e1000_82575.c (79445B)
1// SPDX-License-Identifier: GPL-2.0 2/* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4/* e1000_82575 5 * e1000_82576 6 */ 7 8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10#include <linux/types.h> 11#include <linux/if_ether.h> 12#include <linux/i2c.h> 13 14#include "e1000_mac.h" 15#include "e1000_82575.h" 16#include "e1000_i210.h" 17#include "igb.h" 18 19static s32 igb_get_invariants_82575(struct e1000_hw *); 20static s32 igb_acquire_phy_82575(struct e1000_hw *); 21static void igb_release_phy_82575(struct e1000_hw *); 22static s32 igb_acquire_nvm_82575(struct e1000_hw *); 23static void igb_release_nvm_82575(struct e1000_hw *); 24static s32 igb_check_for_link_82575(struct e1000_hw *); 25static s32 igb_get_cfg_done_82575(struct e1000_hw *); 26static s32 igb_init_hw_82575(struct e1000_hw *); 27static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); 28static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); 29static s32 igb_reset_hw_82575(struct e1000_hw *); 30static s32 igb_reset_hw_82580(struct e1000_hw *); 31static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); 32static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); 33static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); 34static s32 igb_setup_copper_link_82575(struct e1000_hw *); 35static s32 igb_setup_serdes_link_82575(struct e1000_hw *); 36static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); 37static void igb_clear_hw_cntrs_82575(struct e1000_hw *); 38static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); 39static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, 40 u16 *); 41static s32 igb_get_phy_id_82575(struct e1000_hw *); 42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); 43static bool igb_sgmii_active_82575(struct e1000_hw *); 44static s32 igb_reset_init_script_82575(struct e1000_hw *); 45static s32 igb_read_mac_addr_82575(struct e1000_hw *); 46static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); 47static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); 48static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); 49static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); 50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); 51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); 52static const u16 e1000_82580_rxpbs_table[] = { 53 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; 54 55/* Due to a hw errata, if the host tries to configure the VFTA register 56 * while performing queries from the BMC or DMA, then the VFTA in some 57 * cases won't be written. 58 */ 59 60/** 61 * igb_write_vfta_i350 - Write value to VLAN filter table 62 * @hw: pointer to the HW structure 63 * @offset: register offset in VLAN filter table 64 * @value: register value written to VLAN filter table 65 * 66 * Writes value at the given offset in the register array which stores 67 * the VLAN filter table. 68 **/ 69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) 70{ 71 struct igb_adapter *adapter = hw->back; 72 int i; 73 74 for (i = 10; i--;) 75 array_wr32(E1000_VFTA, offset, value); 76 77 wrfl(); 78 adapter->shadow_vfta[offset] = value; 79} 80 81/** 82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO 83 * @hw: pointer to the HW structure 84 * 85 * Called to determine if the I2C pins are being used for I2C or as an 86 * external MDIO interface since the two options are mutually exclusive. 87 **/ 88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) 89{ 90 u32 reg = 0; 91 bool ext_mdio = false; 92 93 switch (hw->mac.type) { 94 case e1000_82575: 95 case e1000_82576: 96 reg = rd32(E1000_MDIC); 97 ext_mdio = !!(reg & E1000_MDIC_DEST); 98 break; 99 case e1000_82580: 100 case e1000_i350: 101 case e1000_i354: 102 case e1000_i210: 103 case e1000_i211: 104 reg = rd32(E1000_MDICNFG); 105 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); 106 break; 107 default: 108 break; 109 } 110 return ext_mdio; 111} 112 113/** 114 * igb_check_for_link_media_swap - Check which M88E1112 interface linked 115 * @hw: pointer to the HW structure 116 * 117 * Poll the M88E1112 interfaces to see which interface achieved link. 118 */ 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw) 120{ 121 struct e1000_phy_info *phy = &hw->phy; 122 s32 ret_val; 123 u16 data; 124 u8 port = 0; 125 126 /* Check the copper medium. */ 127 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 128 if (ret_val) 129 return ret_val; 130 131 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); 132 if (ret_val) 133 return ret_val; 134 135 if (data & E1000_M88E1112_STATUS_LINK) 136 port = E1000_MEDIA_PORT_COPPER; 137 138 /* Check the other medium. */ 139 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); 140 if (ret_val) 141 return ret_val; 142 143 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); 144 if (ret_val) 145 return ret_val; 146 147 148 if (data & E1000_M88E1112_STATUS_LINK) 149 port = E1000_MEDIA_PORT_OTHER; 150 151 /* Determine if a swap needs to happen. */ 152 if (port && (hw->dev_spec._82575.media_port != port)) { 153 hw->dev_spec._82575.media_port = port; 154 hw->dev_spec._82575.media_changed = true; 155 } 156 157 if (port == E1000_MEDIA_PORT_COPPER) { 158 /* reset page to 0 */ 159 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 160 if (ret_val) 161 return ret_val; 162 igb_check_for_link_82575(hw); 163 } else { 164 igb_check_for_link_82575(hw); 165 /* reset page to 0 */ 166 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); 167 if (ret_val) 168 return ret_val; 169 } 170 171 return 0; 172} 173 174/** 175 * igb_init_phy_params_82575 - Init PHY func ptrs. 176 * @hw: pointer to the HW structure 177 **/ 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw) 179{ 180 struct e1000_phy_info *phy = &hw->phy; 181 s32 ret_val = 0; 182 u32 ctrl_ext; 183 184 if (hw->phy.media_type != e1000_media_type_copper) { 185 phy->type = e1000_phy_none; 186 goto out; 187 } 188 189 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 190 phy->reset_delay_us = 100; 191 192 ctrl_ext = rd32(E1000_CTRL_EXT); 193 194 if (igb_sgmii_active_82575(hw)) { 195 phy->ops.reset = igb_phy_hw_reset_sgmii_82575; 196 ctrl_ext |= E1000_CTRL_I2C_ENA; 197 } else { 198 phy->ops.reset = igb_phy_hw_reset; 199 ctrl_ext &= ~E1000_CTRL_I2C_ENA; 200 } 201 202 wr32(E1000_CTRL_EXT, ctrl_ext); 203 igb_reset_mdicnfg_82580(hw); 204 205 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { 206 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; 207 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; 208 } else { 209 switch (hw->mac.type) { 210 case e1000_82580: 211 case e1000_i350: 212 case e1000_i354: 213 case e1000_i210: 214 case e1000_i211: 215 phy->ops.read_reg = igb_read_phy_reg_82580; 216 phy->ops.write_reg = igb_write_phy_reg_82580; 217 break; 218 default: 219 phy->ops.read_reg = igb_read_phy_reg_igp; 220 phy->ops.write_reg = igb_write_phy_reg_igp; 221 } 222 } 223 224 /* set lan id */ 225 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> 226 E1000_STATUS_FUNC_SHIFT; 227 228 /* Set phy->phy_addr and phy->id. */ 229 ret_val = igb_get_phy_id_82575(hw); 230 if (ret_val) 231 return ret_val; 232 233 /* Verify phy id and set remaining function pointers */ 234 switch (phy->id) { 235 case M88E1543_E_PHY_ID: 236 case M88E1512_E_PHY_ID: 237 case I347AT4_E_PHY_ID: 238 case M88E1112_E_PHY_ID: 239 case M88E1111_I_PHY_ID: 240 phy->type = e1000_phy_m88; 241 phy->ops.check_polarity = igb_check_polarity_m88; 242 phy->ops.get_phy_info = igb_get_phy_info_m88; 243 if (phy->id != M88E1111_I_PHY_ID) 244 phy->ops.get_cable_length = 245 igb_get_cable_length_m88_gen2; 246 else 247 phy->ops.get_cable_length = igb_get_cable_length_m88; 248 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 249 /* Check if this PHY is configured for media swap. */ 250 if (phy->id == M88E1112_E_PHY_ID) { 251 u16 data; 252 253 ret_val = phy->ops.write_reg(hw, 254 E1000_M88E1112_PAGE_ADDR, 255 2); 256 if (ret_val) 257 goto out; 258 259 ret_val = phy->ops.read_reg(hw, 260 E1000_M88E1112_MAC_CTRL_1, 261 &data); 262 if (ret_val) 263 goto out; 264 265 data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> 266 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; 267 if (data == E1000_M88E1112_AUTO_COPPER_SGMII || 268 data == E1000_M88E1112_AUTO_COPPER_BASEX) 269 hw->mac.ops.check_for_link = 270 igb_check_for_link_media_swap; 271 } 272 if (phy->id == M88E1512_E_PHY_ID) { 273 ret_val = igb_initialize_M88E1512_phy(hw); 274 if (ret_val) 275 goto out; 276 } 277 if (phy->id == M88E1543_E_PHY_ID) { 278 ret_val = igb_initialize_M88E1543_phy(hw); 279 if (ret_val) 280 goto out; 281 } 282 break; 283 case IGP03E1000_E_PHY_ID: 284 phy->type = e1000_phy_igp_3; 285 phy->ops.get_phy_info = igb_get_phy_info_igp; 286 phy->ops.get_cable_length = igb_get_cable_length_igp_2; 287 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; 288 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; 289 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; 290 break; 291 case I82580_I_PHY_ID: 292 case I350_I_PHY_ID: 293 phy->type = e1000_phy_82580; 294 phy->ops.force_speed_duplex = 295 igb_phy_force_speed_duplex_82580; 296 phy->ops.get_cable_length = igb_get_cable_length_82580; 297 phy->ops.get_phy_info = igb_get_phy_info_82580; 298 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 299 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 300 break; 301 case I210_I_PHY_ID: 302 phy->type = e1000_phy_i210; 303 phy->ops.check_polarity = igb_check_polarity_m88; 304 phy->ops.get_cfg_done = igb_get_cfg_done_i210; 305 phy->ops.get_phy_info = igb_get_phy_info_m88; 306 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; 307 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 308 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 309 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 310 break; 311 case BCM54616_E_PHY_ID: 312 phy->type = e1000_phy_bcm54616; 313 break; 314 default: 315 ret_val = -E1000_ERR_PHY; 316 goto out; 317 } 318 319out: 320 return ret_val; 321} 322 323/** 324 * igb_init_nvm_params_82575 - Init NVM func ptrs. 325 * @hw: pointer to the HW structure 326 **/ 327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw) 328{ 329 struct e1000_nvm_info *nvm = &hw->nvm; 330 u32 eecd = rd32(E1000_EECD); 331 u16 size; 332 333 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> 334 E1000_EECD_SIZE_EX_SHIFT); 335 336 /* Added to a constant, "size" becomes the left-shift value 337 * for setting word_size. 338 */ 339 size += NVM_WORD_SIZE_BASE_SHIFT; 340 341 /* Just in case size is out of range, cap it to the largest 342 * EEPROM size supported 343 */ 344 if (size > 15) 345 size = 15; 346 347 nvm->word_size = BIT(size); 348 nvm->opcode_bits = 8; 349 nvm->delay_usec = 1; 350 351 switch (nvm->override) { 352 case e1000_nvm_override_spi_large: 353 nvm->page_size = 32; 354 nvm->address_bits = 16; 355 break; 356 case e1000_nvm_override_spi_small: 357 nvm->page_size = 8; 358 nvm->address_bits = 8; 359 break; 360 default: 361 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 362 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 363 16 : 8; 364 break; 365 } 366 if (nvm->word_size == BIT(15)) 367 nvm->page_size = 128; 368 369 nvm->type = e1000_nvm_eeprom_spi; 370 371 /* NVM Function Pointers */ 372 nvm->ops.acquire = igb_acquire_nvm_82575; 373 nvm->ops.release = igb_release_nvm_82575; 374 nvm->ops.write = igb_write_nvm_spi; 375 nvm->ops.validate = igb_validate_nvm_checksum; 376 nvm->ops.update = igb_update_nvm_checksum; 377 if (nvm->word_size < BIT(15)) 378 nvm->ops.read = igb_read_nvm_eerd; 379 else 380 nvm->ops.read = igb_read_nvm_spi; 381 382 /* override generic family function pointers for specific descendants */ 383 switch (hw->mac.type) { 384 case e1000_82580: 385 nvm->ops.validate = igb_validate_nvm_checksum_82580; 386 nvm->ops.update = igb_update_nvm_checksum_82580; 387 break; 388 case e1000_i354: 389 case e1000_i350: 390 nvm->ops.validate = igb_validate_nvm_checksum_i350; 391 nvm->ops.update = igb_update_nvm_checksum_i350; 392 break; 393 default: 394 break; 395 } 396 397 return 0; 398} 399 400/** 401 * igb_init_mac_params_82575 - Init MAC func ptrs. 402 * @hw: pointer to the HW structure 403 **/ 404static s32 igb_init_mac_params_82575(struct e1000_hw *hw) 405{ 406 struct e1000_mac_info *mac = &hw->mac; 407 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 408 409 /* Set mta register count */ 410 mac->mta_reg_count = 128; 411 /* Set uta register count */ 412 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; 413 /* Set rar entry count */ 414 switch (mac->type) { 415 case e1000_82576: 416 mac->rar_entry_count = E1000_RAR_ENTRIES_82576; 417 break; 418 case e1000_82580: 419 mac->rar_entry_count = E1000_RAR_ENTRIES_82580; 420 break; 421 case e1000_i350: 422 case e1000_i354: 423 mac->rar_entry_count = E1000_RAR_ENTRIES_I350; 424 break; 425 default: 426 mac->rar_entry_count = E1000_RAR_ENTRIES_82575; 427 break; 428 } 429 /* reset */ 430 if (mac->type >= e1000_82580) 431 mac->ops.reset_hw = igb_reset_hw_82580; 432 else 433 mac->ops.reset_hw = igb_reset_hw_82575; 434 435 if (mac->type >= e1000_i210) { 436 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; 437 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; 438 439 } else { 440 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; 441 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; 442 } 443 444 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354)) 445 mac->ops.write_vfta = igb_write_vfta_i350; 446 else 447 mac->ops.write_vfta = igb_write_vfta; 448 449 /* Set if part includes ASF firmware */ 450 mac->asf_firmware_present = true; 451 /* Set if manageability features are enabled. */ 452 mac->arc_subsystem_valid = 453 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) 454 ? true : false; 455 /* enable EEE on i350 parts and later parts */ 456 if (mac->type >= e1000_i350) 457 dev_spec->eee_disable = false; 458 else 459 dev_spec->eee_disable = true; 460 /* Allow a single clear of the SW semaphore on I210 and newer */ 461 if (mac->type >= e1000_i210) 462 dev_spec->clear_semaphore_once = true; 463 /* physical interface link setup */ 464 mac->ops.setup_physical_interface = 465 (hw->phy.media_type == e1000_media_type_copper) 466 ? igb_setup_copper_link_82575 467 : igb_setup_serdes_link_82575; 468 469 if (mac->type == e1000_82580 || mac->type == e1000_i350) { 470 switch (hw->device_id) { 471 /* feature not supported on these id's */ 472 case E1000_DEV_ID_DH89XXCC_SGMII: 473 case E1000_DEV_ID_DH89XXCC_SERDES: 474 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 475 case E1000_DEV_ID_DH89XXCC_SFP: 476 break; 477 default: 478 hw->dev_spec._82575.mas_capable = true; 479 break; 480 } 481 } 482 return 0; 483} 484 485/** 486 * igb_set_sfp_media_type_82575 - derives SFP module media type. 487 * @hw: pointer to the HW structure 488 * 489 * The media type is chosen based on SFP module. 490 * compatibility flags retrieved from SFP ID EEPROM. 491 **/ 492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw) 493{ 494 s32 ret_val = E1000_ERR_CONFIG; 495 u32 ctrl_ext = 0; 496 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 497 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; 498 u8 tranceiver_type = 0; 499 s32 timeout = 3; 500 501 /* Turn I2C interface ON and power on sfp cage */ 502 ctrl_ext = rd32(E1000_CTRL_EXT); 503 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 504 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); 505 506 wrfl(); 507 508 /* Read SFP module data */ 509 while (timeout) { 510 ret_val = igb_read_sfp_data_byte(hw, 511 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), 512 &tranceiver_type); 513 if (ret_val == 0) 514 break; 515 msleep(100); 516 timeout--; 517 } 518 if (ret_val != 0) 519 goto out; 520 521 ret_val = igb_read_sfp_data_byte(hw, 522 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), 523 (u8 *)eth_flags); 524 if (ret_val != 0) 525 goto out; 526 527 /* Check if there is some SFP module plugged and powered */ 528 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || 529 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { 530 dev_spec->module_plugged = true; 531 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { 532 hw->phy.media_type = e1000_media_type_internal_serdes; 533 } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) { 534 dev_spec->sgmii_active = true; 535 hw->phy.media_type = e1000_media_type_internal_serdes; 536 } else if (eth_flags->e1000_base_t) { 537 dev_spec->sgmii_active = true; 538 hw->phy.media_type = e1000_media_type_copper; 539 } else { 540 hw->phy.media_type = e1000_media_type_unknown; 541 hw_dbg("PHY module has not been recognized\n"); 542 goto out; 543 } 544 } else { 545 hw->phy.media_type = e1000_media_type_unknown; 546 } 547 ret_val = 0; 548out: 549 /* Restore I2C interface setting */ 550 wr32(E1000_CTRL_EXT, ctrl_ext); 551 return ret_val; 552} 553 554static s32 igb_get_invariants_82575(struct e1000_hw *hw) 555{ 556 struct e1000_mac_info *mac = &hw->mac; 557 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 558 s32 ret_val; 559 u32 ctrl_ext = 0; 560 u32 link_mode = 0; 561 562 switch (hw->device_id) { 563 case E1000_DEV_ID_82575EB_COPPER: 564 case E1000_DEV_ID_82575EB_FIBER_SERDES: 565 case E1000_DEV_ID_82575GB_QUAD_COPPER: 566 mac->type = e1000_82575; 567 break; 568 case E1000_DEV_ID_82576: 569 case E1000_DEV_ID_82576_NS: 570 case E1000_DEV_ID_82576_NS_SERDES: 571 case E1000_DEV_ID_82576_FIBER: 572 case E1000_DEV_ID_82576_SERDES: 573 case E1000_DEV_ID_82576_QUAD_COPPER: 574 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 575 case E1000_DEV_ID_82576_SERDES_QUAD: 576 mac->type = e1000_82576; 577 break; 578 case E1000_DEV_ID_82580_COPPER: 579 case E1000_DEV_ID_82580_FIBER: 580 case E1000_DEV_ID_82580_QUAD_FIBER: 581 case E1000_DEV_ID_82580_SERDES: 582 case E1000_DEV_ID_82580_SGMII: 583 case E1000_DEV_ID_82580_COPPER_DUAL: 584 case E1000_DEV_ID_DH89XXCC_SGMII: 585 case E1000_DEV_ID_DH89XXCC_SERDES: 586 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 587 case E1000_DEV_ID_DH89XXCC_SFP: 588 mac->type = e1000_82580; 589 break; 590 case E1000_DEV_ID_I350_COPPER: 591 case E1000_DEV_ID_I350_FIBER: 592 case E1000_DEV_ID_I350_SERDES: 593 case E1000_DEV_ID_I350_SGMII: 594 mac->type = e1000_i350; 595 break; 596 case E1000_DEV_ID_I210_COPPER: 597 case E1000_DEV_ID_I210_FIBER: 598 case E1000_DEV_ID_I210_SERDES: 599 case E1000_DEV_ID_I210_SGMII: 600 case E1000_DEV_ID_I210_COPPER_FLASHLESS: 601 case E1000_DEV_ID_I210_SERDES_FLASHLESS: 602 mac->type = e1000_i210; 603 break; 604 case E1000_DEV_ID_I211_COPPER: 605 mac->type = e1000_i211; 606 break; 607 case E1000_DEV_ID_I354_BACKPLANE_1GBPS: 608 case E1000_DEV_ID_I354_SGMII: 609 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: 610 mac->type = e1000_i354; 611 break; 612 default: 613 return -E1000_ERR_MAC_INIT; 614 } 615 616 /* Set media type */ 617 /* The 82575 uses bits 22:23 for link mode. The mode can be changed 618 * based on the EEPROM. We cannot rely upon device ID. There 619 * is no distinguishable difference between fiber and internal 620 * SerDes mode on the 82575. There can be an external PHY attached 621 * on the SGMII interface. For this, we'll set sgmii_active to true. 622 */ 623 hw->phy.media_type = e1000_media_type_copper; 624 dev_spec->sgmii_active = false; 625 dev_spec->module_plugged = false; 626 627 ctrl_ext = rd32(E1000_CTRL_EXT); 628 629 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; 630 switch (link_mode) { 631 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 632 hw->phy.media_type = e1000_media_type_internal_serdes; 633 break; 634 case E1000_CTRL_EXT_LINK_MODE_SGMII: 635 /* Get phy control interface type set (MDIO vs. I2C)*/ 636 if (igb_sgmii_uses_mdio_82575(hw)) { 637 hw->phy.media_type = e1000_media_type_copper; 638 dev_spec->sgmii_active = true; 639 break; 640 } 641 fallthrough; /* for I2C based SGMII */ 642 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: 643 /* read media type from SFP EEPROM */ 644 ret_val = igb_set_sfp_media_type_82575(hw); 645 if ((ret_val != 0) || 646 (hw->phy.media_type == e1000_media_type_unknown)) { 647 /* If media type was not identified then return media 648 * type defined by the CTRL_EXT settings. 649 */ 650 hw->phy.media_type = e1000_media_type_internal_serdes; 651 652 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { 653 hw->phy.media_type = e1000_media_type_copper; 654 dev_spec->sgmii_active = true; 655 } 656 657 break; 658 } 659 660 /* change current link mode setting */ 661 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; 662 663 if (dev_spec->sgmii_active) 664 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; 665 else 666 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 667 668 wr32(E1000_CTRL_EXT, ctrl_ext); 669 670 break; 671 default: 672 break; 673 } 674 675 /* mac initialization and operations */ 676 ret_val = igb_init_mac_params_82575(hw); 677 if (ret_val) 678 goto out; 679 680 /* NVM initialization */ 681 ret_val = igb_init_nvm_params_82575(hw); 682 switch (hw->mac.type) { 683 case e1000_i210: 684 case e1000_i211: 685 ret_val = igb_init_nvm_params_i210(hw); 686 break; 687 default: 688 break; 689 } 690 691 if (ret_val) 692 goto out; 693 694 /* if part supports SR-IOV then initialize mailbox parameters */ 695 switch (mac->type) { 696 case e1000_82576: 697 case e1000_i350: 698 igb_init_mbx_params_pf(hw); 699 break; 700 default: 701 break; 702 } 703 704 /* setup PHY parameters */ 705 ret_val = igb_init_phy_params_82575(hw); 706 707out: 708 return ret_val; 709} 710 711/** 712 * igb_acquire_phy_82575 - Acquire rights to access PHY 713 * @hw: pointer to the HW structure 714 * 715 * Acquire access rights to the correct PHY. This is a 716 * function pointer entry point called by the api module. 717 **/ 718static s32 igb_acquire_phy_82575(struct e1000_hw *hw) 719{ 720 u16 mask = E1000_SWFW_PHY0_SM; 721 722 if (hw->bus.func == E1000_FUNC_1) 723 mask = E1000_SWFW_PHY1_SM; 724 else if (hw->bus.func == E1000_FUNC_2) 725 mask = E1000_SWFW_PHY2_SM; 726 else if (hw->bus.func == E1000_FUNC_3) 727 mask = E1000_SWFW_PHY3_SM; 728 729 return hw->mac.ops.acquire_swfw_sync(hw, mask); 730} 731 732/** 733 * igb_release_phy_82575 - Release rights to access PHY 734 * @hw: pointer to the HW structure 735 * 736 * A wrapper to release access rights to the correct PHY. This is a 737 * function pointer entry point called by the api module. 738 **/ 739static void igb_release_phy_82575(struct e1000_hw *hw) 740{ 741 u16 mask = E1000_SWFW_PHY0_SM; 742 743 if (hw->bus.func == E1000_FUNC_1) 744 mask = E1000_SWFW_PHY1_SM; 745 else if (hw->bus.func == E1000_FUNC_2) 746 mask = E1000_SWFW_PHY2_SM; 747 else if (hw->bus.func == E1000_FUNC_3) 748 mask = E1000_SWFW_PHY3_SM; 749 750 hw->mac.ops.release_swfw_sync(hw, mask); 751} 752 753/** 754 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii 755 * @hw: pointer to the HW structure 756 * @offset: register offset to be read 757 * @data: pointer to the read data 758 * 759 * Reads the PHY register at offset using the serial gigabit media independent 760 * interface and stores the retrieved information in data. 761 **/ 762static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 763 u16 *data) 764{ 765 s32 ret_val = -E1000_ERR_PARAM; 766 767 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 768 hw_dbg("PHY Address %u is out of range\n", offset); 769 goto out; 770 } 771 772 ret_val = hw->phy.ops.acquire(hw); 773 if (ret_val) 774 goto out; 775 776 ret_val = igb_read_phy_reg_i2c(hw, offset, data); 777 778 hw->phy.ops.release(hw); 779 780out: 781 return ret_val; 782} 783 784/** 785 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii 786 * @hw: pointer to the HW structure 787 * @offset: register offset to write to 788 * @data: data to write at register offset 789 * 790 * Writes the data to PHY register at the offset using the serial gigabit 791 * media independent interface. 792 **/ 793static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 794 u16 data) 795{ 796 s32 ret_val = -E1000_ERR_PARAM; 797 798 799 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 800 hw_dbg("PHY Address %d is out of range\n", offset); 801 goto out; 802 } 803 804 ret_val = hw->phy.ops.acquire(hw); 805 if (ret_val) 806 goto out; 807 808 ret_val = igb_write_phy_reg_i2c(hw, offset, data); 809 810 hw->phy.ops.release(hw); 811 812out: 813 return ret_val; 814} 815 816/** 817 * igb_get_phy_id_82575 - Retrieve PHY addr and id 818 * @hw: pointer to the HW structure 819 * 820 * Retrieves the PHY address and ID for both PHY's which do and do not use 821 * sgmi interface. 822 **/ 823static s32 igb_get_phy_id_82575(struct e1000_hw *hw) 824{ 825 struct e1000_phy_info *phy = &hw->phy; 826 s32 ret_val = 0; 827 u16 phy_id; 828 u32 ctrl_ext; 829 u32 mdic; 830 831 /* Extra read required for some PHY's on i354 */ 832 if (hw->mac.type == e1000_i354) 833 igb_get_phy_id(hw); 834 835 /* For SGMII PHYs, we try the list of possible addresses until 836 * we find one that works. For non-SGMII PHYs 837 * (e.g. integrated copper PHYs), an address of 1 should 838 * work. The result of this function should mean phy->phy_addr 839 * and phy->id are set correctly. 840 */ 841 if (!(igb_sgmii_active_82575(hw))) { 842 phy->addr = 1; 843 ret_val = igb_get_phy_id(hw); 844 goto out; 845 } 846 847 if (igb_sgmii_uses_mdio_82575(hw)) { 848 switch (hw->mac.type) { 849 case e1000_82575: 850 case e1000_82576: 851 mdic = rd32(E1000_MDIC); 852 mdic &= E1000_MDIC_PHY_MASK; 853 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; 854 break; 855 case e1000_82580: 856 case e1000_i350: 857 case e1000_i354: 858 case e1000_i210: 859 case e1000_i211: 860 mdic = rd32(E1000_MDICNFG); 861 mdic &= E1000_MDICNFG_PHY_MASK; 862 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; 863 break; 864 default: 865 ret_val = -E1000_ERR_PHY; 866 goto out; 867 } 868 ret_val = igb_get_phy_id(hw); 869 goto out; 870 } 871 872 /* Power on sgmii phy if it is disabled */ 873 ctrl_ext = rd32(E1000_CTRL_EXT); 874 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); 875 wrfl(); 876 msleep(300); 877 878 /* The address field in the I2CCMD register is 3 bits and 0 is invalid. 879 * Therefore, we need to test 1-7 880 */ 881 for (phy->addr = 1; phy->addr < 8; phy->addr++) { 882 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); 883 if (ret_val == 0) { 884 hw_dbg("Vendor ID 0x%08X read at address %u\n", 885 phy_id, phy->addr); 886 /* At the time of this writing, The M88 part is 887 * the only supported SGMII PHY product. 888 */ 889 if (phy_id == M88_VENDOR) 890 break; 891 } else { 892 hw_dbg("PHY address %u was unreadable\n", phy->addr); 893 } 894 } 895 896 /* A valid PHY type couldn't be found. */ 897 if (phy->addr == 8) { 898 phy->addr = 0; 899 ret_val = -E1000_ERR_PHY; 900 goto out; 901 } else { 902 ret_val = igb_get_phy_id(hw); 903 } 904 905 /* restore previous sfp cage power state */ 906 wr32(E1000_CTRL_EXT, ctrl_ext); 907 908out: 909 return ret_val; 910} 911 912/** 913 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset 914 * @hw: pointer to the HW structure 915 * 916 * Resets the PHY using the serial gigabit media independent interface. 917 **/ 918static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) 919{ 920 struct e1000_phy_info *phy = &hw->phy; 921 s32 ret_val; 922 923 /* This isn't a true "hard" reset, but is the only reset 924 * available to us at this time. 925 */ 926 927 hw_dbg("Soft resetting SGMII attached PHY...\n"); 928 929 /* SFP documentation requires the following to configure the SPF module 930 * to work on SGMII. No further documentation is given. 931 */ 932 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); 933 if (ret_val) 934 goto out; 935 936 ret_val = igb_phy_sw_reset(hw); 937 if (ret_val) 938 goto out; 939 940 if (phy->id == M88E1512_E_PHY_ID) 941 ret_val = igb_initialize_M88E1512_phy(hw); 942 if (phy->id == M88E1543_E_PHY_ID) 943 ret_val = igb_initialize_M88E1543_phy(hw); 944out: 945 return ret_val; 946} 947 948/** 949 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state 950 * @hw: pointer to the HW structure 951 * @active: true to enable LPLU, false to disable 952 * 953 * Sets the LPLU D0 state according to the active flag. When 954 * activating LPLU this function also disables smart speed 955 * and vice versa. LPLU will not be activated unless the 956 * device autonegotiation advertisement meets standards of 957 * either 10 or 10/100 or 10/100/1000 at all duplexes. 958 * This is a function pointer entry point only called by 959 * PHY setup routines. 960 **/ 961static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) 962{ 963 struct e1000_phy_info *phy = &hw->phy; 964 s32 ret_val; 965 u16 data; 966 967 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 968 if (ret_val) 969 goto out; 970 971 if (active) { 972 data |= IGP02E1000_PM_D0_LPLU; 973 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 974 data); 975 if (ret_val) 976 goto out; 977 978 /* When LPLU is enabled, we should disable SmartSpeed */ 979 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 980 &data); 981 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 982 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 983 data); 984 if (ret_val) 985 goto out; 986 } else { 987 data &= ~IGP02E1000_PM_D0_LPLU; 988 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 989 data); 990 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 991 * during Dx states where the power conservation is most 992 * important. During driver activity we should enable 993 * SmartSpeed, so performance is maintained. 994 */ 995 if (phy->smart_speed == e1000_smart_speed_on) { 996 ret_val = phy->ops.read_reg(hw, 997 IGP01E1000_PHY_PORT_CONFIG, &data); 998 if (ret_val) 999 goto out; 1000 1001 data |= IGP01E1000_PSCFR_SMART_SPEED; 1002 ret_val = phy->ops.write_reg(hw, 1003 IGP01E1000_PHY_PORT_CONFIG, data); 1004 if (ret_val) 1005 goto out; 1006 } else if (phy->smart_speed == e1000_smart_speed_off) { 1007 ret_val = phy->ops.read_reg(hw, 1008 IGP01E1000_PHY_PORT_CONFIG, &data); 1009 if (ret_val) 1010 goto out; 1011 1012 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1013 ret_val = phy->ops.write_reg(hw, 1014 IGP01E1000_PHY_PORT_CONFIG, data); 1015 if (ret_val) 1016 goto out; 1017 } 1018 } 1019 1020out: 1021 return ret_val; 1022} 1023 1024/** 1025 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state 1026 * @hw: pointer to the HW structure 1027 * @active: true to enable LPLU, false to disable 1028 * 1029 * Sets the LPLU D0 state according to the active flag. When 1030 * activating LPLU this function also disables smart speed 1031 * and vice versa. LPLU will not be activated unless the 1032 * device autonegotiation advertisement meets standards of 1033 * either 10 or 10/100 or 10/100/1000 at all duplexes. 1034 * This is a function pointer entry point only called by 1035 * PHY setup routines. 1036 **/ 1037static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) 1038{ 1039 struct e1000_phy_info *phy = &hw->phy; 1040 u16 data; 1041 1042 data = rd32(E1000_82580_PHY_POWER_MGMT); 1043 1044 if (active) { 1045 data |= E1000_82580_PM_D0_LPLU; 1046 1047 /* When LPLU is enabled, we should disable SmartSpeed */ 1048 data &= ~E1000_82580_PM_SPD; 1049 } else { 1050 data &= ~E1000_82580_PM_D0_LPLU; 1051 1052 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1053 * during Dx states where the power conservation is most 1054 * important. During driver activity we should enable 1055 * SmartSpeed, so performance is maintained. 1056 */ 1057 if (phy->smart_speed == e1000_smart_speed_on) 1058 data |= E1000_82580_PM_SPD; 1059 else if (phy->smart_speed == e1000_smart_speed_off) 1060 data &= ~E1000_82580_PM_SPD; } 1061 1062 wr32(E1000_82580_PHY_POWER_MGMT, data); 1063 return 0; 1064} 1065 1066/** 1067 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 1068 * @hw: pointer to the HW structure 1069 * @active: boolean used to enable/disable lplu 1070 * 1071 * Success returns 0, Failure returns 1 1072 * 1073 * The low power link up (lplu) state is set to the power management level D3 1074 * and SmartSpeed is disabled when active is true, else clear lplu for D3 1075 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 1076 * is used during Dx states where the power conservation is most important. 1077 * During driver activity, SmartSpeed should be enabled so performance is 1078 * maintained. 1079 **/ 1080static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) 1081{ 1082 struct e1000_phy_info *phy = &hw->phy; 1083 u16 data; 1084 1085 data = rd32(E1000_82580_PHY_POWER_MGMT); 1086 1087 if (!active) { 1088 data &= ~E1000_82580_PM_D3_LPLU; 1089 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 1090 * during Dx states where the power conservation is most 1091 * important. During driver activity we should enable 1092 * SmartSpeed, so performance is maintained. 1093 */ 1094 if (phy->smart_speed == e1000_smart_speed_on) 1095 data |= E1000_82580_PM_SPD; 1096 else if (phy->smart_speed == e1000_smart_speed_off) 1097 data &= ~E1000_82580_PM_SPD; 1098 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 1099 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 1100 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 1101 data |= E1000_82580_PM_D3_LPLU; 1102 /* When LPLU is enabled, we should disable SmartSpeed */ 1103 data &= ~E1000_82580_PM_SPD; 1104 } 1105 1106 wr32(E1000_82580_PHY_POWER_MGMT, data); 1107 return 0; 1108} 1109 1110/** 1111 * igb_acquire_nvm_82575 - Request for access to EEPROM 1112 * @hw: pointer to the HW structure 1113 * 1114 * Acquire the necessary semaphores for exclusive access to the EEPROM. 1115 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 1116 * Return successful if access grant bit set, else clear the request for 1117 * EEPROM access and return -E1000_ERR_NVM (-1). 1118 **/ 1119static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) 1120{ 1121 s32 ret_val; 1122 1123 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); 1124 if (ret_val) 1125 goto out; 1126 1127 ret_val = igb_acquire_nvm(hw); 1128 1129 if (ret_val) 1130 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 1131 1132out: 1133 return ret_val; 1134} 1135 1136/** 1137 * igb_release_nvm_82575 - Release exclusive access to EEPROM 1138 * @hw: pointer to the HW structure 1139 * 1140 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 1141 * then release the semaphores acquired. 1142 **/ 1143static void igb_release_nvm_82575(struct e1000_hw *hw) 1144{ 1145 igb_release_nvm(hw); 1146 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 1147} 1148 1149/** 1150 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore 1151 * @hw: pointer to the HW structure 1152 * @mask: specifies which semaphore to acquire 1153 * 1154 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 1155 * will also specify which port we're acquiring the lock for. 1156 **/ 1157static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1158{ 1159 u32 swfw_sync; 1160 u32 swmask = mask; 1161 u32 fwmask = mask << 16; 1162 s32 ret_val = 0; 1163 s32 i = 0, timeout = 200; 1164 1165 while (i < timeout) { 1166 if (igb_get_hw_semaphore(hw)) { 1167 ret_val = -E1000_ERR_SWFW_SYNC; 1168 goto out; 1169 } 1170 1171 swfw_sync = rd32(E1000_SW_FW_SYNC); 1172 if (!(swfw_sync & (fwmask | swmask))) 1173 break; 1174 1175 /* Firmware currently using resource (fwmask) 1176 * or other software thread using resource (swmask) 1177 */ 1178 igb_put_hw_semaphore(hw); 1179 mdelay(5); 1180 i++; 1181 } 1182 1183 if (i == timeout) { 1184 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); 1185 ret_val = -E1000_ERR_SWFW_SYNC; 1186 goto out; 1187 } 1188 1189 swfw_sync |= swmask; 1190 wr32(E1000_SW_FW_SYNC, swfw_sync); 1191 1192 igb_put_hw_semaphore(hw); 1193 1194out: 1195 return ret_val; 1196} 1197 1198/** 1199 * igb_release_swfw_sync_82575 - Release SW/FW semaphore 1200 * @hw: pointer to the HW structure 1201 * @mask: specifies which semaphore to acquire 1202 * 1203 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 1204 * will also specify which port we're releasing the lock for. 1205 **/ 1206static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1207{ 1208 u32 swfw_sync; 1209 1210 while (igb_get_hw_semaphore(hw) != 0) 1211 ; /* Empty */ 1212 1213 swfw_sync = rd32(E1000_SW_FW_SYNC); 1214 swfw_sync &= ~mask; 1215 wr32(E1000_SW_FW_SYNC, swfw_sync); 1216 1217 igb_put_hw_semaphore(hw); 1218} 1219 1220/** 1221 * igb_get_cfg_done_82575 - Read config done bit 1222 * @hw: pointer to the HW structure 1223 * 1224 * Read the management control register for the config done bit for 1225 * completion status. NOTE: silicon which is EEPROM-less will fail trying 1226 * to read the config done bit, so an error is *ONLY* logged and returns 1227 * 0. If we were to return with error, EEPROM-less silicon 1228 * would not be able to be reset or change link. 1229 **/ 1230static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) 1231{ 1232 s32 timeout = PHY_CFG_TIMEOUT; 1233 u32 mask = E1000_NVM_CFG_DONE_PORT_0; 1234 1235 if (hw->bus.func == 1) 1236 mask = E1000_NVM_CFG_DONE_PORT_1; 1237 else if (hw->bus.func == E1000_FUNC_2) 1238 mask = E1000_NVM_CFG_DONE_PORT_2; 1239 else if (hw->bus.func == E1000_FUNC_3) 1240 mask = E1000_NVM_CFG_DONE_PORT_3; 1241 1242 while (timeout) { 1243 if (rd32(E1000_EEMNGCTL) & mask) 1244 break; 1245 usleep_range(1000, 2000); 1246 timeout--; 1247 } 1248 if (!timeout) 1249 hw_dbg("MNG configuration cycle has not completed.\n"); 1250 1251 /* If EEPROM is not marked present, init the PHY manually */ 1252 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && 1253 (hw->phy.type == e1000_phy_igp_3)) 1254 igb_phy_init_script_igp3(hw); 1255 1256 return 0; 1257} 1258 1259/** 1260 * igb_get_link_up_info_82575 - Get link speed/duplex info 1261 * @hw: pointer to the HW structure 1262 * @speed: stores the current speed 1263 * @duplex: stores the current duplex 1264 * 1265 * This is a wrapper function, if using the serial gigabit media independent 1266 * interface, use PCS to retrieve the link speed and duplex information. 1267 * Otherwise, use the generic function to get the link speed and duplex info. 1268 **/ 1269static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, 1270 u16 *duplex) 1271{ 1272 s32 ret_val; 1273 1274 if (hw->phy.media_type != e1000_media_type_copper) 1275 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed, 1276 duplex); 1277 else 1278 ret_val = igb_get_speed_and_duplex_copper(hw, speed, 1279 duplex); 1280 1281 return ret_val; 1282} 1283 1284/** 1285 * igb_check_for_link_82575 - Check for link 1286 * @hw: pointer to the HW structure 1287 * 1288 * If sgmii is enabled, then use the pcs register to determine link, otherwise 1289 * use the generic interface for determining link. 1290 **/ 1291static s32 igb_check_for_link_82575(struct e1000_hw *hw) 1292{ 1293 s32 ret_val; 1294 u16 speed, duplex; 1295 1296 if (hw->phy.media_type != e1000_media_type_copper) { 1297 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, 1298 &duplex); 1299 /* Use this flag to determine if link needs to be checked or 1300 * not. If we have link clear the flag so that we do not 1301 * continue to check for link. 1302 */ 1303 hw->mac.get_link_status = !hw->mac.serdes_has_link; 1304 1305 /* Configure Flow Control now that Auto-Neg has completed. 1306 * First, we need to restore the desired flow control 1307 * settings because we may have had to re-autoneg with a 1308 * different link partner. 1309 */ 1310 ret_val = igb_config_fc_after_link_up(hw); 1311 if (ret_val) 1312 hw_dbg("Error configuring flow control\n"); 1313 } else { 1314 ret_val = igb_check_for_copper_link(hw); 1315 } 1316 1317 return ret_val; 1318} 1319 1320/** 1321 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown 1322 * @hw: pointer to the HW structure 1323 **/ 1324void igb_power_up_serdes_link_82575(struct e1000_hw *hw) 1325{ 1326 u32 reg; 1327 1328 1329 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1330 !igb_sgmii_active_82575(hw)) 1331 return; 1332 1333 /* Enable PCS to turn on link */ 1334 reg = rd32(E1000_PCS_CFG0); 1335 reg |= E1000_PCS_CFG_PCS_EN; 1336 wr32(E1000_PCS_CFG0, reg); 1337 1338 /* Power up the laser */ 1339 reg = rd32(E1000_CTRL_EXT); 1340 reg &= ~E1000_CTRL_EXT_SDP3_DATA; 1341 wr32(E1000_CTRL_EXT, reg); 1342 1343 /* flush the write to verify completion */ 1344 wrfl(); 1345 usleep_range(1000, 2000); 1346} 1347 1348/** 1349 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex 1350 * @hw: pointer to the HW structure 1351 * @speed: stores the current speed 1352 * @duplex: stores the current duplex 1353 * 1354 * Using the physical coding sub-layer (PCS), retrieve the current speed and 1355 * duplex, then store the values in the pointers provided. 1356 **/ 1357static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, 1358 u16 *duplex) 1359{ 1360 struct e1000_mac_info *mac = &hw->mac; 1361 u32 pcs, status; 1362 1363 /* Set up defaults for the return values of this function */ 1364 mac->serdes_has_link = false; 1365 *speed = 0; 1366 *duplex = 0; 1367 1368 /* Read the PCS Status register for link state. For non-copper mode, 1369 * the status register is not accurate. The PCS status register is 1370 * used instead. 1371 */ 1372 pcs = rd32(E1000_PCS_LSTAT); 1373 1374 /* The link up bit determines when link is up on autoneg. The sync ok 1375 * gets set once both sides sync up and agree upon link. Stable link 1376 * can be determined by checking for both link up and link sync ok 1377 */ 1378 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { 1379 mac->serdes_has_link = true; 1380 1381 /* Detect and store PCS speed */ 1382 if (pcs & E1000_PCS_LSTS_SPEED_1000) 1383 *speed = SPEED_1000; 1384 else if (pcs & E1000_PCS_LSTS_SPEED_100) 1385 *speed = SPEED_100; 1386 else 1387 *speed = SPEED_10; 1388 1389 /* Detect and store PCS duplex */ 1390 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) 1391 *duplex = FULL_DUPLEX; 1392 else 1393 *duplex = HALF_DUPLEX; 1394 1395 /* Check if it is an I354 2.5Gb backplane connection. */ 1396 if (mac->type == e1000_i354) { 1397 status = rd32(E1000_STATUS); 1398 if ((status & E1000_STATUS_2P5_SKU) && 1399 !(status & E1000_STATUS_2P5_SKU_OVER)) { 1400 *speed = SPEED_2500; 1401 *duplex = FULL_DUPLEX; 1402 hw_dbg("2500 Mbs, "); 1403 hw_dbg("Full Duplex\n"); 1404 } 1405 } 1406 1407 } 1408 1409 return 0; 1410} 1411 1412/** 1413 * igb_shutdown_serdes_link_82575 - Remove link during power down 1414 * @hw: pointer to the HW structure 1415 * 1416 * In the case of fiber serdes, shut down optics and PCS on driver unload 1417 * when management pass thru is not enabled. 1418 **/ 1419void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) 1420{ 1421 u32 reg; 1422 1423 if (hw->phy.media_type != e1000_media_type_internal_serdes && 1424 igb_sgmii_active_82575(hw)) 1425 return; 1426 1427 if (!igb_enable_mng_pass_thru(hw)) { 1428 /* Disable PCS to turn off link */ 1429 reg = rd32(E1000_PCS_CFG0); 1430 reg &= ~E1000_PCS_CFG_PCS_EN; 1431 wr32(E1000_PCS_CFG0, reg); 1432 1433 /* shutdown the laser */ 1434 reg = rd32(E1000_CTRL_EXT); 1435 reg |= E1000_CTRL_EXT_SDP3_DATA; 1436 wr32(E1000_CTRL_EXT, reg); 1437 1438 /* flush the write to verify completion */ 1439 wrfl(); 1440 usleep_range(1000, 2000); 1441 } 1442} 1443 1444/** 1445 * igb_reset_hw_82575 - Reset hardware 1446 * @hw: pointer to the HW structure 1447 * 1448 * This resets the hardware into a known state. This is a 1449 * function pointer entry point called by the api module. 1450 **/ 1451static s32 igb_reset_hw_82575(struct e1000_hw *hw) 1452{ 1453 u32 ctrl; 1454 s32 ret_val; 1455 1456 /* Prevent the PCI-E bus from sticking if there is no TLP connection 1457 * on the last TLP read/write transaction when MAC is reset. 1458 */ 1459 ret_val = igb_disable_pcie_master(hw); 1460 if (ret_val) 1461 hw_dbg("PCI-E Master disable polling has failed.\n"); 1462 1463 /* set the completion timeout for interface */ 1464 ret_val = igb_set_pcie_completion_timeout(hw); 1465 if (ret_val) 1466 hw_dbg("PCI-E Set completion timeout has failed.\n"); 1467 1468 hw_dbg("Masking off all interrupts\n"); 1469 wr32(E1000_IMC, 0xffffffff); 1470 1471 wr32(E1000_RCTL, 0); 1472 wr32(E1000_TCTL, E1000_TCTL_PSP); 1473 wrfl(); 1474 1475 usleep_range(10000, 20000); 1476 1477 ctrl = rd32(E1000_CTRL); 1478 1479 hw_dbg("Issuing a global reset to MAC\n"); 1480 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); 1481 1482 ret_val = igb_get_auto_rd_done(hw); 1483 if (ret_val) { 1484 /* When auto config read does not complete, do not 1485 * return with an error. This can happen in situations 1486 * where there is no eeprom and prevents getting link. 1487 */ 1488 hw_dbg("Auto Read Done did not complete\n"); 1489 } 1490 1491 /* If EEPROM is not present, run manual init scripts */ 1492 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) 1493 igb_reset_init_script_82575(hw); 1494 1495 /* Clear any pending interrupt events. */ 1496 wr32(E1000_IMC, 0xffffffff); 1497 rd32(E1000_ICR); 1498 1499 /* Install any alternate MAC address into RAR0 */ 1500 ret_val = igb_check_alt_mac_addr(hw); 1501 1502 return ret_val; 1503} 1504 1505/** 1506 * igb_init_hw_82575 - Initialize hardware 1507 * @hw: pointer to the HW structure 1508 * 1509 * This inits the hardware readying it for operation. 1510 **/ 1511static s32 igb_init_hw_82575(struct e1000_hw *hw) 1512{ 1513 struct e1000_mac_info *mac = &hw->mac; 1514 s32 ret_val; 1515 u16 i, rar_count = mac->rar_entry_count; 1516 1517 if ((hw->mac.type >= e1000_i210) && 1518 !(igb_get_flash_presence_i210(hw))) { 1519 ret_val = igb_pll_workaround_i210(hw); 1520 if (ret_val) 1521 return ret_val; 1522 } 1523 1524 /* Initialize identification LED */ 1525 ret_val = igb_id_led_init(hw); 1526 if (ret_val) { 1527 hw_dbg("Error initializing identification LED\n"); 1528 /* This is not fatal and we should not stop init due to this */ 1529 } 1530 1531 /* Disabling VLAN filtering */ 1532 hw_dbg("Initializing the IEEE VLAN\n"); 1533 igb_clear_vfta(hw); 1534 1535 /* Setup the receive address */ 1536 igb_init_rx_addrs(hw, rar_count); 1537 1538 /* Zero out the Multicast HASH table */ 1539 hw_dbg("Zeroing the MTA\n"); 1540 for (i = 0; i < mac->mta_reg_count; i++) 1541 array_wr32(E1000_MTA, i, 0); 1542 1543 /* Zero out the Unicast HASH table */ 1544 hw_dbg("Zeroing the UTA\n"); 1545 for (i = 0; i < mac->uta_reg_count; i++) 1546 array_wr32(E1000_UTA, i, 0); 1547 1548 /* Setup link and flow control */ 1549 ret_val = igb_setup_link(hw); 1550 1551 /* Clear all of the statistics registers (clear on read). It is 1552 * important that we do this after we have tried to establish link 1553 * because the symbol error count will increment wildly if there 1554 * is no link. 1555 */ 1556 igb_clear_hw_cntrs_82575(hw); 1557 return ret_val; 1558} 1559 1560/** 1561 * igb_setup_copper_link_82575 - Configure copper link settings 1562 * @hw: pointer to the HW structure 1563 * 1564 * Configures the link for auto-neg or forced speed and duplex. Then we check 1565 * for link, once link is established calls to configure collision distance 1566 * and flow control are called. 1567 **/ 1568static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) 1569{ 1570 u32 ctrl; 1571 s32 ret_val; 1572 u32 phpm_reg; 1573 1574 ctrl = rd32(E1000_CTRL); 1575 ctrl |= E1000_CTRL_SLU; 1576 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1577 wr32(E1000_CTRL, ctrl); 1578 1579 /* Clear Go Link Disconnect bit on supported devices */ 1580 switch (hw->mac.type) { 1581 case e1000_82580: 1582 case e1000_i350: 1583 case e1000_i210: 1584 case e1000_i211: 1585 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT); 1586 phpm_reg &= ~E1000_82580_PM_GO_LINKD; 1587 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg); 1588 break; 1589 default: 1590 break; 1591 } 1592 1593 ret_val = igb_setup_serdes_link_82575(hw); 1594 if (ret_val) 1595 goto out; 1596 1597 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { 1598 /* allow time for SFP cage time to power up phy */ 1599 msleep(300); 1600 1601 ret_val = hw->phy.ops.reset(hw); 1602 if (ret_val) { 1603 hw_dbg("Error resetting the PHY.\n"); 1604 goto out; 1605 } 1606 } 1607 switch (hw->phy.type) { 1608 case e1000_phy_i210: 1609 case e1000_phy_m88: 1610 switch (hw->phy.id) { 1611 case I347AT4_E_PHY_ID: 1612 case M88E1112_E_PHY_ID: 1613 case M88E1543_E_PHY_ID: 1614 case M88E1512_E_PHY_ID: 1615 case I210_I_PHY_ID: 1616 ret_val = igb_copper_link_setup_m88_gen2(hw); 1617 break; 1618 default: 1619 ret_val = igb_copper_link_setup_m88(hw); 1620 break; 1621 } 1622 break; 1623 case e1000_phy_igp_3: 1624 ret_val = igb_copper_link_setup_igp(hw); 1625 break; 1626 case e1000_phy_82580: 1627 ret_val = igb_copper_link_setup_82580(hw); 1628 break; 1629 case e1000_phy_bcm54616: 1630 ret_val = 0; 1631 break; 1632 default: 1633 ret_val = -E1000_ERR_PHY; 1634 break; 1635 } 1636 1637 if (ret_val) 1638 goto out; 1639 1640 ret_val = igb_setup_copper_link(hw); 1641out: 1642 return ret_val; 1643} 1644 1645/** 1646 * igb_setup_serdes_link_82575 - Setup link for serdes 1647 * @hw: pointer to the HW structure 1648 * 1649 * Configure the physical coding sub-layer (PCS) link. The PCS link is 1650 * used on copper connections where the serialized gigabit media independent 1651 * interface (sgmii), or serdes fiber is being used. Configures the link 1652 * for auto-negotiation or forces speed/duplex. 1653 **/ 1654static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) 1655{ 1656 u32 ctrl_ext, ctrl_reg, reg, anadv_reg; 1657 bool pcs_autoneg; 1658 s32 ret_val = 0; 1659 u16 data; 1660 1661 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1662 !igb_sgmii_active_82575(hw)) 1663 return ret_val; 1664 1665 1666 /* On the 82575, SerDes loopback mode persists until it is 1667 * explicitly turned off or a power cycle is performed. A read to 1668 * the register does not indicate its status. Therefore, we ensure 1669 * loopback mode is disabled during initialization. 1670 */ 1671 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1672 1673 /* power on the sfp cage if present and turn on I2C */ 1674 ctrl_ext = rd32(E1000_CTRL_EXT); 1675 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 1676 ctrl_ext |= E1000_CTRL_I2C_ENA; 1677 wr32(E1000_CTRL_EXT, ctrl_ext); 1678 1679 ctrl_reg = rd32(E1000_CTRL); 1680 ctrl_reg |= E1000_CTRL_SLU; 1681 1682 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { 1683 /* set both sw defined pins */ 1684 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; 1685 1686 /* Set switch control to serdes energy detect */ 1687 reg = rd32(E1000_CONNSW); 1688 reg |= E1000_CONNSW_ENRGSRC; 1689 wr32(E1000_CONNSW, reg); 1690 } 1691 1692 reg = rd32(E1000_PCS_LCTL); 1693 1694 /* default pcs_autoneg to the same setting as mac autoneg */ 1695 pcs_autoneg = hw->mac.autoneg; 1696 1697 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 1698 case E1000_CTRL_EXT_LINK_MODE_SGMII: 1699 /* sgmii mode lets the phy handle forcing speed/duplex */ 1700 pcs_autoneg = true; 1701 /* autoneg time out should be disabled for SGMII mode */ 1702 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); 1703 break; 1704 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 1705 /* disable PCS autoneg and support parallel detect only */ 1706 pcs_autoneg = false; 1707 fallthrough; 1708 default: 1709 if (hw->mac.type == e1000_82575 || 1710 hw->mac.type == e1000_82576) { 1711 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); 1712 if (ret_val) { 1713 hw_dbg(KERN_DEBUG "NVM Read Error\n\n"); 1714 return ret_val; 1715 } 1716 1717 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) 1718 pcs_autoneg = false; 1719 } 1720 1721 /* non-SGMII modes only supports a speed of 1000/Full for the 1722 * link so it is best to just force the MAC and let the pcs 1723 * link either autoneg or be forced to 1000/Full 1724 */ 1725 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | 1726 E1000_CTRL_FD | E1000_CTRL_FRCDPX; 1727 1728 /* set speed of 1000/Full if speed/duplex is forced */ 1729 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; 1730 break; 1731 } 1732 1733 wr32(E1000_CTRL, ctrl_reg); 1734 1735 /* New SerDes mode allows for forcing speed or autonegotiating speed 1736 * at 1gb. Autoneg should be default set by most drivers. This is the 1737 * mode that will be compatible with older link partners and switches. 1738 * However, both are supported by the hardware and some drivers/tools. 1739 */ 1740 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | 1741 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); 1742 1743 if (pcs_autoneg) { 1744 /* Set PCS register for autoneg */ 1745 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ 1746 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ 1747 1748 /* Disable force flow control for autoneg */ 1749 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; 1750 1751 /* Configure flow control advertisement for autoneg */ 1752 anadv_reg = rd32(E1000_PCS_ANADV); 1753 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); 1754 switch (hw->fc.requested_mode) { 1755 case e1000_fc_full: 1756 case e1000_fc_rx_pause: 1757 anadv_reg |= E1000_TXCW_ASM_DIR; 1758 anadv_reg |= E1000_TXCW_PAUSE; 1759 break; 1760 case e1000_fc_tx_pause: 1761 anadv_reg |= E1000_TXCW_ASM_DIR; 1762 break; 1763 default: 1764 break; 1765 } 1766 wr32(E1000_PCS_ANADV, anadv_reg); 1767 1768 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); 1769 } else { 1770 /* Set PCS register for forced link */ 1771 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ 1772 1773 /* Force flow control for forced link */ 1774 reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1775 1776 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); 1777 } 1778 1779 wr32(E1000_PCS_LCTL, reg); 1780 1781 if (!pcs_autoneg && !igb_sgmii_active_82575(hw)) 1782 igb_force_mac_fc(hw); 1783 1784 return ret_val; 1785} 1786 1787/** 1788 * igb_sgmii_active_82575 - Return sgmii state 1789 * @hw: pointer to the HW structure 1790 * 1791 * 82575 silicon has a serialized gigabit media independent interface (sgmii) 1792 * which can be enabled for use in the embedded applications. Simply 1793 * return the current state of the sgmii interface. 1794 **/ 1795static bool igb_sgmii_active_82575(struct e1000_hw *hw) 1796{ 1797 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1798 return dev_spec->sgmii_active; 1799} 1800 1801/** 1802 * igb_reset_init_script_82575 - Inits HW defaults after reset 1803 * @hw: pointer to the HW structure 1804 * 1805 * Inits recommended HW defaults after a reset when there is no EEPROM 1806 * detected. This is only for the 82575. 1807 **/ 1808static s32 igb_reset_init_script_82575(struct e1000_hw *hw) 1809{ 1810 if (hw->mac.type == e1000_82575) { 1811 hw_dbg("Running reset init script for 82575\n"); 1812 /* SerDes configuration via SERDESCTRL */ 1813 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); 1814 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); 1815 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); 1816 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); 1817 1818 /* CCM configuration via CCMCTL register */ 1819 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); 1820 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); 1821 1822 /* PCIe lanes configuration */ 1823 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); 1824 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); 1825 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); 1826 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); 1827 1828 /* PCIe PLL Configuration */ 1829 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); 1830 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); 1831 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); 1832 } 1833 1834 return 0; 1835} 1836 1837/** 1838 * igb_read_mac_addr_82575 - Read device MAC address 1839 * @hw: pointer to the HW structure 1840 **/ 1841static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) 1842{ 1843 s32 ret_val = 0; 1844 1845 /* If there's an alternate MAC address place it in RAR0 1846 * so that it will override the Si installed default perm 1847 * address. 1848 */ 1849 ret_val = igb_check_alt_mac_addr(hw); 1850 if (ret_val) 1851 goto out; 1852 1853 ret_val = igb_read_mac_addr(hw); 1854 1855out: 1856 return ret_val; 1857} 1858 1859/** 1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down 1861 * @hw: pointer to the HW structure 1862 * 1863 * In the case of a PHY power down to save power, or to turn off link during a 1864 * driver unload, or wake on lan is not enabled, remove the link. 1865 **/ 1866void igb_power_down_phy_copper_82575(struct e1000_hw *hw) 1867{ 1868 /* If the management interface is not enabled, then power down */ 1869 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) 1870 igb_power_down_phy_copper(hw); 1871} 1872 1873/** 1874 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters 1875 * @hw: pointer to the HW structure 1876 * 1877 * Clears the hardware counters by reading the counter registers. 1878 **/ 1879static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) 1880{ 1881 igb_clear_hw_cntrs_base(hw); 1882 1883 rd32(E1000_PRC64); 1884 rd32(E1000_PRC127); 1885 rd32(E1000_PRC255); 1886 rd32(E1000_PRC511); 1887 rd32(E1000_PRC1023); 1888 rd32(E1000_PRC1522); 1889 rd32(E1000_PTC64); 1890 rd32(E1000_PTC127); 1891 rd32(E1000_PTC255); 1892 rd32(E1000_PTC511); 1893 rd32(E1000_PTC1023); 1894 rd32(E1000_PTC1522); 1895 1896 rd32(E1000_ALGNERRC); 1897 rd32(E1000_RXERRC); 1898 rd32(E1000_TNCRS); 1899 rd32(E1000_CEXTERR); 1900 rd32(E1000_TSCTC); 1901 rd32(E1000_TSCTFC); 1902 1903 rd32(E1000_MGTPRC); 1904 rd32(E1000_MGTPDC); 1905 rd32(E1000_MGTPTC); 1906 1907 rd32(E1000_IAC); 1908 rd32(E1000_ICRXOC); 1909 1910 rd32(E1000_ICRXPTC); 1911 rd32(E1000_ICRXATC); 1912 rd32(E1000_ICTXPTC); 1913 rd32(E1000_ICTXATC); 1914 rd32(E1000_ICTXQEC); 1915 rd32(E1000_ICTXQMTC); 1916 rd32(E1000_ICRXDMTC); 1917 1918 rd32(E1000_CBTMPC); 1919 rd32(E1000_HTDPMC); 1920 rd32(E1000_CBRMPC); 1921 rd32(E1000_RPTHC); 1922 rd32(E1000_HGPTC); 1923 rd32(E1000_HTCBDPC); 1924 rd32(E1000_HGORCL); 1925 rd32(E1000_HGORCH); 1926 rd32(E1000_HGOTCL); 1927 rd32(E1000_HGOTCH); 1928 rd32(E1000_LENERRS); 1929 1930 /* This register should not be read in copper configurations */ 1931 if (hw->phy.media_type == e1000_media_type_internal_serdes || 1932 igb_sgmii_active_82575(hw)) 1933 rd32(E1000_SCVPC); 1934} 1935 1936/** 1937 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable 1938 * @hw: pointer to the HW structure 1939 * 1940 * After rx enable if manageability is enabled then there is likely some 1941 * bad data at the start of the fifo and possibly in the DMA fifo. This 1942 * function clears the fifos and flushes any packets that came in as rx was 1943 * being enabled. 1944 **/ 1945void igb_rx_fifo_flush_82575(struct e1000_hw *hw) 1946{ 1947 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; 1948 int i, ms_wait; 1949 1950 /* disable IPv6 options as per hardware errata */ 1951 rfctl = rd32(E1000_RFCTL); 1952 rfctl |= E1000_RFCTL_IPV6_EX_DIS; 1953 wr32(E1000_RFCTL, rfctl); 1954 1955 if (hw->mac.type != e1000_82575 || 1956 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) 1957 return; 1958 1959 /* Disable all RX queues */ 1960 for (i = 0; i < 4; i++) { 1961 rxdctl[i] = rd32(E1000_RXDCTL(i)); 1962 wr32(E1000_RXDCTL(i), 1963 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); 1964 } 1965 /* Poll all queues to verify they have shut down */ 1966 for (ms_wait = 0; ms_wait < 10; ms_wait++) { 1967 usleep_range(1000, 2000); 1968 rx_enabled = 0; 1969 for (i = 0; i < 4; i++) 1970 rx_enabled |= rd32(E1000_RXDCTL(i)); 1971 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) 1972 break; 1973 } 1974 1975 if (ms_wait == 10) 1976 hw_dbg("Queue disable timed out after 10ms\n"); 1977 1978 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all 1979 * incoming packets are rejected. Set enable and wait 2ms so that 1980 * any packet that was coming in as RCTL.EN was set is flushed 1981 */ 1982 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); 1983 1984 rlpml = rd32(E1000_RLPML); 1985 wr32(E1000_RLPML, 0); 1986 1987 rctl = rd32(E1000_RCTL); 1988 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); 1989 temp_rctl |= E1000_RCTL_LPE; 1990 1991 wr32(E1000_RCTL, temp_rctl); 1992 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); 1993 wrfl(); 1994 usleep_range(2000, 3000); 1995 1996 /* Enable RX queues that were previously enabled and restore our 1997 * previous state 1998 */ 1999 for (i = 0; i < 4; i++) 2000 wr32(E1000_RXDCTL(i), rxdctl[i]); 2001 wr32(E1000_RCTL, rctl); 2002 wrfl(); 2003 2004 wr32(E1000_RLPML, rlpml); 2005 wr32(E1000_RFCTL, rfctl); 2006 2007 /* Flush receive errors generated by workaround */ 2008 rd32(E1000_ROC); 2009 rd32(E1000_RNBC); 2010 rd32(E1000_MPC); 2011} 2012 2013/** 2014 * igb_set_pcie_completion_timeout - set pci-e completion timeout 2015 * @hw: pointer to the HW structure 2016 * 2017 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, 2018 * however the hardware default for these parts is 500us to 1ms which is less 2019 * than the 10ms recommended by the pci-e spec. To address this we need to 2020 * increase the value to either 10ms to 200ms for capability version 1 config, 2021 * or 16ms to 55ms for version 2. 2022 **/ 2023static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) 2024{ 2025 u32 gcr = rd32(E1000_GCR); 2026 s32 ret_val = 0; 2027 u16 pcie_devctl2; 2028 2029 /* only take action if timeout value is defaulted to 0 */ 2030 if (gcr & E1000_GCR_CMPL_TMOUT_MASK) 2031 goto out; 2032 2033 /* if capabilities version is type 1 we can write the 2034 * timeout of 10ms to 200ms through the GCR register 2035 */ 2036 if (!(gcr & E1000_GCR_CAP_VER2)) { 2037 gcr |= E1000_GCR_CMPL_TMOUT_10ms; 2038 goto out; 2039 } 2040 2041 /* for version 2 capabilities we need to write the config space 2042 * directly in order to set the completion timeout value for 2043 * 16ms to 55ms 2044 */ 2045 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 2046 &pcie_devctl2); 2047 if (ret_val) 2048 goto out; 2049 2050 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; 2051 2052 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 2053 &pcie_devctl2); 2054out: 2055 /* disable completion timeout resend */ 2056 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; 2057 2058 wr32(E1000_GCR, gcr); 2059 return ret_val; 2060} 2061 2062/** 2063 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing 2064 * @hw: pointer to the hardware struct 2065 * @enable: state to enter, either enabled or disabled 2066 * @pf: Physical Function pool - do not set anti-spoofing for the PF 2067 * 2068 * enables/disables L2 switch anti-spoofing functionality. 2069 **/ 2070void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) 2071{ 2072 u32 reg_val, reg_offset; 2073 2074 switch (hw->mac.type) { 2075 case e1000_82576: 2076 reg_offset = E1000_DTXSWC; 2077 break; 2078 case e1000_i350: 2079 case e1000_i354: 2080 reg_offset = E1000_TXSWC; 2081 break; 2082 default: 2083 return; 2084 } 2085 2086 reg_val = rd32(reg_offset); 2087 if (enable) { 2088 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | 2089 E1000_DTXSWC_VLAN_SPOOF_MASK); 2090 /* The PF can spoof - it has to in order to 2091 * support emulation mode NICs 2092 */ 2093 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS)); 2094 } else { 2095 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | 2096 E1000_DTXSWC_VLAN_SPOOF_MASK); 2097 } 2098 wr32(reg_offset, reg_val); 2099} 2100 2101/** 2102 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback 2103 * @hw: pointer to the hardware struct 2104 * @enable: state to enter, either enabled or disabled 2105 * 2106 * enables/disables L2 switch loopback functionality. 2107 **/ 2108void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) 2109{ 2110 u32 dtxswc; 2111 2112 switch (hw->mac.type) { 2113 case e1000_82576: 2114 dtxswc = rd32(E1000_DTXSWC); 2115 if (enable) 2116 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2117 else 2118 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2119 wr32(E1000_DTXSWC, dtxswc); 2120 break; 2121 case e1000_i354: 2122 case e1000_i350: 2123 dtxswc = rd32(E1000_TXSWC); 2124 if (enable) 2125 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2126 else 2127 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 2128 wr32(E1000_TXSWC, dtxswc); 2129 break; 2130 default: 2131 /* Currently no other hardware supports loopback */ 2132 break; 2133 } 2134 2135} 2136 2137/** 2138 * igb_vmdq_set_replication_pf - enable or disable vmdq replication 2139 * @hw: pointer to the hardware struct 2140 * @enable: state to enter, either enabled or disabled 2141 * 2142 * enables/disables replication of packets across multiple pools. 2143 **/ 2144void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) 2145{ 2146 u32 vt_ctl = rd32(E1000_VT_CTL); 2147 2148 if (enable) 2149 vt_ctl |= E1000_VT_CTL_VM_REPL_EN; 2150 else 2151 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; 2152 2153 wr32(E1000_VT_CTL, vt_ctl); 2154} 2155 2156/** 2157 * igb_read_phy_reg_82580 - Read 82580 MDI control register 2158 * @hw: pointer to the HW structure 2159 * @offset: register offset to be read 2160 * @data: pointer to the read data 2161 * 2162 * Reads the MDI control register in the PHY at offset and stores the 2163 * information read to data. 2164 **/ 2165s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) 2166{ 2167 s32 ret_val; 2168 2169 ret_val = hw->phy.ops.acquire(hw); 2170 if (ret_val) 2171 goto out; 2172 2173 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 2174 2175 hw->phy.ops.release(hw); 2176 2177out: 2178 return ret_val; 2179} 2180 2181/** 2182 * igb_write_phy_reg_82580 - Write 82580 MDI control register 2183 * @hw: pointer to the HW structure 2184 * @offset: register offset to write to 2185 * @data: data to write to register at offset 2186 * 2187 * Writes data to MDI control register in the PHY at offset. 2188 **/ 2189s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) 2190{ 2191 s32 ret_val; 2192 2193 2194 ret_val = hw->phy.ops.acquire(hw); 2195 if (ret_val) 2196 goto out; 2197 2198 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 2199 2200 hw->phy.ops.release(hw); 2201 2202out: 2203 return ret_val; 2204} 2205 2206/** 2207 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits 2208 * @hw: pointer to the HW structure 2209 * 2210 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on 2211 * the values found in the EEPROM. This addresses an issue in which these 2212 * bits are not restored from EEPROM after reset. 2213 **/ 2214static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) 2215{ 2216 s32 ret_val = 0; 2217 u32 mdicnfg; 2218 u16 nvm_data = 0; 2219 2220 if (hw->mac.type != e1000_82580) 2221 goto out; 2222 if (!igb_sgmii_active_82575(hw)) 2223 goto out; 2224 2225 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2226 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2227 &nvm_data); 2228 if (ret_val) { 2229 hw_dbg("NVM Read Error\n"); 2230 goto out; 2231 } 2232 2233 mdicnfg = rd32(E1000_MDICNFG); 2234 if (nvm_data & NVM_WORD24_EXT_MDIO) 2235 mdicnfg |= E1000_MDICNFG_EXT_MDIO; 2236 if (nvm_data & NVM_WORD24_COM_MDIO) 2237 mdicnfg |= E1000_MDICNFG_COM_MDIO; 2238 wr32(E1000_MDICNFG, mdicnfg); 2239out: 2240 return ret_val; 2241} 2242 2243/** 2244 * igb_reset_hw_82580 - Reset hardware 2245 * @hw: pointer to the HW structure 2246 * 2247 * This resets function or entire device (all ports, etc.) 2248 * to a known state. 2249 **/ 2250static s32 igb_reset_hw_82580(struct e1000_hw *hw) 2251{ 2252 s32 ret_val = 0; 2253 /* BH SW mailbox bit in SW_FW_SYNC */ 2254 u16 swmbsw_mask = E1000_SW_SYNCH_MB; 2255 u32 ctrl; 2256 bool global_device_reset = hw->dev_spec._82575.global_device_reset; 2257 2258 hw->dev_spec._82575.global_device_reset = false; 2259 2260 /* due to hw errata, global device reset doesn't always 2261 * work on 82580 2262 */ 2263 if (hw->mac.type == e1000_82580) 2264 global_device_reset = false; 2265 2266 /* Get current control state. */ 2267 ctrl = rd32(E1000_CTRL); 2268 2269 /* Prevent the PCI-E bus from sticking if there is no TLP connection 2270 * on the last TLP read/write transaction when MAC is reset. 2271 */ 2272 ret_val = igb_disable_pcie_master(hw); 2273 if (ret_val) 2274 hw_dbg("PCI-E Master disable polling has failed.\n"); 2275 2276 hw_dbg("Masking off all interrupts\n"); 2277 wr32(E1000_IMC, 0xffffffff); 2278 wr32(E1000_RCTL, 0); 2279 wr32(E1000_TCTL, E1000_TCTL_PSP); 2280 wrfl(); 2281 2282 usleep_range(10000, 11000); 2283 2284 /* Determine whether or not a global dev reset is requested */ 2285 if (global_device_reset && 2286 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) 2287 global_device_reset = false; 2288 2289 if (global_device_reset && 2290 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) 2291 ctrl |= E1000_CTRL_DEV_RST; 2292 else 2293 ctrl |= E1000_CTRL_RST; 2294 2295 wr32(E1000_CTRL, ctrl); 2296 wrfl(); 2297 2298 /* Add delay to insure DEV_RST has time to complete */ 2299 if (global_device_reset) 2300 usleep_range(5000, 6000); 2301 2302 ret_val = igb_get_auto_rd_done(hw); 2303 if (ret_val) { 2304 /* When auto config read does not complete, do not 2305 * return with an error. This can happen in situations 2306 * where there is no eeprom and prevents getting link. 2307 */ 2308 hw_dbg("Auto Read Done did not complete\n"); 2309 } 2310 2311 /* clear global device reset status bit */ 2312 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); 2313 2314 /* Clear any pending interrupt events. */ 2315 wr32(E1000_IMC, 0xffffffff); 2316 rd32(E1000_ICR); 2317 2318 ret_val = igb_reset_mdicnfg_82580(hw); 2319 if (ret_val) 2320 hw_dbg("Could not reset MDICNFG based on EEPROM\n"); 2321 2322 /* Install any alternate MAC address into RAR0 */ 2323 ret_val = igb_check_alt_mac_addr(hw); 2324 2325 /* Release semaphore */ 2326 if (global_device_reset) 2327 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); 2328 2329 return ret_val; 2330} 2331 2332/** 2333 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size 2334 * @data: data received by reading RXPBS register 2335 * 2336 * The 82580 uses a table based approach for packet buffer allocation sizes. 2337 * This function converts the retrieved value into the correct table value 2338 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 2339 * 0x0 36 72 144 1 2 4 8 16 2340 * 0x8 35 70 140 rsv rsv rsv rsv rsv 2341 */ 2342u16 igb_rxpbs_adjust_82580(u32 data) 2343{ 2344 u16 ret_val = 0; 2345 2346 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table)) 2347 ret_val = e1000_82580_rxpbs_table[data]; 2348 2349 return ret_val; 2350} 2351 2352/** 2353 * igb_validate_nvm_checksum_with_offset - Validate EEPROM 2354 * checksum 2355 * @hw: pointer to the HW structure 2356 * @offset: offset in words of the checksum protected region 2357 * 2358 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2359 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2360 **/ 2361static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, 2362 u16 offset) 2363{ 2364 s32 ret_val = 0; 2365 u16 checksum = 0; 2366 u16 i, nvm_data; 2367 2368 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { 2369 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2370 if (ret_val) { 2371 hw_dbg("NVM Read Error\n"); 2372 goto out; 2373 } 2374 checksum += nvm_data; 2375 } 2376 2377 if (checksum != (u16) NVM_SUM) { 2378 hw_dbg("NVM Checksum Invalid\n"); 2379 ret_val = -E1000_ERR_NVM; 2380 goto out; 2381 } 2382 2383out: 2384 return ret_val; 2385} 2386 2387/** 2388 * igb_update_nvm_checksum_with_offset - Update EEPROM 2389 * checksum 2390 * @hw: pointer to the HW structure 2391 * @offset: offset in words of the checksum protected region 2392 * 2393 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2394 * up to the checksum. Then calculates the EEPROM checksum and writes the 2395 * value to the EEPROM. 2396 **/ 2397static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) 2398{ 2399 s32 ret_val; 2400 u16 checksum = 0; 2401 u16 i, nvm_data; 2402 2403 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { 2404 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2405 if (ret_val) { 2406 hw_dbg("NVM Read Error while updating checksum.\n"); 2407 goto out; 2408 } 2409 checksum += nvm_data; 2410 } 2411 checksum = (u16) NVM_SUM - checksum; 2412 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, 2413 &checksum); 2414 if (ret_val) 2415 hw_dbg("NVM Write Error while updating checksum.\n"); 2416 2417out: 2418 return ret_val; 2419} 2420 2421/** 2422 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum 2423 * @hw: pointer to the HW structure 2424 * 2425 * Calculates the EEPROM section checksum by reading/adding each word of 2426 * the EEPROM and then verifies that the sum of the EEPROM is 2427 * equal to 0xBABA. 2428 **/ 2429static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) 2430{ 2431 s32 ret_val = 0; 2432 u16 eeprom_regions_count = 1; 2433 u16 j, nvm_data; 2434 u16 nvm_offset; 2435 2436 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2437 if (ret_val) { 2438 hw_dbg("NVM Read Error\n"); 2439 goto out; 2440 } 2441 2442 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { 2443 /* if checksums compatibility bit is set validate checksums 2444 * for all 4 ports. 2445 */ 2446 eeprom_regions_count = 4; 2447 } 2448 2449 for (j = 0; j < eeprom_regions_count; j++) { 2450 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2451 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2452 nvm_offset); 2453 if (ret_val != 0) 2454 goto out; 2455 } 2456 2457out: 2458 return ret_val; 2459} 2460 2461/** 2462 * igb_update_nvm_checksum_82580 - Update EEPROM checksum 2463 * @hw: pointer to the HW structure 2464 * 2465 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2466 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2467 * checksum and writes the value to the EEPROM. 2468 **/ 2469static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) 2470{ 2471 s32 ret_val; 2472 u16 j, nvm_data; 2473 u16 nvm_offset; 2474 2475 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2476 if (ret_val) { 2477 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n"); 2478 goto out; 2479 } 2480 2481 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { 2482 /* set compatibility bit to validate checksums appropriately */ 2483 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; 2484 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, 2485 &nvm_data); 2486 if (ret_val) { 2487 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n"); 2488 goto out; 2489 } 2490 } 2491 2492 for (j = 0; j < 4; j++) { 2493 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2494 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2495 if (ret_val) 2496 goto out; 2497 } 2498 2499out: 2500 return ret_val; 2501} 2502 2503/** 2504 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum 2505 * @hw: pointer to the HW structure 2506 * 2507 * Calculates the EEPROM section checksum by reading/adding each word of 2508 * the EEPROM and then verifies that the sum of the EEPROM is 2509 * equal to 0xBABA. 2510 **/ 2511static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) 2512{ 2513 s32 ret_val = 0; 2514 u16 j; 2515 u16 nvm_offset; 2516 2517 for (j = 0; j < 4; j++) { 2518 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2519 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2520 nvm_offset); 2521 if (ret_val != 0) 2522 goto out; 2523 } 2524 2525out: 2526 return ret_val; 2527} 2528 2529/** 2530 * igb_update_nvm_checksum_i350 - Update EEPROM checksum 2531 * @hw: pointer to the HW structure 2532 * 2533 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2534 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2535 * checksum and writes the value to the EEPROM. 2536 **/ 2537static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) 2538{ 2539 s32 ret_val = 0; 2540 u16 j; 2541 u16 nvm_offset; 2542 2543 for (j = 0; j < 4; j++) { 2544 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2545 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2546 if (ret_val != 0) 2547 goto out; 2548 } 2549 2550out: 2551 return ret_val; 2552} 2553 2554/** 2555 * __igb_access_emi_reg - Read/write EMI register 2556 * @hw: pointer to the HW structure 2557 * @address: EMI address to program 2558 * @data: pointer to value to read/write from/to the EMI address 2559 * @read: boolean flag to indicate read or write 2560 **/ 2561static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address, 2562 u16 *data, bool read) 2563{ 2564 s32 ret_val = 0; 2565 2566 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); 2567 if (ret_val) 2568 return ret_val; 2569 2570 if (read) 2571 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); 2572 else 2573 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); 2574 2575 return ret_val; 2576} 2577 2578/** 2579 * igb_read_emi_reg - Read Extended Management Interface register 2580 * @hw: pointer to the HW structure 2581 * @addr: EMI address to program 2582 * @data: value to be read from the EMI address 2583 **/ 2584s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) 2585{ 2586 return __igb_access_emi_reg(hw, addr, data, true); 2587} 2588 2589/** 2590 * igb_set_eee_i350 - Enable/disable EEE support 2591 * @hw: pointer to the HW structure 2592 * @adv1G: boolean flag enabling 1G EEE advertisement 2593 * @adv100M: boolean flag enabling 100M EEE advertisement 2594 * 2595 * Enable/disable EEE based on setting in dev_spec structure. 2596 * 2597 **/ 2598s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) 2599{ 2600 u32 ipcnfg, eeer; 2601 2602 if ((hw->mac.type < e1000_i350) || 2603 (hw->phy.media_type != e1000_media_type_copper)) 2604 goto out; 2605 ipcnfg = rd32(E1000_IPCNFG); 2606 eeer = rd32(E1000_EEER); 2607 2608 /* enable or disable per user setting */ 2609 if (!(hw->dev_spec._82575.eee_disable)) { 2610 u32 eee_su = rd32(E1000_EEE_SU); 2611 2612 if (adv100M) 2613 ipcnfg |= E1000_IPCNFG_EEE_100M_AN; 2614 else 2615 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; 2616 2617 if (adv1G) 2618 ipcnfg |= E1000_IPCNFG_EEE_1G_AN; 2619 else 2620 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; 2621 2622 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | 2623 E1000_EEER_LPI_FC); 2624 2625 /* This bit should not be set in normal operation. */ 2626 if (eee_su & E1000_EEE_SU_LPI_CLK_STP) 2627 hw_dbg("LPI Clock Stop Bit should not be set!\n"); 2628 2629 } else { 2630 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | 2631 E1000_IPCNFG_EEE_100M_AN); 2632 eeer &= ~(E1000_EEER_TX_LPI_EN | 2633 E1000_EEER_RX_LPI_EN | 2634 E1000_EEER_LPI_FC); 2635 } 2636 wr32(E1000_IPCNFG, ipcnfg); 2637 wr32(E1000_EEER, eeer); 2638 rd32(E1000_IPCNFG); 2639 rd32(E1000_EEER); 2640out: 2641 2642 return 0; 2643} 2644 2645/** 2646 * igb_set_eee_i354 - Enable/disable EEE support 2647 * @hw: pointer to the HW structure 2648 * @adv1G: boolean flag enabling 1G EEE advertisement 2649 * @adv100M: boolean flag enabling 100M EEE advertisement 2650 * 2651 * Enable/disable EEE legacy mode based on setting in dev_spec structure. 2652 * 2653 **/ 2654s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) 2655{ 2656 struct e1000_phy_info *phy = &hw->phy; 2657 s32 ret_val = 0; 2658 u16 phy_data; 2659 2660 if ((hw->phy.media_type != e1000_media_type_copper) || 2661 ((phy->id != M88E1543_E_PHY_ID) && 2662 (phy->id != M88E1512_E_PHY_ID))) 2663 goto out; 2664 2665 if (!hw->dev_spec._82575.eee_disable) { 2666 /* Switch to PHY page 18. */ 2667 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); 2668 if (ret_val) 2669 goto out; 2670 2671 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, 2672 &phy_data); 2673 if (ret_val) 2674 goto out; 2675 2676 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; 2677 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, 2678 phy_data); 2679 if (ret_val) 2680 goto out; 2681 2682 /* Return the PHY to page 0. */ 2683 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); 2684 if (ret_val) 2685 goto out; 2686 2687 /* Turn on EEE advertisement. */ 2688 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2689 E1000_EEE_ADV_DEV_I354, 2690 &phy_data); 2691 if (ret_val) 2692 goto out; 2693 2694 if (adv100M) 2695 phy_data |= E1000_EEE_ADV_100_SUPPORTED; 2696 else 2697 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; 2698 2699 if (adv1G) 2700 phy_data |= E1000_EEE_ADV_1000_SUPPORTED; 2701 else 2702 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; 2703 2704 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2705 E1000_EEE_ADV_DEV_I354, 2706 phy_data); 2707 } else { 2708 /* Turn off EEE advertisement. */ 2709 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2710 E1000_EEE_ADV_DEV_I354, 2711 &phy_data); 2712 if (ret_val) 2713 goto out; 2714 2715 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | 2716 E1000_EEE_ADV_1000_SUPPORTED); 2717 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, 2718 E1000_EEE_ADV_DEV_I354, 2719 phy_data); 2720 } 2721 2722out: 2723 return ret_val; 2724} 2725 2726/** 2727 * igb_get_eee_status_i354 - Get EEE status 2728 * @hw: pointer to the HW structure 2729 * @status: EEE status 2730 * 2731 * Get EEE status by guessing based on whether Tx or Rx LPI indications have 2732 * been received. 2733 **/ 2734s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status) 2735{ 2736 struct e1000_phy_info *phy = &hw->phy; 2737 s32 ret_val = 0; 2738 u16 phy_data; 2739 2740 /* Check if EEE is supported on this device. */ 2741 if ((hw->phy.media_type != e1000_media_type_copper) || 2742 ((phy->id != M88E1543_E_PHY_ID) && 2743 (phy->id != M88E1512_E_PHY_ID))) 2744 goto out; 2745 2746 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, 2747 E1000_PCS_STATUS_DEV_I354, 2748 &phy_data); 2749 if (ret_val) 2750 goto out; 2751 2752 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | 2753 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; 2754 2755out: 2756 return ret_val; 2757} 2758 2759#ifdef CONFIG_IGB_HWMON 2760static const u8 e1000_emc_temp_data[4] = { 2761 E1000_EMC_INTERNAL_DATA, 2762 E1000_EMC_DIODE1_DATA, 2763 E1000_EMC_DIODE2_DATA, 2764 E1000_EMC_DIODE3_DATA 2765}; 2766static const u8 e1000_emc_therm_limit[4] = { 2767 E1000_EMC_INTERNAL_THERM_LIMIT, 2768 E1000_EMC_DIODE1_THERM_LIMIT, 2769 E1000_EMC_DIODE2_THERM_LIMIT, 2770 E1000_EMC_DIODE3_THERM_LIMIT 2771}; 2772 2773/** 2774 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data 2775 * @hw: pointer to hardware structure 2776 * 2777 * Updates the temperatures in mac.thermal_sensor_data 2778 **/ 2779static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw) 2780{ 2781 u16 ets_offset; 2782 u16 ets_cfg; 2783 u16 ets_sensor; 2784 u8 num_sensors; 2785 u8 sensor_index; 2786 u8 sensor_location; 2787 u8 i; 2788 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 2789 2790 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) 2791 return E1000_NOT_IMPLEMENTED; 2792 2793 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF); 2794 2795 /* Return the internal sensor only if ETS is unsupported */ 2796 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); 2797 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 2798 return 0; 2799 2800 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); 2801 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) 2802 != NVM_ETS_TYPE_EMC) 2803 return E1000_NOT_IMPLEMENTED; 2804 2805 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); 2806 if (num_sensors > E1000_MAX_SENSORS) 2807 num_sensors = E1000_MAX_SENSORS; 2808 2809 for (i = 1; i < num_sensors; i++) { 2810 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); 2811 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> 2812 NVM_ETS_DATA_INDEX_SHIFT); 2813 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> 2814 NVM_ETS_DATA_LOC_SHIFT); 2815 2816 if (sensor_location != 0) 2817 hw->phy.ops.read_i2c_byte(hw, 2818 e1000_emc_temp_data[sensor_index], 2819 E1000_I2C_THERMAL_SENSOR_ADDR, 2820 &data->sensor[i].temp); 2821 } 2822 return 0; 2823} 2824 2825/** 2826 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds 2827 * @hw: pointer to hardware structure 2828 * 2829 * Sets the thermal sensor thresholds according to the NVM map 2830 * and save off the threshold and location values into mac.thermal_sensor_data 2831 **/ 2832static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) 2833{ 2834 u16 ets_offset; 2835 u16 ets_cfg; 2836 u16 ets_sensor; 2837 u8 low_thresh_delta; 2838 u8 num_sensors; 2839 u8 sensor_index; 2840 u8 sensor_location; 2841 u8 therm_limit; 2842 u8 i; 2843 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 2844 2845 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) 2846 return E1000_NOT_IMPLEMENTED; 2847 2848 memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); 2849 2850 data->sensor[0].location = 0x1; 2851 data->sensor[0].caution_thresh = 2852 (rd32(E1000_THHIGHTC) & 0xFF); 2853 data->sensor[0].max_op_thresh = 2854 (rd32(E1000_THLOWTC) & 0xFF); 2855 2856 /* Return the internal sensor only if ETS is unsupported */ 2857 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); 2858 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 2859 return 0; 2860 2861 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); 2862 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) 2863 != NVM_ETS_TYPE_EMC) 2864 return E1000_NOT_IMPLEMENTED; 2865 2866 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >> 2867 NVM_ETS_LTHRES_DELTA_SHIFT); 2868 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); 2869 2870 for (i = 1; i <= num_sensors; i++) { 2871 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); 2872 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> 2873 NVM_ETS_DATA_INDEX_SHIFT); 2874 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> 2875 NVM_ETS_DATA_LOC_SHIFT); 2876 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; 2877 2878 hw->phy.ops.write_i2c_byte(hw, 2879 e1000_emc_therm_limit[sensor_index], 2880 E1000_I2C_THERMAL_SENSOR_ADDR, 2881 therm_limit); 2882 2883 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { 2884 data->sensor[i].location = sensor_location; 2885 data->sensor[i].caution_thresh = therm_limit; 2886 data->sensor[i].max_op_thresh = therm_limit - 2887 low_thresh_delta; 2888 } 2889 } 2890 return 0; 2891} 2892 2893#endif 2894static struct e1000_mac_operations e1000_mac_ops_82575 = { 2895 .init_hw = igb_init_hw_82575, 2896 .check_for_link = igb_check_for_link_82575, 2897 .rar_set = igb_rar_set, 2898 .read_mac_addr = igb_read_mac_addr_82575, 2899 .get_speed_and_duplex = igb_get_link_up_info_82575, 2900#ifdef CONFIG_IGB_HWMON 2901 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic, 2902 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic, 2903#endif 2904}; 2905 2906static const struct e1000_phy_operations e1000_phy_ops_82575 = { 2907 .acquire = igb_acquire_phy_82575, 2908 .get_cfg_done = igb_get_cfg_done_82575, 2909 .release = igb_release_phy_82575, 2910 .write_i2c_byte = igb_write_i2c_byte, 2911 .read_i2c_byte = igb_read_i2c_byte, 2912}; 2913 2914static struct e1000_nvm_operations e1000_nvm_ops_82575 = { 2915 .acquire = igb_acquire_nvm_82575, 2916 .read = igb_read_nvm_eerd, 2917 .release = igb_release_nvm_82575, 2918 .write = igb_write_nvm_spi, 2919}; 2920 2921const struct e1000_info e1000_82575_info = { 2922 .get_invariants = igb_get_invariants_82575, 2923 .mac_ops = &e1000_mac_ops_82575, 2924 .phy_ops = &e1000_phy_ops_82575, 2925 .nvm_ops = &e1000_nvm_ops_82575, 2926}; 2927