e1000_nvm.c (19365B)
1// SPDX-License-Identifier: GPL-2.0 2/* Copyright(c) 2007 - 2018 Intel Corporation. */ 3 4#include <linux/if_ether.h> 5#include <linux/delay.h> 6 7#include "e1000_mac.h" 8#include "e1000_nvm.h" 9 10/** 11 * igb_raise_eec_clk - Raise EEPROM clock 12 * @hw: pointer to the HW structure 13 * @eecd: pointer to the EEPROM 14 * 15 * Enable/Raise the EEPROM clock bit. 16 **/ 17static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) 18{ 19 *eecd = *eecd | E1000_EECD_SK; 20 wr32(E1000_EECD, *eecd); 21 wrfl(); 22 udelay(hw->nvm.delay_usec); 23} 24 25/** 26 * igb_lower_eec_clk - Lower EEPROM clock 27 * @hw: pointer to the HW structure 28 * @eecd: pointer to the EEPROM 29 * 30 * Clear/Lower the EEPROM clock bit. 31 **/ 32static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) 33{ 34 *eecd = *eecd & ~E1000_EECD_SK; 35 wr32(E1000_EECD, *eecd); 36 wrfl(); 37 udelay(hw->nvm.delay_usec); 38} 39 40/** 41 * igb_shift_out_eec_bits - Shift data bits our to the EEPROM 42 * @hw: pointer to the HW structure 43 * @data: data to send to the EEPROM 44 * @count: number of bits to shift out 45 * 46 * We need to shift 'count' bits out to the EEPROM. So, the value in the 47 * "data" parameter will be shifted out to the EEPROM one bit at a time. 48 * In order to do this, "data" must be broken down into bits. 49 **/ 50static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) 51{ 52 struct e1000_nvm_info *nvm = &hw->nvm; 53 u32 eecd = rd32(E1000_EECD); 54 u32 mask; 55 56 mask = 1u << (count - 1); 57 if (nvm->type == e1000_nvm_eeprom_spi) 58 eecd |= E1000_EECD_DO; 59 60 do { 61 eecd &= ~E1000_EECD_DI; 62 63 if (data & mask) 64 eecd |= E1000_EECD_DI; 65 66 wr32(E1000_EECD, eecd); 67 wrfl(); 68 69 udelay(nvm->delay_usec); 70 71 igb_raise_eec_clk(hw, &eecd); 72 igb_lower_eec_clk(hw, &eecd); 73 74 mask >>= 1; 75 } while (mask); 76 77 eecd &= ~E1000_EECD_DI; 78 wr32(E1000_EECD, eecd); 79} 80 81/** 82 * igb_shift_in_eec_bits - Shift data bits in from the EEPROM 83 * @hw: pointer to the HW structure 84 * @count: number of bits to shift in 85 * 86 * In order to read a register from the EEPROM, we need to shift 'count' bits 87 * in from the EEPROM. Bits are "shifted in" by raising the clock input to 88 * the EEPROM (setting the SK bit), and then reading the value of the data out 89 * "DO" bit. During this "shifting in" process the data in "DI" bit should 90 * always be clear. 91 **/ 92static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) 93{ 94 u32 eecd; 95 u32 i; 96 u16 data; 97 98 eecd = rd32(E1000_EECD); 99 100 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); 101 data = 0; 102 103 for (i = 0; i < count; i++) { 104 data <<= 1; 105 igb_raise_eec_clk(hw, &eecd); 106 107 eecd = rd32(E1000_EECD); 108 109 eecd &= ~E1000_EECD_DI; 110 if (eecd & E1000_EECD_DO) 111 data |= 1; 112 113 igb_lower_eec_clk(hw, &eecd); 114 } 115 116 return data; 117} 118 119/** 120 * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion 121 * @hw: pointer to the HW structure 122 * @ee_reg: EEPROM flag for polling 123 * 124 * Polls the EEPROM status bit for either read or write completion based 125 * upon the value of 'ee_reg'. 126 **/ 127static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) 128{ 129 u32 attempts = 100000; 130 u32 i, reg = 0; 131 s32 ret_val = -E1000_ERR_NVM; 132 133 for (i = 0; i < attempts; i++) { 134 if (ee_reg == E1000_NVM_POLL_READ) 135 reg = rd32(E1000_EERD); 136 else 137 reg = rd32(E1000_EEWR); 138 139 if (reg & E1000_NVM_RW_REG_DONE) { 140 ret_val = 0; 141 break; 142 } 143 144 udelay(5); 145 } 146 147 return ret_val; 148} 149 150/** 151 * igb_acquire_nvm - Generic request for access to EEPROM 152 * @hw: pointer to the HW structure 153 * 154 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 155 * Return successful if access grant bit set, else clear the request for 156 * EEPROM access and return -E1000_ERR_NVM (-1). 157 **/ 158s32 igb_acquire_nvm(struct e1000_hw *hw) 159{ 160 u32 eecd = rd32(E1000_EECD); 161 s32 timeout = E1000_NVM_GRANT_ATTEMPTS; 162 s32 ret_val = 0; 163 164 165 wr32(E1000_EECD, eecd | E1000_EECD_REQ); 166 eecd = rd32(E1000_EECD); 167 168 while (timeout) { 169 if (eecd & E1000_EECD_GNT) 170 break; 171 udelay(5); 172 eecd = rd32(E1000_EECD); 173 timeout--; 174 } 175 176 if (!timeout) { 177 eecd &= ~E1000_EECD_REQ; 178 wr32(E1000_EECD, eecd); 179 hw_dbg("Could not acquire NVM grant\n"); 180 ret_val = -E1000_ERR_NVM; 181 } 182 183 return ret_val; 184} 185 186/** 187 * igb_standby_nvm - Return EEPROM to standby state 188 * @hw: pointer to the HW structure 189 * 190 * Return the EEPROM to a standby state. 191 **/ 192static void igb_standby_nvm(struct e1000_hw *hw) 193{ 194 struct e1000_nvm_info *nvm = &hw->nvm; 195 u32 eecd = rd32(E1000_EECD); 196 197 if (nvm->type == e1000_nvm_eeprom_spi) { 198 /* Toggle CS to flush commands */ 199 eecd |= E1000_EECD_CS; 200 wr32(E1000_EECD, eecd); 201 wrfl(); 202 udelay(nvm->delay_usec); 203 eecd &= ~E1000_EECD_CS; 204 wr32(E1000_EECD, eecd); 205 wrfl(); 206 udelay(nvm->delay_usec); 207 } 208} 209 210/** 211 * e1000_stop_nvm - Terminate EEPROM command 212 * @hw: pointer to the HW structure 213 * 214 * Terminates the current command by inverting the EEPROM's chip select pin. 215 **/ 216static void e1000_stop_nvm(struct e1000_hw *hw) 217{ 218 u32 eecd; 219 220 eecd = rd32(E1000_EECD); 221 if (hw->nvm.type == e1000_nvm_eeprom_spi) { 222 /* Pull CS high */ 223 eecd |= E1000_EECD_CS; 224 igb_lower_eec_clk(hw, &eecd); 225 } 226} 227 228/** 229 * igb_release_nvm - Release exclusive access to EEPROM 230 * @hw: pointer to the HW structure 231 * 232 * Stop any current commands to the EEPROM and clear the EEPROM request bit. 233 **/ 234void igb_release_nvm(struct e1000_hw *hw) 235{ 236 u32 eecd; 237 238 e1000_stop_nvm(hw); 239 240 eecd = rd32(E1000_EECD); 241 eecd &= ~E1000_EECD_REQ; 242 wr32(E1000_EECD, eecd); 243} 244 245/** 246 * igb_ready_nvm_eeprom - Prepares EEPROM for read/write 247 * @hw: pointer to the HW structure 248 * 249 * Setups the EEPROM for reading and writing. 250 **/ 251static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) 252{ 253 struct e1000_nvm_info *nvm = &hw->nvm; 254 u32 eecd = rd32(E1000_EECD); 255 s32 ret_val = 0; 256 u16 timeout = 0; 257 u8 spi_stat_reg; 258 259 260 if (nvm->type == e1000_nvm_eeprom_spi) { 261 /* Clear SK and CS */ 262 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); 263 wr32(E1000_EECD, eecd); 264 wrfl(); 265 udelay(1); 266 timeout = NVM_MAX_RETRY_SPI; 267 268 /* Read "Status Register" repeatedly until the LSB is cleared. 269 * The EEPROM will signal that the command has been completed 270 * by clearing bit 0 of the internal status register. If it's 271 * not cleared within 'timeout', then error out. 272 */ 273 while (timeout) { 274 igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, 275 hw->nvm.opcode_bits); 276 spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); 277 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) 278 break; 279 280 udelay(5); 281 igb_standby_nvm(hw); 282 timeout--; 283 } 284 285 if (!timeout) { 286 hw_dbg("SPI NVM Status error\n"); 287 ret_val = -E1000_ERR_NVM; 288 goto out; 289 } 290 } 291 292out: 293 return ret_val; 294} 295 296/** 297 * igb_read_nvm_spi - Read EEPROM's using SPI 298 * @hw: pointer to the HW structure 299 * @offset: offset of word in the EEPROM to read 300 * @words: number of words to read 301 * @data: word read from the EEPROM 302 * 303 * Reads a 16 bit word from the EEPROM. 304 **/ 305s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 306{ 307 struct e1000_nvm_info *nvm = &hw->nvm; 308 u32 i = 0; 309 s32 ret_val; 310 u16 word_in; 311 u8 read_opcode = NVM_READ_OPCODE_SPI; 312 313 /* A check for invalid values: offset too large, too many words, 314 * and not enough words. 315 */ 316 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 317 (words == 0)) { 318 hw_dbg("nvm parameter(s) out of bounds\n"); 319 ret_val = -E1000_ERR_NVM; 320 goto out; 321 } 322 323 ret_val = nvm->ops.acquire(hw); 324 if (ret_val) 325 goto out; 326 327 ret_val = igb_ready_nvm_eeprom(hw); 328 if (ret_val) 329 goto release; 330 331 igb_standby_nvm(hw); 332 333 if ((nvm->address_bits == 8) && (offset >= 128)) 334 read_opcode |= NVM_A8_OPCODE_SPI; 335 336 /* Send the READ command (opcode + addr) */ 337 igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); 338 igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); 339 340 /* Read the data. SPI NVMs increment the address with each byte 341 * read and will roll over if reading beyond the end. This allows 342 * us to read the whole NVM from any offset 343 */ 344 for (i = 0; i < words; i++) { 345 word_in = igb_shift_in_eec_bits(hw, 16); 346 data[i] = (word_in >> 8) | (word_in << 8); 347 } 348 349release: 350 nvm->ops.release(hw); 351 352out: 353 return ret_val; 354} 355 356/** 357 * igb_read_nvm_eerd - Reads EEPROM using EERD register 358 * @hw: pointer to the HW structure 359 * @offset: offset of word in the EEPROM to read 360 * @words: number of words to read 361 * @data: word read from the EEPROM 362 * 363 * Reads a 16 bit word from the EEPROM using the EERD register. 364 **/ 365s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 366{ 367 struct e1000_nvm_info *nvm = &hw->nvm; 368 u32 i, eerd = 0; 369 s32 ret_val = 0; 370 371 /* A check for invalid values: offset too large, too many words, 372 * and not enough words. 373 */ 374 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 375 (words == 0)) { 376 hw_dbg("nvm parameter(s) out of bounds\n"); 377 ret_val = -E1000_ERR_NVM; 378 goto out; 379 } 380 381 for (i = 0; i < words; i++) { 382 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + 383 E1000_NVM_RW_REG_START; 384 385 wr32(E1000_EERD, eerd); 386 ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); 387 if (ret_val) 388 break; 389 390 data[i] = (rd32(E1000_EERD) >> 391 E1000_NVM_RW_REG_DATA); 392 } 393 394out: 395 return ret_val; 396} 397 398/** 399 * igb_write_nvm_spi - Write to EEPROM using SPI 400 * @hw: pointer to the HW structure 401 * @offset: offset within the EEPROM to be written to 402 * @words: number of words to write 403 * @data: 16 bit word(s) to be written to the EEPROM 404 * 405 * Writes data to EEPROM at offset using SPI interface. 406 * 407 * If e1000_update_nvm_checksum is not called after this function , the 408 * EEPROM will most likley contain an invalid checksum. 409 **/ 410s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) 411{ 412 struct e1000_nvm_info *nvm = &hw->nvm; 413 s32 ret_val = -E1000_ERR_NVM; 414 u16 widx = 0; 415 416 /* A check for invalid values: offset too large, too many words, 417 * and not enough words. 418 */ 419 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || 420 (words == 0)) { 421 hw_dbg("nvm parameter(s) out of bounds\n"); 422 return ret_val; 423 } 424 425 while (widx < words) { 426 u8 write_opcode = NVM_WRITE_OPCODE_SPI; 427 428 ret_val = nvm->ops.acquire(hw); 429 if (ret_val) 430 return ret_val; 431 432 ret_val = igb_ready_nvm_eeprom(hw); 433 if (ret_val) { 434 nvm->ops.release(hw); 435 return ret_val; 436 } 437 438 igb_standby_nvm(hw); 439 440 /* Send the WRITE ENABLE command (8 bit opcode) */ 441 igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, 442 nvm->opcode_bits); 443 444 igb_standby_nvm(hw); 445 446 /* Some SPI eeproms use the 8th address bit embedded in the 447 * opcode 448 */ 449 if ((nvm->address_bits == 8) && (offset >= 128)) 450 write_opcode |= NVM_A8_OPCODE_SPI; 451 452 /* Send the Write command (8-bit opcode + addr) */ 453 igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); 454 igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), 455 nvm->address_bits); 456 457 /* Loop to allow for up to whole page write of eeprom */ 458 while (widx < words) { 459 u16 word_out = data[widx]; 460 461 word_out = (word_out >> 8) | (word_out << 8); 462 igb_shift_out_eec_bits(hw, word_out, 16); 463 widx++; 464 465 if ((((offset + widx) * 2) % nvm->page_size) == 0) { 466 igb_standby_nvm(hw); 467 break; 468 } 469 } 470 usleep_range(1000, 2000); 471 nvm->ops.release(hw); 472 } 473 474 return ret_val; 475} 476 477/** 478 * igb_read_part_string - Read device part number 479 * @hw: pointer to the HW structure 480 * @part_num: pointer to device part number 481 * @part_num_size: size of part number buffer 482 * 483 * Reads the product board assembly (PBA) number from the EEPROM and stores 484 * the value in part_num. 485 **/ 486s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) 487{ 488 s32 ret_val; 489 u16 nvm_data; 490 u16 pointer; 491 u16 offset; 492 u16 length; 493 494 if (part_num == NULL) { 495 hw_dbg("PBA string buffer was null\n"); 496 ret_val = E1000_ERR_INVALID_ARGUMENT; 497 goto out; 498 } 499 500 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); 501 if (ret_val) { 502 hw_dbg("NVM Read Error\n"); 503 goto out; 504 } 505 506 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); 507 if (ret_val) { 508 hw_dbg("NVM Read Error\n"); 509 goto out; 510 } 511 512 /* if nvm_data is not ptr guard the PBA must be in legacy format which 513 * means pointer is actually our second data word for the PBA number 514 * and we can decode it into an ascii string 515 */ 516 if (nvm_data != NVM_PBA_PTR_GUARD) { 517 hw_dbg("NVM PBA number is not stored as string\n"); 518 519 /* we will need 11 characters to store the PBA */ 520 if (part_num_size < 11) { 521 hw_dbg("PBA string buffer too small\n"); 522 return E1000_ERR_NO_SPACE; 523 } 524 525 /* extract hex string from data and pointer */ 526 part_num[0] = (nvm_data >> 12) & 0xF; 527 part_num[1] = (nvm_data >> 8) & 0xF; 528 part_num[2] = (nvm_data >> 4) & 0xF; 529 part_num[3] = nvm_data & 0xF; 530 part_num[4] = (pointer >> 12) & 0xF; 531 part_num[5] = (pointer >> 8) & 0xF; 532 part_num[6] = '-'; 533 part_num[7] = 0; 534 part_num[8] = (pointer >> 4) & 0xF; 535 part_num[9] = pointer & 0xF; 536 537 /* put a null character on the end of our string */ 538 part_num[10] = '\0'; 539 540 /* switch all the data but the '-' to hex char */ 541 for (offset = 0; offset < 10; offset++) { 542 if (part_num[offset] < 0xA) 543 part_num[offset] += '0'; 544 else if (part_num[offset] < 0x10) 545 part_num[offset] += 'A' - 0xA; 546 } 547 548 goto out; 549 } 550 551 ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); 552 if (ret_val) { 553 hw_dbg("NVM Read Error\n"); 554 goto out; 555 } 556 557 if (length == 0xFFFF || length == 0) { 558 hw_dbg("NVM PBA number section invalid length\n"); 559 ret_val = E1000_ERR_NVM_PBA_SECTION; 560 goto out; 561 } 562 /* check if part_num buffer is big enough */ 563 if (part_num_size < (((u32)length * 2) - 1)) { 564 hw_dbg("PBA string buffer too small\n"); 565 ret_val = E1000_ERR_NO_SPACE; 566 goto out; 567 } 568 569 /* trim pba length from start of string */ 570 pointer++; 571 length--; 572 573 for (offset = 0; offset < length; offset++) { 574 ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); 575 if (ret_val) { 576 hw_dbg("NVM Read Error\n"); 577 goto out; 578 } 579 part_num[offset * 2] = (u8)(nvm_data >> 8); 580 part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); 581 } 582 part_num[offset * 2] = '\0'; 583 584out: 585 return ret_val; 586} 587 588/** 589 * igb_read_mac_addr - Read device MAC address 590 * @hw: pointer to the HW structure 591 * 592 * Reads the device MAC address from the EEPROM and stores the value. 593 * Since devices with two ports use the same EEPROM, we increment the 594 * last bit in the MAC address for the second port. 595 **/ 596s32 igb_read_mac_addr(struct e1000_hw *hw) 597{ 598 u32 rar_high; 599 u32 rar_low; 600 u16 i; 601 602 rar_high = rd32(E1000_RAH(0)); 603 rar_low = rd32(E1000_RAL(0)); 604 605 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) 606 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); 607 608 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) 609 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); 610 611 for (i = 0; i < ETH_ALEN; i++) 612 hw->mac.addr[i] = hw->mac.perm_addr[i]; 613 614 return 0; 615} 616 617/** 618 * igb_validate_nvm_checksum - Validate EEPROM checksum 619 * @hw: pointer to the HW structure 620 * 621 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 622 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 623 **/ 624s32 igb_validate_nvm_checksum(struct e1000_hw *hw) 625{ 626 s32 ret_val = 0; 627 u16 checksum = 0; 628 u16 i, nvm_data; 629 630 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { 631 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 632 if (ret_val) { 633 hw_dbg("NVM Read Error\n"); 634 goto out; 635 } 636 checksum += nvm_data; 637 } 638 639 if (checksum != (u16) NVM_SUM) { 640 hw_dbg("NVM Checksum Invalid\n"); 641 ret_val = -E1000_ERR_NVM; 642 goto out; 643 } 644 645out: 646 return ret_val; 647} 648 649/** 650 * igb_update_nvm_checksum - Update EEPROM checksum 651 * @hw: pointer to the HW structure 652 * 653 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 654 * up to the checksum. Then calculates the EEPROM checksum and writes the 655 * value to the EEPROM. 656 **/ 657s32 igb_update_nvm_checksum(struct e1000_hw *hw) 658{ 659 s32 ret_val; 660 u16 checksum = 0; 661 u16 i, nvm_data; 662 663 for (i = 0; i < NVM_CHECKSUM_REG; i++) { 664 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 665 if (ret_val) { 666 hw_dbg("NVM Read Error while updating checksum.\n"); 667 goto out; 668 } 669 checksum += nvm_data; 670 } 671 checksum = (u16) NVM_SUM - checksum; 672 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); 673 if (ret_val) 674 hw_dbg("NVM Write Error while updating checksum.\n"); 675 676out: 677 return ret_val; 678} 679 680/** 681 * igb_get_fw_version - Get firmware version information 682 * @hw: pointer to the HW structure 683 * @fw_vers: pointer to output structure 684 * 685 * unsupported MAC types will return all 0 version structure 686 **/ 687void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) 688{ 689 u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; 690 u8 q, hval, rem, result; 691 u16 comb_verh, comb_verl, comb_offset; 692 693 memset(fw_vers, 0, sizeof(struct e1000_fw_version)); 694 695 /* basic eeprom version numbers and bits used vary by part and by tool 696 * used to create the nvm images. Check which data format we have. 697 */ 698 hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); 699 switch (hw->mac.type) { 700 case e1000_i211: 701 igb_read_invm_version(hw, fw_vers); 702 return; 703 case e1000_82575: 704 case e1000_82576: 705 case e1000_82580: 706 /* Use this format, unless EETRACK ID exists, 707 * then use alternate format 708 */ 709 if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { 710 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); 711 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) 712 >> NVM_MAJOR_SHIFT; 713 fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) 714 >> NVM_MINOR_SHIFT; 715 fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); 716 goto etrack_id; 717 } 718 break; 719 case e1000_i210: 720 if (!(igb_get_flash_presence_i210(hw))) { 721 igb_read_invm_version(hw, fw_vers); 722 return; 723 } 724 fallthrough; 725 case e1000_i350: 726 /* find combo image version */ 727 hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); 728 if ((comb_offset != 0x0) && 729 (comb_offset != NVM_VER_INVALID)) { 730 731 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset 732 + 1), 1, &comb_verh); 733 hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), 734 1, &comb_verl); 735 736 /* get Option Rom version if it exists and is valid */ 737 if ((comb_verh && comb_verl) && 738 ((comb_verh != NVM_VER_INVALID) && 739 (comb_verl != NVM_VER_INVALID))) { 740 741 fw_vers->or_valid = true; 742 fw_vers->or_major = 743 comb_verl >> NVM_COMB_VER_SHFT; 744 fw_vers->or_build = 745 (comb_verl << NVM_COMB_VER_SHFT) 746 | (comb_verh >> NVM_COMB_VER_SHFT); 747 fw_vers->or_patch = 748 comb_verh & NVM_COMB_VER_MASK; 749 } 750 } 751 break; 752 default: 753 return; 754 } 755 hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); 756 fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) 757 >> NVM_MAJOR_SHIFT; 758 759 /* check for old style version format in newer images*/ 760 if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { 761 eeprom_verl = (fw_version & NVM_COMB_VER_MASK); 762 } else { 763 eeprom_verl = (fw_version & NVM_MINOR_MASK) 764 >> NVM_MINOR_SHIFT; 765 } 766 /* Convert minor value to hex before assigning to output struct 767 * Val to be converted will not be higher than 99, per tool output 768 */ 769 q = eeprom_verl / NVM_HEX_CONV; 770 hval = q * NVM_HEX_TENS; 771 rem = eeprom_verl % NVM_HEX_CONV; 772 result = hval + rem; 773 fw_vers->eep_minor = result; 774 775etrack_id: 776 if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { 777 hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); 778 hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); 779 fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) 780 | eeprom_verl; 781 } 782}