796	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
   1797		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
   1798		return -EPERM;
   1799	}
   1800
   1801	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
   1802	if (ret == -EEXIST) {
   1803		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
   1804			vf->vf_id);
   1805		/* don't return since we might need to update
   1806		 * the primary MAC in ice_vfhw_mac_add() below
   1807		 */
   1808	} else if (ret) {
   1809		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
   1810			mac_addr, vf->vf_id, ret);
   1811		return ret;
   1812	} else {
   1813		vf->num_mac++;
   1814	}
   1815
   1816	ice_vfhw_mac_add(vf, vc_ether_addr);
   1817
   1818	return ret;
   1819}
   1820
   1821/**
   1822 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
   1823 * @last_added_umac: structure used to check expiration
   1824 */
   1825static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
   1826{
   1827#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
   1828	return time_is_before_jiffies(last_added_umac->time_modified +
   1829				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
   1830}
   1831
   1832/**
   1833 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
   1834 * @vf: VF to update
   1835 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
   1836 *
   1837 * only update cached hardware MAC for legacy VF drivers on delete
   1838 * because we cannot guarantee order/type of MAC from the VF driver
   1839 */
   1840static void
   1841ice_update_legacy_cached_mac(struct ice_vf *vf,
   1842			     struct virtchnl_ether_addr *vc_ether_addr)
   1843{
   1844	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
   1845	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
   1846		return;
   1847
   1848	ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
   1849	ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
   1850}
   1851
   1852/**
   1853 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
   1854 * @vf: VF to update
   1855 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
   1856 */
   1857static void
   1858ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
   1859{
   1860	u8 *mac_addr = vc_ether_addr->addr;
   1861
   1862	if (!is_valid_ether_addr(mac_addr) ||
   1863	    !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
   1864		return;
   1865
   1866	/* allow the device MAC to be repopulated in the add flow and don't
   1867	 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
   1868	 * to be persistent on VM reboot and across driver unload/load, which
   1869	 * won't work if we clear the hardware MAC here
   1870	 */
   1871	eth_zero_addr(vf->dev_lan_addr.addr);
   1872
   1873	ice_update_legacy_cached_mac(vf, vc_ether_addr);
   1874}
   1875
   1876/**
   1877 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
   1878 * @vf: pointer to the VF info
   1879 * @vsi: pointer to the VF's VSI
   1880 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
   1881 */
   1882static int
   1883ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
   1884		    struct virtchnl_ether_addr *vc_ether_addr)
   1885{
   1886	struct device *dev = ice_pf_to_dev(vf->pf);
   1887	u8 *mac_addr = vc_ether_addr->addr;
   1888	int status;
   1889
   1890	if (!ice_can_vf_change_mac(vf) &&
   1891	    ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
   1892		return 0;
   1893
   1894	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
   1895	if (status == -ENOENT) {
   1896		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
   1897			vf->vf_id);
   1898		return -ENOENT;
   1899	} else if (status) {
   1900		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
   1901			mac_addr, vf->vf_id, status);
   1902		return -EIO;
   1903	}
   1904
   1905	ice_vfhw_mac_del(vf, vc_ether_addr);
   1906
   1907	vf->num_mac--;
   1908
   1909	return 0;
   1910}
   1911
   1912/**
   1913 * ice_vc_handle_mac_addr_msg
   1914 * @vf: pointer to the VF info
   1915 * @msg: pointer to the msg buffer
   1916 * @set: true if MAC filters are being set, false otherwise
   1917 *
   1918 * add guest MAC address filter
   1919 */
   1920static int
   1921ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
   1922{
   1923	int (*ice_vc_cfg_mac)
   1924		(struct ice_vf *vf, struct ice_vsi *vsi,
   1925		 struct virtchnl_ether_addr *virtchnl_ether_addr);
   1926	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   1927	struct virtchnl_ether_addr_list *al =
   1928	    (struct virtchnl_ether_addr_list *)msg;
   1929	struct ice_pf *pf = vf->pf;
   1930	enum virtchnl_ops vc_op;
   1931	struct ice_vsi *vsi;
   1932	int i;
   1933
   1934	if (set) {
   1935		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
   1936		ice_vc_cfg_mac = ice_vc_add_mac_addr;
   1937	} else {
   1938		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
   1939		ice_vc_cfg_mac = ice_vc_del_mac_addr;
   1940	}
   1941
   1942	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
   1943	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
   1944		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1945		goto handle_mac_exit;
   1946	}
   1947
   1948	/* If this VF is not privileged, then we can't add more than a
   1949	 * limited number of addresses. Check to make sure that the
   1950	 * additions do not push us over the limit.
   1951	 */
   1952	if (set && !ice_is_vf_trusted(vf) &&
   1953	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
   1954		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
   1955			vf->vf_id);
   1956		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1957		goto handle_mac_exit;
   1958	}
   1959
   1960	vsi = ice_get_vf_vsi(vf);
   1961	if (!vsi) {
   1962		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   1963		goto handle_mac_exit;
   1964	}
   1965
   1966	for (i = 0; i < al->num_elements; i++) {
   1967		u8 *mac_addr = al->list[i].addr;
   1968		int result;
   1969
   1970		if (is_broadcast_ether_addr(mac_addr) ||
   1971		    is_zero_ether_addr(mac_addr))
   1972			continue;
   1973
   1974		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
   1975		if (result == -EEXIST || result == -ENOENT) {
   1976			continue;
   1977		} else if (result) {
   1978			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
   1979			goto handle_mac_exit;
   1980		}
   1981	}
   1982
   1983handle_mac_exit:
   1984	/* send the response to the VF */
   1985	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
   1986}
   1987
   1988/**
   1989 * ice_vc_add_mac_addr_msg
   1990 * @vf: pointer to the VF info
   1991 * @msg: pointer to the msg buffer
   1992 *
   1993 * add guest MAC address filter
   1994 */
   1995static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
   1996{
   1997	return ice_vc_handle_mac_addr_msg(vf, msg, true);
   1998}
   1999
   2000/**
   2001 * ice_vc_del_mac_addr_msg
   2002 * @vf: pointer to the VF info
   2003 * @msg: pointer to the msg buffer
   2004 *
   2005 * remove guest MAC address filter
   2006 */
   2007static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
   2008{
   2009	return ice_vc_handle_mac_addr_msg(vf, msg, false);
   2010}
   2011
   2012/**
   2013 * ice_vc_request_qs_msg
   2014 * @vf: pointer to the VF info
   2015 * @msg: pointer to the msg buffer
   2016 *
   2017 * VFs get a default number of queues but can use this message to request a
   2018 * different number. If the request is successful, PF will reset the VF and
   2019 * return 0. If unsuccessful, PF will send message informing VF of number of
   2020 * available queue pairs via virtchnl message response to VF.
   2021 */
   2022static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
   2023{
   2024	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2025	struct virtchnl_vf_res_request *vfres =
   2026		(struct virtchnl_vf_res_request *)msg;
   2027	u16 req_queues = vfres->num_queue_pairs;
   2028	struct ice_pf *pf = vf->pf;
   2029	u16 max_allowed_vf_queues;
   2030	u16 tx_rx_queue_left;
   2031	struct device *dev;
   2032	u16 cur_queues;
   2033
   2034	dev = ice_pf_to_dev(pf);
   2035	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   2036		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2037		goto error_param;
   2038	}
   2039
   2040	cur_queues = vf->num_vf_qs;
   2041	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
   2042				 ice_get_avail_rxq_count(pf));
   2043	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
   2044	if (!req_queues) {
   2045		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
   2046			vf->vf_id);
   2047	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
   2048		dev_err(dev, "VF %d tried to request more than %d queues.\n",
   2049			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
   2050		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
   2051	} else if (req_queues > cur_queues &&
   2052		   req_queues - cur_queues > tx_rx_queue_left) {
   2053		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
   2054			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
   2055		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
   2056					       ICE_MAX_RSS_QS_PER_VF);
   2057	} else {
   2058		/* request is successful, then reset VF */
   2059		vf->num_req_qs = req_queues;
   2060		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
   2061		dev_info(dev, "VF %d granted request of %u queues.\n",
   2062			 vf->vf_id, req_queues);
   2063		return 0;
   2064	}
   2065
   2066error_param:
   2067	/* send the response to the VF */
   2068	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
   2069				     v_ret, (u8 *)vfres, sizeof(*vfres));
   2070}
   2071
   2072/**
   2073 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
   2074 * @caps: VF driver negotiated capabilities
   2075 *
   2076 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
   2077 */
   2078static bool ice_vf_vlan_offload_ena(u32 caps)
   2079{
   2080	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
   2081}
   2082
   2083/**
   2084 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
   2085 * @vf: VF used to determine if VLAN promiscuous config is allowed
   2086 */
   2087static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
   2088{
   2089	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
   2090	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
   2091	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
   2092		return true;
   2093
   2094	return false;
   2095}
   2096
   2097/**
   2098 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
   2099 * @vsi: VF's VSI used to enable VLAN promiscuous mode
   2100 * @vlan: VLAN used to enable VLAN promiscuous
   2101 *
   2102 * This function should only be called if VLAN promiscuous mode is allowed,
   2103 * which can be determined via ice_is_vlan_promisc_allowed().
   2104 */
   2105static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
   2106{
   2107	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
   2108	int status;
   2109
   2110	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
   2111					  vlan->vid);
   2112	if (status && status != -EEXIST)
   2113		return status;
   2114
   2115	return 0;
   2116}
   2117
   2118/**
   2119 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
   2120 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
   2121 * @vlan: VLAN used to disable VLAN promiscuous
   2122 *
   2123 * This function should only be called if VLAN promiscuous mode is allowed,
   2124 * which can be determined via ice_is_vlan_promisc_allowed().
   2125 */
   2126static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
   2127{
   2128	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
   2129	int status;
   2130
   2131	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
   2132					    vlan->vid);
   2133	if (status && status != -ENOENT)
   2134		return status;
   2135
   2136	return 0;
   2137}
   2138
   2139/**
   2140 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
   2141 * @vf: VF to check against
   2142 * @vsi: VF's VSI
   2143 *
   2144 * If the VF is trusted then the VF is allowed to add as many VLANs as it
   2145 * wants to, so return false.
   2146 *
   2147 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
   2148 * allowed VLANs for an untrusted VF. Return the result of this comparison.
   2149 */
   2150static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
   2151{
   2152	if (ice_is_vf_trusted(vf))
   2153		return false;
   2154
   2155#define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
   2156	return ((ice_vsi_num_non_zero_vlans(vsi) +
   2157		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
   2158}
   2159
   2160/**
   2161 * ice_vc_process_vlan_msg
   2162 * @vf: pointer to the VF info
   2163 * @msg: pointer to the msg buffer
   2164 * @add_v: Add VLAN if true, otherwise delete VLAN
   2165 *
   2166 * Process virtchnl op to add or remove programmed guest VLAN ID
   2167 */
   2168static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
   2169{
   2170	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2171	struct virtchnl_vlan_filter_list *vfl =
   2172	    (struct virtchnl_vlan_filter_list *)msg;
   2173	struct ice_pf *pf = vf->pf;
   2174	bool vlan_promisc = false;
   2175	struct ice_vsi *vsi;
   2176	struct device *dev;
   2177	int status = 0;
   2178	int i;
   2179
   2180	dev = ice_pf_to_dev(pf);
   2181	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   2182		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2183		goto error_param;
   2184	}
   2185
   2186	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
   2187		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2188		goto error_param;
   2189	}
   2190
   2191	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
   2192		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2193		goto error_param;
   2194	}
   2195
   2196	for (i = 0; i < vfl->num_elements; i++) {
   2197		if (vfl->vlan_id[i] >= VLAN_N_VID) {
   2198			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2199			dev_err(dev, "invalid VF VLAN id %d\n",
   2200				vfl->vlan_id[i]);
   2201			goto error_param;
   2202		}
   2203	}
   2204
   2205	vsi = ice_get_vf_vsi(vf);
   2206	if (!vsi) {
   2207		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2208		goto error_param;
   2209	}
   2210
   2211	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
   2212		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
   2213			 vf->vf_id);
   2214		/* There is no need to let VF know about being not trusted,
   2215		 * so we can just return success message here
   2216		 */
   2217		goto error_param;
   2218	}
   2219
   2220	/* in DVM a VF can add/delete inner VLAN filters when
   2221	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
   2222	 */
   2223	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
   2224		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2225		goto error_param;
   2226	}
   2227
   2228	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
   2229	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
   2230	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
   2231	 */
   2232	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
   2233		!ice_is_dvm_ena(&pf->hw) &&
   2234		!ice_vf_is_port_vlan_ena(vf);
   2235
   2236	if (add_v) {
   2237		for (i = 0; i < vfl->num_elements; i++) {
   2238			u16 vid = vfl->vlan_id[i];
   2239			struct ice_vlan vlan;
   2240
   2241			if (ice_vf_has_max_vlans(vf, vsi)) {
   2242				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
   2243					 vf->vf_id);
   2244				/* There is no need to let VF know about being
   2245				 * not trusted, so we can just return success
   2246				 * message here as well.
   2247				 */
   2248				goto error_param;
   2249			}
   2250
   2251			/* we add VLAN 0 by default for each VF so we can enable
   2252			 * Tx VLAN anti-spoof without triggering MDD events so
   2253			 * we don't need to add it again here
   2254			 */
   2255			if (!vid)
   2256				continue;
   2257
   2258			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
   2259			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
   2260			if (status) {
   2261				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2262				goto error_param;
   2263			}
   2264
   2265			/* Enable VLAN filtering on first non-zero VLAN */
   2266			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
   2267				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
   2268					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2269					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
   2270						vid, status);
   2271					goto error_param;
   2272				}
   2273			} else if (vlan_promisc) {
   2274				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
   2275				if (status) {
   2276					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2277					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
   2278						vid, status);
   2279				}
   2280			}
   2281		}
   2282	} else {
   2283		/* In case of non_trusted VF, number of VLAN elements passed
   2284		 * to PF for removal might be greater than number of VLANs
   2285		 * filter programmed for that VF - So, use actual number of
   2286		 * VLANS added earlier with add VLAN opcode. In order to avoid
   2287		 * removing VLAN that doesn't exist, which result to sending
   2288		 * erroneous failed message back to the VF
   2289		 */
   2290		int num_vf_vlan;
   2291
   2292		num_vf_vlan = vsi->num_vlan;
   2293		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
   2294			u16 vid = vfl->vlan_id[i];
   2295			struct ice_vlan vlan;
   2296
   2297			/* we add VLAN 0 by default for each VF so we can enable
   2298			 * Tx VLAN anti-spoof without triggering MDD events so
   2299			 * we don't want a VIRTCHNL request to remove it
   2300			 */
   2301			if (!vid)
   2302				continue;
   2303
   2304			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
   2305			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
   2306			if (status) {
   2307				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2308				goto error_param;
   2309			}
   2310
   2311			/* Disable VLAN filtering when only VLAN 0 is left */
   2312			if (!ice_vsi_has_non_zero_vlans(vsi))
   2313				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
   2314
   2315			if (vlan_promisc)
   2316				ice_vf_dis_vlan_promisc(vsi, &vlan);
   2317		}
   2318	}
   2319
   2320error_param:
   2321	/* send the response to the VF */
   2322	if (add_v)
   2323		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
   2324					     NULL, 0);
   2325	else
   2326		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
   2327					     NULL, 0);
   2328}
   2329
   2330/**
   2331 * ice_vc_add_vlan_msg
   2332 * @vf: pointer to the VF info
   2333 * @msg: pointer to the msg buffer
   2334 *
   2335 * Add and program guest VLAN ID
   2336 */
   2337static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
   2338{
   2339	return ice_vc_process_vlan_msg(vf, msg, true);
   2340}
   2341
   2342/**
   2343 * ice_vc_remove_vlan_msg
   2344 * @vf: pointer to the VF info
   2345 * @msg: pointer to the msg buffer
   2346 *
   2347 * remove programmed guest VLAN ID
   2348 */
   2349static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
   2350{
   2351	return ice_vc_process_vlan_msg(vf, msg, false);
   2352}
   2353
   2354/**
   2355 * ice_vc_ena_vlan_stripping
   2356 * @vf: pointer to the VF info
   2357 *
   2358 * Enable VLAN header stripping for a given VF
   2359 */
   2360static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
   2361{
   2362	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2363	struct ice_vsi *vsi;
   2364
   2365	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   2366		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2367		goto error_param;
   2368	}
   2369
   2370	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
   2371		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2372		goto error_param;
   2373	}
   2374
   2375	vsi = ice_get_vf_vsi(vf);
   2376	if (!vsi) {
   2377		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2378		goto error_param;
   2379	}
   2380
   2381	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
   2382		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2383
   2384error_param:
   2385	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
   2386				     v_ret, NULL, 0);
   2387}
   2388
   2389/**
   2390 * ice_vc_dis_vlan_stripping
   2391 * @vf: pointer to the VF info
   2392 *
   2393 * Disable VLAN header stripping for a given VF
   2394 */
   2395static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
   2396{
   2397	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2398	struct ice_vsi *vsi;
   2399
   2400	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   2401		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2402		goto error_param;
   2403	}
   2404
   2405	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
   2406		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2407		goto error_param;
   2408	}
   2409
   2410	vsi = ice_get_vf_vsi(vf);
   2411	if (!vsi) {
   2412		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2413		goto error_param;
   2414	}
   2415
   2416	if (vsi->inner_vlan_ops.dis_stripping(vsi))
   2417		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2418
   2419error_param:
   2420	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
   2421				     v_ret, NULL, 0);
   2422}
   2423
   2424/**
   2425 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
   2426 * @vf: VF to enable/disable VLAN stripping for on initialization
   2427 *
   2428 * Set the default for VLAN stripping based on whether a port VLAN is configured
   2429 * and the current VLAN mode of the device.
   2430 */
   2431static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
   2432{
   2433	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
   2434
   2435	if (!vsi)
   2436		return -EINVAL;
   2437
   2438	/* don't modify stripping if port VLAN is configured in SVM since the
   2439	 * port VLAN is based on the inner/single VLAN in SVM
   2440	 */
   2441	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
   2442		return 0;
   2443
   2444	if (ice_vf_vlan_offload_ena(vf->driver_caps))
   2445		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
   2446	else
   2447		return vsi->inner_vlan_ops.dis_stripping(vsi);
   2448}
   2449
   2450static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
   2451{
   2452	if (vf->trusted)
   2453		return VLAN_N_VID;
   2454	else
   2455		return ICE_MAX_VLAN_PER_VF;
   2456}
   2457
   2458/**
   2459 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
   2460 * @vf: VF that being checked for
   2461 *
   2462 * When the device is in double VLAN mode, check whether or not the outer VLAN
   2463 * is allowed.
   2464 */
   2465static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
   2466{
   2467	if (ice_vf_is_port_vlan_ena(vf))
   2468		return true;
   2469
   2470	return false;
   2471}
   2472
   2473/**
   2474 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
   2475 * @vf: VF that capabilities are being set for
   2476 * @caps: VLAN capabilities to populate
   2477 *
   2478 * Determine VLAN capabilities support based on whether a port VLAN is
   2479 * configured. If a port VLAN is configured then the VF should use the inner
   2480 * filtering/offload capabilities since the port VLAN is using the outer VLAN
   2481 * capabilies.
   2482 */
   2483static void
   2484ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
   2485{
   2486	struct virtchnl_vlan_supported_caps *supported_caps;
   2487
   2488	if (ice_vf_outer_vlan_not_allowed(vf)) {
   2489		/* until support for inner VLAN filtering is added when a port
   2490		 * VLAN is configured, only support software offloaded inner
   2491		 * VLANs when a port VLAN is confgured in DVM
   2492		 */
   2493		supported_caps = &caps->filtering.filtering_support;
   2494		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
   2495
   2496		supported_caps = &caps->offloads.stripping_support;
   2497		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2498					VIRTCHNL_VLAN_TOGGLE |
   2499					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
   2500		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2501
   2502		supported_caps = &caps->offloads.insertion_support;
   2503		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2504					VIRTCHNL_VLAN_TOGGLE |
   2505					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
   2506		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2507
   2508		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
   2509		caps->offloads.ethertype_match =
   2510			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
   2511	} else {
   2512		supported_caps = &caps->filtering.filtering_support;
   2513		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
   2514		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2515					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
   2516					VIRTCHNL_VLAN_ETHERTYPE_9100 |
   2517					VIRTCHNL_VLAN_ETHERTYPE_AND;
   2518		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2519						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
   2520						 VIRTCHNL_VLAN_ETHERTYPE_9100;
   2521
   2522		supported_caps = &caps->offloads.stripping_support;
   2523		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
   2524					VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2525					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
   2526		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
   2527					VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2528					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
   2529					VIRTCHNL_VLAN_ETHERTYPE_9100 |
   2530					VIRTCHNL_VLAN_ETHERTYPE_XOR |
   2531					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
   2532
   2533		supported_caps = &caps->offloads.insertion_support;
   2534		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
   2535					VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2536					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
   2537		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
   2538					VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2539					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
   2540					VIRTCHNL_VLAN_ETHERTYPE_9100 |
   2541					VIRTCHNL_VLAN_ETHERTYPE_XOR |
   2542					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
   2543
   2544		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
   2545
   2546		caps->offloads.ethertype_match =
   2547			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
   2548	}
   2549
   2550	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
   2551}
   2552
   2553/**
   2554 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
   2555 * @vf: VF that capabilities are being set for
   2556 * @caps: VLAN capabilities to populate
   2557 *
   2558 * Determine VLAN capabilities support based on whether a port VLAN is
   2559 * configured. If a port VLAN is configured then the VF does not have any VLAN
   2560 * filtering or offload capabilities since the port VLAN is using the inner VLAN
   2561 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
   2562 * VLAN fitlering and offload capabilities.
   2563 */
   2564static void
   2565ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
   2566{
   2567	struct virtchnl_vlan_supported_caps *supported_caps;
   2568
   2569	if (ice_vf_is_port_vlan_ena(vf)) {
   2570		supported_caps = &caps->filtering.filtering_support;
   2571		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
   2572		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2573
   2574		supported_caps = &caps->offloads.stripping_support;
   2575		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
   2576		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2577
   2578		supported_caps = &caps->offloads.insertion_support;
   2579		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
   2580		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2581
   2582		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
   2583		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
   2584		caps->filtering.max_filters = 0;
   2585	} else {
   2586		supported_caps = &caps->filtering.filtering_support;
   2587		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
   2588		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2589		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
   2590
   2591		supported_caps = &caps->offloads.stripping_support;
   2592		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2593					VIRTCHNL_VLAN_TOGGLE |
   2594					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
   2595		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2596
   2597		supported_caps = &caps->offloads.insertion_support;
   2598		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
   2599					VIRTCHNL_VLAN_TOGGLE |
   2600					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
   2601		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
   2602
   2603		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
   2604		caps->offloads.ethertype_match =
   2605			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
   2606		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
   2607	}
   2608}
   2609
   2610/**
   2611 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
   2612 * @vf: VF to determine VLAN capabilities for
   2613 *
   2614 * This will only be called if the VF and PF successfully negotiated
   2615 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
   2616 *
   2617 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
   2618 * is configured or not.
   2619 */
   2620static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
   2621{
   2622	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2623	struct virtchnl_vlan_caps *caps = NULL;
   2624	int err, len = 0;
   2625
   2626	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   2627		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2628		goto out;
   2629	}
   2630
   2631	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
   2632	if (!caps) {
   2633		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
   2634		goto out;
   2635	}
   2636	len = sizeof(*caps);
   2637
   2638	if (ice_is_dvm_ena(&vf->pf->hw))
   2639		ice_vc_set_dvm_caps(vf, caps);
   2640	else
   2641		ice_vc_set_svm_caps(vf, caps);
   2642
   2643	/* store negotiated caps to prevent invalid VF messages */
   2644	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
   2645
   2646out:
   2647	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
   2648				    v_ret, (u8 *)caps, len);
   2649	kfree(caps);
   2650	return err;
   2651}
   2652
   2653/**
   2654 * ice_vc_validate_vlan_tpid - validate VLAN TPID
   2655 * @filtering_caps: negotiated/supported VLAN filtering capabilities
   2656 * @tpid: VLAN TPID used for validation
   2657 *
   2658 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
   2659 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
   2660 */
   2661static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
   2662{
   2663	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
   2664
   2665	switch (tpid) {
   2666	case ETH_P_8021Q:
   2667		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
   2668		break;
   2669	case ETH_P_8021AD:
   2670		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
   2671		break;
   2672	case ETH_P_QINQ1:
   2673		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
   2674		break;
   2675	}
   2676
   2677	if (!(filtering_caps & vlan_ethertype))
   2678		return false;
   2679
   2680	return true;
   2681}
   2682
   2683/**
   2684 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
   2685 * @vc_vlan: virtchnl_vlan to validate
   2686 *
   2687 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
   2688 * false. Otherwise return true.
   2689 */
   2690static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
   2691{
   2692	if (!vc_vlan->tci || !vc_vlan->tpid)
   2693		return false;
   2694
   2695	return true;
   2696}
   2697
   2698/**
   2699 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
   2700 * @vfc: negotiated/supported VLAN filtering capabilities
   2701 * @vfl: VLAN filter list from VF to validate
   2702 *
   2703 * Validate all of the filters in the VLAN filter list from the VF. If any of
   2704 * the checks fail then return false. Otherwise return true.
   2705 */
   2706static bool
   2707ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
   2708				 struct virtchnl_vlan_filter_list_v2 *vfl)
   2709{
   2710	u16 i;
   2711
   2712	if (!vfl->num_elements)
   2713		return false;
   2714
   2715	for (i = 0; i < vfl->num_elements; i++) {
   2716		struct virtchnl_vlan_supported_caps *filtering_support =
   2717			&vfc->filtering_support;
   2718		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
   2719		struct virtchnl_vlan *outer = &vlan_fltr->outer;
   2720		struct virtchnl_vlan *inner = &vlan_fltr->inner;
   2721
   2722		if ((ice_vc_is_valid_vlan(outer) &&
   2723		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
   2724		    (ice_vc_is_valid_vlan(inner) &&
   2725		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
   2726			return false;
   2727
   2728		if ((outer->tci_mask &&
   2729		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
   2730		    (inner->tci_mask &&
   2731		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
   2732			return false;
   2733
   2734		if (((outer->tci & VLAN_PRIO_MASK) &&
   2735		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
   2736		    ((inner->tci & VLAN_PRIO_MASK) &&
   2737		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
   2738			return false;
   2739
   2740		if ((ice_vc_is_valid_vlan(outer) &&
   2741		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
   2742						outer->tpid)) ||
   2743		    (ice_vc_is_valid_vlan(inner) &&
   2744		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
   2745						inner->tpid)))
   2746			return false;
   2747	}
   2748
   2749	return true;
   2750}
   2751
   2752/**
   2753 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
   2754 * @vc_vlan: struct virtchnl_vlan to transform
   2755 */
   2756static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
   2757{
   2758	struct ice_vlan vlan = { 0 };
   2759
   2760	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
   2761	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
   2762	vlan.tpid = vc_vlan->tpid;
   2763
   2764	return vlan;
   2765}
   2766
   2767/**
   2768 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
   2769 * @vsi: VF's VSI used to perform the action
   2770 * @vlan_action: function to perform the action with (i.e. add/del)
   2771 * @vlan: VLAN filter to perform the action with
   2772 */
   2773static int
   2774ice_vc_vlan_action(struct ice_vsi *vsi,
   2775		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
   2776		   struct ice_vlan *vlan)
   2777{
   2778	int err;
   2779
   2780	err = vlan_action(vsi, vlan);
   2781	if (err)
   2782		return err;
   2783
   2784	return 0;
   2785}
   2786
   2787/**
   2788 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
   2789 * @vf: VF used to delete the VLAN(s)
   2790 * @vsi: VF's VSI used to delete the VLAN(s)
   2791 * @vfl: virthchnl filter list used to delete the filters
   2792 */
   2793static int
   2794ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
   2795		 struct virtchnl_vlan_filter_list_v2 *vfl)
   2796{
   2797	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
   2798	int err;
   2799	u16 i;
   2800
   2801	for (i = 0; i < vfl->num_elements; i++) {
   2802		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
   2803		struct virtchnl_vlan *vc_vlan;
   2804
   2805		vc_vlan = &vlan_fltr->outer;
   2806		if (ice_vc_is_valid_vlan(vc_vlan)) {
   2807			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
   2808
   2809			err = ice_vc_vlan_action(vsi,
   2810						 vsi->outer_vlan_ops.del_vlan,
   2811						 &vlan);
   2812			if (err)
   2813				return err;
   2814
   2815			if (vlan_promisc)
   2816				ice_vf_dis_vlan_promisc(vsi, &vlan);
   2817		}
   2818
   2819		vc_vlan = &vlan_fltr->inner;
   2820		if (ice_vc_is_valid_vlan(vc_vlan)) {
   2821			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
   2822
   2823			err = ice_vc_vlan_action(vsi,
   2824						 vsi->inner_vlan_ops.del_vlan,
   2825						 &vlan);
   2826			if (err)
   2827				return err;
   2828
   2829			/* no support for VLAN promiscuous on inner VLAN unless
   2830			 * we are in Single VLAN Mode (SVM)
   2831			 */
   2832			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc)
   2833				ice_vf_dis_vlan_promisc(vsi, &vlan);
   2834		}
   2835	}
   2836
   2837	return 0;
   2838}
   2839
   2840/**
   2841 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
   2842 * @vf: VF the message was received from
   2843 * @msg: message received from the VF
   2844 */
   2845static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
   2846{
   2847	struct virtchnl_vlan_filter_list_v2 *vfl =
   2848		(struct virtchnl_vlan_filter_list_v2 *)msg;
   2849	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2850	struct ice_vsi *vsi;
   2851
   2852	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
   2853					      vfl)) {
   2854		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2855		goto out;
   2856	}
   2857
   2858	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
   2859		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2860		goto out;
   2861	}
   2862
   2863	vsi = ice_get_vf_vsi(vf);
   2864	if (!vsi) {
   2865		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2866		goto out;
   2867	}
   2868
   2869	if (ice_vc_del_vlans(vf, vsi, vfl))
   2870		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2871
   2872out:
   2873	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
   2874				     0);
   2875}
   2876
   2877/**
   2878 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
   2879 * @vf: VF used to add the VLAN(s)
   2880 * @vsi: VF's VSI used to add the VLAN(s)
   2881 * @vfl: virthchnl filter list used to add the filters
   2882 */
   2883static int
   2884ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
   2885		 struct virtchnl_vlan_filter_list_v2 *vfl)
   2886{
   2887	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
   2888	int err;
   2889	u16 i;
   2890
   2891	for (i = 0; i < vfl->num_elements; i++) {
   2892		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
   2893		struct virtchnl_vlan *vc_vlan;
   2894
   2895		vc_vlan = &vlan_fltr->outer;
   2896		if (ice_vc_is_valid_vlan(vc_vlan)) {
   2897			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
   2898
   2899			err = ice_vc_vlan_action(vsi,
   2900						 vsi->outer_vlan_ops.add_vlan,
   2901						 &vlan);
   2902			if (err)
   2903				return err;
   2904
   2905			if (vlan_promisc) {
   2906				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
   2907				if (err)
   2908					return err;
   2909			}
   2910		}
   2911
   2912		vc_vlan = &vlan_fltr->inner;
   2913		if (ice_vc_is_valid_vlan(vc_vlan)) {
   2914			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
   2915
   2916			err = ice_vc_vlan_action(vsi,
   2917						 vsi->inner_vlan_ops.add_vlan,
   2918						 &vlan);
   2919			if (err)
   2920				return err;
   2921
   2922			/* no support for VLAN promiscuous on inner VLAN unless
   2923			 * we are in Single VLAN Mode (SVM)
   2924			 */
   2925			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) {
   2926				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
   2927				if (err)
   2928					return err;
   2929			}
   2930		}
   2931	}
   2932
   2933	return 0;
   2934}
   2935
   2936/**
   2937 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
   2938 * @vsi: VF VSI used to get number of existing VLAN filters
   2939 * @vfc: negotiated/supported VLAN filtering capabilities
   2940 * @vfl: VLAN filter list from VF to validate
   2941 *
   2942 * Validate all of the filters in the VLAN filter list from the VF during the
   2943 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
   2944 * Otherwise return true.
   2945 */
   2946static bool
   2947ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
   2948				     struct virtchnl_vlan_filtering_caps *vfc,
   2949				     struct virtchnl_vlan_filter_list_v2 *vfl)
   2950{
   2951	u16 num_requested_filters = vsi->num_vlan + vfl->num_elements;
   2952
   2953	if (num_requested_filters > vfc->max_filters)
   2954		return false;
   2955
   2956	return ice_vc_validate_vlan_filter_list(vfc, vfl);
   2957}
   2958
   2959/**
   2960 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
   2961 * @vf: VF the message was received from
   2962 * @msg: message received from the VF
   2963 */
   2964static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
   2965{
   2966	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   2967	struct virtchnl_vlan_filter_list_v2 *vfl =
   2968		(struct virtchnl_vlan_filter_list_v2 *)msg;
   2969	struct ice_vsi *vsi;
   2970
   2971	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   2972		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2973		goto out;
   2974	}
   2975
   2976	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
   2977		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2978		goto out;
   2979	}
   2980
   2981	vsi = ice_get_vf_vsi(vf);
   2982	if (!vsi) {
   2983		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2984		goto out;
   2985	}
   2986
   2987	if (!ice_vc_validate_add_vlan_filter_list(vsi,
   2988						  &vf->vlan_v2_caps.filtering,
   2989						  vfl)) {
   2990		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2991		goto out;
   2992	}
   2993
   2994	if (ice_vc_add_vlans(vf, vsi, vfl))
   2995		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   2996
   2997out:
   2998	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
   2999				     0);
   3000}
   3001
   3002/**
   3003 * ice_vc_valid_vlan_setting - validate VLAN setting
   3004 * @negotiated_settings: negotiated VLAN settings during VF init
   3005 * @ethertype_setting: ethertype(s) requested for the VLAN setting
   3006 */
   3007static bool
   3008ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
   3009{
   3010	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
   3011		return false;
   3012
   3013	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
   3014	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
   3015	 */
   3016	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
   3017	    hweight32(ethertype_setting) > 1)
   3018		return false;
   3019
   3020	/* ability to modify the VLAN setting was not negotiated */
   3021	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
   3022		return false;
   3023
   3024	return true;
   3025}
   3026
   3027/**
   3028 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
   3029 * @caps: negotiated VLAN settings during VF init
   3030 * @msg: message to validate
   3031 *
   3032 * Used to validate any VLAN virtchnl message sent as a
   3033 * virtchnl_vlan_setting structure. Validates the message against the
   3034 * negotiated/supported caps during VF driver init.
   3035 */
   3036static bool
   3037ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
   3038			      struct virtchnl_vlan_setting *msg)
   3039{
   3040	if ((!msg->outer_ethertype_setting &&
   3041	     !msg->inner_ethertype_setting) ||
   3042	    (!caps->outer && !caps->inner))
   3043		return false;
   3044
   3045	if (msg->outer_ethertype_setting &&
   3046	    !ice_vc_valid_vlan_setting(caps->outer,
   3047				       msg->outer_ethertype_setting))
   3048		return false;
   3049
   3050	if (msg->inner_ethertype_setting &&
   3051	    !ice_vc_valid_vlan_setting(caps->inner,
   3052				       msg->inner_ethertype_setting))
   3053		return false;
   3054
   3055	return true;
   3056}
   3057
   3058/**
   3059 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
   3060 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
   3061 * @tpid: VLAN TPID to populate
   3062 */
   3063static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
   3064{
   3065	switch (ethertype_setting) {
   3066	case VIRTCHNL_VLAN_ETHERTYPE_8100:
   3067		*tpid = ETH_P_8021Q;
   3068		break;
   3069	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
   3070		*tpid = ETH_P_8021AD;
   3071		break;
   3072	case VIRTCHNL_VLAN_ETHERTYPE_9100:
   3073		*tpid = ETH_P_QINQ1;
   3074		break;
   3075	default:
   3076		*tpid = 0;
   3077		return -EINVAL;
   3078	}
   3079
   3080	return 0;
   3081}
   3082
   3083/**
   3084 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
   3085 * @vsi: VF's VSI used to enable the VLAN offload
   3086 * @ena_offload: function used to enable the VLAN offload
   3087 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
   3088 */
   3089static int
   3090ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
   3091			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
   3092			u32 ethertype_setting)
   3093{
   3094	u16 tpid;
   3095	int err;
   3096
   3097	err = ice_vc_get_tpid(ethertype_setting, &tpid);
   3098	if (err)
   3099		return err;
   3100
   3101	err = ena_offload(vsi, tpid);
   3102	if (err)
   3103		return err;
   3104
   3105	return 0;
   3106}
   3107
   3108#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
   3109#define ICE_L2TSEL_BIT_OFFSET		23
   3110enum ice_l2tsel {
   3111	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
   3112	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
   3113};
   3114
   3115/**
   3116 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
   3117 * @vsi: VSI used to update l2tsel on
   3118 * @l2tsel: l2tsel setting requested
   3119 *
   3120 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
   3121 * This will modify which descriptor field the first offloaded VLAN will be
   3122 * stripped into.
   3123 */
   3124static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
   3125{
   3126	struct ice_hw *hw = &vsi->back->hw;
   3127	u32 l2tsel_bit;
   3128	int i;
   3129
   3130	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
   3131		l2tsel_bit = 0;
   3132	else
   3133		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
   3134
   3135	for (i = 0; i < vsi->alloc_rxq; i++) {
   3136		u16 pfq = vsi->rxq_map[i];
   3137		u32 qrx_context_offset;
   3138		u32 regval;
   3139
   3140		qrx_context_offset =
   3141			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
   3142
   3143		regval = rd32(hw, qrx_context_offset);
   3144		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
   3145		regval |= l2tsel_bit;
   3146		wr32(hw, qrx_context_offset, regval);
   3147	}
   3148}
   3149
   3150/**
   3151 * ice_vc_ena_vlan_stripping_v2_msg
   3152 * @vf: VF the message was received from
   3153 * @msg: message received from the VF
   3154 *
   3155 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
   3156 */
   3157static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
   3158{
   3159	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   3160	struct virtchnl_vlan_supported_caps *stripping_support;
   3161	struct virtchnl_vlan_setting *strip_msg =
   3162		(struct virtchnl_vlan_setting *)msg;
   3163	u32 ethertype_setting;
   3164	struct ice_vsi *vsi;
   3165
   3166	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   3167		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3168		goto out;
   3169	}
   3170
   3171	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
   3172		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3173		goto out;
   3174	}
   3175
   3176	vsi = ice_get_vf_vsi(vf);
   3177	if (!vsi) {
   3178		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3179		goto out;
   3180	}
   3181
   3182	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
   3183	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
   3184		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3185		goto out;
   3186	}
   3187
   3188	ethertype_setting = strip_msg->outer_ethertype_setting;
   3189	if (ethertype_setting) {
   3190		if (ice_vc_ena_vlan_offload(vsi,
   3191					    vsi->outer_vlan_ops.ena_stripping,
   3192					    ethertype_setting)) {
   3193			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3194			goto out;
   3195		} else {
   3196			enum ice_l2tsel l2tsel =
   3197				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
   3198
   3199			/* PF tells the VF that the outer VLAN tag is always
   3200			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
   3201			 * inner is always extracted to
   3202			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
   3203			 * support outer stripping so the first tag always ends
   3204			 * up in L2TAG2_2ND and the second/inner tag, if
   3205			 * enabled, is extracted in L2TAG1.
   3206			 */
   3207			ice_vsi_update_l2tsel(vsi, l2tsel);
   3208		}
   3209	}
   3210
   3211	ethertype_setting = strip_msg->inner_ethertype_setting;
   3212	if (ethertype_setting &&
   3213	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
   3214				    ethertype_setting)) {
   3215		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3216		goto out;
   3217	}
   3218
   3219out:
   3220	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
   3221				     v_ret, NULL, 0);
   3222}
   3223
   3224/**
   3225 * ice_vc_dis_vlan_stripping_v2_msg
   3226 * @vf: VF the message was received from
   3227 * @msg: message received from the VF
   3228 *
   3229 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
   3230 */
   3231static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
   3232{
   3233	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   3234	struct virtchnl_vlan_supported_caps *stripping_support;
   3235	struct virtchnl_vlan_setting *strip_msg =
   3236		(struct virtchnl_vlan_setting *)msg;
   3237	u32 ethertype_setting;
   3238	struct ice_vsi *vsi;
   3239
   3240	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   3241		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3242		goto out;
   3243	}
   3244
   3245	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
   3246		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3247		goto out;
   3248	}
   3249
   3250	vsi = ice_get_vf_vsi(vf);
   3251	if (!vsi) {
   3252		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3253		goto out;
   3254	}
   3255
   3256	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
   3257	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
   3258		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3259		goto out;
   3260	}
   3261
   3262	ethertype_setting = strip_msg->outer_ethertype_setting;
   3263	if (ethertype_setting) {
   3264		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
   3265			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3266			goto out;
   3267		} else {
   3268			enum ice_l2tsel l2tsel =
   3269				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
   3270
   3271			/* PF tells the VF that the outer VLAN tag is always
   3272			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
   3273			 * inner is always extracted to
   3274			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
   3275			 * support inner stripping while outer stripping is
   3276			 * disabled so that the first and only tag is extracted
   3277			 * in L2TAG1.
   3278			 */
   3279			ice_vsi_update_l2tsel(vsi, l2tsel);
   3280		}
   3281	}
   3282
   3283	ethertype_setting = strip_msg->inner_ethertype_setting;
   3284	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
   3285		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3286		goto out;
   3287	}
   3288
   3289out:
   3290	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
   3291				     v_ret, NULL, 0);
   3292}
   3293
   3294/**
   3295 * ice_vc_ena_vlan_insertion_v2_msg
   3296 * @vf: VF the message was received from
   3297 * @msg: message received from the VF
   3298 *
   3299 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
   3300 */
   3301static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
   3302{
   3303	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   3304	struct virtchnl_vlan_supported_caps *insertion_support;
   3305	struct virtchnl_vlan_setting *insertion_msg =
   3306		(struct virtchnl_vlan_setting *)msg;
   3307	u32 ethertype_setting;
   3308	struct ice_vsi *vsi;
   3309
   3310	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   3311		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3312		goto out;
   3313	}
   3314
   3315	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
   3316		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3317		goto out;
   3318	}
   3319
   3320	vsi = ice_get_vf_vsi(vf);
   3321	if (!vsi) {
   3322		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3323		goto out;
   3324	}
   3325
   3326	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
   3327	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
   3328		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3329		goto out;
   3330	}
   3331
   3332	ethertype_setting = insertion_msg->outer_ethertype_setting;
   3333	if (ethertype_setting &&
   3334	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
   3335				    ethertype_setting)) {
   3336		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3337		goto out;
   3338	}
   3339
   3340	ethertype_setting = insertion_msg->inner_ethertype_setting;
   3341	if (ethertype_setting &&
   3342	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
   3343				    ethertype_setting)) {
   3344		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3345		goto out;
   3346	}
   3347
   3348out:
   3349	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
   3350				     v_ret, NULL, 0);
   3351}
   3352
   3353/**
   3354 * ice_vc_dis_vlan_insertion_v2_msg
   3355 * @vf: VF the message was received from
   3356 * @msg: message received from the VF
   3357 *
   3358 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
   3359 */
   3360static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
   3361{
   3362	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   3363	struct virtchnl_vlan_supported_caps *insertion_support;
   3364	struct virtchnl_vlan_setting *insertion_msg =
   3365		(struct virtchnl_vlan_setting *)msg;
   3366	u32 ethertype_setting;
   3367	struct ice_vsi *vsi;
   3368
   3369	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
   3370		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3371		goto out;
   3372	}
   3373
   3374	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
   3375		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3376		goto out;
   3377	}
   3378
   3379	vsi = ice_get_vf_vsi(vf);
   3380	if (!vsi) {
   3381		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3382		goto out;
   3383	}
   3384
   3385	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
   3386	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
   3387		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3388		goto out;
   3389	}
   3390
   3391	ethertype_setting = insertion_msg->outer_ethertype_setting;
   3392	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
   3393		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3394		goto out;
   3395	}
   3396
   3397	ethertype_setting = insertion_msg->inner_ethertype_setting;
   3398	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
   3399		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3400		goto out;
   3401	}
   3402
   3403out:
   3404	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
   3405				     v_ret, NULL, 0);
   3406}
   3407
   3408static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
   3409	.get_ver_msg = ice_vc_get_ver_msg,
   3410	.get_vf_res_msg = ice_vc_get_vf_res_msg,
   3411	.reset_vf = ice_vc_reset_vf_msg,
   3412	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
   3413	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
   3414	.cfg_qs_msg = ice_vc_cfg_qs_msg,
   3415	.ena_qs_msg = ice_vc_ena_qs_msg,
   3416	.dis_qs_msg = ice_vc_dis_qs_msg,
   3417	.request_qs_msg = ice_vc_request_qs_msg,
   3418	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
   3419	.config_rss_key = ice_vc_config_rss_key,
   3420	.config_rss_lut = ice_vc_config_rss_lut,
   3421	.get_stats_msg = ice_vc_get_stats_msg,
   3422	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
   3423	.add_vlan_msg = ice_vc_add_vlan_msg,
   3424	.remove_vlan_msg = ice_vc_remove_vlan_msg,
   3425	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
   3426	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
   3427	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
   3428	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
   3429	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
   3430	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
   3431	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
   3432	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
   3433	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
   3434	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
   3435	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
   3436	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
   3437};
   3438
   3439/**
   3440 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
   3441 * @vf: the VF to switch ops
   3442 */
   3443void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
   3444{
   3445	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
   3446}
   3447
   3448/**
   3449 * ice_vc_repr_add_mac
   3450 * @vf: pointer to VF
   3451 * @msg: virtchannel message
   3452 *
   3453 * When port representors are created, we do not add MAC rule
   3454 * to firmware, we store it so that PF could report same
   3455 * MAC as VF.
   3456 */
   3457static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
   3458{
   3459	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
   3460	struct virtchnl_ether_addr_list *al =
   3461	    (struct virtchnl_ether_addr_list *)msg;
   3462	struct ice_vsi *vsi;
   3463	struct ice_pf *pf;
   3464	int i;
   3465
   3466	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
   3467	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
   3468		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3469		goto handle_mac_exit;
   3470	}
   3471
   3472	pf = vf->pf;
   3473
   3474	vsi = ice_get_vf_vsi(vf);
   3475	if (!vsi) {
   3476		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
   3477		goto handle_mac_exit;
   3478	}
   3479
   3480	for (i = 0; i < al->num_elements; i++) {
   3481		u8 *mac_addr = al->list[i].addr;
   3482		int result;
   3483
   3484		if (!is_unicast_ether_addr(mac_addr) ||
   3485		    ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
   3486			continue;
   3487
   3488		if (vf->pf_set_mac) {
   3489			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
   3490			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
   3491			goto handle_mac_exit;
   3492		}
   3493
   3494		result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
   3495		if (result) {
   3496			dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
   3497				mac_addr, vf->vf_id, result);
   3498			goto handle_mac_exit;
   3499		}
   3500
   3501		ice_vfhw_mac_add(vf, &al->list[i]);
   3502		vf->num_mac++;
   3503		break;
   3504	}
   3505
   3506handle_mac_exit:
   3507	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
   3508				     v_ret, NULL, 0);
   3509}
   3510
   3511/**
   3512 * ice_vc_repr_del_mac - response with success for deleting MAC
   3513 * @vf: pointer to VF
   3514 * @msg: virtchannel message
   3515 *
   3516 * Respond with success to not break normal VF flow.
   3517 * For legacy VF driver try to update cached MAC address.
   3518 */
   3519static int
   3520ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
   3521{
   3522	struct virtchnl_ether_addr_list *al =
   3523		(struct virtchnl_ether_addr_list *)msg;
   3524
   3525	ice_update_legacy_cached_mac(vf, &al->list[0]);
   3526
   3527	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
   3528				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
   3529}
   3530
   3531static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg)
   3532{
   3533	dev_dbg(ice_pf_to_dev(vf->pf),
   3534		"Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id);
   3535	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN,
   3536				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
   3537}
   3538
   3539static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg)
   3540{
   3541	dev_dbg(ice_pf_to_dev(vf->pf),
   3542		"Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id);
   3543	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN,
   3544				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
   3545}
   3546
   3547static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf)
   3548{
   3549	dev_dbg(ice_pf_to_dev(vf->pf),
   3550		"Can't enable VLAN stripping in switchdev mode for VF %d\n",
   3551		vf->vf_id);
   3552	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
   3553				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
   3554				     NULL, 0);
   3555}
   3556
   3557static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf)
   3558{
   3559	dev_dbg(ice_pf_to_dev(vf->pf),
   3560		"Can't disable VLAN stripping in switchdev mode for VF %d\n",
   3561		vf->vf_id);
   3562	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
   3563				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
   3564				     NULL, 0);
   3565}
   3566
   3567static int
   3568ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
   3569{
   3570	dev_dbg(ice_pf_to_dev(vf->pf),
   3571		"Can't config promiscuous mode in switchdev mode for VF %d\n",
   3572		vf->vf_id);
   3573	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
   3574				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
   3575				     NULL, 0);
   3576}
   3577
   3578static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
   3579	.get_ver_msg = ice_vc_get_ver_msg,
   3580	.get_vf_res_msg = ice_vc_get_vf_res_msg,
   3581	.reset_vf = ice_vc_reset_vf_msg,
   3582	.add_mac_addr_msg = ice_vc_repr_add_mac,
   3583	.del_mac_addr_msg = ice_vc_repr_del_mac,
   3584	.cfg_qs_msg = ice_vc_cfg_qs_msg,
   3585	.ena_qs_msg = ice_vc_ena_qs_msg,
   3586	.dis_qs_msg = ice_vc_dis_qs_msg,
   3587	.request_qs_msg = ice_vc_request_qs_msg,
   3588	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
   3589	.config_rss_key = ice_vc_config_rss_key,
   3590	.config_rss_lut = ice_vc_config_rss_lut,
   3591	.get_stats_msg = ice_vc_get_stats_msg,
   3592	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
   3593	.add_vlan_msg = ice_vc_repr_add_vlan,
   3594	.remove_vlan_msg = ice_vc_repr_del_vlan,
   3595	.ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping,
   3596	.dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping,
   3597	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
   3598	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
   3599	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
   3600	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
   3601	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
   3602	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
   3603	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
   3604	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
   3605	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
   3606	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
   3607};
   3608
   3609/**
   3610 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
   3611 * @vf: the VF to switch ops
   3612 */
   3613void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
   3614{
   3615	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
   3616}
   3617
   3618/**
   3619 * ice_vc_process_vf_msg - Process request from VF
   3620 * @pf: pointer to the PF structure
   3621 * @event: pointer to the AQ event
   3622 *
   3623 * called from the common asq/arq handler to
   3624 * process request from VF
   3625 */
   3626void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
   3627{
   3628	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
   3629	s16 vf_id = le16_to_cpu(event->desc.retval);
   3630	const struct ice_virtchnl_ops *ops;
   3631	u16 msglen = event->msg_len;
   3632	u8 *msg = event->msg_buf;
   3633	struct ice_vf *vf = NULL;
   3634	struct device *dev;
   3635	int err = 0;
   3636
   3637	dev = ice_pf_to_dev(pf);
   3638
   3639	vf = ice_get_vf_by_id(pf, vf_id);
   3640	if (!vf) {
   3641		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
   3642			vf_id, v_opcode, msglen);
   3643		return;
   3644	}
   3645
   3646	mutex_lock(&vf->cfg_lock);
   3647
   3648	/* Check if VF is disabled. */
   3649	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
   3650		err = -EPERM;
   3651		goto error_handler;
   3652	}
   3653
   3654	ops = vf->virtchnl_ops;
   3655
   3656	/* Perform basic checks on the msg */
   3657	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
   3658	if (err) {
   3659		if (err == VIRTCHNL_STATUS_ERR_PARAM)
   3660			err = -EPERM;
   3661		else
   3662			err = -EINVAL;
   3663	}
   3664
   3665error_handler:
   3666	if (err) {
   3667		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
   3668				      NULL, 0);
   3669		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
   3670			vf_id, v_opcode, msglen, err);
   3671		goto finish;
   3672	}
   3673
   3674	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
   3675		ice_vc_send_msg_to_vf(vf, v_opcode,
   3676				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
   3677				      0);
   3678		goto finish;
   3679	}
   3680
   3681	switch (v_opcode) {
   3682	case VIRTCHNL_OP_VERSION:
   3683		err = ops->get_ver_msg(vf, msg);
   3684		break;
   3685	case VIRTCHNL_OP_GET_VF_RESOURCES:
   3686		err = ops->get_vf_res_msg(vf, msg);
   3687		if (ice_vf_init_vlan_stripping(vf))
   3688			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
   3689				vf->vf_id);
   3690		ice_vc_notify_vf_link_state(vf);
   3691		break;
   3692	case VIRTCHNL_OP_RESET_VF:
   3693		ops->reset_vf(vf);
   3694		break;
   3695	case VIRTCHNL_OP_ADD_ETH_ADDR:
   3696		err = ops->add_mac_addr_msg(vf, msg);
   3697		break;
   3698	case VIRTCHNL_OP_DEL_ETH_ADDR:
   3699		err = ops->del_mac_addr_msg(vf, msg);
   3700		break;
   3701	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
   3702		err = ops->cfg_qs_msg(vf, msg);
   3703		break;
   3704	case VIRTCHNL_OP_ENABLE_QUEUES:
   3705		err = ops->ena_qs_msg(vf, msg);
   3706		ice_vc_notify_vf_link_state(vf);
   3707		break;
   3708	case VIRTCHNL_OP_DISABLE_QUEUES:
   3709		err = ops->dis_qs_msg(vf, msg);
   3710		break;
   3711	case VIRTCHNL_OP_REQUEST_QUEUES:
   3712		err = ops->request_qs_msg(vf, msg);
   3713		break;
   3714	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
   3715		err = ops->cfg_irq_map_msg(vf, msg);
   3716		break;
   3717	case VIRTCHNL_OP_CONFIG_RSS_KEY:
   3718		err = ops->config_rss_key(vf, msg);
   3719		break;
   3720	case VIRTCHNL_OP_CONFIG_RSS_LUT:
   3721		err = ops->config_rss_lut(vf, msg);
   3722		break;
   3723	case VIRTCHNL_OP_GET_STATS:
   3724		err = ops->get_stats_msg(vf, msg);
   3725		break;
   3726	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
   3727		err = ops->cfg_promiscuous_mode_msg(vf, msg);
   3728		break;
   3729	case VIRTCHNL_OP_ADD_VLAN:
   3730		err = ops->add_vlan_msg(vf, msg);
   3731		break;
   3732	case VIRTCHNL_OP_DEL_VLAN:
   3733		err = ops->remove_vlan_msg(vf, msg);
   3734		break;
   3735	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
   3736		err = ops->ena_vlan_stripping(vf);
   3737		break;
   3738	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
   3739		err = ops->dis_vlan_stripping(vf);
   3740		break;
   3741	case VIRTCHNL_OP_ADD_FDIR_FILTER:
   3742		err = ops->add_fdir_fltr_msg(vf, msg);
   3743		break;
   3744	case VIRTCHNL_OP_DEL_FDIR_FILTER:
   3745		err = ops->del_fdir_fltr_msg(vf, msg);
   3746		break;
   3747	case VIRTCHNL_OP_ADD_RSS_CFG:
   3748		err = ops->handle_rss_cfg_msg(vf, msg, true);
   3749		break;
   3750	case VIRTCHNL_OP_DEL_RSS_CFG:
   3751		err = ops->handle_rss_cfg_msg(vf, msg, false);
   3752		break;
   3753	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
   3754		err = ops->get_offload_vlan_v2_caps(vf);
   3755		break;
   3756	case VIRTCHNL_OP_ADD_VLAN_V2:
   3757		err = ops->add_vlan_v2_msg(vf, msg);
   3758		break;
   3759	case VIRTCHNL_OP_DEL_VLAN_V2:
   3760		err = ops->remove_vlan_v2_msg(vf, msg);
   3761		break;
   3762	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
   3763		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
   3764		break;
   3765	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
   3766		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
   3767		break;
   3768	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
   3769		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
   3770		break;
   3771	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
   3772		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
   3773		break;
   3774	case VIRTCHNL_OP_UNKNOWN:
   3775	default:
   3776		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
   3777			vf_id);
   3778		err = ice_vc_send_msg_to_vf(vf, v_opcode,
   3779					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
   3780					    NULL, 0);
   3781		break;
   3782	}
   3783	if (err) {
   3784		/* Helper function cares less about error return values here
   3785		 * as it is busy with pending work.
   3786		 */
   3787		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
   3788			 vf_id, v_opcode, err);
   3789	}
   3790
   3791finish:
   3792	mutex_unlock(&vf->cfg_lock);
   3793	ice_put_vf(vf);
   3794}