cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

e1000_nvm.c (19365B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2007 - 2018 Intel Corporation. */
      3
      4#include <linux/if_ether.h>
      5#include <linux/delay.h>
      6
      7#include "e1000_mac.h"
      8#include "e1000_nvm.h"
      9
     10/**
     11 *  igb_raise_eec_clk - Raise EEPROM clock
     12 *  @hw: pointer to the HW structure
     13 *  @eecd: pointer to the EEPROM
     14 *
     15 *  Enable/Raise the EEPROM clock bit.
     16 **/
     17static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
     18{
     19	*eecd = *eecd | E1000_EECD_SK;
     20	wr32(E1000_EECD, *eecd);
     21	wrfl();
     22	udelay(hw->nvm.delay_usec);
     23}
     24
     25/**
     26 *  igb_lower_eec_clk - Lower EEPROM clock
     27 *  @hw: pointer to the HW structure
     28 *  @eecd: pointer to the EEPROM
     29 *
     30 *  Clear/Lower the EEPROM clock bit.
     31 **/
     32static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
     33{
     34	*eecd = *eecd & ~E1000_EECD_SK;
     35	wr32(E1000_EECD, *eecd);
     36	wrfl();
     37	udelay(hw->nvm.delay_usec);
     38}
     39
     40/**
     41 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
     42 *  @hw: pointer to the HW structure
     43 *  @data: data to send to the EEPROM
     44 *  @count: number of bits to shift out
     45 *
     46 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
     47 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
     48 *  In order to do this, "data" must be broken down into bits.
     49 **/
     50static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
     51{
     52	struct e1000_nvm_info *nvm = &hw->nvm;
     53	u32 eecd = rd32(E1000_EECD);
     54	u32 mask;
     55
     56	mask = 1u << (count - 1);
     57	if (nvm->type == e1000_nvm_eeprom_spi)
     58		eecd |= E1000_EECD_DO;
     59
     60	do {
     61		eecd &= ~E1000_EECD_DI;
     62
     63		if (data & mask)
     64			eecd |= E1000_EECD_DI;
     65
     66		wr32(E1000_EECD, eecd);
     67		wrfl();
     68
     69		udelay(nvm->delay_usec);
     70
     71		igb_raise_eec_clk(hw, &eecd);
     72		igb_lower_eec_clk(hw, &eecd);
     73
     74		mask >>= 1;
     75	} while (mask);
     76
     77	eecd &= ~E1000_EECD_DI;
     78	wr32(E1000_EECD, eecd);
     79}
     80
     81/**
     82 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
     83 *  @hw: pointer to the HW structure
     84 *  @count: number of bits to shift in
     85 *
     86 *  In order to read a register from the EEPROM, we need to shift 'count' bits
     87 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
     88 *  the EEPROM (setting the SK bit), and then reading the value of the data out
     89 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
     90 *  always be clear.
     91 **/
     92static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
     93{
     94	u32 eecd;
     95	u32 i;
     96	u16 data;
     97
     98	eecd = rd32(E1000_EECD);
     99
    100	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
    101	data = 0;
    102
    103	for (i = 0; i < count; i++) {
    104		data <<= 1;
    105		igb_raise_eec_clk(hw, &eecd);
    106
    107		eecd = rd32(E1000_EECD);
    108
    109		eecd &= ~E1000_EECD_DI;
    110		if (eecd & E1000_EECD_DO)
    111			data |= 1;
    112
    113		igb_lower_eec_clk(hw, &eecd);
    114	}
    115
    116	return data;
    117}
    118
    119/**
    120 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
    121 *  @hw: pointer to the HW structure
    122 *  @ee_reg: EEPROM flag for polling
    123 *
    124 *  Polls the EEPROM status bit for either read or write completion based
    125 *  upon the value of 'ee_reg'.
    126 **/
    127static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
    128{
    129	u32 attempts = 100000;
    130	u32 i, reg = 0;
    131	s32 ret_val = -E1000_ERR_NVM;
    132
    133	for (i = 0; i < attempts; i++) {
    134		if (ee_reg == E1000_NVM_POLL_READ)
    135			reg = rd32(E1000_EERD);
    136		else
    137			reg = rd32(E1000_EEWR);
    138
    139		if (reg & E1000_NVM_RW_REG_DONE) {
    140			ret_val = 0;
    141			break;
    142		}
    143
    144		udelay(5);
    145	}
    146
    147	return ret_val;
    148}
    149
    150/**
    151 *  igb_acquire_nvm - Generic request for access to EEPROM
    152 *  @hw: pointer to the HW structure
    153 *
    154 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
    155 *  Return successful if access grant bit set, else clear the request for
    156 *  EEPROM access and return -E1000_ERR_NVM (-1).
    157 **/
    158s32 igb_acquire_nvm(struct e1000_hw *hw)
    159{
    160	u32 eecd = rd32(E1000_EECD);
    161	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
    162	s32 ret_val = 0;
    163
    164
    165	wr32(E1000_EECD, eecd | E1000_EECD_REQ);
    166	eecd = rd32(E1000_EECD);
    167
    168	while (timeout) {
    169		if (eecd & E1000_EECD_GNT)
    170			break;
    171		udelay(5);
    172		eecd = rd32(E1000_EECD);
    173		timeout--;
    174	}
    175
    176	if (!timeout) {
    177		eecd &= ~E1000_EECD_REQ;
    178		wr32(E1000_EECD, eecd);
    179		hw_dbg("Could not acquire NVM grant\n");
    180		ret_val = -E1000_ERR_NVM;
    181	}
    182
    183	return ret_val;
    184}
    185
    186/**
    187 *  igb_standby_nvm - Return EEPROM to standby state
    188 *  @hw: pointer to the HW structure
    189 *
    190 *  Return the EEPROM to a standby state.
    191 **/
    192static void igb_standby_nvm(struct e1000_hw *hw)
    193{
    194	struct e1000_nvm_info *nvm = &hw->nvm;
    195	u32 eecd = rd32(E1000_EECD);
    196
    197	if (nvm->type == e1000_nvm_eeprom_spi) {
    198		/* Toggle CS to flush commands */
    199		eecd |= E1000_EECD_CS;
    200		wr32(E1000_EECD, eecd);
    201		wrfl();
    202		udelay(nvm->delay_usec);
    203		eecd &= ~E1000_EECD_CS;
    204		wr32(E1000_EECD, eecd);
    205		wrfl();
    206		udelay(nvm->delay_usec);
    207	}
    208}
    209
    210/**
    211 *  e1000_stop_nvm - Terminate EEPROM command
    212 *  @hw: pointer to the HW structure
    213 *
    214 *  Terminates the current command by inverting the EEPROM's chip select pin.
    215 **/
    216static void e1000_stop_nvm(struct e1000_hw *hw)
    217{
    218	u32 eecd;
    219
    220	eecd = rd32(E1000_EECD);
    221	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
    222		/* Pull CS high */
    223		eecd |= E1000_EECD_CS;
    224		igb_lower_eec_clk(hw, &eecd);
    225	}
    226}
    227
    228/**
    229 *  igb_release_nvm - Release exclusive access to EEPROM
    230 *  @hw: pointer to the HW structure
    231 *
    232 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
    233 **/
    234void igb_release_nvm(struct e1000_hw *hw)
    235{
    236	u32 eecd;
    237
    238	e1000_stop_nvm(hw);
    239
    240	eecd = rd32(E1000_EECD);
    241	eecd &= ~E1000_EECD_REQ;
    242	wr32(E1000_EECD, eecd);
    243}
    244
    245/**
    246 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
    247 *  @hw: pointer to the HW structure
    248 *
    249 *  Setups the EEPROM for reading and writing.
    250 **/
    251static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
    252{
    253	struct e1000_nvm_info *nvm = &hw->nvm;
    254	u32 eecd = rd32(E1000_EECD);
    255	s32 ret_val = 0;
    256	u16 timeout = 0;
    257	u8 spi_stat_reg;
    258
    259
    260	if (nvm->type == e1000_nvm_eeprom_spi) {
    261		/* Clear SK and CS */
    262		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
    263		wr32(E1000_EECD, eecd);
    264		wrfl();
    265		udelay(1);
    266		timeout = NVM_MAX_RETRY_SPI;
    267
    268		/* Read "Status Register" repeatedly until the LSB is cleared.
    269		 * The EEPROM will signal that the command has been completed
    270		 * by clearing bit 0 of the internal status register.  If it's
    271		 * not cleared within 'timeout', then error out.
    272		 */
    273		while (timeout) {
    274			igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
    275					       hw->nvm.opcode_bits);
    276			spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
    277			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
    278				break;
    279
    280			udelay(5);
    281			igb_standby_nvm(hw);
    282			timeout--;
    283		}
    284
    285		if (!timeout) {
    286			hw_dbg("SPI NVM Status error\n");
    287			ret_val = -E1000_ERR_NVM;
    288			goto out;
    289		}
    290	}
    291
    292out:
    293	return ret_val;
    294}
    295
    296/**
    297 *  igb_read_nvm_spi - Read EEPROM's using SPI
    298 *  @hw: pointer to the HW structure
    299 *  @offset: offset of word in the EEPROM to read
    300 *  @words: number of words to read
    301 *  @data: word read from the EEPROM
    302 *
    303 *  Reads a 16 bit word from the EEPROM.
    304 **/
    305s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
    306{
    307	struct e1000_nvm_info *nvm = &hw->nvm;
    308	u32 i = 0;
    309	s32 ret_val;
    310	u16 word_in;
    311	u8 read_opcode = NVM_READ_OPCODE_SPI;
    312
    313	/* A check for invalid values:  offset too large, too many words,
    314	 * and not enough words.
    315	 */
    316	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    317	    (words == 0)) {
    318		hw_dbg("nvm parameter(s) out of bounds\n");
    319		ret_val = -E1000_ERR_NVM;
    320		goto out;
    321	}
    322
    323	ret_val = nvm->ops.acquire(hw);
    324	if (ret_val)
    325		goto out;
    326
    327	ret_val = igb_ready_nvm_eeprom(hw);
    328	if (ret_val)
    329		goto release;
    330
    331	igb_standby_nvm(hw);
    332
    333	if ((nvm->address_bits == 8) && (offset >= 128))
    334		read_opcode |= NVM_A8_OPCODE_SPI;
    335
    336	/* Send the READ command (opcode + addr) */
    337	igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
    338	igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
    339
    340	/* Read the data.  SPI NVMs increment the address with each byte
    341	 * read and will roll over if reading beyond the end.  This allows
    342	 * us to read the whole NVM from any offset
    343	 */
    344	for (i = 0; i < words; i++) {
    345		word_in = igb_shift_in_eec_bits(hw, 16);
    346		data[i] = (word_in >> 8) | (word_in << 8);
    347	}
    348
    349release:
    350	nvm->ops.release(hw);
    351
    352out:
    353	return ret_val;
    354}
    355
    356/**
    357 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
    358 *  @hw: pointer to the HW structure
    359 *  @offset: offset of word in the EEPROM to read
    360 *  @words: number of words to read
    361 *  @data: word read from the EEPROM
    362 *
    363 *  Reads a 16 bit word from the EEPROM using the EERD register.
    364 **/
    365s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
    366{
    367	struct e1000_nvm_info *nvm = &hw->nvm;
    368	u32 i, eerd = 0;
    369	s32 ret_val = 0;
    370
    371	/* A check for invalid values:  offset too large, too many words,
    372	 * and not enough words.
    373	 */
    374	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    375	    (words == 0)) {
    376		hw_dbg("nvm parameter(s) out of bounds\n");
    377		ret_val = -E1000_ERR_NVM;
    378		goto out;
    379	}
    380
    381	for (i = 0; i < words; i++) {
    382		eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
    383			E1000_NVM_RW_REG_START;
    384
    385		wr32(E1000_EERD, eerd);
    386		ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
    387		if (ret_val)
    388			break;
    389
    390		data[i] = (rd32(E1000_EERD) >>
    391			E1000_NVM_RW_REG_DATA);
    392	}
    393
    394out:
    395	return ret_val;
    396}
    397
    398/**
    399 *  igb_write_nvm_spi - Write to EEPROM using SPI
    400 *  @hw: pointer to the HW structure
    401 *  @offset: offset within the EEPROM to be written to
    402 *  @words: number of words to write
    403 *  @data: 16 bit word(s) to be written to the EEPROM
    404 *
    405 *  Writes data to EEPROM at offset using SPI interface.
    406 *
    407 *  If e1000_update_nvm_checksum is not called after this function , the
    408 *  EEPROM will most likley contain an invalid checksum.
    409 **/
    410s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
    411{
    412	struct e1000_nvm_info *nvm = &hw->nvm;
    413	s32 ret_val = -E1000_ERR_NVM;
    414	u16 widx = 0;
    415
    416	/* A check for invalid values:  offset too large, too many words,
    417	 * and not enough words.
    418	 */
    419	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
    420	    (words == 0)) {
    421		hw_dbg("nvm parameter(s) out of bounds\n");
    422		return ret_val;
    423	}
    424
    425	while (widx < words) {
    426		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
    427
    428		ret_val = nvm->ops.acquire(hw);
    429		if (ret_val)
    430			return ret_val;
    431
    432		ret_val = igb_ready_nvm_eeprom(hw);
    433		if (ret_val) {
    434			nvm->ops.release(hw);
    435			return ret_val;
    436		}
    437
    438		igb_standby_nvm(hw);
    439
    440		/* Send the WRITE ENABLE command (8 bit opcode) */
    441		igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
    442					 nvm->opcode_bits);
    443
    444		igb_standby_nvm(hw);
    445
    446		/* Some SPI eeproms use the 8th address bit embedded in the
    447		 * opcode
    448		 */
    449		if ((nvm->address_bits == 8) && (offset >= 128))
    450			write_opcode |= NVM_A8_OPCODE_SPI;
    451
    452		/* Send the Write command (8-bit opcode + addr) */
    453		igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
    454		igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
    455					 nvm->address_bits);
    456
    457		/* Loop to allow for up to whole page write of eeprom */
    458		while (widx < words) {
    459			u16 word_out = data[widx];
    460
    461			word_out = (word_out >> 8) | (word_out << 8);
    462			igb_shift_out_eec_bits(hw, word_out, 16);
    463			widx++;
    464
    465			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
    466				igb_standby_nvm(hw);
    467				break;
    468			}
    469		}
    470		usleep_range(1000, 2000);
    471		nvm->ops.release(hw);
    472	}
    473
    474	return ret_val;
    475}
    476
    477/**
    478 *  igb_read_part_string - Read device part number
    479 *  @hw: pointer to the HW structure
    480 *  @part_num: pointer to device part number
    481 *  @part_num_size: size of part number buffer
    482 *
    483 *  Reads the product board assembly (PBA) number from the EEPROM and stores
    484 *  the value in part_num.
    485 **/
    486s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
    487{
    488	s32 ret_val;
    489	u16 nvm_data;
    490	u16 pointer;
    491	u16 offset;
    492	u16 length;
    493
    494	if (part_num == NULL) {
    495		hw_dbg("PBA string buffer was null\n");
    496		ret_val = E1000_ERR_INVALID_ARGUMENT;
    497		goto out;
    498	}
    499
    500	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
    501	if (ret_val) {
    502		hw_dbg("NVM Read Error\n");
    503		goto out;
    504	}
    505
    506	ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
    507	if (ret_val) {
    508		hw_dbg("NVM Read Error\n");
    509		goto out;
    510	}
    511
    512	/* if nvm_data is not ptr guard the PBA must be in legacy format which
    513	 * means pointer is actually our second data word for the PBA number
    514	 * and we can decode it into an ascii string
    515	 */
    516	if (nvm_data != NVM_PBA_PTR_GUARD) {
    517		hw_dbg("NVM PBA number is not stored as string\n");
    518
    519		/* we will need 11 characters to store the PBA */
    520		if (part_num_size < 11) {
    521			hw_dbg("PBA string buffer too small\n");
    522			return E1000_ERR_NO_SPACE;
    523		}
    524
    525		/* extract hex string from data and pointer */
    526		part_num[0] = (nvm_data >> 12) & 0xF;
    527		part_num[1] = (nvm_data >> 8) & 0xF;
    528		part_num[2] = (nvm_data >> 4) & 0xF;
    529		part_num[3] = nvm_data & 0xF;
    530		part_num[4] = (pointer >> 12) & 0xF;
    531		part_num[5] = (pointer >> 8) & 0xF;
    532		part_num[6] = '-';
    533		part_num[7] = 0;
    534		part_num[8] = (pointer >> 4) & 0xF;
    535		part_num[9] = pointer & 0xF;
    536
    537		/* put a null character on the end of our string */
    538		part_num[10] = '\0';
    539
    540		/* switch all the data but the '-' to hex char */
    541		for (offset = 0; offset < 10; offset++) {
    542			if (part_num[offset] < 0xA)
    543				part_num[offset] += '0';
    544			else if (part_num[offset] < 0x10)
    545				part_num[offset] += 'A' - 0xA;
    546		}
    547
    548		goto out;
    549	}
    550
    551	ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
    552	if (ret_val) {
    553		hw_dbg("NVM Read Error\n");
    554		goto out;
    555	}
    556
    557	if (length == 0xFFFF || length == 0) {
    558		hw_dbg("NVM PBA number section invalid length\n");
    559		ret_val = E1000_ERR_NVM_PBA_SECTION;
    560		goto out;
    561	}
    562	/* check if part_num buffer is big enough */
    563	if (part_num_size < (((u32)length * 2) - 1)) {
    564		hw_dbg("PBA string buffer too small\n");
    565		ret_val = E1000_ERR_NO_SPACE;
    566		goto out;
    567	}
    568
    569	/* trim pba length from start of string */
    570	pointer++;
    571	length--;
    572
    573	for (offset = 0; offset < length; offset++) {
    574		ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
    575		if (ret_val) {
    576			hw_dbg("NVM Read Error\n");
    577			goto out;
    578		}
    579		part_num[offset * 2] = (u8)(nvm_data >> 8);
    580		part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
    581	}
    582	part_num[offset * 2] = '\0';
    583
    584out:
    585	return ret_val;
    586}
    587
    588/**
    589 *  igb_read_mac_addr - Read device MAC address
    590 *  @hw: pointer to the HW structure
    591 *
    592 *  Reads the device MAC address from the EEPROM and stores the value.
    593 *  Since devices with two ports use the same EEPROM, we increment the
    594 *  last bit in the MAC address for the second port.
    595 **/
    596s32 igb_read_mac_addr(struct e1000_hw *hw)
    597{
    598	u32 rar_high;
    599	u32 rar_low;
    600	u16 i;
    601
    602	rar_high = rd32(E1000_RAH(0));
    603	rar_low = rd32(E1000_RAL(0));
    604
    605	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
    606		hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
    607
    608	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
    609		hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
    610
    611	for (i = 0; i < ETH_ALEN; i++)
    612		hw->mac.addr[i] = hw->mac.perm_addr[i];
    613
    614	return 0;
    615}
    616
    617/**
    618 *  igb_validate_nvm_checksum - Validate EEPROM checksum
    619 *  @hw: pointer to the HW structure
    620 *
    621 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
    622 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
    623 **/
    624s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
    625{
    626	s32 ret_val = 0;
    627	u16 checksum = 0;
    628	u16 i, nvm_data;
    629
    630	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
    631		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
    632		if (ret_val) {
    633			hw_dbg("NVM Read Error\n");
    634			goto out;
    635		}
    636		checksum += nvm_data;
    637	}
    638
    639	if (checksum != (u16) NVM_SUM) {
    640		hw_dbg("NVM Checksum Invalid\n");
    641		ret_val = -E1000_ERR_NVM;
    642		goto out;
    643	}
    644
    645out:
    646	return ret_val;
    647}
    648
    649/**
    650 *  igb_update_nvm_checksum - Update EEPROM checksum
    651 *  @hw: pointer to the HW structure
    652 *
    653 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
    654 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
    655 *  value to the EEPROM.
    656 **/
    657s32 igb_update_nvm_checksum(struct e1000_hw *hw)
    658{
    659	s32  ret_val;
    660	u16 checksum = 0;
    661	u16 i, nvm_data;
    662
    663	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
    664		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
    665		if (ret_val) {
    666			hw_dbg("NVM Read Error while updating checksum.\n");
    667			goto out;
    668		}
    669		checksum += nvm_data;
    670	}
    671	checksum = (u16) NVM_SUM - checksum;
    672	ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
    673	if (ret_val)
    674		hw_dbg("NVM Write Error while updating checksum.\n");
    675
    676out:
    677	return ret_val;
    678}
    679
    680/**
    681 *  igb_get_fw_version - Get firmware version information
    682 *  @hw: pointer to the HW structure
    683 *  @fw_vers: pointer to output structure
    684 *
    685 *  unsupported MAC types will return all 0 version structure
    686 **/
    687void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
    688{
    689	u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
    690	u8 q, hval, rem, result;
    691	u16 comb_verh, comb_verl, comb_offset;
    692
    693	memset(fw_vers, 0, sizeof(struct e1000_fw_version));
    694
    695	/* basic eeprom version numbers and bits used vary by part and by tool
    696	 * used to create the nvm images. Check which data format we have.
    697	 */
    698	hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
    699	switch (hw->mac.type) {
    700	case e1000_i211:
    701		igb_read_invm_version(hw, fw_vers);
    702		return;
    703	case e1000_82575:
    704	case e1000_82576:
    705	case e1000_82580:
    706		/* Use this format, unless EETRACK ID exists,
    707		 * then use alternate format
    708		 */
    709		if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
    710			hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
    711			fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
    712					      >> NVM_MAJOR_SHIFT;
    713			fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
    714					      >> NVM_MINOR_SHIFT;
    715			fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
    716			goto etrack_id;
    717		}
    718		break;
    719	case e1000_i210:
    720		if (!(igb_get_flash_presence_i210(hw))) {
    721			igb_read_invm_version(hw, fw_vers);
    722			return;
    723		}
    724		fallthrough;
    725	case e1000_i350:
    726		/* find combo image version */
    727		hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
    728		if ((comb_offset != 0x0) &&
    729		    (comb_offset != NVM_VER_INVALID)) {
    730
    731			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
    732					 + 1), 1, &comb_verh);
    733			hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
    734					 1, &comb_verl);
    735
    736			/* get Option Rom version if it exists and is valid */
    737			if ((comb_verh && comb_verl) &&
    738			    ((comb_verh != NVM_VER_INVALID) &&
    739			     (comb_verl != NVM_VER_INVALID))) {
    740
    741				fw_vers->or_valid = true;
    742				fw_vers->or_major =
    743					comb_verl >> NVM_COMB_VER_SHFT;
    744				fw_vers->or_build =
    745					(comb_verl << NVM_COMB_VER_SHFT)
    746					| (comb_verh >> NVM_COMB_VER_SHFT);
    747				fw_vers->or_patch =
    748					comb_verh & NVM_COMB_VER_MASK;
    749			}
    750		}
    751		break;
    752	default:
    753		return;
    754	}
    755	hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
    756	fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
    757			      >> NVM_MAJOR_SHIFT;
    758
    759	/* check for old style version format in newer images*/
    760	if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
    761		eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
    762	} else {
    763		eeprom_verl = (fw_version & NVM_MINOR_MASK)
    764				>> NVM_MINOR_SHIFT;
    765	}
    766	/* Convert minor value to hex before assigning to output struct
    767	 * Val to be converted will not be higher than 99, per tool output
    768	 */
    769	q = eeprom_verl / NVM_HEX_CONV;
    770	hval = q * NVM_HEX_TENS;
    771	rem = eeprom_verl % NVM_HEX_CONV;
    772	result = hval + rem;
    773	fw_vers->eep_minor = result;
    774
    775etrack_id:
    776	if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
    777		hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
    778		hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
    779		fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
    780			| eeprom_verl;
    781	}
    782}