cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

igc_mac.c (25224B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright (c)  2018 Intel Corporation */
      3
      4#include <linux/pci.h>
      5#include <linux/delay.h>
      6
      7#include "igc_mac.h"
      8#include "igc_hw.h"
      9
     10/**
     11 * igc_disable_pcie_master - Disables PCI-express master access
     12 * @hw: pointer to the HW structure
     13 *
     14 * Returns 0 (0) if successful, else returns -10
     15 * (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
     16 * the master requests to be disabled.
     17 *
     18 * Disables PCI-Express master access and verifies there are no pending
     19 * requests.
     20 */
     21s32 igc_disable_pcie_master(struct igc_hw *hw)
     22{
     23	s32 timeout = MASTER_DISABLE_TIMEOUT;
     24	s32 ret_val = 0;
     25	u32 ctrl;
     26
     27	ctrl = rd32(IGC_CTRL);
     28	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
     29	wr32(IGC_CTRL, ctrl);
     30
     31	while (timeout) {
     32		if (!(rd32(IGC_STATUS) &
     33		    IGC_STATUS_GIO_MASTER_ENABLE))
     34			break;
     35		usleep_range(2000, 3000);
     36		timeout--;
     37	}
     38
     39	if (!timeout) {
     40		hw_dbg("Master requests are pending.\n");
     41		ret_val = -IGC_ERR_MASTER_REQUESTS_PENDING;
     42		goto out;
     43	}
     44
     45out:
     46	return ret_val;
     47}
     48
     49/**
     50 * igc_init_rx_addrs - Initialize receive addresses
     51 * @hw: pointer to the HW structure
     52 * @rar_count: receive address registers
     53 *
     54 * Setup the receive address registers by setting the base receive address
     55 * register to the devices MAC address and clearing all the other receive
     56 * address registers to 0.
     57 */
     58void igc_init_rx_addrs(struct igc_hw *hw, u16 rar_count)
     59{
     60	u8 mac_addr[ETH_ALEN] = {0};
     61	u32 i;
     62
     63	/* Setup the receive address */
     64	hw_dbg("Programming MAC Address into RAR[0]\n");
     65
     66	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
     67
     68	/* Zero out the other (rar_entry_count - 1) receive addresses */
     69	hw_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
     70	for (i = 1; i < rar_count; i++)
     71		hw->mac.ops.rar_set(hw, mac_addr, i);
     72}
     73
     74/**
     75 * igc_set_fc_watermarks - Set flow control high/low watermarks
     76 * @hw: pointer to the HW structure
     77 *
     78 * Sets the flow control high/low threshold (watermark) registers.  If
     79 * flow control XON frame transmission is enabled, then set XON frame
     80 * transmission as well.
     81 */
     82static s32 igc_set_fc_watermarks(struct igc_hw *hw)
     83{
     84	u32 fcrtl = 0, fcrth = 0;
     85
     86	/* Set the flow control receive threshold registers.  Normally,
     87	 * these registers will be set to a default threshold that may be
     88	 * adjusted later by the driver's runtime code.  However, if the
     89	 * ability to transmit pause frames is not enabled, then these
     90	 * registers will be set to 0.
     91	 */
     92	if (hw->fc.current_mode & igc_fc_tx_pause) {
     93		/* We need to set up the Receive Threshold high and low water
     94		 * marks as well as (optionally) enabling the transmission of
     95		 * XON frames.
     96		 */
     97		fcrtl = hw->fc.low_water;
     98		if (hw->fc.send_xon)
     99			fcrtl |= IGC_FCRTL_XONE;
    100
    101		fcrth = hw->fc.high_water;
    102	}
    103	wr32(IGC_FCRTL, fcrtl);
    104	wr32(IGC_FCRTH, fcrth);
    105
    106	return 0;
    107}
    108
    109/**
    110 * igc_setup_link - Setup flow control and link settings
    111 * @hw: pointer to the HW structure
    112 *
    113 * Determines which flow control settings to use, then configures flow
    114 * control.  Calls the appropriate media-specific link configuration
    115 * function.  Assuming the adapter has a valid link partner, a valid link
    116 * should be established.  Assumes the hardware has previously been reset
    117 * and the transmitter and receiver are not enabled.
    118 */
    119s32 igc_setup_link(struct igc_hw *hw)
    120{
    121	s32 ret_val = 0;
    122
    123	/* In the case of the phy reset being blocked, we already have a link.
    124	 * We do not need to set it up again.
    125	 */
    126	if (igc_check_reset_block(hw))
    127		goto out;
    128
    129	/* If requested flow control is set to default, set flow control
    130	 * to the both 'rx' and 'tx' pause frames.
    131	 */
    132	if (hw->fc.requested_mode == igc_fc_default)
    133		hw->fc.requested_mode = igc_fc_full;
    134
    135	/* We want to save off the original Flow Control configuration just
    136	 * in case we get disconnected and then reconnected into a different
    137	 * hub or switch with different Flow Control capabilities.
    138	 */
    139	hw->fc.current_mode = hw->fc.requested_mode;
    140
    141	hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
    142
    143	/* Call the necessary media_type subroutine to configure the link. */
    144	ret_val = hw->mac.ops.setup_physical_interface(hw);
    145	if (ret_val)
    146		goto out;
    147
    148	/* Initialize the flow control address, type, and PAUSE timer
    149	 * registers to their default values.  This is done even if flow
    150	 * control is disabled, because it does not hurt anything to
    151	 * initialize these registers.
    152	 */
    153	hw_dbg("Initializing the Flow Control address, type and timer regs\n");
    154	wr32(IGC_FCT, FLOW_CONTROL_TYPE);
    155	wr32(IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
    156	wr32(IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
    157
    158	wr32(IGC_FCTTV, hw->fc.pause_time);
    159
    160	ret_val = igc_set_fc_watermarks(hw);
    161
    162out:
    163	return ret_val;
    164}
    165
    166/**
    167 * igc_force_mac_fc - Force the MAC's flow control settings
    168 * @hw: pointer to the HW structure
    169 *
    170 * Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
    171 * device control register to reflect the adapter settings.  TFCE and RFCE
    172 * need to be explicitly set by software when a copper PHY is used because
    173 * autonegotiation is managed by the PHY rather than the MAC.  Software must
    174 * also configure these bits when link is forced on a fiber connection.
    175 */
    176s32 igc_force_mac_fc(struct igc_hw *hw)
    177{
    178	s32 ret_val = 0;
    179	u32 ctrl;
    180
    181	ctrl = rd32(IGC_CTRL);
    182
    183	/* Because we didn't get link via the internal auto-negotiation
    184	 * mechanism (we either forced link or we got link via PHY
    185	 * auto-neg), we have to manually enable/disable transmit an
    186	 * receive flow control.
    187	 *
    188	 * The "Case" statement below enables/disable flow control
    189	 * according to the "hw->fc.current_mode" parameter.
    190	 *
    191	 * The possible values of the "fc" parameter are:
    192	 *      0:  Flow control is completely disabled
    193	 *      1:  Rx flow control is enabled (we can receive pause
    194	 *          frames but not send pause frames).
    195	 *      2:  Tx flow control is enabled (we can send pause frames
    196	 *          frames but we do not receive pause frames).
    197	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
    198	 *  other:  No other values should be possible at this point.
    199	 */
    200	hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
    201
    202	switch (hw->fc.current_mode) {
    203	case igc_fc_none:
    204		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
    205		break;
    206	case igc_fc_rx_pause:
    207		ctrl &= (~IGC_CTRL_TFCE);
    208		ctrl |= IGC_CTRL_RFCE;
    209		break;
    210	case igc_fc_tx_pause:
    211		ctrl &= (~IGC_CTRL_RFCE);
    212		ctrl |= IGC_CTRL_TFCE;
    213		break;
    214	case igc_fc_full:
    215		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
    216		break;
    217	default:
    218		hw_dbg("Flow control param set incorrectly\n");
    219		ret_val = -IGC_ERR_CONFIG;
    220		goto out;
    221	}
    222
    223	wr32(IGC_CTRL, ctrl);
    224
    225out:
    226	return ret_val;
    227}
    228
    229/**
    230 * igc_clear_hw_cntrs_base - Clear base hardware counters
    231 * @hw: pointer to the HW structure
    232 *
    233 * Clears the base hardware counters by reading the counter registers.
    234 */
    235void igc_clear_hw_cntrs_base(struct igc_hw *hw)
    236{
    237	rd32(IGC_CRCERRS);
    238	rd32(IGC_MPC);
    239	rd32(IGC_SCC);
    240	rd32(IGC_ECOL);
    241	rd32(IGC_MCC);
    242	rd32(IGC_LATECOL);
    243	rd32(IGC_COLC);
    244	rd32(IGC_RERC);
    245	rd32(IGC_DC);
    246	rd32(IGC_RLEC);
    247	rd32(IGC_XONRXC);
    248	rd32(IGC_XONTXC);
    249	rd32(IGC_XOFFRXC);
    250	rd32(IGC_XOFFTXC);
    251	rd32(IGC_FCRUC);
    252	rd32(IGC_GPRC);
    253	rd32(IGC_BPRC);
    254	rd32(IGC_MPRC);
    255	rd32(IGC_GPTC);
    256	rd32(IGC_GORCL);
    257	rd32(IGC_GORCH);
    258	rd32(IGC_GOTCL);
    259	rd32(IGC_GOTCH);
    260	rd32(IGC_RNBC);
    261	rd32(IGC_RUC);
    262	rd32(IGC_RFC);
    263	rd32(IGC_ROC);
    264	rd32(IGC_RJC);
    265	rd32(IGC_TORL);
    266	rd32(IGC_TORH);
    267	rd32(IGC_TOTL);
    268	rd32(IGC_TOTH);
    269	rd32(IGC_TPR);
    270	rd32(IGC_TPT);
    271	rd32(IGC_MPTC);
    272	rd32(IGC_BPTC);
    273
    274	rd32(IGC_PRC64);
    275	rd32(IGC_PRC127);
    276	rd32(IGC_PRC255);
    277	rd32(IGC_PRC511);
    278	rd32(IGC_PRC1023);
    279	rd32(IGC_PRC1522);
    280	rd32(IGC_PTC64);
    281	rd32(IGC_PTC127);
    282	rd32(IGC_PTC255);
    283	rd32(IGC_PTC511);
    284	rd32(IGC_PTC1023);
    285	rd32(IGC_PTC1522);
    286
    287	rd32(IGC_ALGNERRC);
    288	rd32(IGC_RXERRC);
    289	rd32(IGC_TNCRS);
    290	rd32(IGC_HTDPMC);
    291	rd32(IGC_TSCTC);
    292
    293	rd32(IGC_MGTPRC);
    294	rd32(IGC_MGTPDC);
    295	rd32(IGC_MGTPTC);
    296
    297	rd32(IGC_IAC);
    298
    299	rd32(IGC_RPTHC);
    300	rd32(IGC_TLPIC);
    301	rd32(IGC_RLPIC);
    302	rd32(IGC_HGPTC);
    303	rd32(IGC_RXDMTC);
    304	rd32(IGC_HGORCL);
    305	rd32(IGC_HGORCH);
    306	rd32(IGC_HGOTCL);
    307	rd32(IGC_HGOTCH);
    308	rd32(IGC_LENERRS);
    309}
    310
    311/**
    312 * igc_rar_set - Set receive address register
    313 * @hw: pointer to the HW structure
    314 * @addr: pointer to the receive address
    315 * @index: receive address array register
    316 *
    317 * Sets the receive address array register at index to the address passed
    318 * in by addr.
    319 */
    320void igc_rar_set(struct igc_hw *hw, u8 *addr, u32 index)
    321{
    322	u32 rar_low, rar_high;
    323
    324	/* HW expects these in little endian so we reverse the byte order
    325	 * from network order (big endian) to little endian
    326	 */
    327	rar_low = ((u32)addr[0] |
    328		   ((u32)addr[1] << 8) |
    329		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
    330
    331	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
    332
    333	/* If MAC address zero, no need to set the AV bit */
    334	if (rar_low || rar_high)
    335		rar_high |= IGC_RAH_AV;
    336
    337	/* Some bridges will combine consecutive 32-bit writes into
    338	 * a single burst write, which will malfunction on some parts.
    339	 * The flushes avoid this.
    340	 */
    341	wr32(IGC_RAL(index), rar_low);
    342	wrfl();
    343	wr32(IGC_RAH(index), rar_high);
    344	wrfl();
    345}
    346
    347/**
    348 * igc_check_for_copper_link - Check for link (Copper)
    349 * @hw: pointer to the HW structure
    350 *
    351 * Checks to see of the link status of the hardware has changed.  If a
    352 * change in link status has been detected, then we read the PHY registers
    353 * to get the current speed/duplex if link exists.
    354 */
    355s32 igc_check_for_copper_link(struct igc_hw *hw)
    356{
    357	struct igc_mac_info *mac = &hw->mac;
    358	bool link = false;
    359	s32 ret_val;
    360
    361	/* We only want to go out to the PHY registers to see if Auto-Neg
    362	 * has completed and/or if our link status has changed.  The
    363	 * get_link_status flag is set upon receiving a Link Status
    364	 * Change or Rx Sequence Error interrupt.
    365	 */
    366	if (!mac->get_link_status) {
    367		ret_val = 0;
    368		goto out;
    369	}
    370
    371	/* First we want to see if the MII Status Register reports
    372	 * link.  If so, then we want to get the current speed/duplex
    373	 * of the PHY.
    374	 */
    375	ret_val = igc_phy_has_link(hw, 1, 0, &link);
    376	if (ret_val)
    377		goto out;
    378
    379	if (!link)
    380		goto out; /* No link detected */
    381
    382	mac->get_link_status = false;
    383
    384	/* Check if there was DownShift, must be checked
    385	 * immediately after link-up
    386	 */
    387	igc_check_downshift(hw);
    388
    389	/* If we are forcing speed/duplex, then we simply return since
    390	 * we have already determined whether we have link or not.
    391	 */
    392	if (!mac->autoneg) {
    393		ret_val = -IGC_ERR_CONFIG;
    394		goto out;
    395	}
    396
    397	/* Auto-Neg is enabled.  Auto Speed Detection takes care
    398	 * of MAC speed/duplex configuration.  So we only need to
    399	 * configure Collision Distance in the MAC.
    400	 */
    401	igc_config_collision_dist(hw);
    402
    403	/* Configure Flow Control now that Auto-Neg has completed.
    404	 * First, we need to restore the desired flow control
    405	 * settings because we may have had to re-autoneg with a
    406	 * different link partner.
    407	 */
    408	ret_val = igc_config_fc_after_link_up(hw);
    409	if (ret_val)
    410		hw_dbg("Error configuring flow control\n");
    411
    412out:
    413	/* Now that we are aware of our link settings, we can set the LTR
    414	 * thresholds.
    415	 */
    416	ret_val = igc_set_ltr_i225(hw, link);
    417
    418	return ret_val;
    419}
    420
    421/**
    422 * igc_config_collision_dist - Configure collision distance
    423 * @hw: pointer to the HW structure
    424 *
    425 * Configures the collision distance to the default value and is used
    426 * during link setup. Currently no func pointer exists and all
    427 * implementations are handled in the generic version of this function.
    428 */
    429void igc_config_collision_dist(struct igc_hw *hw)
    430{
    431	u32 tctl;
    432
    433	tctl = rd32(IGC_TCTL);
    434
    435	tctl &= ~IGC_TCTL_COLD;
    436	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
    437
    438	wr32(IGC_TCTL, tctl);
    439	wrfl();
    440}
    441
    442/**
    443 * igc_config_fc_after_link_up - Configures flow control after link
    444 * @hw: pointer to the HW structure
    445 *
    446 * Checks the status of auto-negotiation after link up to ensure that the
    447 * speed and duplex were not forced.  If the link needed to be forced, then
    448 * flow control needs to be forced also.  If auto-negotiation is enabled
    449 * and did not fail, then we configure flow control based on our link
    450 * partner.
    451 */
    452s32 igc_config_fc_after_link_up(struct igc_hw *hw)
    453{
    454	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
    455	struct igc_mac_info *mac = &hw->mac;
    456	u16 speed, duplex;
    457	s32 ret_val = 0;
    458
    459	/* Check for the case where we have fiber media and auto-neg failed
    460	 * so we had to force link.  In this case, we need to force the
    461	 * configuration of the MAC to match the "fc" parameter.
    462	 */
    463	if (mac->autoneg_failed)
    464		ret_val = igc_force_mac_fc(hw);
    465
    466	if (ret_val) {
    467		hw_dbg("Error forcing flow control settings\n");
    468		goto out;
    469	}
    470
    471	/* Check for the case where we have copper media and auto-neg is
    472	 * enabled.  In this case, we need to check and see if Auto-Neg
    473	 * has completed, and if so, how the PHY and link partner has
    474	 * flow control configured.
    475	 */
    476	if (mac->autoneg) {
    477		/* Read the MII Status Register and check to see if AutoNeg
    478		 * has completed.  We read this twice because this reg has
    479		 * some "sticky" (latched) bits.
    480		 */
    481		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
    482					       &mii_status_reg);
    483		if (ret_val)
    484			goto out;
    485		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
    486					       &mii_status_reg);
    487		if (ret_val)
    488			goto out;
    489
    490		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
    491			hw_dbg("Copper PHY and Auto Neg has not completed.\n");
    492			goto out;
    493		}
    494
    495		/* The AutoNeg process has completed, so we now need to
    496		 * read both the Auto Negotiation Advertisement
    497		 * Register (Address 4) and the Auto_Negotiation Base
    498		 * Page Ability Register (Address 5) to determine how
    499		 * flow control was negotiated.
    500		 */
    501		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
    502					       &mii_nway_adv_reg);
    503		if (ret_val)
    504			goto out;
    505		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
    506					       &mii_nway_lp_ability_reg);
    507		if (ret_val)
    508			goto out;
    509		/* Two bits in the Auto Negotiation Advertisement Register
    510		 * (Address 4) and two bits in the Auto Negotiation Base
    511		 * Page Ability Register (Address 5) determine flow control
    512		 * for both the PHY and the link partner.  The following
    513		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
    514		 * 1999, describes these PAUSE resolution bits and how flow
    515		 * control is determined based upon these settings.
    516		 * NOTE:  DC = Don't Care
    517		 *
    518		 *   LOCAL DEVICE  |   LINK PARTNER
    519		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
    520		 *-------|---------|-------|---------|--------------------
    521		 *   0   |    0    |  DC   |   DC    | igc_fc_none
    522		 *   0   |    1    |   0   |   DC    | igc_fc_none
    523		 *   0   |    1    |   1   |    0    | igc_fc_none
    524		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
    525		 *   1   |    0    |   0   |   DC    | igc_fc_none
    526		 *   1   |   DC    |   1   |   DC    | igc_fc_full
    527		 *   1   |    1    |   0   |    0    | igc_fc_none
    528		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
    529		 *
    530		 * Are both PAUSE bits set to 1?  If so, this implies
    531		 * Symmetric Flow Control is enabled at both ends.  The
    532		 * ASM_DIR bits are irrelevant per the spec.
    533		 *
    534		 * For Symmetric Flow Control:
    535		 *
    536		 *   LOCAL DEVICE  |   LINK PARTNER
    537		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
    538		 *-------|---------|-------|---------|--------------------
    539		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
    540		 *
    541		 */
    542		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
    543		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
    544			/* Now we need to check if the user selected RX ONLY
    545			 * of pause frames.  In this case, we had to advertise
    546			 * FULL flow control because we could not advertise RX
    547			 * ONLY. Hence, we must now check to see if we need to
    548			 * turn OFF  the TRANSMISSION of PAUSE frames.
    549			 */
    550			if (hw->fc.requested_mode == igc_fc_full) {
    551				hw->fc.current_mode = igc_fc_full;
    552				hw_dbg("Flow Control = FULL.\n");
    553			} else {
    554				hw->fc.current_mode = igc_fc_rx_pause;
    555				hw_dbg("Flow Control = RX PAUSE frames only.\n");
    556			}
    557		}
    558
    559		/* For receiving PAUSE frames ONLY.
    560		 *
    561		 *   LOCAL DEVICE  |   LINK PARTNER
    562		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
    563		 *-------|---------|-------|---------|--------------------
    564		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
    565		 */
    566		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
    567			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
    568			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
    569			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
    570			hw->fc.current_mode = igc_fc_tx_pause;
    571			hw_dbg("Flow Control = TX PAUSE frames only.\n");
    572		}
    573		/* For transmitting PAUSE frames ONLY.
    574		 *
    575		 *   LOCAL DEVICE  |   LINK PARTNER
    576		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
    577		 *-------|---------|-------|---------|--------------------
    578		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
    579		 */
    580		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
    581			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
    582			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
    583			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
    584			hw->fc.current_mode = igc_fc_rx_pause;
    585			hw_dbg("Flow Control = RX PAUSE frames only.\n");
    586		}
    587		/* Per the IEEE spec, at this point flow control should be
    588		 * disabled.  However, we want to consider that we could
    589		 * be connected to a legacy switch that doesn't advertise
    590		 * desired flow control, but can be forced on the link
    591		 * partner.  So if we advertised no flow control, that is
    592		 * what we will resolve to.  If we advertised some kind of
    593		 * receive capability (Rx Pause Only or Full Flow Control)
    594		 * and the link partner advertised none, we will configure
    595		 * ourselves to enable Rx Flow Control only.  We can do
    596		 * this safely for two reasons:  If the link partner really
    597		 * didn't want flow control enabled, and we enable Rx, no
    598		 * harm done since we won't be receiving any PAUSE frames
    599		 * anyway.  If the intent on the link partner was to have
    600		 * flow control enabled, then by us enabling RX only, we
    601		 * can at least receive pause frames and process them.
    602		 * This is a good idea because in most cases, since we are
    603		 * predominantly a server NIC, more times than not we will
    604		 * be asked to delay transmission of packets than asking
    605		 * our link partner to pause transmission of frames.
    606		 */
    607		else if ((hw->fc.requested_mode == igc_fc_none) ||
    608			 (hw->fc.requested_mode == igc_fc_tx_pause) ||
    609			 (hw->fc.strict_ieee)) {
    610			hw->fc.current_mode = igc_fc_none;
    611			hw_dbg("Flow Control = NONE.\n");
    612		} else {
    613			hw->fc.current_mode = igc_fc_rx_pause;
    614			hw_dbg("Flow Control = RX PAUSE frames only.\n");
    615		}
    616
    617		/* Now we need to do one last check...  If we auto-
    618		 * negotiated to HALF DUPLEX, flow control should not be
    619		 * enabled per IEEE 802.3 spec.
    620		 */
    621		ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
    622		if (ret_val) {
    623			hw_dbg("Error getting link speed and duplex\n");
    624			goto out;
    625		}
    626
    627		if (duplex == HALF_DUPLEX)
    628			hw->fc.current_mode = igc_fc_none;
    629
    630		/* Now we call a subroutine to actually force the MAC
    631		 * controller to use the correct flow control settings.
    632		 */
    633		ret_val = igc_force_mac_fc(hw);
    634		if (ret_val) {
    635			hw_dbg("Error forcing flow control settings\n");
    636			goto out;
    637		}
    638	}
    639
    640out:
    641	return ret_val;
    642}
    643
    644/**
    645 * igc_get_auto_rd_done - Check for auto read completion
    646 * @hw: pointer to the HW structure
    647 *
    648 * Check EEPROM for Auto Read done bit.
    649 */
    650s32 igc_get_auto_rd_done(struct igc_hw *hw)
    651{
    652	s32 ret_val = 0;
    653	s32 i = 0;
    654
    655	while (i < AUTO_READ_DONE_TIMEOUT) {
    656		if (rd32(IGC_EECD) & IGC_EECD_AUTO_RD)
    657			break;
    658		usleep_range(1000, 2000);
    659		i++;
    660	}
    661
    662	if (i == AUTO_READ_DONE_TIMEOUT) {
    663		hw_dbg("Auto read by HW from NVM has not completed.\n");
    664		ret_val = -IGC_ERR_RESET;
    665		goto out;
    666	}
    667
    668out:
    669	return ret_val;
    670}
    671
    672/**
    673 * igc_get_speed_and_duplex_copper - Retrieve current speed/duplex
    674 * @hw: pointer to the HW structure
    675 * @speed: stores the current speed
    676 * @duplex: stores the current duplex
    677 *
    678 * Read the status register for the current speed/duplex and store the current
    679 * speed and duplex for copper connections.
    680 */
    681s32 igc_get_speed_and_duplex_copper(struct igc_hw *hw, u16 *speed,
    682				    u16 *duplex)
    683{
    684	u32 status;
    685
    686	status = rd32(IGC_STATUS);
    687	if (status & IGC_STATUS_SPEED_1000) {
    688		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
    689		 * and 2.5 Gbps link modes. An additional bit is used
    690		 * to differentiate between 1 Gbps and 2.5 Gbps.
    691		 */
    692		if (hw->mac.type == igc_i225 &&
    693		    (status & IGC_STATUS_SPEED_2500)) {
    694			*speed = SPEED_2500;
    695			hw_dbg("2500 Mbs, ");
    696		} else {
    697			*speed = SPEED_1000;
    698			hw_dbg("1000 Mbs, ");
    699		}
    700	} else if (status & IGC_STATUS_SPEED_100) {
    701		*speed = SPEED_100;
    702		hw_dbg("100 Mbs, ");
    703	} else {
    704		*speed = SPEED_10;
    705		hw_dbg("10 Mbs, ");
    706	}
    707
    708	if (status & IGC_STATUS_FD) {
    709		*duplex = FULL_DUPLEX;
    710		hw_dbg("Full Duplex\n");
    711	} else {
    712		*duplex = HALF_DUPLEX;
    713		hw_dbg("Half Duplex\n");
    714	}
    715
    716	return 0;
    717}
    718
    719/**
    720 * igc_put_hw_semaphore - Release hardware semaphore
    721 * @hw: pointer to the HW structure
    722 *
    723 * Release hardware semaphore used to access the PHY or NVM
    724 */
    725void igc_put_hw_semaphore(struct igc_hw *hw)
    726{
    727	u32 swsm;
    728
    729	swsm = rd32(IGC_SWSM);
    730
    731	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
    732
    733	wr32(IGC_SWSM, swsm);
    734}
    735
    736/**
    737 * igc_enable_mng_pass_thru - Enable processing of ARP's
    738 * @hw: pointer to the HW structure
    739 *
    740 * Verifies the hardware needs to leave interface enabled so that frames can
    741 * be directed to and from the management interface.
    742 */
    743bool igc_enable_mng_pass_thru(struct igc_hw *hw)
    744{
    745	bool ret_val = false;
    746	u32 fwsm, factps;
    747	u32 manc;
    748
    749	if (!hw->mac.asf_firmware_present)
    750		goto out;
    751
    752	manc = rd32(IGC_MANC);
    753
    754	if (!(manc & IGC_MANC_RCV_TCO_EN))
    755		goto out;
    756
    757	if (hw->mac.arc_subsystem_valid) {
    758		fwsm = rd32(IGC_FWSM);
    759		factps = rd32(IGC_FACTPS);
    760
    761		if (!(factps & IGC_FACTPS_MNGCG) &&
    762		    ((fwsm & IGC_FWSM_MODE_MASK) ==
    763		    (igc_mng_mode_pt << IGC_FWSM_MODE_SHIFT))) {
    764			ret_val = true;
    765			goto out;
    766		}
    767	} else {
    768		if ((manc & IGC_MANC_SMBUS_EN) &&
    769		    !(manc & IGC_MANC_ASF_EN)) {
    770			ret_val = true;
    771			goto out;
    772		}
    773	}
    774
    775out:
    776	return ret_val;
    777}
    778
    779/**
    780 *  igc_hash_mc_addr - Generate a multicast hash value
    781 *  @hw: pointer to the HW structure
    782 *  @mc_addr: pointer to a multicast address
    783 *
    784 *  Generates a multicast address hash value which is used to determine
    785 *  the multicast filter table array address and new table value.  See
    786 *  igc_mta_set()
    787 **/
    788static u32 igc_hash_mc_addr(struct igc_hw *hw, u8 *mc_addr)
    789{
    790	u32 hash_value, hash_mask;
    791	u8 bit_shift = 0;
    792
    793	/* Register count multiplied by bits per register */
    794	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
    795
    796	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
    797	 * where 0xFF would still fall within the hash mask.
    798	 */
    799	while (hash_mask >> bit_shift != 0xFF)
    800		bit_shift++;
    801
    802	/* The portion of the address that is used for the hash table
    803	 * is determined by the mc_filter_type setting.
    804	 * The algorithm is such that there is a total of 8 bits of shifting.
    805	 * The bit_shift for a mc_filter_type of 0 represents the number of
    806	 * left-shifts where the MSB of mc_addr[5] would still fall within
    807	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
    808	 * of 8 bits of shifting, then mc_addr[4] will shift right the
    809	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
    810	 * cases are a variation of this algorithm...essentially raising the
    811	 * number of bits to shift mc_addr[5] left, while still keeping the
    812	 * 8-bit shifting total.
    813	 *
    814	 * For example, given the following Destination MAC Address and an
    815	 * MTA register count of 128 (thus a 4096-bit vector and 0xFFF mask),
    816	 * we can see that the bit_shift for case 0 is 4.  These are the hash
    817	 * values resulting from each mc_filter_type...
    818	 * [0] [1] [2] [3] [4] [5]
    819	 * 01  AA  00  12  34  56
    820	 * LSB                 MSB
    821	 *
    822	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
    823	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
    824	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
    825	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
    826	 */
    827	switch (hw->mac.mc_filter_type) {
    828	default:
    829	case 0:
    830		break;
    831	case 1:
    832		bit_shift += 1;
    833		break;
    834	case 2:
    835		bit_shift += 2;
    836		break;
    837	case 3:
    838		bit_shift += 4;
    839		break;
    840	}
    841
    842	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
    843				  (((u16)mc_addr[5]) << bit_shift)));
    844
    845	return hash_value;
    846}
    847
    848/**
    849 *  igc_update_mc_addr_list - Update Multicast addresses
    850 *  @hw: pointer to the HW structure
    851 *  @mc_addr_list: array of multicast addresses to program
    852 *  @mc_addr_count: number of multicast addresses to program
    853 *
    854 *  Updates entire Multicast Table Array.
    855 *  The caller must have a packed mc_addr_list of multicast addresses.
    856 **/
    857void igc_update_mc_addr_list(struct igc_hw *hw,
    858			     u8 *mc_addr_list, u32 mc_addr_count)
    859{
    860	u32 hash_value, hash_bit, hash_reg;
    861	int i;
    862
    863	/* clear mta_shadow */
    864	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
    865
    866	/* update mta_shadow from mc_addr_list */
    867	for (i = 0; (u32)i < mc_addr_count; i++) {
    868		hash_value = igc_hash_mc_addr(hw, mc_addr_list);
    869
    870		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
    871		hash_bit = hash_value & 0x1F;
    872
    873		hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
    874		mc_addr_list += ETH_ALEN;
    875	}
    876
    877	/* replace the entire MTA table */
    878	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
    879		array_wr32(IGC_MTA, i, hw->mac.mta_shadow[i]);
    880	wrfl();
    881}