cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

igb_ptp.c (43310B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
      3
      4#include <linux/module.h>
      5#include <linux/device.h>
      6#include <linux/pci.h>
      7#include <linux/ptp_classify.h>
      8
      9#include "igb.h"
     10
     11#define INCVALUE_MASK		0x7fffffff
     12#define ISGN			0x80000000
     13
     14/* The 82580 timesync updates the system timer every 8ns by 8ns,
     15 * and this update value cannot be reprogrammed.
     16 *
     17 * Neither the 82576 nor the 82580 offer registers wide enough to hold
     18 * nanoseconds time values for very long. For the 82580, SYSTIM always
     19 * counts nanoseconds, but the upper 24 bits are not available. The
     20 * frequency is adjusted by changing the 32 bit fractional nanoseconds
     21 * register, TIMINCA.
     22 *
     23 * For the 82576, the SYSTIM register time unit is affect by the
     24 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
     25 * field are needed to provide the nominal 16 nanosecond period,
     26 * leaving 19 bits for fractional nanoseconds.
     27 *
     28 * We scale the NIC clock cycle by a large factor so that relatively
     29 * small clock corrections can be added or subtracted at each clock
     30 * tick. The drawbacks of a large factor are a) that the clock
     31 * register overflows more quickly (not such a big deal) and b) that
     32 * the increment per tick has to fit into 24 bits.  As a result we
     33 * need to use a shift of 19 so we can fit a value of 16 into the
     34 * TIMINCA register.
     35 *
     36 *
     37 *             SYSTIMH            SYSTIML
     38 *        +--------------+   +---+---+------+
     39 *  82576 |      32      |   | 8 | 5 |  19  |
     40 *        +--------------+   +---+---+------+
     41 *         \________ 45 bits _______/  fract
     42 *
     43 *        +----------+---+   +--------------+
     44 *  82580 |    24    | 8 |   |      32      |
     45 *        +----------+---+   +--------------+
     46 *          reserved  \______ 40 bits _____/
     47 *
     48 *
     49 * The 45 bit 82576 SYSTIM overflows every
     50 *   2^45 * 10^-9 / 3600 = 9.77 hours.
     51 *
     52 * The 40 bit 82580 SYSTIM overflows every
     53 *   2^40 * 10^-9 /  60  = 18.3 minutes.
     54 *
     55 * SYSTIM is converted to real time using a timecounter. As
     56 * timecounter_cyc2time() allows old timestamps, the timecounter needs
     57 * to be updated at least once per half of the SYSTIM interval.
     58 * Scheduling of delayed work is not very accurate, and also the NIC
     59 * clock can be adjusted to run up to 6% faster and the system clock
     60 * up to 10% slower, so we aim for 6 minutes to be sure the actual
     61 * interval in the NIC time is shorter than 9.16 minutes.
     62 */
     63
     64#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
     65#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
     66#define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
     67#define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
     68#define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
     69#define IGB_NBITS_82580			40
     70
     71static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
     72static void igb_ptp_sdp_init(struct igb_adapter *adapter);
     73
     74/* SYSTIM read access for the 82576 */
     75static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
     76{
     77	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
     78	struct e1000_hw *hw = &igb->hw;
     79	u64 val;
     80	u32 lo, hi;
     81
     82	lo = rd32(E1000_SYSTIML);
     83	hi = rd32(E1000_SYSTIMH);
     84
     85	val = ((u64) hi) << 32;
     86	val |= lo;
     87
     88	return val;
     89}
     90
     91/* SYSTIM read access for the 82580 */
     92static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
     93{
     94	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
     95	struct e1000_hw *hw = &igb->hw;
     96	u32 lo, hi;
     97	u64 val;
     98
     99	/* The timestamp latches on lowest register read. For the 82580
    100	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
    101	 * need to provide nanosecond resolution, so we just ignore it.
    102	 */
    103	rd32(E1000_SYSTIMR);
    104	lo = rd32(E1000_SYSTIML);
    105	hi = rd32(E1000_SYSTIMH);
    106
    107	val = ((u64) hi) << 32;
    108	val |= lo;
    109
    110	return val;
    111}
    112
    113/* SYSTIM read access for I210/I211 */
    114static void igb_ptp_read_i210(struct igb_adapter *adapter,
    115			      struct timespec64 *ts)
    116{
    117	struct e1000_hw *hw = &adapter->hw;
    118	u32 sec, nsec;
    119
    120	/* The timestamp latches on lowest register read. For I210/I211, the
    121	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
    122	 * resolution, we can ignore it.
    123	 */
    124	rd32(E1000_SYSTIMR);
    125	nsec = rd32(E1000_SYSTIML);
    126	sec = rd32(E1000_SYSTIMH);
    127
    128	ts->tv_sec = sec;
    129	ts->tv_nsec = nsec;
    130}
    131
    132static void igb_ptp_write_i210(struct igb_adapter *adapter,
    133			       const struct timespec64 *ts)
    134{
    135	struct e1000_hw *hw = &adapter->hw;
    136
    137	/* Writing the SYSTIMR register is not necessary as it only provides
    138	 * sub-nanosecond resolution.
    139	 */
    140	wr32(E1000_SYSTIML, ts->tv_nsec);
    141	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
    142}
    143
    144/**
    145 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
    146 * @adapter: board private structure
    147 * @hwtstamps: timestamp structure to update
    148 * @systim: unsigned 64bit system time value.
    149 *
    150 * We need to convert the system time value stored in the RX/TXSTMP registers
    151 * into a hwtstamp which can be used by the upper level timestamping functions.
    152 *
    153 * The 'tmreg_lock' spinlock is used to protect the consistency of the
    154 * system time value. This is needed because reading the 64 bit time
    155 * value involves reading two (or three) 32 bit registers. The first
    156 * read latches the value. Ditto for writing.
    157 *
    158 * In addition, here have extended the system time with an overflow
    159 * counter in software.
    160 **/
    161static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
    162				       struct skb_shared_hwtstamps *hwtstamps,
    163				       u64 systim)
    164{
    165	unsigned long flags;
    166	u64 ns;
    167
    168	memset(hwtstamps, 0, sizeof(*hwtstamps));
    169
    170	switch (adapter->hw.mac.type) {
    171	case e1000_82576:
    172	case e1000_82580:
    173	case e1000_i354:
    174	case e1000_i350:
    175		spin_lock_irqsave(&adapter->tmreg_lock, flags);
    176		ns = timecounter_cyc2time(&adapter->tc, systim);
    177		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
    178
    179		hwtstamps->hwtstamp = ns_to_ktime(ns);
    180		break;
    181	case e1000_i210:
    182	case e1000_i211:
    183		/* Upper 32 bits contain s, lower 32 bits contain ns. */
    184		hwtstamps->hwtstamp = ktime_set(systim >> 32,
    185						systim & 0xFFFFFFFF);
    186		break;
    187	default:
    188		break;
    189	}
    190}
    191
    192/* PTP clock operations */
    193static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
    194{
    195	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    196					       ptp_caps);
    197	struct e1000_hw *hw = &igb->hw;
    198	int neg_adj = 0;
    199	u64 rate;
    200	u32 incvalue;
    201
    202	if (ppb < 0) {
    203		neg_adj = 1;
    204		ppb = -ppb;
    205	}
    206	rate = ppb;
    207	rate <<= 14;
    208	rate = div_u64(rate, 1953125);
    209
    210	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
    211
    212	if (neg_adj)
    213		incvalue -= rate;
    214	else
    215		incvalue += rate;
    216
    217	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
    218
    219	return 0;
    220}
    221
    222static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
    223{
    224	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    225					       ptp_caps);
    226	struct e1000_hw *hw = &igb->hw;
    227	int neg_adj = 0;
    228	u64 rate;
    229	u32 inca;
    230
    231	if (scaled_ppm < 0) {
    232		neg_adj = 1;
    233		scaled_ppm = -scaled_ppm;
    234	}
    235	rate = scaled_ppm;
    236	rate <<= 13;
    237	rate = div_u64(rate, 15625);
    238
    239	inca = rate & INCVALUE_MASK;
    240	if (neg_adj)
    241		inca |= ISGN;
    242
    243	wr32(E1000_TIMINCA, inca);
    244
    245	return 0;
    246}
    247
    248static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
    249{
    250	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    251					       ptp_caps);
    252	unsigned long flags;
    253
    254	spin_lock_irqsave(&igb->tmreg_lock, flags);
    255	timecounter_adjtime(&igb->tc, delta);
    256	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    257
    258	return 0;
    259}
    260
    261static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
    262{
    263	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    264					       ptp_caps);
    265	unsigned long flags;
    266	struct timespec64 now, then = ns_to_timespec64(delta);
    267
    268	spin_lock_irqsave(&igb->tmreg_lock, flags);
    269
    270	igb_ptp_read_i210(igb, &now);
    271	now = timespec64_add(now, then);
    272	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
    273
    274	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    275
    276	return 0;
    277}
    278
    279static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
    280				  struct timespec64 *ts,
    281				  struct ptp_system_timestamp *sts)
    282{
    283	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    284					       ptp_caps);
    285	struct e1000_hw *hw = &igb->hw;
    286	unsigned long flags;
    287	u32 lo, hi;
    288	u64 ns;
    289
    290	spin_lock_irqsave(&igb->tmreg_lock, flags);
    291
    292	ptp_read_system_prets(sts);
    293	lo = rd32(E1000_SYSTIML);
    294	ptp_read_system_postts(sts);
    295	hi = rd32(E1000_SYSTIMH);
    296
    297	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
    298
    299	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    300
    301	*ts = ns_to_timespec64(ns);
    302
    303	return 0;
    304}
    305
    306static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
    307				  struct timespec64 *ts,
    308				  struct ptp_system_timestamp *sts)
    309{
    310	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    311					       ptp_caps);
    312	struct e1000_hw *hw = &igb->hw;
    313	unsigned long flags;
    314	u32 lo, hi;
    315	u64 ns;
    316
    317	spin_lock_irqsave(&igb->tmreg_lock, flags);
    318
    319	ptp_read_system_prets(sts);
    320	rd32(E1000_SYSTIMR);
    321	ptp_read_system_postts(sts);
    322	lo = rd32(E1000_SYSTIML);
    323	hi = rd32(E1000_SYSTIMH);
    324
    325	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
    326
    327	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    328
    329	*ts = ns_to_timespec64(ns);
    330
    331	return 0;
    332}
    333
    334static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
    335				 struct timespec64 *ts,
    336				 struct ptp_system_timestamp *sts)
    337{
    338	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    339					       ptp_caps);
    340	struct e1000_hw *hw = &igb->hw;
    341	unsigned long flags;
    342
    343	spin_lock_irqsave(&igb->tmreg_lock, flags);
    344
    345	ptp_read_system_prets(sts);
    346	rd32(E1000_SYSTIMR);
    347	ptp_read_system_postts(sts);
    348	ts->tv_nsec = rd32(E1000_SYSTIML);
    349	ts->tv_sec = rd32(E1000_SYSTIMH);
    350
    351	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    352
    353	return 0;
    354}
    355
    356static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
    357				 const struct timespec64 *ts)
    358{
    359	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    360					       ptp_caps);
    361	unsigned long flags;
    362	u64 ns;
    363
    364	ns = timespec64_to_ns(ts);
    365
    366	spin_lock_irqsave(&igb->tmreg_lock, flags);
    367
    368	timecounter_init(&igb->tc, &igb->cc, ns);
    369
    370	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    371
    372	return 0;
    373}
    374
    375static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
    376				const struct timespec64 *ts)
    377{
    378	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
    379					       ptp_caps);
    380	unsigned long flags;
    381
    382	spin_lock_irqsave(&igb->tmreg_lock, flags);
    383
    384	igb_ptp_write_i210(igb, ts);
    385
    386	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    387
    388	return 0;
    389}
    390
    391static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
    392{
    393	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
    394	static const u32 mask[IGB_N_SDP] = {
    395		E1000_CTRL_SDP0_DIR,
    396		E1000_CTRL_SDP1_DIR,
    397		E1000_CTRL_EXT_SDP2_DIR,
    398		E1000_CTRL_EXT_SDP3_DIR,
    399	};
    400
    401	if (input)
    402		*ptr &= ~mask[pin];
    403	else
    404		*ptr |= mask[pin];
    405}
    406
    407static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
    408{
    409	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
    410		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
    411	};
    412	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
    413		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
    414	};
    415	static const u32 ts_sdp_en[IGB_N_SDP] = {
    416		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
    417	};
    418	struct e1000_hw *hw = &igb->hw;
    419	u32 ctrl, ctrl_ext, tssdp = 0;
    420
    421	ctrl = rd32(E1000_CTRL);
    422	ctrl_ext = rd32(E1000_CTRL_EXT);
    423	tssdp = rd32(E1000_TSSDP);
    424
    425	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
    426
    427	/* Make sure this pin is not enabled as an output. */
    428	tssdp &= ~ts_sdp_en[pin];
    429
    430	if (chan == 1) {
    431		tssdp &= ~AUX1_SEL_SDP3;
    432		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
    433	} else {
    434		tssdp &= ~AUX0_SEL_SDP3;
    435		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
    436	}
    437
    438	wr32(E1000_TSSDP, tssdp);
    439	wr32(E1000_CTRL, ctrl);
    440	wr32(E1000_CTRL_EXT, ctrl_ext);
    441}
    442
    443static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
    444{
    445	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
    446		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
    447	};
    448	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
    449		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
    450	};
    451	static const u32 ts_sdp_en[IGB_N_SDP] = {
    452		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
    453	};
    454	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
    455		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
    456		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
    457	};
    458	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
    459		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
    460		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
    461	};
    462	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
    463		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
    464		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
    465	};
    466	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
    467		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
    468		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
    469	};
    470	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
    471		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
    472		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
    473	};
    474	struct e1000_hw *hw = &igb->hw;
    475	u32 ctrl, ctrl_ext, tssdp = 0;
    476
    477	ctrl = rd32(E1000_CTRL);
    478	ctrl_ext = rd32(E1000_CTRL_EXT);
    479	tssdp = rd32(E1000_TSSDP);
    480
    481	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
    482
    483	/* Make sure this pin is not enabled as an input. */
    484	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
    485		tssdp &= ~AUX0_TS_SDP_EN;
    486
    487	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
    488		tssdp &= ~AUX1_TS_SDP_EN;
    489
    490	tssdp &= ~ts_sdp_sel_clr[pin];
    491	if (freq) {
    492		if (chan == 1)
    493			tssdp |= ts_sdp_sel_fc1[pin];
    494		else
    495			tssdp |= ts_sdp_sel_fc0[pin];
    496	} else {
    497		if (chan == 1)
    498			tssdp |= ts_sdp_sel_tt1[pin];
    499		else
    500			tssdp |= ts_sdp_sel_tt0[pin];
    501	}
    502	tssdp |= ts_sdp_en[pin];
    503
    504	wr32(E1000_TSSDP, tssdp);
    505	wr32(E1000_CTRL, ctrl);
    506	wr32(E1000_CTRL_EXT, ctrl_ext);
    507}
    508
    509static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
    510					struct ptp_clock_request *rq, int on)
    511{
    512	struct igb_adapter *igb =
    513		container_of(ptp, struct igb_adapter, ptp_caps);
    514	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
    515		systimh, level_mask, level, rem;
    516	struct e1000_hw *hw = &igb->hw;
    517	struct timespec64 ts, start;
    518	unsigned long flags;
    519	u64 systim, now;
    520	int pin = -1;
    521	s64 ns;
    522
    523	switch (rq->type) {
    524	case PTP_CLK_REQ_EXTTS:
    525		/* Reject requests with unsupported flags */
    526		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
    527					PTP_RISING_EDGE |
    528					PTP_FALLING_EDGE |
    529					PTP_STRICT_FLAGS))
    530			return -EOPNOTSUPP;
    531
    532		if (on) {
    533			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
    534					   rq->extts.index);
    535			if (pin < 0)
    536				return -EBUSY;
    537		}
    538		if (rq->extts.index == 1) {
    539			tsauxc_mask = TSAUXC_EN_TS1;
    540			tsim_mask = TSINTR_AUTT1;
    541		} else {
    542			tsauxc_mask = TSAUXC_EN_TS0;
    543			tsim_mask = TSINTR_AUTT0;
    544		}
    545		spin_lock_irqsave(&igb->tmreg_lock, flags);
    546		tsauxc = rd32(E1000_TSAUXC);
    547		tsim = rd32(E1000_TSIM);
    548		if (on) {
    549			igb_pin_extts(igb, rq->extts.index, pin);
    550			tsauxc |= tsauxc_mask;
    551			tsim |= tsim_mask;
    552		} else {
    553			tsauxc &= ~tsauxc_mask;
    554			tsim &= ~tsim_mask;
    555		}
    556		wr32(E1000_TSAUXC, tsauxc);
    557		wr32(E1000_TSIM, tsim);
    558		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    559		return 0;
    560
    561	case PTP_CLK_REQ_PEROUT:
    562		/* Reject requests with unsupported flags */
    563		if (rq->perout.flags)
    564			return -EOPNOTSUPP;
    565
    566		if (on) {
    567			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
    568					   rq->perout.index);
    569			if (pin < 0)
    570				return -EBUSY;
    571		}
    572		ts.tv_sec = rq->perout.period.sec;
    573		ts.tv_nsec = rq->perout.period.nsec;
    574		ns = timespec64_to_ns(&ts);
    575		ns = ns >> 1;
    576		if (on && ns < 8LL)
    577			return -EINVAL;
    578		ts = ns_to_timespec64(ns);
    579		if (rq->perout.index == 1) {
    580			tsauxc_mask = TSAUXC_EN_TT1;
    581			tsim_mask = TSINTR_TT1;
    582			trgttiml = E1000_TRGTTIML1;
    583			trgttimh = E1000_TRGTTIMH1;
    584		} else {
    585			tsauxc_mask = TSAUXC_EN_TT0;
    586			tsim_mask = TSINTR_TT0;
    587			trgttiml = E1000_TRGTTIML0;
    588			trgttimh = E1000_TRGTTIMH0;
    589		}
    590		spin_lock_irqsave(&igb->tmreg_lock, flags);
    591		tsauxc = rd32(E1000_TSAUXC);
    592		tsim = rd32(E1000_TSIM);
    593		if (rq->perout.index == 1) {
    594			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
    595			tsim &= ~TSINTR_TT1;
    596		} else {
    597			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
    598			tsim &= ~TSINTR_TT0;
    599		}
    600		if (on) {
    601			int i = rq->perout.index;
    602
    603			/* read systim registers in sequence */
    604			rd32(E1000_SYSTIMR);
    605			systiml = rd32(E1000_SYSTIML);
    606			systimh = rd32(E1000_SYSTIMH);
    607			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
    608			now = timecounter_cyc2time(&igb->tc, systim);
    609
    610			if (pin < 2) {
    611				level_mask = (i == 1) ? 0x80000 : 0x40000;
    612				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
    613			} else {
    614				level_mask = (i == 1) ? 0x80 : 0x40;
    615				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
    616			}
    617
    618			div_u64_rem(now, ns, &rem);
    619			systim = systim + (ns - rem);
    620
    621			/* synchronize pin level with rising/falling edges */
    622			div_u64_rem(now, ns << 1, &rem);
    623			if (rem < ns) {
    624				/* first half of period */
    625				if (level == 0) {
    626					/* output is already low, skip this period */
    627					systim += ns;
    628				}
    629			} else {
    630				/* second half of period */
    631				if (level == 1) {
    632					/* output is already high, skip this period */
    633					systim += ns;
    634				}
    635			}
    636
    637			start = ns_to_timespec64(systim + (ns - rem));
    638			igb_pin_perout(igb, i, pin, 0);
    639			igb->perout[i].start.tv_sec = start.tv_sec;
    640			igb->perout[i].start.tv_nsec = start.tv_nsec;
    641			igb->perout[i].period.tv_sec = ts.tv_sec;
    642			igb->perout[i].period.tv_nsec = ts.tv_nsec;
    643
    644			wr32(trgttiml, (u32)systim);
    645			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
    646			tsauxc |= tsauxc_mask;
    647			tsim |= tsim_mask;
    648		}
    649		wr32(E1000_TSAUXC, tsauxc);
    650		wr32(E1000_TSIM, tsim);
    651		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    652		return 0;
    653
    654	case PTP_CLK_REQ_PPS:
    655		return -EOPNOTSUPP;
    656	}
    657
    658	return -EOPNOTSUPP;
    659}
    660
    661static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
    662				       struct ptp_clock_request *rq, int on)
    663{
    664	struct igb_adapter *igb =
    665		container_of(ptp, struct igb_adapter, ptp_caps);
    666	struct e1000_hw *hw = &igb->hw;
    667	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
    668	unsigned long flags;
    669	struct timespec64 ts;
    670	int use_freq = 0, pin = -1;
    671	s64 ns;
    672
    673	switch (rq->type) {
    674	case PTP_CLK_REQ_EXTTS:
    675		/* Reject requests with unsupported flags */
    676		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
    677					PTP_RISING_EDGE |
    678					PTP_FALLING_EDGE |
    679					PTP_STRICT_FLAGS))
    680			return -EOPNOTSUPP;
    681
    682		/* Reject requests failing to enable both edges. */
    683		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
    684		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
    685		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
    686			return -EOPNOTSUPP;
    687
    688		if (on) {
    689			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
    690					   rq->extts.index);
    691			if (pin < 0)
    692				return -EBUSY;
    693		}
    694		if (rq->extts.index == 1) {
    695			tsauxc_mask = TSAUXC_EN_TS1;
    696			tsim_mask = TSINTR_AUTT1;
    697		} else {
    698			tsauxc_mask = TSAUXC_EN_TS0;
    699			tsim_mask = TSINTR_AUTT0;
    700		}
    701		spin_lock_irqsave(&igb->tmreg_lock, flags);
    702		tsauxc = rd32(E1000_TSAUXC);
    703		tsim = rd32(E1000_TSIM);
    704		if (on) {
    705			igb_pin_extts(igb, rq->extts.index, pin);
    706			tsauxc |= tsauxc_mask;
    707			tsim |= tsim_mask;
    708		} else {
    709			tsauxc &= ~tsauxc_mask;
    710			tsim &= ~tsim_mask;
    711		}
    712		wr32(E1000_TSAUXC, tsauxc);
    713		wr32(E1000_TSIM, tsim);
    714		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    715		return 0;
    716
    717	case PTP_CLK_REQ_PEROUT:
    718		/* Reject requests with unsupported flags */
    719		if (rq->perout.flags)
    720			return -EOPNOTSUPP;
    721
    722		if (on) {
    723			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
    724					   rq->perout.index);
    725			if (pin < 0)
    726				return -EBUSY;
    727		}
    728		ts.tv_sec = rq->perout.period.sec;
    729		ts.tv_nsec = rq->perout.period.nsec;
    730		ns = timespec64_to_ns(&ts);
    731		ns = ns >> 1;
    732		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
    733			   (ns == 250000000LL) || (ns == 500000000LL))) {
    734			if (ns < 8LL)
    735				return -EINVAL;
    736			use_freq = 1;
    737		}
    738		ts = ns_to_timespec64(ns);
    739		if (rq->perout.index == 1) {
    740			if (use_freq) {
    741				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
    742				tsim_mask = 0;
    743			} else {
    744				tsauxc_mask = TSAUXC_EN_TT1;
    745				tsim_mask = TSINTR_TT1;
    746			}
    747			trgttiml = E1000_TRGTTIML1;
    748			trgttimh = E1000_TRGTTIMH1;
    749			freqout = E1000_FREQOUT1;
    750		} else {
    751			if (use_freq) {
    752				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
    753				tsim_mask = 0;
    754			} else {
    755				tsauxc_mask = TSAUXC_EN_TT0;
    756				tsim_mask = TSINTR_TT0;
    757			}
    758			trgttiml = E1000_TRGTTIML0;
    759			trgttimh = E1000_TRGTTIMH0;
    760			freqout = E1000_FREQOUT0;
    761		}
    762		spin_lock_irqsave(&igb->tmreg_lock, flags);
    763		tsauxc = rd32(E1000_TSAUXC);
    764		tsim = rd32(E1000_TSIM);
    765		if (rq->perout.index == 1) {
    766			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
    767			tsim &= ~TSINTR_TT1;
    768		} else {
    769			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
    770			tsim &= ~TSINTR_TT0;
    771		}
    772		if (on) {
    773			int i = rq->perout.index;
    774			igb_pin_perout(igb, i, pin, use_freq);
    775			igb->perout[i].start.tv_sec = rq->perout.start.sec;
    776			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
    777			igb->perout[i].period.tv_sec = ts.tv_sec;
    778			igb->perout[i].period.tv_nsec = ts.tv_nsec;
    779			wr32(trgttimh, rq->perout.start.sec);
    780			wr32(trgttiml, rq->perout.start.nsec);
    781			if (use_freq)
    782				wr32(freqout, ns);
    783			tsauxc |= tsauxc_mask;
    784			tsim |= tsim_mask;
    785		}
    786		wr32(E1000_TSAUXC, tsauxc);
    787		wr32(E1000_TSIM, tsim);
    788		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    789		return 0;
    790
    791	case PTP_CLK_REQ_PPS:
    792		spin_lock_irqsave(&igb->tmreg_lock, flags);
    793		tsim = rd32(E1000_TSIM);
    794		if (on)
    795			tsim |= TSINTR_SYS_WRAP;
    796		else
    797			tsim &= ~TSINTR_SYS_WRAP;
    798		igb->pps_sys_wrap_on = !!on;
    799		wr32(E1000_TSIM, tsim);
    800		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
    801		return 0;
    802	}
    803
    804	return -EOPNOTSUPP;
    805}
    806
    807static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
    808				  struct ptp_clock_request *rq, int on)
    809{
    810	return -EOPNOTSUPP;
    811}
    812
    813static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
    814			      enum ptp_pin_function func, unsigned int chan)
    815{
    816	switch (func) {
    817	case PTP_PF_NONE:
    818	case PTP_PF_EXTTS:
    819	case PTP_PF_PEROUT:
    820		break;
    821	case PTP_PF_PHYSYNC:
    822		return -1;
    823	}
    824	return 0;
    825}
    826
    827/**
    828 * igb_ptp_tx_work
    829 * @work: pointer to work struct
    830 *
    831 * This work function polls the TSYNCTXCTL valid bit to determine when a
    832 * timestamp has been taken for the current stored skb.
    833 **/
    834static void igb_ptp_tx_work(struct work_struct *work)
    835{
    836	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
    837						   ptp_tx_work);
    838	struct e1000_hw *hw = &adapter->hw;
    839	u32 tsynctxctl;
    840
    841	if (!adapter->ptp_tx_skb)
    842		return;
    843
    844	if (time_is_before_jiffies(adapter->ptp_tx_start +
    845				   IGB_PTP_TX_TIMEOUT)) {
    846		dev_kfree_skb_any(adapter->ptp_tx_skb);
    847		adapter->ptp_tx_skb = NULL;
    848		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
    849		adapter->tx_hwtstamp_timeouts++;
    850		/* Clear the tx valid bit in TSYNCTXCTL register to enable
    851		 * interrupt
    852		 */
    853		rd32(E1000_TXSTMPH);
    854		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
    855		return;
    856	}
    857
    858	tsynctxctl = rd32(E1000_TSYNCTXCTL);
    859	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
    860		igb_ptp_tx_hwtstamp(adapter);
    861	else
    862		/* reschedule to check later */
    863		schedule_work(&adapter->ptp_tx_work);
    864}
    865
    866static void igb_ptp_overflow_check(struct work_struct *work)
    867{
    868	struct igb_adapter *igb =
    869		container_of(work, struct igb_adapter, ptp_overflow_work.work);
    870	struct timespec64 ts;
    871	u64 ns;
    872
    873	/* Update the timecounter */
    874	ns = timecounter_read(&igb->tc);
    875
    876	ts = ns_to_timespec64(ns);
    877	pr_debug("igb overflow check at %lld.%09lu\n",
    878		 (long long) ts.tv_sec, ts.tv_nsec);
    879
    880	schedule_delayed_work(&igb->ptp_overflow_work,
    881			      IGB_SYSTIM_OVERFLOW_PERIOD);
    882}
    883
    884/**
    885 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
    886 * @adapter: private network adapter structure
    887 *
    888 * This watchdog task is scheduled to detect error case where hardware has
    889 * dropped an Rx packet that was timestamped when the ring is full. The
    890 * particular error is rare but leaves the device in a state unable to timestamp
    891 * any future packets.
    892 **/
    893void igb_ptp_rx_hang(struct igb_adapter *adapter)
    894{
    895	struct e1000_hw *hw = &adapter->hw;
    896	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
    897	unsigned long rx_event;
    898
    899	/* Other hardware uses per-packet timestamps */
    900	if (hw->mac.type != e1000_82576)
    901		return;
    902
    903	/* If we don't have a valid timestamp in the registers, just update the
    904	 * timeout counter and exit
    905	 */
    906	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
    907		adapter->last_rx_ptp_check = jiffies;
    908		return;
    909	}
    910
    911	/* Determine the most recent watchdog or rx_timestamp event */
    912	rx_event = adapter->last_rx_ptp_check;
    913	if (time_after(adapter->last_rx_timestamp, rx_event))
    914		rx_event = adapter->last_rx_timestamp;
    915
    916	/* Only need to read the high RXSTMP register to clear the lock */
    917	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
    918		rd32(E1000_RXSTMPH);
    919		adapter->last_rx_ptp_check = jiffies;
    920		adapter->rx_hwtstamp_cleared++;
    921		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
    922	}
    923}
    924
    925/**
    926 * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
    927 * @adapter: private network adapter structure
    928 */
    929void igb_ptp_tx_hang(struct igb_adapter *adapter)
    930{
    931	struct e1000_hw *hw = &adapter->hw;
    932	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
    933					      IGB_PTP_TX_TIMEOUT);
    934
    935	if (!adapter->ptp_tx_skb)
    936		return;
    937
    938	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
    939		return;
    940
    941	/* If we haven't received a timestamp within the timeout, it is
    942	 * reasonable to assume that it will never occur, so we can unlock the
    943	 * timestamp bit when this occurs.
    944	 */
    945	if (timeout) {
    946		cancel_work_sync(&adapter->ptp_tx_work);
    947		dev_kfree_skb_any(adapter->ptp_tx_skb);
    948		adapter->ptp_tx_skb = NULL;
    949		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
    950		adapter->tx_hwtstamp_timeouts++;
    951		/* Clear the tx valid bit in TSYNCTXCTL register to enable
    952		 * interrupt
    953		 */
    954		rd32(E1000_TXSTMPH);
    955		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
    956	}
    957}
    958
    959/**
    960 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
    961 * @adapter: Board private structure.
    962 *
    963 * If we were asked to do hardware stamping and such a time stamp is
    964 * available, then it must have been for this skb here because we only
    965 * allow only one such packet into the queue.
    966 **/
    967static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
    968{
    969	struct sk_buff *skb = adapter->ptp_tx_skb;
    970	struct e1000_hw *hw = &adapter->hw;
    971	struct skb_shared_hwtstamps shhwtstamps;
    972	u64 regval;
    973	int adjust = 0;
    974
    975	regval = rd32(E1000_TXSTMPL);
    976	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
    977
    978	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
    979	/* adjust timestamp for the TX latency based on link speed */
    980	if (adapter->hw.mac.type == e1000_i210) {
    981		switch (adapter->link_speed) {
    982		case SPEED_10:
    983			adjust = IGB_I210_TX_LATENCY_10;
    984			break;
    985		case SPEED_100:
    986			adjust = IGB_I210_TX_LATENCY_100;
    987			break;
    988		case SPEED_1000:
    989			adjust = IGB_I210_TX_LATENCY_1000;
    990			break;
    991		}
    992	}
    993
    994	shhwtstamps.hwtstamp =
    995		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
    996
    997	/* Clear the lock early before calling skb_tstamp_tx so that
    998	 * applications are not woken up before the lock bit is clear. We use
    999	 * a copy of the skb pointer to ensure other threads can't change it
   1000	 * while we're notifying the stack.
   1001	 */
   1002	adapter->ptp_tx_skb = NULL;
   1003	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
   1004
   1005	/* Notify the stack and free the skb after we've unlocked */
   1006	skb_tstamp_tx(skb, &shhwtstamps);
   1007	dev_kfree_skb_any(skb);
   1008}
   1009
   1010/**
   1011 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
   1012 * @q_vector: Pointer to interrupt specific structure
   1013 * @va: Pointer to address containing Rx buffer
   1014 * @timestamp: Pointer where timestamp will be stored
   1015 *
   1016 * This function is meant to retrieve a timestamp from the first buffer of an
   1017 * incoming frame.  The value is stored in little endian format starting on
   1018 * byte 8
   1019 *
   1020 * Returns: The timestamp header length or 0 if not available
   1021 **/
   1022int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
   1023			ktime_t *timestamp)
   1024{
   1025	struct igb_adapter *adapter = q_vector->adapter;
   1026	struct skb_shared_hwtstamps ts;
   1027	__le64 *regval = (__le64 *)va;
   1028	int adjust = 0;
   1029
   1030	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
   1031		return 0;
   1032
   1033	/* The timestamp is recorded in little endian format.
   1034	 * DWORD: 0        1        2        3
   1035	 * Field: Reserved Reserved SYSTIML  SYSTIMH
   1036	 */
   1037
   1038	/* check reserved dwords are zero, be/le doesn't matter for zero */
   1039	if (regval[0])
   1040		return 0;
   1041
   1042	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
   1043
   1044	/* adjust timestamp for the RX latency based on link speed */
   1045	if (adapter->hw.mac.type == e1000_i210) {
   1046		switch (adapter->link_speed) {
   1047		case SPEED_10:
   1048			adjust = IGB_I210_RX_LATENCY_10;
   1049			break;
   1050		case SPEED_100:
   1051			adjust = IGB_I210_RX_LATENCY_100;
   1052			break;
   1053		case SPEED_1000:
   1054			adjust = IGB_I210_RX_LATENCY_1000;
   1055			break;
   1056		}
   1057	}
   1058
   1059	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
   1060
   1061	return IGB_TS_HDR_LEN;
   1062}
   1063
   1064/**
   1065 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
   1066 * @q_vector: Pointer to interrupt specific structure
   1067 * @skb: Buffer containing timestamp and packet
   1068 *
   1069 * This function is meant to retrieve a timestamp from the internal registers
   1070 * of the adapter and store it in the skb.
   1071 **/
   1072void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
   1073{
   1074	struct igb_adapter *adapter = q_vector->adapter;
   1075	struct e1000_hw *hw = &adapter->hw;
   1076	int adjust = 0;
   1077	u64 regval;
   1078
   1079	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
   1080		return;
   1081
   1082	/* If this bit is set, then the RX registers contain the time stamp. No
   1083	 * other packet will be time stamped until we read these registers, so
   1084	 * read the registers to make them available again. Because only one
   1085	 * packet can be time stamped at a time, we know that the register
   1086	 * values must belong to this one here and therefore we don't need to
   1087	 * compare any of the additional attributes stored for it.
   1088	 *
   1089	 * If nothing went wrong, then it should have a shared tx_flags that we
   1090	 * can turn into a skb_shared_hwtstamps.
   1091	 */
   1092	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
   1093		return;
   1094
   1095	regval = rd32(E1000_RXSTMPL);
   1096	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
   1097
   1098	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
   1099
   1100	/* adjust timestamp for the RX latency based on link speed */
   1101	if (adapter->hw.mac.type == e1000_i210) {
   1102		switch (adapter->link_speed) {
   1103		case SPEED_10:
   1104			adjust = IGB_I210_RX_LATENCY_10;
   1105			break;
   1106		case SPEED_100:
   1107			adjust = IGB_I210_RX_LATENCY_100;
   1108			break;
   1109		case SPEED_1000:
   1110			adjust = IGB_I210_RX_LATENCY_1000;
   1111			break;
   1112		}
   1113	}
   1114	skb_hwtstamps(skb)->hwtstamp =
   1115		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
   1116
   1117	/* Update the last_rx_timestamp timer in order to enable watchdog check
   1118	 * for error case of latched timestamp on a dropped packet.
   1119	 */
   1120	adapter->last_rx_timestamp = jiffies;
   1121}
   1122
   1123/**
   1124 * igb_ptp_get_ts_config - get hardware time stamping config
   1125 * @netdev: netdev struct
   1126 * @ifr: interface struct
   1127 *
   1128 * Get the hwtstamp_config settings to return to the user. Rather than attempt
   1129 * to deconstruct the settings from the registers, just return a shadow copy
   1130 * of the last known settings.
   1131 **/
   1132int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
   1133{
   1134	struct igb_adapter *adapter = netdev_priv(netdev);
   1135	struct hwtstamp_config *config = &adapter->tstamp_config;
   1136
   1137	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
   1138		-EFAULT : 0;
   1139}
   1140
   1141/**
   1142 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
   1143 * @adapter: networking device structure
   1144 * @config: hwtstamp configuration
   1145 *
   1146 * Outgoing time stamping can be enabled and disabled. Play nice and
   1147 * disable it when requested, although it shouldn't case any overhead
   1148 * when no packet needs it. At most one packet in the queue may be
   1149 * marked for time stamping, otherwise it would be impossible to tell
   1150 * for sure to which packet the hardware time stamp belongs.
   1151 *
   1152 * Incoming time stamping has to be configured via the hardware
   1153 * filters. Not all combinations are supported, in particular event
   1154 * type has to be specified. Matching the kind of event packet is
   1155 * not supported, with the exception of "all V2 events regardless of
   1156 * level 2 or 4".
   1157 */
   1158static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
   1159				      struct hwtstamp_config *config)
   1160{
   1161	struct e1000_hw *hw = &adapter->hw;
   1162	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
   1163	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
   1164	u32 tsync_rx_cfg = 0;
   1165	bool is_l4 = false;
   1166	bool is_l2 = false;
   1167	u32 regval;
   1168
   1169	switch (config->tx_type) {
   1170	case HWTSTAMP_TX_OFF:
   1171		tsync_tx_ctl = 0;
   1172		break;
   1173	case HWTSTAMP_TX_ON:
   1174		break;
   1175	default:
   1176		return -ERANGE;
   1177	}
   1178
   1179	switch (config->rx_filter) {
   1180	case HWTSTAMP_FILTER_NONE:
   1181		tsync_rx_ctl = 0;
   1182		break;
   1183	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
   1184		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
   1185		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
   1186		is_l4 = true;
   1187		break;
   1188	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
   1189		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
   1190		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
   1191		is_l4 = true;
   1192		break;
   1193	case HWTSTAMP_FILTER_PTP_V2_EVENT:
   1194	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
   1195	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
   1196	case HWTSTAMP_FILTER_PTP_V2_SYNC:
   1197	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
   1198	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
   1199	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
   1200	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
   1201	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
   1202		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
   1203		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
   1204		is_l2 = true;
   1205		is_l4 = true;
   1206		break;
   1207	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
   1208	case HWTSTAMP_FILTER_NTP_ALL:
   1209	case HWTSTAMP_FILTER_ALL:
   1210		/* 82576 cannot timestamp all packets, which it needs to do to
   1211		 * support both V1 Sync and Delay_Req messages
   1212		 */
   1213		if (hw->mac.type != e1000_82576) {
   1214			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
   1215			config->rx_filter = HWTSTAMP_FILTER_ALL;
   1216			break;
   1217		}
   1218		fallthrough;
   1219	default:
   1220		config->rx_filter = HWTSTAMP_FILTER_NONE;
   1221		return -ERANGE;
   1222	}
   1223
   1224	if (hw->mac.type == e1000_82575) {
   1225		if (tsync_rx_ctl | tsync_tx_ctl)
   1226			return -EINVAL;
   1227		return 0;
   1228	}
   1229
   1230	/* Per-packet timestamping only works if all packets are
   1231	 * timestamped, so enable timestamping in all packets as
   1232	 * long as one Rx filter was configured.
   1233	 */
   1234	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
   1235		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
   1236		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
   1237		config->rx_filter = HWTSTAMP_FILTER_ALL;
   1238		is_l2 = true;
   1239		is_l4 = true;
   1240
   1241		if ((hw->mac.type == e1000_i210) ||
   1242		    (hw->mac.type == e1000_i211)) {
   1243			regval = rd32(E1000_RXPBS);
   1244			regval |= E1000_RXPBS_CFG_TS_EN;
   1245			wr32(E1000_RXPBS, regval);
   1246		}
   1247	}
   1248
   1249	/* enable/disable TX */
   1250	regval = rd32(E1000_TSYNCTXCTL);
   1251	regval &= ~E1000_TSYNCTXCTL_ENABLED;
   1252	regval |= tsync_tx_ctl;
   1253	wr32(E1000_TSYNCTXCTL, regval);
   1254
   1255	/* enable/disable RX */
   1256	regval = rd32(E1000_TSYNCRXCTL);
   1257	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
   1258	regval |= tsync_rx_ctl;
   1259	wr32(E1000_TSYNCRXCTL, regval);
   1260
   1261	/* define which PTP packets are time stamped */
   1262	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
   1263
   1264	/* define ethertype filter for timestamped packets */
   1265	if (is_l2)
   1266		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
   1267		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
   1268		      E1000_ETQF_1588 | /* enable timestamping */
   1269		      ETH_P_1588));     /* 1588 eth protocol type */
   1270	else
   1271		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
   1272
   1273	/* L4 Queue Filter[3]: filter by destination port and protocol */
   1274	if (is_l4) {
   1275		u32 ftqf = (IPPROTO_UDP /* UDP */
   1276			| E1000_FTQF_VF_BP /* VF not compared */
   1277			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
   1278			| E1000_FTQF_MASK); /* mask all inputs */
   1279		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
   1280
   1281		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
   1282		wr32(E1000_IMIREXT(3),
   1283		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
   1284		if (hw->mac.type == e1000_82576) {
   1285			/* enable source port check */
   1286			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
   1287			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
   1288		}
   1289		wr32(E1000_FTQF(3), ftqf);
   1290	} else {
   1291		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
   1292	}
   1293	wrfl();
   1294
   1295	/* clear TX/RX time stamp registers, just to be sure */
   1296	regval = rd32(E1000_TXSTMPL);
   1297	regval = rd32(E1000_TXSTMPH);
   1298	regval = rd32(E1000_RXSTMPL);
   1299	regval = rd32(E1000_RXSTMPH);
   1300
   1301	return 0;
   1302}
   1303
   1304/**
   1305 * igb_ptp_set_ts_config - set hardware time stamping config
   1306 * @netdev: netdev struct
   1307 * @ifr: interface struct
   1308 *
   1309 **/
   1310int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
   1311{
   1312	struct igb_adapter *adapter = netdev_priv(netdev);
   1313	struct hwtstamp_config config;
   1314	int err;
   1315
   1316	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
   1317		return -EFAULT;
   1318
   1319	err = igb_ptp_set_timestamp_mode(adapter, &config);
   1320	if (err)
   1321		return err;
   1322
   1323	/* save these settings for future reference */
   1324	memcpy(&adapter->tstamp_config, &config,
   1325	       sizeof(adapter->tstamp_config));
   1326
   1327	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
   1328		-EFAULT : 0;
   1329}
   1330
   1331/**
   1332 * igb_ptp_init - Initialize PTP functionality
   1333 * @adapter: Board private structure
   1334 *
   1335 * This function is called at device probe to initialize the PTP
   1336 * functionality.
   1337 */
   1338void igb_ptp_init(struct igb_adapter *adapter)
   1339{
   1340	struct e1000_hw *hw = &adapter->hw;
   1341	struct net_device *netdev = adapter->netdev;
   1342
   1343	switch (hw->mac.type) {
   1344	case e1000_82576:
   1345		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
   1346		adapter->ptp_caps.owner = THIS_MODULE;
   1347		adapter->ptp_caps.max_adj = 999999881;
   1348		adapter->ptp_caps.n_ext_ts = 0;
   1349		adapter->ptp_caps.pps = 0;
   1350		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
   1351		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
   1352		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
   1353		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
   1354		adapter->ptp_caps.enable = igb_ptp_feature_enable;
   1355		adapter->cc.read = igb_ptp_read_82576;
   1356		adapter->cc.mask = CYCLECOUNTER_MASK(64);
   1357		adapter->cc.mult = 1;
   1358		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
   1359		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
   1360		break;
   1361	case e1000_82580:
   1362	case e1000_i354:
   1363	case e1000_i350:
   1364		igb_ptp_sdp_init(adapter);
   1365		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
   1366		adapter->ptp_caps.owner = THIS_MODULE;
   1367		adapter->ptp_caps.max_adj = 62499999;
   1368		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
   1369		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
   1370		adapter->ptp_caps.n_pins = IGB_N_SDP;
   1371		adapter->ptp_caps.pps = 0;
   1372		adapter->ptp_caps.pin_config = adapter->sdp_config;
   1373		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
   1374		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
   1375		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
   1376		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
   1377		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
   1378		adapter->ptp_caps.verify = igb_ptp_verify_pin;
   1379		adapter->cc.read = igb_ptp_read_82580;
   1380		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
   1381		adapter->cc.mult = 1;
   1382		adapter->cc.shift = 0;
   1383		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
   1384		break;
   1385	case e1000_i210:
   1386	case e1000_i211:
   1387		igb_ptp_sdp_init(adapter);
   1388		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
   1389		adapter->ptp_caps.owner = THIS_MODULE;
   1390		adapter->ptp_caps.max_adj = 62499999;
   1391		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
   1392		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
   1393		adapter->ptp_caps.n_pins = IGB_N_SDP;
   1394		adapter->ptp_caps.pps = 1;
   1395		adapter->ptp_caps.pin_config = adapter->sdp_config;
   1396		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
   1397		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
   1398		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
   1399		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
   1400		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
   1401		adapter->ptp_caps.verify = igb_ptp_verify_pin;
   1402		break;
   1403	default:
   1404		adapter->ptp_clock = NULL;
   1405		return;
   1406	}
   1407
   1408	spin_lock_init(&adapter->tmreg_lock);
   1409	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
   1410
   1411	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
   1412		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
   1413				  igb_ptp_overflow_check);
   1414
   1415	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
   1416	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
   1417
   1418	igb_ptp_reset(adapter);
   1419
   1420	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
   1421						&adapter->pdev->dev);
   1422	if (IS_ERR(adapter->ptp_clock)) {
   1423		adapter->ptp_clock = NULL;
   1424		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
   1425	} else if (adapter->ptp_clock) {
   1426		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
   1427			 adapter->netdev->name);
   1428		adapter->ptp_flags |= IGB_PTP_ENABLED;
   1429	}
   1430}
   1431
   1432/**
   1433 * igb_ptp_sdp_init - utility function which inits the SDP config structs
   1434 * @adapter: Board private structure.
   1435 **/
   1436void igb_ptp_sdp_init(struct igb_adapter *adapter)
   1437{
   1438	int i;
   1439
   1440	for (i = 0; i < IGB_N_SDP; i++) {
   1441		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
   1442
   1443		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
   1444		ppd->index = i;
   1445		ppd->func = PTP_PF_NONE;
   1446	}
   1447}
   1448
   1449/**
   1450 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
   1451 * @adapter: Board private structure
   1452 *
   1453 * This function stops the overflow check work and PTP Tx timestamp work, and
   1454 * will prepare the device for OS suspend.
   1455 */
   1456void igb_ptp_suspend(struct igb_adapter *adapter)
   1457{
   1458	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
   1459		return;
   1460
   1461	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
   1462		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
   1463
   1464	cancel_work_sync(&adapter->ptp_tx_work);
   1465	if (adapter->ptp_tx_skb) {
   1466		dev_kfree_skb_any(adapter->ptp_tx_skb);
   1467		adapter->ptp_tx_skb = NULL;
   1468		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
   1469	}
   1470}
   1471
   1472/**
   1473 * igb_ptp_stop - Disable PTP device and stop the overflow check.
   1474 * @adapter: Board private structure.
   1475 *
   1476 * This function stops the PTP support and cancels the delayed work.
   1477 **/
   1478void igb_ptp_stop(struct igb_adapter *adapter)
   1479{
   1480	igb_ptp_suspend(adapter);
   1481
   1482	if (adapter->ptp_clock) {
   1483		ptp_clock_unregister(adapter->ptp_clock);
   1484		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
   1485			 adapter->netdev->name);
   1486		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
   1487	}
   1488}
   1489
   1490/**
   1491 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
   1492 * @adapter: Board private structure.
   1493 *
   1494 * This function handles the reset work required to re-enable the PTP device.
   1495 **/
   1496void igb_ptp_reset(struct igb_adapter *adapter)
   1497{
   1498	struct e1000_hw *hw = &adapter->hw;
   1499	unsigned long flags;
   1500
   1501	/* reset the tstamp_config */
   1502	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
   1503
   1504	spin_lock_irqsave(&adapter->tmreg_lock, flags);
   1505
   1506	switch (adapter->hw.mac.type) {
   1507	case e1000_82576:
   1508		/* Dial the nominal frequency. */
   1509		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
   1510		break;
   1511	case e1000_82580:
   1512	case e1000_i354:
   1513	case e1000_i350:
   1514	case e1000_i210:
   1515	case e1000_i211:
   1516		wr32(E1000_TSAUXC, 0x0);
   1517		wr32(E1000_TSSDP, 0x0);
   1518		wr32(E1000_TSIM,
   1519		     TSYNC_INTERRUPTS |
   1520		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
   1521		wr32(E1000_IMS, E1000_IMS_TS);
   1522		break;
   1523	default:
   1524		/* No work to do. */
   1525		goto out;
   1526	}
   1527
   1528	/* Re-initialize the timer. */
   1529	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
   1530		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
   1531
   1532		igb_ptp_write_i210(adapter, &ts);
   1533	} else {
   1534		timecounter_init(&adapter->tc, &adapter->cc,
   1535				 ktime_to_ns(ktime_get_real()));
   1536	}
   1537out:
   1538	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
   1539
   1540	wrfl();
   1541
   1542	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
   1543		schedule_delayed_work(&adapter->ptp_overflow_work,
   1544				      IGB_SYSTIM_OVERFLOW_PERIOD);
   1545}