e1000_mac.c (48822B)
1// SPDX-License-Identifier: GPL-2.0 2/* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4#include <linux/if_ether.h> 5#include <linux/delay.h> 6#include <linux/pci.h> 7#include <linux/netdevice.h> 8#include <linux/etherdevice.h> 9 10#include "e1000_mac.h" 11 12#include "igb.h" 13 14static s32 igb_set_default_fc(struct e1000_hw *hw); 15static void igb_set_fc_watermarks(struct e1000_hw *hw); 16 17/** 18 * igb_get_bus_info_pcie - Get PCIe bus information 19 * @hw: pointer to the HW structure 20 * 21 * Determines and stores the system bus information for a particular 22 * network interface. The following bus information is determined and stored: 23 * bus speed, bus width, type (PCIe), and PCIe function. 24 **/ 25s32 igb_get_bus_info_pcie(struct e1000_hw *hw) 26{ 27 struct e1000_bus_info *bus = &hw->bus; 28 s32 ret_val; 29 u32 reg; 30 u16 pcie_link_status; 31 32 bus->type = e1000_bus_type_pci_express; 33 34 ret_val = igb_read_pcie_cap_reg(hw, 35 PCI_EXP_LNKSTA, 36 &pcie_link_status); 37 if (ret_val) { 38 bus->width = e1000_bus_width_unknown; 39 bus->speed = e1000_bus_speed_unknown; 40 } else { 41 switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) { 42 case PCI_EXP_LNKSTA_CLS_2_5GB: 43 bus->speed = e1000_bus_speed_2500; 44 break; 45 case PCI_EXP_LNKSTA_CLS_5_0GB: 46 bus->speed = e1000_bus_speed_5000; 47 break; 48 default: 49 bus->speed = e1000_bus_speed_unknown; 50 break; 51 } 52 53 bus->width = (enum e1000_bus_width)((pcie_link_status & 54 PCI_EXP_LNKSTA_NLW) >> 55 PCI_EXP_LNKSTA_NLW_SHIFT); 56 } 57 58 reg = rd32(E1000_STATUS); 59 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 60 61 return 0; 62} 63 64/** 65 * igb_clear_vfta - Clear VLAN filter table 66 * @hw: pointer to the HW structure 67 * 68 * Clears the register array which contains the VLAN filter table by 69 * setting all the values to 0. 70 **/ 71void igb_clear_vfta(struct e1000_hw *hw) 72{ 73 u32 offset; 74 75 for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;) 76 hw->mac.ops.write_vfta(hw, offset, 0); 77} 78 79/** 80 * igb_write_vfta - Write value to VLAN filter table 81 * @hw: pointer to the HW structure 82 * @offset: register offset in VLAN filter table 83 * @value: register value written to VLAN filter table 84 * 85 * Writes value at the given offset in the register array which stores 86 * the VLAN filter table. 87 **/ 88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) 89{ 90 struct igb_adapter *adapter = hw->back; 91 92 array_wr32(E1000_VFTA, offset, value); 93 wrfl(); 94 95 adapter->shadow_vfta[offset] = value; 96} 97 98/** 99 * igb_init_rx_addrs - Initialize receive address's 100 * @hw: pointer to the HW structure 101 * @rar_count: receive address registers 102 * 103 * Setups the receive address registers by setting the base receive address 104 * register to the devices MAC address and clearing all the other receive 105 * address registers to 0. 106 **/ 107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 108{ 109 u32 i; 110 u8 mac_addr[ETH_ALEN] = {0}; 111 112 /* Setup the receive address */ 113 hw_dbg("Programming MAC Address into RAR[0]\n"); 114 115 hw->mac.ops.rar_set(hw, hw->mac.addr, 0); 116 117 /* Zero out the other (rar_entry_count - 1) receive addresses */ 118 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); 119 for (i = 1; i < rar_count; i++) 120 hw->mac.ops.rar_set(hw, mac_addr, i); 121} 122 123/** 124 * igb_find_vlvf_slot - find the VLAN id or the first empty slot 125 * @hw: pointer to hardware structure 126 * @vlan: VLAN id to write to VLAN filter 127 * @vlvf_bypass: skip VLVF if no match is found 128 * 129 * return the VLVF index where this VLAN id should be placed 130 * 131 **/ 132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass) 133{ 134 s32 regindex, first_empty_slot; 135 u32 bits; 136 137 /* short cut the special case */ 138 if (vlan == 0) 139 return 0; 140 141 /* if vlvf_bypass is set we don't want to use an empty slot, we 142 * will simply bypass the VLVF if there are no entries present in the 143 * VLVF that contain our VLAN 144 */ 145 first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0; 146 147 /* Search for the VLAN id in the VLVF entries. Save off the first empty 148 * slot found along the way. 149 * 150 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1 151 */ 152 for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) { 153 bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK; 154 if (bits == vlan) 155 return regindex; 156 if (!first_empty_slot && !bits) 157 first_empty_slot = regindex; 158 } 159 160 return first_empty_slot ? : -E1000_ERR_NO_SPACE; 161} 162 163/** 164 * igb_vfta_set - enable or disable vlan in VLAN filter table 165 * @hw: pointer to the HW structure 166 * @vlan: VLAN id to add or remove 167 * @vind: VMDq output index that maps queue to VLAN id 168 * @vlan_on: if true add filter, if false remove 169 * @vlvf_bypass: skip VLVF if no match is found 170 * 171 * Sets or clears a bit in the VLAN filter table array based on VLAN id 172 * and if we are adding or removing the filter 173 **/ 174s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind, 175 bool vlan_on, bool vlvf_bypass) 176{ 177 struct igb_adapter *adapter = hw->back; 178 u32 regidx, vfta_delta, vfta, bits; 179 s32 vlvf_index; 180 181 if ((vlan > 4095) || (vind > 7)) 182 return -E1000_ERR_PARAM; 183 184 /* this is a 2 part operation - first the VFTA, then the 185 * VLVF and VLVFB if VT Mode is set 186 * We don't write the VFTA until we know the VLVF part succeeded. 187 */ 188 189 /* Part 1 190 * The VFTA is a bitstring made up of 128 32-bit registers 191 * that enable the particular VLAN id, much like the MTA: 192 * bits[11-5]: which register 193 * bits[4-0]: which bit in the register 194 */ 195 regidx = vlan / 32; 196 vfta_delta = BIT(vlan % 32); 197 vfta = adapter->shadow_vfta[regidx]; 198 199 /* vfta_delta represents the difference between the current value 200 * of vfta and the value we want in the register. Since the diff 201 * is an XOR mask we can just update vfta using an XOR. 202 */ 203 vfta_delta &= vlan_on ? ~vfta : vfta; 204 vfta ^= vfta_delta; 205 206 /* Part 2 207 * If VT Mode is set 208 * Either vlan_on 209 * make sure the VLAN is in VLVF 210 * set the vind bit in the matching VLVFB 211 * Or !vlan_on 212 * clear the pool bit and possibly the vind 213 */ 214 if (!adapter->vfs_allocated_count) 215 goto vfta_update; 216 217 vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass); 218 if (vlvf_index < 0) { 219 if (vlvf_bypass) 220 goto vfta_update; 221 return vlvf_index; 222 } 223 224 bits = rd32(E1000_VLVF(vlvf_index)); 225 226 /* set the pool bit */ 227 bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind); 228 if (vlan_on) 229 goto vlvf_update; 230 231 /* clear the pool bit */ 232 bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind); 233 234 if (!(bits & E1000_VLVF_POOLSEL_MASK)) { 235 /* Clear VFTA first, then disable VLVF. Otherwise 236 * we run the risk of stray packets leaking into 237 * the PF via the default pool 238 */ 239 if (vfta_delta) 240 hw->mac.ops.write_vfta(hw, regidx, vfta); 241 242 /* disable VLVF and clear remaining bit from pool */ 243 wr32(E1000_VLVF(vlvf_index), 0); 244 245 return 0; 246 } 247 248 /* If there are still bits set in the VLVFB registers 249 * for the VLAN ID indicated we need to see if the 250 * caller is requesting that we clear the VFTA entry bit. 251 * If the caller has requested that we clear the VFTA 252 * entry bit but there are still pools/VFs using this VLAN 253 * ID entry then ignore the request. We're not worried 254 * about the case where we're turning the VFTA VLAN ID 255 * entry bit on, only when requested to turn it off as 256 * there may be multiple pools and/or VFs using the 257 * VLAN ID entry. In that case we cannot clear the 258 * VFTA bit until all pools/VFs using that VLAN ID have also 259 * been cleared. This will be indicated by "bits" being 260 * zero. 261 */ 262 vfta_delta = 0; 263 264vlvf_update: 265 /* record pool change and enable VLAN ID if not already enabled */ 266 wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE); 267 268vfta_update: 269 /* bit was set/cleared before we started */ 270 if (vfta_delta) 271 hw->mac.ops.write_vfta(hw, regidx, vfta); 272 273 return 0; 274} 275 276/** 277 * igb_check_alt_mac_addr - Check for alternate MAC addr 278 * @hw: pointer to the HW structure 279 * 280 * Checks the nvm for an alternate MAC address. An alternate MAC address 281 * can be setup by pre-boot software and must be treated like a permanent 282 * address and must override the actual permanent MAC address. If an 283 * alternate MAC address is found it is saved in the hw struct and 284 * programmed into RAR0 and the function returns success, otherwise the 285 * function returns an error. 286 **/ 287s32 igb_check_alt_mac_addr(struct e1000_hw *hw) 288{ 289 u32 i; 290 s32 ret_val = 0; 291 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 292 u8 alt_mac_addr[ETH_ALEN]; 293 294 /* Alternate MAC address is handled by the option ROM for 82580 295 * and newer. SW support not required. 296 */ 297 if (hw->mac.type >= e1000_82580) 298 goto out; 299 300 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, 301 &nvm_alt_mac_addr_offset); 302 if (ret_val) { 303 hw_dbg("NVM Read Error\n"); 304 goto out; 305 } 306 307 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 308 (nvm_alt_mac_addr_offset == 0x0000)) 309 /* There is no Alternate MAC Address */ 310 goto out; 311 312 if (hw->bus.func == E1000_FUNC_1) 313 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 314 if (hw->bus.func == E1000_FUNC_2) 315 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2; 316 317 if (hw->bus.func == E1000_FUNC_3) 318 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3; 319 for (i = 0; i < ETH_ALEN; i += 2) { 320 offset = nvm_alt_mac_addr_offset + (i >> 1); 321 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); 322 if (ret_val) { 323 hw_dbg("NVM Read Error\n"); 324 goto out; 325 } 326 327 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 328 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 329 } 330 331 /* if multicast bit is set, the alternate address will not be used */ 332 if (is_multicast_ether_addr(alt_mac_addr)) { 333 hw_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 334 goto out; 335 } 336 337 /* We have a valid alternate MAC address, and we want to treat it the 338 * same as the normal permanent MAC address stored by the HW into the 339 * RAR. Do this by mapping this address into RAR0. 340 */ 341 hw->mac.ops.rar_set(hw, alt_mac_addr, 0); 342 343out: 344 return ret_val; 345} 346 347/** 348 * igb_rar_set - Set receive address register 349 * @hw: pointer to the HW structure 350 * @addr: pointer to the receive address 351 * @index: receive address array register 352 * 353 * Sets the receive address array register at index to the address passed 354 * in by addr. 355 **/ 356void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 357{ 358 u32 rar_low, rar_high; 359 360 /* HW expects these in little endian so we reverse the byte order 361 * from network order (big endian) to little endian 362 */ 363 rar_low = ((u32) addr[0] | 364 ((u32) addr[1] << 8) | 365 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 366 367 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 368 369 /* If MAC address zero, no need to set the AV bit */ 370 if (rar_low || rar_high) 371 rar_high |= E1000_RAH_AV; 372 373 /* Some bridges will combine consecutive 32-bit writes into 374 * a single burst write, which will malfunction on some parts. 375 * The flushes avoid this. 376 */ 377 wr32(E1000_RAL(index), rar_low); 378 wrfl(); 379 wr32(E1000_RAH(index), rar_high); 380 wrfl(); 381} 382 383/** 384 * igb_mta_set - Set multicast filter table address 385 * @hw: pointer to the HW structure 386 * @hash_value: determines the MTA register and bit to set 387 * 388 * The multicast table address is a register array of 32-bit registers. 389 * The hash_value is used to determine what register the bit is in, the 390 * current value is read, the new bit is OR'd in and the new value is 391 * written back into the register. 392 **/ 393void igb_mta_set(struct e1000_hw *hw, u32 hash_value) 394{ 395 u32 hash_bit, hash_reg, mta; 396 397 /* The MTA is a register array of 32-bit registers. It is 398 * treated like an array of (32*mta_reg_count) bits. We want to 399 * set bit BitArray[hash_value]. So we figure out what register 400 * the bit is in, read it, OR in the new bit, then write 401 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a 402 * mask to bits 31:5 of the hash value which gives us the 403 * register we're modifying. The hash bit within that register 404 * is determined by the lower 5 bits of the hash value. 405 */ 406 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 407 hash_bit = hash_value & 0x1F; 408 409 mta = array_rd32(E1000_MTA, hash_reg); 410 411 mta |= BIT(hash_bit); 412 413 array_wr32(E1000_MTA, hash_reg, mta); 414 wrfl(); 415} 416 417/** 418 * igb_hash_mc_addr - Generate a multicast hash value 419 * @hw: pointer to the HW structure 420 * @mc_addr: pointer to a multicast address 421 * 422 * Generates a multicast address hash value which is used to determine 423 * the multicast filter table array address and new table value. See 424 * igb_mta_set() 425 **/ 426static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 427{ 428 u32 hash_value, hash_mask; 429 u8 bit_shift = 0; 430 431 /* Register count multiplied by bits per register */ 432 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 433 434 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts 435 * where 0xFF would still fall within the hash mask. 436 */ 437 while (hash_mask >> bit_shift != 0xFF) 438 bit_shift++; 439 440 /* The portion of the address that is used for the hash table 441 * is determined by the mc_filter_type setting. 442 * The algorithm is such that there is a total of 8 bits of shifting. 443 * The bit_shift for a mc_filter_type of 0 represents the number of 444 * left-shifts where the MSB of mc_addr[5] would still fall within 445 * the hash_mask. Case 0 does this exactly. Since there are a total 446 * of 8 bits of shifting, then mc_addr[4] will shift right the 447 * remaining number of bits. Thus 8 - bit_shift. The rest of the 448 * cases are a variation of this algorithm...essentially raising the 449 * number of bits to shift mc_addr[5] left, while still keeping the 450 * 8-bit shifting total. 451 * 452 * For example, given the following Destination MAC Address and an 453 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 454 * we can see that the bit_shift for case 0 is 4. These are the hash 455 * values resulting from each mc_filter_type... 456 * [0] [1] [2] [3] [4] [5] 457 * 01 AA 00 12 34 56 458 * LSB MSB 459 * 460 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 461 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 462 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 463 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 464 */ 465 switch (hw->mac.mc_filter_type) { 466 default: 467 case 0: 468 break; 469 case 1: 470 bit_shift += 1; 471 break; 472 case 2: 473 bit_shift += 2; 474 break; 475 case 3: 476 bit_shift += 4; 477 break; 478 } 479 480 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 481 (((u16) mc_addr[5]) << bit_shift))); 482 483 return hash_value; 484} 485 486/** 487 * igb_i21x_hw_doublecheck - double checks potential HW issue in i21X 488 * @hw: pointer to the HW structure 489 * 490 * Checks if multicast array is wrote correctly 491 * If not then rewrites again to register 492 **/ 493static void igb_i21x_hw_doublecheck(struct e1000_hw *hw) 494{ 495 int failed_cnt = 3; 496 bool is_failed; 497 int i; 498 499 do { 500 is_failed = false; 501 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) { 502 if (array_rd32(E1000_MTA, i) != hw->mac.mta_shadow[i]) { 503 is_failed = true; 504 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); 505 wrfl(); 506 } 507 } 508 if (is_failed && --failed_cnt <= 0) { 509 hw_dbg("Failed to update MTA_REGISTER, too many retries"); 510 break; 511 } 512 } while (is_failed); 513} 514 515/** 516 * igb_update_mc_addr_list - Update Multicast addresses 517 * @hw: pointer to the HW structure 518 * @mc_addr_list: array of multicast addresses to program 519 * @mc_addr_count: number of multicast addresses to program 520 * 521 * Updates entire Multicast Table Array. 522 * The caller must have a packed mc_addr_list of multicast addresses. 523 **/ 524void igb_update_mc_addr_list(struct e1000_hw *hw, 525 u8 *mc_addr_list, u32 mc_addr_count) 526{ 527 u32 hash_value, hash_bit, hash_reg; 528 int i; 529 530 /* clear mta_shadow */ 531 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 532 533 /* update mta_shadow from mc_addr_list */ 534 for (i = 0; (u32) i < mc_addr_count; i++) { 535 hash_value = igb_hash_mc_addr(hw, mc_addr_list); 536 537 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 538 hash_bit = hash_value & 0x1F; 539 540 hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); 541 mc_addr_list += (ETH_ALEN); 542 } 543 544 /* replace the entire MTA table */ 545 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 546 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]); 547 wrfl(); 548 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) 549 igb_i21x_hw_doublecheck(hw); 550} 551 552/** 553 * igb_clear_hw_cntrs_base - Clear base hardware counters 554 * @hw: pointer to the HW structure 555 * 556 * Clears the base hardware counters by reading the counter registers. 557 **/ 558void igb_clear_hw_cntrs_base(struct e1000_hw *hw) 559{ 560 rd32(E1000_CRCERRS); 561 rd32(E1000_SYMERRS); 562 rd32(E1000_MPC); 563 rd32(E1000_SCC); 564 rd32(E1000_ECOL); 565 rd32(E1000_MCC); 566 rd32(E1000_LATECOL); 567 rd32(E1000_COLC); 568 rd32(E1000_DC); 569 rd32(E1000_SEC); 570 rd32(E1000_RLEC); 571 rd32(E1000_XONRXC); 572 rd32(E1000_XONTXC); 573 rd32(E1000_XOFFRXC); 574 rd32(E1000_XOFFTXC); 575 rd32(E1000_FCRUC); 576 rd32(E1000_GPRC); 577 rd32(E1000_BPRC); 578 rd32(E1000_MPRC); 579 rd32(E1000_GPTC); 580 rd32(E1000_GORCL); 581 rd32(E1000_GORCH); 582 rd32(E1000_GOTCL); 583 rd32(E1000_GOTCH); 584 rd32(E1000_RNBC); 585 rd32(E1000_RUC); 586 rd32(E1000_RFC); 587 rd32(E1000_ROC); 588 rd32(E1000_RJC); 589 rd32(E1000_TORL); 590 rd32(E1000_TORH); 591 rd32(E1000_TOTL); 592 rd32(E1000_TOTH); 593 rd32(E1000_TPR); 594 rd32(E1000_TPT); 595 rd32(E1000_MPTC); 596 rd32(E1000_BPTC); 597} 598 599/** 600 * igb_check_for_copper_link - Check for link (Copper) 601 * @hw: pointer to the HW structure 602 * 603 * Checks to see of the link status of the hardware has changed. If a 604 * change in link status has been detected, then we read the PHY registers 605 * to get the current speed/duplex if link exists. 606 **/ 607s32 igb_check_for_copper_link(struct e1000_hw *hw) 608{ 609 struct e1000_mac_info *mac = &hw->mac; 610 s32 ret_val; 611 bool link; 612 613 /* We only want to go out to the PHY registers to see if Auto-Neg 614 * has completed and/or if our link status has changed. The 615 * get_link_status flag is set upon receiving a Link Status 616 * Change or Rx Sequence Error interrupt. 617 */ 618 if (!mac->get_link_status) { 619 ret_val = 0; 620 goto out; 621 } 622 623 /* First we want to see if the MII Status Register reports 624 * link. If so, then we want to get the current speed/duplex 625 * of the PHY. 626 */ 627 ret_val = igb_phy_has_link(hw, 1, 0, &link); 628 if (ret_val) 629 goto out; 630 631 if (!link) 632 goto out; /* No link detected */ 633 634 mac->get_link_status = false; 635 636 /* Check if there was DownShift, must be checked 637 * immediately after link-up 638 */ 639 igb_check_downshift(hw); 640 641 /* If we are forcing speed/duplex, then we simply return since 642 * we have already determined whether we have link or not. 643 */ 644 if (!mac->autoneg) { 645 ret_val = -E1000_ERR_CONFIG; 646 goto out; 647 } 648 649 /* Auto-Neg is enabled. Auto Speed Detection takes care 650 * of MAC speed/duplex configuration. So we only need to 651 * configure Collision Distance in the MAC. 652 */ 653 igb_config_collision_dist(hw); 654 655 /* Configure Flow Control now that Auto-Neg has completed. 656 * First, we need to restore the desired flow control 657 * settings because we may have had to re-autoneg with a 658 * different link partner. 659 */ 660 ret_val = igb_config_fc_after_link_up(hw); 661 if (ret_val) 662 hw_dbg("Error configuring flow control\n"); 663 664out: 665 return ret_val; 666} 667 668/** 669 * igb_setup_link - Setup flow control and link settings 670 * @hw: pointer to the HW structure 671 * 672 * Determines which flow control settings to use, then configures flow 673 * control. Calls the appropriate media-specific link configuration 674 * function. Assuming the adapter has a valid link partner, a valid link 675 * should be established. Assumes the hardware has previously been reset 676 * and the transmitter and receiver are not enabled. 677 **/ 678s32 igb_setup_link(struct e1000_hw *hw) 679{ 680 s32 ret_val = 0; 681 682 /* In the case of the phy reset being blocked, we already have a link. 683 * We do not need to set it up again. 684 */ 685 if (igb_check_reset_block(hw)) 686 goto out; 687 688 /* If requested flow control is set to default, set flow control 689 * based on the EEPROM flow control settings. 690 */ 691 if (hw->fc.requested_mode == e1000_fc_default) { 692 ret_val = igb_set_default_fc(hw); 693 if (ret_val) 694 goto out; 695 } 696 697 /* We want to save off the original Flow Control configuration just 698 * in case we get disconnected and then reconnected into a different 699 * hub or switch with different Flow Control capabilities. 700 */ 701 hw->fc.current_mode = hw->fc.requested_mode; 702 703 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 704 705 /* Call the necessary media_type subroutine to configure the link. */ 706 ret_val = hw->mac.ops.setup_physical_interface(hw); 707 if (ret_val) 708 goto out; 709 710 /* Initialize the flow control address, type, and PAUSE timer 711 * registers to their default values. This is done even if flow 712 * control is disabled, because it does not hurt anything to 713 * initialize these registers. 714 */ 715 hw_dbg("Initializing the Flow Control address, type and timer regs\n"); 716 wr32(E1000_FCT, FLOW_CONTROL_TYPE); 717 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); 718 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); 719 720 wr32(E1000_FCTTV, hw->fc.pause_time); 721 722 igb_set_fc_watermarks(hw); 723 724out: 725 726 return ret_val; 727} 728 729/** 730 * igb_config_collision_dist - Configure collision distance 731 * @hw: pointer to the HW structure 732 * 733 * Configures the collision distance to the default value and is used 734 * during link setup. Currently no func pointer exists and all 735 * implementations are handled in the generic version of this function. 736 **/ 737void igb_config_collision_dist(struct e1000_hw *hw) 738{ 739 u32 tctl; 740 741 tctl = rd32(E1000_TCTL); 742 743 tctl &= ~E1000_TCTL_COLD; 744 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 745 746 wr32(E1000_TCTL, tctl); 747 wrfl(); 748} 749 750/** 751 * igb_set_fc_watermarks - Set flow control high/low watermarks 752 * @hw: pointer to the HW structure 753 * 754 * Sets the flow control high/low threshold (watermark) registers. If 755 * flow control XON frame transmission is enabled, then set XON frame 756 * tansmission as well. 757 **/ 758static void igb_set_fc_watermarks(struct e1000_hw *hw) 759{ 760 u32 fcrtl = 0, fcrth = 0; 761 762 /* Set the flow control receive threshold registers. Normally, 763 * these registers will be set to a default threshold that may be 764 * adjusted later by the driver's runtime code. However, if the 765 * ability to transmit pause frames is not enabled, then these 766 * registers will be set to 0. 767 */ 768 if (hw->fc.current_mode & e1000_fc_tx_pause) { 769 /* We need to set up the Receive Threshold high and low water 770 * marks as well as (optionally) enabling the transmission of 771 * XON frames. 772 */ 773 fcrtl = hw->fc.low_water; 774 if (hw->fc.send_xon) 775 fcrtl |= E1000_FCRTL_XONE; 776 777 fcrth = hw->fc.high_water; 778 } 779 wr32(E1000_FCRTL, fcrtl); 780 wr32(E1000_FCRTH, fcrth); 781} 782 783/** 784 * igb_set_default_fc - Set flow control default values 785 * @hw: pointer to the HW structure 786 * 787 * Read the EEPROM for the default values for flow control and store the 788 * values. 789 **/ 790static s32 igb_set_default_fc(struct e1000_hw *hw) 791{ 792 s32 ret_val = 0; 793 u16 lan_offset; 794 u16 nvm_data; 795 796 /* Read and store word 0x0F of the EEPROM. This word contains bits 797 * that determine the hardware's default PAUSE (flow control) mode, 798 * a bit that determines whether the HW defaults to enabling or 799 * disabling auto-negotiation, and the direction of the 800 * SW defined pins. If there is no SW over-ride of the flow 801 * control setting, then the variable hw->fc will 802 * be initialized based on a value in the EEPROM. 803 */ 804 if (hw->mac.type == e1000_i350) 805 lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func); 806 else 807 lan_offset = 0; 808 809 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset, 810 1, &nvm_data); 811 if (ret_val) { 812 hw_dbg("NVM Read Error\n"); 813 goto out; 814 } 815 816 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) 817 hw->fc.requested_mode = e1000_fc_none; 818 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) 819 hw->fc.requested_mode = e1000_fc_tx_pause; 820 else 821 hw->fc.requested_mode = e1000_fc_full; 822 823out: 824 return ret_val; 825} 826 827/** 828 * igb_force_mac_fc - Force the MAC's flow control settings 829 * @hw: pointer to the HW structure 830 * 831 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 832 * device control register to reflect the adapter settings. TFCE and RFCE 833 * need to be explicitly set by software when a copper PHY is used because 834 * autonegotiation is managed by the PHY rather than the MAC. Software must 835 * also configure these bits when link is forced on a fiber connection. 836 **/ 837s32 igb_force_mac_fc(struct e1000_hw *hw) 838{ 839 u32 ctrl; 840 s32 ret_val = 0; 841 842 ctrl = rd32(E1000_CTRL); 843 844 /* Because we didn't get link via the internal auto-negotiation 845 * mechanism (we either forced link or we got link via PHY 846 * auto-neg), we have to manually enable/disable transmit an 847 * receive flow control. 848 * 849 * The "Case" statement below enables/disable flow control 850 * according to the "hw->fc.current_mode" parameter. 851 * 852 * The possible values of the "fc" parameter are: 853 * 0: Flow control is completely disabled 854 * 1: Rx flow control is enabled (we can receive pause 855 * frames but not send pause frames). 856 * 2: Tx flow control is enabled (we can send pause frames 857 * frames but we do not receive pause frames). 858 * 3: Both Rx and TX flow control (symmetric) is enabled. 859 * other: No other values should be possible at this point. 860 */ 861 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 862 863 switch (hw->fc.current_mode) { 864 case e1000_fc_none: 865 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 866 break; 867 case e1000_fc_rx_pause: 868 ctrl &= (~E1000_CTRL_TFCE); 869 ctrl |= E1000_CTRL_RFCE; 870 break; 871 case e1000_fc_tx_pause: 872 ctrl &= (~E1000_CTRL_RFCE); 873 ctrl |= E1000_CTRL_TFCE; 874 break; 875 case e1000_fc_full: 876 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 877 break; 878 default: 879 hw_dbg("Flow control param set incorrectly\n"); 880 ret_val = -E1000_ERR_CONFIG; 881 goto out; 882 } 883 884 wr32(E1000_CTRL, ctrl); 885 886out: 887 return ret_val; 888} 889 890/** 891 * igb_config_fc_after_link_up - Configures flow control after link 892 * @hw: pointer to the HW structure 893 * 894 * Checks the status of auto-negotiation after link up to ensure that the 895 * speed and duplex were not forced. If the link needed to be forced, then 896 * flow control needs to be forced also. If auto-negotiation is enabled 897 * and did not fail, then we configure flow control based on our link 898 * partner. 899 **/ 900s32 igb_config_fc_after_link_up(struct e1000_hw *hw) 901{ 902 struct e1000_mac_info *mac = &hw->mac; 903 s32 ret_val = 0; 904 u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; 905 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 906 u16 speed, duplex; 907 908 /* Check for the case where we have fiber media and auto-neg failed 909 * so we had to force link. In this case, we need to force the 910 * configuration of the MAC to match the "fc" parameter. 911 */ 912 if (mac->autoneg_failed) { 913 if (hw->phy.media_type == e1000_media_type_internal_serdes) 914 ret_val = igb_force_mac_fc(hw); 915 } else { 916 if (hw->phy.media_type == e1000_media_type_copper) 917 ret_val = igb_force_mac_fc(hw); 918 } 919 920 if (ret_val) { 921 hw_dbg("Error forcing flow control settings\n"); 922 goto out; 923 } 924 925 /* Check for the case where we have copper media and auto-neg is 926 * enabled. In this case, we need to check and see if Auto-Neg 927 * has completed, and if so, how the PHY and link partner has 928 * flow control configured. 929 */ 930 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 931 /* Read the MII Status Register and check to see if AutoNeg 932 * has completed. We read this twice because this reg has 933 * some "sticky" (latched) bits. 934 */ 935 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, 936 &mii_status_reg); 937 if (ret_val) 938 goto out; 939 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, 940 &mii_status_reg); 941 if (ret_val) 942 goto out; 943 944 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { 945 hw_dbg("Copper PHY and Auto Neg has not completed.\n"); 946 goto out; 947 } 948 949 /* The AutoNeg process has completed, so we now need to 950 * read both the Auto Negotiation Advertisement 951 * Register (Address 4) and the Auto_Negotiation Base 952 * Page Ability Register (Address 5) to determine how 953 * flow control was negotiated. 954 */ 955 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, 956 &mii_nway_adv_reg); 957 if (ret_val) 958 goto out; 959 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, 960 &mii_nway_lp_ability_reg); 961 if (ret_val) 962 goto out; 963 964 /* Two bits in the Auto Negotiation Advertisement Register 965 * (Address 4) and two bits in the Auto Negotiation Base 966 * Page Ability Register (Address 5) determine flow control 967 * for both the PHY and the link partner. The following 968 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 969 * 1999, describes these PAUSE resolution bits and how flow 970 * control is determined based upon these settings. 971 * NOTE: DC = Don't Care 972 * 973 * LOCAL DEVICE | LINK PARTNER 974 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 975 *-------|---------|-------|---------|-------------------- 976 * 0 | 0 | DC | DC | e1000_fc_none 977 * 0 | 1 | 0 | DC | e1000_fc_none 978 * 0 | 1 | 1 | 0 | e1000_fc_none 979 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 980 * 1 | 0 | 0 | DC | e1000_fc_none 981 * 1 | DC | 1 | DC | e1000_fc_full 982 * 1 | 1 | 0 | 0 | e1000_fc_none 983 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 984 * 985 * Are both PAUSE bits set to 1? If so, this implies 986 * Symmetric Flow Control is enabled at both ends. The 987 * ASM_DIR bits are irrelevant per the spec. 988 * 989 * For Symmetric Flow Control: 990 * 991 * LOCAL DEVICE | LINK PARTNER 992 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 993 *-------|---------|-------|---------|-------------------- 994 * 1 | DC | 1 | DC | E1000_fc_full 995 * 996 */ 997 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 998 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 999 /* Now we need to check if the user selected RX ONLY 1000 * of pause frames. In this case, we had to advertise 1001 * FULL flow control because we could not advertise RX 1002 * ONLY. Hence, we must now check to see if we need to 1003 * turn OFF the TRANSMISSION of PAUSE frames. 1004 */ 1005 if (hw->fc.requested_mode == e1000_fc_full) { 1006 hw->fc.current_mode = e1000_fc_full; 1007 hw_dbg("Flow Control = FULL.\n"); 1008 } else { 1009 hw->fc.current_mode = e1000_fc_rx_pause; 1010 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 1011 } 1012 } 1013 /* For receiving PAUSE frames ONLY. 1014 * 1015 * LOCAL DEVICE | LINK PARTNER 1016 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1017 *-------|---------|-------|---------|-------------------- 1018 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1019 */ 1020 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 1021 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1022 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1023 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1024 hw->fc.current_mode = e1000_fc_tx_pause; 1025 hw_dbg("Flow Control = TX PAUSE frames only.\n"); 1026 } 1027 /* For transmitting PAUSE frames ONLY. 1028 * 1029 * LOCAL DEVICE | LINK PARTNER 1030 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1031 *-------|---------|-------|---------|-------------------- 1032 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1033 */ 1034 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1035 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1036 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1037 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1038 hw->fc.current_mode = e1000_fc_rx_pause; 1039 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 1040 } 1041 /* Per the IEEE spec, at this point flow control should be 1042 * disabled. However, we want to consider that we could 1043 * be connected to a legacy switch that doesn't advertise 1044 * desired flow control, but can be forced on the link 1045 * partner. So if we advertised no flow control, that is 1046 * what we will resolve to. If we advertised some kind of 1047 * receive capability (Rx Pause Only or Full Flow Control) 1048 * and the link partner advertised none, we will configure 1049 * ourselves to enable Rx Flow Control only. We can do 1050 * this safely for two reasons: If the link partner really 1051 * didn't want flow control enabled, and we enable Rx, no 1052 * harm done since we won't be receiving any PAUSE frames 1053 * anyway. If the intent on the link partner was to have 1054 * flow control enabled, then by us enabling RX only, we 1055 * can at least receive pause frames and process them. 1056 * This is a good idea because in most cases, since we are 1057 * predominantly a server NIC, more times than not we will 1058 * be asked to delay transmission of packets than asking 1059 * our link partner to pause transmission of frames. 1060 */ 1061 else if ((hw->fc.requested_mode == e1000_fc_none) || 1062 (hw->fc.requested_mode == e1000_fc_tx_pause) || 1063 (hw->fc.strict_ieee)) { 1064 hw->fc.current_mode = e1000_fc_none; 1065 hw_dbg("Flow Control = NONE.\n"); 1066 } else { 1067 hw->fc.current_mode = e1000_fc_rx_pause; 1068 hw_dbg("Flow Control = RX PAUSE frames only.\n"); 1069 } 1070 1071 /* Now we need to do one last check... If we auto- 1072 * negotiated to HALF DUPLEX, flow control should not be 1073 * enabled per IEEE 802.3 spec. 1074 */ 1075 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); 1076 if (ret_val) { 1077 hw_dbg("Error getting link speed and duplex\n"); 1078 goto out; 1079 } 1080 1081 if (duplex == HALF_DUPLEX) 1082 hw->fc.current_mode = e1000_fc_none; 1083 1084 /* Now we call a subroutine to actually force the MAC 1085 * controller to use the correct flow control settings. 1086 */ 1087 ret_val = igb_force_mac_fc(hw); 1088 if (ret_val) { 1089 hw_dbg("Error forcing flow control settings\n"); 1090 goto out; 1091 } 1092 } 1093 /* Check for the case where we have SerDes media and auto-neg is 1094 * enabled. In this case, we need to check and see if Auto-Neg 1095 * has completed, and if so, how the PHY and link partner has 1096 * flow control configured. 1097 */ 1098 if ((hw->phy.media_type == e1000_media_type_internal_serdes) 1099 && mac->autoneg) { 1100 /* Read the PCS_LSTS and check to see if AutoNeg 1101 * has completed. 1102 */ 1103 pcs_status_reg = rd32(E1000_PCS_LSTAT); 1104 1105 if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { 1106 hw_dbg("PCS Auto Neg has not completed.\n"); 1107 return ret_val; 1108 } 1109 1110 /* The AutoNeg process has completed, so we now need to 1111 * read both the Auto Negotiation Advertisement 1112 * Register (PCS_ANADV) and the Auto_Negotiation Base 1113 * Page Ability Register (PCS_LPAB) to determine how 1114 * flow control was negotiated. 1115 */ 1116 pcs_adv_reg = rd32(E1000_PCS_ANADV); 1117 pcs_lp_ability_reg = rd32(E1000_PCS_LPAB); 1118 1119 /* Two bits in the Auto Negotiation Advertisement Register 1120 * (PCS_ANADV) and two bits in the Auto Negotiation Base 1121 * Page Ability Register (PCS_LPAB) determine flow control 1122 * for both the PHY and the link partner. The following 1123 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1124 * 1999, describes these PAUSE resolution bits and how flow 1125 * control is determined based upon these settings. 1126 * NOTE: DC = Don't Care 1127 * 1128 * LOCAL DEVICE | LINK PARTNER 1129 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1130 *-------|---------|-------|---------|-------------------- 1131 * 0 | 0 | DC | DC | e1000_fc_none 1132 * 0 | 1 | 0 | DC | e1000_fc_none 1133 * 0 | 1 | 1 | 0 | e1000_fc_none 1134 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1135 * 1 | 0 | 0 | DC | e1000_fc_none 1136 * 1 | DC | 1 | DC | e1000_fc_full 1137 * 1 | 1 | 0 | 0 | e1000_fc_none 1138 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1139 * 1140 * Are both PAUSE bits set to 1? If so, this implies 1141 * Symmetric Flow Control is enabled at both ends. The 1142 * ASM_DIR bits are irrelevant per the spec. 1143 * 1144 * For Symmetric Flow Control: 1145 * 1146 * LOCAL DEVICE | LINK PARTNER 1147 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1148 *-------|---------|-------|---------|-------------------- 1149 * 1 | DC | 1 | DC | e1000_fc_full 1150 * 1151 */ 1152 if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1153 (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { 1154 /* Now we need to check if the user selected Rx ONLY 1155 * of pause frames. In this case, we had to advertise 1156 * FULL flow control because we could not advertise Rx 1157 * ONLY. Hence, we must now check to see if we need to 1158 * turn OFF the TRANSMISSION of PAUSE frames. 1159 */ 1160 if (hw->fc.requested_mode == e1000_fc_full) { 1161 hw->fc.current_mode = e1000_fc_full; 1162 hw_dbg("Flow Control = FULL.\n"); 1163 } else { 1164 hw->fc.current_mode = e1000_fc_rx_pause; 1165 hw_dbg("Flow Control = Rx PAUSE frames only.\n"); 1166 } 1167 } 1168 /* For receiving PAUSE frames ONLY. 1169 * 1170 * LOCAL DEVICE | LINK PARTNER 1171 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1172 *-------|---------|-------|---------|-------------------- 1173 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1174 */ 1175 else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && 1176 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1177 (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1178 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1179 hw->fc.current_mode = e1000_fc_tx_pause; 1180 hw_dbg("Flow Control = Tx PAUSE frames only.\n"); 1181 } 1182 /* For transmitting PAUSE frames ONLY. 1183 * 1184 * LOCAL DEVICE | LINK PARTNER 1185 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1186 *-------|---------|-------|---------|-------------------- 1187 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1188 */ 1189 else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && 1190 (pcs_adv_reg & E1000_TXCW_ASM_DIR) && 1191 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && 1192 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { 1193 hw->fc.current_mode = e1000_fc_rx_pause; 1194 hw_dbg("Flow Control = Rx PAUSE frames only.\n"); 1195 } else { 1196 /* Per the IEEE spec, at this point flow control 1197 * should be disabled. 1198 */ 1199 hw->fc.current_mode = e1000_fc_none; 1200 hw_dbg("Flow Control = NONE.\n"); 1201 } 1202 1203 /* Now we call a subroutine to actually force the MAC 1204 * controller to use the correct flow control settings. 1205 */ 1206 pcs_ctrl_reg = rd32(E1000_PCS_LCTL); 1207 pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1208 wr32(E1000_PCS_LCTL, pcs_ctrl_reg); 1209 1210 ret_val = igb_force_mac_fc(hw); 1211 if (ret_val) { 1212 hw_dbg("Error forcing flow control settings\n"); 1213 return ret_val; 1214 } 1215 } 1216 1217out: 1218 return ret_val; 1219} 1220 1221/** 1222 * igb_get_speed_and_duplex_copper - Retrieve current speed/duplex 1223 * @hw: pointer to the HW structure 1224 * @speed: stores the current speed 1225 * @duplex: stores the current duplex 1226 * 1227 * Read the status register for the current speed/duplex and store the current 1228 * speed and duplex for copper connections. 1229 **/ 1230s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, 1231 u16 *duplex) 1232{ 1233 u32 status; 1234 1235 status = rd32(E1000_STATUS); 1236 if (status & E1000_STATUS_SPEED_1000) { 1237 *speed = SPEED_1000; 1238 hw_dbg("1000 Mbs, "); 1239 } else if (status & E1000_STATUS_SPEED_100) { 1240 *speed = SPEED_100; 1241 hw_dbg("100 Mbs, "); 1242 } else { 1243 *speed = SPEED_10; 1244 hw_dbg("10 Mbs, "); 1245 } 1246 1247 if (status & E1000_STATUS_FD) { 1248 *duplex = FULL_DUPLEX; 1249 hw_dbg("Full Duplex\n"); 1250 } else { 1251 *duplex = HALF_DUPLEX; 1252 hw_dbg("Half Duplex\n"); 1253 } 1254 1255 return 0; 1256} 1257 1258/** 1259 * igb_get_hw_semaphore - Acquire hardware semaphore 1260 * @hw: pointer to the HW structure 1261 * 1262 * Acquire the HW semaphore to access the PHY or NVM 1263 **/ 1264s32 igb_get_hw_semaphore(struct e1000_hw *hw) 1265{ 1266 u32 swsm; 1267 s32 ret_val = 0; 1268 s32 timeout = hw->nvm.word_size + 1; 1269 s32 i = 0; 1270 1271 /* Get the SW semaphore */ 1272 while (i < timeout) { 1273 swsm = rd32(E1000_SWSM); 1274 if (!(swsm & E1000_SWSM_SMBI)) 1275 break; 1276 1277 udelay(50); 1278 i++; 1279 } 1280 1281 if (i == timeout) { 1282 hw_dbg("Driver can't access device - SMBI bit is set.\n"); 1283 ret_val = -E1000_ERR_NVM; 1284 goto out; 1285 } 1286 1287 /* Get the FW semaphore. */ 1288 for (i = 0; i < timeout; i++) { 1289 swsm = rd32(E1000_SWSM); 1290 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI); 1291 1292 /* Semaphore acquired if bit latched */ 1293 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI) 1294 break; 1295 1296 udelay(50); 1297 } 1298 1299 if (i == timeout) { 1300 /* Release semaphores */ 1301 igb_put_hw_semaphore(hw); 1302 hw_dbg("Driver can't access the NVM\n"); 1303 ret_val = -E1000_ERR_NVM; 1304 goto out; 1305 } 1306 1307out: 1308 return ret_val; 1309} 1310 1311/** 1312 * igb_put_hw_semaphore - Release hardware semaphore 1313 * @hw: pointer to the HW structure 1314 * 1315 * Release hardware semaphore used to access the PHY or NVM 1316 **/ 1317void igb_put_hw_semaphore(struct e1000_hw *hw) 1318{ 1319 u32 swsm; 1320 1321 swsm = rd32(E1000_SWSM); 1322 1323 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1324 1325 wr32(E1000_SWSM, swsm); 1326} 1327 1328/** 1329 * igb_get_auto_rd_done - Check for auto read completion 1330 * @hw: pointer to the HW structure 1331 * 1332 * Check EEPROM for Auto Read done bit. 1333 **/ 1334s32 igb_get_auto_rd_done(struct e1000_hw *hw) 1335{ 1336 s32 i = 0; 1337 s32 ret_val = 0; 1338 1339 1340 while (i < AUTO_READ_DONE_TIMEOUT) { 1341 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD) 1342 break; 1343 usleep_range(1000, 2000); 1344 i++; 1345 } 1346 1347 if (i == AUTO_READ_DONE_TIMEOUT) { 1348 hw_dbg("Auto read by HW from NVM has not completed.\n"); 1349 ret_val = -E1000_ERR_RESET; 1350 goto out; 1351 } 1352 1353out: 1354 return ret_val; 1355} 1356 1357/** 1358 * igb_valid_led_default - Verify a valid default LED config 1359 * @hw: pointer to the HW structure 1360 * @data: pointer to the NVM (EEPROM) 1361 * 1362 * Read the EEPROM for the current default LED configuration. If the 1363 * LED configuration is not valid, set to a valid LED configuration. 1364 **/ 1365static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data) 1366{ 1367 s32 ret_val; 1368 1369 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); 1370 if (ret_val) { 1371 hw_dbg("NVM Read Error\n"); 1372 goto out; 1373 } 1374 1375 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) { 1376 switch (hw->phy.media_type) { 1377 case e1000_media_type_internal_serdes: 1378 *data = ID_LED_DEFAULT_82575_SERDES; 1379 break; 1380 case e1000_media_type_copper: 1381 default: 1382 *data = ID_LED_DEFAULT; 1383 break; 1384 } 1385 } 1386out: 1387 return ret_val; 1388} 1389 1390/** 1391 * igb_id_led_init - 1392 * @hw: pointer to the HW structure 1393 * 1394 **/ 1395s32 igb_id_led_init(struct e1000_hw *hw) 1396{ 1397 struct e1000_mac_info *mac = &hw->mac; 1398 s32 ret_val; 1399 const u32 ledctl_mask = 0x000000FF; 1400 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1401 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1402 u16 data, i, temp; 1403 const u16 led_mask = 0x0F; 1404 1405 /* i210 and i211 devices have different LED mechanism */ 1406 if ((hw->mac.type == e1000_i210) || 1407 (hw->mac.type == e1000_i211)) 1408 ret_val = igb_valid_led_default_i210(hw, &data); 1409 else 1410 ret_val = igb_valid_led_default(hw, &data); 1411 1412 if (ret_val) 1413 goto out; 1414 1415 mac->ledctl_default = rd32(E1000_LEDCTL); 1416 mac->ledctl_mode1 = mac->ledctl_default; 1417 mac->ledctl_mode2 = mac->ledctl_default; 1418 1419 for (i = 0; i < 4; i++) { 1420 temp = (data >> (i << 2)) & led_mask; 1421 switch (temp) { 1422 case ID_LED_ON1_DEF2: 1423 case ID_LED_ON1_ON2: 1424 case ID_LED_ON1_OFF2: 1425 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1426 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1427 break; 1428 case ID_LED_OFF1_DEF2: 1429 case ID_LED_OFF1_ON2: 1430 case ID_LED_OFF1_OFF2: 1431 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1432 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1433 break; 1434 default: 1435 /* Do nothing */ 1436 break; 1437 } 1438 switch (temp) { 1439 case ID_LED_DEF1_ON2: 1440 case ID_LED_ON1_ON2: 1441 case ID_LED_OFF1_ON2: 1442 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1443 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1444 break; 1445 case ID_LED_DEF1_OFF2: 1446 case ID_LED_ON1_OFF2: 1447 case ID_LED_OFF1_OFF2: 1448 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1449 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1450 break; 1451 default: 1452 /* Do nothing */ 1453 break; 1454 } 1455 } 1456 1457out: 1458 return ret_val; 1459} 1460 1461/** 1462 * igb_cleanup_led - Set LED config to default operation 1463 * @hw: pointer to the HW structure 1464 * 1465 * Remove the current LED configuration and set the LED configuration 1466 * to the default value, saved from the EEPROM. 1467 **/ 1468s32 igb_cleanup_led(struct e1000_hw *hw) 1469{ 1470 wr32(E1000_LEDCTL, hw->mac.ledctl_default); 1471 return 0; 1472} 1473 1474/** 1475 * igb_blink_led - Blink LED 1476 * @hw: pointer to the HW structure 1477 * 1478 * Blink the led's which are set to be on. 1479 **/ 1480s32 igb_blink_led(struct e1000_hw *hw) 1481{ 1482 u32 ledctl_blink = 0; 1483 u32 i; 1484 1485 if (hw->phy.media_type == e1000_media_type_fiber) { 1486 /* always blink LED0 for PCI-E fiber */ 1487 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1488 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1489 } else { 1490 /* Set the blink bit for each LED that's "on" (0x0E) 1491 * (or "off" if inverted) in ledctl_mode2. The blink 1492 * logic in hardware only works when mode is set to "on" 1493 * so it must be changed accordingly when the mode is 1494 * "off" and inverted. 1495 */ 1496 ledctl_blink = hw->mac.ledctl_mode2; 1497 for (i = 0; i < 32; i += 8) { 1498 u32 mode = (hw->mac.ledctl_mode2 >> i) & 1499 E1000_LEDCTL_LED0_MODE_MASK; 1500 u32 led_default = hw->mac.ledctl_default >> i; 1501 1502 if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && 1503 (mode == E1000_LEDCTL_MODE_LED_ON)) || 1504 ((led_default & E1000_LEDCTL_LED0_IVRT) && 1505 (mode == E1000_LEDCTL_MODE_LED_OFF))) { 1506 ledctl_blink &= 1507 ~(E1000_LEDCTL_LED0_MODE_MASK << i); 1508 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | 1509 E1000_LEDCTL_MODE_LED_ON) << i; 1510 } 1511 } 1512 } 1513 1514 wr32(E1000_LEDCTL, ledctl_blink); 1515 1516 return 0; 1517} 1518 1519/** 1520 * igb_led_off - Turn LED off 1521 * @hw: pointer to the HW structure 1522 * 1523 * Turn LED off. 1524 **/ 1525s32 igb_led_off(struct e1000_hw *hw) 1526{ 1527 switch (hw->phy.media_type) { 1528 case e1000_media_type_copper: 1529 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1); 1530 break; 1531 default: 1532 break; 1533 } 1534 1535 return 0; 1536} 1537 1538/** 1539 * igb_disable_pcie_master - Disables PCI-express master access 1540 * @hw: pointer to the HW structure 1541 * 1542 * Returns 0 (0) if successful, else returns -10 1543 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1544 * the master requests to be disabled. 1545 * 1546 * Disables PCI-Express master access and verifies there are no pending 1547 * requests. 1548 **/ 1549s32 igb_disable_pcie_master(struct e1000_hw *hw) 1550{ 1551 u32 ctrl; 1552 s32 timeout = MASTER_DISABLE_TIMEOUT; 1553 s32 ret_val = 0; 1554 1555 if (hw->bus.type != e1000_bus_type_pci_express) 1556 goto out; 1557 1558 ctrl = rd32(E1000_CTRL); 1559 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1560 wr32(E1000_CTRL, ctrl); 1561 1562 while (timeout) { 1563 if (!(rd32(E1000_STATUS) & 1564 E1000_STATUS_GIO_MASTER_ENABLE)) 1565 break; 1566 udelay(100); 1567 timeout--; 1568 } 1569 1570 if (!timeout) { 1571 hw_dbg("Master requests are pending.\n"); 1572 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; 1573 goto out; 1574 } 1575 1576out: 1577 return ret_val; 1578} 1579 1580/** 1581 * igb_validate_mdi_setting - Verify MDI/MDIx settings 1582 * @hw: pointer to the HW structure 1583 * 1584 * Verify that when not using auto-negotitation that MDI/MDIx is correctly 1585 * set, which is forced to MDI mode only. 1586 **/ 1587s32 igb_validate_mdi_setting(struct e1000_hw *hw) 1588{ 1589 s32 ret_val = 0; 1590 1591 /* All MDI settings are supported on 82580 and newer. */ 1592 if (hw->mac.type >= e1000_82580) 1593 goto out; 1594 1595 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { 1596 hw_dbg("Invalid MDI setting detected\n"); 1597 hw->phy.mdix = 1; 1598 ret_val = -E1000_ERR_CONFIG; 1599 goto out; 1600 } 1601 1602out: 1603 return ret_val; 1604} 1605 1606/** 1607 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register 1608 * @hw: pointer to the HW structure 1609 * @reg: 32bit register offset such as E1000_SCTL 1610 * @offset: register offset to write to 1611 * @data: data to write at register offset 1612 * 1613 * Writes an address/data control type register. There are several of these 1614 * and they all have the format address << 8 | data and bit 31 is polled for 1615 * completion. 1616 **/ 1617s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, 1618 u32 offset, u8 data) 1619{ 1620 u32 i, regvalue = 0; 1621 s32 ret_val = 0; 1622 1623 /* Set up the address and data */ 1624 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT); 1625 wr32(reg, regvalue); 1626 1627 /* Poll the ready bit to see if the MDI read completed */ 1628 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) { 1629 udelay(5); 1630 regvalue = rd32(reg); 1631 if (regvalue & E1000_GEN_CTL_READY) 1632 break; 1633 } 1634 if (!(regvalue & E1000_GEN_CTL_READY)) { 1635 hw_dbg("Reg %08x did not indicate ready\n", reg); 1636 ret_val = -E1000_ERR_PHY; 1637 goto out; 1638 } 1639 1640out: 1641 return ret_val; 1642} 1643 1644/** 1645 * igb_enable_mng_pass_thru - Enable processing of ARP's 1646 * @hw: pointer to the HW structure 1647 * 1648 * Verifies the hardware needs to leave interface enabled so that frames can 1649 * be directed to and from the management interface. 1650 **/ 1651bool igb_enable_mng_pass_thru(struct e1000_hw *hw) 1652{ 1653 u32 manc; 1654 u32 fwsm, factps; 1655 bool ret_val = false; 1656 1657 if (!hw->mac.asf_firmware_present) 1658 goto out; 1659 1660 manc = rd32(E1000_MANC); 1661 1662 if (!(manc & E1000_MANC_RCV_TCO_EN)) 1663 goto out; 1664 1665 if (hw->mac.arc_subsystem_valid) { 1666 fwsm = rd32(E1000_FWSM); 1667 factps = rd32(E1000_FACTPS); 1668 1669 if (!(factps & E1000_FACTPS_MNGCG) && 1670 ((fwsm & E1000_FWSM_MODE_MASK) == 1671 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { 1672 ret_val = true; 1673 goto out; 1674 } 1675 } else { 1676 if ((manc & E1000_MANC_SMBUS_EN) && 1677 !(manc & E1000_MANC_ASF_EN)) { 1678 ret_val = true; 1679 goto out; 1680 } 1681 } 1682 1683out: 1684 return ret_val; 1685}