cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ixgb_hw.c (37029B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2008 Intel Corporation. */
      3
      4/* ixgb_hw.c
      5 * Shared functions for accessing and configuring the adapter
      6 */
      7
      8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      9
     10#include <linux/pci_ids.h>
     11#include "ixgb_hw.h"
     12#include "ixgb_ids.h"
     13
     14#include <linux/etherdevice.h>
     15
     16/*  Local function prototypes */
     17
     18static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr);
     19
     20static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value);
     21
     22static void ixgb_get_bus_info(struct ixgb_hw *hw);
     23
     24static bool ixgb_link_reset(struct ixgb_hw *hw);
     25
     26static void ixgb_optics_reset(struct ixgb_hw *hw);
     27
     28static void ixgb_optics_reset_bcm(struct ixgb_hw *hw);
     29
     30static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw);
     31
     32static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw);
     33
     34static void ixgb_clear_vfta(struct ixgb_hw *hw);
     35
     36static void ixgb_init_rx_addrs(struct ixgb_hw *hw);
     37
     38static u16 ixgb_read_phy_reg(struct ixgb_hw *hw,
     39				  u32 reg_address,
     40				  u32 phy_address,
     41				  u32 device_type);
     42
     43static bool ixgb_setup_fc(struct ixgb_hw *hw);
     44
     45static bool mac_addr_valid(u8 *mac_addr);
     46
     47static u32 ixgb_mac_reset(struct ixgb_hw *hw)
     48{
     49	u32 ctrl_reg;
     50
     51	ctrl_reg =  IXGB_CTRL0_RST |
     52				IXGB_CTRL0_SDP3_DIR |   /* All pins are Output=1 */
     53				IXGB_CTRL0_SDP2_DIR |
     54				IXGB_CTRL0_SDP1_DIR |
     55				IXGB_CTRL0_SDP0_DIR |
     56				IXGB_CTRL0_SDP3	 |   /* Initial value 1101   */
     57				IXGB_CTRL0_SDP2	 |
     58				IXGB_CTRL0_SDP0;
     59
     60#ifdef HP_ZX1
     61	/* Workaround for 82597EX reset errata */
     62	IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg);
     63#else
     64	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
     65#endif
     66
     67	/* Delay a few ms just to allow the reset to complete */
     68	msleep(IXGB_DELAY_AFTER_RESET);
     69	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
     70#ifdef DBG
     71	/* Make sure the self-clearing global reset bit did self clear */
     72	ASSERT(!(ctrl_reg & IXGB_CTRL0_RST));
     73#endif
     74
     75	if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) {
     76		ctrl_reg =  /* Enable interrupt from XFP and SerDes */
     77			   IXGB_CTRL1_GPI0_EN |
     78			   IXGB_CTRL1_SDP6_DIR |
     79			   IXGB_CTRL1_SDP7_DIR |
     80			   IXGB_CTRL1_SDP6 |
     81			   IXGB_CTRL1_SDP7;
     82		IXGB_WRITE_REG(hw, CTRL1, ctrl_reg);
     83		ixgb_optics_reset_bcm(hw);
     84	}
     85
     86	if (hw->phy_type == ixgb_phy_type_txn17401)
     87		ixgb_optics_reset(hw);
     88
     89	return ctrl_reg;
     90}
     91
     92/******************************************************************************
     93 * Reset the transmit and receive units; mask and clear all interrupts.
     94 *
     95 * hw - Struct containing variables accessed by shared code
     96 *****************************************************************************/
     97bool
     98ixgb_adapter_stop(struct ixgb_hw *hw)
     99{
    100	u32 ctrl_reg;
    101
    102	ENTER();
    103
    104	/* If we are stopped or resetting exit gracefully and wait to be
    105	 * started again before accessing the hardware.
    106	 */
    107	if (hw->adapter_stopped) {
    108		pr_debug("Exiting because the adapter is already stopped!!!\n");
    109		return false;
    110	}
    111
    112	/* Set the Adapter Stopped flag so other driver functions stop
    113	 * touching the Hardware.
    114	 */
    115	hw->adapter_stopped = true;
    116
    117	/* Clear interrupt mask to stop board from generating interrupts */
    118	pr_debug("Masking off all interrupts\n");
    119	IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF);
    120
    121	/* Disable the Transmit and Receive units.  Then delay to allow
    122	 * any pending transactions to complete before we hit the MAC with
    123	 * the global reset.
    124	 */
    125	IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN);
    126	IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN);
    127	IXGB_WRITE_FLUSH(hw);
    128	msleep(IXGB_DELAY_BEFORE_RESET);
    129
    130	/* Issue a global reset to the MAC.  This will reset the chip's
    131	 * transmit, receive, DMA, and link units.  It will not effect
    132	 * the current PCI configuration.  The global reset bit is self-
    133	 * clearing, and should clear within a microsecond.
    134	 */
    135	pr_debug("Issuing a global reset to MAC\n");
    136
    137	ctrl_reg = ixgb_mac_reset(hw);
    138
    139	/* Clear interrupt mask to stop board from generating interrupts */
    140	pr_debug("Masking off all interrupts\n");
    141	IXGB_WRITE_REG(hw, IMC, 0xffffffff);
    142
    143	/* Clear any pending interrupt events. */
    144	IXGB_READ_REG(hw, ICR);
    145
    146	return ctrl_reg & IXGB_CTRL0_RST;
    147}
    148
    149
    150/******************************************************************************
    151 * Identifies the vendor of the optics module on the adapter.  The SR adapters
    152 * support two different types of XPAK optics, so it is necessary to determine
    153 * which optics are present before applying any optics-specific workarounds.
    154 *
    155 * hw - Struct containing variables accessed by shared code.
    156 *
    157 * Returns: the vendor of the XPAK optics module.
    158 *****************************************************************************/
    159static ixgb_xpak_vendor
    160ixgb_identify_xpak_vendor(struct ixgb_hw *hw)
    161{
    162	u32 i;
    163	u16 vendor_name[5];
    164	ixgb_xpak_vendor xpak_vendor;
    165
    166	ENTER();
    167
    168	/* Read the first few bytes of the vendor string from the XPAK NVR
    169	 * registers.  These are standard XENPAK/XPAK registers, so all XPAK
    170	 * devices should implement them. */
    171	for (i = 0; i < 5; i++) {
    172		vendor_name[i] = ixgb_read_phy_reg(hw,
    173						   MDIO_PMA_PMD_XPAK_VENDOR_NAME
    174						   + i, IXGB_PHY_ADDRESS,
    175						   MDIO_MMD_PMAPMD);
    176	}
    177
    178	/* Determine the actual vendor */
    179	if (vendor_name[0] == 'I' &&
    180	    vendor_name[1] == 'N' &&
    181	    vendor_name[2] == 'T' &&
    182	    vendor_name[3] == 'E' && vendor_name[4] == 'L') {
    183		xpak_vendor = ixgb_xpak_vendor_intel;
    184	} else {
    185		xpak_vendor = ixgb_xpak_vendor_infineon;
    186	}
    187
    188	return xpak_vendor;
    189}
    190
    191/******************************************************************************
    192 * Determine the physical layer module on the adapter.
    193 *
    194 * hw - Struct containing variables accessed by shared code.  The device_id
    195 *      field must be (correctly) populated before calling this routine.
    196 *
    197 * Returns: the phy type of the adapter.
    198 *****************************************************************************/
    199static ixgb_phy_type
    200ixgb_identify_phy(struct ixgb_hw *hw)
    201{
    202	ixgb_phy_type phy_type;
    203	ixgb_xpak_vendor xpak_vendor;
    204
    205	ENTER();
    206
    207	/* Infer the transceiver/phy type from the device id */
    208	switch (hw->device_id) {
    209	case IXGB_DEVICE_ID_82597EX:
    210		pr_debug("Identified TXN17401 optics\n");
    211		phy_type = ixgb_phy_type_txn17401;
    212		break;
    213
    214	case IXGB_DEVICE_ID_82597EX_SR:
    215		/* The SR adapters carry two different types of XPAK optics
    216		 * modules; read the vendor identifier to determine the exact
    217		 * type of optics. */
    218		xpak_vendor = ixgb_identify_xpak_vendor(hw);
    219		if (xpak_vendor == ixgb_xpak_vendor_intel) {
    220			pr_debug("Identified TXN17201 optics\n");
    221			phy_type = ixgb_phy_type_txn17201;
    222		} else {
    223			pr_debug("Identified G6005 optics\n");
    224			phy_type = ixgb_phy_type_g6005;
    225		}
    226		break;
    227	case IXGB_DEVICE_ID_82597EX_LR:
    228		pr_debug("Identified G6104 optics\n");
    229		phy_type = ixgb_phy_type_g6104;
    230		break;
    231	case IXGB_DEVICE_ID_82597EX_CX4:
    232		pr_debug("Identified CX4\n");
    233		xpak_vendor = ixgb_identify_xpak_vendor(hw);
    234		if (xpak_vendor == ixgb_xpak_vendor_intel) {
    235			pr_debug("Identified TXN17201 optics\n");
    236			phy_type = ixgb_phy_type_txn17201;
    237		} else {
    238			pr_debug("Identified G6005 optics\n");
    239			phy_type = ixgb_phy_type_g6005;
    240		}
    241		break;
    242	default:
    243		pr_debug("Unknown physical layer module\n");
    244		phy_type = ixgb_phy_type_unknown;
    245		break;
    246	}
    247
    248	/* update phy type for sun specific board */
    249	if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN)
    250		phy_type = ixgb_phy_type_bcm;
    251
    252	return phy_type;
    253}
    254
    255/******************************************************************************
    256 * Performs basic configuration of the adapter.
    257 *
    258 * hw - Struct containing variables accessed by shared code
    259 *
    260 * Resets the controller.
    261 * Reads and validates the EEPROM.
    262 * Initializes the receive address registers.
    263 * Initializes the multicast table.
    264 * Clears all on-chip counters.
    265 * Calls routine to setup flow control settings.
    266 * Leaves the transmit and receive units disabled and uninitialized.
    267 *
    268 * Returns:
    269 *      true if successful,
    270 *      false if unrecoverable problems were encountered.
    271 *****************************************************************************/
    272bool
    273ixgb_init_hw(struct ixgb_hw *hw)
    274{
    275	u32 i;
    276	bool status;
    277
    278	ENTER();
    279
    280	/* Issue a global reset to the MAC.  This will reset the chip's
    281	 * transmit, receive, DMA, and link units.  It will not effect
    282	 * the current PCI configuration.  The global reset bit is self-
    283	 * clearing, and should clear within a microsecond.
    284	 */
    285	pr_debug("Issuing a global reset to MAC\n");
    286
    287	ixgb_mac_reset(hw);
    288
    289	pr_debug("Issuing an EE reset to MAC\n");
    290#ifdef HP_ZX1
    291	/* Workaround for 82597EX reset errata */
    292	IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST);
    293#else
    294	IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST);
    295#endif
    296
    297	/* Delay a few ms just to allow the reset to complete */
    298	msleep(IXGB_DELAY_AFTER_EE_RESET);
    299
    300	if (!ixgb_get_eeprom_data(hw))
    301		return false;
    302
    303	/* Use the device id to determine the type of phy/transceiver. */
    304	hw->device_id = ixgb_get_ee_device_id(hw);
    305	hw->phy_type = ixgb_identify_phy(hw);
    306
    307	/* Setup the receive addresses.
    308	 * Receive Address Registers (RARs 0 - 15).
    309	 */
    310	ixgb_init_rx_addrs(hw);
    311
    312	/*
    313	 * Check that a valid MAC address has been set.
    314	 * If it is not valid, we fail hardware init.
    315	 */
    316	if (!mac_addr_valid(hw->curr_mac_addr)) {
    317		pr_debug("MAC address invalid after ixgb_init_rx_addrs\n");
    318		return(false);
    319	}
    320
    321	/* tell the routines in this file they can access hardware again */
    322	hw->adapter_stopped = false;
    323
    324	/* Fill in the bus_info structure */
    325	ixgb_get_bus_info(hw);
    326
    327	/* Zero out the Multicast HASH table */
    328	pr_debug("Zeroing the MTA\n");
    329	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
    330		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
    331
    332	/* Zero out the VLAN Filter Table Array */
    333	ixgb_clear_vfta(hw);
    334
    335	/* Zero all of the hardware counters */
    336	ixgb_clear_hw_cntrs(hw);
    337
    338	/* Call a subroutine to setup flow control. */
    339	status = ixgb_setup_fc(hw);
    340
    341	/* 82597EX errata: Call check-for-link in case lane deskew is locked */
    342	ixgb_check_for_link(hw);
    343
    344	return status;
    345}
    346
    347/******************************************************************************
    348 * Initializes receive address filters.
    349 *
    350 * hw - Struct containing variables accessed by shared code
    351 *
    352 * Places the MAC address in receive address register 0 and clears the rest
    353 * of the receive address registers. Clears the multicast table. Assumes
    354 * the receiver is in reset when the routine is called.
    355 *****************************************************************************/
    356static void
    357ixgb_init_rx_addrs(struct ixgb_hw *hw)
    358{
    359	u32 i;
    360
    361	ENTER();
    362
    363	/*
    364	 * If the current mac address is valid, assume it is a software override
    365	 * to the permanent address.
    366	 * Otherwise, use the permanent address from the eeprom.
    367	 */
    368	if (!mac_addr_valid(hw->curr_mac_addr)) {
    369
    370		/* Get the MAC address from the eeprom for later reference */
    371		ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr);
    372
    373		pr_debug("Keeping Permanent MAC Addr = %pM\n",
    374			 hw->curr_mac_addr);
    375	} else {
    376
    377		/* Setup the receive address. */
    378		pr_debug("Overriding MAC Address in RAR[0]\n");
    379		pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr);
    380
    381		ixgb_rar_set(hw, hw->curr_mac_addr, 0);
    382	}
    383
    384	/* Zero out the other 15 receive addresses. */
    385	pr_debug("Clearing RAR[1-15]\n");
    386	for (i = 1; i < IXGB_RAR_ENTRIES; i++) {
    387		/* Write high reg first to disable the AV bit first */
    388		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
    389		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
    390	}
    391}
    392
    393/******************************************************************************
    394 * Updates the MAC's list of multicast addresses.
    395 *
    396 * hw - Struct containing variables accessed by shared code
    397 * mc_addr_list - the list of new multicast addresses
    398 * mc_addr_count - number of addresses
    399 * pad - number of bytes between addresses in the list
    400 *
    401 * The given list replaces any existing list. Clears the last 15 receive
    402 * address registers and the multicast table. Uses receive address registers
    403 * for the first 15 multicast addresses, and hashes the rest into the
    404 * multicast table.
    405 *****************************************************************************/
    406void
    407ixgb_mc_addr_list_update(struct ixgb_hw *hw,
    408			  u8 *mc_addr_list,
    409			  u32 mc_addr_count,
    410			  u32 pad)
    411{
    412	u32 hash_value;
    413	u32 i;
    414	u32 rar_used_count = 1;		/* RAR[0] is used for our MAC address */
    415	u8 *mca;
    416
    417	ENTER();
    418
    419	/* Set the new number of MC addresses that we are being requested to use. */
    420	hw->num_mc_addrs = mc_addr_count;
    421
    422	/* Clear RAR[1-15] */
    423	pr_debug("Clearing RAR[1-15]\n");
    424	for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) {
    425		IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
    426		IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
    427	}
    428
    429	/* Clear the MTA */
    430	pr_debug("Clearing MTA\n");
    431	for (i = 0; i < IXGB_MC_TBL_SIZE; i++)
    432		IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0);
    433
    434	/* Add the new addresses */
    435	mca = mc_addr_list;
    436	for (i = 0; i < mc_addr_count; i++) {
    437		pr_debug("Adding the multicast addresses:\n");
    438		pr_debug("MC Addr #%d = %pM\n", i, mca);
    439
    440		/* Place this multicast address in the RAR if there is room, *
    441		 * else put it in the MTA
    442		 */
    443		if (rar_used_count < IXGB_RAR_ENTRIES) {
    444			ixgb_rar_set(hw, mca, rar_used_count);
    445			pr_debug("Added a multicast address to RAR[%d]\n", i);
    446			rar_used_count++;
    447		} else {
    448			hash_value = ixgb_hash_mc_addr(hw, mca);
    449
    450			pr_debug("Hash value = 0x%03X\n", hash_value);
    451
    452			ixgb_mta_set(hw, hash_value);
    453		}
    454
    455		mca += ETH_ALEN + pad;
    456	}
    457
    458	pr_debug("MC Update Complete\n");
    459}
    460
    461/******************************************************************************
    462 * Hashes an address to determine its location in the multicast table
    463 *
    464 * hw - Struct containing variables accessed by shared code
    465 * mc_addr - the multicast address to hash
    466 *
    467 * Returns:
    468 *      The hash value
    469 *****************************************************************************/
    470static u32
    471ixgb_hash_mc_addr(struct ixgb_hw *hw,
    472		   u8 *mc_addr)
    473{
    474	u32 hash_value = 0;
    475
    476	ENTER();
    477
    478	/* The portion of the address that is used for the hash table is
    479	 * determined by the mc_filter_type setting.
    480	 */
    481	switch (hw->mc_filter_type) {
    482		/* [0] [1] [2] [3] [4] [5]
    483		 * 01  AA  00  12  34  56
    484		 * LSB                 MSB - According to H/W docs */
    485	case 0:
    486		/* [47:36] i.e. 0x563 for above example address */
    487		hash_value =
    488		    ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
    489		break;
    490	case 1:		/* [46:35] i.e. 0xAC6 for above example address */
    491		hash_value =
    492		    ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
    493		break;
    494	case 2:		/* [45:34] i.e. 0x5D8 for above example address */
    495		hash_value =
    496		    ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
    497		break;
    498	case 3:		/* [43:32] i.e. 0x634 for above example address */
    499		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
    500		break;
    501	default:
    502		/* Invalid mc_filter_type, what should we do? */
    503		pr_debug("MC filter type param set incorrectly\n");
    504		ASSERT(0);
    505		break;
    506	}
    507
    508	hash_value &= 0xFFF;
    509	return hash_value;
    510}
    511
    512/******************************************************************************
    513 * Sets the bit in the multicast table corresponding to the hash value.
    514 *
    515 * hw - Struct containing variables accessed by shared code
    516 * hash_value - Multicast address hash value
    517 *****************************************************************************/
    518static void
    519ixgb_mta_set(struct ixgb_hw *hw,
    520		  u32 hash_value)
    521{
    522	u32 hash_bit, hash_reg;
    523	u32 mta_reg;
    524
    525	/* The MTA is a register array of 128 32-bit registers.
    526	 * It is treated like an array of 4096 bits.  We want to set
    527	 * bit BitArray[hash_value]. So we figure out what register
    528	 * the bit is in, read it, OR in the new bit, then write
    529	 * back the new value.  The register is determined by the
    530	 * upper 7 bits of the hash value and the bit within that
    531	 * register are determined by the lower 5 bits of the value.
    532	 */
    533	hash_reg = (hash_value >> 5) & 0x7F;
    534	hash_bit = hash_value & 0x1F;
    535
    536	mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg);
    537
    538	mta_reg |= (1 << hash_bit);
    539
    540	IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg);
    541}
    542
    543/******************************************************************************
    544 * Puts an ethernet address into a receive address register.
    545 *
    546 * hw - Struct containing variables accessed by shared code
    547 * addr - Address to put into receive address register
    548 * index - Receive address register to write
    549 *****************************************************************************/
    550void
    551ixgb_rar_set(struct ixgb_hw *hw,
    552		  const u8 *addr,
    553		  u32 index)
    554{
    555	u32 rar_low, rar_high;
    556
    557	ENTER();
    558
    559	/* HW expects these in little endian so we reverse the byte order
    560	 * from network order (big endian) to little endian
    561	 */
    562	rar_low = ((u32) addr[0] |
    563		   ((u32)addr[1] << 8) |
    564		   ((u32)addr[2] << 16) |
    565		   ((u32)addr[3] << 24));
    566
    567	rar_high = ((u32) addr[4] |
    568			((u32)addr[5] << 8) |
    569			IXGB_RAH_AV);
    570
    571	IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
    572	IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
    573}
    574
    575/******************************************************************************
    576 * Writes a value to the specified offset in the VLAN filter table.
    577 *
    578 * hw - Struct containing variables accessed by shared code
    579 * offset - Offset in VLAN filer table to write
    580 * value - Value to write into VLAN filter table
    581 *****************************************************************************/
    582void
    583ixgb_write_vfta(struct ixgb_hw *hw,
    584		 u32 offset,
    585		 u32 value)
    586{
    587	IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value);
    588}
    589
    590/******************************************************************************
    591 * Clears the VLAN filer table
    592 *
    593 * hw - Struct containing variables accessed by shared code
    594 *****************************************************************************/
    595static void
    596ixgb_clear_vfta(struct ixgb_hw *hw)
    597{
    598	u32 offset;
    599
    600	for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++)
    601		IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
    602}
    603
    604/******************************************************************************
    605 * Configures the flow control settings based on SW configuration.
    606 *
    607 * hw - Struct containing variables accessed by shared code
    608 *****************************************************************************/
    609
    610static bool
    611ixgb_setup_fc(struct ixgb_hw *hw)
    612{
    613	u32 ctrl_reg;
    614	u32 pap_reg = 0;   /* by default, assume no pause time */
    615	bool status = true;
    616
    617	ENTER();
    618
    619	/* Get the current control reg 0 settings */
    620	ctrl_reg = IXGB_READ_REG(hw, CTRL0);
    621
    622	/* Clear the Receive Pause Enable and Transmit Pause Enable bits */
    623	ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
    624
    625	/* The possible values of the "flow_control" parameter are:
    626	 *      0:  Flow control is completely disabled
    627	 *      1:  Rx flow control is enabled (we can receive pause frames
    628	 *          but not send pause frames).
    629	 *      2:  Tx flow control is enabled (we can send pause frames
    630	 *          but we do not support receiving pause frames).
    631	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
    632	 *  other:  Invalid.
    633	 */
    634	switch (hw->fc.type) {
    635	case ixgb_fc_none:	/* 0 */
    636		/* Set CMDC bit to disable Rx Flow control */
    637		ctrl_reg |= (IXGB_CTRL0_CMDC);
    638		break;
    639	case ixgb_fc_rx_pause:	/* 1 */
    640		/* RX Flow control is enabled, and TX Flow control is
    641		 * disabled.
    642		 */
    643		ctrl_reg |= (IXGB_CTRL0_RPE);
    644		break;
    645	case ixgb_fc_tx_pause:	/* 2 */
    646		/* TX Flow control is enabled, and RX Flow control is
    647		 * disabled, by a software over-ride.
    648		 */
    649		ctrl_reg |= (IXGB_CTRL0_TPE);
    650		pap_reg = hw->fc.pause_time;
    651		break;
    652	case ixgb_fc_full:	/* 3 */
    653		/* Flow control (both RX and TX) is enabled by a software
    654		 * over-ride.
    655		 */
    656		ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE);
    657		pap_reg = hw->fc.pause_time;
    658		break;
    659	default:
    660		/* We should never get here.  The value should be 0-3. */
    661		pr_debug("Flow control param set incorrectly\n");
    662		ASSERT(0);
    663		break;
    664	}
    665
    666	/* Write the new settings */
    667	IXGB_WRITE_REG(hw, CTRL0, ctrl_reg);
    668
    669	if (pap_reg != 0)
    670		IXGB_WRITE_REG(hw, PAP, pap_reg);
    671
    672	/* Set the flow control receive threshold registers.  Normally,
    673	 * these registers will be set to a default threshold that may be
    674	 * adjusted later by the driver's runtime code.  However, if the
    675	 * ability to transmit pause frames in not enabled, then these
    676	 * registers will be set to 0.
    677	 */
    678	if (!(hw->fc.type & ixgb_fc_tx_pause)) {
    679		IXGB_WRITE_REG(hw, FCRTL, 0);
    680		IXGB_WRITE_REG(hw, FCRTH, 0);
    681	} else {
    682	   /* We need to set up the Receive Threshold high and low water
    683	    * marks as well as (optionally) enabling the transmission of XON
    684	    * frames. */
    685		if (hw->fc.send_xon) {
    686			IXGB_WRITE_REG(hw, FCRTL,
    687				(hw->fc.low_water | IXGB_FCRTL_XONE));
    688		} else {
    689			IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water);
    690		}
    691		IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water);
    692	}
    693	return status;
    694}
    695
    696/******************************************************************************
    697 * Reads a word from a device over the Management Data Interface (MDI) bus.
    698 * This interface is used to manage Physical layer devices.
    699 *
    700 * hw          - Struct containing variables accessed by hw code
    701 * reg_address - Offset of device register being read.
    702 * phy_address - Address of device on MDI.
    703 *
    704 * Returns:  Data word (16 bits) from MDI device.
    705 *
    706 * The 82597EX has support for several MDI access methods.  This routine
    707 * uses the new protocol MDI Single Command and Address Operation.
    708 * This requires that first an address cycle command is sent, followed by a
    709 * read command.
    710 *****************************************************************************/
    711static u16
    712ixgb_read_phy_reg(struct ixgb_hw *hw,
    713		u32 reg_address,
    714		u32 phy_address,
    715		u32 device_type)
    716{
    717	u32 i;
    718	u32 data;
    719	u32 command = 0;
    720
    721	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
    722	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
    723	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
    724
    725	/* Setup and write the address cycle command */
    726	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
    727		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
    728		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
    729		   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
    730
    731	IXGB_WRITE_REG(hw, MSCA, command);
    732
    733    /**************************************************************
    734    ** Check every 10 usec to see if the address cycle completed
    735    ** The COMMAND bit will clear when the operation is complete.
    736    ** This may take as long as 64 usecs (we'll wait 100 usecs max)
    737    ** from the CPU Write to the Ready bit assertion.
    738    **************************************************************/
    739
    740	for (i = 0; i < 10; i++)
    741	{
    742		udelay(10);
    743
    744		command = IXGB_READ_REG(hw, MSCA);
    745
    746		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
    747			break;
    748	}
    749
    750	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
    751
    752	/* Address cycle complete, setup and write the read command */
    753	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) |
    754		   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
    755		   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
    756		   (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND));
    757
    758	IXGB_WRITE_REG(hw, MSCA, command);
    759
    760    /**************************************************************
    761    ** Check every 10 usec to see if the read command completed
    762    ** The COMMAND bit will clear when the operation is complete.
    763    ** The read may take as long as 64 usecs (we'll wait 100 usecs max)
    764    ** from the CPU Write to the Ready bit assertion.
    765    **************************************************************/
    766
    767	for (i = 0; i < 10; i++)
    768	{
    769		udelay(10);
    770
    771		command = IXGB_READ_REG(hw, MSCA);
    772
    773		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
    774			break;
    775	}
    776
    777	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
    778
    779	/* Operation is complete, get the data from the MDIO Read/Write Data
    780	 * register and return.
    781	 */
    782	data = IXGB_READ_REG(hw, MSRWD);
    783	data >>= IXGB_MSRWD_READ_DATA_SHIFT;
    784	return((u16) data);
    785}
    786
    787/******************************************************************************
    788 * Writes a word to a device over the Management Data Interface (MDI) bus.
    789 * This interface is used to manage Physical layer devices.
    790 *
    791 * hw          - Struct containing variables accessed by hw code
    792 * reg_address - Offset of device register being read.
    793 * phy_address - Address of device on MDI.
    794 * device_type - Also known as the Device ID or DID.
    795 * data        - 16-bit value to be written
    796 *
    797 * Returns:  void.
    798 *
    799 * The 82597EX has support for several MDI access methods.  This routine
    800 * uses the new protocol MDI Single Command and Address Operation.
    801 * This requires that first an address cycle command is sent, followed by a
    802 * write command.
    803 *****************************************************************************/
    804static void
    805ixgb_write_phy_reg(struct ixgb_hw *hw,
    806			u32 reg_address,
    807			u32 phy_address,
    808			u32 device_type,
    809			u16 data)
    810{
    811	u32 i;
    812	u32 command = 0;
    813
    814	ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS);
    815	ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS);
    816	ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE);
    817
    818	/* Put the data in the MDIO Read/Write Data register */
    819	IXGB_WRITE_REG(hw, MSRWD, (u32)data);
    820
    821	/* Setup and write the address cycle command */
    822	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
    823			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
    824			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
    825			   (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND));
    826
    827	IXGB_WRITE_REG(hw, MSCA, command);
    828
    829	/**************************************************************
    830	** Check every 10 usec to see if the address cycle completed
    831	** The COMMAND bit will clear when the operation is complete.
    832	** This may take as long as 64 usecs (we'll wait 100 usecs max)
    833	** from the CPU Write to the Ready bit assertion.
    834	**************************************************************/
    835
    836	for (i = 0; i < 10; i++)
    837	{
    838		udelay(10);
    839
    840		command = IXGB_READ_REG(hw, MSCA);
    841
    842		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
    843			break;
    844	}
    845
    846	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
    847
    848	/* Address cycle complete, setup and write the write command */
    849	command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT)  |
    850			   (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) |
    851			   (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) |
    852			   (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND));
    853
    854	IXGB_WRITE_REG(hw, MSCA, command);
    855
    856	/**************************************************************
    857	** Check every 10 usec to see if the read command completed
    858	** The COMMAND bit will clear when the operation is complete.
    859	** The write may take as long as 64 usecs (we'll wait 100 usecs max)
    860	** from the CPU Write to the Ready bit assertion.
    861	**************************************************************/
    862
    863	for (i = 0; i < 10; i++)
    864	{
    865		udelay(10);
    866
    867		command = IXGB_READ_REG(hw, MSCA);
    868
    869		if ((command & IXGB_MSCA_MDI_COMMAND) == 0)
    870			break;
    871	}
    872
    873	ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0);
    874
    875	/* Operation is complete, return. */
    876}
    877
    878/******************************************************************************
    879 * Checks to see if the link status of the hardware has changed.
    880 *
    881 * hw - Struct containing variables accessed by hw code
    882 *
    883 * Called by any function that needs to check the link status of the adapter.
    884 *****************************************************************************/
    885void
    886ixgb_check_for_link(struct ixgb_hw *hw)
    887{
    888	u32 status_reg;
    889	u32 xpcss_reg;
    890
    891	ENTER();
    892
    893	xpcss_reg = IXGB_READ_REG(hw, XPCSS);
    894	status_reg = IXGB_READ_REG(hw, STATUS);
    895
    896	if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
    897	    (status_reg & IXGB_STATUS_LU)) {
    898		hw->link_up = true;
    899	} else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) &&
    900		   (status_reg & IXGB_STATUS_LU)) {
    901		pr_debug("XPCSS Not Aligned while Status:LU is set\n");
    902		hw->link_up = ixgb_link_reset(hw);
    903	} else {
    904		/*
    905		 * 82597EX errata.  Since the lane deskew problem may prevent
    906		 * link, reset the link before reporting link down.
    907		 */
    908		hw->link_up = ixgb_link_reset(hw);
    909	}
    910	/*  Anything else for 10 Gig?? */
    911}
    912
    913/******************************************************************************
    914 * Check for a bad link condition that may have occurred.
    915 * The indication is that the RFC / LFC registers may be incrementing
    916 * continually.  A full adapter reset is required to recover.
    917 *
    918 * hw - Struct containing variables accessed by hw code
    919 *
    920 * Called by any function that needs to check the link status of the adapter.
    921 *****************************************************************************/
    922bool ixgb_check_for_bad_link(struct ixgb_hw *hw)
    923{
    924	u32 newLFC, newRFC;
    925	bool bad_link_returncode = false;
    926
    927	if (hw->phy_type == ixgb_phy_type_txn17401) {
    928		newLFC = IXGB_READ_REG(hw, LFC);
    929		newRFC = IXGB_READ_REG(hw, RFC);
    930		if ((hw->lastLFC + 250 < newLFC)
    931		    || (hw->lastRFC + 250 < newRFC)) {
    932			pr_debug("BAD LINK! too many LFC/RFC since last check\n");
    933			bad_link_returncode = true;
    934		}
    935		hw->lastLFC = newLFC;
    936		hw->lastRFC = newRFC;
    937	}
    938
    939	return bad_link_returncode;
    940}
    941
    942/******************************************************************************
    943 * Clears all hardware statistics counters.
    944 *
    945 * hw - Struct containing variables accessed by shared code
    946 *****************************************************************************/
    947static void
    948ixgb_clear_hw_cntrs(struct ixgb_hw *hw)
    949{
    950	ENTER();
    951
    952	/* if we are stopped or resetting exit gracefully */
    953	if (hw->adapter_stopped) {
    954		pr_debug("Exiting because the adapter is stopped!!!\n");
    955		return;
    956	}
    957
    958	IXGB_READ_REG(hw, TPRL);
    959	IXGB_READ_REG(hw, TPRH);
    960	IXGB_READ_REG(hw, GPRCL);
    961	IXGB_READ_REG(hw, GPRCH);
    962	IXGB_READ_REG(hw, BPRCL);
    963	IXGB_READ_REG(hw, BPRCH);
    964	IXGB_READ_REG(hw, MPRCL);
    965	IXGB_READ_REG(hw, MPRCH);
    966	IXGB_READ_REG(hw, UPRCL);
    967	IXGB_READ_REG(hw, UPRCH);
    968	IXGB_READ_REG(hw, VPRCL);
    969	IXGB_READ_REG(hw, VPRCH);
    970	IXGB_READ_REG(hw, JPRCL);
    971	IXGB_READ_REG(hw, JPRCH);
    972	IXGB_READ_REG(hw, GORCL);
    973	IXGB_READ_REG(hw, GORCH);
    974	IXGB_READ_REG(hw, TORL);
    975	IXGB_READ_REG(hw, TORH);
    976	IXGB_READ_REG(hw, RNBC);
    977	IXGB_READ_REG(hw, RUC);
    978	IXGB_READ_REG(hw, ROC);
    979	IXGB_READ_REG(hw, RLEC);
    980	IXGB_READ_REG(hw, CRCERRS);
    981	IXGB_READ_REG(hw, ICBC);
    982	IXGB_READ_REG(hw, ECBC);
    983	IXGB_READ_REG(hw, MPC);
    984	IXGB_READ_REG(hw, TPTL);
    985	IXGB_READ_REG(hw, TPTH);
    986	IXGB_READ_REG(hw, GPTCL);
    987	IXGB_READ_REG(hw, GPTCH);
    988	IXGB_READ_REG(hw, BPTCL);
    989	IXGB_READ_REG(hw, BPTCH);
    990	IXGB_READ_REG(hw, MPTCL);
    991	IXGB_READ_REG(hw, MPTCH);
    992	IXGB_READ_REG(hw, UPTCL);
    993	IXGB_READ_REG(hw, UPTCH);
    994	IXGB_READ_REG(hw, VPTCL);
    995	IXGB_READ_REG(hw, VPTCH);
    996	IXGB_READ_REG(hw, JPTCL);
    997	IXGB_READ_REG(hw, JPTCH);
    998	IXGB_READ_REG(hw, GOTCL);
    999	IXGB_READ_REG(hw, GOTCH);
   1000	IXGB_READ_REG(hw, TOTL);
   1001	IXGB_READ_REG(hw, TOTH);
   1002	IXGB_READ_REG(hw, DC);
   1003	IXGB_READ_REG(hw, PLT64C);
   1004	IXGB_READ_REG(hw, TSCTC);
   1005	IXGB_READ_REG(hw, TSCTFC);
   1006	IXGB_READ_REG(hw, IBIC);
   1007	IXGB_READ_REG(hw, RFC);
   1008	IXGB_READ_REG(hw, LFC);
   1009	IXGB_READ_REG(hw, PFRC);
   1010	IXGB_READ_REG(hw, PFTC);
   1011	IXGB_READ_REG(hw, MCFRC);
   1012	IXGB_READ_REG(hw, MCFTC);
   1013	IXGB_READ_REG(hw, XONRXC);
   1014	IXGB_READ_REG(hw, XONTXC);
   1015	IXGB_READ_REG(hw, XOFFRXC);
   1016	IXGB_READ_REG(hw, XOFFTXC);
   1017	IXGB_READ_REG(hw, RJC);
   1018}
   1019
   1020/******************************************************************************
   1021 * Turns on the software controllable LED
   1022 *
   1023 * hw - Struct containing variables accessed by shared code
   1024 *****************************************************************************/
   1025void
   1026ixgb_led_on(struct ixgb_hw *hw)
   1027{
   1028	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
   1029
   1030	/* To turn on the LED, clear software-definable pin 0 (SDP0). */
   1031	ctrl0_reg &= ~IXGB_CTRL0_SDP0;
   1032	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
   1033}
   1034
   1035/******************************************************************************
   1036 * Turns off the software controllable LED
   1037 *
   1038 * hw - Struct containing variables accessed by shared code
   1039 *****************************************************************************/
   1040void
   1041ixgb_led_off(struct ixgb_hw *hw)
   1042{
   1043	u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0);
   1044
   1045	/* To turn off the LED, set software-definable pin 0 (SDP0). */
   1046	ctrl0_reg |= IXGB_CTRL0_SDP0;
   1047	IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg);
   1048}
   1049
   1050/******************************************************************************
   1051 * Gets the current PCI bus type, speed, and width of the hardware
   1052 *
   1053 * hw - Struct containing variables accessed by shared code
   1054 *****************************************************************************/
   1055static void
   1056ixgb_get_bus_info(struct ixgb_hw *hw)
   1057{
   1058	u32 status_reg;
   1059
   1060	status_reg = IXGB_READ_REG(hw, STATUS);
   1061
   1062	hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ?
   1063		ixgb_bus_type_pcix : ixgb_bus_type_pci;
   1064
   1065	if (hw->bus.type == ixgb_bus_type_pci) {
   1066		hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ?
   1067			ixgb_bus_speed_66 : ixgb_bus_speed_33;
   1068	} else {
   1069		switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) {
   1070		case IXGB_STATUS_PCIX_SPD_66:
   1071			hw->bus.speed = ixgb_bus_speed_66;
   1072			break;
   1073		case IXGB_STATUS_PCIX_SPD_100:
   1074			hw->bus.speed = ixgb_bus_speed_100;
   1075			break;
   1076		case IXGB_STATUS_PCIX_SPD_133:
   1077			hw->bus.speed = ixgb_bus_speed_133;
   1078			break;
   1079		default:
   1080			hw->bus.speed = ixgb_bus_speed_reserved;
   1081			break;
   1082		}
   1083	}
   1084
   1085	hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ?
   1086		ixgb_bus_width_64 : ixgb_bus_width_32;
   1087}
   1088
   1089/******************************************************************************
   1090 * Tests a MAC address to ensure it is a valid Individual Address
   1091 *
   1092 * mac_addr - pointer to MAC address.
   1093 *
   1094 *****************************************************************************/
   1095static bool
   1096mac_addr_valid(u8 *mac_addr)
   1097{
   1098	bool is_valid = true;
   1099	ENTER();
   1100
   1101	/* Make sure it is not a multicast address */
   1102	if (is_multicast_ether_addr(mac_addr)) {
   1103		pr_debug("MAC address is multicast\n");
   1104		is_valid = false;
   1105	}
   1106	/* Not a broadcast address */
   1107	else if (is_broadcast_ether_addr(mac_addr)) {
   1108		pr_debug("MAC address is broadcast\n");
   1109		is_valid = false;
   1110	}
   1111	/* Reject the zero address */
   1112	else if (is_zero_ether_addr(mac_addr)) {
   1113		pr_debug("MAC address is all zeros\n");
   1114		is_valid = false;
   1115	}
   1116	return is_valid;
   1117}
   1118
   1119/******************************************************************************
   1120 * Resets the 10GbE link.  Waits the settle time and returns the state of
   1121 * the link.
   1122 *
   1123 * hw - Struct containing variables accessed by shared code
   1124 *****************************************************************************/
   1125static bool
   1126ixgb_link_reset(struct ixgb_hw *hw)
   1127{
   1128	bool link_status = false;
   1129	u8 wait_retries = MAX_RESET_ITERATIONS;
   1130	u8 lrst_retries = MAX_RESET_ITERATIONS;
   1131
   1132	do {
   1133		/* Reset the link */
   1134		IXGB_WRITE_REG(hw, CTRL0,
   1135			       IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST);
   1136
   1137		/* Wait for link-up and lane re-alignment */
   1138		do {
   1139			udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET);
   1140			link_status =
   1141			    ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU)
   1142			     && (IXGB_READ_REG(hw, XPCSS) &
   1143				 IXGB_XPCSS_ALIGN_STATUS)) ? true : false;
   1144		} while (!link_status && --wait_retries);
   1145
   1146	} while (!link_status && --lrst_retries);
   1147
   1148	return link_status;
   1149}
   1150
   1151/******************************************************************************
   1152 * Resets the 10GbE optics module.
   1153 *
   1154 * hw - Struct containing variables accessed by shared code
   1155 *****************************************************************************/
   1156static void
   1157ixgb_optics_reset(struct ixgb_hw *hw)
   1158{
   1159	if (hw->phy_type == ixgb_phy_type_txn17401) {
   1160		ixgb_write_phy_reg(hw,
   1161				   MDIO_CTRL1,
   1162				   IXGB_PHY_ADDRESS,
   1163				   MDIO_MMD_PMAPMD,
   1164				   MDIO_CTRL1_RESET);
   1165
   1166		ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD);
   1167	}
   1168}
   1169
   1170/******************************************************************************
   1171 * Resets the 10GbE optics module for Sun variant NIC.
   1172 *
   1173 * hw - Struct containing variables accessed by shared code
   1174 *****************************************************************************/
   1175
   1176#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG         0xC803
   1177#define   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL     0x0164
   1178#define   IXGB_BCM8704_USER_CTRL_REG                0xC800
   1179#define   IXGB_BCM8704_USER_CTRL_REG_VAL            0x7FBF
   1180#define   IXGB_BCM8704_USER_DEV3_ADDR               0x0003
   1181#define   IXGB_SUN_PHY_ADDRESS                      0x0000
   1182#define   IXGB_SUN_PHY_RESET_DELAY                     305
   1183
   1184static void
   1185ixgb_optics_reset_bcm(struct ixgb_hw *hw)
   1186{
   1187	u32 ctrl = IXGB_READ_REG(hw, CTRL0);
   1188	ctrl &= ~IXGB_CTRL0_SDP2;
   1189	ctrl |= IXGB_CTRL0_SDP3;
   1190	IXGB_WRITE_REG(hw, CTRL0, ctrl);
   1191	IXGB_WRITE_FLUSH(hw);
   1192
   1193	/* SerDes needs extra delay */
   1194	msleep(IXGB_SUN_PHY_RESET_DELAY);
   1195
   1196	/* Broadcom 7408L configuration */
   1197	/* Reference clock config */
   1198	ixgb_write_phy_reg(hw,
   1199			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
   1200			   IXGB_SUN_PHY_ADDRESS,
   1201			   IXGB_BCM8704_USER_DEV3_ADDR,
   1202			   IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL);
   1203	/*  we must read the registers twice */
   1204	ixgb_read_phy_reg(hw,
   1205			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
   1206			  IXGB_SUN_PHY_ADDRESS,
   1207			  IXGB_BCM8704_USER_DEV3_ADDR);
   1208	ixgb_read_phy_reg(hw,
   1209			  IXGB_BCM8704_USER_PMD_TX_CTRL_REG,
   1210			  IXGB_SUN_PHY_ADDRESS,
   1211			  IXGB_BCM8704_USER_DEV3_ADDR);
   1212
   1213	ixgb_write_phy_reg(hw,
   1214			   IXGB_BCM8704_USER_CTRL_REG,
   1215			   IXGB_SUN_PHY_ADDRESS,
   1216			   IXGB_BCM8704_USER_DEV3_ADDR,
   1217			   IXGB_BCM8704_USER_CTRL_REG_VAL);
   1218	ixgb_read_phy_reg(hw,
   1219			  IXGB_BCM8704_USER_CTRL_REG,
   1220			  IXGB_SUN_PHY_ADDRESS,
   1221			  IXGB_BCM8704_USER_DEV3_ADDR);
   1222	ixgb_read_phy_reg(hw,
   1223			  IXGB_BCM8704_USER_CTRL_REG,
   1224			  IXGB_SUN_PHY_ADDRESS,
   1225			  IXGB_BCM8704_USER_DEV3_ADDR);
   1226
   1227	/* SerDes needs extra delay */
   1228	msleep(IXGB_SUN_PHY_RESET_DELAY);
   1229}