cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e1000_82575.c (79445B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2007 - 2018 Intel Corporation. */
      3
      4/* e1000_82575
      5 * e1000_82576
      6 */
      7
      8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      9
     10#include <linux/types.h>
     11#include <linux/if_ether.h>
     12#include <linux/i2c.h>
     13
     14#include "e1000_mac.h"
     15#include "e1000_82575.h"
     16#include "e1000_i210.h"
     17#include "igb.h"
     18
     19static s32  igb_get_invariants_82575(struct e1000_hw *);
     20static s32  igb_acquire_phy_82575(struct e1000_hw *);
     21static void igb_release_phy_82575(struct e1000_hw *);
     22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
     23static void igb_release_nvm_82575(struct e1000_hw *);
     24static s32  igb_check_for_link_82575(struct e1000_hw *);
     25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
     26static s32  igb_init_hw_82575(struct e1000_hw *);
     27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
     28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
     29static s32  igb_reset_hw_82575(struct e1000_hw *);
     30static s32  igb_reset_hw_82580(struct e1000_hw *);
     31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
     32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
     33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
     34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
     35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
     36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
     37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
     38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
     39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
     40						 u16 *);
     41static s32  igb_get_phy_id_82575(struct e1000_hw *);
     42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
     43static bool igb_sgmii_active_82575(struct e1000_hw *);
     44static s32  igb_reset_init_script_82575(struct e1000_hw *);
     45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
     46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
     47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
     48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
     49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
     50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
     51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
     52static const u16 e1000_82580_rxpbs_table[] = {
     53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
     54
     55/* Due to a hw errata, if the host tries to  configure the VFTA register
     56 * while performing queries from the BMC or DMA, then the VFTA in some
     57 * cases won't be written.
     58 */
     59
     60/**
     61 *  igb_write_vfta_i350 - Write value to VLAN filter table
     62 *  @hw: pointer to the HW structure
     63 *  @offset: register offset in VLAN filter table
     64 *  @value: register value written to VLAN filter table
     65 *
     66 *  Writes value at the given offset in the register array which stores
     67 *  the VLAN filter table.
     68 **/
     69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
     70{
     71	struct igb_adapter *adapter = hw->back;
     72	int i;
     73
     74	for (i = 10; i--;)
     75		array_wr32(E1000_VFTA, offset, value);
     76
     77	wrfl();
     78	adapter->shadow_vfta[offset] = value;
     79}
     80
     81/**
     82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
     83 *  @hw: pointer to the HW structure
     84 *
     85 *  Called to determine if the I2C pins are being used for I2C or as an
     86 *  external MDIO interface since the two options are mutually exclusive.
     87 **/
     88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
     89{
     90	u32 reg = 0;
     91	bool ext_mdio = false;
     92
     93	switch (hw->mac.type) {
     94	case e1000_82575:
     95	case e1000_82576:
     96		reg = rd32(E1000_MDIC);
     97		ext_mdio = !!(reg & E1000_MDIC_DEST);
     98		break;
     99	case e1000_82580:
    100	case e1000_i350:
    101	case e1000_i354:
    102	case e1000_i210:
    103	case e1000_i211:
    104		reg = rd32(E1000_MDICNFG);
    105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
    106		break;
    107	default:
    108		break;
    109	}
    110	return ext_mdio;
    111}
    112
    113/**
    114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
    115 *  @hw: pointer to the HW structure
    116 *
    117 *  Poll the M88E1112 interfaces to see which interface achieved link.
    118 */
    119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
    120{
    121	struct e1000_phy_info *phy = &hw->phy;
    122	s32 ret_val;
    123	u16 data;
    124	u8 port = 0;
    125
    126	/* Check the copper medium. */
    127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
    128	if (ret_val)
    129		return ret_val;
    130
    131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
    132	if (ret_val)
    133		return ret_val;
    134
    135	if (data & E1000_M88E1112_STATUS_LINK)
    136		port = E1000_MEDIA_PORT_COPPER;
    137
    138	/* Check the other medium. */
    139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
    140	if (ret_val)
    141		return ret_val;
    142
    143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
    144	if (ret_val)
    145		return ret_val;
    146
    147
    148	if (data & E1000_M88E1112_STATUS_LINK)
    149		port = E1000_MEDIA_PORT_OTHER;
    150
    151	/* Determine if a swap needs to happen. */
    152	if (port && (hw->dev_spec._82575.media_port != port)) {
    153		hw->dev_spec._82575.media_port = port;
    154		hw->dev_spec._82575.media_changed = true;
    155	}
    156
    157	if (port == E1000_MEDIA_PORT_COPPER) {
    158		/* reset page to 0 */
    159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
    160		if (ret_val)
    161			return ret_val;
    162		igb_check_for_link_82575(hw);
    163	} else {
    164		igb_check_for_link_82575(hw);
    165		/* reset page to 0 */
    166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
    167		if (ret_val)
    168			return ret_val;
    169	}
    170
    171	return 0;
    172}
    173
    174/**
    175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
    176 *  @hw: pointer to the HW structure
    177 **/
    178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
    179{
    180	struct e1000_phy_info *phy = &hw->phy;
    181	s32 ret_val = 0;
    182	u32 ctrl_ext;
    183
    184	if (hw->phy.media_type != e1000_media_type_copper) {
    185		phy->type = e1000_phy_none;
    186		goto out;
    187	}
    188
    189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
    190	phy->reset_delay_us	= 100;
    191
    192	ctrl_ext = rd32(E1000_CTRL_EXT);
    193
    194	if (igb_sgmii_active_82575(hw)) {
    195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
    196		ctrl_ext |= E1000_CTRL_I2C_ENA;
    197	} else {
    198		phy->ops.reset = igb_phy_hw_reset;
    199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
    200	}
    201
    202	wr32(E1000_CTRL_EXT, ctrl_ext);
    203	igb_reset_mdicnfg_82580(hw);
    204
    205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
    206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
    207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
    208	} else {
    209		switch (hw->mac.type) {
    210		case e1000_82580:
    211		case e1000_i350:
    212		case e1000_i354:
    213		case e1000_i210:
    214		case e1000_i211:
    215			phy->ops.read_reg = igb_read_phy_reg_82580;
    216			phy->ops.write_reg = igb_write_phy_reg_82580;
    217			break;
    218		default:
    219			phy->ops.read_reg = igb_read_phy_reg_igp;
    220			phy->ops.write_reg = igb_write_phy_reg_igp;
    221		}
    222	}
    223
    224	/* set lan id */
    225	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
    226			E1000_STATUS_FUNC_SHIFT;
    227
    228	/* Set phy->phy_addr and phy->id. */
    229	ret_val = igb_get_phy_id_82575(hw);
    230	if (ret_val)
    231		return ret_val;
    232
    233	/* Verify phy id and set remaining function pointers */
    234	switch (phy->id) {
    235	case M88E1543_E_PHY_ID:
    236	case M88E1512_E_PHY_ID:
    237	case I347AT4_E_PHY_ID:
    238	case M88E1112_E_PHY_ID:
    239	case M88E1111_I_PHY_ID:
    240		phy->type		= e1000_phy_m88;
    241		phy->ops.check_polarity	= igb_check_polarity_m88;
    242		phy->ops.get_phy_info	= igb_get_phy_info_m88;
    243		if (phy->id != M88E1111_I_PHY_ID)
    244			phy->ops.get_cable_length =
    245					 igb_get_cable_length_m88_gen2;
    246		else
    247			phy->ops.get_cable_length = igb_get_cable_length_m88;
    248		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
    249		/* Check if this PHY is configured for media swap. */
    250		if (phy->id == M88E1112_E_PHY_ID) {
    251			u16 data;
    252
    253			ret_val = phy->ops.write_reg(hw,
    254						     E1000_M88E1112_PAGE_ADDR,
    255						     2);
    256			if (ret_val)
    257				goto out;
    258
    259			ret_val = phy->ops.read_reg(hw,
    260						    E1000_M88E1112_MAC_CTRL_1,
    261						    &data);
    262			if (ret_val)
    263				goto out;
    264
    265			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
    266			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
    267			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
    268			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
    269				hw->mac.ops.check_for_link =
    270						igb_check_for_link_media_swap;
    271		}
    272		if (phy->id == M88E1512_E_PHY_ID) {
    273			ret_val = igb_initialize_M88E1512_phy(hw);
    274			if (ret_val)
    275				goto out;
    276		}
    277		if (phy->id == M88E1543_E_PHY_ID) {
    278			ret_val = igb_initialize_M88E1543_phy(hw);
    279			if (ret_val)
    280				goto out;
    281		}
    282		break;
    283	case IGP03E1000_E_PHY_ID:
    284		phy->type = e1000_phy_igp_3;
    285		phy->ops.get_phy_info = igb_get_phy_info_igp;
    286		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
    287		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
    288		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
    289		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
    290		break;
    291	case I82580_I_PHY_ID:
    292	case I350_I_PHY_ID:
    293		phy->type = e1000_phy_82580;
    294		phy->ops.force_speed_duplex =
    295					 igb_phy_force_speed_duplex_82580;
    296		phy->ops.get_cable_length = igb_get_cable_length_82580;
    297		phy->ops.get_phy_info = igb_get_phy_info_82580;
    298		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
    299		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
    300		break;
    301	case I210_I_PHY_ID:
    302		phy->type		= e1000_phy_i210;
    303		phy->ops.check_polarity	= igb_check_polarity_m88;
    304		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
    305		phy->ops.get_phy_info	= igb_get_phy_info_m88;
    306		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
    307		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
    308		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
    309		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
    310		break;
    311	case BCM54616_E_PHY_ID:
    312		phy->type = e1000_phy_bcm54616;
    313		break;
    314	default:
    315		ret_val = -E1000_ERR_PHY;
    316		goto out;
    317	}
    318
    319out:
    320	return ret_val;
    321}
    322
    323/**
    324 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
    325 *  @hw: pointer to the HW structure
    326 **/
    327static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
    328{
    329	struct e1000_nvm_info *nvm = &hw->nvm;
    330	u32 eecd = rd32(E1000_EECD);
    331	u16 size;
    332
    333	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
    334		     E1000_EECD_SIZE_EX_SHIFT);
    335
    336	/* Added to a constant, "size" becomes the left-shift value
    337	 * for setting word_size.
    338	 */
    339	size += NVM_WORD_SIZE_BASE_SHIFT;
    340
    341	/* Just in case size is out of range, cap it to the largest
    342	 * EEPROM size supported
    343	 */
    344	if (size > 15)
    345		size = 15;
    346
    347	nvm->word_size = BIT(size);
    348	nvm->opcode_bits = 8;
    349	nvm->delay_usec = 1;
    350
    351	switch (nvm->override) {
    352	case e1000_nvm_override_spi_large:
    353		nvm->page_size = 32;
    354		nvm->address_bits = 16;
    355		break;
    356	case e1000_nvm_override_spi_small:
    357		nvm->page_size = 8;
    358		nvm->address_bits = 8;
    359		break;
    360	default:
    361		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
    362		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
    363				    16 : 8;
    364		break;
    365	}
    366	if (nvm->word_size == BIT(15))
    367		nvm->page_size = 128;
    368
    369	nvm->type = e1000_nvm_eeprom_spi;
    370
    371	/* NVM Function Pointers */
    372	nvm->ops.acquire = igb_acquire_nvm_82575;
    373	nvm->ops.release = igb_release_nvm_82575;
    374	nvm->ops.write = igb_write_nvm_spi;
    375	nvm->ops.validate = igb_validate_nvm_checksum;
    376	nvm->ops.update = igb_update_nvm_checksum;
    377	if (nvm->word_size < BIT(15))
    378		nvm->ops.read = igb_read_nvm_eerd;
    379	else
    380		nvm->ops.read = igb_read_nvm_spi;
    381
    382	/* override generic family function pointers for specific descendants */
    383	switch (hw->mac.type) {
    384	case e1000_82580:
    385		nvm->ops.validate = igb_validate_nvm_checksum_82580;
    386		nvm->ops.update = igb_update_nvm_checksum_82580;
    387		break;
    388	case e1000_i354:
    389	case e1000_i350:
    390		nvm->ops.validate = igb_validate_nvm_checksum_i350;
    391		nvm->ops.update = igb_update_nvm_checksum_i350;
    392		break;
    393	default:
    394		break;
    395	}
    396
    397	return 0;
    398}
    399
    400/**
    401 *  igb_init_mac_params_82575 - Init MAC func ptrs.
    402 *  @hw: pointer to the HW structure
    403 **/
    404static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
    405{
    406	struct e1000_mac_info *mac = &hw->mac;
    407	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
    408
    409	/* Set mta register count */
    410	mac->mta_reg_count = 128;
    411	/* Set uta register count */
    412	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
    413	/* Set rar entry count */
    414	switch (mac->type) {
    415	case e1000_82576:
    416		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
    417		break;
    418	case e1000_82580:
    419		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
    420		break;
    421	case e1000_i350:
    422	case e1000_i354:
    423		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
    424		break;
    425	default:
    426		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
    427		break;
    428	}
    429	/* reset */
    430	if (mac->type >= e1000_82580)
    431		mac->ops.reset_hw = igb_reset_hw_82580;
    432	else
    433		mac->ops.reset_hw = igb_reset_hw_82575;
    434
    435	if (mac->type >= e1000_i210) {
    436		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
    437		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
    438
    439	} else {
    440		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
    441		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
    442	}
    443
    444	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
    445		mac->ops.write_vfta = igb_write_vfta_i350;
    446	else
    447		mac->ops.write_vfta = igb_write_vfta;
    448
    449	/* Set if part includes ASF firmware */
    450	mac->asf_firmware_present = true;
    451	/* Set if manageability features are enabled. */
    452	mac->arc_subsystem_valid =
    453		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
    454			? true : false;
    455	/* enable EEE on i350 parts and later parts */
    456	if (mac->type >= e1000_i350)
    457		dev_spec->eee_disable = false;
    458	else
    459		dev_spec->eee_disable = true;
    460	/* Allow a single clear of the SW semaphore on I210 and newer */
    461	if (mac->type >= e1000_i210)
    462		dev_spec->clear_semaphore_once = true;
    463	/* physical interface link setup */
    464	mac->ops.setup_physical_interface =
    465		(hw->phy.media_type == e1000_media_type_copper)
    466			? igb_setup_copper_link_82575
    467			: igb_setup_serdes_link_82575;
    468
    469	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
    470		switch (hw->device_id) {
    471		/* feature not supported on these id's */
    472		case E1000_DEV_ID_DH89XXCC_SGMII:
    473		case E1000_DEV_ID_DH89XXCC_SERDES:
    474		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
    475		case E1000_DEV_ID_DH89XXCC_SFP:
    476			break;
    477		default:
    478			hw->dev_spec._82575.mas_capable = true;
    479			break;
    480		}
    481	}
    482	return 0;
    483}
    484
    485/**
    486 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
    487 *  @hw: pointer to the HW structure
    488 *
    489 *  The media type is chosen based on SFP module.
    490 *  compatibility flags retrieved from SFP ID EEPROM.
    491 **/
    492static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
    493{
    494	s32 ret_val = E1000_ERR_CONFIG;
    495	u32 ctrl_ext = 0;
    496	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
    497	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
    498	u8 tranceiver_type = 0;
    499	s32 timeout = 3;
    500
    501	/* Turn I2C interface ON and power on sfp cage */
    502	ctrl_ext = rd32(E1000_CTRL_EXT);
    503	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
    504	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
    505
    506	wrfl();
    507
    508	/* Read SFP module data */
    509	while (timeout) {
    510		ret_val = igb_read_sfp_data_byte(hw,
    511			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
    512			&tranceiver_type);
    513		if (ret_val == 0)
    514			break;
    515		msleep(100);
    516		timeout--;
    517	}
    518	if (ret_val != 0)
    519		goto out;
    520
    521	ret_val = igb_read_sfp_data_byte(hw,
    522			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
    523			(u8 *)eth_flags);
    524	if (ret_val != 0)
    525		goto out;
    526
    527	/* Check if there is some SFP module plugged and powered */
    528	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
    529	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
    530		dev_spec->module_plugged = true;
    531		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
    532			hw->phy.media_type = e1000_media_type_internal_serdes;
    533		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
    534			dev_spec->sgmii_active = true;
    535			hw->phy.media_type = e1000_media_type_internal_serdes;
    536		} else if (eth_flags->e1000_base_t) {
    537			dev_spec->sgmii_active = true;
    538			hw->phy.media_type = e1000_media_type_copper;
    539		} else {
    540			hw->phy.media_type = e1000_media_type_unknown;
    541			hw_dbg("PHY module has not been recognized\n");
    542			goto out;
    543		}
    544	} else {
    545		hw->phy.media_type = e1000_media_type_unknown;
    546	}
    547	ret_val = 0;
    548out:
    549	/* Restore I2C interface setting */
    550	wr32(E1000_CTRL_EXT, ctrl_ext);
    551	return ret_val;
    552}
    553
    554static s32 igb_get_invariants_82575(struct e1000_hw *hw)
    555{
    556	struct e1000_mac_info *mac = &hw->mac;
    557	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
    558	s32 ret_val;
    559	u32 ctrl_ext = 0;
    560	u32 link_mode = 0;
    561
    562	switch (hw->device_id) {
    563	case E1000_DEV_ID_82575EB_COPPER:
    564	case E1000_DEV_ID_82575EB_FIBER_SERDES:
    565	case E1000_DEV_ID_82575GB_QUAD_COPPER:
    566		mac->type = e1000_82575;
    567		break;
    568	case E1000_DEV_ID_82576:
    569	case E1000_DEV_ID_82576_NS:
    570	case E1000_DEV_ID_82576_NS_SERDES:
    571	case E1000_DEV_ID_82576_FIBER:
    572	case E1000_DEV_ID_82576_SERDES:
    573	case E1000_DEV_ID_82576_QUAD_COPPER:
    574	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
    575	case E1000_DEV_ID_82576_SERDES_QUAD:
    576		mac->type = e1000_82576;
    577		break;
    578	case E1000_DEV_ID_82580_COPPER:
    579	case E1000_DEV_ID_82580_FIBER:
    580	case E1000_DEV_ID_82580_QUAD_FIBER:
    581	case E1000_DEV_ID_82580_SERDES:
    582	case E1000_DEV_ID_82580_SGMII:
    583	case E1000_DEV_ID_82580_COPPER_DUAL:
    584	case E1000_DEV_ID_DH89XXCC_SGMII:
    585	case E1000_DEV_ID_DH89XXCC_SERDES:
    586	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
    587	case E1000_DEV_ID_DH89XXCC_SFP:
    588		mac->type = e1000_82580;
    589		break;
    590	case E1000_DEV_ID_I350_COPPER:
    591	case E1000_DEV_ID_I350_FIBER:
    592	case E1000_DEV_ID_I350_SERDES:
    593	case E1000_DEV_ID_I350_SGMII:
    594		mac->type = e1000_i350;
    595		break;
    596	case E1000_DEV_ID_I210_COPPER:
    597	case E1000_DEV_ID_I210_FIBER:
    598	case E1000_DEV_ID_I210_SERDES:
    599	case E1000_DEV_ID_I210_SGMII:
    600	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
    601	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
    602		mac->type = e1000_i210;
    603		break;
    604	case E1000_DEV_ID_I211_COPPER:
    605		mac->type = e1000_i211;
    606		break;
    607	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
    608	case E1000_DEV_ID_I354_SGMII:
    609	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
    610		mac->type = e1000_i354;
    611		break;
    612	default:
    613		return -E1000_ERR_MAC_INIT;
    614	}
    615
    616	/* Set media type */
    617	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
    618	 * based on the EEPROM. We cannot rely upon device ID. There
    619	 * is no distinguishable difference between fiber and internal
    620	 * SerDes mode on the 82575. There can be an external PHY attached
    621	 * on the SGMII interface. For this, we'll set sgmii_active to true.
    622	 */
    623	hw->phy.media_type = e1000_media_type_copper;
    624	dev_spec->sgmii_active = false;
    625	dev_spec->module_plugged = false;
    626
    627	ctrl_ext = rd32(E1000_CTRL_EXT);
    628
    629	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
    630	switch (link_mode) {
    631	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
    632		hw->phy.media_type = e1000_media_type_internal_serdes;
    633		break;
    634	case E1000_CTRL_EXT_LINK_MODE_SGMII:
    635		/* Get phy control interface type set (MDIO vs. I2C)*/
    636		if (igb_sgmii_uses_mdio_82575(hw)) {
    637			hw->phy.media_type = e1000_media_type_copper;
    638			dev_spec->sgmii_active = true;
    639			break;
    640		}
    641		fallthrough; /* for I2C based SGMII */
    642	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
    643		/* read media type from SFP EEPROM */
    644		ret_val = igb_set_sfp_media_type_82575(hw);
    645		if ((ret_val != 0) ||
    646		    (hw->phy.media_type == e1000_media_type_unknown)) {
    647			/* If media type was not identified then return media
    648			 * type defined by the CTRL_EXT settings.
    649			 */
    650			hw->phy.media_type = e1000_media_type_internal_serdes;
    651
    652			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
    653				hw->phy.media_type = e1000_media_type_copper;
    654				dev_spec->sgmii_active = true;
    655			}
    656
    657			break;
    658		}
    659
    660		/* change current link mode setting */
    661		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
    662
    663		if (dev_spec->sgmii_active)
    664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
    665		else
    666			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
    667
    668		wr32(E1000_CTRL_EXT, ctrl_ext);
    669
    670		break;
    671	default:
    672		break;
    673	}
    674
    675	/* mac initialization and operations */
    676	ret_val = igb_init_mac_params_82575(hw);
    677	if (ret_val)
    678		goto out;
    679
    680	/* NVM initialization */
    681	ret_val = igb_init_nvm_params_82575(hw);
    682	switch (hw->mac.type) {
    683	case e1000_i210:
    684	case e1000_i211:
    685		ret_val = igb_init_nvm_params_i210(hw);
    686		break;
    687	default:
    688		break;
    689	}
    690
    691	if (ret_val)
    692		goto out;
    693
    694	/* if part supports SR-IOV then initialize mailbox parameters */
    695	switch (mac->type) {
    696	case e1000_82576:
    697	case e1000_i350:
    698		igb_init_mbx_params_pf(hw);
    699		break;
    700	default:
    701		break;
    702	}
    703
    704	/* setup PHY parameters */
    705	ret_val = igb_init_phy_params_82575(hw);
    706
    707out:
    708	return ret_val;
    709}
    710
    711/**
    712 *  igb_acquire_phy_82575 - Acquire rights to access PHY
    713 *  @hw: pointer to the HW structure
    714 *
    715 *  Acquire access rights to the correct PHY.  This is a
    716 *  function pointer entry point called by the api module.
    717 **/
    718static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
    719{
    720	u16 mask = E1000_SWFW_PHY0_SM;
    721
    722	if (hw->bus.func == E1000_FUNC_1)
    723		mask = E1000_SWFW_PHY1_SM;
    724	else if (hw->bus.func == E1000_FUNC_2)
    725		mask = E1000_SWFW_PHY2_SM;
    726	else if (hw->bus.func == E1000_FUNC_3)
    727		mask = E1000_SWFW_PHY3_SM;
    728
    729	return hw->mac.ops.acquire_swfw_sync(hw, mask);
    730}
    731
    732/**
    733 *  igb_release_phy_82575 - Release rights to access PHY
    734 *  @hw: pointer to the HW structure
    735 *
    736 *  A wrapper to release access rights to the correct PHY.  This is a
    737 *  function pointer entry point called by the api module.
    738 **/
    739static void igb_release_phy_82575(struct e1000_hw *hw)
    740{
    741	u16 mask = E1000_SWFW_PHY0_SM;
    742
    743	if (hw->bus.func == E1000_FUNC_1)
    744		mask = E1000_SWFW_PHY1_SM;
    745	else if (hw->bus.func == E1000_FUNC_2)
    746		mask = E1000_SWFW_PHY2_SM;
    747	else if (hw->bus.func == E1000_FUNC_3)
    748		mask = E1000_SWFW_PHY3_SM;
    749
    750	hw->mac.ops.release_swfw_sync(hw, mask);
    751}
    752
    753/**
    754 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
    755 *  @hw: pointer to the HW structure
    756 *  @offset: register offset to be read
    757 *  @data: pointer to the read data
    758 *
    759 *  Reads the PHY register at offset using the serial gigabit media independent
    760 *  interface and stores the retrieved information in data.
    761 **/
    762static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
    763					  u16 *data)
    764{
    765	s32 ret_val = -E1000_ERR_PARAM;
    766
    767	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
    768		hw_dbg("PHY Address %u is out of range\n", offset);
    769		goto out;
    770	}
    771
    772	ret_val = hw->phy.ops.acquire(hw);
    773	if (ret_val)
    774		goto out;
    775
    776	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
    777
    778	hw->phy.ops.release(hw);
    779
    780out:
    781	return ret_val;
    782}
    783
    784/**
    785 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
    786 *  @hw: pointer to the HW structure
    787 *  @offset: register offset to write to
    788 *  @data: data to write at register offset
    789 *
    790 *  Writes the data to PHY register at the offset using the serial gigabit
    791 *  media independent interface.
    792 **/
    793static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
    794					   u16 data)
    795{
    796	s32 ret_val = -E1000_ERR_PARAM;
    797
    798
    799	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
    800		hw_dbg("PHY Address %d is out of range\n", offset);
    801		goto out;
    802	}
    803
    804	ret_val = hw->phy.ops.acquire(hw);
    805	if (ret_val)
    806		goto out;
    807
    808	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
    809
    810	hw->phy.ops.release(hw);
    811
    812out:
    813	return ret_val;
    814}
    815
    816/**
    817 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
    818 *  @hw: pointer to the HW structure
    819 *
    820 *  Retrieves the PHY address and ID for both PHY's which do and do not use
    821 *  sgmi interface.
    822 **/
    823static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
    824{
    825	struct e1000_phy_info *phy = &hw->phy;
    826	s32  ret_val = 0;
    827	u16 phy_id;
    828	u32 ctrl_ext;
    829	u32 mdic;
    830
    831	/* Extra read required for some PHY's on i354 */
    832	if (hw->mac.type == e1000_i354)
    833		igb_get_phy_id(hw);
    834
    835	/* For SGMII PHYs, we try the list of possible addresses until
    836	 * we find one that works.  For non-SGMII PHYs
    837	 * (e.g. integrated copper PHYs), an address of 1 should
    838	 * work.  The result of this function should mean phy->phy_addr
    839	 * and phy->id are set correctly.
    840	 */
    841	if (!(igb_sgmii_active_82575(hw))) {
    842		phy->addr = 1;
    843		ret_val = igb_get_phy_id(hw);
    844		goto out;
    845	}
    846
    847	if (igb_sgmii_uses_mdio_82575(hw)) {
    848		switch (hw->mac.type) {
    849		case e1000_82575:
    850		case e1000_82576:
    851			mdic = rd32(E1000_MDIC);
    852			mdic &= E1000_MDIC_PHY_MASK;
    853			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
    854			break;
    855		case e1000_82580:
    856		case e1000_i350:
    857		case e1000_i354:
    858		case e1000_i210:
    859		case e1000_i211:
    860			mdic = rd32(E1000_MDICNFG);
    861			mdic &= E1000_MDICNFG_PHY_MASK;
    862			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
    863			break;
    864		default:
    865			ret_val = -E1000_ERR_PHY;
    866			goto out;
    867		}
    868		ret_val = igb_get_phy_id(hw);
    869		goto out;
    870	}
    871
    872	/* Power on sgmii phy if it is disabled */
    873	ctrl_ext = rd32(E1000_CTRL_EXT);
    874	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
    875	wrfl();
    876	msleep(300);
    877
    878	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
    879	 * Therefore, we need to test 1-7
    880	 */
    881	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
    882		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
    883		if (ret_val == 0) {
    884			hw_dbg("Vendor ID 0x%08X read at address %u\n",
    885			       phy_id, phy->addr);
    886			/* At the time of this writing, The M88 part is
    887			 * the only supported SGMII PHY product.
    888			 */
    889			if (phy_id == M88_VENDOR)
    890				break;
    891		} else {
    892			hw_dbg("PHY address %u was unreadable\n", phy->addr);
    893		}
    894	}
    895
    896	/* A valid PHY type couldn't be found. */
    897	if (phy->addr == 8) {
    898		phy->addr = 0;
    899		ret_val = -E1000_ERR_PHY;
    900		goto out;
    901	} else {
    902		ret_val = igb_get_phy_id(hw);
    903	}
    904
    905	/* restore previous sfp cage power state */
    906	wr32(E1000_CTRL_EXT, ctrl_ext);
    907
    908out:
    909	return ret_val;
    910}
    911
    912/**
    913 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
    914 *  @hw: pointer to the HW structure
    915 *
    916 *  Resets the PHY using the serial gigabit media independent interface.
    917 **/
    918static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
    919{
    920	struct e1000_phy_info *phy = &hw->phy;
    921	s32 ret_val;
    922
    923	/* This isn't a true "hard" reset, but is the only reset
    924	 * available to us at this time.
    925	 */
    926
    927	hw_dbg("Soft resetting SGMII attached PHY...\n");
    928
    929	/* SFP documentation requires the following to configure the SPF module
    930	 * to work on SGMII.  No further documentation is given.
    931	 */
    932	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
    933	if (ret_val)
    934		goto out;
    935
    936	ret_val = igb_phy_sw_reset(hw);
    937	if (ret_val)
    938		goto out;
    939
    940	if (phy->id == M88E1512_E_PHY_ID)
    941		ret_val = igb_initialize_M88E1512_phy(hw);
    942	if (phy->id == M88E1543_E_PHY_ID)
    943		ret_val = igb_initialize_M88E1543_phy(hw);
    944out:
    945	return ret_val;
    946}
    947
    948/**
    949 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
    950 *  @hw: pointer to the HW structure
    951 *  @active: true to enable LPLU, false to disable
    952 *
    953 *  Sets the LPLU D0 state according to the active flag.  When
    954 *  activating LPLU this function also disables smart speed
    955 *  and vice versa.  LPLU will not be activated unless the
    956 *  device autonegotiation advertisement meets standards of
    957 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
    958 *  This is a function pointer entry point only called by
    959 *  PHY setup routines.
    960 **/
    961static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
    962{
    963	struct e1000_phy_info *phy = &hw->phy;
    964	s32 ret_val;
    965	u16 data;
    966
    967	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
    968	if (ret_val)
    969		goto out;
    970
    971	if (active) {
    972		data |= IGP02E1000_PM_D0_LPLU;
    973		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
    974						 data);
    975		if (ret_val)
    976			goto out;
    977
    978		/* When LPLU is enabled, we should disable SmartSpeed */
    979		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
    980						&data);
    981		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
    982		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
    983						 data);
    984		if (ret_val)
    985			goto out;
    986	} else {
    987		data &= ~IGP02E1000_PM_D0_LPLU;
    988		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
    989						 data);
    990		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
    991		 * during Dx states where the power conservation is most
    992		 * important.  During driver activity we should enable
    993		 * SmartSpeed, so performance is maintained.
    994		 */
    995		if (phy->smart_speed == e1000_smart_speed_on) {
    996			ret_val = phy->ops.read_reg(hw,
    997					IGP01E1000_PHY_PORT_CONFIG, &data);
    998			if (ret_val)
    999				goto out;
   1000
   1001			data |= IGP01E1000_PSCFR_SMART_SPEED;
   1002			ret_val = phy->ops.write_reg(hw,
   1003					IGP01E1000_PHY_PORT_CONFIG, data);
   1004			if (ret_val)
   1005				goto out;
   1006		} else if (phy->smart_speed == e1000_smart_speed_off) {
   1007			ret_val = phy->ops.read_reg(hw,
   1008					IGP01E1000_PHY_PORT_CONFIG, &data);
   1009			if (ret_val)
   1010				goto out;
   1011
   1012			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
   1013			ret_val = phy->ops.write_reg(hw,
   1014					IGP01E1000_PHY_PORT_CONFIG, data);
   1015			if (ret_val)
   1016				goto out;
   1017		}
   1018	}
   1019
   1020out:
   1021	return ret_val;
   1022}
   1023
   1024/**
   1025 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
   1026 *  @hw: pointer to the HW structure
   1027 *  @active: true to enable LPLU, false to disable
   1028 *
   1029 *  Sets the LPLU D0 state according to the active flag.  When
   1030 *  activating LPLU this function also disables smart speed
   1031 *  and vice versa.  LPLU will not be activated unless the
   1032 *  device autonegotiation advertisement meets standards of
   1033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
   1034 *  This is a function pointer entry point only called by
   1035 *  PHY setup routines.
   1036 **/
   1037static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
   1038{
   1039	struct e1000_phy_info *phy = &hw->phy;
   1040	u16 data;
   1041
   1042	data = rd32(E1000_82580_PHY_POWER_MGMT);
   1043
   1044	if (active) {
   1045		data |= E1000_82580_PM_D0_LPLU;
   1046
   1047		/* When LPLU is enabled, we should disable SmartSpeed */
   1048		data &= ~E1000_82580_PM_SPD;
   1049	} else {
   1050		data &= ~E1000_82580_PM_D0_LPLU;
   1051
   1052		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
   1053		 * during Dx states where the power conservation is most
   1054		 * important.  During driver activity we should enable
   1055		 * SmartSpeed, so performance is maintained.
   1056		 */
   1057		if (phy->smart_speed == e1000_smart_speed_on)
   1058			data |= E1000_82580_PM_SPD;
   1059		else if (phy->smart_speed == e1000_smart_speed_off)
   1060			data &= ~E1000_82580_PM_SPD; }
   1061
   1062	wr32(E1000_82580_PHY_POWER_MGMT, data);
   1063	return 0;
   1064}
   1065
   1066/**
   1067 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
   1068 *  @hw: pointer to the HW structure
   1069 *  @active: boolean used to enable/disable lplu
   1070 *
   1071 *  Success returns 0, Failure returns 1
   1072 *
   1073 *  The low power link up (lplu) state is set to the power management level D3
   1074 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
   1075 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
   1076 *  is used during Dx states where the power conservation is most important.
   1077 *  During driver activity, SmartSpeed should be enabled so performance is
   1078 *  maintained.
   1079 **/
   1080static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
   1081{
   1082	struct e1000_phy_info *phy = &hw->phy;
   1083	u16 data;
   1084
   1085	data = rd32(E1000_82580_PHY_POWER_MGMT);
   1086
   1087	if (!active) {
   1088		data &= ~E1000_82580_PM_D3_LPLU;
   1089		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
   1090		 * during Dx states where the power conservation is most
   1091		 * important.  During driver activity we should enable
   1092		 * SmartSpeed, so performance is maintained.
   1093		 */
   1094		if (phy->smart_speed == e1000_smart_speed_on)
   1095			data |= E1000_82580_PM_SPD;
   1096		else if (phy->smart_speed == e1000_smart_speed_off)
   1097			data &= ~E1000_82580_PM_SPD;
   1098	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
   1099		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
   1100		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
   1101		data |= E1000_82580_PM_D3_LPLU;
   1102		/* When LPLU is enabled, we should disable SmartSpeed */
   1103		data &= ~E1000_82580_PM_SPD;
   1104	}
   1105
   1106	wr32(E1000_82580_PHY_POWER_MGMT, data);
   1107	return 0;
   1108}
   1109
   1110/**
   1111 *  igb_acquire_nvm_82575 - Request for access to EEPROM
   1112 *  @hw: pointer to the HW structure
   1113 *
   1114 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
   1115 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
   1116 *  Return successful if access grant bit set, else clear the request for
   1117 *  EEPROM access and return -E1000_ERR_NVM (-1).
   1118 **/
   1119static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
   1120{
   1121	s32 ret_val;
   1122
   1123	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
   1124	if (ret_val)
   1125		goto out;
   1126
   1127	ret_val = igb_acquire_nvm(hw);
   1128
   1129	if (ret_val)
   1130		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
   1131
   1132out:
   1133	return ret_val;
   1134}
   1135
   1136/**
   1137 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
   1138 *  @hw: pointer to the HW structure
   1139 *
   1140 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
   1141 *  then release the semaphores acquired.
   1142 **/
   1143static void igb_release_nvm_82575(struct e1000_hw *hw)
   1144{
   1145	igb_release_nvm(hw);
   1146	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
   1147}
   1148
   1149/**
   1150 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
   1151 *  @hw: pointer to the HW structure
   1152 *  @mask: specifies which semaphore to acquire
   1153 *
   1154 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
   1155 *  will also specify which port we're acquiring the lock for.
   1156 **/
   1157static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
   1158{
   1159	u32 swfw_sync;
   1160	u32 swmask = mask;
   1161	u32 fwmask = mask << 16;
   1162	s32 ret_val = 0;
   1163	s32 i = 0, timeout = 200;
   1164
   1165	while (i < timeout) {
   1166		if (igb_get_hw_semaphore(hw)) {
   1167			ret_val = -E1000_ERR_SWFW_SYNC;
   1168			goto out;
   1169		}
   1170
   1171		swfw_sync = rd32(E1000_SW_FW_SYNC);
   1172		if (!(swfw_sync & (fwmask | swmask)))
   1173			break;
   1174
   1175		/* Firmware currently using resource (fwmask)
   1176		 * or other software thread using resource (swmask)
   1177		 */
   1178		igb_put_hw_semaphore(hw);
   1179		mdelay(5);
   1180		i++;
   1181	}
   1182
   1183	if (i == timeout) {
   1184		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
   1185		ret_val = -E1000_ERR_SWFW_SYNC;
   1186		goto out;
   1187	}
   1188
   1189	swfw_sync |= swmask;
   1190	wr32(E1000_SW_FW_SYNC, swfw_sync);
   1191
   1192	igb_put_hw_semaphore(hw);
   1193
   1194out:
   1195	return ret_val;
   1196}
   1197
   1198/**
   1199 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
   1200 *  @hw: pointer to the HW structure
   1201 *  @mask: specifies which semaphore to acquire
   1202 *
   1203 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
   1204 *  will also specify which port we're releasing the lock for.
   1205 **/
   1206static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
   1207{
   1208	u32 swfw_sync;
   1209
   1210	while (igb_get_hw_semaphore(hw) != 0)
   1211		; /* Empty */
   1212
   1213	swfw_sync = rd32(E1000_SW_FW_SYNC);
   1214	swfw_sync &= ~mask;
   1215	wr32(E1000_SW_FW_SYNC, swfw_sync);
   1216
   1217	igb_put_hw_semaphore(hw);
   1218}
   1219
   1220/**
   1221 *  igb_get_cfg_done_82575 - Read config done bit
   1222 *  @hw: pointer to the HW structure
   1223 *
   1224 *  Read the management control register for the config done bit for
   1225 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
   1226 *  to read the config done bit, so an error is *ONLY* logged and returns
   1227 *  0.  If we were to return with error, EEPROM-less silicon
   1228 *  would not be able to be reset or change link.
   1229 **/
   1230static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
   1231{
   1232	s32 timeout = PHY_CFG_TIMEOUT;
   1233	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
   1234
   1235	if (hw->bus.func == 1)
   1236		mask = E1000_NVM_CFG_DONE_PORT_1;
   1237	else if (hw->bus.func == E1000_FUNC_2)
   1238		mask = E1000_NVM_CFG_DONE_PORT_2;
   1239	else if (hw->bus.func == E1000_FUNC_3)
   1240		mask = E1000_NVM_CFG_DONE_PORT_3;
   1241
   1242	while (timeout) {
   1243		if (rd32(E1000_EEMNGCTL) & mask)
   1244			break;
   1245		usleep_range(1000, 2000);
   1246		timeout--;
   1247	}
   1248	if (!timeout)
   1249		hw_dbg("MNG configuration cycle has not completed.\n");
   1250
   1251	/* If EEPROM is not marked present, init the PHY manually */
   1252	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
   1253	    (hw->phy.type == e1000_phy_igp_3))
   1254		igb_phy_init_script_igp3(hw);
   1255
   1256	return 0;
   1257}
   1258
   1259/**
   1260 *  igb_get_link_up_info_82575 - Get link speed/duplex info
   1261 *  @hw: pointer to the HW structure
   1262 *  @speed: stores the current speed
   1263 *  @duplex: stores the current duplex
   1264 *
   1265 *  This is a wrapper function, if using the serial gigabit media independent
   1266 *  interface, use PCS to retrieve the link speed and duplex information.
   1267 *  Otherwise, use the generic function to get the link speed and duplex info.
   1268 **/
   1269static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
   1270					u16 *duplex)
   1271{
   1272	s32 ret_val;
   1273
   1274	if (hw->phy.media_type != e1000_media_type_copper)
   1275		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
   1276							       duplex);
   1277	else
   1278		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
   1279								    duplex);
   1280
   1281	return ret_val;
   1282}
   1283
   1284/**
   1285 *  igb_check_for_link_82575 - Check for link
   1286 *  @hw: pointer to the HW structure
   1287 *
   1288 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
   1289 *  use the generic interface for determining link.
   1290 **/
   1291static s32 igb_check_for_link_82575(struct e1000_hw *hw)
   1292{
   1293	s32 ret_val;
   1294	u16 speed, duplex;
   1295
   1296	if (hw->phy.media_type != e1000_media_type_copper) {
   1297		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
   1298							     &duplex);
   1299		/* Use this flag to determine if link needs to be checked or
   1300		 * not.  If  we have link clear the flag so that we do not
   1301		 * continue to check for link.
   1302		 */
   1303		hw->mac.get_link_status = !hw->mac.serdes_has_link;
   1304
   1305		/* Configure Flow Control now that Auto-Neg has completed.
   1306		 * First, we need to restore the desired flow control
   1307		 * settings because we may have had to re-autoneg with a
   1308		 * different link partner.
   1309		 */
   1310		ret_val = igb_config_fc_after_link_up(hw);
   1311		if (ret_val)
   1312			hw_dbg("Error configuring flow control\n");
   1313	} else {
   1314		ret_val = igb_check_for_copper_link(hw);
   1315	}
   1316
   1317	return ret_val;
   1318}
   1319
   1320/**
   1321 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
   1322 *  @hw: pointer to the HW structure
   1323 **/
   1324void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
   1325{
   1326	u32 reg;
   1327
   1328
   1329	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
   1330	    !igb_sgmii_active_82575(hw))
   1331		return;
   1332
   1333	/* Enable PCS to turn on link */
   1334	reg = rd32(E1000_PCS_CFG0);
   1335	reg |= E1000_PCS_CFG_PCS_EN;
   1336	wr32(E1000_PCS_CFG0, reg);
   1337
   1338	/* Power up the laser */
   1339	reg = rd32(E1000_CTRL_EXT);
   1340	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
   1341	wr32(E1000_CTRL_EXT, reg);
   1342
   1343	/* flush the write to verify completion */
   1344	wrfl();
   1345	usleep_range(1000, 2000);
   1346}
   1347
   1348/**
   1349 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
   1350 *  @hw: pointer to the HW structure
   1351 *  @speed: stores the current speed
   1352 *  @duplex: stores the current duplex
   1353 *
   1354 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
   1355 *  duplex, then store the values in the pointers provided.
   1356 **/
   1357static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
   1358						u16 *duplex)
   1359{
   1360	struct e1000_mac_info *mac = &hw->mac;
   1361	u32 pcs, status;
   1362
   1363	/* Set up defaults for the return values of this function */
   1364	mac->serdes_has_link = false;
   1365	*speed = 0;
   1366	*duplex = 0;
   1367
   1368	/* Read the PCS Status register for link state. For non-copper mode,
   1369	 * the status register is not accurate. The PCS status register is
   1370	 * used instead.
   1371	 */
   1372	pcs = rd32(E1000_PCS_LSTAT);
   1373
   1374	/* The link up bit determines when link is up on autoneg. The sync ok
   1375	 * gets set once both sides sync up and agree upon link. Stable link
   1376	 * can be determined by checking for both link up and link sync ok
   1377	 */
   1378	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
   1379		mac->serdes_has_link = true;
   1380
   1381		/* Detect and store PCS speed */
   1382		if (pcs & E1000_PCS_LSTS_SPEED_1000)
   1383			*speed = SPEED_1000;
   1384		else if (pcs & E1000_PCS_LSTS_SPEED_100)
   1385			*speed = SPEED_100;
   1386		else
   1387			*speed = SPEED_10;
   1388
   1389		/* Detect and store PCS duplex */
   1390		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
   1391			*duplex = FULL_DUPLEX;
   1392		else
   1393			*duplex = HALF_DUPLEX;
   1394
   1395	/* Check if it is an I354 2.5Gb backplane connection. */
   1396		if (mac->type == e1000_i354) {
   1397			status = rd32(E1000_STATUS);
   1398			if ((status & E1000_STATUS_2P5_SKU) &&
   1399			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
   1400				*speed = SPEED_2500;
   1401				*duplex = FULL_DUPLEX;
   1402				hw_dbg("2500 Mbs, ");
   1403				hw_dbg("Full Duplex\n");
   1404			}
   1405		}
   1406
   1407	}
   1408
   1409	return 0;
   1410}
   1411
   1412/**
   1413 *  igb_shutdown_serdes_link_82575 - Remove link during power down
   1414 *  @hw: pointer to the HW structure
   1415 *
   1416 *  In the case of fiber serdes, shut down optics and PCS on driver unload
   1417 *  when management pass thru is not enabled.
   1418 **/
   1419void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
   1420{
   1421	u32 reg;
   1422
   1423	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
   1424	    igb_sgmii_active_82575(hw))
   1425		return;
   1426
   1427	if (!igb_enable_mng_pass_thru(hw)) {
   1428		/* Disable PCS to turn off link */
   1429		reg = rd32(E1000_PCS_CFG0);
   1430		reg &= ~E1000_PCS_CFG_PCS_EN;
   1431		wr32(E1000_PCS_CFG0, reg);
   1432
   1433		/* shutdown the laser */
   1434		reg = rd32(E1000_CTRL_EXT);
   1435		reg |= E1000_CTRL_EXT_SDP3_DATA;
   1436		wr32(E1000_CTRL_EXT, reg);
   1437
   1438		/* flush the write to verify completion */
   1439		wrfl();
   1440		usleep_range(1000, 2000);
   1441	}
   1442}
   1443
   1444/**
   1445 *  igb_reset_hw_82575 - Reset hardware
   1446 *  @hw: pointer to the HW structure
   1447 *
   1448 *  This resets the hardware into a known state.  This is a
   1449 *  function pointer entry point called by the api module.
   1450 **/
   1451static s32 igb_reset_hw_82575(struct e1000_hw *hw)
   1452{
   1453	u32 ctrl;
   1454	s32 ret_val;
   1455
   1456	/* Prevent the PCI-E bus from sticking if there is no TLP connection
   1457	 * on the last TLP read/write transaction when MAC is reset.
   1458	 */
   1459	ret_val = igb_disable_pcie_master(hw);
   1460	if (ret_val)
   1461		hw_dbg("PCI-E Master disable polling has failed.\n");
   1462
   1463	/* set the completion timeout for interface */
   1464	ret_val = igb_set_pcie_completion_timeout(hw);
   1465	if (ret_val)
   1466		hw_dbg("PCI-E Set completion timeout has failed.\n");
   1467
   1468	hw_dbg("Masking off all interrupts\n");
   1469	wr32(E1000_IMC, 0xffffffff);
   1470
   1471	wr32(E1000_RCTL, 0);
   1472	wr32(E1000_TCTL, E1000_TCTL_PSP);
   1473	wrfl();
   1474
   1475	usleep_range(10000, 20000);
   1476
   1477	ctrl = rd32(E1000_CTRL);
   1478
   1479	hw_dbg("Issuing a global reset to MAC\n");
   1480	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
   1481
   1482	ret_val = igb_get_auto_rd_done(hw);
   1483	if (ret_val) {
   1484		/* When auto config read does not complete, do not
   1485		 * return with an error. This can happen in situations
   1486		 * where there is no eeprom and prevents getting link.
   1487		 */
   1488		hw_dbg("Auto Read Done did not complete\n");
   1489	}
   1490
   1491	/* If EEPROM is not present, run manual init scripts */
   1492	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
   1493		igb_reset_init_script_82575(hw);
   1494
   1495	/* Clear any pending interrupt events. */
   1496	wr32(E1000_IMC, 0xffffffff);
   1497	rd32(E1000_ICR);
   1498
   1499	/* Install any alternate MAC address into RAR0 */
   1500	ret_val = igb_check_alt_mac_addr(hw);
   1501
   1502	return ret_val;
   1503}
   1504
   1505/**
   1506 *  igb_init_hw_82575 - Initialize hardware
   1507 *  @hw: pointer to the HW structure
   1508 *
   1509 *  This inits the hardware readying it for operation.
   1510 **/
   1511static s32 igb_init_hw_82575(struct e1000_hw *hw)
   1512{
   1513	struct e1000_mac_info *mac = &hw->mac;
   1514	s32 ret_val;
   1515	u16 i, rar_count = mac->rar_entry_count;
   1516
   1517	if ((hw->mac.type >= e1000_i210) &&
   1518	    !(igb_get_flash_presence_i210(hw))) {
   1519		ret_val = igb_pll_workaround_i210(hw);
   1520		if (ret_val)
   1521			return ret_val;
   1522	}
   1523
   1524	/* Initialize identification LED */
   1525	ret_val = igb_id_led_init(hw);
   1526	if (ret_val) {
   1527		hw_dbg("Error initializing identification LED\n");
   1528		/* This is not fatal and we should not stop init due to this */
   1529	}
   1530
   1531	/* Disabling VLAN filtering */
   1532	hw_dbg("Initializing the IEEE VLAN\n");
   1533	igb_clear_vfta(hw);
   1534
   1535	/* Setup the receive address */
   1536	igb_init_rx_addrs(hw, rar_count);
   1537
   1538	/* Zero out the Multicast HASH table */
   1539	hw_dbg("Zeroing the MTA\n");
   1540	for (i = 0; i < mac->mta_reg_count; i++)
   1541		array_wr32(E1000_MTA, i, 0);
   1542
   1543	/* Zero out the Unicast HASH table */
   1544	hw_dbg("Zeroing the UTA\n");
   1545	for (i = 0; i < mac->uta_reg_count; i++)
   1546		array_wr32(E1000_UTA, i, 0);
   1547
   1548	/* Setup link and flow control */
   1549	ret_val = igb_setup_link(hw);
   1550
   1551	/* Clear all of the statistics registers (clear on read).  It is
   1552	 * important that we do this after we have tried to establish link
   1553	 * because the symbol error count will increment wildly if there
   1554	 * is no link.
   1555	 */
   1556	igb_clear_hw_cntrs_82575(hw);
   1557	return ret_val;
   1558}
   1559
   1560/**
   1561 *  igb_setup_copper_link_82575 - Configure copper link settings
   1562 *  @hw: pointer to the HW structure
   1563 *
   1564 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
   1565 *  for link, once link is established calls to configure collision distance
   1566 *  and flow control are called.
   1567 **/
   1568static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
   1569{
   1570	u32 ctrl;
   1571	s32  ret_val;
   1572	u32 phpm_reg;
   1573
   1574	ctrl = rd32(E1000_CTRL);
   1575	ctrl |= E1000_CTRL_SLU;
   1576	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
   1577	wr32(E1000_CTRL, ctrl);
   1578
   1579	/* Clear Go Link Disconnect bit on supported devices */
   1580	switch (hw->mac.type) {
   1581	case e1000_82580:
   1582	case e1000_i350:
   1583	case e1000_i210:
   1584	case e1000_i211:
   1585		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
   1586		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
   1587		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
   1588		break;
   1589	default:
   1590		break;
   1591	}
   1592
   1593	ret_val = igb_setup_serdes_link_82575(hw);
   1594	if (ret_val)
   1595		goto out;
   1596
   1597	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
   1598		/* allow time for SFP cage time to power up phy */
   1599		msleep(300);
   1600
   1601		ret_val = hw->phy.ops.reset(hw);
   1602		if (ret_val) {
   1603			hw_dbg("Error resetting the PHY.\n");
   1604			goto out;
   1605		}
   1606	}
   1607	switch (hw->phy.type) {
   1608	case e1000_phy_i210:
   1609	case e1000_phy_m88:
   1610		switch (hw->phy.id) {
   1611		case I347AT4_E_PHY_ID:
   1612		case M88E1112_E_PHY_ID:
   1613		case M88E1543_E_PHY_ID:
   1614		case M88E1512_E_PHY_ID:
   1615		case I210_I_PHY_ID:
   1616			ret_val = igb_copper_link_setup_m88_gen2(hw);
   1617			break;
   1618		default:
   1619			ret_val = igb_copper_link_setup_m88(hw);
   1620			break;
   1621		}
   1622		break;
   1623	case e1000_phy_igp_3:
   1624		ret_val = igb_copper_link_setup_igp(hw);
   1625		break;
   1626	case e1000_phy_82580:
   1627		ret_val = igb_copper_link_setup_82580(hw);
   1628		break;
   1629	case e1000_phy_bcm54616:
   1630		ret_val = 0;
   1631		break;
   1632	default:
   1633		ret_val = -E1000_ERR_PHY;
   1634		break;
   1635	}
   1636
   1637	if (ret_val)
   1638		goto out;
   1639
   1640	ret_val = igb_setup_copper_link(hw);
   1641out:
   1642	return ret_val;
   1643}
   1644
   1645/**
   1646 *  igb_setup_serdes_link_82575 - Setup link for serdes
   1647 *  @hw: pointer to the HW structure
   1648 *
   1649 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
   1650 *  used on copper connections where the serialized gigabit media independent
   1651 *  interface (sgmii), or serdes fiber is being used.  Configures the link
   1652 *  for auto-negotiation or forces speed/duplex.
   1653 **/
   1654static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
   1655{
   1656	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
   1657	bool pcs_autoneg;
   1658	s32 ret_val = 0;
   1659	u16 data;
   1660
   1661	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
   1662	    !igb_sgmii_active_82575(hw))
   1663		return ret_val;
   1664
   1665
   1666	/* On the 82575, SerDes loopback mode persists until it is
   1667	 * explicitly turned off or a power cycle is performed.  A read to
   1668	 * the register does not indicate its status.  Therefore, we ensure
   1669	 * loopback mode is disabled during initialization.
   1670	 */
   1671	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
   1672
   1673	/* power on the sfp cage if present and turn on I2C */
   1674	ctrl_ext = rd32(E1000_CTRL_EXT);
   1675	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
   1676	ctrl_ext |= E1000_CTRL_I2C_ENA;
   1677	wr32(E1000_CTRL_EXT, ctrl_ext);
   1678
   1679	ctrl_reg = rd32(E1000_CTRL);
   1680	ctrl_reg |= E1000_CTRL_SLU;
   1681
   1682	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
   1683		/* set both sw defined pins */
   1684		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
   1685
   1686		/* Set switch control to serdes energy detect */
   1687		reg = rd32(E1000_CONNSW);
   1688		reg |= E1000_CONNSW_ENRGSRC;
   1689		wr32(E1000_CONNSW, reg);
   1690	}
   1691
   1692	reg = rd32(E1000_PCS_LCTL);
   1693
   1694	/* default pcs_autoneg to the same setting as mac autoneg */
   1695	pcs_autoneg = hw->mac.autoneg;
   1696
   1697	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
   1698	case E1000_CTRL_EXT_LINK_MODE_SGMII:
   1699		/* sgmii mode lets the phy handle forcing speed/duplex */
   1700		pcs_autoneg = true;
   1701		/* autoneg time out should be disabled for SGMII mode */
   1702		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
   1703		break;
   1704	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
   1705		/* disable PCS autoneg and support parallel detect only */
   1706		pcs_autoneg = false;
   1707		fallthrough;
   1708	default:
   1709		if (hw->mac.type == e1000_82575 ||
   1710		    hw->mac.type == e1000_82576) {
   1711			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
   1712			if (ret_val) {
   1713				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
   1714				return ret_val;
   1715			}
   1716
   1717			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
   1718				pcs_autoneg = false;
   1719		}
   1720
   1721		/* non-SGMII modes only supports a speed of 1000/Full for the
   1722		 * link so it is best to just force the MAC and let the pcs
   1723		 * link either autoneg or be forced to 1000/Full
   1724		 */
   1725		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
   1726				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
   1727
   1728		/* set speed of 1000/Full if speed/duplex is forced */
   1729		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
   1730		break;
   1731	}
   1732
   1733	wr32(E1000_CTRL, ctrl_reg);
   1734
   1735	/* New SerDes mode allows for forcing speed or autonegotiating speed
   1736	 * at 1gb. Autoneg should be default set by most drivers. This is the
   1737	 * mode that will be compatible with older link partners and switches.
   1738	 * However, both are supported by the hardware and some drivers/tools.
   1739	 */
   1740	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
   1741		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
   1742
   1743	if (pcs_autoneg) {
   1744		/* Set PCS register for autoneg */
   1745		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
   1746		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
   1747
   1748		/* Disable force flow control for autoneg */
   1749		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
   1750
   1751		/* Configure flow control advertisement for autoneg */
   1752		anadv_reg = rd32(E1000_PCS_ANADV);
   1753		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
   1754		switch (hw->fc.requested_mode) {
   1755		case e1000_fc_full:
   1756		case e1000_fc_rx_pause:
   1757			anadv_reg |= E1000_TXCW_ASM_DIR;
   1758			anadv_reg |= E1000_TXCW_PAUSE;
   1759			break;
   1760		case e1000_fc_tx_pause:
   1761			anadv_reg |= E1000_TXCW_ASM_DIR;
   1762			break;
   1763		default:
   1764			break;
   1765		}
   1766		wr32(E1000_PCS_ANADV, anadv_reg);
   1767
   1768		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
   1769	} else {
   1770		/* Set PCS register for forced link */
   1771		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
   1772
   1773		/* Force flow control for forced link */
   1774		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
   1775
   1776		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
   1777	}
   1778
   1779	wr32(E1000_PCS_LCTL, reg);
   1780
   1781	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
   1782		igb_force_mac_fc(hw);
   1783
   1784	return ret_val;
   1785}
   1786
   1787/**
   1788 *  igb_sgmii_active_82575 - Return sgmii state
   1789 *  @hw: pointer to the HW structure
   1790 *
   1791 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
   1792 *  which can be enabled for use in the embedded applications.  Simply
   1793 *  return the current state of the sgmii interface.
   1794 **/
   1795static bool igb_sgmii_active_82575(struct e1000_hw *hw)
   1796{
   1797	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
   1798	return dev_spec->sgmii_active;
   1799}
   1800
   1801/**
   1802 *  igb_reset_init_script_82575 - Inits HW defaults after reset
   1803 *  @hw: pointer to the HW structure
   1804 *
   1805 *  Inits recommended HW defaults after a reset when there is no EEPROM
   1806 *  detected. This is only for the 82575.
   1807 **/
   1808static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
   1809{
   1810	if (hw->mac.type == e1000_82575) {
   1811		hw_dbg("Running reset init script for 82575\n");
   1812		/* SerDes configuration via SERDESCTRL */
   1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
   1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
   1815		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
   1816		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
   1817
   1818		/* CCM configuration via CCMCTL register */
   1819		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
   1820		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
   1821
   1822		/* PCIe lanes configuration */
   1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
   1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
   1825		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
   1826		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
   1827
   1828		/* PCIe PLL Configuration */
   1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
   1830		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
   1831		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
   1832	}
   1833
   1834	return 0;
   1835}
   1836
   1837/**
   1838 *  igb_read_mac_addr_82575 - Read device MAC address
   1839 *  @hw: pointer to the HW structure
   1840 **/
   1841static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
   1842{
   1843	s32 ret_val = 0;
   1844
   1845	/* If there's an alternate MAC address place it in RAR0
   1846	 * so that it will override the Si installed default perm
   1847	 * address.
   1848	 */
   1849	ret_val = igb_check_alt_mac_addr(hw);
   1850	if (ret_val)
   1851		goto out;
   1852
   1853	ret_val = igb_read_mac_addr(hw);
   1854
   1855out:
   1856	return ret_val;
   1857}
   1858
   1859/**
   1860 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
   1861 * @hw: pointer to the HW structure
   1862 *
   1863 * In the case of a PHY power down to save power, or to turn off link during a
   1864 * driver unload, or wake on lan is not enabled, remove the link.
   1865 **/
   1866void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
   1867{
   1868	/* If the management interface is not enabled, then power down */
   1869	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
   1870		igb_power_down_phy_copper(hw);
   1871}
   1872
   1873/**
   1874 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
   1875 *  @hw: pointer to the HW structure
   1876 *
   1877 *  Clears the hardware counters by reading the counter registers.
   1878 **/
   1879static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
   1880{
   1881	igb_clear_hw_cntrs_base(hw);
   1882
   1883	rd32(E1000_PRC64);
   1884	rd32(E1000_PRC127);
   1885	rd32(E1000_PRC255);
   1886	rd32(E1000_PRC511);
   1887	rd32(E1000_PRC1023);
   1888	rd32(E1000_PRC1522);
   1889	rd32(E1000_PTC64);
   1890	rd32(E1000_PTC127);
   1891	rd32(E1000_PTC255);
   1892	rd32(E1000_PTC511);
   1893	rd32(E1000_PTC1023);
   1894	rd32(E1000_PTC1522);
   1895
   1896	rd32(E1000_ALGNERRC);
   1897	rd32(E1000_RXERRC);
   1898	rd32(E1000_TNCRS);
   1899	rd32(E1000_CEXTERR);
   1900	rd32(E1000_TSCTC);
   1901	rd32(E1000_TSCTFC);
   1902
   1903	rd32(E1000_MGTPRC);
   1904	rd32(E1000_MGTPDC);
   1905	rd32(E1000_MGTPTC);
   1906
   1907	rd32(E1000_IAC);
   1908	rd32(E1000_ICRXOC);
   1909
   1910	rd32(E1000_ICRXPTC);
   1911	rd32(E1000_ICRXATC);
   1912	rd32(E1000_ICTXPTC);
   1913	rd32(E1000_ICTXATC);
   1914	rd32(E1000_ICTXQEC);
   1915	rd32(E1000_ICTXQMTC);
   1916	rd32(E1000_ICRXDMTC);
   1917
   1918	rd32(E1000_CBTMPC);
   1919	rd32(E1000_HTDPMC);
   1920	rd32(E1000_CBRMPC);
   1921	rd32(E1000_RPTHC);
   1922	rd32(E1000_HGPTC);
   1923	rd32(E1000_HTCBDPC);
   1924	rd32(E1000_HGORCL);
   1925	rd32(E1000_HGORCH);
   1926	rd32(E1000_HGOTCL);
   1927	rd32(E1000_HGOTCH);
   1928	rd32(E1000_LENERRS);
   1929
   1930	/* This register should not be read in copper configurations */
   1931	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
   1932	    igb_sgmii_active_82575(hw))
   1933		rd32(E1000_SCVPC);
   1934}
   1935
   1936/**
   1937 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
   1938 *  @hw: pointer to the HW structure
   1939 *
   1940 *  After rx enable if manageability is enabled then there is likely some
   1941 *  bad data at the start of the fifo and possibly in the DMA fifo. This
   1942 *  function clears the fifos and flushes any packets that came in as rx was
   1943 *  being enabled.
   1944 **/
   1945void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
   1946{
   1947	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
   1948	int i, ms_wait;
   1949
   1950	/* disable IPv6 options as per hardware errata */
   1951	rfctl = rd32(E1000_RFCTL);
   1952	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
   1953	wr32(E1000_RFCTL, rfctl);
   1954
   1955	if (hw->mac.type != e1000_82575 ||
   1956	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
   1957		return;
   1958
   1959	/* Disable all RX queues */
   1960	for (i = 0; i < 4; i++) {
   1961		rxdctl[i] = rd32(E1000_RXDCTL(i));
   1962		wr32(E1000_RXDCTL(i),
   1963		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
   1964	}
   1965	/* Poll all queues to verify they have shut down */
   1966	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
   1967		usleep_range(1000, 2000);
   1968		rx_enabled = 0;
   1969		for (i = 0; i < 4; i++)
   1970			rx_enabled |= rd32(E1000_RXDCTL(i));
   1971		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
   1972			break;
   1973	}
   1974
   1975	if (ms_wait == 10)
   1976		hw_dbg("Queue disable timed out after 10ms\n");
   1977
   1978	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
   1979	 * incoming packets are rejected.  Set enable and wait 2ms so that
   1980	 * any packet that was coming in as RCTL.EN was set is flushed
   1981	 */
   1982	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
   1983
   1984	rlpml = rd32(E1000_RLPML);
   1985	wr32(E1000_RLPML, 0);
   1986
   1987	rctl = rd32(E1000_RCTL);
   1988	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
   1989	temp_rctl |= E1000_RCTL_LPE;
   1990
   1991	wr32(E1000_RCTL, temp_rctl);
   1992	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
   1993	wrfl();
   1994	usleep_range(2000, 3000);
   1995
   1996	/* Enable RX queues that were previously enabled and restore our
   1997	 * previous state
   1998	 */
   1999	for (i = 0; i < 4; i++)
   2000		wr32(E1000_RXDCTL(i), rxdctl[i]);
   2001	wr32(E1000_RCTL, rctl);
   2002	wrfl();
   2003
   2004	wr32(E1000_RLPML, rlpml);
   2005	wr32(E1000_RFCTL, rfctl);
   2006
   2007	/* Flush receive errors generated by workaround */
   2008	rd32(E1000_ROC);
   2009	rd32(E1000_RNBC);
   2010	rd32(E1000_MPC);
   2011}
   2012
   2013/**
   2014 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
   2015 *  @hw: pointer to the HW structure
   2016 *
   2017 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
   2018 *  however the hardware default for these parts is 500us to 1ms which is less
   2019 *  than the 10ms recommended by the pci-e spec.  To address this we need to
   2020 *  increase the value to either 10ms to 200ms for capability version 1 config,
   2021 *  or 16ms to 55ms for version 2.
   2022 **/
   2023static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
   2024{
   2025	u32 gcr = rd32(E1000_GCR);
   2026	s32 ret_val = 0;
   2027	u16 pcie_devctl2;
   2028
   2029	/* only take action if timeout value is defaulted to 0 */
   2030	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
   2031		goto out;
   2032
   2033	/* if capabilities version is type 1 we can write the
   2034	 * timeout of 10ms to 200ms through the GCR register
   2035	 */
   2036	if (!(gcr & E1000_GCR_CAP_VER2)) {
   2037		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
   2038		goto out;
   2039	}
   2040
   2041	/* for version 2 capabilities we need to write the config space
   2042	 * directly in order to set the completion timeout value for
   2043	 * 16ms to 55ms
   2044	 */
   2045	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
   2046					&pcie_devctl2);
   2047	if (ret_val)
   2048		goto out;
   2049
   2050	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
   2051
   2052	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
   2053					 &pcie_devctl2);
   2054out:
   2055	/* disable completion timeout resend */
   2056	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
   2057
   2058	wr32(E1000_GCR, gcr);
   2059	return ret_val;
   2060}
   2061
   2062/**
   2063 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
   2064 *  @hw: pointer to the hardware struct
   2065 *  @enable: state to enter, either enabled or disabled
   2066 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
   2067 *
   2068 *  enables/disables L2 switch anti-spoofing functionality.
   2069 **/
   2070void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
   2071{
   2072	u32 reg_val, reg_offset;
   2073
   2074	switch (hw->mac.type) {
   2075	case e1000_82576:
   2076		reg_offset = E1000_DTXSWC;
   2077		break;
   2078	case e1000_i350:
   2079	case e1000_i354:
   2080		reg_offset = E1000_TXSWC;
   2081		break;
   2082	default:
   2083		return;
   2084	}
   2085
   2086	reg_val = rd32(reg_offset);
   2087	if (enable) {
   2088		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
   2089			     E1000_DTXSWC_VLAN_SPOOF_MASK);
   2090		/* The PF can spoof - it has to in order to
   2091		 * support emulation mode NICs
   2092		 */
   2093		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
   2094	} else {
   2095		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
   2096			     E1000_DTXSWC_VLAN_SPOOF_MASK);
   2097	}
   2098	wr32(reg_offset, reg_val);
   2099}
   2100
   2101/**
   2102 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
   2103 *  @hw: pointer to the hardware struct
   2104 *  @enable: state to enter, either enabled or disabled
   2105 *
   2106 *  enables/disables L2 switch loopback functionality.
   2107 **/
   2108void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
   2109{
   2110	u32 dtxswc;
   2111
   2112	switch (hw->mac.type) {
   2113	case e1000_82576:
   2114		dtxswc = rd32(E1000_DTXSWC);
   2115		if (enable)
   2116			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
   2117		else
   2118			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
   2119		wr32(E1000_DTXSWC, dtxswc);
   2120		break;
   2121	case e1000_i354:
   2122	case e1000_i350:
   2123		dtxswc = rd32(E1000_TXSWC);
   2124		if (enable)
   2125			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
   2126		else
   2127			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
   2128		wr32(E1000_TXSWC, dtxswc);
   2129		break;
   2130	default:
   2131		/* Currently no other hardware supports loopback */
   2132		break;
   2133	}
   2134
   2135}
   2136
   2137/**
   2138 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
   2139 *  @hw: pointer to the hardware struct
   2140 *  @enable: state to enter, either enabled or disabled
   2141 *
   2142 *  enables/disables replication of packets across multiple pools.
   2143 **/
   2144void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
   2145{
   2146	u32 vt_ctl = rd32(E1000_VT_CTL);
   2147
   2148	if (enable)
   2149		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
   2150	else
   2151		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
   2152
   2153	wr32(E1000_VT_CTL, vt_ctl);
   2154}
   2155
   2156/**
   2157 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
   2158 *  @hw: pointer to the HW structure
   2159 *  @offset: register offset to be read
   2160 *  @data: pointer to the read data
   2161 *
   2162 *  Reads the MDI control register in the PHY at offset and stores the
   2163 *  information read to data.
   2164 **/
   2165s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
   2166{
   2167	s32 ret_val;
   2168
   2169	ret_val = hw->phy.ops.acquire(hw);
   2170	if (ret_val)
   2171		goto out;
   2172
   2173	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
   2174
   2175	hw->phy.ops.release(hw);
   2176
   2177out:
   2178	return ret_val;
   2179}
   2180
   2181/**
   2182 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
   2183 *  @hw: pointer to the HW structure
   2184 *  @offset: register offset to write to
   2185 *  @data: data to write to register at offset
   2186 *
   2187 *  Writes data to MDI control register in the PHY at offset.
   2188 **/
   2189s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
   2190{
   2191	s32 ret_val;
   2192
   2193
   2194	ret_val = hw->phy.ops.acquire(hw);
   2195	if (ret_val)
   2196		goto out;
   2197
   2198	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
   2199
   2200	hw->phy.ops.release(hw);
   2201
   2202out:
   2203	return ret_val;
   2204}
   2205
   2206/**
   2207 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
   2208 *  @hw: pointer to the HW structure
   2209 *
   2210 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
   2211 *  the values found in the EEPROM.  This addresses an issue in which these
   2212 *  bits are not restored from EEPROM after reset.
   2213 **/
   2214static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
   2215{
   2216	s32 ret_val = 0;
   2217	u32 mdicnfg;
   2218	u16 nvm_data = 0;
   2219
   2220	if (hw->mac.type != e1000_82580)
   2221		goto out;
   2222	if (!igb_sgmii_active_82575(hw))
   2223		goto out;
   2224
   2225	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
   2226				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
   2227				   &nvm_data);
   2228	if (ret_val) {
   2229		hw_dbg("NVM Read Error\n");
   2230		goto out;
   2231	}
   2232
   2233	mdicnfg = rd32(E1000_MDICNFG);
   2234	if (nvm_data & NVM_WORD24_EXT_MDIO)
   2235		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
   2236	if (nvm_data & NVM_WORD24_COM_MDIO)
   2237		mdicnfg |= E1000_MDICNFG_COM_MDIO;
   2238	wr32(E1000_MDICNFG, mdicnfg);
   2239out:
   2240	return ret_val;
   2241}
   2242
   2243/**
   2244 *  igb_reset_hw_82580 - Reset hardware
   2245 *  @hw: pointer to the HW structure
   2246 *
   2247 *  This resets function or entire device (all ports, etc.)
   2248 *  to a known state.
   2249 **/
   2250static s32 igb_reset_hw_82580(struct e1000_hw *hw)
   2251{
   2252	s32 ret_val = 0;
   2253	/* BH SW mailbox bit in SW_FW_SYNC */
   2254	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
   2255	u32 ctrl;
   2256	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
   2257
   2258	hw->dev_spec._82575.global_device_reset = false;
   2259
   2260	/* due to hw errata, global device reset doesn't always
   2261	 * work on 82580
   2262	 */
   2263	if (hw->mac.type == e1000_82580)
   2264		global_device_reset = false;
   2265
   2266	/* Get current control state. */
   2267	ctrl = rd32(E1000_CTRL);
   2268
   2269	/* Prevent the PCI-E bus from sticking if there is no TLP connection
   2270	 * on the last TLP read/write transaction when MAC is reset.
   2271	 */
   2272	ret_val = igb_disable_pcie_master(hw);
   2273	if (ret_val)
   2274		hw_dbg("PCI-E Master disable polling has failed.\n");
   2275
   2276	hw_dbg("Masking off all interrupts\n");
   2277	wr32(E1000_IMC, 0xffffffff);
   2278	wr32(E1000_RCTL, 0);
   2279	wr32(E1000_TCTL, E1000_TCTL_PSP);
   2280	wrfl();
   2281
   2282	usleep_range(10000, 11000);
   2283
   2284	/* Determine whether or not a global dev reset is requested */
   2285	if (global_device_reset &&
   2286		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
   2287			global_device_reset = false;
   2288
   2289	if (global_device_reset &&
   2290		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
   2291		ctrl |= E1000_CTRL_DEV_RST;
   2292	else
   2293		ctrl |= E1000_CTRL_RST;
   2294
   2295	wr32(E1000_CTRL, ctrl);
   2296	wrfl();
   2297
   2298	/* Add delay to insure DEV_RST has time to complete */
   2299	if (global_device_reset)
   2300		usleep_range(5000, 6000);
   2301
   2302	ret_val = igb_get_auto_rd_done(hw);
   2303	if (ret_val) {
   2304		/* When auto config read does not complete, do not
   2305		 * return with an error. This can happen in situations
   2306		 * where there is no eeprom and prevents getting link.
   2307		 */
   2308		hw_dbg("Auto Read Done did not complete\n");
   2309	}
   2310
   2311	/* clear global device reset status bit */
   2312	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
   2313
   2314	/* Clear any pending interrupt events. */
   2315	wr32(E1000_IMC, 0xffffffff);
   2316	rd32(E1000_ICR);
   2317
   2318	ret_val = igb_reset_mdicnfg_82580(hw);
   2319	if (ret_val)
   2320		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
   2321
   2322	/* Install any alternate MAC address into RAR0 */
   2323	ret_val = igb_check_alt_mac_addr(hw);
   2324
   2325	/* Release semaphore */
   2326	if (global_device_reset)
   2327		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
   2328
   2329	return ret_val;
   2330}
   2331
   2332/**
   2333 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
   2334 *  @data: data received by reading RXPBS register
   2335 *
   2336 *  The 82580 uses a table based approach for packet buffer allocation sizes.
   2337 *  This function converts the retrieved value into the correct table value
   2338 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
   2339 *  0x0 36  72 144   1   2   4   8  16
   2340 *  0x8 35  70 140 rsv rsv rsv rsv rsv
   2341 */
   2342u16 igb_rxpbs_adjust_82580(u32 data)
   2343{
   2344	u16 ret_val = 0;
   2345
   2346	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
   2347		ret_val = e1000_82580_rxpbs_table[data];
   2348
   2349	return ret_val;
   2350}
   2351
   2352/**
   2353 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
   2354 *  checksum
   2355 *  @hw: pointer to the HW structure
   2356 *  @offset: offset in words of the checksum protected region
   2357 *
   2358 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
   2359 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
   2360 **/
   2361static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
   2362						 u16 offset)
   2363{
   2364	s32 ret_val = 0;
   2365	u16 checksum = 0;
   2366	u16 i, nvm_data;
   2367
   2368	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
   2369		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
   2370		if (ret_val) {
   2371			hw_dbg("NVM Read Error\n");
   2372			goto out;
   2373		}
   2374		checksum += nvm_data;
   2375	}
   2376
   2377	if (checksum != (u16) NVM_SUM) {
   2378		hw_dbg("NVM Checksum Invalid\n");
   2379		ret_val = -E1000_ERR_NVM;
   2380		goto out;
   2381	}
   2382
   2383out:
   2384	return ret_val;
   2385}
   2386
   2387/**
   2388 *  igb_update_nvm_checksum_with_offset - Update EEPROM
   2389 *  checksum
   2390 *  @hw: pointer to the HW structure
   2391 *  @offset: offset in words of the checksum protected region
   2392 *
   2393 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
   2394 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
   2395 *  value to the EEPROM.
   2396 **/
   2397static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
   2398{
   2399	s32 ret_val;
   2400	u16 checksum = 0;
   2401	u16 i, nvm_data;
   2402
   2403	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
   2404		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
   2405		if (ret_val) {
   2406			hw_dbg("NVM Read Error while updating checksum.\n");
   2407			goto out;
   2408		}
   2409		checksum += nvm_data;
   2410	}
   2411	checksum = (u16) NVM_SUM - checksum;
   2412	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
   2413				&checksum);
   2414	if (ret_val)
   2415		hw_dbg("NVM Write Error while updating checksum.\n");
   2416
   2417out:
   2418	return ret_val;
   2419}
   2420
   2421/**
   2422 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
   2423 *  @hw: pointer to the HW structure
   2424 *
   2425 *  Calculates the EEPROM section checksum by reading/adding each word of
   2426 *  the EEPROM and then verifies that the sum of the EEPROM is
   2427 *  equal to 0xBABA.
   2428 **/
   2429static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
   2430{
   2431	s32 ret_val = 0;
   2432	u16 eeprom_regions_count = 1;
   2433	u16 j, nvm_data;
   2434	u16 nvm_offset;
   2435
   2436	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
   2437	if (ret_val) {
   2438		hw_dbg("NVM Read Error\n");
   2439		goto out;
   2440	}
   2441
   2442	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
   2443		/* if checksums compatibility bit is set validate checksums
   2444		 * for all 4 ports.
   2445		 */
   2446		eeprom_regions_count = 4;
   2447	}
   2448
   2449	for (j = 0; j < eeprom_regions_count; j++) {
   2450		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
   2451		ret_val = igb_validate_nvm_checksum_with_offset(hw,
   2452								nvm_offset);
   2453		if (ret_val != 0)
   2454			goto out;
   2455	}
   2456
   2457out:
   2458	return ret_val;
   2459}
   2460
   2461/**
   2462 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
   2463 *  @hw: pointer to the HW structure
   2464 *
   2465 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
   2466 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
   2467 *  checksum and writes the value to the EEPROM.
   2468 **/
   2469static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
   2470{
   2471	s32 ret_val;
   2472	u16 j, nvm_data;
   2473	u16 nvm_offset;
   2474
   2475	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
   2476	if (ret_val) {
   2477		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
   2478		goto out;
   2479	}
   2480
   2481	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
   2482		/* set compatibility bit to validate checksums appropriately */
   2483		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
   2484		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
   2485					&nvm_data);
   2486		if (ret_val) {
   2487			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
   2488			goto out;
   2489		}
   2490	}
   2491
   2492	for (j = 0; j < 4; j++) {
   2493		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
   2494		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
   2495		if (ret_val)
   2496			goto out;
   2497	}
   2498
   2499out:
   2500	return ret_val;
   2501}
   2502
   2503/**
   2504 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
   2505 *  @hw: pointer to the HW structure
   2506 *
   2507 *  Calculates the EEPROM section checksum by reading/adding each word of
   2508 *  the EEPROM and then verifies that the sum of the EEPROM is
   2509 *  equal to 0xBABA.
   2510 **/
   2511static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
   2512{
   2513	s32 ret_val = 0;
   2514	u16 j;
   2515	u16 nvm_offset;
   2516
   2517	for (j = 0; j < 4; j++) {
   2518		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
   2519		ret_val = igb_validate_nvm_checksum_with_offset(hw,
   2520								nvm_offset);
   2521		if (ret_val != 0)
   2522			goto out;
   2523	}
   2524
   2525out:
   2526	return ret_val;
   2527}
   2528
   2529/**
   2530 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
   2531 *  @hw: pointer to the HW structure
   2532 *
   2533 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
   2534 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
   2535 *  checksum and writes the value to the EEPROM.
   2536 **/
   2537static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
   2538{
   2539	s32 ret_val = 0;
   2540	u16 j;
   2541	u16 nvm_offset;
   2542
   2543	for (j = 0; j < 4; j++) {
   2544		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
   2545		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
   2546		if (ret_val != 0)
   2547			goto out;
   2548	}
   2549
   2550out:
   2551	return ret_val;
   2552}
   2553
   2554/**
   2555 *  __igb_access_emi_reg - Read/write EMI register
   2556 *  @hw: pointer to the HW structure
   2557 *  @address: EMI address to program
   2558 *  @data: pointer to value to read/write from/to the EMI address
   2559 *  @read: boolean flag to indicate read or write
   2560 **/
   2561static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
   2562				  u16 *data, bool read)
   2563{
   2564	s32 ret_val = 0;
   2565
   2566	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
   2567	if (ret_val)
   2568		return ret_val;
   2569
   2570	if (read)
   2571		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
   2572	else
   2573		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
   2574
   2575	return ret_val;
   2576}
   2577
   2578/**
   2579 *  igb_read_emi_reg - Read Extended Management Interface register
   2580 *  @hw: pointer to the HW structure
   2581 *  @addr: EMI address to program
   2582 *  @data: value to be read from the EMI address
   2583 **/
   2584s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
   2585{
   2586	return __igb_access_emi_reg(hw, addr, data, true);
   2587}
   2588
   2589/**
   2590 *  igb_set_eee_i350 - Enable/disable EEE support
   2591 *  @hw: pointer to the HW structure
   2592 *  @adv1G: boolean flag enabling 1G EEE advertisement
   2593 *  @adv100M: boolean flag enabling 100M EEE advertisement
   2594 *
   2595 *  Enable/disable EEE based on setting in dev_spec structure.
   2596 *
   2597 **/
   2598s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
   2599{
   2600	u32 ipcnfg, eeer;
   2601
   2602	if ((hw->mac.type < e1000_i350) ||
   2603	    (hw->phy.media_type != e1000_media_type_copper))
   2604		goto out;
   2605	ipcnfg = rd32(E1000_IPCNFG);
   2606	eeer = rd32(E1000_EEER);
   2607
   2608	/* enable or disable per user setting */
   2609	if (!(hw->dev_spec._82575.eee_disable)) {
   2610		u32 eee_su = rd32(E1000_EEE_SU);
   2611
   2612		if (adv100M)
   2613			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
   2614		else
   2615			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
   2616
   2617		if (adv1G)
   2618			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
   2619		else
   2620			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
   2621
   2622		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
   2623			E1000_EEER_LPI_FC);
   2624
   2625		/* This bit should not be set in normal operation. */
   2626		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
   2627			hw_dbg("LPI Clock Stop Bit should not be set!\n");
   2628
   2629	} else {
   2630		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
   2631			E1000_IPCNFG_EEE_100M_AN);
   2632		eeer &= ~(E1000_EEER_TX_LPI_EN |
   2633			E1000_EEER_RX_LPI_EN |
   2634			E1000_EEER_LPI_FC);
   2635	}
   2636	wr32(E1000_IPCNFG, ipcnfg);
   2637	wr32(E1000_EEER, eeer);
   2638	rd32(E1000_IPCNFG);
   2639	rd32(E1000_EEER);
   2640out:
   2641
   2642	return 0;
   2643}
   2644
   2645/**
   2646 *  igb_set_eee_i354 - Enable/disable EEE support
   2647 *  @hw: pointer to the HW structure
   2648 *  @adv1G: boolean flag enabling 1G EEE advertisement
   2649 *  @adv100M: boolean flag enabling 100M EEE advertisement
   2650 *
   2651 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
   2652 *
   2653 **/
   2654s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
   2655{
   2656	struct e1000_phy_info *phy = &hw->phy;
   2657	s32 ret_val = 0;
   2658	u16 phy_data;
   2659
   2660	if ((hw->phy.media_type != e1000_media_type_copper) ||
   2661	    ((phy->id != M88E1543_E_PHY_ID) &&
   2662	     (phy->id != M88E1512_E_PHY_ID)))
   2663		goto out;
   2664
   2665	if (!hw->dev_spec._82575.eee_disable) {
   2666		/* Switch to PHY page 18. */
   2667		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
   2668		if (ret_val)
   2669			goto out;
   2670
   2671		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
   2672					    &phy_data);
   2673		if (ret_val)
   2674			goto out;
   2675
   2676		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
   2677		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
   2678					     phy_data);
   2679		if (ret_val)
   2680			goto out;
   2681
   2682		/* Return the PHY to page 0. */
   2683		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
   2684		if (ret_val)
   2685			goto out;
   2686
   2687		/* Turn on EEE advertisement. */
   2688		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
   2689					     E1000_EEE_ADV_DEV_I354,
   2690					     &phy_data);
   2691		if (ret_val)
   2692			goto out;
   2693
   2694		if (adv100M)
   2695			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
   2696		else
   2697			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
   2698
   2699		if (adv1G)
   2700			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
   2701		else
   2702			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
   2703
   2704		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
   2705						E1000_EEE_ADV_DEV_I354,
   2706						phy_data);
   2707	} else {
   2708		/* Turn off EEE advertisement. */
   2709		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
   2710					     E1000_EEE_ADV_DEV_I354,
   2711					     &phy_data);
   2712		if (ret_val)
   2713			goto out;
   2714
   2715		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
   2716			      E1000_EEE_ADV_1000_SUPPORTED);
   2717		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
   2718					      E1000_EEE_ADV_DEV_I354,
   2719					      phy_data);
   2720	}
   2721
   2722out:
   2723	return ret_val;
   2724}
   2725
   2726/**
   2727 *  igb_get_eee_status_i354 - Get EEE status
   2728 *  @hw: pointer to the HW structure
   2729 *  @status: EEE status
   2730 *
   2731 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
   2732 *  been received.
   2733 **/
   2734s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
   2735{
   2736	struct e1000_phy_info *phy = &hw->phy;
   2737	s32 ret_val = 0;
   2738	u16 phy_data;
   2739
   2740	/* Check if EEE is supported on this device. */
   2741	if ((hw->phy.media_type != e1000_media_type_copper) ||
   2742	    ((phy->id != M88E1543_E_PHY_ID) &&
   2743	     (phy->id != M88E1512_E_PHY_ID)))
   2744		goto out;
   2745
   2746	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
   2747				     E1000_PCS_STATUS_DEV_I354,
   2748				     &phy_data);
   2749	if (ret_val)
   2750		goto out;
   2751
   2752	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
   2753			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
   2754
   2755out:
   2756	return ret_val;
   2757}
   2758
   2759#ifdef CONFIG_IGB_HWMON
   2760static const u8 e1000_emc_temp_data[4] = {
   2761	E1000_EMC_INTERNAL_DATA,
   2762	E1000_EMC_DIODE1_DATA,
   2763	E1000_EMC_DIODE2_DATA,
   2764	E1000_EMC_DIODE3_DATA
   2765};
   2766static const u8 e1000_emc_therm_limit[4] = {
   2767	E1000_EMC_INTERNAL_THERM_LIMIT,
   2768	E1000_EMC_DIODE1_THERM_LIMIT,
   2769	E1000_EMC_DIODE2_THERM_LIMIT,
   2770	E1000_EMC_DIODE3_THERM_LIMIT
   2771};
   2772
   2773/**
   2774 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
   2775 *  @hw: pointer to hardware structure
   2776 *
   2777 *  Updates the temperatures in mac.thermal_sensor_data
   2778 **/
   2779static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
   2780{
   2781	u16 ets_offset;
   2782	u16 ets_cfg;
   2783	u16 ets_sensor;
   2784	u8  num_sensors;
   2785	u8  sensor_index;
   2786	u8  sensor_location;
   2787	u8  i;
   2788	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
   2789
   2790	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
   2791		return E1000_NOT_IMPLEMENTED;
   2792
   2793	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
   2794
   2795	/* Return the internal sensor only if ETS is unsupported */
   2796	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
   2797	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
   2798		return 0;
   2799
   2800	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
   2801	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
   2802	    != NVM_ETS_TYPE_EMC)
   2803		return E1000_NOT_IMPLEMENTED;
   2804
   2805	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
   2806	if (num_sensors > E1000_MAX_SENSORS)
   2807		num_sensors = E1000_MAX_SENSORS;
   2808
   2809	for (i = 1; i < num_sensors; i++) {
   2810		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
   2811		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
   2812				NVM_ETS_DATA_INDEX_SHIFT);
   2813		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
   2814				   NVM_ETS_DATA_LOC_SHIFT);
   2815
   2816		if (sensor_location != 0)
   2817			hw->phy.ops.read_i2c_byte(hw,
   2818					e1000_emc_temp_data[sensor_index],
   2819					E1000_I2C_THERMAL_SENSOR_ADDR,
   2820					&data->sensor[i].temp);
   2821	}
   2822	return 0;
   2823}
   2824
   2825/**
   2826 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
   2827 *  @hw: pointer to hardware structure
   2828 *
   2829 *  Sets the thermal sensor thresholds according to the NVM map
   2830 *  and save off the threshold and location values into mac.thermal_sensor_data
   2831 **/
   2832static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
   2833{
   2834	u16 ets_offset;
   2835	u16 ets_cfg;
   2836	u16 ets_sensor;
   2837	u8  low_thresh_delta;
   2838	u8  num_sensors;
   2839	u8  sensor_index;
   2840	u8  sensor_location;
   2841	u8  therm_limit;
   2842	u8  i;
   2843	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
   2844
   2845	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
   2846		return E1000_NOT_IMPLEMENTED;
   2847
   2848	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
   2849
   2850	data->sensor[0].location = 0x1;
   2851	data->sensor[0].caution_thresh =
   2852		(rd32(E1000_THHIGHTC) & 0xFF);
   2853	data->sensor[0].max_op_thresh =
   2854		(rd32(E1000_THLOWTC) & 0xFF);
   2855
   2856	/* Return the internal sensor only if ETS is unsupported */
   2857	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
   2858	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
   2859		return 0;
   2860
   2861	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
   2862	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
   2863	    != NVM_ETS_TYPE_EMC)
   2864		return E1000_NOT_IMPLEMENTED;
   2865
   2866	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
   2867			    NVM_ETS_LTHRES_DELTA_SHIFT);
   2868	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
   2869
   2870	for (i = 1; i <= num_sensors; i++) {
   2871		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
   2872		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
   2873				NVM_ETS_DATA_INDEX_SHIFT);
   2874		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
   2875				   NVM_ETS_DATA_LOC_SHIFT);
   2876		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
   2877
   2878		hw->phy.ops.write_i2c_byte(hw,
   2879			e1000_emc_therm_limit[sensor_index],
   2880			E1000_I2C_THERMAL_SENSOR_ADDR,
   2881			therm_limit);
   2882
   2883		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
   2884			data->sensor[i].location = sensor_location;
   2885			data->sensor[i].caution_thresh = therm_limit;
   2886			data->sensor[i].max_op_thresh = therm_limit -
   2887							low_thresh_delta;
   2888		}
   2889	}
   2890	return 0;
   2891}
   2892
   2893#endif
   2894static struct e1000_mac_operations e1000_mac_ops_82575 = {
   2895	.init_hw              = igb_init_hw_82575,
   2896	.check_for_link       = igb_check_for_link_82575,
   2897	.rar_set              = igb_rar_set,
   2898	.read_mac_addr        = igb_read_mac_addr_82575,
   2899	.get_speed_and_duplex = igb_get_link_up_info_82575,
   2900#ifdef CONFIG_IGB_HWMON
   2901	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
   2902	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
   2903#endif
   2904};
   2905
   2906static const struct e1000_phy_operations e1000_phy_ops_82575 = {
   2907	.acquire              = igb_acquire_phy_82575,
   2908	.get_cfg_done         = igb_get_cfg_done_82575,
   2909	.release              = igb_release_phy_82575,
   2910	.write_i2c_byte       = igb_write_i2c_byte,
   2911	.read_i2c_byte        = igb_read_i2c_byte,
   2912};
   2913
   2914static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
   2915	.acquire              = igb_acquire_nvm_82575,
   2916	.read                 = igb_read_nvm_eerd,
   2917	.release              = igb_release_nvm_82575,
   2918	.write                = igb_write_nvm_spi,
   2919};
   2920
   2921const struct e1000_info e1000_82575_info = {
   2922	.get_invariants = igb_get_invariants_82575,
   2923	.mac_ops = &e1000_mac_ops_82575,
   2924	.phy_ops = &e1000_phy_ops_82575,
   2925	.nvm_ops = &e1000_nvm_ops_82575,
   2926};
   2927