ixgb_hw.c (37029B)
1// SPDX-License-Identifier: GPL-2.0 2/* Copyright(c) 1999 - 2008 Intel Corporation. */ 3 4/* ixgb_hw.c 5 * Shared functions for accessing and configuring the adapter 6 */ 7 8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10#include <linux/pci_ids.h> 11#include "ixgb_hw.h" 12#include "ixgb_ids.h" 13 14#include <linux/etherdevice.h> 15 16/* Local function prototypes */ 17 18static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr); 19 20static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value); 21 22static void ixgb_get_bus_info(struct ixgb_hw *hw); 23 24static bool ixgb_link_reset(struct ixgb_hw *hw); 25 26static void ixgb_optics_reset(struct ixgb_hw *hw); 27 28static void ixgb_optics_reset_bcm(struct ixgb_hw *hw); 29 30static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw); 31 32static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw); 33 34static void ixgb_clear_vfta(struct ixgb_hw *hw); 35 36static void ixgb_init_rx_addrs(struct ixgb_hw *hw); 37 38static u16 ixgb_read_phy_reg(struct ixgb_hw *hw, 39 u32 reg_address, 40 u32 phy_address, 41 u32 device_type); 42 43static bool ixgb_setup_fc(struct ixgb_hw *hw); 44 45static bool mac_addr_valid(u8 *mac_addr); 46 47static u32 ixgb_mac_reset(struct ixgb_hw *hw) 48{ 49 u32 ctrl_reg; 50 51 ctrl_reg = IXGB_CTRL0_RST | 52 IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */ 53 IXGB_CTRL0_SDP2_DIR | 54 IXGB_CTRL0_SDP1_DIR | 55 IXGB_CTRL0_SDP0_DIR | 56 IXGB_CTRL0_SDP3 | /* Initial value 1101 */ 57 IXGB_CTRL0_SDP2 | 58 IXGB_CTRL0_SDP0; 59 60#ifdef HP_ZX1 61 /* Workaround for 82597EX reset errata */ 62 IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg); 63#else 64 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); 65#endif 66 67 /* Delay a few ms just to allow the reset to complete */ 68 msleep(IXGB_DELAY_AFTER_RESET); 69 ctrl_reg = IXGB_READ_REG(hw, CTRL0); 70#ifdef DBG 71 /* Make sure the self-clearing global reset bit did self clear */ 72 ASSERT(!(ctrl_reg & IXGB_CTRL0_RST)); 73#endif 74 75 if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) { 76 ctrl_reg = /* Enable interrupt from XFP and SerDes */ 77 IXGB_CTRL1_GPI0_EN | 78 IXGB_CTRL1_SDP6_DIR | 79 IXGB_CTRL1_SDP7_DIR | 80 IXGB_CTRL1_SDP6 | 81 IXGB_CTRL1_SDP7; 82 IXGB_WRITE_REG(hw, CTRL1, ctrl_reg); 83 ixgb_optics_reset_bcm(hw); 84 } 85 86 if (hw->phy_type == ixgb_phy_type_txn17401) 87 ixgb_optics_reset(hw); 88 89 return ctrl_reg; 90} 91 92/****************************************************************************** 93 * Reset the transmit and receive units; mask and clear all interrupts. 94 * 95 * hw - Struct containing variables accessed by shared code 96 *****************************************************************************/ 97bool 98ixgb_adapter_stop(struct ixgb_hw *hw) 99{ 100 u32 ctrl_reg; 101 102 ENTER(); 103 104 /* If we are stopped or resetting exit gracefully and wait to be 105 * started again before accessing the hardware. 106 */ 107 if (hw->adapter_stopped) { 108 pr_debug("Exiting because the adapter is already stopped!!!\n"); 109 return false; 110 } 111 112 /* Set the Adapter Stopped flag so other driver functions stop 113 * touching the Hardware. 114 */ 115 hw->adapter_stopped = true; 116 117 /* Clear interrupt mask to stop board from generating interrupts */ 118 pr_debug("Masking off all interrupts\n"); 119 IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF); 120 121 /* Disable the Transmit and Receive units. Then delay to allow 122 * any pending transactions to complete before we hit the MAC with 123 * the global reset. 124 */ 125 IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN); 126 IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN); 127 IXGB_WRITE_FLUSH(hw); 128 msleep(IXGB_DELAY_BEFORE_RESET); 129 130 /* Issue a global reset to the MAC. This will reset the chip's 131 * transmit, receive, DMA, and link units. It will not effect 132 * the current PCI configuration. The global reset bit is self- 133 * clearing, and should clear within a microsecond. 134 */ 135 pr_debug("Issuing a global reset to MAC\n"); 136 137 ctrl_reg = ixgb_mac_reset(hw); 138 139 /* Clear interrupt mask to stop board from generating interrupts */ 140 pr_debug("Masking off all interrupts\n"); 141 IXGB_WRITE_REG(hw, IMC, 0xffffffff); 142 143 /* Clear any pending interrupt events. */ 144 IXGB_READ_REG(hw, ICR); 145 146 return ctrl_reg & IXGB_CTRL0_RST; 147} 148 149 150/****************************************************************************** 151 * Identifies the vendor of the optics module on the adapter. The SR adapters 152 * support two different types of XPAK optics, so it is necessary to determine 153 * which optics are present before applying any optics-specific workarounds. 154 * 155 * hw - Struct containing variables accessed by shared code. 156 * 157 * Returns: the vendor of the XPAK optics module. 158 *****************************************************************************/ 159static ixgb_xpak_vendor 160ixgb_identify_xpak_vendor(struct ixgb_hw *hw) 161{ 162 u32 i; 163 u16 vendor_name[5]; 164 ixgb_xpak_vendor xpak_vendor; 165 166 ENTER(); 167 168 /* Read the first few bytes of the vendor string from the XPAK NVR 169 * registers. These are standard XENPAK/XPAK registers, so all XPAK 170 * devices should implement them. */ 171 for (i = 0; i < 5; i++) { 172 vendor_name[i] = ixgb_read_phy_reg(hw, 173 MDIO_PMA_PMD_XPAK_VENDOR_NAME 174 + i, IXGB_PHY_ADDRESS, 175 MDIO_MMD_PMAPMD); 176 } 177 178 /* Determine the actual vendor */ 179 if (vendor_name[0] == 'I' && 180 vendor_name[1] == 'N' && 181 vendor_name[2] == 'T' && 182 vendor_name[3] == 'E' && vendor_name[4] == 'L') { 183 xpak_vendor = ixgb_xpak_vendor_intel; 184 } else { 185 xpak_vendor = ixgb_xpak_vendor_infineon; 186 } 187 188 return xpak_vendor; 189} 190 191/****************************************************************************** 192 * Determine the physical layer module on the adapter. 193 * 194 * hw - Struct containing variables accessed by shared code. The device_id 195 * field must be (correctly) populated before calling this routine. 196 * 197 * Returns: the phy type of the adapter. 198 *****************************************************************************/ 199static ixgb_phy_type 200ixgb_identify_phy(struct ixgb_hw *hw) 201{ 202 ixgb_phy_type phy_type; 203 ixgb_xpak_vendor xpak_vendor; 204 205 ENTER(); 206 207 /* Infer the transceiver/phy type from the device id */ 208 switch (hw->device_id) { 209 case IXGB_DEVICE_ID_82597EX: 210 pr_debug("Identified TXN17401 optics\n"); 211 phy_type = ixgb_phy_type_txn17401; 212 break; 213 214 case IXGB_DEVICE_ID_82597EX_SR: 215 /* The SR adapters carry two different types of XPAK optics 216 * modules; read the vendor identifier to determine the exact 217 * type of optics. */ 218 xpak_vendor = ixgb_identify_xpak_vendor(hw); 219 if (xpak_vendor == ixgb_xpak_vendor_intel) { 220 pr_debug("Identified TXN17201 optics\n"); 221 phy_type = ixgb_phy_type_txn17201; 222 } else { 223 pr_debug("Identified G6005 optics\n"); 224 phy_type = ixgb_phy_type_g6005; 225 } 226 break; 227 case IXGB_DEVICE_ID_82597EX_LR: 228 pr_debug("Identified G6104 optics\n"); 229 phy_type = ixgb_phy_type_g6104; 230 break; 231 case IXGB_DEVICE_ID_82597EX_CX4: 232 pr_debug("Identified CX4\n"); 233 xpak_vendor = ixgb_identify_xpak_vendor(hw); 234 if (xpak_vendor == ixgb_xpak_vendor_intel) { 235 pr_debug("Identified TXN17201 optics\n"); 236 phy_type = ixgb_phy_type_txn17201; 237 } else { 238 pr_debug("Identified G6005 optics\n"); 239 phy_type = ixgb_phy_type_g6005; 240 } 241 break; 242 default: 243 pr_debug("Unknown physical layer module\n"); 244 phy_type = ixgb_phy_type_unknown; 245 break; 246 } 247 248 /* update phy type for sun specific board */ 249 if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) 250 phy_type = ixgb_phy_type_bcm; 251 252 return phy_type; 253} 254 255/****************************************************************************** 256 * Performs basic configuration of the adapter. 257 * 258 * hw - Struct containing variables accessed by shared code 259 * 260 * Resets the controller. 261 * Reads and validates the EEPROM. 262 * Initializes the receive address registers. 263 * Initializes the multicast table. 264 * Clears all on-chip counters. 265 * Calls routine to setup flow control settings. 266 * Leaves the transmit and receive units disabled and uninitialized. 267 * 268 * Returns: 269 * true if successful, 270 * false if unrecoverable problems were encountered. 271 *****************************************************************************/ 272bool 273ixgb_init_hw(struct ixgb_hw *hw) 274{ 275 u32 i; 276 bool status; 277 278 ENTER(); 279 280 /* Issue a global reset to the MAC. This will reset the chip's 281 * transmit, receive, DMA, and link units. It will not effect 282 * the current PCI configuration. The global reset bit is self- 283 * clearing, and should clear within a microsecond. 284 */ 285 pr_debug("Issuing a global reset to MAC\n"); 286 287 ixgb_mac_reset(hw); 288 289 pr_debug("Issuing an EE reset to MAC\n"); 290#ifdef HP_ZX1 291 /* Workaround for 82597EX reset errata */ 292 IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST); 293#else 294 IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST); 295#endif 296 297 /* Delay a few ms just to allow the reset to complete */ 298 msleep(IXGB_DELAY_AFTER_EE_RESET); 299 300 if (!ixgb_get_eeprom_data(hw)) 301 return false; 302 303 /* Use the device id to determine the type of phy/transceiver. */ 304 hw->device_id = ixgb_get_ee_device_id(hw); 305 hw->phy_type = ixgb_identify_phy(hw); 306 307 /* Setup the receive addresses. 308 * Receive Address Registers (RARs 0 - 15). 309 */ 310 ixgb_init_rx_addrs(hw); 311 312 /* 313 * Check that a valid MAC address has been set. 314 * If it is not valid, we fail hardware init. 315 */ 316 if (!mac_addr_valid(hw->curr_mac_addr)) { 317 pr_debug("MAC address invalid after ixgb_init_rx_addrs\n"); 318 return(false); 319 } 320 321 /* tell the routines in this file they can access hardware again */ 322 hw->adapter_stopped = false; 323 324 /* Fill in the bus_info structure */ 325 ixgb_get_bus_info(hw); 326 327 /* Zero out the Multicast HASH table */ 328 pr_debug("Zeroing the MTA\n"); 329 for (i = 0; i < IXGB_MC_TBL_SIZE; i++) 330 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); 331 332 /* Zero out the VLAN Filter Table Array */ 333 ixgb_clear_vfta(hw); 334 335 /* Zero all of the hardware counters */ 336 ixgb_clear_hw_cntrs(hw); 337 338 /* Call a subroutine to setup flow control. */ 339 status = ixgb_setup_fc(hw); 340 341 /* 82597EX errata: Call check-for-link in case lane deskew is locked */ 342 ixgb_check_for_link(hw); 343 344 return status; 345} 346 347/****************************************************************************** 348 * Initializes receive address filters. 349 * 350 * hw - Struct containing variables accessed by shared code 351 * 352 * Places the MAC address in receive address register 0 and clears the rest 353 * of the receive address registers. Clears the multicast table. Assumes 354 * the receiver is in reset when the routine is called. 355 *****************************************************************************/ 356static void 357ixgb_init_rx_addrs(struct ixgb_hw *hw) 358{ 359 u32 i; 360 361 ENTER(); 362 363 /* 364 * If the current mac address is valid, assume it is a software override 365 * to the permanent address. 366 * Otherwise, use the permanent address from the eeprom. 367 */ 368 if (!mac_addr_valid(hw->curr_mac_addr)) { 369 370 /* Get the MAC address from the eeprom for later reference */ 371 ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr); 372 373 pr_debug("Keeping Permanent MAC Addr = %pM\n", 374 hw->curr_mac_addr); 375 } else { 376 377 /* Setup the receive address. */ 378 pr_debug("Overriding MAC Address in RAR[0]\n"); 379 pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr); 380 381 ixgb_rar_set(hw, hw->curr_mac_addr, 0); 382 } 383 384 /* Zero out the other 15 receive addresses. */ 385 pr_debug("Clearing RAR[1-15]\n"); 386 for (i = 1; i < IXGB_RAR_ENTRIES; i++) { 387 /* Write high reg first to disable the AV bit first */ 388 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); 389 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); 390 } 391} 392 393/****************************************************************************** 394 * Updates the MAC's list of multicast addresses. 395 * 396 * hw - Struct containing variables accessed by shared code 397 * mc_addr_list - the list of new multicast addresses 398 * mc_addr_count - number of addresses 399 * pad - number of bytes between addresses in the list 400 * 401 * The given list replaces any existing list. Clears the last 15 receive 402 * address registers and the multicast table. Uses receive address registers 403 * for the first 15 multicast addresses, and hashes the rest into the 404 * multicast table. 405 *****************************************************************************/ 406void 407ixgb_mc_addr_list_update(struct ixgb_hw *hw, 408 u8 *mc_addr_list, 409 u32 mc_addr_count, 410 u32 pad) 411{ 412 u32 hash_value; 413 u32 i; 414 u32 rar_used_count = 1; /* RAR[0] is used for our MAC address */ 415 u8 *mca; 416 417 ENTER(); 418 419 /* Set the new number of MC addresses that we are being requested to use. */ 420 hw->num_mc_addrs = mc_addr_count; 421 422 /* Clear RAR[1-15] */ 423 pr_debug("Clearing RAR[1-15]\n"); 424 for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) { 425 IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); 426 IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); 427 } 428 429 /* Clear the MTA */ 430 pr_debug("Clearing MTA\n"); 431 for (i = 0; i < IXGB_MC_TBL_SIZE; i++) 432 IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); 433 434 /* Add the new addresses */ 435 mca = mc_addr_list; 436 for (i = 0; i < mc_addr_count; i++) { 437 pr_debug("Adding the multicast addresses:\n"); 438 pr_debug("MC Addr #%d = %pM\n", i, mca); 439 440 /* Place this multicast address in the RAR if there is room, * 441 * else put it in the MTA 442 */ 443 if (rar_used_count < IXGB_RAR_ENTRIES) { 444 ixgb_rar_set(hw, mca, rar_used_count); 445 pr_debug("Added a multicast address to RAR[%d]\n", i); 446 rar_used_count++; 447 } else { 448 hash_value = ixgb_hash_mc_addr(hw, mca); 449 450 pr_debug("Hash value = 0x%03X\n", hash_value); 451 452 ixgb_mta_set(hw, hash_value); 453 } 454 455 mca += ETH_ALEN + pad; 456 } 457 458 pr_debug("MC Update Complete\n"); 459} 460 461/****************************************************************************** 462 * Hashes an address to determine its location in the multicast table 463 * 464 * hw - Struct containing variables accessed by shared code 465 * mc_addr - the multicast address to hash 466 * 467 * Returns: 468 * The hash value 469 *****************************************************************************/ 470static u32 471ixgb_hash_mc_addr(struct ixgb_hw *hw, 472 u8 *mc_addr) 473{ 474 u32 hash_value = 0; 475 476 ENTER(); 477 478 /* The portion of the address that is used for the hash table is 479 * determined by the mc_filter_type setting. 480 */ 481 switch (hw->mc_filter_type) { 482 /* [0] [1] [2] [3] [4] [5] 483 * 01 AA 00 12 34 56 484 * LSB MSB - According to H/W docs */ 485 case 0: 486 /* [47:36] i.e. 0x563 for above example address */ 487 hash_value = 488 ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); 489 break; 490 case 1: /* [46:35] i.e. 0xAC6 for above example address */ 491 hash_value = 492 ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); 493 break; 494 case 2: /* [45:34] i.e. 0x5D8 for above example address */ 495 hash_value = 496 ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); 497 break; 498 case 3: /* [43:32] i.e. 0x634 for above example address */ 499 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); 500 break; 501 default: 502 /* Invalid mc_filter_type, what should we do? */ 503 pr_debug("MC filter type param set incorrectly\n"); 504 ASSERT(0); 505 break; 506 } 507 508 hash_value &= 0xFFF; 509 return hash_value; 510} 511 512/****************************************************************************** 513 * Sets the bit in the multicast table corresponding to the hash value. 514 * 515 * hw - Struct containing variables accessed by shared code 516 * hash_value - Multicast address hash value 517 *****************************************************************************/ 518static void 519ixgb_mta_set(struct ixgb_hw *hw, 520 u32 hash_value) 521{ 522 u32 hash_bit, hash_reg; 523 u32 mta_reg; 524 525 /* The MTA is a register array of 128 32-bit registers. 526 * It is treated like an array of 4096 bits. We want to set 527 * bit BitArray[hash_value]. So we figure out what register 528 * the bit is in, read it, OR in the new bit, then write 529 * back the new value. The register is determined by the 530 * upper 7 bits of the hash value and the bit within that 531 * register are determined by the lower 5 bits of the value. 532 */ 533 hash_reg = (hash_value >> 5) & 0x7F; 534 hash_bit = hash_value & 0x1F; 535 536 mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg); 537 538 mta_reg |= (1 << hash_bit); 539 540 IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg); 541} 542 543/****************************************************************************** 544 * Puts an ethernet address into a receive address register. 545 * 546 * hw - Struct containing variables accessed by shared code 547 * addr - Address to put into receive address register 548 * index - Receive address register to write 549 *****************************************************************************/ 550void 551ixgb_rar_set(struct ixgb_hw *hw, 552 const u8 *addr, 553 u32 index) 554{ 555 u32 rar_low, rar_high; 556 557 ENTER(); 558 559 /* HW expects these in little endian so we reverse the byte order 560 * from network order (big endian) to little endian 561 */ 562 rar_low = ((u32) addr[0] | 563 ((u32)addr[1] << 8) | 564 ((u32)addr[2] << 16) | 565 ((u32)addr[3] << 24)); 566 567 rar_high = ((u32) addr[4] | 568 ((u32)addr[5] << 8) | 569 IXGB_RAH_AV); 570 571 IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); 572 IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); 573} 574 575/****************************************************************************** 576 * Writes a value to the specified offset in the VLAN filter table. 577 * 578 * hw - Struct containing variables accessed by shared code 579 * offset - Offset in VLAN filer table to write 580 * value - Value to write into VLAN filter table 581 *****************************************************************************/ 582void 583ixgb_write_vfta(struct ixgb_hw *hw, 584 u32 offset, 585 u32 value) 586{ 587 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value); 588} 589 590/****************************************************************************** 591 * Clears the VLAN filer table 592 * 593 * hw - Struct containing variables accessed by shared code 594 *****************************************************************************/ 595static void 596ixgb_clear_vfta(struct ixgb_hw *hw) 597{ 598 u32 offset; 599 600 for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++) 601 IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0); 602} 603 604/****************************************************************************** 605 * Configures the flow control settings based on SW configuration. 606 * 607 * hw - Struct containing variables accessed by shared code 608 *****************************************************************************/ 609 610static bool 611ixgb_setup_fc(struct ixgb_hw *hw) 612{ 613 u32 ctrl_reg; 614 u32 pap_reg = 0; /* by default, assume no pause time */ 615 bool status = true; 616 617 ENTER(); 618 619 /* Get the current control reg 0 settings */ 620 ctrl_reg = IXGB_READ_REG(hw, CTRL0); 621 622 /* Clear the Receive Pause Enable and Transmit Pause Enable bits */ 623 ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); 624 625 /* The possible values of the "flow_control" parameter are: 626 * 0: Flow control is completely disabled 627 * 1: Rx flow control is enabled (we can receive pause frames 628 * but not send pause frames). 629 * 2: Tx flow control is enabled (we can send pause frames 630 * but we do not support receiving pause frames). 631 * 3: Both Rx and TX flow control (symmetric) are enabled. 632 * other: Invalid. 633 */ 634 switch (hw->fc.type) { 635 case ixgb_fc_none: /* 0 */ 636 /* Set CMDC bit to disable Rx Flow control */ 637 ctrl_reg |= (IXGB_CTRL0_CMDC); 638 break; 639 case ixgb_fc_rx_pause: /* 1 */ 640 /* RX Flow control is enabled, and TX Flow control is 641 * disabled. 642 */ 643 ctrl_reg |= (IXGB_CTRL0_RPE); 644 break; 645 case ixgb_fc_tx_pause: /* 2 */ 646 /* TX Flow control is enabled, and RX Flow control is 647 * disabled, by a software over-ride. 648 */ 649 ctrl_reg |= (IXGB_CTRL0_TPE); 650 pap_reg = hw->fc.pause_time; 651 break; 652 case ixgb_fc_full: /* 3 */ 653 /* Flow control (both RX and TX) is enabled by a software 654 * over-ride. 655 */ 656 ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); 657 pap_reg = hw->fc.pause_time; 658 break; 659 default: 660 /* We should never get here. The value should be 0-3. */ 661 pr_debug("Flow control param set incorrectly\n"); 662 ASSERT(0); 663 break; 664 } 665 666 /* Write the new settings */ 667 IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); 668 669 if (pap_reg != 0) 670 IXGB_WRITE_REG(hw, PAP, pap_reg); 671 672 /* Set the flow control receive threshold registers. Normally, 673 * these registers will be set to a default threshold that may be 674 * adjusted later by the driver's runtime code. However, if the 675 * ability to transmit pause frames in not enabled, then these 676 * registers will be set to 0. 677 */ 678 if (!(hw->fc.type & ixgb_fc_tx_pause)) { 679 IXGB_WRITE_REG(hw, FCRTL, 0); 680 IXGB_WRITE_REG(hw, FCRTH, 0); 681 } else { 682 /* We need to set up the Receive Threshold high and low water 683 * marks as well as (optionally) enabling the transmission of XON 684 * frames. */ 685 if (hw->fc.send_xon) { 686 IXGB_WRITE_REG(hw, FCRTL, 687 (hw->fc.low_water | IXGB_FCRTL_XONE)); 688 } else { 689 IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water); 690 } 691 IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water); 692 } 693 return status; 694} 695 696/****************************************************************************** 697 * Reads a word from a device over the Management Data Interface (MDI) bus. 698 * This interface is used to manage Physical layer devices. 699 * 700 * hw - Struct containing variables accessed by hw code 701 * reg_address - Offset of device register being read. 702 * phy_address - Address of device on MDI. 703 * 704 * Returns: Data word (16 bits) from MDI device. 705 * 706 * The 82597EX has support for several MDI access methods. This routine 707 * uses the new protocol MDI Single Command and Address Operation. 708 * This requires that first an address cycle command is sent, followed by a 709 * read command. 710 *****************************************************************************/ 711static u16 712ixgb_read_phy_reg(struct ixgb_hw *hw, 713 u32 reg_address, 714 u32 phy_address, 715 u32 device_type) 716{ 717 u32 i; 718 u32 data; 719 u32 command = 0; 720 721 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); 722 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); 723 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); 724 725 /* Setup and write the address cycle command */ 726 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | 727 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | 728 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | 729 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); 730 731 IXGB_WRITE_REG(hw, MSCA, command); 732 733 /************************************************************** 734 ** Check every 10 usec to see if the address cycle completed 735 ** The COMMAND bit will clear when the operation is complete. 736 ** This may take as long as 64 usecs (we'll wait 100 usecs max) 737 ** from the CPU Write to the Ready bit assertion. 738 **************************************************************/ 739 740 for (i = 0; i < 10; i++) 741 { 742 udelay(10); 743 744 command = IXGB_READ_REG(hw, MSCA); 745 746 if ((command & IXGB_MSCA_MDI_COMMAND) == 0) 747 break; 748 } 749 750 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); 751 752 /* Address cycle complete, setup and write the read command */ 753 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | 754 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | 755 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | 756 (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND)); 757 758 IXGB_WRITE_REG(hw, MSCA, command); 759 760 /************************************************************** 761 ** Check every 10 usec to see if the read command completed 762 ** The COMMAND bit will clear when the operation is complete. 763 ** The read may take as long as 64 usecs (we'll wait 100 usecs max) 764 ** from the CPU Write to the Ready bit assertion. 765 **************************************************************/ 766 767 for (i = 0; i < 10; i++) 768 { 769 udelay(10); 770 771 command = IXGB_READ_REG(hw, MSCA); 772 773 if ((command & IXGB_MSCA_MDI_COMMAND) == 0) 774 break; 775 } 776 777 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); 778 779 /* Operation is complete, get the data from the MDIO Read/Write Data 780 * register and return. 781 */ 782 data = IXGB_READ_REG(hw, MSRWD); 783 data >>= IXGB_MSRWD_READ_DATA_SHIFT; 784 return((u16) data); 785} 786 787/****************************************************************************** 788 * Writes a word to a device over the Management Data Interface (MDI) bus. 789 * This interface is used to manage Physical layer devices. 790 * 791 * hw - Struct containing variables accessed by hw code 792 * reg_address - Offset of device register being read. 793 * phy_address - Address of device on MDI. 794 * device_type - Also known as the Device ID or DID. 795 * data - 16-bit value to be written 796 * 797 * Returns: void. 798 * 799 * The 82597EX has support for several MDI access methods. This routine 800 * uses the new protocol MDI Single Command and Address Operation. 801 * This requires that first an address cycle command is sent, followed by a 802 * write command. 803 *****************************************************************************/ 804static void 805ixgb_write_phy_reg(struct ixgb_hw *hw, 806 u32 reg_address, 807 u32 phy_address, 808 u32 device_type, 809 u16 data) 810{ 811 u32 i; 812 u32 command = 0; 813 814 ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); 815 ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); 816 ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); 817 818 /* Put the data in the MDIO Read/Write Data register */ 819 IXGB_WRITE_REG(hw, MSRWD, (u32)data); 820 821 /* Setup and write the address cycle command */ 822 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | 823 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | 824 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | 825 (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); 826 827 IXGB_WRITE_REG(hw, MSCA, command); 828 829 /************************************************************** 830 ** Check every 10 usec to see if the address cycle completed 831 ** The COMMAND bit will clear when the operation is complete. 832 ** This may take as long as 64 usecs (we'll wait 100 usecs max) 833 ** from the CPU Write to the Ready bit assertion. 834 **************************************************************/ 835 836 for (i = 0; i < 10; i++) 837 { 838 udelay(10); 839 840 command = IXGB_READ_REG(hw, MSCA); 841 842 if ((command & IXGB_MSCA_MDI_COMMAND) == 0) 843 break; 844 } 845 846 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); 847 848 /* Address cycle complete, setup and write the write command */ 849 command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | 850 (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | 851 (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | 852 (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND)); 853 854 IXGB_WRITE_REG(hw, MSCA, command); 855 856 /************************************************************** 857 ** Check every 10 usec to see if the read command completed 858 ** The COMMAND bit will clear when the operation is complete. 859 ** The write may take as long as 64 usecs (we'll wait 100 usecs max) 860 ** from the CPU Write to the Ready bit assertion. 861 **************************************************************/ 862 863 for (i = 0; i < 10; i++) 864 { 865 udelay(10); 866 867 command = IXGB_READ_REG(hw, MSCA); 868 869 if ((command & IXGB_MSCA_MDI_COMMAND) == 0) 870 break; 871 } 872 873 ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); 874 875 /* Operation is complete, return. */ 876} 877 878/****************************************************************************** 879 * Checks to see if the link status of the hardware has changed. 880 * 881 * hw - Struct containing variables accessed by hw code 882 * 883 * Called by any function that needs to check the link status of the adapter. 884 *****************************************************************************/ 885void 886ixgb_check_for_link(struct ixgb_hw *hw) 887{ 888 u32 status_reg; 889 u32 xpcss_reg; 890 891 ENTER(); 892 893 xpcss_reg = IXGB_READ_REG(hw, XPCSS); 894 status_reg = IXGB_READ_REG(hw, STATUS); 895 896 if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && 897 (status_reg & IXGB_STATUS_LU)) { 898 hw->link_up = true; 899 } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && 900 (status_reg & IXGB_STATUS_LU)) { 901 pr_debug("XPCSS Not Aligned while Status:LU is set\n"); 902 hw->link_up = ixgb_link_reset(hw); 903 } else { 904 /* 905 * 82597EX errata. Since the lane deskew problem may prevent 906 * link, reset the link before reporting link down. 907 */ 908 hw->link_up = ixgb_link_reset(hw); 909 } 910 /* Anything else for 10 Gig?? */ 911} 912 913/****************************************************************************** 914 * Check for a bad link condition that may have occurred. 915 * The indication is that the RFC / LFC registers may be incrementing 916 * continually. A full adapter reset is required to recover. 917 * 918 * hw - Struct containing variables accessed by hw code 919 * 920 * Called by any function that needs to check the link status of the adapter. 921 *****************************************************************************/ 922bool ixgb_check_for_bad_link(struct ixgb_hw *hw) 923{ 924 u32 newLFC, newRFC; 925 bool bad_link_returncode = false; 926 927 if (hw->phy_type == ixgb_phy_type_txn17401) { 928 newLFC = IXGB_READ_REG(hw, LFC); 929 newRFC = IXGB_READ_REG(hw, RFC); 930 if ((hw->lastLFC + 250 < newLFC) 931 || (hw->lastRFC + 250 < newRFC)) { 932 pr_debug("BAD LINK! too many LFC/RFC since last check\n"); 933 bad_link_returncode = true; 934 } 935 hw->lastLFC = newLFC; 936 hw->lastRFC = newRFC; 937 } 938 939 return bad_link_returncode; 940} 941 942/****************************************************************************** 943 * Clears all hardware statistics counters. 944 * 945 * hw - Struct containing variables accessed by shared code 946 *****************************************************************************/ 947static void 948ixgb_clear_hw_cntrs(struct ixgb_hw *hw) 949{ 950 ENTER(); 951 952 /* if we are stopped or resetting exit gracefully */ 953 if (hw->adapter_stopped) { 954 pr_debug("Exiting because the adapter is stopped!!!\n"); 955 return; 956 } 957 958 IXGB_READ_REG(hw, TPRL); 959 IXGB_READ_REG(hw, TPRH); 960 IXGB_READ_REG(hw, GPRCL); 961 IXGB_READ_REG(hw, GPRCH); 962 IXGB_READ_REG(hw, BPRCL); 963 IXGB_READ_REG(hw, BPRCH); 964 IXGB_READ_REG(hw, MPRCL); 965 IXGB_READ_REG(hw, MPRCH); 966 IXGB_READ_REG(hw, UPRCL); 967 IXGB_READ_REG(hw, UPRCH); 968 IXGB_READ_REG(hw, VPRCL); 969 IXGB_READ_REG(hw, VPRCH); 970 IXGB_READ_REG(hw, JPRCL); 971 IXGB_READ_REG(hw, JPRCH); 972 IXGB_READ_REG(hw, GORCL); 973 IXGB_READ_REG(hw, GORCH); 974 IXGB_READ_REG(hw, TORL); 975 IXGB_READ_REG(hw, TORH); 976 IXGB_READ_REG(hw, RNBC); 977 IXGB_READ_REG(hw, RUC); 978 IXGB_READ_REG(hw, ROC); 979 IXGB_READ_REG(hw, RLEC); 980 IXGB_READ_REG(hw, CRCERRS); 981 IXGB_READ_REG(hw, ICBC); 982 IXGB_READ_REG(hw, ECBC); 983 IXGB_READ_REG(hw, MPC); 984 IXGB_READ_REG(hw, TPTL); 985 IXGB_READ_REG(hw, TPTH); 986 IXGB_READ_REG(hw, GPTCL); 987 IXGB_READ_REG(hw, GPTCH); 988 IXGB_READ_REG(hw, BPTCL); 989 IXGB_READ_REG(hw, BPTCH); 990 IXGB_READ_REG(hw, MPTCL); 991 IXGB_READ_REG(hw, MPTCH); 992 IXGB_READ_REG(hw, UPTCL); 993 IXGB_READ_REG(hw, UPTCH); 994 IXGB_READ_REG(hw, VPTCL); 995 IXGB_READ_REG(hw, VPTCH); 996 IXGB_READ_REG(hw, JPTCL); 997 IXGB_READ_REG(hw, JPTCH); 998 IXGB_READ_REG(hw, GOTCL); 999 IXGB_READ_REG(hw, GOTCH); 1000 IXGB_READ_REG(hw, TOTL); 1001 IXGB_READ_REG(hw, TOTH); 1002 IXGB_READ_REG(hw, DC); 1003 IXGB_READ_REG(hw, PLT64C); 1004 IXGB_READ_REG(hw, TSCTC); 1005 IXGB_READ_REG(hw, TSCTFC); 1006 IXGB_READ_REG(hw, IBIC); 1007 IXGB_READ_REG(hw, RFC); 1008 IXGB_READ_REG(hw, LFC); 1009 IXGB_READ_REG(hw, PFRC); 1010 IXGB_READ_REG(hw, PFTC); 1011 IXGB_READ_REG(hw, MCFRC); 1012 IXGB_READ_REG(hw, MCFTC); 1013 IXGB_READ_REG(hw, XONRXC); 1014 IXGB_READ_REG(hw, XONTXC); 1015 IXGB_READ_REG(hw, XOFFRXC); 1016 IXGB_READ_REG(hw, XOFFTXC); 1017 IXGB_READ_REG(hw, RJC); 1018} 1019 1020/****************************************************************************** 1021 * Turns on the software controllable LED 1022 * 1023 * hw - Struct containing variables accessed by shared code 1024 *****************************************************************************/ 1025void 1026ixgb_led_on(struct ixgb_hw *hw) 1027{ 1028 u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0); 1029 1030 /* To turn on the LED, clear software-definable pin 0 (SDP0). */ 1031 ctrl0_reg &= ~IXGB_CTRL0_SDP0; 1032 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); 1033} 1034 1035/****************************************************************************** 1036 * Turns off the software controllable LED 1037 * 1038 * hw - Struct containing variables accessed by shared code 1039 *****************************************************************************/ 1040void 1041ixgb_led_off(struct ixgb_hw *hw) 1042{ 1043 u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0); 1044 1045 /* To turn off the LED, set software-definable pin 0 (SDP0). */ 1046 ctrl0_reg |= IXGB_CTRL0_SDP0; 1047 IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); 1048} 1049 1050/****************************************************************************** 1051 * Gets the current PCI bus type, speed, and width of the hardware 1052 * 1053 * hw - Struct containing variables accessed by shared code 1054 *****************************************************************************/ 1055static void 1056ixgb_get_bus_info(struct ixgb_hw *hw) 1057{ 1058 u32 status_reg; 1059 1060 status_reg = IXGB_READ_REG(hw, STATUS); 1061 1062 hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ? 1063 ixgb_bus_type_pcix : ixgb_bus_type_pci; 1064 1065 if (hw->bus.type == ixgb_bus_type_pci) { 1066 hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ? 1067 ixgb_bus_speed_66 : ixgb_bus_speed_33; 1068 } else { 1069 switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) { 1070 case IXGB_STATUS_PCIX_SPD_66: 1071 hw->bus.speed = ixgb_bus_speed_66; 1072 break; 1073 case IXGB_STATUS_PCIX_SPD_100: 1074 hw->bus.speed = ixgb_bus_speed_100; 1075 break; 1076 case IXGB_STATUS_PCIX_SPD_133: 1077 hw->bus.speed = ixgb_bus_speed_133; 1078 break; 1079 default: 1080 hw->bus.speed = ixgb_bus_speed_reserved; 1081 break; 1082 } 1083 } 1084 1085 hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ? 1086 ixgb_bus_width_64 : ixgb_bus_width_32; 1087} 1088 1089/****************************************************************************** 1090 * Tests a MAC address to ensure it is a valid Individual Address 1091 * 1092 * mac_addr - pointer to MAC address. 1093 * 1094 *****************************************************************************/ 1095static bool 1096mac_addr_valid(u8 *mac_addr) 1097{ 1098 bool is_valid = true; 1099 ENTER(); 1100 1101 /* Make sure it is not a multicast address */ 1102 if (is_multicast_ether_addr(mac_addr)) { 1103 pr_debug("MAC address is multicast\n"); 1104 is_valid = false; 1105 } 1106 /* Not a broadcast address */ 1107 else if (is_broadcast_ether_addr(mac_addr)) { 1108 pr_debug("MAC address is broadcast\n"); 1109 is_valid = false; 1110 } 1111 /* Reject the zero address */ 1112 else if (is_zero_ether_addr(mac_addr)) { 1113 pr_debug("MAC address is all zeros\n"); 1114 is_valid = false; 1115 } 1116 return is_valid; 1117} 1118 1119/****************************************************************************** 1120 * Resets the 10GbE link. Waits the settle time and returns the state of 1121 * the link. 1122 * 1123 * hw - Struct containing variables accessed by shared code 1124 *****************************************************************************/ 1125static bool 1126ixgb_link_reset(struct ixgb_hw *hw) 1127{ 1128 bool link_status = false; 1129 u8 wait_retries = MAX_RESET_ITERATIONS; 1130 u8 lrst_retries = MAX_RESET_ITERATIONS; 1131 1132 do { 1133 /* Reset the link */ 1134 IXGB_WRITE_REG(hw, CTRL0, 1135 IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST); 1136 1137 /* Wait for link-up and lane re-alignment */ 1138 do { 1139 udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET); 1140 link_status = 1141 ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU) 1142 && (IXGB_READ_REG(hw, XPCSS) & 1143 IXGB_XPCSS_ALIGN_STATUS)) ? true : false; 1144 } while (!link_status && --wait_retries); 1145 1146 } while (!link_status && --lrst_retries); 1147 1148 return link_status; 1149} 1150 1151/****************************************************************************** 1152 * Resets the 10GbE optics module. 1153 * 1154 * hw - Struct containing variables accessed by shared code 1155 *****************************************************************************/ 1156static void 1157ixgb_optics_reset(struct ixgb_hw *hw) 1158{ 1159 if (hw->phy_type == ixgb_phy_type_txn17401) { 1160 ixgb_write_phy_reg(hw, 1161 MDIO_CTRL1, 1162 IXGB_PHY_ADDRESS, 1163 MDIO_MMD_PMAPMD, 1164 MDIO_CTRL1_RESET); 1165 1166 ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD); 1167 } 1168} 1169 1170/****************************************************************************** 1171 * Resets the 10GbE optics module for Sun variant NIC. 1172 * 1173 * hw - Struct containing variables accessed by shared code 1174 *****************************************************************************/ 1175 1176#define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803 1177#define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164 1178#define IXGB_BCM8704_USER_CTRL_REG 0xC800 1179#define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF 1180#define IXGB_BCM8704_USER_DEV3_ADDR 0x0003 1181#define IXGB_SUN_PHY_ADDRESS 0x0000 1182#define IXGB_SUN_PHY_RESET_DELAY 305 1183 1184static void 1185ixgb_optics_reset_bcm(struct ixgb_hw *hw) 1186{ 1187 u32 ctrl = IXGB_READ_REG(hw, CTRL0); 1188 ctrl &= ~IXGB_CTRL0_SDP2; 1189 ctrl |= IXGB_CTRL0_SDP3; 1190 IXGB_WRITE_REG(hw, CTRL0, ctrl); 1191 IXGB_WRITE_FLUSH(hw); 1192 1193 /* SerDes needs extra delay */ 1194 msleep(IXGB_SUN_PHY_RESET_DELAY); 1195 1196 /* Broadcom 7408L configuration */ 1197 /* Reference clock config */ 1198 ixgb_write_phy_reg(hw, 1199 IXGB_BCM8704_USER_PMD_TX_CTRL_REG, 1200 IXGB_SUN_PHY_ADDRESS, 1201 IXGB_BCM8704_USER_DEV3_ADDR, 1202 IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL); 1203 /* we must read the registers twice */ 1204 ixgb_read_phy_reg(hw, 1205 IXGB_BCM8704_USER_PMD_TX_CTRL_REG, 1206 IXGB_SUN_PHY_ADDRESS, 1207 IXGB_BCM8704_USER_DEV3_ADDR); 1208 ixgb_read_phy_reg(hw, 1209 IXGB_BCM8704_USER_PMD_TX_CTRL_REG, 1210 IXGB_SUN_PHY_ADDRESS, 1211 IXGB_BCM8704_USER_DEV3_ADDR); 1212 1213 ixgb_write_phy_reg(hw, 1214 IXGB_BCM8704_USER_CTRL_REG, 1215 IXGB_SUN_PHY_ADDRESS, 1216 IXGB_BCM8704_USER_DEV3_ADDR, 1217 IXGB_BCM8704_USER_CTRL_REG_VAL); 1218 ixgb_read_phy_reg(hw, 1219 IXGB_BCM8704_USER_CTRL_REG, 1220 IXGB_SUN_PHY_ADDRESS, 1221 IXGB_BCM8704_USER_DEV3_ADDR); 1222 ixgb_read_phy_reg(hw, 1223 IXGB_BCM8704_USER_CTRL_REG, 1224 IXGB_SUN_PHY_ADDRESS, 1225 IXGB_BCM8704_USER_DEV3_ADDR); 1226 1227 /* SerDes needs extra delay */ 1228 msleep(IXGB_SUN_PHY_RESET_DELAY); 1229}