cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

igb_ethtool.c (99604B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2007 - 2018 Intel Corporation. */
      3
      4/* ethtool support for igb */
      5
      6#include <linux/vmalloc.h>
      7#include <linux/netdevice.h>
      8#include <linux/pci.h>
      9#include <linux/delay.h>
     10#include <linux/interrupt.h>
     11#include <linux/if_ether.h>
     12#include <linux/ethtool.h>
     13#include <linux/sched.h>
     14#include <linux/slab.h>
     15#include <linux/pm_runtime.h>
     16#include <linux/highmem.h>
     17#include <linux/mdio.h>
     18
     19#include "igb.h"
     20
     21struct igb_stats {
     22	char stat_string[ETH_GSTRING_LEN];
     23	int sizeof_stat;
     24	int stat_offset;
     25};
     26
     27#define IGB_STAT(_name, _stat) { \
     28	.stat_string = _name, \
     29	.sizeof_stat = sizeof_field(struct igb_adapter, _stat), \
     30	.stat_offset = offsetof(struct igb_adapter, _stat) \
     31}
     32static const struct igb_stats igb_gstrings_stats[] = {
     33	IGB_STAT("rx_packets", stats.gprc),
     34	IGB_STAT("tx_packets", stats.gptc),
     35	IGB_STAT("rx_bytes", stats.gorc),
     36	IGB_STAT("tx_bytes", stats.gotc),
     37	IGB_STAT("rx_broadcast", stats.bprc),
     38	IGB_STAT("tx_broadcast", stats.bptc),
     39	IGB_STAT("rx_multicast", stats.mprc),
     40	IGB_STAT("tx_multicast", stats.mptc),
     41	IGB_STAT("multicast", stats.mprc),
     42	IGB_STAT("collisions", stats.colc),
     43	IGB_STAT("rx_crc_errors", stats.crcerrs),
     44	IGB_STAT("rx_no_buffer_count", stats.rnbc),
     45	IGB_STAT("rx_missed_errors", stats.mpc),
     46	IGB_STAT("tx_aborted_errors", stats.ecol),
     47	IGB_STAT("tx_carrier_errors", stats.tncrs),
     48	IGB_STAT("tx_window_errors", stats.latecol),
     49	IGB_STAT("tx_abort_late_coll", stats.latecol),
     50	IGB_STAT("tx_deferred_ok", stats.dc),
     51	IGB_STAT("tx_single_coll_ok", stats.scc),
     52	IGB_STAT("tx_multi_coll_ok", stats.mcc),
     53	IGB_STAT("tx_timeout_count", tx_timeout_count),
     54	IGB_STAT("rx_long_length_errors", stats.roc),
     55	IGB_STAT("rx_short_length_errors", stats.ruc),
     56	IGB_STAT("rx_align_errors", stats.algnerrc),
     57	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
     58	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
     59	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
     60	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
     61	IGB_STAT("tx_flow_control_xon", stats.xontxc),
     62	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
     63	IGB_STAT("rx_long_byte_count", stats.gorc),
     64	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
     65	IGB_STAT("tx_smbus", stats.mgptc),
     66	IGB_STAT("rx_smbus", stats.mgprc),
     67	IGB_STAT("dropped_smbus", stats.mgpdc),
     68	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
     69	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
     70	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
     71	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
     72	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
     73	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
     74	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
     75};
     76
     77#define IGB_NETDEV_STAT(_net_stat) { \
     78	.stat_string = __stringify(_net_stat), \
     79	.sizeof_stat = sizeof_field(struct rtnl_link_stats64, _net_stat), \
     80	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
     81}
     82static const struct igb_stats igb_gstrings_net_stats[] = {
     83	IGB_NETDEV_STAT(rx_errors),
     84	IGB_NETDEV_STAT(tx_errors),
     85	IGB_NETDEV_STAT(tx_dropped),
     86	IGB_NETDEV_STAT(rx_length_errors),
     87	IGB_NETDEV_STAT(rx_over_errors),
     88	IGB_NETDEV_STAT(rx_frame_errors),
     89	IGB_NETDEV_STAT(rx_fifo_errors),
     90	IGB_NETDEV_STAT(tx_fifo_errors),
     91	IGB_NETDEV_STAT(tx_heartbeat_errors)
     92};
     93
     94#define IGB_GLOBAL_STATS_LEN	\
     95	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
     96#define IGB_NETDEV_STATS_LEN	\
     97	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
     98#define IGB_RX_QUEUE_STATS_LEN \
     99	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
    100
    101#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
    102
    103#define IGB_QUEUE_STATS_LEN \
    104	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
    105	  IGB_RX_QUEUE_STATS_LEN) + \
    106	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
    107	  IGB_TX_QUEUE_STATS_LEN))
    108#define IGB_STATS_LEN \
    109	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
    110
    111enum igb_diagnostics_results {
    112	TEST_REG = 0,
    113	TEST_EEP,
    114	TEST_IRQ,
    115	TEST_LOOP,
    116	TEST_LINK
    117};
    118
    119static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
    120	[TEST_REG]  = "Register test  (offline)",
    121	[TEST_EEP]  = "Eeprom test    (offline)",
    122	[TEST_IRQ]  = "Interrupt test (offline)",
    123	[TEST_LOOP] = "Loopback test  (offline)",
    124	[TEST_LINK] = "Link test   (on/offline)"
    125};
    126#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
    127
    128static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
    129#define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
    130	"legacy-rx",
    131};
    132
    133#define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
    134
    135static int igb_get_link_ksettings(struct net_device *netdev,
    136				  struct ethtool_link_ksettings *cmd)
    137{
    138	struct igb_adapter *adapter = netdev_priv(netdev);
    139	struct e1000_hw *hw = &adapter->hw;
    140	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
    141	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
    142	u32 status;
    143	u32 speed;
    144	u32 supported, advertising;
    145
    146	status = pm_runtime_suspended(&adapter->pdev->dev) ?
    147		 0 : rd32(E1000_STATUS);
    148	if (hw->phy.media_type == e1000_media_type_copper) {
    149
    150		supported = (SUPPORTED_10baseT_Half |
    151			     SUPPORTED_10baseT_Full |
    152			     SUPPORTED_100baseT_Half |
    153			     SUPPORTED_100baseT_Full |
    154			     SUPPORTED_1000baseT_Full|
    155			     SUPPORTED_Autoneg |
    156			     SUPPORTED_TP |
    157			     SUPPORTED_Pause);
    158		advertising = ADVERTISED_TP;
    159
    160		if (hw->mac.autoneg == 1) {
    161			advertising |= ADVERTISED_Autoneg;
    162			/* the e1000 autoneg seems to match ethtool nicely */
    163			advertising |= hw->phy.autoneg_advertised;
    164		}
    165
    166		cmd->base.port = PORT_TP;
    167		cmd->base.phy_address = hw->phy.addr;
    168	} else {
    169		supported = (SUPPORTED_FIBRE |
    170			     SUPPORTED_1000baseKX_Full |
    171			     SUPPORTED_Autoneg |
    172			     SUPPORTED_Pause);
    173		advertising = (ADVERTISED_FIBRE |
    174			       ADVERTISED_1000baseKX_Full);
    175		if (hw->mac.type == e1000_i354) {
    176			if ((hw->device_id ==
    177			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
    178			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
    179				supported |= SUPPORTED_2500baseX_Full;
    180				supported &= ~SUPPORTED_1000baseKX_Full;
    181				advertising |= ADVERTISED_2500baseX_Full;
    182				advertising &= ~ADVERTISED_1000baseKX_Full;
    183			}
    184		}
    185		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
    186			supported |= SUPPORTED_100baseT_Full;
    187			advertising |= ADVERTISED_100baseT_Full;
    188		}
    189		if (hw->mac.autoneg == 1)
    190			advertising |= ADVERTISED_Autoneg;
    191
    192		cmd->base.port = PORT_FIBRE;
    193	}
    194	if (hw->mac.autoneg != 1)
    195		advertising &= ~(ADVERTISED_Pause |
    196				 ADVERTISED_Asym_Pause);
    197
    198	switch (hw->fc.requested_mode) {
    199	case e1000_fc_full:
    200		advertising |= ADVERTISED_Pause;
    201		break;
    202	case e1000_fc_rx_pause:
    203		advertising |= (ADVERTISED_Pause |
    204				ADVERTISED_Asym_Pause);
    205		break;
    206	case e1000_fc_tx_pause:
    207		advertising |=  ADVERTISED_Asym_Pause;
    208		break;
    209	default:
    210		advertising &= ~(ADVERTISED_Pause |
    211				 ADVERTISED_Asym_Pause);
    212	}
    213	if (status & E1000_STATUS_LU) {
    214		if ((status & E1000_STATUS_2P5_SKU) &&
    215		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
    216			speed = SPEED_2500;
    217		} else if (status & E1000_STATUS_SPEED_1000) {
    218			speed = SPEED_1000;
    219		} else if (status & E1000_STATUS_SPEED_100) {
    220			speed = SPEED_100;
    221		} else {
    222			speed = SPEED_10;
    223		}
    224		if ((status & E1000_STATUS_FD) ||
    225		    hw->phy.media_type != e1000_media_type_copper)
    226			cmd->base.duplex = DUPLEX_FULL;
    227		else
    228			cmd->base.duplex = DUPLEX_HALF;
    229	} else {
    230		speed = SPEED_UNKNOWN;
    231		cmd->base.duplex = DUPLEX_UNKNOWN;
    232	}
    233	cmd->base.speed = speed;
    234	if ((hw->phy.media_type == e1000_media_type_fiber) ||
    235	    hw->mac.autoneg)
    236		cmd->base.autoneg = AUTONEG_ENABLE;
    237	else
    238		cmd->base.autoneg = AUTONEG_DISABLE;
    239
    240	/* MDI-X => 2; MDI =>1; Invalid =>0 */
    241	if (hw->phy.media_type == e1000_media_type_copper)
    242		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
    243						      ETH_TP_MDI;
    244	else
    245		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
    246
    247	if (hw->phy.mdix == AUTO_ALL_MODES)
    248		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
    249	else
    250		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
    251
    252	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
    253						supported);
    254	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
    255						advertising);
    256
    257	return 0;
    258}
    259
    260static int igb_set_link_ksettings(struct net_device *netdev,
    261				  const struct ethtool_link_ksettings *cmd)
    262{
    263	struct igb_adapter *adapter = netdev_priv(netdev);
    264	struct e1000_hw *hw = &adapter->hw;
    265	u32 advertising;
    266
    267	/* When SoL/IDER sessions are active, autoneg/speed/duplex
    268	 * cannot be changed
    269	 */
    270	if (igb_check_reset_block(hw)) {
    271		dev_err(&adapter->pdev->dev,
    272			"Cannot change link characteristics when SoL/IDER is active.\n");
    273		return -EINVAL;
    274	}
    275
    276	/* MDI setting is only allowed when autoneg enabled because
    277	 * some hardware doesn't allow MDI setting when speed or
    278	 * duplex is forced.
    279	 */
    280	if (cmd->base.eth_tp_mdix_ctrl) {
    281		if (hw->phy.media_type != e1000_media_type_copper)
    282			return -EOPNOTSUPP;
    283
    284		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
    285		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
    286			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
    287			return -EINVAL;
    288		}
    289	}
    290
    291	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
    292		usleep_range(1000, 2000);
    293
    294	ethtool_convert_link_mode_to_legacy_u32(&advertising,
    295						cmd->link_modes.advertising);
    296
    297	if (cmd->base.autoneg == AUTONEG_ENABLE) {
    298		hw->mac.autoneg = 1;
    299		if (hw->phy.media_type == e1000_media_type_fiber) {
    300			hw->phy.autoneg_advertised = advertising |
    301						     ADVERTISED_FIBRE |
    302						     ADVERTISED_Autoneg;
    303			switch (adapter->link_speed) {
    304			case SPEED_2500:
    305				hw->phy.autoneg_advertised =
    306					ADVERTISED_2500baseX_Full;
    307				break;
    308			case SPEED_1000:
    309				hw->phy.autoneg_advertised =
    310					ADVERTISED_1000baseT_Full;
    311				break;
    312			case SPEED_100:
    313				hw->phy.autoneg_advertised =
    314					ADVERTISED_100baseT_Full;
    315				break;
    316			default:
    317				break;
    318			}
    319		} else {
    320			hw->phy.autoneg_advertised = advertising |
    321						     ADVERTISED_TP |
    322						     ADVERTISED_Autoneg;
    323		}
    324		advertising = hw->phy.autoneg_advertised;
    325		if (adapter->fc_autoneg)
    326			hw->fc.requested_mode = e1000_fc_default;
    327	} else {
    328		u32 speed = cmd->base.speed;
    329		/* calling this overrides forced MDI setting */
    330		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
    331			clear_bit(__IGB_RESETTING, &adapter->state);
    332			return -EINVAL;
    333		}
    334	}
    335
    336	/* MDI-X => 2; MDI => 1; Auto => 3 */
    337	if (cmd->base.eth_tp_mdix_ctrl) {
    338		/* fix up the value for auto (3 => 0) as zero is mapped
    339		 * internally to auto
    340		 */
    341		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
    342			hw->phy.mdix = AUTO_ALL_MODES;
    343		else
    344			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
    345	}
    346
    347	/* reset the link */
    348	if (netif_running(adapter->netdev)) {
    349		igb_down(adapter);
    350		igb_up(adapter);
    351	} else
    352		igb_reset(adapter);
    353
    354	clear_bit(__IGB_RESETTING, &adapter->state);
    355	return 0;
    356}
    357
    358static u32 igb_get_link(struct net_device *netdev)
    359{
    360	struct igb_adapter *adapter = netdev_priv(netdev);
    361	struct e1000_mac_info *mac = &adapter->hw.mac;
    362
    363	/* If the link is not reported up to netdev, interrupts are disabled,
    364	 * and so the physical link state may have changed since we last
    365	 * looked. Set get_link_status to make sure that the true link
    366	 * state is interrogated, rather than pulling a cached and possibly
    367	 * stale link state from the driver.
    368	 */
    369	if (!netif_carrier_ok(netdev))
    370		mac->get_link_status = 1;
    371
    372	return igb_has_link(adapter);
    373}
    374
    375static void igb_get_pauseparam(struct net_device *netdev,
    376			       struct ethtool_pauseparam *pause)
    377{
    378	struct igb_adapter *adapter = netdev_priv(netdev);
    379	struct e1000_hw *hw = &adapter->hw;
    380
    381	pause->autoneg =
    382		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
    383
    384	if (hw->fc.current_mode == e1000_fc_rx_pause)
    385		pause->rx_pause = 1;
    386	else if (hw->fc.current_mode == e1000_fc_tx_pause)
    387		pause->tx_pause = 1;
    388	else if (hw->fc.current_mode == e1000_fc_full) {
    389		pause->rx_pause = 1;
    390		pause->tx_pause = 1;
    391	}
    392}
    393
    394static int igb_set_pauseparam(struct net_device *netdev,
    395			      struct ethtool_pauseparam *pause)
    396{
    397	struct igb_adapter *adapter = netdev_priv(netdev);
    398	struct e1000_hw *hw = &adapter->hw;
    399	int retval = 0;
    400	int i;
    401
    402	/* 100basefx does not support setting link flow control */
    403	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
    404		return -EINVAL;
    405
    406	adapter->fc_autoneg = pause->autoneg;
    407
    408	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
    409		usleep_range(1000, 2000);
    410
    411	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
    412		hw->fc.requested_mode = e1000_fc_default;
    413		if (netif_running(adapter->netdev)) {
    414			igb_down(adapter);
    415			igb_up(adapter);
    416		} else {
    417			igb_reset(adapter);
    418		}
    419	} else {
    420		if (pause->rx_pause && pause->tx_pause)
    421			hw->fc.requested_mode = e1000_fc_full;
    422		else if (pause->rx_pause && !pause->tx_pause)
    423			hw->fc.requested_mode = e1000_fc_rx_pause;
    424		else if (!pause->rx_pause && pause->tx_pause)
    425			hw->fc.requested_mode = e1000_fc_tx_pause;
    426		else if (!pause->rx_pause && !pause->tx_pause)
    427			hw->fc.requested_mode = e1000_fc_none;
    428
    429		hw->fc.current_mode = hw->fc.requested_mode;
    430
    431		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
    432			  igb_force_mac_fc(hw) : igb_setup_link(hw));
    433
    434		/* Make sure SRRCTL considers new fc settings for each ring */
    435		for (i = 0; i < adapter->num_rx_queues; i++) {
    436			struct igb_ring *ring = adapter->rx_ring[i];
    437
    438			igb_setup_srrctl(adapter, ring);
    439		}
    440	}
    441
    442	clear_bit(__IGB_RESETTING, &adapter->state);
    443	return retval;
    444}
    445
    446static u32 igb_get_msglevel(struct net_device *netdev)
    447{
    448	struct igb_adapter *adapter = netdev_priv(netdev);
    449	return adapter->msg_enable;
    450}
    451
    452static void igb_set_msglevel(struct net_device *netdev, u32 data)
    453{
    454	struct igb_adapter *adapter = netdev_priv(netdev);
    455	adapter->msg_enable = data;
    456}
    457
    458static int igb_get_regs_len(struct net_device *netdev)
    459{
    460#define IGB_REGS_LEN 740
    461	return IGB_REGS_LEN * sizeof(u32);
    462}
    463
    464static void igb_get_regs(struct net_device *netdev,
    465			 struct ethtool_regs *regs, void *p)
    466{
    467	struct igb_adapter *adapter = netdev_priv(netdev);
    468	struct e1000_hw *hw = &adapter->hw;
    469	u32 *regs_buff = p;
    470	u8 i;
    471
    472	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
    473
    474	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
    475
    476	/* General Registers */
    477	regs_buff[0] = rd32(E1000_CTRL);
    478	regs_buff[1] = rd32(E1000_STATUS);
    479	regs_buff[2] = rd32(E1000_CTRL_EXT);
    480	regs_buff[3] = rd32(E1000_MDIC);
    481	regs_buff[4] = rd32(E1000_SCTL);
    482	regs_buff[5] = rd32(E1000_CONNSW);
    483	regs_buff[6] = rd32(E1000_VET);
    484	regs_buff[7] = rd32(E1000_LEDCTL);
    485	regs_buff[8] = rd32(E1000_PBA);
    486	regs_buff[9] = rd32(E1000_PBS);
    487	regs_buff[10] = rd32(E1000_FRTIMER);
    488	regs_buff[11] = rd32(E1000_TCPTIMER);
    489
    490	/* NVM Register */
    491	regs_buff[12] = rd32(E1000_EECD);
    492
    493	/* Interrupt */
    494	/* Reading EICS for EICR because they read the
    495	 * same but EICS does not clear on read
    496	 */
    497	regs_buff[13] = rd32(E1000_EICS);
    498	regs_buff[14] = rd32(E1000_EICS);
    499	regs_buff[15] = rd32(E1000_EIMS);
    500	regs_buff[16] = rd32(E1000_EIMC);
    501	regs_buff[17] = rd32(E1000_EIAC);
    502	regs_buff[18] = rd32(E1000_EIAM);
    503	/* Reading ICS for ICR because they read the
    504	 * same but ICS does not clear on read
    505	 */
    506	regs_buff[19] = rd32(E1000_ICS);
    507	regs_buff[20] = rd32(E1000_ICS);
    508	regs_buff[21] = rd32(E1000_IMS);
    509	regs_buff[22] = rd32(E1000_IMC);
    510	regs_buff[23] = rd32(E1000_IAC);
    511	regs_buff[24] = rd32(E1000_IAM);
    512	regs_buff[25] = rd32(E1000_IMIRVP);
    513
    514	/* Flow Control */
    515	regs_buff[26] = rd32(E1000_FCAL);
    516	regs_buff[27] = rd32(E1000_FCAH);
    517	regs_buff[28] = rd32(E1000_FCTTV);
    518	regs_buff[29] = rd32(E1000_FCRTL);
    519	regs_buff[30] = rd32(E1000_FCRTH);
    520	regs_buff[31] = rd32(E1000_FCRTV);
    521
    522	/* Receive */
    523	regs_buff[32] = rd32(E1000_RCTL);
    524	regs_buff[33] = rd32(E1000_RXCSUM);
    525	regs_buff[34] = rd32(E1000_RLPML);
    526	regs_buff[35] = rd32(E1000_RFCTL);
    527	regs_buff[36] = rd32(E1000_MRQC);
    528	regs_buff[37] = rd32(E1000_VT_CTL);
    529
    530	/* Transmit */
    531	regs_buff[38] = rd32(E1000_TCTL);
    532	regs_buff[39] = rd32(E1000_TCTL_EXT);
    533	regs_buff[40] = rd32(E1000_TIPG);
    534	regs_buff[41] = rd32(E1000_DTXCTL);
    535
    536	/* Wake Up */
    537	regs_buff[42] = rd32(E1000_WUC);
    538	regs_buff[43] = rd32(E1000_WUFC);
    539	regs_buff[44] = rd32(E1000_WUS);
    540	regs_buff[45] = rd32(E1000_IPAV);
    541	regs_buff[46] = rd32(E1000_WUPL);
    542
    543	/* MAC */
    544	regs_buff[47] = rd32(E1000_PCS_CFG0);
    545	regs_buff[48] = rd32(E1000_PCS_LCTL);
    546	regs_buff[49] = rd32(E1000_PCS_LSTAT);
    547	regs_buff[50] = rd32(E1000_PCS_ANADV);
    548	regs_buff[51] = rd32(E1000_PCS_LPAB);
    549	regs_buff[52] = rd32(E1000_PCS_NPTX);
    550	regs_buff[53] = rd32(E1000_PCS_LPABNP);
    551
    552	/* Statistics */
    553	regs_buff[54] = adapter->stats.crcerrs;
    554	regs_buff[55] = adapter->stats.algnerrc;
    555	regs_buff[56] = adapter->stats.symerrs;
    556	regs_buff[57] = adapter->stats.rxerrc;
    557	regs_buff[58] = adapter->stats.mpc;
    558	regs_buff[59] = adapter->stats.scc;
    559	regs_buff[60] = adapter->stats.ecol;
    560	regs_buff[61] = adapter->stats.mcc;
    561	regs_buff[62] = adapter->stats.latecol;
    562	regs_buff[63] = adapter->stats.colc;
    563	regs_buff[64] = adapter->stats.dc;
    564	regs_buff[65] = adapter->stats.tncrs;
    565	regs_buff[66] = adapter->stats.sec;
    566	regs_buff[67] = adapter->stats.htdpmc;
    567	regs_buff[68] = adapter->stats.rlec;
    568	regs_buff[69] = adapter->stats.xonrxc;
    569	regs_buff[70] = adapter->stats.xontxc;
    570	regs_buff[71] = adapter->stats.xoffrxc;
    571	regs_buff[72] = adapter->stats.xofftxc;
    572	regs_buff[73] = adapter->stats.fcruc;
    573	regs_buff[74] = adapter->stats.prc64;
    574	regs_buff[75] = adapter->stats.prc127;
    575	regs_buff[76] = adapter->stats.prc255;
    576	regs_buff[77] = adapter->stats.prc511;
    577	regs_buff[78] = adapter->stats.prc1023;
    578	regs_buff[79] = adapter->stats.prc1522;
    579	regs_buff[80] = adapter->stats.gprc;
    580	regs_buff[81] = adapter->stats.bprc;
    581	regs_buff[82] = adapter->stats.mprc;
    582	regs_buff[83] = adapter->stats.gptc;
    583	regs_buff[84] = adapter->stats.gorc;
    584	regs_buff[86] = adapter->stats.gotc;
    585	regs_buff[88] = adapter->stats.rnbc;
    586	regs_buff[89] = adapter->stats.ruc;
    587	regs_buff[90] = adapter->stats.rfc;
    588	regs_buff[91] = adapter->stats.roc;
    589	regs_buff[92] = adapter->stats.rjc;
    590	regs_buff[93] = adapter->stats.mgprc;
    591	regs_buff[94] = adapter->stats.mgpdc;
    592	regs_buff[95] = adapter->stats.mgptc;
    593	regs_buff[96] = adapter->stats.tor;
    594	regs_buff[98] = adapter->stats.tot;
    595	regs_buff[100] = adapter->stats.tpr;
    596	regs_buff[101] = adapter->stats.tpt;
    597	regs_buff[102] = adapter->stats.ptc64;
    598	regs_buff[103] = adapter->stats.ptc127;
    599	regs_buff[104] = adapter->stats.ptc255;
    600	regs_buff[105] = adapter->stats.ptc511;
    601	regs_buff[106] = adapter->stats.ptc1023;
    602	regs_buff[107] = adapter->stats.ptc1522;
    603	regs_buff[108] = adapter->stats.mptc;
    604	regs_buff[109] = adapter->stats.bptc;
    605	regs_buff[110] = adapter->stats.tsctc;
    606	regs_buff[111] = adapter->stats.iac;
    607	regs_buff[112] = adapter->stats.rpthc;
    608	regs_buff[113] = adapter->stats.hgptc;
    609	regs_buff[114] = adapter->stats.hgorc;
    610	regs_buff[116] = adapter->stats.hgotc;
    611	regs_buff[118] = adapter->stats.lenerrs;
    612	regs_buff[119] = adapter->stats.scvpc;
    613	regs_buff[120] = adapter->stats.hrmpc;
    614
    615	for (i = 0; i < 4; i++)
    616		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
    617	for (i = 0; i < 4; i++)
    618		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
    619	for (i = 0; i < 4; i++)
    620		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
    621	for (i = 0; i < 4; i++)
    622		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
    623	for (i = 0; i < 4; i++)
    624		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
    625	for (i = 0; i < 4; i++)
    626		regs_buff[141 + i] = rd32(E1000_RDH(i));
    627	for (i = 0; i < 4; i++)
    628		regs_buff[145 + i] = rd32(E1000_RDT(i));
    629	for (i = 0; i < 4; i++)
    630		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
    631
    632	for (i = 0; i < 10; i++)
    633		regs_buff[153 + i] = rd32(E1000_EITR(i));
    634	for (i = 0; i < 8; i++)
    635		regs_buff[163 + i] = rd32(E1000_IMIR(i));
    636	for (i = 0; i < 8; i++)
    637		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
    638	for (i = 0; i < 16; i++)
    639		regs_buff[179 + i] = rd32(E1000_RAL(i));
    640	for (i = 0; i < 16; i++)
    641		regs_buff[195 + i] = rd32(E1000_RAH(i));
    642
    643	for (i = 0; i < 4; i++)
    644		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
    645	for (i = 0; i < 4; i++)
    646		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
    647	for (i = 0; i < 4; i++)
    648		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
    649	for (i = 0; i < 4; i++)
    650		regs_buff[223 + i] = rd32(E1000_TDH(i));
    651	for (i = 0; i < 4; i++)
    652		regs_buff[227 + i] = rd32(E1000_TDT(i));
    653	for (i = 0; i < 4; i++)
    654		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
    655	for (i = 0; i < 4; i++)
    656		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
    657	for (i = 0; i < 4; i++)
    658		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
    659	for (i = 0; i < 4; i++)
    660		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
    661
    662	for (i = 0; i < 4; i++)
    663		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
    664	for (i = 0; i < 4; i++)
    665		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
    666	for (i = 0; i < 32; i++)
    667		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
    668	for (i = 0; i < 128; i++)
    669		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
    670	for (i = 0; i < 128; i++)
    671		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
    672	for (i = 0; i < 4; i++)
    673		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
    674
    675	regs_buff[547] = rd32(E1000_TDFH);
    676	regs_buff[548] = rd32(E1000_TDFT);
    677	regs_buff[549] = rd32(E1000_TDFHS);
    678	regs_buff[550] = rd32(E1000_TDFPC);
    679
    680	if (hw->mac.type > e1000_82580) {
    681		regs_buff[551] = adapter->stats.o2bgptc;
    682		regs_buff[552] = adapter->stats.b2ospc;
    683		regs_buff[553] = adapter->stats.o2bspc;
    684		regs_buff[554] = adapter->stats.b2ogprc;
    685	}
    686
    687	if (hw->mac.type == e1000_82576) {
    688		for (i = 0; i < 12; i++)
    689			regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
    690		for (i = 0; i < 4; i++)
    691			regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
    692		for (i = 0; i < 12; i++)
    693			regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
    694		for (i = 0; i < 12; i++)
    695			regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
    696		for (i = 0; i < 12; i++)
    697			regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
    698		for (i = 0; i < 12; i++)
    699			regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
    700		for (i = 0; i < 12; i++)
    701			regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
    702		for (i = 0; i < 12; i++)
    703			regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
    704
    705		for (i = 0; i < 12; i++)
    706			regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
    707		for (i = 0; i < 12; i++)
    708			regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
    709		for (i = 0; i < 12; i++)
    710			regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
    711		for (i = 0; i < 12; i++)
    712			regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
    713		for (i = 0; i < 12; i++)
    714			regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
    715		for (i = 0; i < 12; i++)
    716			regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
    717		for (i = 0; i < 12; i++)
    718			regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
    719		for (i = 0; i < 12; i++)
    720			regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
    721	}
    722
    723	if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211)
    724		regs_buff[739] = rd32(E1000_I210_RR2DCDELAY);
    725}
    726
    727static int igb_get_eeprom_len(struct net_device *netdev)
    728{
    729	struct igb_adapter *adapter = netdev_priv(netdev);
    730	return adapter->hw.nvm.word_size * 2;
    731}
    732
    733static int igb_get_eeprom(struct net_device *netdev,
    734			  struct ethtool_eeprom *eeprom, u8 *bytes)
    735{
    736	struct igb_adapter *adapter = netdev_priv(netdev);
    737	struct e1000_hw *hw = &adapter->hw;
    738	u16 *eeprom_buff;
    739	int first_word, last_word;
    740	int ret_val = 0;
    741	u16 i;
    742
    743	if (eeprom->len == 0)
    744		return -EINVAL;
    745
    746	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
    747
    748	first_word = eeprom->offset >> 1;
    749	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
    750
    751	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
    752				    GFP_KERNEL);
    753	if (!eeprom_buff)
    754		return -ENOMEM;
    755
    756	if (hw->nvm.type == e1000_nvm_eeprom_spi)
    757		ret_val = hw->nvm.ops.read(hw, first_word,
    758					   last_word - first_word + 1,
    759					   eeprom_buff);
    760	else {
    761		for (i = 0; i < last_word - first_word + 1; i++) {
    762			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
    763						   &eeprom_buff[i]);
    764			if (ret_val)
    765				break;
    766		}
    767	}
    768
    769	/* Device's eeprom is always little-endian, word addressable */
    770	for (i = 0; i < last_word - first_word + 1; i++)
    771		le16_to_cpus(&eeprom_buff[i]);
    772
    773	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
    774			eeprom->len);
    775	kfree(eeprom_buff);
    776
    777	return ret_val;
    778}
    779
    780static int igb_set_eeprom(struct net_device *netdev,
    781			  struct ethtool_eeprom *eeprom, u8 *bytes)
    782{
    783	struct igb_adapter *adapter = netdev_priv(netdev);
    784	struct e1000_hw *hw = &adapter->hw;
    785	u16 *eeprom_buff;
    786	void *ptr;
    787	int max_len, first_word, last_word, ret_val = 0;
    788	u16 i;
    789
    790	if (eeprom->len == 0)
    791		return -EOPNOTSUPP;
    792
    793	if ((hw->mac.type >= e1000_i210) &&
    794	    !igb_get_flash_presence_i210(hw)) {
    795		return -EOPNOTSUPP;
    796	}
    797
    798	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
    799		return -EFAULT;
    800
    801	max_len = hw->nvm.word_size * 2;
    802
    803	first_word = eeprom->offset >> 1;
    804	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
    805	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
    806	if (!eeprom_buff)
    807		return -ENOMEM;
    808
    809	ptr = (void *)eeprom_buff;
    810
    811	if (eeprom->offset & 1) {
    812		/* need read/modify/write of first changed EEPROM word
    813		 * only the second byte of the word is being modified
    814		 */
    815		ret_val = hw->nvm.ops.read(hw, first_word, 1,
    816					    &eeprom_buff[0]);
    817		ptr++;
    818	}
    819	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
    820		/* need read/modify/write of last changed EEPROM word
    821		 * only the first byte of the word is being modified
    822		 */
    823		ret_val = hw->nvm.ops.read(hw, last_word, 1,
    824				   &eeprom_buff[last_word - first_word]);
    825	}
    826
    827	/* Device's eeprom is always little-endian, word addressable */
    828	for (i = 0; i < last_word - first_word + 1; i++)
    829		le16_to_cpus(&eeprom_buff[i]);
    830
    831	memcpy(ptr, bytes, eeprom->len);
    832
    833	for (i = 0; i < last_word - first_word + 1; i++)
    834		cpu_to_le16s(&eeprom_buff[i]);
    835
    836	ret_val = hw->nvm.ops.write(hw, first_word,
    837				    last_word - first_word + 1, eeprom_buff);
    838
    839	/* Update the checksum if nvm write succeeded */
    840	if (ret_val == 0)
    841		hw->nvm.ops.update(hw);
    842
    843	igb_set_fw_version(adapter);
    844	kfree(eeprom_buff);
    845	return ret_val;
    846}
    847
    848static void igb_get_drvinfo(struct net_device *netdev,
    849			    struct ethtool_drvinfo *drvinfo)
    850{
    851	struct igb_adapter *adapter = netdev_priv(netdev);
    852
    853	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
    854
    855	/* EEPROM image version # is reported as firmware version # for
    856	 * 82575 controllers
    857	 */
    858	strlcpy(drvinfo->fw_version, adapter->fw_version,
    859		sizeof(drvinfo->fw_version));
    860	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
    861		sizeof(drvinfo->bus_info));
    862
    863	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
    864}
    865
    866static void igb_get_ringparam(struct net_device *netdev,
    867			      struct ethtool_ringparam *ring,
    868			      struct kernel_ethtool_ringparam *kernel_ring,
    869			      struct netlink_ext_ack *extack)
    870{
    871	struct igb_adapter *adapter = netdev_priv(netdev);
    872
    873	ring->rx_max_pending = IGB_MAX_RXD;
    874	ring->tx_max_pending = IGB_MAX_TXD;
    875	ring->rx_pending = adapter->rx_ring_count;
    876	ring->tx_pending = adapter->tx_ring_count;
    877}
    878
    879static int igb_set_ringparam(struct net_device *netdev,
    880			     struct ethtool_ringparam *ring,
    881			     struct kernel_ethtool_ringparam *kernel_ring,
    882			     struct netlink_ext_ack *extack)
    883{
    884	struct igb_adapter *adapter = netdev_priv(netdev);
    885	struct igb_ring *temp_ring;
    886	int i, err = 0;
    887	u16 new_rx_count, new_tx_count;
    888
    889	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
    890		return -EINVAL;
    891
    892	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
    893	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
    894	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
    895
    896	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
    897	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
    898	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
    899
    900	if ((new_tx_count == adapter->tx_ring_count) &&
    901	    (new_rx_count == adapter->rx_ring_count)) {
    902		/* nothing to do */
    903		return 0;
    904	}
    905
    906	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
    907		usleep_range(1000, 2000);
    908
    909	if (!netif_running(adapter->netdev)) {
    910		for (i = 0; i < adapter->num_tx_queues; i++)
    911			adapter->tx_ring[i]->count = new_tx_count;
    912		for (i = 0; i < adapter->num_rx_queues; i++)
    913			adapter->rx_ring[i]->count = new_rx_count;
    914		adapter->tx_ring_count = new_tx_count;
    915		adapter->rx_ring_count = new_rx_count;
    916		goto clear_reset;
    917	}
    918
    919	if (adapter->num_tx_queues > adapter->num_rx_queues)
    920		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
    921					       adapter->num_tx_queues));
    922	else
    923		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
    924					       adapter->num_rx_queues));
    925
    926	if (!temp_ring) {
    927		err = -ENOMEM;
    928		goto clear_reset;
    929	}
    930
    931	igb_down(adapter);
    932
    933	/* We can't just free everything and then setup again,
    934	 * because the ISRs in MSI-X mode get passed pointers
    935	 * to the Tx and Rx ring structs.
    936	 */
    937	if (new_tx_count != adapter->tx_ring_count) {
    938		for (i = 0; i < adapter->num_tx_queues; i++) {
    939			memcpy(&temp_ring[i], adapter->tx_ring[i],
    940			       sizeof(struct igb_ring));
    941
    942			temp_ring[i].count = new_tx_count;
    943			err = igb_setup_tx_resources(&temp_ring[i]);
    944			if (err) {
    945				while (i) {
    946					i--;
    947					igb_free_tx_resources(&temp_ring[i]);
    948				}
    949				goto err_setup;
    950			}
    951		}
    952
    953		for (i = 0; i < adapter->num_tx_queues; i++) {
    954			igb_free_tx_resources(adapter->tx_ring[i]);
    955
    956			memcpy(adapter->tx_ring[i], &temp_ring[i],
    957			       sizeof(struct igb_ring));
    958		}
    959
    960		adapter->tx_ring_count = new_tx_count;
    961	}
    962
    963	if (new_rx_count != adapter->rx_ring_count) {
    964		for (i = 0; i < adapter->num_rx_queues; i++) {
    965			memcpy(&temp_ring[i], adapter->rx_ring[i],
    966			       sizeof(struct igb_ring));
    967
    968			temp_ring[i].count = new_rx_count;
    969			err = igb_setup_rx_resources(&temp_ring[i]);
    970			if (err) {
    971				while (i) {
    972					i--;
    973					igb_free_rx_resources(&temp_ring[i]);
    974				}
    975				goto err_setup;
    976			}
    977
    978		}
    979
    980		for (i = 0; i < adapter->num_rx_queues; i++) {
    981			igb_free_rx_resources(adapter->rx_ring[i]);
    982
    983			memcpy(adapter->rx_ring[i], &temp_ring[i],
    984			       sizeof(struct igb_ring));
    985		}
    986
    987		adapter->rx_ring_count = new_rx_count;
    988	}
    989err_setup:
    990	igb_up(adapter);
    991	vfree(temp_ring);
    992clear_reset:
    993	clear_bit(__IGB_RESETTING, &adapter->state);
    994	return err;
    995}
    996
    997/* ethtool register test data */
    998struct igb_reg_test {
    999	u16 reg;
   1000	u16 reg_offset;
   1001	u16 array_len;
   1002	u16 test_type;
   1003	u32 mask;
   1004	u32 write;
   1005};
   1006
   1007/* In the hardware, registers are laid out either singly, in arrays
   1008 * spaced 0x100 bytes apart, or in contiguous tables.  We assume
   1009 * most tests take place on arrays or single registers (handled
   1010 * as a single-element array) and special-case the tables.
   1011 * Table tests are always pattern tests.
   1012 *
   1013 * We also make provision for some required setup steps by specifying
   1014 * registers to be written without any read-back testing.
   1015 */
   1016
   1017#define PATTERN_TEST	1
   1018#define SET_READ_TEST	2
   1019#define WRITE_NO_TEST	3
   1020#define TABLE32_TEST	4
   1021#define TABLE64_TEST_LO	5
   1022#define TABLE64_TEST_HI	6
   1023
   1024/* i210 reg test */
   1025static struct igb_reg_test reg_test_i210[] = {
   1026	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1027	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1028	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1029	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1030	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1031	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1032	/* RDH is read-only for i210, only test RDT. */
   1033	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1034	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
   1035	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1036	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
   1037	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1038	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1039	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1040	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1041	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1042	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
   1043	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
   1044	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1045	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
   1046						0xFFFFFFFF, 0xFFFFFFFF },
   1047	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
   1048						0x900FFFFF, 0xFFFFFFFF },
   1049	{ E1000_MTA,	   0, 128, TABLE32_TEST,
   1050						0xFFFFFFFF, 0xFFFFFFFF },
   1051	{ 0, 0, 0, 0, 0 }
   1052};
   1053
   1054/* i350 reg test */
   1055static struct igb_reg_test reg_test_i350[] = {
   1056	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1057	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1058	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1059	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
   1060	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1061	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1062	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1063	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1064	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1065	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1066	/* RDH is read-only for i350, only test RDT. */
   1067	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1068	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1069	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
   1070	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1071	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
   1072	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1073	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1074	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1075	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1076	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1077	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1078	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1079	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1080	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1081	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
   1082	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
   1083	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1084	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
   1085						0xFFFFFFFF, 0xFFFFFFFF },
   1086	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
   1087						0xC3FFFFFF, 0xFFFFFFFF },
   1088	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
   1089						0xFFFFFFFF, 0xFFFFFFFF },
   1090	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
   1091						0xC3FFFFFF, 0xFFFFFFFF },
   1092	{ E1000_MTA,	   0, 128, TABLE32_TEST,
   1093						0xFFFFFFFF, 0xFFFFFFFF },
   1094	{ 0, 0, 0, 0 }
   1095};
   1096
   1097/* 82580 reg test */
   1098static struct igb_reg_test reg_test_82580[] = {
   1099	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1100	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1101	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1102	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1103	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1104	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1105	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1106	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1107	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1108	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1109	/* RDH is read-only for 82580, only test RDT. */
   1110	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1111	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1112	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
   1113	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1114	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
   1115	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1116	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1117	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1118	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1119	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1120	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1121	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1122	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1123	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1124	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
   1125	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
   1126	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1127	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
   1128						0xFFFFFFFF, 0xFFFFFFFF },
   1129	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
   1130						0x83FFFFFF, 0xFFFFFFFF },
   1131	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
   1132						0xFFFFFFFF, 0xFFFFFFFF },
   1133	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
   1134						0x83FFFFFF, 0xFFFFFFFF },
   1135	{ E1000_MTA,	   0, 128, TABLE32_TEST,
   1136						0xFFFFFFFF, 0xFFFFFFFF },
   1137	{ 0, 0, 0, 0 }
   1138};
   1139
   1140/* 82576 reg test */
   1141static struct igb_reg_test reg_test_82576[] = {
   1142	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1143	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1144	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1145	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1146	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1147	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1148	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1149	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1150	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1151	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1152	/* Enable all RX queues before testing. */
   1153	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
   1154	  E1000_RXDCTL_QUEUE_ENABLE },
   1155	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
   1156	  E1000_RXDCTL_QUEUE_ENABLE },
   1157	/* RDH is read-only for 82576, only test RDT. */
   1158	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1159	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1160	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
   1161	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
   1162	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
   1163	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1164	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
   1165	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1166	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1167	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1168	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1169	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1170	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
   1171	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1172	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
   1173	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
   1174	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1175	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
   1176	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
   1177	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
   1178	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
   1179	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1180	{ 0, 0, 0, 0 }
   1181};
   1182
   1183/* 82575 register test */
   1184static struct igb_reg_test reg_test_82575[] = {
   1185	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1186	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1187	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
   1188	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1189	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1190	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1191	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1192	/* Enable all four RX queues before testing. */
   1193	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
   1194	  E1000_RXDCTL_QUEUE_ENABLE },
   1195	/* RDH is read-only for 82575, only test RDT. */
   1196	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1197	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
   1198	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
   1199	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
   1200	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
   1201	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
   1202	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1203	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
   1204	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1205	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
   1206	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
   1207	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
   1208	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
   1209	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
   1210	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
   1211	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
   1212	{ 0, 0, 0, 0 }
   1213};
   1214
   1215static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
   1216			     int reg, u32 mask, u32 write)
   1217{
   1218	struct e1000_hw *hw = &adapter->hw;
   1219	u32 pat, val;
   1220	static const u32 _test[] = {
   1221		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
   1222	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
   1223		wr32(reg, (_test[pat] & write));
   1224		val = rd32(reg) & mask;
   1225		if (val != (_test[pat] & write & mask)) {
   1226			dev_err(&adapter->pdev->dev,
   1227				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
   1228				reg, val, (_test[pat] & write & mask));
   1229			*data = reg;
   1230			return true;
   1231		}
   1232	}
   1233
   1234	return false;
   1235}
   1236
   1237static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
   1238			      int reg, u32 mask, u32 write)
   1239{
   1240	struct e1000_hw *hw = &adapter->hw;
   1241	u32 val;
   1242
   1243	wr32(reg, write & mask);
   1244	val = rd32(reg);
   1245	if ((write & mask) != (val & mask)) {
   1246		dev_err(&adapter->pdev->dev,
   1247			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
   1248			reg, (val & mask), (write & mask));
   1249		*data = reg;
   1250		return true;
   1251	}
   1252
   1253	return false;
   1254}
   1255
   1256#define REG_PATTERN_TEST(reg, mask, write) \
   1257	do { \
   1258		if (reg_pattern_test(adapter, data, reg, mask, write)) \
   1259			return 1; \
   1260	} while (0)
   1261
   1262#define REG_SET_AND_CHECK(reg, mask, write) \
   1263	do { \
   1264		if (reg_set_and_check(adapter, data, reg, mask, write)) \
   1265			return 1; \
   1266	} while (0)
   1267
   1268static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
   1269{
   1270	struct e1000_hw *hw = &adapter->hw;
   1271	struct igb_reg_test *test;
   1272	u32 value, before, after;
   1273	u32 i, toggle;
   1274
   1275	switch (adapter->hw.mac.type) {
   1276	case e1000_i350:
   1277	case e1000_i354:
   1278		test = reg_test_i350;
   1279		toggle = 0x7FEFF3FF;
   1280		break;
   1281	case e1000_i210:
   1282	case e1000_i211:
   1283		test = reg_test_i210;
   1284		toggle = 0x7FEFF3FF;
   1285		break;
   1286	case e1000_82580:
   1287		test = reg_test_82580;
   1288		toggle = 0x7FEFF3FF;
   1289		break;
   1290	case e1000_82576:
   1291		test = reg_test_82576;
   1292		toggle = 0x7FFFF3FF;
   1293		break;
   1294	default:
   1295		test = reg_test_82575;
   1296		toggle = 0x7FFFF3FF;
   1297		break;
   1298	}
   1299
   1300	/* Because the status register is such a special case,
   1301	 * we handle it separately from the rest of the register
   1302	 * tests.  Some bits are read-only, some toggle, and some
   1303	 * are writable on newer MACs.
   1304	 */
   1305	before = rd32(E1000_STATUS);
   1306	value = (rd32(E1000_STATUS) & toggle);
   1307	wr32(E1000_STATUS, toggle);
   1308	after = rd32(E1000_STATUS) & toggle;
   1309	if (value != after) {
   1310		dev_err(&adapter->pdev->dev,
   1311			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
   1312			after, value);
   1313		*data = 1;
   1314		return 1;
   1315	}
   1316	/* restore previous status */
   1317	wr32(E1000_STATUS, before);
   1318
   1319	/* Perform the remainder of the register test, looping through
   1320	 * the test table until we either fail or reach the null entry.
   1321	 */
   1322	while (test->reg) {
   1323		for (i = 0; i < test->array_len; i++) {
   1324			switch (test->test_type) {
   1325			case PATTERN_TEST:
   1326				REG_PATTERN_TEST(test->reg +
   1327						(i * test->reg_offset),
   1328						test->mask,
   1329						test->write);
   1330				break;
   1331			case SET_READ_TEST:
   1332				REG_SET_AND_CHECK(test->reg +
   1333						(i * test->reg_offset),
   1334						test->mask,
   1335						test->write);
   1336				break;
   1337			case WRITE_NO_TEST:
   1338				writel(test->write,
   1339				    (adapter->hw.hw_addr + test->reg)
   1340					+ (i * test->reg_offset));
   1341				break;
   1342			case TABLE32_TEST:
   1343				REG_PATTERN_TEST(test->reg + (i * 4),
   1344						test->mask,
   1345						test->write);
   1346				break;
   1347			case TABLE64_TEST_LO:
   1348				REG_PATTERN_TEST(test->reg + (i * 8),
   1349						test->mask,
   1350						test->write);
   1351				break;
   1352			case TABLE64_TEST_HI:
   1353				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
   1354						test->mask,
   1355						test->write);
   1356				break;
   1357			}
   1358		}
   1359		test++;
   1360	}
   1361
   1362	*data = 0;
   1363	return 0;
   1364}
   1365
   1366static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
   1367{
   1368	struct e1000_hw *hw = &adapter->hw;
   1369
   1370	*data = 0;
   1371
   1372	/* Validate eeprom on all parts but flashless */
   1373	switch (hw->mac.type) {
   1374	case e1000_i210:
   1375	case e1000_i211:
   1376		if (igb_get_flash_presence_i210(hw)) {
   1377			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
   1378				*data = 2;
   1379		}
   1380		break;
   1381	default:
   1382		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
   1383			*data = 2;
   1384		break;
   1385	}
   1386
   1387	return *data;
   1388}
   1389
   1390static irqreturn_t igb_test_intr(int irq, void *data)
   1391{
   1392	struct igb_adapter *adapter = (struct igb_adapter *) data;
   1393	struct e1000_hw *hw = &adapter->hw;
   1394
   1395	adapter->test_icr |= rd32(E1000_ICR);
   1396
   1397	return IRQ_HANDLED;
   1398}
   1399
   1400static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
   1401{
   1402	struct e1000_hw *hw = &adapter->hw;
   1403	struct net_device *netdev = adapter->netdev;
   1404	u32 mask, ics_mask, i = 0, shared_int = true;
   1405	u32 irq = adapter->pdev->irq;
   1406
   1407	*data = 0;
   1408
   1409	/* Hook up test interrupt handler just for this test */
   1410	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
   1411		if (request_irq(adapter->msix_entries[0].vector,
   1412				igb_test_intr, 0, netdev->name, adapter)) {
   1413			*data = 1;
   1414			return -1;
   1415		}
   1416	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
   1417		shared_int = false;
   1418		if (request_irq(irq,
   1419				igb_test_intr, 0, netdev->name, adapter)) {
   1420			*data = 1;
   1421			return -1;
   1422		}
   1423	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
   1424				netdev->name, adapter)) {
   1425		shared_int = false;
   1426	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
   1427		 netdev->name, adapter)) {
   1428		*data = 1;
   1429		return -1;
   1430	}
   1431	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
   1432		(shared_int ? "shared" : "unshared"));
   1433
   1434	/* Disable all the interrupts */
   1435	wr32(E1000_IMC, ~0);
   1436	wrfl();
   1437	usleep_range(10000, 11000);
   1438
   1439	/* Define all writable bits for ICS */
   1440	switch (hw->mac.type) {
   1441	case e1000_82575:
   1442		ics_mask = 0x37F47EDD;
   1443		break;
   1444	case e1000_82576:
   1445		ics_mask = 0x77D4FBFD;
   1446		break;
   1447	case e1000_82580:
   1448		ics_mask = 0x77DCFED5;
   1449		break;
   1450	case e1000_i350:
   1451	case e1000_i354:
   1452	case e1000_i210:
   1453	case e1000_i211:
   1454		ics_mask = 0x77DCFED5;
   1455		break;
   1456	default:
   1457		ics_mask = 0x7FFFFFFF;
   1458		break;
   1459	}
   1460
   1461	/* Test each interrupt */
   1462	for (; i < 31; i++) {
   1463		/* Interrupt to test */
   1464		mask = BIT(i);
   1465
   1466		if (!(mask & ics_mask))
   1467			continue;
   1468
   1469		if (!shared_int) {
   1470			/* Disable the interrupt to be reported in
   1471			 * the cause register and then force the same
   1472			 * interrupt and see if one gets posted.  If
   1473			 * an interrupt was posted to the bus, the
   1474			 * test failed.
   1475			 */
   1476			adapter->test_icr = 0;
   1477
   1478			/* Flush any pending interrupts */
   1479			wr32(E1000_ICR, ~0);
   1480
   1481			wr32(E1000_IMC, mask);
   1482			wr32(E1000_ICS, mask);
   1483			wrfl();
   1484			usleep_range(10000, 11000);
   1485
   1486			if (adapter->test_icr & mask) {
   1487				*data = 3;
   1488				break;
   1489			}
   1490		}
   1491
   1492		/* Enable the interrupt to be reported in
   1493		 * the cause register and then force the same
   1494		 * interrupt and see if one gets posted.  If
   1495		 * an interrupt was not posted to the bus, the
   1496		 * test failed.
   1497		 */
   1498		adapter->test_icr = 0;
   1499
   1500		/* Flush any pending interrupts */
   1501		wr32(E1000_ICR, ~0);
   1502
   1503		wr32(E1000_IMS, mask);
   1504		wr32(E1000_ICS, mask);
   1505		wrfl();
   1506		usleep_range(10000, 11000);
   1507
   1508		if (!(adapter->test_icr & mask)) {
   1509			*data = 4;
   1510			break;
   1511		}
   1512
   1513		if (!shared_int) {
   1514			/* Disable the other interrupts to be reported in
   1515			 * the cause register and then force the other
   1516			 * interrupts and see if any get posted.  If
   1517			 * an interrupt was posted to the bus, the
   1518			 * test failed.
   1519			 */
   1520			adapter->test_icr = 0;
   1521
   1522			/* Flush any pending interrupts */
   1523			wr32(E1000_ICR, ~0);
   1524
   1525			wr32(E1000_IMC, ~mask);
   1526			wr32(E1000_ICS, ~mask);
   1527			wrfl();
   1528			usleep_range(10000, 11000);
   1529
   1530			if (adapter->test_icr & mask) {
   1531				*data = 5;
   1532				break;
   1533			}
   1534		}
   1535	}
   1536
   1537	/* Disable all the interrupts */
   1538	wr32(E1000_IMC, ~0);
   1539	wrfl();
   1540	usleep_range(10000, 11000);
   1541
   1542	/* Unhook test interrupt handler */
   1543	if (adapter->flags & IGB_FLAG_HAS_MSIX)
   1544		free_irq(adapter->msix_entries[0].vector, adapter);
   1545	else
   1546		free_irq(irq, adapter);
   1547
   1548	return *data;
   1549}
   1550
   1551static void igb_free_desc_rings(struct igb_adapter *adapter)
   1552{
   1553	igb_free_tx_resources(&adapter->test_tx_ring);
   1554	igb_free_rx_resources(&adapter->test_rx_ring);
   1555}
   1556
   1557static int igb_setup_desc_rings(struct igb_adapter *adapter)
   1558{
   1559	struct igb_ring *tx_ring = &adapter->test_tx_ring;
   1560	struct igb_ring *rx_ring = &adapter->test_rx_ring;
   1561	struct e1000_hw *hw = &adapter->hw;
   1562	int ret_val;
   1563
   1564	/* Setup Tx descriptor ring and Tx buffers */
   1565	tx_ring->count = IGB_DEFAULT_TXD;
   1566	tx_ring->dev = &adapter->pdev->dev;
   1567	tx_ring->netdev = adapter->netdev;
   1568	tx_ring->reg_idx = adapter->vfs_allocated_count;
   1569
   1570	if (igb_setup_tx_resources(tx_ring)) {
   1571		ret_val = 1;
   1572		goto err_nomem;
   1573	}
   1574
   1575	igb_setup_tctl(adapter);
   1576	igb_configure_tx_ring(adapter, tx_ring);
   1577
   1578	/* Setup Rx descriptor ring and Rx buffers */
   1579	rx_ring->count = IGB_DEFAULT_RXD;
   1580	rx_ring->dev = &adapter->pdev->dev;
   1581	rx_ring->netdev = adapter->netdev;
   1582	rx_ring->reg_idx = adapter->vfs_allocated_count;
   1583
   1584	if (igb_setup_rx_resources(rx_ring)) {
   1585		ret_val = 3;
   1586		goto err_nomem;
   1587	}
   1588
   1589	/* set the default queue to queue 0 of PF */
   1590	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
   1591
   1592	/* enable receive ring */
   1593	igb_setup_rctl(adapter);
   1594	igb_configure_rx_ring(adapter, rx_ring);
   1595
   1596	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
   1597
   1598	return 0;
   1599
   1600err_nomem:
   1601	igb_free_desc_rings(adapter);
   1602	return ret_val;
   1603}
   1604
   1605static void igb_phy_disable_receiver(struct igb_adapter *adapter)
   1606{
   1607	struct e1000_hw *hw = &adapter->hw;
   1608
   1609	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
   1610	igb_write_phy_reg(hw, 29, 0x001F);
   1611	igb_write_phy_reg(hw, 30, 0x8FFC);
   1612	igb_write_phy_reg(hw, 29, 0x001A);
   1613	igb_write_phy_reg(hw, 30, 0x8FF0);
   1614}
   1615
   1616static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
   1617{
   1618	struct e1000_hw *hw = &adapter->hw;
   1619	u32 ctrl_reg = 0;
   1620
   1621	hw->mac.autoneg = false;
   1622
   1623	if (hw->phy.type == e1000_phy_m88) {
   1624		if (hw->phy.id != I210_I_PHY_ID) {
   1625			/* Auto-MDI/MDIX Off */
   1626			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
   1627			/* reset to update Auto-MDI/MDIX */
   1628			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
   1629			/* autoneg off */
   1630			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
   1631		} else {
   1632			/* force 1000, set loopback  */
   1633			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
   1634			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
   1635		}
   1636	} else if (hw->phy.type == e1000_phy_82580) {
   1637		/* enable MII loopback */
   1638		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
   1639	}
   1640
   1641	/* add small delay to avoid loopback test failure */
   1642	msleep(50);
   1643
   1644	/* force 1000, set loopback */
   1645	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
   1646
   1647	/* Now set up the MAC to the same speed/duplex as the PHY. */
   1648	ctrl_reg = rd32(E1000_CTRL);
   1649	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
   1650	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
   1651		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
   1652		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
   1653		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
   1654		     E1000_CTRL_SLU);	 /* Set link up enable bit */
   1655
   1656	if (hw->phy.type == e1000_phy_m88)
   1657		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
   1658
   1659	wr32(E1000_CTRL, ctrl_reg);
   1660
   1661	/* Disable the receiver on the PHY so when a cable is plugged in, the
   1662	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
   1663	 */
   1664	if (hw->phy.type == e1000_phy_m88)
   1665		igb_phy_disable_receiver(adapter);
   1666
   1667	msleep(500);
   1668	return 0;
   1669}
   1670
   1671static int igb_set_phy_loopback(struct igb_adapter *adapter)
   1672{
   1673	return igb_integrated_phy_loopback(adapter);
   1674}
   1675
   1676static int igb_setup_loopback_test(struct igb_adapter *adapter)
   1677{
   1678	struct e1000_hw *hw = &adapter->hw;
   1679	u32 reg;
   1680
   1681	reg = rd32(E1000_CTRL_EXT);
   1682
   1683	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
   1684	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
   1685		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
   1686		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
   1687		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
   1688		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
   1689		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
   1690		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
   1691			/* Enable DH89xxCC MPHY for near end loopback */
   1692			reg = rd32(E1000_MPHY_ADDR_CTL);
   1693			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
   1694			E1000_MPHY_PCS_CLK_REG_OFFSET;
   1695			wr32(E1000_MPHY_ADDR_CTL, reg);
   1696
   1697			reg = rd32(E1000_MPHY_DATA);
   1698			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
   1699			wr32(E1000_MPHY_DATA, reg);
   1700		}
   1701
   1702		reg = rd32(E1000_RCTL);
   1703		reg |= E1000_RCTL_LBM_TCVR;
   1704		wr32(E1000_RCTL, reg);
   1705
   1706		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
   1707
   1708		reg = rd32(E1000_CTRL);
   1709		reg &= ~(E1000_CTRL_RFCE |
   1710			 E1000_CTRL_TFCE |
   1711			 E1000_CTRL_LRST);
   1712		reg |= E1000_CTRL_SLU |
   1713		       E1000_CTRL_FD;
   1714		wr32(E1000_CTRL, reg);
   1715
   1716		/* Unset switch control to serdes energy detect */
   1717		reg = rd32(E1000_CONNSW);
   1718		reg &= ~E1000_CONNSW_ENRGSRC;
   1719		wr32(E1000_CONNSW, reg);
   1720
   1721		/* Unset sigdetect for SERDES loopback on
   1722		 * 82580 and newer devices.
   1723		 */
   1724		if (hw->mac.type >= e1000_82580) {
   1725			reg = rd32(E1000_PCS_CFG0);
   1726			reg |= E1000_PCS_CFG_IGN_SD;
   1727			wr32(E1000_PCS_CFG0, reg);
   1728		}
   1729
   1730		/* Set PCS register for forced speed */
   1731		reg = rd32(E1000_PCS_LCTL);
   1732		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
   1733		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
   1734		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
   1735		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
   1736		       E1000_PCS_LCTL_FSD |           /* Force Speed */
   1737		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
   1738		wr32(E1000_PCS_LCTL, reg);
   1739
   1740		return 0;
   1741	}
   1742
   1743	return igb_set_phy_loopback(adapter);
   1744}
   1745
   1746static void igb_loopback_cleanup(struct igb_adapter *adapter)
   1747{
   1748	struct e1000_hw *hw = &adapter->hw;
   1749	u32 rctl;
   1750	u16 phy_reg;
   1751
   1752	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
   1753	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
   1754	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
   1755	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
   1756	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
   1757		u32 reg;
   1758
   1759		/* Disable near end loopback on DH89xxCC */
   1760		reg = rd32(E1000_MPHY_ADDR_CTL);
   1761		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
   1762		E1000_MPHY_PCS_CLK_REG_OFFSET;
   1763		wr32(E1000_MPHY_ADDR_CTL, reg);
   1764
   1765		reg = rd32(E1000_MPHY_DATA);
   1766		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
   1767		wr32(E1000_MPHY_DATA, reg);
   1768	}
   1769
   1770	rctl = rd32(E1000_RCTL);
   1771	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
   1772	wr32(E1000_RCTL, rctl);
   1773
   1774	hw->mac.autoneg = true;
   1775	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
   1776	if (phy_reg & MII_CR_LOOPBACK) {
   1777		phy_reg &= ~MII_CR_LOOPBACK;
   1778		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
   1779		igb_phy_sw_reset(hw);
   1780	}
   1781}
   1782
   1783static void igb_create_lbtest_frame(struct sk_buff *skb,
   1784				    unsigned int frame_size)
   1785{
   1786	memset(skb->data, 0xFF, frame_size);
   1787	frame_size /= 2;
   1788	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
   1789	skb->data[frame_size + 10] = 0xBE;
   1790	skb->data[frame_size + 12] = 0xAF;
   1791}
   1792
   1793static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
   1794				  unsigned int frame_size)
   1795{
   1796	unsigned char *data;
   1797	bool match = true;
   1798
   1799	frame_size >>= 1;
   1800
   1801	data = kmap_local_page(rx_buffer->page);
   1802
   1803	if (data[3] != 0xFF ||
   1804	    data[frame_size + 10] != 0xBE ||
   1805	    data[frame_size + 12] != 0xAF)
   1806		match = false;
   1807
   1808	kunmap_local(data);
   1809
   1810	return match;
   1811}
   1812
   1813static int igb_clean_test_rings(struct igb_ring *rx_ring,
   1814				struct igb_ring *tx_ring,
   1815				unsigned int size)
   1816{
   1817	union e1000_adv_rx_desc *rx_desc;
   1818	struct igb_rx_buffer *rx_buffer_info;
   1819	struct igb_tx_buffer *tx_buffer_info;
   1820	u16 rx_ntc, tx_ntc, count = 0;
   1821
   1822	/* initialize next to clean and descriptor values */
   1823	rx_ntc = rx_ring->next_to_clean;
   1824	tx_ntc = tx_ring->next_to_clean;
   1825	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
   1826
   1827	while (rx_desc->wb.upper.length) {
   1828		/* check Rx buffer */
   1829		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
   1830
   1831		/* sync Rx buffer for CPU read */
   1832		dma_sync_single_for_cpu(rx_ring->dev,
   1833					rx_buffer_info->dma,
   1834					size,
   1835					DMA_FROM_DEVICE);
   1836
   1837		/* verify contents of skb */
   1838		if (igb_check_lbtest_frame(rx_buffer_info, size))
   1839			count++;
   1840
   1841		/* sync Rx buffer for device write */
   1842		dma_sync_single_for_device(rx_ring->dev,
   1843					   rx_buffer_info->dma,
   1844					   size,
   1845					   DMA_FROM_DEVICE);
   1846
   1847		/* unmap buffer on Tx side */
   1848		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
   1849
   1850		/* Free all the Tx ring sk_buffs */
   1851		dev_kfree_skb_any(tx_buffer_info->skb);
   1852
   1853		/* unmap skb header data */
   1854		dma_unmap_single(tx_ring->dev,
   1855				 dma_unmap_addr(tx_buffer_info, dma),
   1856				 dma_unmap_len(tx_buffer_info, len),
   1857				 DMA_TO_DEVICE);
   1858		dma_unmap_len_set(tx_buffer_info, len, 0);
   1859
   1860		/* increment Rx/Tx next to clean counters */
   1861		rx_ntc++;
   1862		if (rx_ntc == rx_ring->count)
   1863			rx_ntc = 0;
   1864		tx_ntc++;
   1865		if (tx_ntc == tx_ring->count)
   1866			tx_ntc = 0;
   1867
   1868		/* fetch next descriptor */
   1869		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
   1870	}
   1871
   1872	netdev_tx_reset_queue(txring_txq(tx_ring));
   1873
   1874	/* re-map buffers to ring, store next to clean values */
   1875	igb_alloc_rx_buffers(rx_ring, count);
   1876	rx_ring->next_to_clean = rx_ntc;
   1877	tx_ring->next_to_clean = tx_ntc;
   1878
   1879	return count;
   1880}
   1881
   1882static int igb_run_loopback_test(struct igb_adapter *adapter)
   1883{
   1884	struct igb_ring *tx_ring = &adapter->test_tx_ring;
   1885	struct igb_ring *rx_ring = &adapter->test_rx_ring;
   1886	u16 i, j, lc, good_cnt;
   1887	int ret_val = 0;
   1888	unsigned int size = IGB_RX_HDR_LEN;
   1889	netdev_tx_t tx_ret_val;
   1890	struct sk_buff *skb;
   1891
   1892	/* allocate test skb */
   1893	skb = alloc_skb(size, GFP_KERNEL);
   1894	if (!skb)
   1895		return 11;
   1896
   1897	/* place data into test skb */
   1898	igb_create_lbtest_frame(skb, size);
   1899	skb_put(skb, size);
   1900
   1901	/* Calculate the loop count based on the largest descriptor ring
   1902	 * The idea is to wrap the largest ring a number of times using 64
   1903	 * send/receive pairs during each loop
   1904	 */
   1905
   1906	if (rx_ring->count <= tx_ring->count)
   1907		lc = ((tx_ring->count / 64) * 2) + 1;
   1908	else
   1909		lc = ((rx_ring->count / 64) * 2) + 1;
   1910
   1911	for (j = 0; j <= lc; j++) { /* loop count loop */
   1912		/* reset count of good packets */
   1913		good_cnt = 0;
   1914
   1915		/* place 64 packets on the transmit queue*/
   1916		for (i = 0; i < 64; i++) {
   1917			skb_get(skb);
   1918			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
   1919			if (tx_ret_val == NETDEV_TX_OK)
   1920				good_cnt++;
   1921		}
   1922
   1923		if (good_cnt != 64) {
   1924			ret_val = 12;
   1925			break;
   1926		}
   1927
   1928		/* allow 200 milliseconds for packets to go from Tx to Rx */
   1929		msleep(200);
   1930
   1931		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
   1932		if (good_cnt != 64) {
   1933			ret_val = 13;
   1934			break;
   1935		}
   1936	} /* end loop count loop */
   1937
   1938	/* free the original skb */
   1939	kfree_skb(skb);
   1940
   1941	return ret_val;
   1942}
   1943
   1944static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
   1945{
   1946	/* PHY loopback cannot be performed if SoL/IDER
   1947	 * sessions are active
   1948	 */
   1949	if (igb_check_reset_block(&adapter->hw)) {
   1950		dev_err(&adapter->pdev->dev,
   1951			"Cannot do PHY loopback test when SoL/IDER is active.\n");
   1952		*data = 0;
   1953		goto out;
   1954	}
   1955
   1956	if (adapter->hw.mac.type == e1000_i354) {
   1957		dev_info(&adapter->pdev->dev,
   1958			"Loopback test not supported on i354.\n");
   1959		*data = 0;
   1960		goto out;
   1961	}
   1962	*data = igb_setup_desc_rings(adapter);
   1963	if (*data)
   1964		goto out;
   1965	*data = igb_setup_loopback_test(adapter);
   1966	if (*data)
   1967		goto err_loopback;
   1968	*data = igb_run_loopback_test(adapter);
   1969	igb_loopback_cleanup(adapter);
   1970
   1971err_loopback:
   1972	igb_free_desc_rings(adapter);
   1973out:
   1974	return *data;
   1975}
   1976
   1977static int igb_link_test(struct igb_adapter *adapter, u64 *data)
   1978{
   1979	struct e1000_hw *hw = &adapter->hw;
   1980	*data = 0;
   1981	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
   1982		int i = 0;
   1983
   1984		hw->mac.serdes_has_link = false;
   1985
   1986		/* On some blade server designs, link establishment
   1987		 * could take as long as 2-3 minutes
   1988		 */
   1989		do {
   1990			hw->mac.ops.check_for_link(&adapter->hw);
   1991			if (hw->mac.serdes_has_link)
   1992				return *data;
   1993			msleep(20);
   1994		} while (i++ < 3750);
   1995
   1996		*data = 1;
   1997	} else {
   1998		hw->mac.ops.check_for_link(&adapter->hw);
   1999		if (hw->mac.autoneg)
   2000			msleep(5000);
   2001
   2002		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
   2003			*data = 1;
   2004	}
   2005	return *data;
   2006}
   2007
   2008static void igb_diag_test(struct net_device *netdev,
   2009			  struct ethtool_test *eth_test, u64 *data)
   2010{
   2011	struct igb_adapter *adapter = netdev_priv(netdev);
   2012	u16 autoneg_advertised;
   2013	u8 forced_speed_duplex, autoneg;
   2014	bool if_running = netif_running(netdev);
   2015
   2016	set_bit(__IGB_TESTING, &adapter->state);
   2017
   2018	/* can't do offline tests on media switching devices */
   2019	if (adapter->hw.dev_spec._82575.mas_capable)
   2020		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
   2021	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
   2022		/* Offline tests */
   2023
   2024		/* save speed, duplex, autoneg settings */
   2025		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
   2026		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
   2027		autoneg = adapter->hw.mac.autoneg;
   2028
   2029		dev_info(&adapter->pdev->dev, "offline testing starting\n");
   2030
   2031		/* power up link for link test */
   2032		igb_power_up_link(adapter);
   2033
   2034		/* Link test performed before hardware reset so autoneg doesn't
   2035		 * interfere with test result
   2036		 */
   2037		if (igb_link_test(adapter, &data[TEST_LINK]))
   2038			eth_test->flags |= ETH_TEST_FL_FAILED;
   2039
   2040		if (if_running)
   2041			/* indicate we're in test mode */
   2042			igb_close(netdev);
   2043		else
   2044			igb_reset(adapter);
   2045
   2046		if (igb_reg_test(adapter, &data[TEST_REG]))
   2047			eth_test->flags |= ETH_TEST_FL_FAILED;
   2048
   2049		igb_reset(adapter);
   2050		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
   2051			eth_test->flags |= ETH_TEST_FL_FAILED;
   2052
   2053		igb_reset(adapter);
   2054		if (igb_intr_test(adapter, &data[TEST_IRQ]))
   2055			eth_test->flags |= ETH_TEST_FL_FAILED;
   2056
   2057		igb_reset(adapter);
   2058		/* power up link for loopback test */
   2059		igb_power_up_link(adapter);
   2060		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
   2061			eth_test->flags |= ETH_TEST_FL_FAILED;
   2062
   2063		/* restore speed, duplex, autoneg settings */
   2064		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
   2065		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
   2066		adapter->hw.mac.autoneg = autoneg;
   2067
   2068		/* force this routine to wait until autoneg complete/timeout */
   2069		adapter->hw.phy.autoneg_wait_to_complete = true;
   2070		igb_reset(adapter);
   2071		adapter->hw.phy.autoneg_wait_to_complete = false;
   2072
   2073		clear_bit(__IGB_TESTING, &adapter->state);
   2074		if (if_running)
   2075			igb_open(netdev);
   2076	} else {
   2077		dev_info(&adapter->pdev->dev, "online testing starting\n");
   2078
   2079		/* PHY is powered down when interface is down */
   2080		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
   2081			eth_test->flags |= ETH_TEST_FL_FAILED;
   2082		else
   2083			data[TEST_LINK] = 0;
   2084
   2085		/* Online tests aren't run; pass by default */
   2086		data[TEST_REG] = 0;
   2087		data[TEST_EEP] = 0;
   2088		data[TEST_IRQ] = 0;
   2089		data[TEST_LOOP] = 0;
   2090
   2091		clear_bit(__IGB_TESTING, &adapter->state);
   2092	}
   2093	msleep_interruptible(4 * 1000);
   2094}
   2095
   2096static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
   2097{
   2098	struct igb_adapter *adapter = netdev_priv(netdev);
   2099
   2100	wol->wolopts = 0;
   2101
   2102	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
   2103		return;
   2104
   2105	wol->supported = WAKE_UCAST | WAKE_MCAST |
   2106			 WAKE_BCAST | WAKE_MAGIC |
   2107			 WAKE_PHY;
   2108
   2109	/* apply any specific unsupported masks here */
   2110	switch (adapter->hw.device_id) {
   2111	default:
   2112		break;
   2113	}
   2114
   2115	if (adapter->wol & E1000_WUFC_EX)
   2116		wol->wolopts |= WAKE_UCAST;
   2117	if (adapter->wol & E1000_WUFC_MC)
   2118		wol->wolopts |= WAKE_MCAST;
   2119	if (adapter->wol & E1000_WUFC_BC)
   2120		wol->wolopts |= WAKE_BCAST;
   2121	if (adapter->wol & E1000_WUFC_MAG)
   2122		wol->wolopts |= WAKE_MAGIC;
   2123	if (adapter->wol & E1000_WUFC_LNKC)
   2124		wol->wolopts |= WAKE_PHY;
   2125}
   2126
   2127static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
   2128{
   2129	struct igb_adapter *adapter = netdev_priv(netdev);
   2130
   2131	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_FILTER))
   2132		return -EOPNOTSUPP;
   2133
   2134	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
   2135		return wol->wolopts ? -EOPNOTSUPP : 0;
   2136
   2137	/* these settings will always override what we currently have */
   2138	adapter->wol = 0;
   2139
   2140	if (wol->wolopts & WAKE_UCAST)
   2141		adapter->wol |= E1000_WUFC_EX;
   2142	if (wol->wolopts & WAKE_MCAST)
   2143		adapter->wol |= E1000_WUFC_MC;
   2144	if (wol->wolopts & WAKE_BCAST)
   2145		adapter->wol |= E1000_WUFC_BC;
   2146	if (wol->wolopts & WAKE_MAGIC)
   2147		adapter->wol |= E1000_WUFC_MAG;
   2148	if (wol->wolopts & WAKE_PHY)
   2149		adapter->wol |= E1000_WUFC_LNKC;
   2150	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
   2151
   2152	return 0;
   2153}
   2154
   2155/* bit defines for adapter->led_status */
   2156#define IGB_LED_ON		0
   2157
   2158static int igb_set_phys_id(struct net_device *netdev,
   2159			   enum ethtool_phys_id_state state)
   2160{
   2161	struct igb_adapter *adapter = netdev_priv(netdev);
   2162	struct e1000_hw *hw = &adapter->hw;
   2163
   2164	switch (state) {
   2165	case ETHTOOL_ID_ACTIVE:
   2166		igb_blink_led(hw);
   2167		return 2;
   2168	case ETHTOOL_ID_ON:
   2169		igb_blink_led(hw);
   2170		break;
   2171	case ETHTOOL_ID_OFF:
   2172		igb_led_off(hw);
   2173		break;
   2174	case ETHTOOL_ID_INACTIVE:
   2175		igb_led_off(hw);
   2176		clear_bit(IGB_LED_ON, &adapter->led_status);
   2177		igb_cleanup_led(hw);
   2178		break;
   2179	}
   2180
   2181	return 0;
   2182}
   2183
   2184static int igb_set_coalesce(struct net_device *netdev,
   2185			    struct ethtool_coalesce *ec,
   2186			    struct kernel_ethtool_coalesce *kernel_coal,
   2187			    struct netlink_ext_ack *extack)
   2188{
   2189	struct igb_adapter *adapter = netdev_priv(netdev);
   2190	int i;
   2191
   2192	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
   2193	    ((ec->rx_coalesce_usecs > 3) &&
   2194	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
   2195	    (ec->rx_coalesce_usecs == 2))
   2196		return -EINVAL;
   2197
   2198	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
   2199	    ((ec->tx_coalesce_usecs > 3) &&
   2200	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
   2201	    (ec->tx_coalesce_usecs == 2))
   2202		return -EINVAL;
   2203
   2204	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
   2205		return -EINVAL;
   2206
   2207	/* If ITR is disabled, disable DMAC */
   2208	if (ec->rx_coalesce_usecs == 0) {
   2209		if (adapter->flags & IGB_FLAG_DMAC)
   2210			adapter->flags &= ~IGB_FLAG_DMAC;
   2211	}
   2212
   2213	/* convert to rate of irq's per second */
   2214	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
   2215		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
   2216	else
   2217		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
   2218
   2219	/* convert to rate of irq's per second */
   2220	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
   2221		adapter->tx_itr_setting = adapter->rx_itr_setting;
   2222	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
   2223		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
   2224	else
   2225		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
   2226
   2227	for (i = 0; i < adapter->num_q_vectors; i++) {
   2228		struct igb_q_vector *q_vector = adapter->q_vector[i];
   2229		q_vector->tx.work_limit = adapter->tx_work_limit;
   2230		if (q_vector->rx.ring)
   2231			q_vector->itr_val = adapter->rx_itr_setting;
   2232		else
   2233			q_vector->itr_val = adapter->tx_itr_setting;
   2234		if (q_vector->itr_val && q_vector->itr_val <= 3)
   2235			q_vector->itr_val = IGB_START_ITR;
   2236		q_vector->set_itr = 1;
   2237	}
   2238
   2239	return 0;
   2240}
   2241
   2242static int igb_get_coalesce(struct net_device *netdev,
   2243			    struct ethtool_coalesce *ec,
   2244			    struct kernel_ethtool_coalesce *kernel_coal,
   2245			    struct netlink_ext_ack *extack)
   2246{
   2247	struct igb_adapter *adapter = netdev_priv(netdev);
   2248
   2249	if (adapter->rx_itr_setting <= 3)
   2250		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
   2251	else
   2252		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
   2253
   2254	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
   2255		if (adapter->tx_itr_setting <= 3)
   2256			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
   2257		else
   2258			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
   2259	}
   2260
   2261	return 0;
   2262}
   2263
   2264static int igb_nway_reset(struct net_device *netdev)
   2265{
   2266	struct igb_adapter *adapter = netdev_priv(netdev);
   2267	if (netif_running(netdev))
   2268		igb_reinit_locked(adapter);
   2269	return 0;
   2270}
   2271
   2272static int igb_get_sset_count(struct net_device *netdev, int sset)
   2273{
   2274	switch (sset) {
   2275	case ETH_SS_STATS:
   2276		return IGB_STATS_LEN;
   2277	case ETH_SS_TEST:
   2278		return IGB_TEST_LEN;
   2279	case ETH_SS_PRIV_FLAGS:
   2280		return IGB_PRIV_FLAGS_STR_LEN;
   2281	default:
   2282		return -ENOTSUPP;
   2283	}
   2284}
   2285
   2286static void igb_get_ethtool_stats(struct net_device *netdev,
   2287				  struct ethtool_stats *stats, u64 *data)
   2288{
   2289	struct igb_adapter *adapter = netdev_priv(netdev);
   2290	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
   2291	unsigned int start;
   2292	struct igb_ring *ring;
   2293	int i, j;
   2294	char *p;
   2295
   2296	spin_lock(&adapter->stats64_lock);
   2297	igb_update_stats(adapter);
   2298
   2299	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
   2300		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
   2301		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
   2302			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
   2303	}
   2304	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
   2305		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
   2306		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
   2307			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
   2308	}
   2309	for (j = 0; j < adapter->num_tx_queues; j++) {
   2310		u64	restart2;
   2311
   2312		ring = adapter->tx_ring[j];
   2313		do {
   2314			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
   2315			data[i]   = ring->tx_stats.packets;
   2316			data[i+1] = ring->tx_stats.bytes;
   2317			data[i+2] = ring->tx_stats.restart_queue;
   2318		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
   2319		do {
   2320			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
   2321			restart2  = ring->tx_stats.restart_queue2;
   2322		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
   2323		data[i+2] += restart2;
   2324
   2325		i += IGB_TX_QUEUE_STATS_LEN;
   2326	}
   2327	for (j = 0; j < adapter->num_rx_queues; j++) {
   2328		ring = adapter->rx_ring[j];
   2329		do {
   2330			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
   2331			data[i]   = ring->rx_stats.packets;
   2332			data[i+1] = ring->rx_stats.bytes;
   2333			data[i+2] = ring->rx_stats.drops;
   2334			data[i+3] = ring->rx_stats.csum_err;
   2335			data[i+4] = ring->rx_stats.alloc_failed;
   2336		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
   2337		i += IGB_RX_QUEUE_STATS_LEN;
   2338	}
   2339	spin_unlock(&adapter->stats64_lock);
   2340}
   2341
   2342static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
   2343{
   2344	struct igb_adapter *adapter = netdev_priv(netdev);
   2345	u8 *p = data;
   2346	int i;
   2347
   2348	switch (stringset) {
   2349	case ETH_SS_TEST:
   2350		memcpy(data, igb_gstrings_test, sizeof(igb_gstrings_test));
   2351		break;
   2352	case ETH_SS_STATS:
   2353		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++)
   2354			ethtool_sprintf(&p,
   2355					igb_gstrings_stats[i].stat_string);
   2356		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++)
   2357			ethtool_sprintf(&p,
   2358					igb_gstrings_net_stats[i].stat_string);
   2359		for (i = 0; i < adapter->num_tx_queues; i++) {
   2360			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
   2361			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
   2362			ethtool_sprintf(&p, "tx_queue_%u_restart", i);
   2363		}
   2364		for (i = 0; i < adapter->num_rx_queues; i++) {
   2365			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
   2366			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
   2367			ethtool_sprintf(&p, "rx_queue_%u_drops", i);
   2368			ethtool_sprintf(&p, "rx_queue_%u_csum_err", i);
   2369			ethtool_sprintf(&p, "rx_queue_%u_alloc_failed", i);
   2370		}
   2371		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
   2372		break;
   2373	case ETH_SS_PRIV_FLAGS:
   2374		memcpy(data, igb_priv_flags_strings,
   2375		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
   2376		break;
   2377	}
   2378}
   2379
   2380static int igb_get_ts_info(struct net_device *dev,
   2381			   struct ethtool_ts_info *info)
   2382{
   2383	struct igb_adapter *adapter = netdev_priv(dev);
   2384
   2385	if (adapter->ptp_clock)
   2386		info->phc_index = ptp_clock_index(adapter->ptp_clock);
   2387	else
   2388		info->phc_index = -1;
   2389
   2390	switch (adapter->hw.mac.type) {
   2391	case e1000_82575:
   2392		info->so_timestamping =
   2393			SOF_TIMESTAMPING_TX_SOFTWARE |
   2394			SOF_TIMESTAMPING_RX_SOFTWARE |
   2395			SOF_TIMESTAMPING_SOFTWARE;
   2396		return 0;
   2397	case e1000_82576:
   2398	case e1000_82580:
   2399	case e1000_i350:
   2400	case e1000_i354:
   2401	case e1000_i210:
   2402	case e1000_i211:
   2403		info->so_timestamping =
   2404			SOF_TIMESTAMPING_TX_SOFTWARE |
   2405			SOF_TIMESTAMPING_RX_SOFTWARE |
   2406			SOF_TIMESTAMPING_SOFTWARE |
   2407			SOF_TIMESTAMPING_TX_HARDWARE |
   2408			SOF_TIMESTAMPING_RX_HARDWARE |
   2409			SOF_TIMESTAMPING_RAW_HARDWARE;
   2410
   2411		info->tx_types =
   2412			BIT(HWTSTAMP_TX_OFF) |
   2413			BIT(HWTSTAMP_TX_ON);
   2414
   2415		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
   2416
   2417		/* 82576 does not support timestamping all packets. */
   2418		if (adapter->hw.mac.type >= e1000_82580)
   2419			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
   2420		else
   2421			info->rx_filters |=
   2422				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
   2423				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
   2424				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
   2425
   2426		return 0;
   2427	default:
   2428		return -EOPNOTSUPP;
   2429	}
   2430}
   2431
   2432#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
   2433static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
   2434				     struct ethtool_rxnfc *cmd)
   2435{
   2436	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
   2437	struct igb_nfc_filter *rule = NULL;
   2438
   2439	/* report total rule count */
   2440	cmd->data = IGB_MAX_RXNFC_FILTERS;
   2441
   2442	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
   2443		if (fsp->location <= rule->sw_idx)
   2444			break;
   2445	}
   2446
   2447	if (!rule || fsp->location != rule->sw_idx)
   2448		return -EINVAL;
   2449
   2450	if (rule->filter.match_flags) {
   2451		fsp->flow_type = ETHER_FLOW;
   2452		fsp->ring_cookie = rule->action;
   2453		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
   2454			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
   2455			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
   2456		}
   2457		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
   2458			fsp->flow_type |= FLOW_EXT;
   2459			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
   2460			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
   2461		}
   2462		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
   2463			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
   2464					rule->filter.dst_addr);
   2465			/* As we only support matching by the full
   2466			 * mask, return the mask to userspace
   2467			 */
   2468			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
   2469		}
   2470		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
   2471			ether_addr_copy(fsp->h_u.ether_spec.h_source,
   2472					rule->filter.src_addr);
   2473			/* As we only support matching by the full
   2474			 * mask, return the mask to userspace
   2475			 */
   2476			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
   2477		}
   2478
   2479		return 0;
   2480	}
   2481	return -EINVAL;
   2482}
   2483
   2484static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
   2485				   struct ethtool_rxnfc *cmd,
   2486				   u32 *rule_locs)
   2487{
   2488	struct igb_nfc_filter *rule;
   2489	int cnt = 0;
   2490
   2491	/* report total rule count */
   2492	cmd->data = IGB_MAX_RXNFC_FILTERS;
   2493
   2494	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
   2495		if (cnt == cmd->rule_cnt)
   2496			return -EMSGSIZE;
   2497		rule_locs[cnt] = rule->sw_idx;
   2498		cnt++;
   2499	}
   2500
   2501	cmd->rule_cnt = cnt;
   2502
   2503	return 0;
   2504}
   2505
   2506static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
   2507				 struct ethtool_rxnfc *cmd)
   2508{
   2509	cmd->data = 0;
   2510
   2511	/* Report default options for RSS on igb */
   2512	switch (cmd->flow_type) {
   2513	case TCP_V4_FLOW:
   2514		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
   2515		fallthrough;
   2516	case UDP_V4_FLOW:
   2517		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
   2518			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
   2519		fallthrough;
   2520	case SCTP_V4_FLOW:
   2521	case AH_ESP_V4_FLOW:
   2522	case AH_V4_FLOW:
   2523	case ESP_V4_FLOW:
   2524	case IPV4_FLOW:
   2525		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
   2526		break;
   2527	case TCP_V6_FLOW:
   2528		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
   2529		fallthrough;
   2530	case UDP_V6_FLOW:
   2531		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
   2532			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
   2533		fallthrough;
   2534	case SCTP_V6_FLOW:
   2535	case AH_ESP_V6_FLOW:
   2536	case AH_V6_FLOW:
   2537	case ESP_V6_FLOW:
   2538	case IPV6_FLOW:
   2539		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
   2540		break;
   2541	default:
   2542		return -EINVAL;
   2543	}
   2544
   2545	return 0;
   2546}
   2547
   2548static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
   2549			 u32 *rule_locs)
   2550{
   2551	struct igb_adapter *adapter = netdev_priv(dev);
   2552	int ret = -EOPNOTSUPP;
   2553
   2554	switch (cmd->cmd) {
   2555	case ETHTOOL_GRXRINGS:
   2556		cmd->data = adapter->num_rx_queues;
   2557		ret = 0;
   2558		break;
   2559	case ETHTOOL_GRXCLSRLCNT:
   2560		cmd->rule_cnt = adapter->nfc_filter_count;
   2561		ret = 0;
   2562		break;
   2563	case ETHTOOL_GRXCLSRULE:
   2564		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
   2565		break;
   2566	case ETHTOOL_GRXCLSRLALL:
   2567		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
   2568		break;
   2569	case ETHTOOL_GRXFH:
   2570		ret = igb_get_rss_hash_opts(adapter, cmd);
   2571		break;
   2572	default:
   2573		break;
   2574	}
   2575
   2576	return ret;
   2577}
   2578
   2579#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
   2580		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
   2581static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
   2582				struct ethtool_rxnfc *nfc)
   2583{
   2584	u32 flags = adapter->flags;
   2585
   2586	/* RSS does not support anything other than hashing
   2587	 * to queues on src and dst IPs and ports
   2588	 */
   2589	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
   2590			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
   2591		return -EINVAL;
   2592
   2593	switch (nfc->flow_type) {
   2594	case TCP_V4_FLOW:
   2595	case TCP_V6_FLOW:
   2596		if (!(nfc->data & RXH_IP_SRC) ||
   2597		    !(nfc->data & RXH_IP_DST) ||
   2598		    !(nfc->data & RXH_L4_B_0_1) ||
   2599		    !(nfc->data & RXH_L4_B_2_3))
   2600			return -EINVAL;
   2601		break;
   2602	case UDP_V4_FLOW:
   2603		if (!(nfc->data & RXH_IP_SRC) ||
   2604		    !(nfc->data & RXH_IP_DST))
   2605			return -EINVAL;
   2606		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
   2607		case 0:
   2608			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
   2609			break;
   2610		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
   2611			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
   2612			break;
   2613		default:
   2614			return -EINVAL;
   2615		}
   2616		break;
   2617	case UDP_V6_FLOW:
   2618		if (!(nfc->data & RXH_IP_SRC) ||
   2619		    !(nfc->data & RXH_IP_DST))
   2620			return -EINVAL;
   2621		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
   2622		case 0:
   2623			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
   2624			break;
   2625		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
   2626			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
   2627			break;
   2628		default:
   2629			return -EINVAL;
   2630		}
   2631		break;
   2632	case AH_ESP_V4_FLOW:
   2633	case AH_V4_FLOW:
   2634	case ESP_V4_FLOW:
   2635	case SCTP_V4_FLOW:
   2636	case AH_ESP_V6_FLOW:
   2637	case AH_V6_FLOW:
   2638	case ESP_V6_FLOW:
   2639	case SCTP_V6_FLOW:
   2640		if (!(nfc->data & RXH_IP_SRC) ||
   2641		    !(nfc->data & RXH_IP_DST) ||
   2642		    (nfc->data & RXH_L4_B_0_1) ||
   2643		    (nfc->data & RXH_L4_B_2_3))
   2644			return -EINVAL;
   2645		break;
   2646	default:
   2647		return -EINVAL;
   2648	}
   2649
   2650	/* if we changed something we need to update flags */
   2651	if (flags != adapter->flags) {
   2652		struct e1000_hw *hw = &adapter->hw;
   2653		u32 mrqc = rd32(E1000_MRQC);
   2654
   2655		if ((flags & UDP_RSS_FLAGS) &&
   2656		    !(adapter->flags & UDP_RSS_FLAGS))
   2657			dev_err(&adapter->pdev->dev,
   2658				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
   2659
   2660		adapter->flags = flags;
   2661
   2662		/* Perform hash on these packet types */
   2663		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
   2664			E1000_MRQC_RSS_FIELD_IPV4_TCP |
   2665			E1000_MRQC_RSS_FIELD_IPV6 |
   2666			E1000_MRQC_RSS_FIELD_IPV6_TCP;
   2667
   2668		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
   2669			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
   2670
   2671		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
   2672			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
   2673
   2674		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
   2675			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
   2676
   2677		wr32(E1000_MRQC, mrqc);
   2678	}
   2679
   2680	return 0;
   2681}
   2682
   2683static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
   2684					struct igb_nfc_filter *input)
   2685{
   2686	struct e1000_hw *hw = &adapter->hw;
   2687	u8 i;
   2688	u32 etqf;
   2689	u16 etype;
   2690
   2691	/* find an empty etype filter register */
   2692	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
   2693		if (!adapter->etype_bitmap[i])
   2694			break;
   2695	}
   2696	if (i == MAX_ETYPE_FILTER) {
   2697		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
   2698		return -EINVAL;
   2699	}
   2700
   2701	adapter->etype_bitmap[i] = true;
   2702
   2703	etqf = rd32(E1000_ETQF(i));
   2704	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
   2705
   2706	etqf |= E1000_ETQF_FILTER_ENABLE;
   2707	etqf &= ~E1000_ETQF_ETYPE_MASK;
   2708	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
   2709
   2710	etqf &= ~E1000_ETQF_QUEUE_MASK;
   2711	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
   2712		& E1000_ETQF_QUEUE_MASK);
   2713	etqf |= E1000_ETQF_QUEUE_ENABLE;
   2714
   2715	wr32(E1000_ETQF(i), etqf);
   2716
   2717	input->etype_reg_index = i;
   2718
   2719	return 0;
   2720}
   2721
   2722static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
   2723					    struct igb_nfc_filter *input)
   2724{
   2725	struct e1000_hw *hw = &adapter->hw;
   2726	u8 vlan_priority;
   2727	u16 queue_index;
   2728	u32 vlapqf;
   2729
   2730	vlapqf = rd32(E1000_VLAPQF);
   2731	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
   2732				>> VLAN_PRIO_SHIFT;
   2733	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
   2734
   2735	/* check whether this vlan prio is already set */
   2736	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
   2737	    (queue_index != input->action)) {
   2738		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
   2739		return -EEXIST;
   2740	}
   2741
   2742	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
   2743	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
   2744
   2745	wr32(E1000_VLAPQF, vlapqf);
   2746
   2747	return 0;
   2748}
   2749
   2750int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
   2751{
   2752	struct e1000_hw *hw = &adapter->hw;
   2753	int err = -EINVAL;
   2754
   2755	if (hw->mac.type == e1000_i210 &&
   2756	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
   2757		dev_err(&adapter->pdev->dev,
   2758			"i210 doesn't support flow classification rules specifying only source addresses.\n");
   2759		return -EOPNOTSUPP;
   2760	}
   2761
   2762	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
   2763		err = igb_rxnfc_write_etype_filter(adapter, input);
   2764		if (err)
   2765			return err;
   2766	}
   2767
   2768	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
   2769		err = igb_add_mac_steering_filter(adapter,
   2770						  input->filter.dst_addr,
   2771						  input->action, 0);
   2772		err = min_t(int, err, 0);
   2773		if (err)
   2774			return err;
   2775	}
   2776
   2777	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
   2778		err = igb_add_mac_steering_filter(adapter,
   2779						  input->filter.src_addr,
   2780						  input->action,
   2781						  IGB_MAC_STATE_SRC_ADDR);
   2782		err = min_t(int, err, 0);
   2783		if (err)
   2784			return err;
   2785	}
   2786
   2787	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
   2788		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
   2789
   2790	return err;
   2791}
   2792
   2793static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
   2794					u16 reg_index)
   2795{
   2796	struct e1000_hw *hw = &adapter->hw;
   2797	u32 etqf = rd32(E1000_ETQF(reg_index));
   2798
   2799	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
   2800	etqf &= ~E1000_ETQF_QUEUE_MASK;
   2801	etqf &= ~E1000_ETQF_FILTER_ENABLE;
   2802
   2803	wr32(E1000_ETQF(reg_index), etqf);
   2804
   2805	adapter->etype_bitmap[reg_index] = false;
   2806}
   2807
   2808static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
   2809				       u16 vlan_tci)
   2810{
   2811	struct e1000_hw *hw = &adapter->hw;
   2812	u8 vlan_priority;
   2813	u32 vlapqf;
   2814
   2815	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
   2816
   2817	vlapqf = rd32(E1000_VLAPQF);
   2818	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
   2819	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
   2820						E1000_VLAPQF_QUEUE_MASK);
   2821
   2822	wr32(E1000_VLAPQF, vlapqf);
   2823}
   2824
   2825int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
   2826{
   2827	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
   2828		igb_clear_etype_filter_regs(adapter,
   2829					    input->etype_reg_index);
   2830
   2831	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
   2832		igb_clear_vlan_prio_filter(adapter,
   2833					   ntohs(input->filter.vlan_tci));
   2834
   2835	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
   2836		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
   2837					    input->action,
   2838					    IGB_MAC_STATE_SRC_ADDR);
   2839
   2840	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
   2841		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
   2842					    input->action, 0);
   2843
   2844	return 0;
   2845}
   2846
   2847static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
   2848					struct igb_nfc_filter *input,
   2849					u16 sw_idx)
   2850{
   2851	struct igb_nfc_filter *rule, *parent;
   2852	int err = -EINVAL;
   2853
   2854	parent = NULL;
   2855	rule = NULL;
   2856
   2857	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
   2858		/* hash found, or no matching entry */
   2859		if (rule->sw_idx >= sw_idx)
   2860			break;
   2861		parent = rule;
   2862	}
   2863
   2864	/* if there is an old rule occupying our place remove it */
   2865	if (rule && (rule->sw_idx == sw_idx)) {
   2866		if (!input)
   2867			err = igb_erase_filter(adapter, rule);
   2868
   2869		hlist_del(&rule->nfc_node);
   2870		kfree(rule);
   2871		adapter->nfc_filter_count--;
   2872	}
   2873
   2874	/* If no input this was a delete, err should be 0 if a rule was
   2875	 * successfully found and removed from the list else -EINVAL
   2876	 */
   2877	if (!input)
   2878		return err;
   2879
   2880	/* initialize node */
   2881	INIT_HLIST_NODE(&input->nfc_node);
   2882
   2883	/* add filter to the list */
   2884	if (parent)
   2885		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
   2886	else
   2887		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
   2888
   2889	/* update counts */
   2890	adapter->nfc_filter_count++;
   2891
   2892	return 0;
   2893}
   2894
   2895static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
   2896				     struct ethtool_rxnfc *cmd)
   2897{
   2898	struct net_device *netdev = adapter->netdev;
   2899	struct ethtool_rx_flow_spec *fsp =
   2900		(struct ethtool_rx_flow_spec *)&cmd->fs;
   2901	struct igb_nfc_filter *input, *rule;
   2902	int err = 0;
   2903
   2904	if (!(netdev->hw_features & NETIF_F_NTUPLE))
   2905		return -EOPNOTSUPP;
   2906
   2907	/* Don't allow programming if the action is a queue greater than
   2908	 * the number of online Rx queues.
   2909	 */
   2910	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
   2911	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
   2912		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
   2913		return -EINVAL;
   2914	}
   2915
   2916	/* Don't allow indexes to exist outside of available space */
   2917	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
   2918		dev_err(&adapter->pdev->dev, "Location out of range\n");
   2919		return -EINVAL;
   2920	}
   2921
   2922	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
   2923		return -EINVAL;
   2924
   2925	input = kzalloc(sizeof(*input), GFP_KERNEL);
   2926	if (!input)
   2927		return -ENOMEM;
   2928
   2929	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
   2930		input->filter.etype = fsp->h_u.ether_spec.h_proto;
   2931		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
   2932	}
   2933
   2934	/* Only support matching addresses by the full mask */
   2935	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
   2936		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
   2937		ether_addr_copy(input->filter.src_addr,
   2938				fsp->h_u.ether_spec.h_source);
   2939	}
   2940
   2941	/* Only support matching addresses by the full mask */
   2942	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
   2943		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
   2944		ether_addr_copy(input->filter.dst_addr,
   2945				fsp->h_u.ether_spec.h_dest);
   2946	}
   2947
   2948	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
   2949		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
   2950			err = -EINVAL;
   2951			goto err_out;
   2952		}
   2953		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
   2954		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
   2955	}
   2956
   2957	input->action = fsp->ring_cookie;
   2958	input->sw_idx = fsp->location;
   2959
   2960	spin_lock(&adapter->nfc_lock);
   2961
   2962	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
   2963		if (!memcmp(&input->filter, &rule->filter,
   2964			    sizeof(input->filter))) {
   2965			err = -EEXIST;
   2966			dev_err(&adapter->pdev->dev,
   2967				"ethtool: this filter is already set\n");
   2968			goto err_out_w_lock;
   2969		}
   2970	}
   2971
   2972	err = igb_add_filter(adapter, input);
   2973	if (err)
   2974		goto err_out_w_lock;
   2975
   2976	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
   2977
   2978	spin_unlock(&adapter->nfc_lock);
   2979	return 0;
   2980
   2981err_out_w_lock:
   2982	spin_unlock(&adapter->nfc_lock);
   2983err_out:
   2984	kfree(input);
   2985	return err;
   2986}
   2987
   2988static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
   2989				     struct ethtool_rxnfc *cmd)
   2990{
   2991	struct ethtool_rx_flow_spec *fsp =
   2992		(struct ethtool_rx_flow_spec *)&cmd->fs;
   2993	int err;
   2994
   2995	spin_lock(&adapter->nfc_lock);
   2996	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
   2997	spin_unlock(&adapter->nfc_lock);
   2998
   2999	return err;
   3000}
   3001
   3002static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
   3003{
   3004	struct igb_adapter *adapter = netdev_priv(dev);
   3005	int ret = -EOPNOTSUPP;
   3006
   3007	switch (cmd->cmd) {
   3008	case ETHTOOL_SRXFH:
   3009		ret = igb_set_rss_hash_opt(adapter, cmd);
   3010		break;
   3011	case ETHTOOL_SRXCLSRLINS:
   3012		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
   3013		break;
   3014	case ETHTOOL_SRXCLSRLDEL:
   3015		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
   3016		break;
   3017	default:
   3018		break;
   3019	}
   3020
   3021	return ret;
   3022}
   3023
   3024static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
   3025{
   3026	struct igb_adapter *adapter = netdev_priv(netdev);
   3027	struct e1000_hw *hw = &adapter->hw;
   3028	u32 ret_val;
   3029	u16 phy_data;
   3030
   3031	if ((hw->mac.type < e1000_i350) ||
   3032	    (hw->phy.media_type != e1000_media_type_copper))
   3033		return -EOPNOTSUPP;
   3034
   3035	edata->supported = (SUPPORTED_1000baseT_Full |
   3036			    SUPPORTED_100baseT_Full);
   3037	if (!hw->dev_spec._82575.eee_disable)
   3038		edata->advertised =
   3039			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
   3040
   3041	/* The IPCNFG and EEER registers are not supported on I354. */
   3042	if (hw->mac.type == e1000_i354) {
   3043		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
   3044	} else {
   3045		u32 eeer;
   3046
   3047		eeer = rd32(E1000_EEER);
   3048
   3049		/* EEE status on negotiated link */
   3050		if (eeer & E1000_EEER_EEE_NEG)
   3051			edata->eee_active = true;
   3052
   3053		if (eeer & E1000_EEER_TX_LPI_EN)
   3054			edata->tx_lpi_enabled = true;
   3055	}
   3056
   3057	/* EEE Link Partner Advertised */
   3058	switch (hw->mac.type) {
   3059	case e1000_i350:
   3060		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
   3061					   &phy_data);
   3062		if (ret_val)
   3063			return -ENODATA;
   3064
   3065		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
   3066		break;
   3067	case e1000_i354:
   3068	case e1000_i210:
   3069	case e1000_i211:
   3070		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
   3071					     E1000_EEE_LP_ADV_DEV_I210,
   3072					     &phy_data);
   3073		if (ret_val)
   3074			return -ENODATA;
   3075
   3076		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
   3077
   3078		break;
   3079	default:
   3080		break;
   3081	}
   3082
   3083	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
   3084
   3085	if ((hw->mac.type == e1000_i354) &&
   3086	    (edata->eee_enabled))
   3087		edata->tx_lpi_enabled = true;
   3088
   3089	/* Report correct negotiated EEE status for devices that
   3090	 * wrongly report EEE at half-duplex
   3091	 */
   3092	if (adapter->link_duplex == HALF_DUPLEX) {
   3093		edata->eee_enabled = false;
   3094		edata->eee_active = false;
   3095		edata->tx_lpi_enabled = false;
   3096		edata->advertised &= ~edata->advertised;
   3097	}
   3098
   3099	return 0;
   3100}
   3101
   3102static int igb_set_eee(struct net_device *netdev,
   3103		       struct ethtool_eee *edata)
   3104{
   3105	struct igb_adapter *adapter = netdev_priv(netdev);
   3106	struct e1000_hw *hw = &adapter->hw;
   3107	struct ethtool_eee eee_curr;
   3108	bool adv1g_eee = true, adv100m_eee = true;
   3109	s32 ret_val;
   3110
   3111	if ((hw->mac.type < e1000_i350) ||
   3112	    (hw->phy.media_type != e1000_media_type_copper))
   3113		return -EOPNOTSUPP;
   3114
   3115	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
   3116
   3117	ret_val = igb_get_eee(netdev, &eee_curr);
   3118	if (ret_val)
   3119		return ret_val;
   3120
   3121	if (eee_curr.eee_enabled) {
   3122		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
   3123			dev_err(&adapter->pdev->dev,
   3124				"Setting EEE tx-lpi is not supported\n");
   3125			return -EINVAL;
   3126		}
   3127
   3128		/* Tx LPI timer is not implemented currently */
   3129		if (edata->tx_lpi_timer) {
   3130			dev_err(&adapter->pdev->dev,
   3131				"Setting EEE Tx LPI timer is not supported\n");
   3132			return -EINVAL;
   3133		}
   3134
   3135		if (!edata->advertised || (edata->advertised &
   3136		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
   3137			dev_err(&adapter->pdev->dev,
   3138				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
   3139			return -EINVAL;
   3140		}
   3141		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
   3142		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
   3143
   3144	} else if (!edata->eee_enabled) {
   3145		dev_err(&adapter->pdev->dev,
   3146			"Setting EEE options are not supported with EEE disabled\n");
   3147		return -EINVAL;
   3148	}
   3149
   3150	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
   3151	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
   3152		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
   3153		adapter->flags |= IGB_FLAG_EEE;
   3154
   3155		/* reset link */
   3156		if (netif_running(netdev))
   3157			igb_reinit_locked(adapter);
   3158		else
   3159			igb_reset(adapter);
   3160	}
   3161
   3162	if (hw->mac.type == e1000_i354)
   3163		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
   3164	else
   3165		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
   3166
   3167	if (ret_val) {
   3168		dev_err(&adapter->pdev->dev,
   3169			"Problem setting EEE advertisement options\n");
   3170		return -EINVAL;
   3171	}
   3172
   3173	return 0;
   3174}
   3175
   3176static int igb_get_module_info(struct net_device *netdev,
   3177			       struct ethtool_modinfo *modinfo)
   3178{
   3179	struct igb_adapter *adapter = netdev_priv(netdev);
   3180	struct e1000_hw *hw = &adapter->hw;
   3181	u32 status = 0;
   3182	u16 sff8472_rev, addr_mode;
   3183	bool page_swap = false;
   3184
   3185	if ((hw->phy.media_type == e1000_media_type_copper) ||
   3186	    (hw->phy.media_type == e1000_media_type_unknown))
   3187		return -EOPNOTSUPP;
   3188
   3189	/* Check whether we support SFF-8472 or not */
   3190	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
   3191	if (status)
   3192		return -EIO;
   3193
   3194	/* addressing mode is not supported */
   3195	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
   3196	if (status)
   3197		return -EIO;
   3198
   3199	/* addressing mode is not supported */
   3200	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
   3201		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
   3202		page_swap = true;
   3203	}
   3204
   3205	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
   3206		/* We have an SFP, but it does not support SFF-8472 */
   3207		modinfo->type = ETH_MODULE_SFF_8079;
   3208		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
   3209	} else {
   3210		/* We have an SFP which supports a revision of SFF-8472 */
   3211		modinfo->type = ETH_MODULE_SFF_8472;
   3212		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
   3213	}
   3214
   3215	return 0;
   3216}
   3217
   3218static int igb_get_module_eeprom(struct net_device *netdev,
   3219				 struct ethtool_eeprom *ee, u8 *data)
   3220{
   3221	struct igb_adapter *adapter = netdev_priv(netdev);
   3222	struct e1000_hw *hw = &adapter->hw;
   3223	u32 status = 0;
   3224	u16 *dataword;
   3225	u16 first_word, last_word;
   3226	int i = 0;
   3227
   3228	if (ee->len == 0)
   3229		return -EINVAL;
   3230
   3231	first_word = ee->offset >> 1;
   3232	last_word = (ee->offset + ee->len - 1) >> 1;
   3233
   3234	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
   3235				 GFP_KERNEL);
   3236	if (!dataword)
   3237		return -ENOMEM;
   3238
   3239	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
   3240	for (i = 0; i < last_word - first_word + 1; i++) {
   3241		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
   3242					      &dataword[i]);
   3243		if (status) {
   3244			/* Error occurred while reading module */
   3245			kfree(dataword);
   3246			return -EIO;
   3247		}
   3248
   3249		be16_to_cpus(&dataword[i]);
   3250	}
   3251
   3252	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
   3253	kfree(dataword);
   3254
   3255	return 0;
   3256}
   3257
   3258static int igb_ethtool_begin(struct net_device *netdev)
   3259{
   3260	struct igb_adapter *adapter = netdev_priv(netdev);
   3261	pm_runtime_get_sync(&adapter->pdev->dev);
   3262	return 0;
   3263}
   3264
   3265static void igb_ethtool_complete(struct net_device *netdev)
   3266{
   3267	struct igb_adapter *adapter = netdev_priv(netdev);
   3268	pm_runtime_put(&adapter->pdev->dev);
   3269}
   3270
   3271static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
   3272{
   3273	return IGB_RETA_SIZE;
   3274}
   3275
   3276static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
   3277			u8 *hfunc)
   3278{
   3279	struct igb_adapter *adapter = netdev_priv(netdev);
   3280	int i;
   3281
   3282	if (hfunc)
   3283		*hfunc = ETH_RSS_HASH_TOP;
   3284	if (!indir)
   3285		return 0;
   3286	for (i = 0; i < IGB_RETA_SIZE; i++)
   3287		indir[i] = adapter->rss_indir_tbl[i];
   3288
   3289	return 0;
   3290}
   3291
   3292void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
   3293{
   3294	struct e1000_hw *hw = &adapter->hw;
   3295	u32 reg = E1000_RETA(0);
   3296	u32 shift = 0;
   3297	int i = 0;
   3298
   3299	switch (hw->mac.type) {
   3300	case e1000_82575:
   3301		shift = 6;
   3302		break;
   3303	case e1000_82576:
   3304		/* 82576 supports 2 RSS queues for SR-IOV */
   3305		if (adapter->vfs_allocated_count)
   3306			shift = 3;
   3307		break;
   3308	default:
   3309		break;
   3310	}
   3311
   3312	while (i < IGB_RETA_SIZE) {
   3313		u32 val = 0;
   3314		int j;
   3315
   3316		for (j = 3; j >= 0; j--) {
   3317			val <<= 8;
   3318			val |= adapter->rss_indir_tbl[i + j];
   3319		}
   3320
   3321		wr32(reg, val << shift);
   3322		reg += 4;
   3323		i += 4;
   3324	}
   3325}
   3326
   3327static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
   3328			const u8 *key, const u8 hfunc)
   3329{
   3330	struct igb_adapter *adapter = netdev_priv(netdev);
   3331	struct e1000_hw *hw = &adapter->hw;
   3332	int i;
   3333	u32 num_queues;
   3334
   3335	/* We do not allow change in unsupported parameters */
   3336	if (key ||
   3337	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
   3338		return -EOPNOTSUPP;
   3339	if (!indir)
   3340		return 0;
   3341
   3342	num_queues = adapter->rss_queues;
   3343
   3344	switch (hw->mac.type) {
   3345	case e1000_82576:
   3346		/* 82576 supports 2 RSS queues for SR-IOV */
   3347		if (adapter->vfs_allocated_count)
   3348			num_queues = 2;
   3349		break;
   3350	default:
   3351		break;
   3352	}
   3353
   3354	/* Verify user input. */
   3355	for (i = 0; i < IGB_RETA_SIZE; i++)
   3356		if (indir[i] >= num_queues)
   3357			return -EINVAL;
   3358
   3359
   3360	for (i = 0; i < IGB_RETA_SIZE; i++)
   3361		adapter->rss_indir_tbl[i] = indir[i];
   3362
   3363	igb_write_rss_indir_tbl(adapter);
   3364
   3365	return 0;
   3366}
   3367
   3368static unsigned int igb_max_channels(struct igb_adapter *adapter)
   3369{
   3370	return igb_get_max_rss_queues(adapter);
   3371}
   3372
   3373static void igb_get_channels(struct net_device *netdev,
   3374			     struct ethtool_channels *ch)
   3375{
   3376	struct igb_adapter *adapter = netdev_priv(netdev);
   3377
   3378	/* Report maximum channels */
   3379	ch->max_combined = igb_max_channels(adapter);
   3380
   3381	/* Report info for other vector */
   3382	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
   3383		ch->max_other = NON_Q_VECTORS;
   3384		ch->other_count = NON_Q_VECTORS;
   3385	}
   3386
   3387	ch->combined_count = adapter->rss_queues;
   3388}
   3389
   3390static int igb_set_channels(struct net_device *netdev,
   3391			    struct ethtool_channels *ch)
   3392{
   3393	struct igb_adapter *adapter = netdev_priv(netdev);
   3394	unsigned int count = ch->combined_count;
   3395	unsigned int max_combined = 0;
   3396
   3397	/* Verify they are not requesting separate vectors */
   3398	if (!count || ch->rx_count || ch->tx_count)
   3399		return -EINVAL;
   3400
   3401	/* Verify other_count is valid and has not been changed */
   3402	if (ch->other_count != NON_Q_VECTORS)
   3403		return -EINVAL;
   3404
   3405	/* Verify the number of channels doesn't exceed hw limits */
   3406	max_combined = igb_max_channels(adapter);
   3407	if (count > max_combined)
   3408		return -EINVAL;
   3409
   3410	if (count != adapter->rss_queues) {
   3411		adapter->rss_queues = count;
   3412		igb_set_flag_queue_pairs(adapter, max_combined);
   3413
   3414		/* Hardware has to reinitialize queues and interrupts to
   3415		 * match the new configuration.
   3416		 */
   3417		return igb_reinit_queues(adapter);
   3418	}
   3419
   3420	return 0;
   3421}
   3422
   3423static u32 igb_get_priv_flags(struct net_device *netdev)
   3424{
   3425	struct igb_adapter *adapter = netdev_priv(netdev);
   3426	u32 priv_flags = 0;
   3427
   3428	if (adapter->flags & IGB_FLAG_RX_LEGACY)
   3429		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
   3430
   3431	return priv_flags;
   3432}
   3433
   3434static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
   3435{
   3436	struct igb_adapter *adapter = netdev_priv(netdev);
   3437	unsigned int flags = adapter->flags;
   3438
   3439	flags &= ~IGB_FLAG_RX_LEGACY;
   3440	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
   3441		flags |= IGB_FLAG_RX_LEGACY;
   3442
   3443	if (flags != adapter->flags) {
   3444		adapter->flags = flags;
   3445
   3446		/* reset interface to repopulate queues */
   3447		if (netif_running(netdev))
   3448			igb_reinit_locked(adapter);
   3449	}
   3450
   3451	return 0;
   3452}
   3453
   3454static const struct ethtool_ops igb_ethtool_ops = {
   3455	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
   3456	.get_drvinfo		= igb_get_drvinfo,
   3457	.get_regs_len		= igb_get_regs_len,
   3458	.get_regs		= igb_get_regs,
   3459	.get_wol		= igb_get_wol,
   3460	.set_wol		= igb_set_wol,
   3461	.get_msglevel		= igb_get_msglevel,
   3462	.set_msglevel		= igb_set_msglevel,
   3463	.nway_reset		= igb_nway_reset,
   3464	.get_link		= igb_get_link,
   3465	.get_eeprom_len		= igb_get_eeprom_len,
   3466	.get_eeprom		= igb_get_eeprom,
   3467	.set_eeprom		= igb_set_eeprom,
   3468	.get_ringparam		= igb_get_ringparam,
   3469	.set_ringparam		= igb_set_ringparam,
   3470	.get_pauseparam		= igb_get_pauseparam,
   3471	.set_pauseparam		= igb_set_pauseparam,
   3472	.self_test		= igb_diag_test,
   3473	.get_strings		= igb_get_strings,
   3474	.set_phys_id		= igb_set_phys_id,
   3475	.get_sset_count		= igb_get_sset_count,
   3476	.get_ethtool_stats	= igb_get_ethtool_stats,
   3477	.get_coalesce		= igb_get_coalesce,
   3478	.set_coalesce		= igb_set_coalesce,
   3479	.get_ts_info		= igb_get_ts_info,
   3480	.get_rxnfc		= igb_get_rxnfc,
   3481	.set_rxnfc		= igb_set_rxnfc,
   3482	.get_eee		= igb_get_eee,
   3483	.set_eee		= igb_set_eee,
   3484	.get_module_info	= igb_get_module_info,
   3485	.get_module_eeprom	= igb_get_module_eeprom,
   3486	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
   3487	.get_rxfh		= igb_get_rxfh,
   3488	.set_rxfh		= igb_set_rxfh,
   3489	.get_channels		= igb_get_channels,
   3490	.set_channels		= igb_set_channels,
   3491	.get_priv_flags		= igb_get_priv_flags,
   3492	.set_priv_flags		= igb_set_priv_flags,
   3493	.begin			= igb_ethtool_begin,
   3494	.complete		= igb_ethtool_complete,
   3495	.get_link_ksettings	= igb_get_link_ksettings,
   3496	.set_link_ksettings	= igb_set_link_ksettings,
   3497};
   3498
   3499void igb_set_ethtool_ops(struct net_device *netdev)
   3500{
   3501	netdev->ethtool_ops = &igb_ethtool_ops;
   3502}