cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vf.c (11788B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 2009 - 2018 Intel Corporation. */
      3
      4#include "vf.h"
      5
      6static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
      7static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
      8				     u16 *duplex);
      9static s32 e1000_init_hw_vf(struct e1000_hw *hw);
     10static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
     11
     12static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
     13					 u32, u32, u32);
     14static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
     15static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
     16static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
     17static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
     18
     19/**
     20 *  e1000_init_mac_params_vf - Inits MAC params
     21 *  @hw: pointer to the HW structure
     22 **/
     23static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
     24{
     25	struct e1000_mac_info *mac = &hw->mac;
     26
     27	/* VF's have no MTA Registers - PF feature only */
     28	mac->mta_reg_count = 128;
     29	/* VF's have no access to RAR entries  */
     30	mac->rar_entry_count = 1;
     31
     32	/* Function pointers */
     33	/* reset */
     34	mac->ops.reset_hw = e1000_reset_hw_vf;
     35	/* hw initialization */
     36	mac->ops.init_hw = e1000_init_hw_vf;
     37	/* check for link */
     38	mac->ops.check_for_link = e1000_check_for_link_vf;
     39	/* link info */
     40	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
     41	/* multicast address update */
     42	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
     43	/* set mac address */
     44	mac->ops.rar_set = e1000_rar_set_vf;
     45	/* read mac address */
     46	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
     47	/* set mac filter */
     48	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
     49	/* set vlan filter table array */
     50	mac->ops.set_vfta = e1000_set_vfta_vf;
     51
     52	return E1000_SUCCESS;
     53}
     54
     55/**
     56 *  e1000_init_function_pointers_vf - Inits function pointers
     57 *  @hw: pointer to the HW structure
     58 **/
     59void e1000_init_function_pointers_vf(struct e1000_hw *hw)
     60{
     61	hw->mac.ops.init_params = e1000_init_mac_params_vf;
     62	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
     63}
     64
     65/**
     66 *  e1000_get_link_up_info_vf - Gets link info.
     67 *  @hw: pointer to the HW structure
     68 *  @speed: pointer to 16 bit value to store link speed.
     69 *  @duplex: pointer to 16 bit value to store duplex.
     70 *
     71 *  Since we cannot read the PHY and get accurate link info, we must rely upon
     72 *  the status register's data which is often stale and inaccurate.
     73 **/
     74static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
     75				     u16 *duplex)
     76{
     77	s32 status;
     78
     79	status = er32(STATUS);
     80	if (status & E1000_STATUS_SPEED_1000)
     81		*speed = SPEED_1000;
     82	else if (status & E1000_STATUS_SPEED_100)
     83		*speed = SPEED_100;
     84	else
     85		*speed = SPEED_10;
     86
     87	if (status & E1000_STATUS_FD)
     88		*duplex = FULL_DUPLEX;
     89	else
     90		*duplex = HALF_DUPLEX;
     91
     92	return E1000_SUCCESS;
     93}
     94
     95/**
     96 *  e1000_reset_hw_vf - Resets the HW
     97 *  @hw: pointer to the HW structure
     98 *
     99 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
    100 *  This is all the reset we can perform on a VF.
    101 **/
    102static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
    103{
    104	struct e1000_mbx_info *mbx = &hw->mbx;
    105	u32 timeout = E1000_VF_INIT_TIMEOUT;
    106	u32 ret_val = -E1000_ERR_MAC_INIT;
    107	u32 msgbuf[3];
    108	u8 *addr = (u8 *)(&msgbuf[1]);
    109	u32 ctrl;
    110
    111	/* assert VF queue/interrupt reset */
    112	ctrl = er32(CTRL);
    113	ew32(CTRL, ctrl | E1000_CTRL_RST);
    114
    115	/* we cannot initialize while the RSTI / RSTD bits are asserted */
    116	while (!mbx->ops.check_for_rst(hw) && timeout) {
    117		timeout--;
    118		udelay(5);
    119	}
    120
    121	if (timeout) {
    122		/* mailbox timeout can now become active */
    123		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
    124
    125		/* notify PF of VF reset completion */
    126		msgbuf[0] = E1000_VF_RESET;
    127		mbx->ops.write_posted(hw, msgbuf, 1);
    128
    129		mdelay(10);
    130
    131		/* set our "perm_addr" based on info provided by PF */
    132		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
    133		if (!ret_val) {
    134			if (msgbuf[0] == (E1000_VF_RESET |
    135					  E1000_VT_MSGTYPE_ACK))
    136				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
    137			else
    138				ret_val = -E1000_ERR_MAC_INIT;
    139		}
    140	}
    141
    142	return ret_val;
    143}
    144
    145/**
    146 *  e1000_init_hw_vf - Inits the HW
    147 *  @hw: pointer to the HW structure
    148 *
    149 *  Not much to do here except clear the PF Reset indication if there is one.
    150 **/
    151static s32 e1000_init_hw_vf(struct e1000_hw *hw)
    152{
    153	/* attempt to set and restore our mac address */
    154	e1000_rar_set_vf(hw, hw->mac.addr, 0);
    155
    156	return E1000_SUCCESS;
    157}
    158
    159/**
    160 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
    161 *  @hw: pointer to the HW structure
    162 *  @mc_addr: pointer to a multicast address
    163 *
    164 *  Generates a multicast address hash value which is used to determine
    165 *  the multicast filter table array address and new table value.  See
    166 *  e1000_mta_set_generic()
    167 **/
    168static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
    169{
    170	u32 hash_value, hash_mask;
    171	u8 bit_shift = 0;
    172
    173	/* Register count multiplied by bits per register */
    174	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
    175
    176	/* The bit_shift is the number of left-shifts
    177	 * where 0xFF would still fall within the hash mask.
    178	 */
    179	while (hash_mask >> bit_shift != 0xFF)
    180		bit_shift++;
    181
    182	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
    183				  (((u16)mc_addr[5]) << bit_shift)));
    184
    185	return hash_value;
    186}
    187
    188/**
    189 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
    190 *  @hw: pointer to the HW structure
    191 *  @mc_addr_list: array of multicast addresses to program
    192 *  @mc_addr_count: number of multicast addresses to program
    193 *  @rar_used_count: the first RAR register free to program
    194 *  @rar_count: total number of supported Receive Address Registers
    195 *
    196 *  Updates the Receive Address Registers and Multicast Table Array.
    197 *  The caller must have a packed mc_addr_list of multicast addresses.
    198 *  The parameter rar_count will usually be hw->mac.rar_entry_count
    199 *  unless there are workarounds that change this.
    200 **/
    201static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
    202					 u8 *mc_addr_list, u32 mc_addr_count,
    203					 u32 rar_used_count, u32 rar_count)
    204{
    205	struct e1000_mbx_info *mbx = &hw->mbx;
    206	u32 msgbuf[E1000_VFMAILBOX_SIZE];
    207	u16 *hash_list = (u16 *)&msgbuf[1];
    208	u32 hash_value;
    209	u32 cnt, i;
    210	s32 ret_val;
    211
    212	/* Each entry in the list uses 1 16 bit word.  We have 30
    213	 * 16 bit words available in our HW msg buffer (minus 1 for the
    214	 * msg type).  That's 30 hash values if we pack 'em right.  If
    215	 * there are more than 30 MC addresses to add then punt the
    216	 * extras for now and then add code to handle more than 30 later.
    217	 * It would be unusual for a server to request that many multi-cast
    218	 * addresses except for in large enterprise network environments.
    219	 */
    220
    221	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
    222	msgbuf[0] = E1000_VF_SET_MULTICAST;
    223	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
    224
    225	for (i = 0; i < cnt; i++) {
    226		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
    227		hash_list[i] = hash_value & 0x0FFFF;
    228		mc_addr_list += ETH_ALEN;
    229	}
    230
    231	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
    232	if (!ret_val)
    233		mbx->ops.read_posted(hw, msgbuf, 1);
    234}
    235
    236/**
    237 *  e1000_set_vfta_vf - Set/Unset vlan filter table address
    238 *  @hw: pointer to the HW structure
    239 *  @vid: determines the vfta register and bit to set/unset
    240 *  @set: if true then set bit, else clear bit
    241 **/
    242static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
    243{
    244	struct e1000_mbx_info *mbx = &hw->mbx;
    245	u32 msgbuf[2];
    246	s32 err;
    247
    248	msgbuf[0] = E1000_VF_SET_VLAN;
    249	msgbuf[1] = vid;
    250	/* Setting the 8 bit field MSG INFO to true indicates "add" */
    251	if (set)
    252		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
    253
    254	mbx->ops.write_posted(hw, msgbuf, 2);
    255
    256	err = mbx->ops.read_posted(hw, msgbuf, 2);
    257
    258	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
    259
    260	/* if nacked the vlan was rejected */
    261	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
    262		err = -E1000_ERR_MAC_INIT;
    263
    264	return err;
    265}
    266
    267/**
    268 *  e1000_rlpml_set_vf - Set the maximum receive packet length
    269 *  @hw: pointer to the HW structure
    270 *  @max_size: value to assign to max frame size
    271 **/
    272void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
    273{
    274	struct e1000_mbx_info *mbx = &hw->mbx;
    275	u32 msgbuf[2];
    276	s32 ret_val;
    277
    278	msgbuf[0] = E1000_VF_SET_LPE;
    279	msgbuf[1] = max_size;
    280
    281	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
    282	if (!ret_val)
    283		mbx->ops.read_posted(hw, msgbuf, 1);
    284}
    285
    286/**
    287 *  e1000_rar_set_vf - set device MAC address
    288 *  @hw: pointer to the HW structure
    289 *  @addr: pointer to the receive address
    290 *  @index: receive address array register
    291 **/
    292static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
    293{
    294	struct e1000_mbx_info *mbx = &hw->mbx;
    295	u32 msgbuf[3];
    296	u8 *msg_addr = (u8 *)(&msgbuf[1]);
    297	s32 ret_val;
    298
    299	memset(msgbuf, 0, 12);
    300	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
    301	memcpy(msg_addr, addr, ETH_ALEN);
    302	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
    303
    304	if (!ret_val)
    305		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
    306
    307	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
    308
    309	/* if nacked the address was rejected, use "perm_addr" */
    310	if (!ret_val &&
    311	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
    312		e1000_read_mac_addr_vf(hw);
    313}
    314
    315/**
    316 *  e1000_read_mac_addr_vf - Read device MAC address
    317 *  @hw: pointer to the HW structure
    318 **/
    319static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
    320{
    321	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
    322
    323	return E1000_SUCCESS;
    324}
    325
    326/**
    327 *  e1000_set_uc_addr_vf - Set or clear unicast filters
    328 *  @hw: pointer to the HW structure
    329 *  @sub_cmd: add or clear filters
    330 *  @addr: pointer to the filter MAC address
    331 **/
    332static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
    333{
    334	struct e1000_mbx_info *mbx = &hw->mbx;
    335	u32 msgbuf[3], msgbuf_chk;
    336	u8 *msg_addr = (u8 *)(&msgbuf[1]);
    337	s32 ret_val;
    338
    339	memset(msgbuf, 0, sizeof(msgbuf));
    340	msgbuf[0] |= sub_cmd;
    341	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
    342	msgbuf_chk = msgbuf[0];
    343
    344	if (addr)
    345		memcpy(msg_addr, addr, ETH_ALEN);
    346
    347	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
    348
    349	if (!ret_val)
    350		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
    351
    352	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
    353
    354	if (!ret_val) {
    355		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
    356
    357		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
    358			return -ENOSPC;
    359	}
    360
    361	return ret_val;
    362}
    363
    364/**
    365 *  e1000_check_for_link_vf - Check for link for a virtual interface
    366 *  @hw: pointer to the HW structure
    367 *
    368 *  Checks to see if the underlying PF is still talking to the VF and
    369 *  if it is then it reports the link state to the hardware, otherwise
    370 *  it reports link down and returns an error.
    371 **/
    372static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
    373{
    374	struct e1000_mbx_info *mbx = &hw->mbx;
    375	struct e1000_mac_info *mac = &hw->mac;
    376	s32 ret_val = E1000_SUCCESS;
    377	u32 in_msg = 0;
    378
    379	/* We only want to run this if there has been a rst asserted.
    380	 * in this case that could mean a link change, device reset,
    381	 * or a virtual function reset
    382	 */
    383
    384	/* If we were hit with a reset or timeout drop the link */
    385	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
    386		mac->get_link_status = true;
    387
    388	if (!mac->get_link_status)
    389		goto out;
    390
    391	/* if link status is down no point in checking to see if PF is up */
    392	if (!(er32(STATUS) & E1000_STATUS_LU))
    393		goto out;
    394
    395	/* if the read failed it could just be a mailbox collision, best wait
    396	 * until we are called again and don't report an error
    397	 */
    398	if (mbx->ops.read(hw, &in_msg, 1))
    399		goto out;
    400
    401	/* if incoming message isn't clear to send we are waiting on response */
    402	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
    403		/* msg is not CTS and is NACK we must have lost CTS status */
    404		if (in_msg & E1000_VT_MSGTYPE_NACK)
    405			ret_val = -E1000_ERR_MAC_INIT;
    406		goto out;
    407	}
    408
    409	/* the PF is talking, if we timed out in the past we reinit */
    410	if (!mbx->timeout) {
    411		ret_val = -E1000_ERR_MAC_INIT;
    412		goto out;
    413	}
    414
    415	/* if we passed all the tests above then the link is up and we no
    416	 * longer need to check for link
    417	 */
    418	mac->get_link_status = false;
    419
    420out:
    421	return ret_val;
    422}
    423