cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e1000_mac.c (48822B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2007 - 2018 Intel Corporation. */
      3
      4#include <linux/if_ether.h>
      5#include <linux/delay.h>
      6#include <linux/pci.h>
      7#include <linux/netdevice.h>
      8#include <linux/etherdevice.h>
      9
     10#include "e1000_mac.h"
     11
     12#include "igb.h"
     13
     14static s32 igb_set_default_fc(struct e1000_hw *hw);
     15static void igb_set_fc_watermarks(struct e1000_hw *hw);
     16
     17/**
     18 *  igb_get_bus_info_pcie - Get PCIe bus information
     19 *  @hw: pointer to the HW structure
     20 *
     21 *  Determines and stores the system bus information for a particular
     22 *  network interface.  The following bus information is determined and stored:
     23 *  bus speed, bus width, type (PCIe), and PCIe function.
     24 **/
     25s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
     26{
     27	struct e1000_bus_info *bus = &hw->bus;
     28	s32 ret_val;
     29	u32 reg;
     30	u16 pcie_link_status;
     31
     32	bus->type = e1000_bus_type_pci_express;
     33
     34	ret_val = igb_read_pcie_cap_reg(hw,
     35					PCI_EXP_LNKSTA,
     36					&pcie_link_status);
     37	if (ret_val) {
     38		bus->width = e1000_bus_width_unknown;
     39		bus->speed = e1000_bus_speed_unknown;
     40	} else {
     41		switch (pcie_link_status & PCI_EXP_LNKSTA_CLS) {
     42		case PCI_EXP_LNKSTA_CLS_2_5GB:
     43			bus->speed = e1000_bus_speed_2500;
     44			break;
     45		case PCI_EXP_LNKSTA_CLS_5_0GB:
     46			bus->speed = e1000_bus_speed_5000;
     47			break;
     48		default:
     49			bus->speed = e1000_bus_speed_unknown;
     50			break;
     51		}
     52
     53		bus->width = (enum e1000_bus_width)((pcie_link_status &
     54						     PCI_EXP_LNKSTA_NLW) >>
     55						     PCI_EXP_LNKSTA_NLW_SHIFT);
     56	}
     57
     58	reg = rd32(E1000_STATUS);
     59	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
     60
     61	return 0;
     62}
     63
     64/**
     65 *  igb_clear_vfta - Clear VLAN filter table
     66 *  @hw: pointer to the HW structure
     67 *
     68 *  Clears the register array which contains the VLAN filter table by
     69 *  setting all the values to 0.
     70 **/
     71void igb_clear_vfta(struct e1000_hw *hw)
     72{
     73	u32 offset;
     74
     75	for (offset = E1000_VLAN_FILTER_TBL_SIZE; offset--;)
     76		hw->mac.ops.write_vfta(hw, offset, 0);
     77}
     78
     79/**
     80 *  igb_write_vfta - Write value to VLAN filter table
     81 *  @hw: pointer to the HW structure
     82 *  @offset: register offset in VLAN filter table
     83 *  @value: register value written to VLAN filter table
     84 *
     85 *  Writes value at the given offset in the register array which stores
     86 *  the VLAN filter table.
     87 **/
     88void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
     89{
     90	struct igb_adapter *adapter = hw->back;
     91
     92	array_wr32(E1000_VFTA, offset, value);
     93	wrfl();
     94
     95	adapter->shadow_vfta[offset] = value;
     96}
     97
     98/**
     99 *  igb_init_rx_addrs - Initialize receive address's
    100 *  @hw: pointer to the HW structure
    101 *  @rar_count: receive address registers
    102 *
    103 *  Setups the receive address registers by setting the base receive address
    104 *  register to the devices MAC address and clearing all the other receive
    105 *  address registers to 0.
    106 **/
    107void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
    108{
    109	u32 i;
    110	u8 mac_addr[ETH_ALEN] = {0};
    111
    112	/* Setup the receive address */
    113	hw_dbg("Programming MAC Address into RAR[0]\n");
    114
    115	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
    116
    117	/* Zero out the other (rar_entry_count - 1) receive addresses */
    118	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
    119	for (i = 1; i < rar_count; i++)
    120		hw->mac.ops.rar_set(hw, mac_addr, i);
    121}
    122
    123/**
    124 *  igb_find_vlvf_slot - find the VLAN id or the first empty slot
    125 *  @hw: pointer to hardware structure
    126 *  @vlan: VLAN id to write to VLAN filter
    127 *  @vlvf_bypass: skip VLVF if no match is found
    128 *
    129 *  return the VLVF index where this VLAN id should be placed
    130 *
    131 **/
    132static s32 igb_find_vlvf_slot(struct e1000_hw *hw, u32 vlan, bool vlvf_bypass)
    133{
    134	s32 regindex, first_empty_slot;
    135	u32 bits;
    136
    137	/* short cut the special case */
    138	if (vlan == 0)
    139		return 0;
    140
    141	/* if vlvf_bypass is set we don't want to use an empty slot, we
    142	 * will simply bypass the VLVF if there are no entries present in the
    143	 * VLVF that contain our VLAN
    144	 */
    145	first_empty_slot = vlvf_bypass ? -E1000_ERR_NO_SPACE : 0;
    146
    147	/* Search for the VLAN id in the VLVF entries. Save off the first empty
    148	 * slot found along the way.
    149	 *
    150	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
    151	 */
    152	for (regindex = E1000_VLVF_ARRAY_SIZE; --regindex > 0;) {
    153		bits = rd32(E1000_VLVF(regindex)) & E1000_VLVF_VLANID_MASK;
    154		if (bits == vlan)
    155			return regindex;
    156		if (!first_empty_slot && !bits)
    157			first_empty_slot = regindex;
    158	}
    159
    160	return first_empty_slot ? : -E1000_ERR_NO_SPACE;
    161}
    162
    163/**
    164 *  igb_vfta_set - enable or disable vlan in VLAN filter table
    165 *  @hw: pointer to the HW structure
    166 *  @vlan: VLAN id to add or remove
    167 *  @vind: VMDq output index that maps queue to VLAN id
    168 *  @vlan_on: if true add filter, if false remove
    169 *  @vlvf_bypass: skip VLVF if no match is found
    170 *
    171 *  Sets or clears a bit in the VLAN filter table array based on VLAN id
    172 *  and if we are adding or removing the filter
    173 **/
    174s32 igb_vfta_set(struct e1000_hw *hw, u32 vlan, u32 vind,
    175		 bool vlan_on, bool vlvf_bypass)
    176{
    177	struct igb_adapter *adapter = hw->back;
    178	u32 regidx, vfta_delta, vfta, bits;
    179	s32 vlvf_index;
    180
    181	if ((vlan > 4095) || (vind > 7))
    182		return -E1000_ERR_PARAM;
    183
    184	/* this is a 2 part operation - first the VFTA, then the
    185	 * VLVF and VLVFB if VT Mode is set
    186	 * We don't write the VFTA until we know the VLVF part succeeded.
    187	 */
    188
    189	/* Part 1
    190	 * The VFTA is a bitstring made up of 128 32-bit registers
    191	 * that enable the particular VLAN id, much like the MTA:
    192	 *    bits[11-5]: which register
    193	 *    bits[4-0]:  which bit in the register
    194	 */
    195	regidx = vlan / 32;
    196	vfta_delta = BIT(vlan % 32);
    197	vfta = adapter->shadow_vfta[regidx];
    198
    199	/* vfta_delta represents the difference between the current value
    200	 * of vfta and the value we want in the register.  Since the diff
    201	 * is an XOR mask we can just update vfta using an XOR.
    202	 */
    203	vfta_delta &= vlan_on ? ~vfta : vfta;
    204	vfta ^= vfta_delta;
    205
    206	/* Part 2
    207	 * If VT Mode is set
    208	 *   Either vlan_on
    209	 *     make sure the VLAN is in VLVF
    210	 *     set the vind bit in the matching VLVFB
    211	 *   Or !vlan_on
    212	 *     clear the pool bit and possibly the vind
    213	 */
    214	if (!adapter->vfs_allocated_count)
    215		goto vfta_update;
    216
    217	vlvf_index = igb_find_vlvf_slot(hw, vlan, vlvf_bypass);
    218	if (vlvf_index < 0) {
    219		if (vlvf_bypass)
    220			goto vfta_update;
    221		return vlvf_index;
    222	}
    223
    224	bits = rd32(E1000_VLVF(vlvf_index));
    225
    226	/* set the pool bit */
    227	bits |= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
    228	if (vlan_on)
    229		goto vlvf_update;
    230
    231	/* clear the pool bit */
    232	bits ^= BIT(E1000_VLVF_POOLSEL_SHIFT + vind);
    233
    234	if (!(bits & E1000_VLVF_POOLSEL_MASK)) {
    235		/* Clear VFTA first, then disable VLVF.  Otherwise
    236		 * we run the risk of stray packets leaking into
    237		 * the PF via the default pool
    238		 */
    239		if (vfta_delta)
    240			hw->mac.ops.write_vfta(hw, regidx, vfta);
    241
    242		/* disable VLVF and clear remaining bit from pool */
    243		wr32(E1000_VLVF(vlvf_index), 0);
    244
    245		return 0;
    246	}
    247
    248	/* If there are still bits set in the VLVFB registers
    249	 * for the VLAN ID indicated we need to see if the
    250	 * caller is requesting that we clear the VFTA entry bit.
    251	 * If the caller has requested that we clear the VFTA
    252	 * entry bit but there are still pools/VFs using this VLAN
    253	 * ID entry then ignore the request.  We're not worried
    254	 * about the case where we're turning the VFTA VLAN ID
    255	 * entry bit on, only when requested to turn it off as
    256	 * there may be multiple pools and/or VFs using the
    257	 * VLAN ID entry.  In that case we cannot clear the
    258	 * VFTA bit until all pools/VFs using that VLAN ID have also
    259	 * been cleared.  This will be indicated by "bits" being
    260	 * zero.
    261	 */
    262	vfta_delta = 0;
    263
    264vlvf_update:
    265	/* record pool change and enable VLAN ID if not already enabled */
    266	wr32(E1000_VLVF(vlvf_index), bits | vlan | E1000_VLVF_VLANID_ENABLE);
    267
    268vfta_update:
    269	/* bit was set/cleared before we started */
    270	if (vfta_delta)
    271		hw->mac.ops.write_vfta(hw, regidx, vfta);
    272
    273	return 0;
    274}
    275
    276/**
    277 *  igb_check_alt_mac_addr - Check for alternate MAC addr
    278 *  @hw: pointer to the HW structure
    279 *
    280 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
    281 *  can be setup by pre-boot software and must be treated like a permanent
    282 *  address and must override the actual permanent MAC address.  If an
    283 *  alternate MAC address is found it is saved in the hw struct and
    284 *  programmed into RAR0 and the function returns success, otherwise the
    285 *  function returns an error.
    286 **/
    287s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
    288{
    289	u32 i;
    290	s32 ret_val = 0;
    291	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
    292	u8 alt_mac_addr[ETH_ALEN];
    293
    294	/* Alternate MAC address is handled by the option ROM for 82580
    295	 * and newer. SW support not required.
    296	 */
    297	if (hw->mac.type >= e1000_82580)
    298		goto out;
    299
    300	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
    301				 &nvm_alt_mac_addr_offset);
    302	if (ret_val) {
    303		hw_dbg("NVM Read Error\n");
    304		goto out;
    305	}
    306
    307	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
    308	    (nvm_alt_mac_addr_offset == 0x0000))
    309		/* There is no Alternate MAC Address */
    310		goto out;
    311
    312	if (hw->bus.func == E1000_FUNC_1)
    313		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
    314	if (hw->bus.func == E1000_FUNC_2)
    315		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
    316
    317	if (hw->bus.func == E1000_FUNC_3)
    318		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
    319	for (i = 0; i < ETH_ALEN; i += 2) {
    320		offset = nvm_alt_mac_addr_offset + (i >> 1);
    321		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
    322		if (ret_val) {
    323			hw_dbg("NVM Read Error\n");
    324			goto out;
    325		}
    326
    327		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
    328		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
    329	}
    330
    331	/* if multicast bit is set, the alternate address will not be used */
    332	if (is_multicast_ether_addr(alt_mac_addr)) {
    333		hw_dbg("Ignoring Alternate Mac Address with MC bit set\n");
    334		goto out;
    335	}
    336
    337	/* We have a valid alternate MAC address, and we want to treat it the
    338	 * same as the normal permanent MAC address stored by the HW into the
    339	 * RAR. Do this by mapping this address into RAR0.
    340	 */
    341	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
    342
    343out:
    344	return ret_val;
    345}
    346
    347/**
    348 *  igb_rar_set - Set receive address register
    349 *  @hw: pointer to the HW structure
    350 *  @addr: pointer to the receive address
    351 *  @index: receive address array register
    352 *
    353 *  Sets the receive address array register at index to the address passed
    354 *  in by addr.
    355 **/
    356void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
    357{
    358	u32 rar_low, rar_high;
    359
    360	/* HW expects these in little endian so we reverse the byte order
    361	 * from network order (big endian) to little endian
    362	 */
    363	rar_low = ((u32) addr[0] |
    364		   ((u32) addr[1] << 8) |
    365		    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
    366
    367	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
    368
    369	/* If MAC address zero, no need to set the AV bit */
    370	if (rar_low || rar_high)
    371		rar_high |= E1000_RAH_AV;
    372
    373	/* Some bridges will combine consecutive 32-bit writes into
    374	 * a single burst write, which will malfunction on some parts.
    375	 * The flushes avoid this.
    376	 */
    377	wr32(E1000_RAL(index), rar_low);
    378	wrfl();
    379	wr32(E1000_RAH(index), rar_high);
    380	wrfl();
    381}
    382
    383/**
    384 *  igb_mta_set - Set multicast filter table address
    385 *  @hw: pointer to the HW structure
    386 *  @hash_value: determines the MTA register and bit to set
    387 *
    388 *  The multicast table address is a register array of 32-bit registers.
    389 *  The hash_value is used to determine what register the bit is in, the
    390 *  current value is read, the new bit is OR'd in and the new value is
    391 *  written back into the register.
    392 **/
    393void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
    394{
    395	u32 hash_bit, hash_reg, mta;
    396
    397	/* The MTA is a register array of 32-bit registers. It is
    398	 * treated like an array of (32*mta_reg_count) bits.  We want to
    399	 * set bit BitArray[hash_value]. So we figure out what register
    400	 * the bit is in, read it, OR in the new bit, then write
    401	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a
    402	 * mask to bits 31:5 of the hash value which gives us the
    403	 * register we're modifying.  The hash bit within that register
    404	 * is determined by the lower 5 bits of the hash value.
    405	 */
    406	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
    407	hash_bit = hash_value & 0x1F;
    408
    409	mta = array_rd32(E1000_MTA, hash_reg);
    410
    411	mta |= BIT(hash_bit);
    412
    413	array_wr32(E1000_MTA, hash_reg, mta);
    414	wrfl();
    415}
    416
    417/**
    418 *  igb_hash_mc_addr - Generate a multicast hash value
    419 *  @hw: pointer to the HW structure
    420 *  @mc_addr: pointer to a multicast address
    421 *
    422 *  Generates a multicast address hash value which is used to determine
    423 *  the multicast filter table array address and new table value.  See
    424 *  igb_mta_set()
    425 **/
    426static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
    427{
    428	u32 hash_value, hash_mask;
    429	u8 bit_shift = 0;
    430
    431	/* Register count multiplied by bits per register */
    432	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
    433
    434	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
    435	 * where 0xFF would still fall within the hash mask.
    436	 */
    437	while (hash_mask >> bit_shift != 0xFF)
    438		bit_shift++;
    439
    440	/* The portion of the address that is used for the hash table
    441	 * is determined by the mc_filter_type setting.
    442	 * The algorithm is such that there is a total of 8 bits of shifting.
    443	 * The bit_shift for a mc_filter_type of 0 represents the number of
    444	 * left-shifts where the MSB of mc_addr[5] would still fall within
    445	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
    446	 * of 8 bits of shifting, then mc_addr[4] will shift right the
    447	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
    448	 * cases are a variation of this algorithm...essentially raising the
    449	 * number of bits to shift mc_addr[5] left, while still keeping the
    450	 * 8-bit shifting total.
    451	 *
    452	 * For example, given the following Destination MAC Address and an
    453	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
    454	 * we can see that the bit_shift for case 0 is 4.  These are the hash
    455	 * values resulting from each mc_filter_type...
    456	 * [0] [1] [2] [3] [4] [5]
    457	 * 01  AA  00  12  34  56
    458	 * LSB                 MSB
    459	 *
    460	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
    461	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
    462	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
    463	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
    464	 */
    465	switch (hw->mac.mc_filter_type) {
    466	default:
    467	case 0:
    468		break;
    469	case 1:
    470		bit_shift += 1;
    471		break;
    472	case 2:
    473		bit_shift += 2;
    474		break;
    475	case 3:
    476		bit_shift += 4;
    477		break;
    478	}
    479
    480	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
    481				  (((u16) mc_addr[5]) << bit_shift)));
    482
    483	return hash_value;
    484}
    485
    486/**
    487 * igb_i21x_hw_doublecheck - double checks potential HW issue in i21X
    488 * @hw: pointer to the HW structure
    489 *
    490 * Checks if multicast array is wrote correctly
    491 * If not then rewrites again to register
    492 **/
    493static void igb_i21x_hw_doublecheck(struct e1000_hw *hw)
    494{
    495	int failed_cnt = 3;
    496	bool is_failed;
    497	int i;
    498
    499	do {
    500		is_failed = false;
    501		for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) {
    502			if (array_rd32(E1000_MTA, i) != hw->mac.mta_shadow[i]) {
    503				is_failed = true;
    504				array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
    505				wrfl();
    506			}
    507		}
    508		if (is_failed && --failed_cnt <= 0) {
    509			hw_dbg("Failed to update MTA_REGISTER, too many retries");
    510			break;
    511		}
    512	} while (is_failed);
    513}
    514
    515/**
    516 *  igb_update_mc_addr_list - Update Multicast addresses
    517 *  @hw: pointer to the HW structure
    518 *  @mc_addr_list: array of multicast addresses to program
    519 *  @mc_addr_count: number of multicast addresses to program
    520 *
    521 *  Updates entire Multicast Table Array.
    522 *  The caller must have a packed mc_addr_list of multicast addresses.
    523 **/
    524void igb_update_mc_addr_list(struct e1000_hw *hw,
    525			     u8 *mc_addr_list, u32 mc_addr_count)
    526{
    527	u32 hash_value, hash_bit, hash_reg;
    528	int i;
    529
    530	/* clear mta_shadow */
    531	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
    532
    533	/* update mta_shadow from mc_addr_list */
    534	for (i = 0; (u32) i < mc_addr_count; i++) {
    535		hash_value = igb_hash_mc_addr(hw, mc_addr_list);
    536
    537		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
    538		hash_bit = hash_value & 0x1F;
    539
    540		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
    541		mc_addr_list += (ETH_ALEN);
    542	}
    543
    544	/* replace the entire MTA table */
    545	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
    546		array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
    547	wrfl();
    548	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
    549		igb_i21x_hw_doublecheck(hw);
    550}
    551
    552/**
    553 *  igb_clear_hw_cntrs_base - Clear base hardware counters
    554 *  @hw: pointer to the HW structure
    555 *
    556 *  Clears the base hardware counters by reading the counter registers.
    557 **/
    558void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
    559{
    560	rd32(E1000_CRCERRS);
    561	rd32(E1000_SYMERRS);
    562	rd32(E1000_MPC);
    563	rd32(E1000_SCC);
    564	rd32(E1000_ECOL);
    565	rd32(E1000_MCC);
    566	rd32(E1000_LATECOL);
    567	rd32(E1000_COLC);
    568	rd32(E1000_DC);
    569	rd32(E1000_SEC);
    570	rd32(E1000_RLEC);
    571	rd32(E1000_XONRXC);
    572	rd32(E1000_XONTXC);
    573	rd32(E1000_XOFFRXC);
    574	rd32(E1000_XOFFTXC);
    575	rd32(E1000_FCRUC);
    576	rd32(E1000_GPRC);
    577	rd32(E1000_BPRC);
    578	rd32(E1000_MPRC);
    579	rd32(E1000_GPTC);
    580	rd32(E1000_GORCL);
    581	rd32(E1000_GORCH);
    582	rd32(E1000_GOTCL);
    583	rd32(E1000_GOTCH);
    584	rd32(E1000_RNBC);
    585	rd32(E1000_RUC);
    586	rd32(E1000_RFC);
    587	rd32(E1000_ROC);
    588	rd32(E1000_RJC);
    589	rd32(E1000_TORL);
    590	rd32(E1000_TORH);
    591	rd32(E1000_TOTL);
    592	rd32(E1000_TOTH);
    593	rd32(E1000_TPR);
    594	rd32(E1000_TPT);
    595	rd32(E1000_MPTC);
    596	rd32(E1000_BPTC);
    597}
    598
    599/**
    600 *  igb_check_for_copper_link - Check for link (Copper)
    601 *  @hw: pointer to the HW structure
    602 *
    603 *  Checks to see of the link status of the hardware has changed.  If a
    604 *  change in link status has been detected, then we read the PHY registers
    605 *  to get the current speed/duplex if link exists.
    606 **/
    607s32 igb_check_for_copper_link(struct e1000_hw *hw)
    608{
    609	struct e1000_mac_info *mac = &hw->mac;
    610	s32 ret_val;
    611	bool link;
    612
    613	/* We only want to go out to the PHY registers to see if Auto-Neg
    614	 * has completed and/or if our link status has changed.  The
    615	 * get_link_status flag is set upon receiving a Link Status
    616	 * Change or Rx Sequence Error interrupt.
    617	 */
    618	if (!mac->get_link_status) {
    619		ret_val = 0;
    620		goto out;
    621	}
    622
    623	/* First we want to see if the MII Status Register reports
    624	 * link.  If so, then we want to get the current speed/duplex
    625	 * of the PHY.
    626	 */
    627	ret_val = igb_phy_has_link(hw, 1, 0, &link);
    628	if (ret_val)
    629		goto out;
    630
    631	if (!link)
    632		goto out; /* No link detected */
    633
    634	mac->get_link_status = false;
    635
    636	/* Check if there was DownShift, must be checked
    637	 * immediately after link-up
    638	 */
    639	igb_check_downshift(hw);
    640
    641	/* If we are forcing speed/duplex, then we simply return since
    642	 * we have already determined whether we have link or not.
    643	 */
    644	if (!mac->autoneg) {
    645		ret_val = -E1000_ERR_CONFIG;
    646		goto out;
    647	}
    648
    649	/* Auto-Neg is enabled.  Auto Speed Detection takes care
    650	 * of MAC speed/duplex configuration.  So we only need to
    651	 * configure Collision Distance in the MAC.
    652	 */
    653	igb_config_collision_dist(hw);
    654
    655	/* Configure Flow Control now that Auto-Neg has completed.
    656	 * First, we need to restore the desired flow control
    657	 * settings because we may have had to re-autoneg with a
    658	 * different link partner.
    659	 */
    660	ret_val = igb_config_fc_after_link_up(hw);
    661	if (ret_val)
    662		hw_dbg("Error configuring flow control\n");
    663
    664out:
    665	return ret_val;
    666}
    667
    668/**
    669 *  igb_setup_link - Setup flow control and link settings
    670 *  @hw: pointer to the HW structure
    671 *
    672 *  Determines which flow control settings to use, then configures flow
    673 *  control.  Calls the appropriate media-specific link configuration
    674 *  function.  Assuming the adapter has a valid link partner, a valid link
    675 *  should be established.  Assumes the hardware has previously been reset
    676 *  and the transmitter and receiver are not enabled.
    677 **/
    678s32 igb_setup_link(struct e1000_hw *hw)
    679{
    680	s32 ret_val = 0;
    681
    682	/* In the case of the phy reset being blocked, we already have a link.
    683	 * We do not need to set it up again.
    684	 */
    685	if (igb_check_reset_block(hw))
    686		goto out;
    687
    688	/* If requested flow control is set to default, set flow control
    689	 * based on the EEPROM flow control settings.
    690	 */
    691	if (hw->fc.requested_mode == e1000_fc_default) {
    692		ret_val = igb_set_default_fc(hw);
    693		if (ret_val)
    694			goto out;
    695	}
    696
    697	/* We want to save off the original Flow Control configuration just
    698	 * in case we get disconnected and then reconnected into a different
    699	 * hub or switch with different Flow Control capabilities.
    700	 */
    701	hw->fc.current_mode = hw->fc.requested_mode;
    702
    703	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
    704
    705	/* Call the necessary media_type subroutine to configure the link. */
    706	ret_val = hw->mac.ops.setup_physical_interface(hw);
    707	if (ret_val)
    708		goto out;
    709
    710	/* Initialize the flow control address, type, and PAUSE timer
    711	 * registers to their default values.  This is done even if flow
    712	 * control is disabled, because it does not hurt anything to
    713	 * initialize these registers.
    714	 */
    715	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
    716	wr32(E1000_FCT, FLOW_CONTROL_TYPE);
    717	wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
    718	wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
    719
    720	wr32(E1000_FCTTV, hw->fc.pause_time);
    721
    722	igb_set_fc_watermarks(hw);
    723
    724out:
    725
    726	return ret_val;
    727}
    728
    729/**
    730 *  igb_config_collision_dist - Configure collision distance
    731 *  @hw: pointer to the HW structure
    732 *
    733 *  Configures the collision distance to the default value and is used
    734 *  during link setup. Currently no func pointer exists and all
    735 *  implementations are handled in the generic version of this function.
    736 **/
    737void igb_config_collision_dist(struct e1000_hw *hw)
    738{
    739	u32 tctl;
    740
    741	tctl = rd32(E1000_TCTL);
    742
    743	tctl &= ~E1000_TCTL_COLD;
    744	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
    745
    746	wr32(E1000_TCTL, tctl);
    747	wrfl();
    748}
    749
    750/**
    751 *  igb_set_fc_watermarks - Set flow control high/low watermarks
    752 *  @hw: pointer to the HW structure
    753 *
    754 *  Sets the flow control high/low threshold (watermark) registers.  If
    755 *  flow control XON frame transmission is enabled, then set XON frame
    756 *  tansmission as well.
    757 **/
    758static void igb_set_fc_watermarks(struct e1000_hw *hw)
    759{
    760	u32 fcrtl = 0, fcrth = 0;
    761
    762	/* Set the flow control receive threshold registers.  Normally,
    763	 * these registers will be set to a default threshold that may be
    764	 * adjusted later by the driver's runtime code.  However, if the
    765	 * ability to transmit pause frames is not enabled, then these
    766	 * registers will be set to 0.
    767	 */
    768	if (hw->fc.current_mode & e1000_fc_tx_pause) {
    769		/* We need to set up the Receive Threshold high and low water
    770		 * marks as well as (optionally) enabling the transmission of
    771		 * XON frames.
    772		 */
    773		fcrtl = hw->fc.low_water;
    774		if (hw->fc.send_xon)
    775			fcrtl |= E1000_FCRTL_XONE;
    776
    777		fcrth = hw->fc.high_water;
    778	}
    779	wr32(E1000_FCRTL, fcrtl);
    780	wr32(E1000_FCRTH, fcrth);
    781}
    782
    783/**
    784 *  igb_set_default_fc - Set flow control default values
    785 *  @hw: pointer to the HW structure
    786 *
    787 *  Read the EEPROM for the default values for flow control and store the
    788 *  values.
    789 **/
    790static s32 igb_set_default_fc(struct e1000_hw *hw)
    791{
    792	s32 ret_val = 0;
    793	u16 lan_offset;
    794	u16 nvm_data;
    795
    796	/* Read and store word 0x0F of the EEPROM. This word contains bits
    797	 * that determine the hardware's default PAUSE (flow control) mode,
    798	 * a bit that determines whether the HW defaults to enabling or
    799	 * disabling auto-negotiation, and the direction of the
    800	 * SW defined pins. If there is no SW over-ride of the flow
    801	 * control setting, then the variable hw->fc will
    802	 * be initialized based on a value in the EEPROM.
    803	 */
    804	if (hw->mac.type == e1000_i350)
    805		lan_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
    806	else
    807		lan_offset = 0;
    808
    809	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG + lan_offset,
    810				   1, &nvm_data);
    811	if (ret_val) {
    812		hw_dbg("NVM Read Error\n");
    813		goto out;
    814	}
    815
    816	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
    817		hw->fc.requested_mode = e1000_fc_none;
    818	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
    819		hw->fc.requested_mode = e1000_fc_tx_pause;
    820	else
    821		hw->fc.requested_mode = e1000_fc_full;
    822
    823out:
    824	return ret_val;
    825}
    826
    827/**
    828 *  igb_force_mac_fc - Force the MAC's flow control settings
    829 *  @hw: pointer to the HW structure
    830 *
    831 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
    832 *  device control register to reflect the adapter settings.  TFCE and RFCE
    833 *  need to be explicitly set by software when a copper PHY is used because
    834 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
    835 *  also configure these bits when link is forced on a fiber connection.
    836 **/
    837s32 igb_force_mac_fc(struct e1000_hw *hw)
    838{
    839	u32 ctrl;
    840	s32 ret_val = 0;
    841
    842	ctrl = rd32(E1000_CTRL);
    843
    844	/* Because we didn't get link via the internal auto-negotiation
    845	 * mechanism (we either forced link or we got link via PHY
    846	 * auto-neg), we have to manually enable/disable transmit an
    847	 * receive flow control.
    848	 *
    849	 * The "Case" statement below enables/disable flow control
    850	 * according to the "hw->fc.current_mode" parameter.
    851	 *
    852	 * The possible values of the "fc" parameter are:
    853	 *      0:  Flow control is completely disabled
    854	 *      1:  Rx flow control is enabled (we can receive pause
    855	 *          frames but not send pause frames).
    856	 *      2:  Tx flow control is enabled (we can send pause frames
    857	 *          frames but we do not receive pause frames).
    858	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
    859	 *  other:  No other values should be possible at this point.
    860	 */
    861	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
    862
    863	switch (hw->fc.current_mode) {
    864	case e1000_fc_none:
    865		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
    866		break;
    867	case e1000_fc_rx_pause:
    868		ctrl &= (~E1000_CTRL_TFCE);
    869		ctrl |= E1000_CTRL_RFCE;
    870		break;
    871	case e1000_fc_tx_pause:
    872		ctrl &= (~E1000_CTRL_RFCE);
    873		ctrl |= E1000_CTRL_TFCE;
    874		break;
    875	case e1000_fc_full:
    876		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
    877		break;
    878	default:
    879		hw_dbg("Flow control param set incorrectly\n");
    880		ret_val = -E1000_ERR_CONFIG;
    881		goto out;
    882	}
    883
    884	wr32(E1000_CTRL, ctrl);
    885
    886out:
    887	return ret_val;
    888}
    889
    890/**
    891 *  igb_config_fc_after_link_up - Configures flow control after link
    892 *  @hw: pointer to the HW structure
    893 *
    894 *  Checks the status of auto-negotiation after link up to ensure that the
    895 *  speed and duplex were not forced.  If the link needed to be forced, then
    896 *  flow control needs to be forced also.  If auto-negotiation is enabled
    897 *  and did not fail, then we configure flow control based on our link
    898 *  partner.
    899 **/
    900s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
    901{
    902	struct e1000_mac_info *mac = &hw->mac;
    903	s32 ret_val = 0;
    904	u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
    905	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
    906	u16 speed, duplex;
    907
    908	/* Check for the case where we have fiber media and auto-neg failed
    909	 * so we had to force link.  In this case, we need to force the
    910	 * configuration of the MAC to match the "fc" parameter.
    911	 */
    912	if (mac->autoneg_failed) {
    913		if (hw->phy.media_type == e1000_media_type_internal_serdes)
    914			ret_val = igb_force_mac_fc(hw);
    915	} else {
    916		if (hw->phy.media_type == e1000_media_type_copper)
    917			ret_val = igb_force_mac_fc(hw);
    918	}
    919
    920	if (ret_val) {
    921		hw_dbg("Error forcing flow control settings\n");
    922		goto out;
    923	}
    924
    925	/* Check for the case where we have copper media and auto-neg is
    926	 * enabled.  In this case, we need to check and see if Auto-Neg
    927	 * has completed, and if so, how the PHY and link partner has
    928	 * flow control configured.
    929	 */
    930	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
    931		/* Read the MII Status Register and check to see if AutoNeg
    932		 * has completed.  We read this twice because this reg has
    933		 * some "sticky" (latched) bits.
    934		 */
    935		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
    936						   &mii_status_reg);
    937		if (ret_val)
    938			goto out;
    939		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
    940						   &mii_status_reg);
    941		if (ret_val)
    942			goto out;
    943
    944		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
    945			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
    946			goto out;
    947		}
    948
    949		/* The AutoNeg process has completed, so we now need to
    950		 * read both the Auto Negotiation Advertisement
    951		 * Register (Address 4) and the Auto_Negotiation Base
    952		 * Page Ability Register (Address 5) to determine how
    953		 * flow control was negotiated.
    954		 */
    955		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
    956					    &mii_nway_adv_reg);
    957		if (ret_val)
    958			goto out;
    959		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
    960					    &mii_nway_lp_ability_reg);
    961		if (ret_val)
    962			goto out;
    963
    964		/* Two bits in the Auto Negotiation Advertisement Register
    965		 * (Address 4) and two bits in the Auto Negotiation Base
    966		 * Page Ability Register (Address 5) determine flow control
    967		 * for both the PHY and the link partner.  The following
    968		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
    969		 * 1999, describes these PAUSE resolution bits and how flow
    970		 * control is determined based upon these settings.
    971		 * NOTE:  DC = Don't Care
    972		 *
    973		 *   LOCAL DEVICE  |   LINK PARTNER
    974		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
    975		 *-------|---------|-------|---------|--------------------
    976		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
    977		 *   0   |    1    |   0   |   DC    | e1000_fc_none
    978		 *   0   |    1    |   1   |    0    | e1000_fc_none
    979		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
    980		 *   1   |    0    |   0   |   DC    | e1000_fc_none
    981		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
    982		 *   1   |    1    |   0   |    0    | e1000_fc_none
    983		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
    984		 *
    985		 * Are both PAUSE bits set to 1?  If so, this implies
    986		 * Symmetric Flow Control is enabled at both ends.  The
    987		 * ASM_DIR bits are irrelevant per the spec.
    988		 *
    989		 * For Symmetric Flow Control:
    990		 *
    991		 *   LOCAL DEVICE  |   LINK PARTNER
    992		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
    993		 *-------|---------|-------|---------|--------------------
    994		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
    995		 *
    996		 */
    997		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
    998		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
    999			/* Now we need to check if the user selected RX ONLY
   1000			 * of pause frames.  In this case, we had to advertise
   1001			 * FULL flow control because we could not advertise RX
   1002			 * ONLY. Hence, we must now check to see if we need to
   1003			 * turn OFF  the TRANSMISSION of PAUSE frames.
   1004			 */
   1005			if (hw->fc.requested_mode == e1000_fc_full) {
   1006				hw->fc.current_mode = e1000_fc_full;
   1007				hw_dbg("Flow Control = FULL.\n");
   1008			} else {
   1009				hw->fc.current_mode = e1000_fc_rx_pause;
   1010				hw_dbg("Flow Control = RX PAUSE frames only.\n");
   1011			}
   1012		}
   1013		/* For receiving PAUSE frames ONLY.
   1014		 *
   1015		 *   LOCAL DEVICE  |   LINK PARTNER
   1016		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
   1017		 *-------|---------|-------|---------|--------------------
   1018		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
   1019		 */
   1020		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
   1021			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
   1022			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
   1023			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
   1024			hw->fc.current_mode = e1000_fc_tx_pause;
   1025			hw_dbg("Flow Control = TX PAUSE frames only.\n");
   1026		}
   1027		/* For transmitting PAUSE frames ONLY.
   1028		 *
   1029		 *   LOCAL DEVICE  |   LINK PARTNER
   1030		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
   1031		 *-------|---------|-------|---------|--------------------
   1032		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
   1033		 */
   1034		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
   1035			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
   1036			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
   1037			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
   1038			hw->fc.current_mode = e1000_fc_rx_pause;
   1039			hw_dbg("Flow Control = RX PAUSE frames only.\n");
   1040		}
   1041		/* Per the IEEE spec, at this point flow control should be
   1042		 * disabled.  However, we want to consider that we could
   1043		 * be connected to a legacy switch that doesn't advertise
   1044		 * desired flow control, but can be forced on the link
   1045		 * partner.  So if we advertised no flow control, that is
   1046		 * what we will resolve to.  If we advertised some kind of
   1047		 * receive capability (Rx Pause Only or Full Flow Control)
   1048		 * and the link partner advertised none, we will configure
   1049		 * ourselves to enable Rx Flow Control only.  We can do
   1050		 * this safely for two reasons:  If the link partner really
   1051		 * didn't want flow control enabled, and we enable Rx, no
   1052		 * harm done since we won't be receiving any PAUSE frames
   1053		 * anyway.  If the intent on the link partner was to have
   1054		 * flow control enabled, then by us enabling RX only, we
   1055		 * can at least receive pause frames and process them.
   1056		 * This is a good idea because in most cases, since we are
   1057		 * predominantly a server NIC, more times than not we will
   1058		 * be asked to delay transmission of packets than asking
   1059		 * our link partner to pause transmission of frames.
   1060		 */
   1061		else if ((hw->fc.requested_mode == e1000_fc_none) ||
   1062			 (hw->fc.requested_mode == e1000_fc_tx_pause) ||
   1063			 (hw->fc.strict_ieee)) {
   1064			hw->fc.current_mode = e1000_fc_none;
   1065			hw_dbg("Flow Control = NONE.\n");
   1066		} else {
   1067			hw->fc.current_mode = e1000_fc_rx_pause;
   1068			hw_dbg("Flow Control = RX PAUSE frames only.\n");
   1069		}
   1070
   1071		/* Now we need to do one last check...  If we auto-
   1072		 * negotiated to HALF DUPLEX, flow control should not be
   1073		 * enabled per IEEE 802.3 spec.
   1074		 */
   1075		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
   1076		if (ret_val) {
   1077			hw_dbg("Error getting link speed and duplex\n");
   1078			goto out;
   1079		}
   1080
   1081		if (duplex == HALF_DUPLEX)
   1082			hw->fc.current_mode = e1000_fc_none;
   1083
   1084		/* Now we call a subroutine to actually force the MAC
   1085		 * controller to use the correct flow control settings.
   1086		 */
   1087		ret_val = igb_force_mac_fc(hw);
   1088		if (ret_val) {
   1089			hw_dbg("Error forcing flow control settings\n");
   1090			goto out;
   1091		}
   1092	}
   1093	/* Check for the case where we have SerDes media and auto-neg is
   1094	 * enabled.  In this case, we need to check and see if Auto-Neg
   1095	 * has completed, and if so, how the PHY and link partner has
   1096	 * flow control configured.
   1097	 */
   1098	if ((hw->phy.media_type == e1000_media_type_internal_serdes)
   1099		&& mac->autoneg) {
   1100		/* Read the PCS_LSTS and check to see if AutoNeg
   1101		 * has completed.
   1102		 */
   1103		pcs_status_reg = rd32(E1000_PCS_LSTAT);
   1104
   1105		if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
   1106			hw_dbg("PCS Auto Neg has not completed.\n");
   1107			return ret_val;
   1108		}
   1109
   1110		/* The AutoNeg process has completed, so we now need to
   1111		 * read both the Auto Negotiation Advertisement
   1112		 * Register (PCS_ANADV) and the Auto_Negotiation Base
   1113		 * Page Ability Register (PCS_LPAB) to determine how
   1114		 * flow control was negotiated.
   1115		 */
   1116		pcs_adv_reg = rd32(E1000_PCS_ANADV);
   1117		pcs_lp_ability_reg = rd32(E1000_PCS_LPAB);
   1118
   1119		/* Two bits in the Auto Negotiation Advertisement Register
   1120		 * (PCS_ANADV) and two bits in the Auto Negotiation Base
   1121		 * Page Ability Register (PCS_LPAB) determine flow control
   1122		 * for both the PHY and the link partner.  The following
   1123		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
   1124		 * 1999, describes these PAUSE resolution bits and how flow
   1125		 * control is determined based upon these settings.
   1126		 * NOTE:  DC = Don't Care
   1127		 *
   1128		 *   LOCAL DEVICE  |   LINK PARTNER
   1129		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
   1130		 *-------|---------|-------|---------|--------------------
   1131		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
   1132		 *   0   |    1    |   0   |   DC    | e1000_fc_none
   1133		 *   0   |    1    |   1   |    0    | e1000_fc_none
   1134		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
   1135		 *   1   |    0    |   0   |   DC    | e1000_fc_none
   1136		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
   1137		 *   1   |    1    |   0   |    0    | e1000_fc_none
   1138		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
   1139		 *
   1140		 * Are both PAUSE bits set to 1?  If so, this implies
   1141		 * Symmetric Flow Control is enabled at both ends.  The
   1142		 * ASM_DIR bits are irrelevant per the spec.
   1143		 *
   1144		 * For Symmetric Flow Control:
   1145		 *
   1146		 *   LOCAL DEVICE  |   LINK PARTNER
   1147		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
   1148		 *-------|---------|-------|---------|--------------------
   1149		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
   1150		 *
   1151		 */
   1152		if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
   1153		    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
   1154			/* Now we need to check if the user selected Rx ONLY
   1155			 * of pause frames.  In this case, we had to advertise
   1156			 * FULL flow control because we could not advertise Rx
   1157			 * ONLY. Hence, we must now check to see if we need to
   1158			 * turn OFF the TRANSMISSION of PAUSE frames.
   1159			 */
   1160			if (hw->fc.requested_mode == e1000_fc_full) {
   1161				hw->fc.current_mode = e1000_fc_full;
   1162				hw_dbg("Flow Control = FULL.\n");
   1163			} else {
   1164				hw->fc.current_mode = e1000_fc_rx_pause;
   1165				hw_dbg("Flow Control = Rx PAUSE frames only.\n");
   1166			}
   1167		}
   1168		/* For receiving PAUSE frames ONLY.
   1169		 *
   1170		 *   LOCAL DEVICE  |   LINK PARTNER
   1171		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
   1172		 *-------|---------|-------|---------|--------------------
   1173		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
   1174		 */
   1175		else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
   1176			  (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
   1177			  (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
   1178			  (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
   1179			hw->fc.current_mode = e1000_fc_tx_pause;
   1180			hw_dbg("Flow Control = Tx PAUSE frames only.\n");
   1181		}
   1182		/* For transmitting PAUSE frames ONLY.
   1183		 *
   1184		 *   LOCAL DEVICE  |   LINK PARTNER
   1185		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
   1186		 *-------|---------|-------|---------|--------------------
   1187		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
   1188		 */
   1189		else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
   1190			 (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
   1191			 !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
   1192			 (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
   1193			hw->fc.current_mode = e1000_fc_rx_pause;
   1194			hw_dbg("Flow Control = Rx PAUSE frames only.\n");
   1195		} else {
   1196			/* Per the IEEE spec, at this point flow control
   1197			 * should be disabled.
   1198			 */
   1199			hw->fc.current_mode = e1000_fc_none;
   1200			hw_dbg("Flow Control = NONE.\n");
   1201		}
   1202
   1203		/* Now we call a subroutine to actually force the MAC
   1204		 * controller to use the correct flow control settings.
   1205		 */
   1206		pcs_ctrl_reg = rd32(E1000_PCS_LCTL);
   1207		pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
   1208		wr32(E1000_PCS_LCTL, pcs_ctrl_reg);
   1209
   1210		ret_val = igb_force_mac_fc(hw);
   1211		if (ret_val) {
   1212			hw_dbg("Error forcing flow control settings\n");
   1213			return ret_val;
   1214		}
   1215	}
   1216
   1217out:
   1218	return ret_val;
   1219}
   1220
   1221/**
   1222 *  igb_get_speed_and_duplex_copper - Retrieve current speed/duplex
   1223 *  @hw: pointer to the HW structure
   1224 *  @speed: stores the current speed
   1225 *  @duplex: stores the current duplex
   1226 *
   1227 *  Read the status register for the current speed/duplex and store the current
   1228 *  speed and duplex for copper connections.
   1229 **/
   1230s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
   1231				      u16 *duplex)
   1232{
   1233	u32 status;
   1234
   1235	status = rd32(E1000_STATUS);
   1236	if (status & E1000_STATUS_SPEED_1000) {
   1237		*speed = SPEED_1000;
   1238		hw_dbg("1000 Mbs, ");
   1239	} else if (status & E1000_STATUS_SPEED_100) {
   1240		*speed = SPEED_100;
   1241		hw_dbg("100 Mbs, ");
   1242	} else {
   1243		*speed = SPEED_10;
   1244		hw_dbg("10 Mbs, ");
   1245	}
   1246
   1247	if (status & E1000_STATUS_FD) {
   1248		*duplex = FULL_DUPLEX;
   1249		hw_dbg("Full Duplex\n");
   1250	} else {
   1251		*duplex = HALF_DUPLEX;
   1252		hw_dbg("Half Duplex\n");
   1253	}
   1254
   1255	return 0;
   1256}
   1257
   1258/**
   1259 *  igb_get_hw_semaphore - Acquire hardware semaphore
   1260 *  @hw: pointer to the HW structure
   1261 *
   1262 *  Acquire the HW semaphore to access the PHY or NVM
   1263 **/
   1264s32 igb_get_hw_semaphore(struct e1000_hw *hw)
   1265{
   1266	u32 swsm;
   1267	s32 ret_val = 0;
   1268	s32 timeout = hw->nvm.word_size + 1;
   1269	s32 i = 0;
   1270
   1271	/* Get the SW semaphore */
   1272	while (i < timeout) {
   1273		swsm = rd32(E1000_SWSM);
   1274		if (!(swsm & E1000_SWSM_SMBI))
   1275			break;
   1276
   1277		udelay(50);
   1278		i++;
   1279	}
   1280
   1281	if (i == timeout) {
   1282		hw_dbg("Driver can't access device - SMBI bit is set.\n");
   1283		ret_val = -E1000_ERR_NVM;
   1284		goto out;
   1285	}
   1286
   1287	/* Get the FW semaphore. */
   1288	for (i = 0; i < timeout; i++) {
   1289		swsm = rd32(E1000_SWSM);
   1290		wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
   1291
   1292		/* Semaphore acquired if bit latched */
   1293		if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
   1294			break;
   1295
   1296		udelay(50);
   1297	}
   1298
   1299	if (i == timeout) {
   1300		/* Release semaphores */
   1301		igb_put_hw_semaphore(hw);
   1302		hw_dbg("Driver can't access the NVM\n");
   1303		ret_val = -E1000_ERR_NVM;
   1304		goto out;
   1305	}
   1306
   1307out:
   1308	return ret_val;
   1309}
   1310
   1311/**
   1312 *  igb_put_hw_semaphore - Release hardware semaphore
   1313 *  @hw: pointer to the HW structure
   1314 *
   1315 *  Release hardware semaphore used to access the PHY or NVM
   1316 **/
   1317void igb_put_hw_semaphore(struct e1000_hw *hw)
   1318{
   1319	u32 swsm;
   1320
   1321	swsm = rd32(E1000_SWSM);
   1322
   1323	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
   1324
   1325	wr32(E1000_SWSM, swsm);
   1326}
   1327
   1328/**
   1329 *  igb_get_auto_rd_done - Check for auto read completion
   1330 *  @hw: pointer to the HW structure
   1331 *
   1332 *  Check EEPROM for Auto Read done bit.
   1333 **/
   1334s32 igb_get_auto_rd_done(struct e1000_hw *hw)
   1335{
   1336	s32 i = 0;
   1337	s32 ret_val = 0;
   1338
   1339
   1340	while (i < AUTO_READ_DONE_TIMEOUT) {
   1341		if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
   1342			break;
   1343		usleep_range(1000, 2000);
   1344		i++;
   1345	}
   1346
   1347	if (i == AUTO_READ_DONE_TIMEOUT) {
   1348		hw_dbg("Auto read by HW from NVM has not completed.\n");
   1349		ret_val = -E1000_ERR_RESET;
   1350		goto out;
   1351	}
   1352
   1353out:
   1354	return ret_val;
   1355}
   1356
   1357/**
   1358 *  igb_valid_led_default - Verify a valid default LED config
   1359 *  @hw: pointer to the HW structure
   1360 *  @data: pointer to the NVM (EEPROM)
   1361 *
   1362 *  Read the EEPROM for the current default LED configuration.  If the
   1363 *  LED configuration is not valid, set to a valid LED configuration.
   1364 **/
   1365static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
   1366{
   1367	s32 ret_val;
   1368
   1369	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
   1370	if (ret_val) {
   1371		hw_dbg("NVM Read Error\n");
   1372		goto out;
   1373	}
   1374
   1375	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
   1376		switch (hw->phy.media_type) {
   1377		case e1000_media_type_internal_serdes:
   1378			*data = ID_LED_DEFAULT_82575_SERDES;
   1379			break;
   1380		case e1000_media_type_copper:
   1381		default:
   1382			*data = ID_LED_DEFAULT;
   1383			break;
   1384		}
   1385	}
   1386out:
   1387	return ret_val;
   1388}
   1389
   1390/**
   1391 *  igb_id_led_init -
   1392 *  @hw: pointer to the HW structure
   1393 *
   1394 **/
   1395s32 igb_id_led_init(struct e1000_hw *hw)
   1396{
   1397	struct e1000_mac_info *mac = &hw->mac;
   1398	s32 ret_val;
   1399	const u32 ledctl_mask = 0x000000FF;
   1400	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
   1401	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
   1402	u16 data, i, temp;
   1403	const u16 led_mask = 0x0F;
   1404
   1405	/* i210 and i211 devices have different LED mechanism */
   1406	if ((hw->mac.type == e1000_i210) ||
   1407	    (hw->mac.type == e1000_i211))
   1408		ret_val = igb_valid_led_default_i210(hw, &data);
   1409	else
   1410		ret_val = igb_valid_led_default(hw, &data);
   1411
   1412	if (ret_val)
   1413		goto out;
   1414
   1415	mac->ledctl_default = rd32(E1000_LEDCTL);
   1416	mac->ledctl_mode1 = mac->ledctl_default;
   1417	mac->ledctl_mode2 = mac->ledctl_default;
   1418
   1419	for (i = 0; i < 4; i++) {
   1420		temp = (data >> (i << 2)) & led_mask;
   1421		switch (temp) {
   1422		case ID_LED_ON1_DEF2:
   1423		case ID_LED_ON1_ON2:
   1424		case ID_LED_ON1_OFF2:
   1425			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
   1426			mac->ledctl_mode1 |= ledctl_on << (i << 3);
   1427			break;
   1428		case ID_LED_OFF1_DEF2:
   1429		case ID_LED_OFF1_ON2:
   1430		case ID_LED_OFF1_OFF2:
   1431			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
   1432			mac->ledctl_mode1 |= ledctl_off << (i << 3);
   1433			break;
   1434		default:
   1435			/* Do nothing */
   1436			break;
   1437		}
   1438		switch (temp) {
   1439		case ID_LED_DEF1_ON2:
   1440		case ID_LED_ON1_ON2:
   1441		case ID_LED_OFF1_ON2:
   1442			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
   1443			mac->ledctl_mode2 |= ledctl_on << (i << 3);
   1444			break;
   1445		case ID_LED_DEF1_OFF2:
   1446		case ID_LED_ON1_OFF2:
   1447		case ID_LED_OFF1_OFF2:
   1448			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
   1449			mac->ledctl_mode2 |= ledctl_off << (i << 3);
   1450			break;
   1451		default:
   1452			/* Do nothing */
   1453			break;
   1454		}
   1455	}
   1456
   1457out:
   1458	return ret_val;
   1459}
   1460
   1461/**
   1462 *  igb_cleanup_led - Set LED config to default operation
   1463 *  @hw: pointer to the HW structure
   1464 *
   1465 *  Remove the current LED configuration and set the LED configuration
   1466 *  to the default value, saved from the EEPROM.
   1467 **/
   1468s32 igb_cleanup_led(struct e1000_hw *hw)
   1469{
   1470	wr32(E1000_LEDCTL, hw->mac.ledctl_default);
   1471	return 0;
   1472}
   1473
   1474/**
   1475 *  igb_blink_led - Blink LED
   1476 *  @hw: pointer to the HW structure
   1477 *
   1478 *  Blink the led's which are set to be on.
   1479 **/
   1480s32 igb_blink_led(struct e1000_hw *hw)
   1481{
   1482	u32 ledctl_blink = 0;
   1483	u32 i;
   1484
   1485	if (hw->phy.media_type == e1000_media_type_fiber) {
   1486		/* always blink LED0 for PCI-E fiber */
   1487		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
   1488		     (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
   1489	} else {
   1490		/* Set the blink bit for each LED that's "on" (0x0E)
   1491		 * (or "off" if inverted) in ledctl_mode2.  The blink
   1492		 * logic in hardware only works when mode is set to "on"
   1493		 * so it must be changed accordingly when the mode is
   1494		 * "off" and inverted.
   1495		 */
   1496		ledctl_blink = hw->mac.ledctl_mode2;
   1497		for (i = 0; i < 32; i += 8) {
   1498			u32 mode = (hw->mac.ledctl_mode2 >> i) &
   1499			    E1000_LEDCTL_LED0_MODE_MASK;
   1500			u32 led_default = hw->mac.ledctl_default >> i;
   1501
   1502			if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
   1503			     (mode == E1000_LEDCTL_MODE_LED_ON)) ||
   1504			    ((led_default & E1000_LEDCTL_LED0_IVRT) &&
   1505			     (mode == E1000_LEDCTL_MODE_LED_OFF))) {
   1506				ledctl_blink &=
   1507				    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
   1508				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
   1509						 E1000_LEDCTL_MODE_LED_ON) << i;
   1510			}
   1511		}
   1512	}
   1513
   1514	wr32(E1000_LEDCTL, ledctl_blink);
   1515
   1516	return 0;
   1517}
   1518
   1519/**
   1520 *  igb_led_off - Turn LED off
   1521 *  @hw: pointer to the HW structure
   1522 *
   1523 *  Turn LED off.
   1524 **/
   1525s32 igb_led_off(struct e1000_hw *hw)
   1526{
   1527	switch (hw->phy.media_type) {
   1528	case e1000_media_type_copper:
   1529		wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
   1530		break;
   1531	default:
   1532		break;
   1533	}
   1534
   1535	return 0;
   1536}
   1537
   1538/**
   1539 *  igb_disable_pcie_master - Disables PCI-express master access
   1540 *  @hw: pointer to the HW structure
   1541 *
   1542 *  Returns 0 (0) if successful, else returns -10
   1543 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
   1544 *  the master requests to be disabled.
   1545 *
   1546 *  Disables PCI-Express master access and verifies there are no pending
   1547 *  requests.
   1548 **/
   1549s32 igb_disable_pcie_master(struct e1000_hw *hw)
   1550{
   1551	u32 ctrl;
   1552	s32 timeout = MASTER_DISABLE_TIMEOUT;
   1553	s32 ret_val = 0;
   1554
   1555	if (hw->bus.type != e1000_bus_type_pci_express)
   1556		goto out;
   1557
   1558	ctrl = rd32(E1000_CTRL);
   1559	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
   1560	wr32(E1000_CTRL, ctrl);
   1561
   1562	while (timeout) {
   1563		if (!(rd32(E1000_STATUS) &
   1564		      E1000_STATUS_GIO_MASTER_ENABLE))
   1565			break;
   1566		udelay(100);
   1567		timeout--;
   1568	}
   1569
   1570	if (!timeout) {
   1571		hw_dbg("Master requests are pending.\n");
   1572		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
   1573		goto out;
   1574	}
   1575
   1576out:
   1577	return ret_val;
   1578}
   1579
   1580/**
   1581 *  igb_validate_mdi_setting - Verify MDI/MDIx settings
   1582 *  @hw: pointer to the HW structure
   1583 *
   1584 *  Verify that when not using auto-negotitation that MDI/MDIx is correctly
   1585 *  set, which is forced to MDI mode only.
   1586 **/
   1587s32 igb_validate_mdi_setting(struct e1000_hw *hw)
   1588{
   1589	s32 ret_val = 0;
   1590
   1591	/* All MDI settings are supported on 82580 and newer. */
   1592	if (hw->mac.type >= e1000_82580)
   1593		goto out;
   1594
   1595	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
   1596		hw_dbg("Invalid MDI setting detected\n");
   1597		hw->phy.mdix = 1;
   1598		ret_val = -E1000_ERR_CONFIG;
   1599		goto out;
   1600	}
   1601
   1602out:
   1603	return ret_val;
   1604}
   1605
   1606/**
   1607 *  igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
   1608 *  @hw: pointer to the HW structure
   1609 *  @reg: 32bit register offset such as E1000_SCTL
   1610 *  @offset: register offset to write to
   1611 *  @data: data to write at register offset
   1612 *
   1613 *  Writes an address/data control type register.  There are several of these
   1614 *  and they all have the format address << 8 | data and bit 31 is polled for
   1615 *  completion.
   1616 **/
   1617s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
   1618			      u32 offset, u8 data)
   1619{
   1620	u32 i, regvalue = 0;
   1621	s32 ret_val = 0;
   1622
   1623	/* Set up the address and data */
   1624	regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
   1625	wr32(reg, regvalue);
   1626
   1627	/* Poll the ready bit to see if the MDI read completed */
   1628	for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
   1629		udelay(5);
   1630		regvalue = rd32(reg);
   1631		if (regvalue & E1000_GEN_CTL_READY)
   1632			break;
   1633	}
   1634	if (!(regvalue & E1000_GEN_CTL_READY)) {
   1635		hw_dbg("Reg %08x did not indicate ready\n", reg);
   1636		ret_val = -E1000_ERR_PHY;
   1637		goto out;
   1638	}
   1639
   1640out:
   1641	return ret_val;
   1642}
   1643
   1644/**
   1645 *  igb_enable_mng_pass_thru - Enable processing of ARP's
   1646 *  @hw: pointer to the HW structure
   1647 *
   1648 *  Verifies the hardware needs to leave interface enabled so that frames can
   1649 *  be directed to and from the management interface.
   1650 **/
   1651bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
   1652{
   1653	u32 manc;
   1654	u32 fwsm, factps;
   1655	bool ret_val = false;
   1656
   1657	if (!hw->mac.asf_firmware_present)
   1658		goto out;
   1659
   1660	manc = rd32(E1000_MANC);
   1661
   1662	if (!(manc & E1000_MANC_RCV_TCO_EN))
   1663		goto out;
   1664
   1665	if (hw->mac.arc_subsystem_valid) {
   1666		fwsm = rd32(E1000_FWSM);
   1667		factps = rd32(E1000_FACTPS);
   1668
   1669		if (!(factps & E1000_FACTPS_MNGCG) &&
   1670		    ((fwsm & E1000_FWSM_MODE_MASK) ==
   1671		     (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
   1672			ret_val = true;
   1673			goto out;
   1674		}
   1675	} else {
   1676		if ((manc & E1000_MANC_SMBUS_EN) &&
   1677		    !(manc & E1000_MANC_ASF_EN)) {
   1678			ret_val = true;
   1679			goto out;
   1680		}
   1681	}
   1682
   1683out:
   1684	return ret_val;
   1685}