cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ixgbe_common.c (122529B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Copyright(c) 1999 - 2018 Intel Corporation. */
      3
      4#include <linux/pci.h>
      5#include <linux/delay.h>
      6#include <linux/sched.h>
      7#include <linux/netdevice.h>
      8
      9#include "ixgbe.h"
     10#include "ixgbe_common.h"
     11#include "ixgbe_phy.h"
     12
     13static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
     14static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
     15static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
     16static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
     17static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
     18static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
     19					u16 count);
     20static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
     21static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     22static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
     23static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
     24
     25static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
     26static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
     27static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     28					     u16 words, u16 *data);
     29static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
     30					     u16 words, u16 *data);
     31static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
     32						 u16 offset);
     33static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
     34
     35/* Base table for registers values that change by MAC */
     36const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
     37	IXGBE_MVALS_INIT(8259X)
     38};
     39
     40/**
     41 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
     42 *  control
     43 *  @hw: pointer to hardware structure
     44 *
     45 *  There are several phys that do not support autoneg flow control. This
     46 *  function check the device id to see if the associated phy supports
     47 *  autoneg flow control.
     48 **/
     49bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
     50{
     51	bool supported = false;
     52	ixgbe_link_speed speed;
     53	bool link_up;
     54
     55	switch (hw->phy.media_type) {
     56	case ixgbe_media_type_fiber:
     57		/* flow control autoneg black list */
     58		switch (hw->device_id) {
     59		case IXGBE_DEV_ID_X550EM_A_SFP:
     60		case IXGBE_DEV_ID_X550EM_A_SFP_N:
     61			supported = false;
     62			break;
     63		default:
     64			hw->mac.ops.check_link(hw, &speed, &link_up, false);
     65			/* if link is down, assume supported */
     66			if (link_up)
     67				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
     68			else
     69				supported = true;
     70		}
     71
     72		break;
     73	case ixgbe_media_type_backplane:
     74		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
     75			supported = false;
     76		else
     77			supported = true;
     78		break;
     79	case ixgbe_media_type_copper:
     80		/* only some copper devices support flow control autoneg */
     81		switch (hw->device_id) {
     82		case IXGBE_DEV_ID_82599_T3_LOM:
     83		case IXGBE_DEV_ID_X540T:
     84		case IXGBE_DEV_ID_X540T1:
     85		case IXGBE_DEV_ID_X550T:
     86		case IXGBE_DEV_ID_X550T1:
     87		case IXGBE_DEV_ID_X550EM_X_10G_T:
     88		case IXGBE_DEV_ID_X550EM_A_10G_T:
     89		case IXGBE_DEV_ID_X550EM_A_1G_T:
     90		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
     91			supported = true;
     92			break;
     93		default:
     94			break;
     95		}
     96		break;
     97	default:
     98		break;
     99	}
    100
    101	if (!supported)
    102		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
    103		       hw->device_id);
    104
    105	return supported;
    106}
    107
    108/**
    109 *  ixgbe_setup_fc_generic - Set up flow control
    110 *  @hw: pointer to hardware structure
    111 *
    112 *  Called at init time to set up flow control.
    113 **/
    114s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
    115{
    116	s32 ret_val = 0;
    117	u32 reg = 0, reg_bp = 0;
    118	u16 reg_cu = 0;
    119	bool locked = false;
    120
    121	/*
    122	 * Validate the requested mode.  Strict IEEE mode does not allow
    123	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
    124	 */
    125	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
    126		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
    127		return IXGBE_ERR_INVALID_LINK_SETTINGS;
    128	}
    129
    130	/*
    131	 * 10gig parts do not have a word in the EEPROM to determine the
    132	 * default flow control setting, so we explicitly set it to full.
    133	 */
    134	if (hw->fc.requested_mode == ixgbe_fc_default)
    135		hw->fc.requested_mode = ixgbe_fc_full;
    136
    137	/*
    138	 * Set up the 1G and 10G flow control advertisement registers so the
    139	 * HW will be able to do fc autoneg once the cable is plugged in.  If
    140	 * we link at 10G, the 1G advertisement is harmless and vice versa.
    141	 */
    142	switch (hw->phy.media_type) {
    143	case ixgbe_media_type_backplane:
    144		/* some MAC's need RMW protection on AUTOC */
    145		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
    146		if (ret_val)
    147			return ret_val;
    148
    149		fallthrough; /* only backplane uses autoc */
    150	case ixgbe_media_type_fiber:
    151		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
    152
    153		break;
    154	case ixgbe_media_type_copper:
    155		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
    156					MDIO_MMD_AN, &reg_cu);
    157		break;
    158	default:
    159		break;
    160	}
    161
    162	/*
    163	 * The possible values of fc.requested_mode are:
    164	 * 0: Flow control is completely disabled
    165	 * 1: Rx flow control is enabled (we can receive pause frames,
    166	 *    but not send pause frames).
    167	 * 2: Tx flow control is enabled (we can send pause frames but
    168	 *    we do not support receiving pause frames).
    169	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
    170	 * other: Invalid.
    171	 */
    172	switch (hw->fc.requested_mode) {
    173	case ixgbe_fc_none:
    174		/* Flow control completely disabled by software override. */
    175		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
    176		if (hw->phy.media_type == ixgbe_media_type_backplane)
    177			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
    178				    IXGBE_AUTOC_ASM_PAUSE);
    179		else if (hw->phy.media_type == ixgbe_media_type_copper)
    180			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
    181		break;
    182	case ixgbe_fc_tx_pause:
    183		/*
    184		 * Tx Flow control is enabled, and Rx Flow control is
    185		 * disabled by software override.
    186		 */
    187		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
    188		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
    189		if (hw->phy.media_type == ixgbe_media_type_backplane) {
    190			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
    191			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
    192		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
    193			reg_cu |= IXGBE_TAF_ASM_PAUSE;
    194			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
    195		}
    196		break;
    197	case ixgbe_fc_rx_pause:
    198		/*
    199		 * Rx Flow control is enabled and Tx Flow control is
    200		 * disabled by software override. Since there really
    201		 * isn't a way to advertise that we are capable of RX
    202		 * Pause ONLY, we will advertise that we support both
    203		 * symmetric and asymmetric Rx PAUSE, as such we fall
    204		 * through to the fc_full statement.  Later, we will
    205		 * disable the adapter's ability to send PAUSE frames.
    206		 */
    207	case ixgbe_fc_full:
    208		/* Flow control (both Rx and Tx) is enabled by SW override. */
    209		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
    210		if (hw->phy.media_type == ixgbe_media_type_backplane)
    211			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
    212				  IXGBE_AUTOC_ASM_PAUSE;
    213		else if (hw->phy.media_type == ixgbe_media_type_copper)
    214			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
    215		break;
    216	default:
    217		hw_dbg(hw, "Flow control param set incorrectly\n");
    218		return IXGBE_ERR_CONFIG;
    219	}
    220
    221	if (hw->mac.type != ixgbe_mac_X540) {
    222		/*
    223		 * Enable auto-negotiation between the MAC & PHY;
    224		 * the MAC will advertise clause 37 flow control.
    225		 */
    226		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
    227		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
    228
    229		/* Disable AN timeout */
    230		if (hw->fc.strict_ieee)
    231			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
    232
    233		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
    234		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
    235	}
    236
    237	/*
    238	 * AUTOC restart handles negotiation of 1G and 10G on backplane
    239	 * and copper. There is no need to set the PCS1GCTL register.
    240	 *
    241	 */
    242	if (hw->phy.media_type == ixgbe_media_type_backplane) {
    243		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
    244		 * LESM is on, likewise reset_pipeline requries the lock as
    245		 * it also writes AUTOC.
    246		 */
    247		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
    248		if (ret_val)
    249			return ret_val;
    250
    251	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
    252		   ixgbe_device_supports_autoneg_fc(hw)) {
    253		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
    254				      MDIO_MMD_AN, reg_cu);
    255	}
    256
    257	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
    258	return ret_val;
    259}
    260
    261/**
    262 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
    263 *  @hw: pointer to hardware structure
    264 *
    265 *  Starts the hardware by filling the bus info structure and media type, clears
    266 *  all on chip counters, initializes receive address registers, multicast
    267 *  table, VLAN filter table, calls routine to set up link and flow control
    268 *  settings, and leaves transmit and receive units disabled and uninitialized
    269 **/
    270s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
    271{
    272	s32 ret_val;
    273	u32 ctrl_ext;
    274	u16 device_caps;
    275
    276	/* Set the media type */
    277	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
    278
    279	/* Identify the PHY */
    280	hw->phy.ops.identify(hw);
    281
    282	/* Clear the VLAN filter table */
    283	hw->mac.ops.clear_vfta(hw);
    284
    285	/* Clear statistics registers */
    286	hw->mac.ops.clear_hw_cntrs(hw);
    287
    288	/* Set No Snoop Disable */
    289	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
    290	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
    291	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
    292	IXGBE_WRITE_FLUSH(hw);
    293
    294	/* Setup flow control if method for doing so */
    295	if (hw->mac.ops.setup_fc) {
    296		ret_val = hw->mac.ops.setup_fc(hw);
    297		if (ret_val)
    298			return ret_val;
    299	}
    300
    301	/* Cashe bit indicating need for crosstalk fix */
    302	switch (hw->mac.type) {
    303	case ixgbe_mac_82599EB:
    304	case ixgbe_mac_X550EM_x:
    305	case ixgbe_mac_x550em_a:
    306		hw->mac.ops.get_device_caps(hw, &device_caps);
    307		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
    308			hw->need_crosstalk_fix = false;
    309		else
    310			hw->need_crosstalk_fix = true;
    311		break;
    312	default:
    313		hw->need_crosstalk_fix = false;
    314		break;
    315	}
    316
    317	/* Clear adapter stopped flag */
    318	hw->adapter_stopped = false;
    319
    320	return 0;
    321}
    322
    323/**
    324 *  ixgbe_start_hw_gen2 - Init sequence for common device family
    325 *  @hw: pointer to hw structure
    326 *
    327 * Performs the init sequence common to the second generation
    328 * of 10 GbE devices.
    329 * Devices in the second generation:
    330 *     82599
    331 *     X540
    332 **/
    333s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
    334{
    335	u32 i;
    336
    337	/* Clear the rate limiters */
    338	for (i = 0; i < hw->mac.max_tx_queues; i++) {
    339		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
    340		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
    341	}
    342	IXGBE_WRITE_FLUSH(hw);
    343
    344	return 0;
    345}
    346
    347/**
    348 *  ixgbe_init_hw_generic - Generic hardware initialization
    349 *  @hw: pointer to hardware structure
    350 *
    351 *  Initialize the hardware by resetting the hardware, filling the bus info
    352 *  structure and media type, clears all on chip counters, initializes receive
    353 *  address registers, multicast table, VLAN filter table, calls routine to set
    354 *  up link and flow control settings, and leaves transmit and receive units
    355 *  disabled and uninitialized
    356 **/
    357s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
    358{
    359	s32 status;
    360
    361	/* Reset the hardware */
    362	status = hw->mac.ops.reset_hw(hw);
    363
    364	if (status == 0) {
    365		/* Start the HW */
    366		status = hw->mac.ops.start_hw(hw);
    367	}
    368
    369	/* Initialize the LED link active for LED blink support */
    370	if (hw->mac.ops.init_led_link_act)
    371		hw->mac.ops.init_led_link_act(hw);
    372
    373	return status;
    374}
    375
    376/**
    377 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
    378 *  @hw: pointer to hardware structure
    379 *
    380 *  Clears all hardware statistics counters by reading them from the hardware
    381 *  Statistics counters are clear on read.
    382 **/
    383s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
    384{
    385	u16 i = 0;
    386
    387	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
    388	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
    389	IXGBE_READ_REG(hw, IXGBE_ERRBC);
    390	IXGBE_READ_REG(hw, IXGBE_MSPDC);
    391	for (i = 0; i < 8; i++)
    392		IXGBE_READ_REG(hw, IXGBE_MPC(i));
    393
    394	IXGBE_READ_REG(hw, IXGBE_MLFC);
    395	IXGBE_READ_REG(hw, IXGBE_MRFC);
    396	IXGBE_READ_REG(hw, IXGBE_RLEC);
    397	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
    398	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
    399	if (hw->mac.type >= ixgbe_mac_82599EB) {
    400		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
    401		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
    402	} else {
    403		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
    404		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
    405	}
    406
    407	for (i = 0; i < 8; i++) {
    408		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
    409		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
    410		if (hw->mac.type >= ixgbe_mac_82599EB) {
    411			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
    412			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
    413		} else {
    414			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
    415			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
    416		}
    417	}
    418	if (hw->mac.type >= ixgbe_mac_82599EB)
    419		for (i = 0; i < 8; i++)
    420			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
    421	IXGBE_READ_REG(hw, IXGBE_PRC64);
    422	IXGBE_READ_REG(hw, IXGBE_PRC127);
    423	IXGBE_READ_REG(hw, IXGBE_PRC255);
    424	IXGBE_READ_REG(hw, IXGBE_PRC511);
    425	IXGBE_READ_REG(hw, IXGBE_PRC1023);
    426	IXGBE_READ_REG(hw, IXGBE_PRC1522);
    427	IXGBE_READ_REG(hw, IXGBE_GPRC);
    428	IXGBE_READ_REG(hw, IXGBE_BPRC);
    429	IXGBE_READ_REG(hw, IXGBE_MPRC);
    430	IXGBE_READ_REG(hw, IXGBE_GPTC);
    431	IXGBE_READ_REG(hw, IXGBE_GORCL);
    432	IXGBE_READ_REG(hw, IXGBE_GORCH);
    433	IXGBE_READ_REG(hw, IXGBE_GOTCL);
    434	IXGBE_READ_REG(hw, IXGBE_GOTCH);
    435	if (hw->mac.type == ixgbe_mac_82598EB)
    436		for (i = 0; i < 8; i++)
    437			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
    438	IXGBE_READ_REG(hw, IXGBE_RUC);
    439	IXGBE_READ_REG(hw, IXGBE_RFC);
    440	IXGBE_READ_REG(hw, IXGBE_ROC);
    441	IXGBE_READ_REG(hw, IXGBE_RJC);
    442	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
    443	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
    444	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
    445	IXGBE_READ_REG(hw, IXGBE_TORL);
    446	IXGBE_READ_REG(hw, IXGBE_TORH);
    447	IXGBE_READ_REG(hw, IXGBE_TPR);
    448	IXGBE_READ_REG(hw, IXGBE_TPT);
    449	IXGBE_READ_REG(hw, IXGBE_PTC64);
    450	IXGBE_READ_REG(hw, IXGBE_PTC127);
    451	IXGBE_READ_REG(hw, IXGBE_PTC255);
    452	IXGBE_READ_REG(hw, IXGBE_PTC511);
    453	IXGBE_READ_REG(hw, IXGBE_PTC1023);
    454	IXGBE_READ_REG(hw, IXGBE_PTC1522);
    455	IXGBE_READ_REG(hw, IXGBE_MPTC);
    456	IXGBE_READ_REG(hw, IXGBE_BPTC);
    457	for (i = 0; i < 16; i++) {
    458		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
    459		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
    460		if (hw->mac.type >= ixgbe_mac_82599EB) {
    461			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
    462			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
    463			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
    464			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
    465			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
    466		} else {
    467			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
    468			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
    469		}
    470	}
    471
    472	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
    473		if (hw->phy.id == 0)
    474			hw->phy.ops.identify(hw);
    475		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
    476		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
    477		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
    478		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
    479	}
    480
    481	return 0;
    482}
    483
    484/**
    485 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
    486 *  @hw: pointer to hardware structure
    487 *  @pba_num: stores the part number string from the EEPROM
    488 *  @pba_num_size: part number string buffer length
    489 *
    490 *  Reads the part number string from the EEPROM.
    491 **/
    492s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
    493				  u32 pba_num_size)
    494{
    495	s32 ret_val;
    496	u16 data;
    497	u16 pba_ptr;
    498	u16 offset;
    499	u16 length;
    500
    501	if (pba_num == NULL) {
    502		hw_dbg(hw, "PBA string buffer was null\n");
    503		return IXGBE_ERR_INVALID_ARGUMENT;
    504	}
    505
    506	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
    507	if (ret_val) {
    508		hw_dbg(hw, "NVM Read Error\n");
    509		return ret_val;
    510	}
    511
    512	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
    513	if (ret_val) {
    514		hw_dbg(hw, "NVM Read Error\n");
    515		return ret_val;
    516	}
    517
    518	/*
    519	 * if data is not ptr guard the PBA must be in legacy format which
    520	 * means pba_ptr is actually our second data word for the PBA number
    521	 * and we can decode it into an ascii string
    522	 */
    523	if (data != IXGBE_PBANUM_PTR_GUARD) {
    524		hw_dbg(hw, "NVM PBA number is not stored as string\n");
    525
    526		/* we will need 11 characters to store the PBA */
    527		if (pba_num_size < 11) {
    528			hw_dbg(hw, "PBA string buffer too small\n");
    529			return IXGBE_ERR_NO_SPACE;
    530		}
    531
    532		/* extract hex string from data and pba_ptr */
    533		pba_num[0] = (data >> 12) & 0xF;
    534		pba_num[1] = (data >> 8) & 0xF;
    535		pba_num[2] = (data >> 4) & 0xF;
    536		pba_num[3] = data & 0xF;
    537		pba_num[4] = (pba_ptr >> 12) & 0xF;
    538		pba_num[5] = (pba_ptr >> 8) & 0xF;
    539		pba_num[6] = '-';
    540		pba_num[7] = 0;
    541		pba_num[8] = (pba_ptr >> 4) & 0xF;
    542		pba_num[9] = pba_ptr & 0xF;
    543
    544		/* put a null character on the end of our string */
    545		pba_num[10] = '\0';
    546
    547		/* switch all the data but the '-' to hex char */
    548		for (offset = 0; offset < 10; offset++) {
    549			if (pba_num[offset] < 0xA)
    550				pba_num[offset] += '0';
    551			else if (pba_num[offset] < 0x10)
    552				pba_num[offset] += 'A' - 0xA;
    553		}
    554
    555		return 0;
    556	}
    557
    558	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
    559	if (ret_val) {
    560		hw_dbg(hw, "NVM Read Error\n");
    561		return ret_val;
    562	}
    563
    564	if (length == 0xFFFF || length == 0) {
    565		hw_dbg(hw, "NVM PBA number section invalid length\n");
    566		return IXGBE_ERR_PBA_SECTION;
    567	}
    568
    569	/* check if pba_num buffer is big enough */
    570	if (pba_num_size  < (((u32)length * 2) - 1)) {
    571		hw_dbg(hw, "PBA string buffer too small\n");
    572		return IXGBE_ERR_NO_SPACE;
    573	}
    574
    575	/* trim pba length from start of string */
    576	pba_ptr++;
    577	length--;
    578
    579	for (offset = 0; offset < length; offset++) {
    580		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
    581		if (ret_val) {
    582			hw_dbg(hw, "NVM Read Error\n");
    583			return ret_val;
    584		}
    585		pba_num[offset * 2] = (u8)(data >> 8);
    586		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
    587	}
    588	pba_num[offset * 2] = '\0';
    589
    590	return 0;
    591}
    592
    593/**
    594 *  ixgbe_get_mac_addr_generic - Generic get MAC address
    595 *  @hw: pointer to hardware structure
    596 *  @mac_addr: Adapter MAC address
    597 *
    598 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
    599 *  A reset of the adapter must be performed prior to calling this function
    600 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
    601 **/
    602s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
    603{
    604	u32 rar_high;
    605	u32 rar_low;
    606	u16 i;
    607
    608	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
    609	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
    610
    611	for (i = 0; i < 4; i++)
    612		mac_addr[i] = (u8)(rar_low >> (i*8));
    613
    614	for (i = 0; i < 2; i++)
    615		mac_addr[i+4] = (u8)(rar_high >> (i*8));
    616
    617	return 0;
    618}
    619
    620enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
    621{
    622	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
    623	case IXGBE_PCI_LINK_WIDTH_1:
    624		return ixgbe_bus_width_pcie_x1;
    625	case IXGBE_PCI_LINK_WIDTH_2:
    626		return ixgbe_bus_width_pcie_x2;
    627	case IXGBE_PCI_LINK_WIDTH_4:
    628		return ixgbe_bus_width_pcie_x4;
    629	case IXGBE_PCI_LINK_WIDTH_8:
    630		return ixgbe_bus_width_pcie_x8;
    631	default:
    632		return ixgbe_bus_width_unknown;
    633	}
    634}
    635
    636enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
    637{
    638	switch (link_status & IXGBE_PCI_LINK_SPEED) {
    639	case IXGBE_PCI_LINK_SPEED_2500:
    640		return ixgbe_bus_speed_2500;
    641	case IXGBE_PCI_LINK_SPEED_5000:
    642		return ixgbe_bus_speed_5000;
    643	case IXGBE_PCI_LINK_SPEED_8000:
    644		return ixgbe_bus_speed_8000;
    645	default:
    646		return ixgbe_bus_speed_unknown;
    647	}
    648}
    649
    650/**
    651 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
    652 *  @hw: pointer to hardware structure
    653 *
    654 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
    655 **/
    656s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
    657{
    658	u16 link_status;
    659
    660	hw->bus.type = ixgbe_bus_type_pci_express;
    661
    662	/* Get the negotiated link width and speed from PCI config space */
    663	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
    664
    665	hw->bus.width = ixgbe_convert_bus_width(link_status);
    666	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
    667
    668	hw->mac.ops.set_lan_id(hw);
    669
    670	return 0;
    671}
    672
    673/**
    674 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
    675 *  @hw: pointer to the HW structure
    676 *
    677 *  Determines the LAN function id by reading memory-mapped registers
    678 *  and swaps the port value if requested.
    679 **/
    680void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
    681{
    682	struct ixgbe_bus_info *bus = &hw->bus;
    683	u16 ee_ctrl_4;
    684	u32 reg;
    685
    686	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
    687	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
    688	bus->lan_id = bus->func;
    689
    690	/* check for a port swap */
    691	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
    692	if (reg & IXGBE_FACTPS_LFS)
    693		bus->func ^= 0x1;
    694
    695	/* Get MAC instance from EEPROM for configuring CS4227 */
    696	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
    697		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
    698		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
    699				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
    700	}
    701}
    702
    703/**
    704 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
    705 *  @hw: pointer to hardware structure
    706 *
    707 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
    708 *  disables transmit and receive units. The adapter_stopped flag is used by
    709 *  the shared code and drivers to determine if the adapter is in a stopped
    710 *  state and should not touch the hardware.
    711 **/
    712s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
    713{
    714	u32 reg_val;
    715	u16 i;
    716
    717	/*
    718	 * Set the adapter_stopped flag so other driver functions stop touching
    719	 * the hardware
    720	 */
    721	hw->adapter_stopped = true;
    722
    723	/* Disable the receive unit */
    724	hw->mac.ops.disable_rx(hw);
    725
    726	/* Clear interrupt mask to stop interrupts from being generated */
    727	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
    728
    729	/* Clear any pending interrupts, flush previous writes */
    730	IXGBE_READ_REG(hw, IXGBE_EICR);
    731
    732	/* Disable the transmit unit.  Each queue must be disabled. */
    733	for (i = 0; i < hw->mac.max_tx_queues; i++)
    734		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
    735
    736	/* Disable the receive unit by stopping each queue */
    737	for (i = 0; i < hw->mac.max_rx_queues; i++) {
    738		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
    739		reg_val &= ~IXGBE_RXDCTL_ENABLE;
    740		reg_val |= IXGBE_RXDCTL_SWFLSH;
    741		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
    742	}
    743
    744	/* flush all queues disables */
    745	IXGBE_WRITE_FLUSH(hw);
    746	usleep_range(1000, 2000);
    747
    748	/*
    749	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
    750	 * access and verify no pending requests
    751	 */
    752	return ixgbe_disable_pcie_primary(hw);
    753}
    754
    755/**
    756 *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
    757 *  @hw: pointer to hardware structure
    758 *
    759 *  Store the index for the link active LED. This will be used to support
    760 *  blinking the LED.
    761 **/
    762s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
    763{
    764	struct ixgbe_mac_info *mac = &hw->mac;
    765	u32 led_reg, led_mode;
    766	u16 i;
    767
    768	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    769
    770	/* Get LED link active from the LEDCTL register */
    771	for (i = 0; i < 4; i++) {
    772		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
    773
    774		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
    775		    IXGBE_LED_LINK_ACTIVE) {
    776			mac->led_link_act = i;
    777			return 0;
    778		}
    779	}
    780
    781	/* If LEDCTL register does not have the LED link active set, then use
    782	 * known MAC defaults.
    783	 */
    784	switch (hw->mac.type) {
    785	case ixgbe_mac_x550em_a:
    786		mac->led_link_act = 0;
    787		break;
    788	case ixgbe_mac_X550EM_x:
    789		mac->led_link_act = 1;
    790		break;
    791	default:
    792		mac->led_link_act = 2;
    793	}
    794
    795	return 0;
    796}
    797
    798/**
    799 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
    800 *  @hw: pointer to hardware structure
    801 *  @index: led number to turn on
    802 **/
    803s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
    804{
    805	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    806
    807	if (index > 3)
    808		return IXGBE_ERR_PARAM;
    809
    810	/* To turn on the LED, set mode to ON. */
    811	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    812	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
    813	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    814	IXGBE_WRITE_FLUSH(hw);
    815
    816	return 0;
    817}
    818
    819/**
    820 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
    821 *  @hw: pointer to hardware structure
    822 *  @index: led number to turn off
    823 **/
    824s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
    825{
    826	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
    827
    828	if (index > 3)
    829		return IXGBE_ERR_PARAM;
    830
    831	/* To turn off the LED, set mode to OFF. */
    832	led_reg &= ~IXGBE_LED_MODE_MASK(index);
    833	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
    834	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
    835	IXGBE_WRITE_FLUSH(hw);
    836
    837	return 0;
    838}
    839
    840/**
    841 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
    842 *  @hw: pointer to hardware structure
    843 *
    844 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
    845 *  ixgbe_hw struct in order to set up EEPROM access.
    846 **/
    847s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
    848{
    849	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
    850	u32 eec;
    851	u16 eeprom_size;
    852
    853	if (eeprom->type == ixgbe_eeprom_uninitialized) {
    854		eeprom->type = ixgbe_eeprom_none;
    855		/* Set default semaphore delay to 10ms which is a well
    856		 * tested value */
    857		eeprom->semaphore_delay = 10;
    858		/* Clear EEPROM page size, it will be initialized as needed */
    859		eeprom->word_page_size = 0;
    860
    861		/*
    862		 * Check for EEPROM present first.
    863		 * If not present leave as none
    864		 */
    865		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
    866		if (eec & IXGBE_EEC_PRES) {
    867			eeprom->type = ixgbe_eeprom_spi;
    868
    869			/*
    870			 * SPI EEPROM is assumed here.  This code would need to
    871			 * change if a future EEPROM is not SPI.
    872			 */
    873			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
    874					    IXGBE_EEC_SIZE_SHIFT);
    875			eeprom->word_size = BIT(eeprom_size +
    876						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
    877		}
    878
    879		if (eec & IXGBE_EEC_ADDR_SIZE)
    880			eeprom->address_bits = 16;
    881		else
    882			eeprom->address_bits = 8;
    883		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
    884		       eeprom->type, eeprom->word_size, eeprom->address_bits);
    885	}
    886
    887	return 0;
    888}
    889
    890/**
    891 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
    892 *  @hw: pointer to hardware structure
    893 *  @offset: offset within the EEPROM to write
    894 *  @words: number of words
    895 *  @data: 16 bit word(s) to write to EEPROM
    896 *
    897 *  Reads 16 bit word(s) from EEPROM through bit-bang method
    898 **/
    899s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
    900					       u16 words, u16 *data)
    901{
    902	s32 status;
    903	u16 i, count;
    904
    905	hw->eeprom.ops.init_params(hw);
    906
    907	if (words == 0)
    908		return IXGBE_ERR_INVALID_ARGUMENT;
    909
    910	if (offset + words > hw->eeprom.word_size)
    911		return IXGBE_ERR_EEPROM;
    912
    913	/*
    914	 * The EEPROM page size cannot be queried from the chip. We do lazy
    915	 * initialization. It is worth to do that when we write large buffer.
    916	 */
    917	if ((hw->eeprom.word_page_size == 0) &&
    918	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
    919		ixgbe_detect_eeprom_page_size_generic(hw, offset);
    920
    921	/*
    922	 * We cannot hold synchronization semaphores for too long
    923	 * to avoid other entity starvation. However it is more efficient
    924	 * to read in bursts than synchronizing access for each word.
    925	 */
    926	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
    927		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
    928			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
    929		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
    930							    count, &data[i]);
    931
    932		if (status != 0)
    933			break;
    934	}
    935
    936	return status;
    937}
    938
    939/**
    940 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
    941 *  @hw: pointer to hardware structure
    942 *  @offset: offset within the EEPROM to be written to
    943 *  @words: number of word(s)
    944 *  @data: 16 bit word(s) to be written to the EEPROM
    945 *
    946 *  If ixgbe_eeprom_update_checksum is not called after this function, the
    947 *  EEPROM will most likely contain an invalid checksum.
    948 **/
    949static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
    950					      u16 words, u16 *data)
    951{
    952	s32 status;
    953	u16 word;
    954	u16 page_size;
    955	u16 i;
    956	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
    957
    958	/* Prepare the EEPROM for writing  */
    959	status = ixgbe_acquire_eeprom(hw);
    960	if (status)
    961		return status;
    962
    963	if (ixgbe_ready_eeprom(hw) != 0) {
    964		ixgbe_release_eeprom(hw);
    965		return IXGBE_ERR_EEPROM;
    966	}
    967
    968	for (i = 0; i < words; i++) {
    969		ixgbe_standby_eeprom(hw);
    970
    971		/* Send the WRITE ENABLE command (8 bit opcode) */
    972		ixgbe_shift_out_eeprom_bits(hw,
    973					    IXGBE_EEPROM_WREN_OPCODE_SPI,
    974					    IXGBE_EEPROM_OPCODE_BITS);
    975
    976		ixgbe_standby_eeprom(hw);
    977
    978		/* Some SPI eeproms use the 8th address bit embedded
    979		 * in the opcode
    980		 */
    981		if ((hw->eeprom.address_bits == 8) &&
    982		    ((offset + i) >= 128))
    983			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
    984
    985		/* Send the Write command (8-bit opcode + addr) */
    986		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
    987					    IXGBE_EEPROM_OPCODE_BITS);
    988		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
    989					    hw->eeprom.address_bits);
    990
    991		page_size = hw->eeprom.word_page_size;
    992
    993		/* Send the data in burst via SPI */
    994		do {
    995			word = data[i];
    996			word = (word >> 8) | (word << 8);
    997			ixgbe_shift_out_eeprom_bits(hw, word, 16);
    998
    999			if (page_size == 0)
   1000				break;
   1001
   1002			/* do not wrap around page */
   1003			if (((offset + i) & (page_size - 1)) ==
   1004			    (page_size - 1))
   1005				break;
   1006		} while (++i < words);
   1007
   1008		ixgbe_standby_eeprom(hw);
   1009		usleep_range(10000, 20000);
   1010	}
   1011	/* Done with writing - release the EEPROM */
   1012	ixgbe_release_eeprom(hw);
   1013
   1014	return 0;
   1015}
   1016
   1017/**
   1018 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
   1019 *  @hw: pointer to hardware structure
   1020 *  @offset: offset within the EEPROM to be written to
   1021 *  @data: 16 bit word to be written to the EEPROM
   1022 *
   1023 *  If ixgbe_eeprom_update_checksum is not called after this function, the
   1024 *  EEPROM will most likely contain an invalid checksum.
   1025 **/
   1026s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1027{
   1028	hw->eeprom.ops.init_params(hw);
   1029
   1030	if (offset >= hw->eeprom.word_size)
   1031		return IXGBE_ERR_EEPROM;
   1032
   1033	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
   1034}
   1035
   1036/**
   1037 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
   1038 *  @hw: pointer to hardware structure
   1039 *  @offset: offset within the EEPROM to be read
   1040 *  @words: number of word(s)
   1041 *  @data: read 16 bit words(s) from EEPROM
   1042 *
   1043 *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1044 **/
   1045s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1046					      u16 words, u16 *data)
   1047{
   1048	s32 status;
   1049	u16 i, count;
   1050
   1051	hw->eeprom.ops.init_params(hw);
   1052
   1053	if (words == 0)
   1054		return IXGBE_ERR_INVALID_ARGUMENT;
   1055
   1056	if (offset + words > hw->eeprom.word_size)
   1057		return IXGBE_ERR_EEPROM;
   1058
   1059	/*
   1060	 * We cannot hold synchronization semaphores for too long
   1061	 * to avoid other entity starvation. However it is more efficient
   1062	 * to read in bursts than synchronizing access for each word.
   1063	 */
   1064	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
   1065		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
   1066			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
   1067
   1068		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
   1069							   count, &data[i]);
   1070
   1071		if (status)
   1072			return status;
   1073	}
   1074
   1075	return 0;
   1076}
   1077
   1078/**
   1079 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
   1080 *  @hw: pointer to hardware structure
   1081 *  @offset: offset within the EEPROM to be read
   1082 *  @words: number of word(s)
   1083 *  @data: read 16 bit word(s) from EEPROM
   1084 *
   1085 *  Reads 16 bit word(s) from EEPROM through bit-bang method
   1086 **/
   1087static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
   1088					     u16 words, u16 *data)
   1089{
   1090	s32 status;
   1091	u16 word_in;
   1092	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
   1093	u16 i;
   1094
   1095	/* Prepare the EEPROM for reading  */
   1096	status = ixgbe_acquire_eeprom(hw);
   1097	if (status)
   1098		return status;
   1099
   1100	if (ixgbe_ready_eeprom(hw) != 0) {
   1101		ixgbe_release_eeprom(hw);
   1102		return IXGBE_ERR_EEPROM;
   1103	}
   1104
   1105	for (i = 0; i < words; i++) {
   1106		ixgbe_standby_eeprom(hw);
   1107		/* Some SPI eeproms use the 8th address bit embedded
   1108		 * in the opcode
   1109		 */
   1110		if ((hw->eeprom.address_bits == 8) &&
   1111		    ((offset + i) >= 128))
   1112			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
   1113
   1114		/* Send the READ command (opcode + addr) */
   1115		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
   1116					    IXGBE_EEPROM_OPCODE_BITS);
   1117		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
   1118					    hw->eeprom.address_bits);
   1119
   1120		/* Read the data. */
   1121		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
   1122		data[i] = (word_in >> 8) | (word_in << 8);
   1123	}
   1124
   1125	/* End this read operation */
   1126	ixgbe_release_eeprom(hw);
   1127
   1128	return 0;
   1129}
   1130
   1131/**
   1132 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
   1133 *  @hw: pointer to hardware structure
   1134 *  @offset: offset within the EEPROM to be read
   1135 *  @data: read 16 bit value from EEPROM
   1136 *
   1137 *  Reads 16 bit value from EEPROM through bit-bang method
   1138 **/
   1139s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
   1140				       u16 *data)
   1141{
   1142	hw->eeprom.ops.init_params(hw);
   1143
   1144	if (offset >= hw->eeprom.word_size)
   1145		return IXGBE_ERR_EEPROM;
   1146
   1147	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1148}
   1149
   1150/**
   1151 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
   1152 *  @hw: pointer to hardware structure
   1153 *  @offset: offset of word in the EEPROM to read
   1154 *  @words: number of word(s)
   1155 *  @data: 16 bit word(s) from the EEPROM
   1156 *
   1157 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
   1158 **/
   1159s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1160				   u16 words, u16 *data)
   1161{
   1162	u32 eerd;
   1163	s32 status;
   1164	u32 i;
   1165
   1166	hw->eeprom.ops.init_params(hw);
   1167
   1168	if (words == 0)
   1169		return IXGBE_ERR_INVALID_ARGUMENT;
   1170
   1171	if (offset >= hw->eeprom.word_size)
   1172		return IXGBE_ERR_EEPROM;
   1173
   1174	for (i = 0; i < words; i++) {
   1175		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1176		       IXGBE_EEPROM_RW_REG_START;
   1177
   1178		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
   1179		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
   1180
   1181		if (status == 0) {
   1182			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
   1183				   IXGBE_EEPROM_RW_REG_DATA);
   1184		} else {
   1185			hw_dbg(hw, "Eeprom read timed out\n");
   1186			return status;
   1187		}
   1188	}
   1189
   1190	return 0;
   1191}
   1192
   1193/**
   1194 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
   1195 *  @hw: pointer to hardware structure
   1196 *  @offset: offset within the EEPROM to be used as a scratch pad
   1197 *
   1198 *  Discover EEPROM page size by writing marching data at given offset.
   1199 *  This function is called only when we are writing a new large buffer
   1200 *  at given offset so the data would be overwritten anyway.
   1201 **/
   1202static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
   1203						 u16 offset)
   1204{
   1205	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
   1206	s32 status;
   1207	u16 i;
   1208
   1209	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
   1210		data[i] = i;
   1211
   1212	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
   1213	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
   1214					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
   1215	hw->eeprom.word_page_size = 0;
   1216	if (status)
   1217		return status;
   1218
   1219	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
   1220	if (status)
   1221		return status;
   1222
   1223	/*
   1224	 * When writing in burst more than the actual page size
   1225	 * EEPROM address wraps around current page.
   1226	 */
   1227	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
   1228
   1229	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
   1230	       hw->eeprom.word_page_size);
   1231	return 0;
   1232}
   1233
   1234/**
   1235 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
   1236 *  @hw: pointer to hardware structure
   1237 *  @offset: offset of  word in the EEPROM to read
   1238 *  @data: word read from the EEPROM
   1239 *
   1240 *  Reads a 16 bit word from the EEPROM using the EERD register.
   1241 **/
   1242s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
   1243{
   1244	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
   1245}
   1246
   1247/**
   1248 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
   1249 *  @hw: pointer to hardware structure
   1250 *  @offset: offset of  word in the EEPROM to write
   1251 *  @words: number of words
   1252 *  @data: word(s) write to the EEPROM
   1253 *
   1254 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
   1255 **/
   1256s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
   1257				    u16 words, u16 *data)
   1258{
   1259	u32 eewr;
   1260	s32 status;
   1261	u16 i;
   1262
   1263	hw->eeprom.ops.init_params(hw);
   1264
   1265	if (words == 0)
   1266		return IXGBE_ERR_INVALID_ARGUMENT;
   1267
   1268	if (offset >= hw->eeprom.word_size)
   1269		return IXGBE_ERR_EEPROM;
   1270
   1271	for (i = 0; i < words; i++) {
   1272		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
   1273		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
   1274		       IXGBE_EEPROM_RW_REG_START;
   1275
   1276		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1277		if (status) {
   1278			hw_dbg(hw, "Eeprom write EEWR timed out\n");
   1279			return status;
   1280		}
   1281
   1282		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
   1283
   1284		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
   1285		if (status) {
   1286			hw_dbg(hw, "Eeprom write EEWR timed out\n");
   1287			return status;
   1288		}
   1289	}
   1290
   1291	return 0;
   1292}
   1293
   1294/**
   1295 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
   1296 *  @hw: pointer to hardware structure
   1297 *  @offset: offset of  word in the EEPROM to write
   1298 *  @data: word write to the EEPROM
   1299 *
   1300 *  Write a 16 bit word to the EEPROM using the EEWR register.
   1301 **/
   1302s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
   1303{
   1304	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
   1305}
   1306
   1307/**
   1308 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
   1309 *  @hw: pointer to hardware structure
   1310 *  @ee_reg: EEPROM flag for polling
   1311 *
   1312 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
   1313 *  read or write is done respectively.
   1314 **/
   1315static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
   1316{
   1317	u32 i;
   1318	u32 reg;
   1319
   1320	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
   1321		if (ee_reg == IXGBE_NVM_POLL_READ)
   1322			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
   1323		else
   1324			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
   1325
   1326		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
   1327			return 0;
   1328		}
   1329		udelay(5);
   1330	}
   1331	return IXGBE_ERR_EEPROM;
   1332}
   1333
   1334/**
   1335 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
   1336 *  @hw: pointer to hardware structure
   1337 *
   1338 *  Prepares EEPROM for access using bit-bang method. This function should
   1339 *  be called before issuing a command to the EEPROM.
   1340 **/
   1341static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
   1342{
   1343	u32 eec;
   1344	u32 i;
   1345
   1346	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
   1347		return IXGBE_ERR_SWFW_SYNC;
   1348
   1349	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1350
   1351	/* Request EEPROM Access */
   1352	eec |= IXGBE_EEC_REQ;
   1353	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1354
   1355	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
   1356		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1357		if (eec & IXGBE_EEC_GNT)
   1358			break;
   1359		udelay(5);
   1360	}
   1361
   1362	/* Release if grant not acquired */
   1363	if (!(eec & IXGBE_EEC_GNT)) {
   1364		eec &= ~IXGBE_EEC_REQ;
   1365		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1366		hw_dbg(hw, "Could not acquire EEPROM grant\n");
   1367
   1368		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1369		return IXGBE_ERR_EEPROM;
   1370	}
   1371
   1372	/* Setup EEPROM for Read/Write */
   1373	/* Clear CS and SK */
   1374	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
   1375	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1376	IXGBE_WRITE_FLUSH(hw);
   1377	udelay(1);
   1378	return 0;
   1379}
   1380
   1381/**
   1382 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
   1383 *  @hw: pointer to hardware structure
   1384 *
   1385 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
   1386 **/
   1387static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
   1388{
   1389	u32 timeout = 2000;
   1390	u32 i;
   1391	u32 swsm;
   1392
   1393	/* Get SMBI software semaphore between device drivers first */
   1394	for (i = 0; i < timeout; i++) {
   1395		/*
   1396		 * If the SMBI bit is 0 when we read it, then the bit will be
   1397		 * set and we have the semaphore
   1398		 */
   1399		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
   1400		if (!(swsm & IXGBE_SWSM_SMBI))
   1401			break;
   1402		usleep_range(50, 100);
   1403	}
   1404
   1405	if (i == timeout) {
   1406		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
   1407		/* this release is particularly important because our attempts
   1408		 * above to get the semaphore may have succeeded, and if there
   1409		 * was a timeout, we should unconditionally clear the semaphore
   1410		 * bits to free the driver to make progress
   1411		 */
   1412		ixgbe_release_eeprom_semaphore(hw);
   1413
   1414		usleep_range(50, 100);
   1415		/* one last try
   1416		 * If the SMBI bit is 0 when we read it, then the bit will be
   1417		 * set and we have the semaphore
   1418		 */
   1419		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
   1420		if (swsm & IXGBE_SWSM_SMBI) {
   1421			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
   1422			return IXGBE_ERR_EEPROM;
   1423		}
   1424	}
   1425
   1426	/* Now get the semaphore between SW/FW through the SWESMBI bit */
   1427	for (i = 0; i < timeout; i++) {
   1428		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
   1429
   1430		/* Set the SW EEPROM semaphore bit to request access */
   1431		swsm |= IXGBE_SWSM_SWESMBI;
   1432		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
   1433
   1434		/* If we set the bit successfully then we got the
   1435		 * semaphore.
   1436		 */
   1437		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
   1438		if (swsm & IXGBE_SWSM_SWESMBI)
   1439			break;
   1440
   1441		usleep_range(50, 100);
   1442	}
   1443
   1444	/* Release semaphores and return error if SW EEPROM semaphore
   1445	 * was not granted because we don't have access to the EEPROM
   1446	 */
   1447	if (i >= timeout) {
   1448		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
   1449		ixgbe_release_eeprom_semaphore(hw);
   1450		return IXGBE_ERR_EEPROM;
   1451	}
   1452
   1453	return 0;
   1454}
   1455
   1456/**
   1457 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
   1458 *  @hw: pointer to hardware structure
   1459 *
   1460 *  This function clears hardware semaphore bits.
   1461 **/
   1462static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
   1463{
   1464	u32 swsm;
   1465
   1466	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
   1467
   1468	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
   1469	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
   1470	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
   1471	IXGBE_WRITE_FLUSH(hw);
   1472}
   1473
   1474/**
   1475 *  ixgbe_ready_eeprom - Polls for EEPROM ready
   1476 *  @hw: pointer to hardware structure
   1477 **/
   1478static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
   1479{
   1480	u16 i;
   1481	u8 spi_stat_reg;
   1482
   1483	/*
   1484	 * Read "Status Register" repeatedly until the LSB is cleared.  The
   1485	 * EEPROM will signal that the command has been completed by clearing
   1486	 * bit 0 of the internal status register.  If it's not cleared within
   1487	 * 5 milliseconds, then error out.
   1488	 */
   1489	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
   1490		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
   1491					    IXGBE_EEPROM_OPCODE_BITS);
   1492		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
   1493		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
   1494			break;
   1495
   1496		udelay(5);
   1497		ixgbe_standby_eeprom(hw);
   1498	}
   1499
   1500	/*
   1501	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
   1502	 * devices (and only 0-5mSec on 5V devices)
   1503	 */
   1504	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
   1505		hw_dbg(hw, "SPI EEPROM Status error\n");
   1506		return IXGBE_ERR_EEPROM;
   1507	}
   1508
   1509	return 0;
   1510}
   1511
   1512/**
   1513 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
   1514 *  @hw: pointer to hardware structure
   1515 **/
   1516static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
   1517{
   1518	u32 eec;
   1519
   1520	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1521
   1522	/* Toggle CS to flush commands */
   1523	eec |= IXGBE_EEC_CS;
   1524	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1525	IXGBE_WRITE_FLUSH(hw);
   1526	udelay(1);
   1527	eec &= ~IXGBE_EEC_CS;
   1528	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1529	IXGBE_WRITE_FLUSH(hw);
   1530	udelay(1);
   1531}
   1532
   1533/**
   1534 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
   1535 *  @hw: pointer to hardware structure
   1536 *  @data: data to send to the EEPROM
   1537 *  @count: number of bits to shift out
   1538 **/
   1539static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
   1540					u16 count)
   1541{
   1542	u32 eec;
   1543	u32 mask;
   1544	u32 i;
   1545
   1546	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1547
   1548	/*
   1549	 * Mask is used to shift "count" bits of "data" out to the EEPROM
   1550	 * one bit at a time.  Determine the starting bit based on count
   1551	 */
   1552	mask = BIT(count - 1);
   1553
   1554	for (i = 0; i < count; i++) {
   1555		/*
   1556		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
   1557		 * "1", and then raising and then lowering the clock (the SK
   1558		 * bit controls the clock input to the EEPROM).  A "0" is
   1559		 * shifted out to the EEPROM by setting "DI" to "0" and then
   1560		 * raising and then lowering the clock.
   1561		 */
   1562		if (data & mask)
   1563			eec |= IXGBE_EEC_DI;
   1564		else
   1565			eec &= ~IXGBE_EEC_DI;
   1566
   1567		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1568		IXGBE_WRITE_FLUSH(hw);
   1569
   1570		udelay(1);
   1571
   1572		ixgbe_raise_eeprom_clk(hw, &eec);
   1573		ixgbe_lower_eeprom_clk(hw, &eec);
   1574
   1575		/*
   1576		 * Shift mask to signify next bit of data to shift in to the
   1577		 * EEPROM
   1578		 */
   1579		mask = mask >> 1;
   1580	}
   1581
   1582	/* We leave the "DI" bit set to "0" when we leave this routine. */
   1583	eec &= ~IXGBE_EEC_DI;
   1584	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1585	IXGBE_WRITE_FLUSH(hw);
   1586}
   1587
   1588/**
   1589 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
   1590 *  @hw: pointer to hardware structure
   1591 *  @count: number of bits to shift
   1592 **/
   1593static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
   1594{
   1595	u32 eec;
   1596	u32 i;
   1597	u16 data = 0;
   1598
   1599	/*
   1600	 * In order to read a register from the EEPROM, we need to shift
   1601	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
   1602	 * the clock input to the EEPROM (setting the SK bit), and then reading
   1603	 * the value of the "DO" bit.  During this "shifting in" process the
   1604	 * "DI" bit should always be clear.
   1605	 */
   1606	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1607
   1608	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
   1609
   1610	for (i = 0; i < count; i++) {
   1611		data = data << 1;
   1612		ixgbe_raise_eeprom_clk(hw, &eec);
   1613
   1614		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1615
   1616		eec &= ~(IXGBE_EEC_DI);
   1617		if (eec & IXGBE_EEC_DO)
   1618			data |= 1;
   1619
   1620		ixgbe_lower_eeprom_clk(hw, &eec);
   1621	}
   1622
   1623	return data;
   1624}
   1625
   1626/**
   1627 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
   1628 *  @hw: pointer to hardware structure
   1629 *  @eec: EEC register's current value
   1630 **/
   1631static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1632{
   1633	/*
   1634	 * Raise the clock input to the EEPROM
   1635	 * (setting the SK bit), then delay
   1636	 */
   1637	*eec = *eec | IXGBE_EEC_SK;
   1638	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
   1639	IXGBE_WRITE_FLUSH(hw);
   1640	udelay(1);
   1641}
   1642
   1643/**
   1644 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
   1645 *  @hw: pointer to hardware structure
   1646 *  @eec: EEC's current value
   1647 **/
   1648static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
   1649{
   1650	/*
   1651	 * Lower the clock input to the EEPROM (clearing the SK bit), then
   1652	 * delay
   1653	 */
   1654	*eec = *eec & ~IXGBE_EEC_SK;
   1655	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
   1656	IXGBE_WRITE_FLUSH(hw);
   1657	udelay(1);
   1658}
   1659
   1660/**
   1661 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
   1662 *  @hw: pointer to hardware structure
   1663 **/
   1664static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
   1665{
   1666	u32 eec;
   1667
   1668	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
   1669
   1670	eec |= IXGBE_EEC_CS;  /* Pull CS high */
   1671	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
   1672
   1673	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1674	IXGBE_WRITE_FLUSH(hw);
   1675
   1676	udelay(1);
   1677
   1678	/* Stop requesting EEPROM access */
   1679	eec &= ~IXGBE_EEC_REQ;
   1680	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
   1681
   1682	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
   1683
   1684	/*
   1685	 * Delay before attempt to obtain semaphore again to allow FW
   1686	 * access. semaphore_delay is in ms we need us for usleep_range
   1687	 */
   1688	usleep_range(hw->eeprom.semaphore_delay * 1000,
   1689		     hw->eeprom.semaphore_delay * 2000);
   1690}
   1691
   1692/**
   1693 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
   1694 *  @hw: pointer to hardware structure
   1695 **/
   1696s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1697{
   1698	u16 i;
   1699	u16 j;
   1700	u16 checksum = 0;
   1701	u16 length = 0;
   1702	u16 pointer = 0;
   1703	u16 word = 0;
   1704
   1705	/* Include 0x0-0x3F in the checksum */
   1706	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
   1707		if (hw->eeprom.ops.read(hw, i, &word)) {
   1708			hw_dbg(hw, "EEPROM read failed\n");
   1709			break;
   1710		}
   1711		checksum += word;
   1712	}
   1713
   1714	/* Include all data from pointers except for the fw pointer */
   1715	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
   1716		if (hw->eeprom.ops.read(hw, i, &pointer)) {
   1717			hw_dbg(hw, "EEPROM read failed\n");
   1718			return IXGBE_ERR_EEPROM;
   1719		}
   1720
   1721		/* If the pointer seems invalid */
   1722		if (pointer == 0xFFFF || pointer == 0)
   1723			continue;
   1724
   1725		if (hw->eeprom.ops.read(hw, pointer, &length)) {
   1726			hw_dbg(hw, "EEPROM read failed\n");
   1727			return IXGBE_ERR_EEPROM;
   1728		}
   1729
   1730		if (length == 0xFFFF || length == 0)
   1731			continue;
   1732
   1733		for (j = pointer + 1; j <= pointer + length; j++) {
   1734			if (hw->eeprom.ops.read(hw, j, &word)) {
   1735				hw_dbg(hw, "EEPROM read failed\n");
   1736				return IXGBE_ERR_EEPROM;
   1737			}
   1738			checksum += word;
   1739		}
   1740	}
   1741
   1742	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
   1743
   1744	return (s32)checksum;
   1745}
   1746
   1747/**
   1748 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
   1749 *  @hw: pointer to hardware structure
   1750 *  @checksum_val: calculated checksum
   1751 *
   1752 *  Performs checksum calculation and validates the EEPROM checksum.  If the
   1753 *  caller does not need checksum_val, the value can be NULL.
   1754 **/
   1755s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
   1756					   u16 *checksum_val)
   1757{
   1758	s32 status;
   1759	u16 checksum;
   1760	u16 read_checksum = 0;
   1761
   1762	/*
   1763	 * Read the first word from the EEPROM. If this times out or fails, do
   1764	 * not continue or we could be in for a very long wait while every
   1765	 * EEPROM read fails
   1766	 */
   1767	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1768	if (status) {
   1769		hw_dbg(hw, "EEPROM read failed\n");
   1770		return status;
   1771	}
   1772
   1773	status = hw->eeprom.ops.calc_checksum(hw);
   1774	if (status < 0)
   1775		return status;
   1776
   1777	checksum = (u16)(status & 0xffff);
   1778
   1779	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
   1780	if (status) {
   1781		hw_dbg(hw, "EEPROM read failed\n");
   1782		return status;
   1783	}
   1784
   1785	/* Verify read checksum from EEPROM is the same as
   1786	 * calculated checksum
   1787	 */
   1788	if (read_checksum != checksum)
   1789		status = IXGBE_ERR_EEPROM_CHECKSUM;
   1790
   1791	/* If the user cares, return the calculated checksum */
   1792	if (checksum_val)
   1793		*checksum_val = checksum;
   1794
   1795	return status;
   1796}
   1797
   1798/**
   1799 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
   1800 *  @hw: pointer to hardware structure
   1801 **/
   1802s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
   1803{
   1804	s32 status;
   1805	u16 checksum;
   1806
   1807	/*
   1808	 * Read the first word from the EEPROM. If this times out or fails, do
   1809	 * not continue or we could be in for a very long wait while every
   1810	 * EEPROM read fails
   1811	 */
   1812	status = hw->eeprom.ops.read(hw, 0, &checksum);
   1813	if (status) {
   1814		hw_dbg(hw, "EEPROM read failed\n");
   1815		return status;
   1816	}
   1817
   1818	status = hw->eeprom.ops.calc_checksum(hw);
   1819	if (status < 0)
   1820		return status;
   1821
   1822	checksum = (u16)(status & 0xffff);
   1823
   1824	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
   1825
   1826	return status;
   1827}
   1828
   1829/**
   1830 *  ixgbe_set_rar_generic - Set Rx address register
   1831 *  @hw: pointer to hardware structure
   1832 *  @index: Receive address register to write
   1833 *  @addr: Address to put into receive address register
   1834 *  @vmdq: VMDq "set" or "pool" index
   1835 *  @enable_addr: set flag that address is active
   1836 *
   1837 *  Puts an ethernet address into a receive address register.
   1838 **/
   1839s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
   1840			  u32 enable_addr)
   1841{
   1842	u32 rar_low, rar_high;
   1843	u32 rar_entries = hw->mac.num_rar_entries;
   1844
   1845	/* Make sure we are using a valid rar index range */
   1846	if (index >= rar_entries) {
   1847		hw_dbg(hw, "RAR index %d is out of range.\n", index);
   1848		return IXGBE_ERR_INVALID_ARGUMENT;
   1849	}
   1850
   1851	/* setup VMDq pool selection before this RAR gets enabled */
   1852	hw->mac.ops.set_vmdq(hw, index, vmdq);
   1853
   1854	/*
   1855	 * HW expects these in little endian so we reverse the byte
   1856	 * order from network order (big endian) to little endian
   1857	 */
   1858	rar_low = ((u32)addr[0] |
   1859		   ((u32)addr[1] << 8) |
   1860		   ((u32)addr[2] << 16) |
   1861		   ((u32)addr[3] << 24));
   1862	/*
   1863	 * Some parts put the VMDq setting in the extra RAH bits,
   1864	 * so save everything except the lower 16 bits that hold part
   1865	 * of the address and the address valid bit.
   1866	 */
   1867	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   1868	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   1869	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
   1870
   1871	if (enable_addr != 0)
   1872		rar_high |= IXGBE_RAH_AV;
   1873
   1874	/* Record lower 32 bits of MAC address and then make
   1875	 * sure that write is flushed to hardware before writing
   1876	 * the upper 16 bits and setting the valid bit.
   1877	 */
   1878	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
   1879	IXGBE_WRITE_FLUSH(hw);
   1880	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   1881
   1882	return 0;
   1883}
   1884
   1885/**
   1886 *  ixgbe_clear_rar_generic - Remove Rx address register
   1887 *  @hw: pointer to hardware structure
   1888 *  @index: Receive address register to write
   1889 *
   1890 *  Clears an ethernet address from a receive address register.
   1891 **/
   1892s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
   1893{
   1894	u32 rar_high;
   1895	u32 rar_entries = hw->mac.num_rar_entries;
   1896
   1897	/* Make sure we are using a valid rar index range */
   1898	if (index >= rar_entries) {
   1899		hw_dbg(hw, "RAR index %d is out of range.\n", index);
   1900		return IXGBE_ERR_INVALID_ARGUMENT;
   1901	}
   1902
   1903	/*
   1904	 * Some parts put the VMDq setting in the extra RAH bits,
   1905	 * so save everything except the lower 16 bits that hold part
   1906	 * of the address and the address valid bit.
   1907	 */
   1908	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
   1909	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
   1910
   1911	/* Clear the address valid bit and upper 16 bits of the address
   1912	 * before clearing the lower bits. This way we aren't updating
   1913	 * a live filter.
   1914	 */
   1915	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
   1916	IXGBE_WRITE_FLUSH(hw);
   1917	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
   1918
   1919	/* clear VMDq pool/queue selection for this RAR */
   1920	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
   1921
   1922	return 0;
   1923}
   1924
   1925/**
   1926 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
   1927 *  @hw: pointer to hardware structure
   1928 *
   1929 *  Places the MAC address in receive address register 0 and clears the rest
   1930 *  of the receive address registers. Clears the multicast table. Assumes
   1931 *  the receiver is in reset when the routine is called.
   1932 **/
   1933s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
   1934{
   1935	u32 i;
   1936	u32 rar_entries = hw->mac.num_rar_entries;
   1937
   1938	/*
   1939	 * If the current mac address is valid, assume it is a software override
   1940	 * to the permanent address.
   1941	 * Otherwise, use the permanent address from the eeprom.
   1942	 */
   1943	if (!is_valid_ether_addr(hw->mac.addr)) {
   1944		/* Get the MAC address from the RAR0 for later reference */
   1945		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
   1946
   1947		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
   1948	} else {
   1949		/* Setup the receive address. */
   1950		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
   1951		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
   1952
   1953		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
   1954	}
   1955
   1956	/*  clear VMDq pool/queue selection for RAR 0 */
   1957	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
   1958
   1959	hw->addr_ctrl.overflow_promisc = 0;
   1960
   1961	hw->addr_ctrl.rar_used_count = 1;
   1962
   1963	/* Zero out the other receive addresses. */
   1964	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
   1965	for (i = 1; i < rar_entries; i++) {
   1966		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
   1967		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
   1968	}
   1969
   1970	/* Clear the MTA */
   1971	hw->addr_ctrl.mta_in_use = 0;
   1972	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   1973
   1974	hw_dbg(hw, " Clearing MTA\n");
   1975	for (i = 0; i < hw->mac.mcft_size; i++)
   1976		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
   1977
   1978	if (hw->mac.ops.init_uta_tables)
   1979		hw->mac.ops.init_uta_tables(hw);
   1980
   1981	return 0;
   1982}
   1983
   1984/**
   1985 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
   1986 *  @hw: pointer to hardware structure
   1987 *  @mc_addr: the multicast address
   1988 *
   1989 *  Extracts the 12 bits, from a multicast address, to determine which
   1990 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
   1991 *  incoming rx multicast addresses, to determine the bit-vector to check in
   1992 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
   1993 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
   1994 *  to mc_filter_type.
   1995 **/
   1996static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
   1997{
   1998	u32 vector = 0;
   1999
   2000	switch (hw->mac.mc_filter_type) {
   2001	case 0:   /* use bits [47:36] of the address */
   2002		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
   2003		break;
   2004	case 1:   /* use bits [46:35] of the address */
   2005		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
   2006		break;
   2007	case 2:   /* use bits [45:34] of the address */
   2008		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
   2009		break;
   2010	case 3:   /* use bits [43:32] of the address */
   2011		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
   2012		break;
   2013	default:  /* Invalid mc_filter_type */
   2014		hw_dbg(hw, "MC filter type param set incorrectly\n");
   2015		break;
   2016	}
   2017
   2018	/* vector can only be 12-bits or boundary will be exceeded */
   2019	vector &= 0xFFF;
   2020	return vector;
   2021}
   2022
   2023/**
   2024 *  ixgbe_set_mta - Set bit-vector in multicast table
   2025 *  @hw: pointer to hardware structure
   2026 *  @mc_addr: Multicast address
   2027 *
   2028 *  Sets the bit-vector in the multicast table.
   2029 **/
   2030static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
   2031{
   2032	u32 vector;
   2033	u32 vector_bit;
   2034	u32 vector_reg;
   2035
   2036	hw->addr_ctrl.mta_in_use++;
   2037
   2038	vector = ixgbe_mta_vector(hw, mc_addr);
   2039	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
   2040
   2041	/*
   2042	 * The MTA is a register array of 128 32-bit registers. It is treated
   2043	 * like an array of 4096 bits.  We want to set bit
   2044	 * BitArray[vector_value]. So we figure out what register the bit is
   2045	 * in, read it, OR in the new bit, then write back the new value.  The
   2046	 * register is determined by the upper 7 bits of the vector value and
   2047	 * the bit within that register are determined by the lower 5 bits of
   2048	 * the value.
   2049	 */
   2050	vector_reg = (vector >> 5) & 0x7F;
   2051	vector_bit = vector & 0x1F;
   2052	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
   2053}
   2054
   2055/**
   2056 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
   2057 *  @hw: pointer to hardware structure
   2058 *  @netdev: pointer to net device structure
   2059 *
   2060 *  The given list replaces any existing list. Clears the MC addrs from receive
   2061 *  address registers and the multicast table. Uses unused receive address
   2062 *  registers for the first multicast addresses, and hashes the rest into the
   2063 *  multicast table.
   2064 **/
   2065s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
   2066				      struct net_device *netdev)
   2067{
   2068	struct netdev_hw_addr *ha;
   2069	u32 i;
   2070
   2071	/*
   2072	 * Set the new number of MC addresses that we are being requested to
   2073	 * use.
   2074	 */
   2075	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
   2076	hw->addr_ctrl.mta_in_use = 0;
   2077
   2078	/* Clear mta_shadow */
   2079	hw_dbg(hw, " Clearing MTA\n");
   2080	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
   2081
   2082	/* Update mta shadow */
   2083	netdev_for_each_mc_addr(ha, netdev) {
   2084		hw_dbg(hw, " Adding the multicast addresses:\n");
   2085		ixgbe_set_mta(hw, ha->addr);
   2086	}
   2087
   2088	/* Enable mta */
   2089	for (i = 0; i < hw->mac.mcft_size; i++)
   2090		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
   2091				      hw->mac.mta_shadow[i]);
   2092
   2093	if (hw->addr_ctrl.mta_in_use > 0)
   2094		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
   2095				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
   2096
   2097	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
   2098	return 0;
   2099}
   2100
   2101/**
   2102 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
   2103 *  @hw: pointer to hardware structure
   2104 *
   2105 *  Enables multicast address in RAR and the use of the multicast hash table.
   2106 **/
   2107s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
   2108{
   2109	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2110
   2111	if (a->mta_in_use > 0)
   2112		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
   2113				hw->mac.mc_filter_type);
   2114
   2115	return 0;
   2116}
   2117
   2118/**
   2119 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
   2120 *  @hw: pointer to hardware structure
   2121 *
   2122 *  Disables multicast address in RAR and the use of the multicast hash table.
   2123 **/
   2124s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
   2125{
   2126	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
   2127
   2128	if (a->mta_in_use > 0)
   2129		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
   2130
   2131	return 0;
   2132}
   2133
   2134/**
   2135 *  ixgbe_fc_enable_generic - Enable flow control
   2136 *  @hw: pointer to hardware structure
   2137 *
   2138 *  Enable flow control according to the current settings.
   2139 **/
   2140s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
   2141{
   2142	u32 mflcn_reg, fccfg_reg;
   2143	u32 reg;
   2144	u32 fcrtl, fcrth;
   2145	int i;
   2146
   2147	/* Validate the water mark configuration. */
   2148	if (!hw->fc.pause_time)
   2149		return IXGBE_ERR_INVALID_LINK_SETTINGS;
   2150
   2151	/* Low water mark of zero causes XOFF floods */
   2152	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
   2153		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2154		    hw->fc.high_water[i]) {
   2155			if (!hw->fc.low_water[i] ||
   2156			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
   2157				hw_dbg(hw, "Invalid water mark configuration\n");
   2158				return IXGBE_ERR_INVALID_LINK_SETTINGS;
   2159			}
   2160		}
   2161	}
   2162
   2163	/* Negotiate the fc mode to use */
   2164	hw->mac.ops.fc_autoneg(hw);
   2165
   2166	/* Disable any previous flow control settings */
   2167	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
   2168	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
   2169
   2170	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
   2171	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
   2172
   2173	/*
   2174	 * The possible values of fc.current_mode are:
   2175	 * 0: Flow control is completely disabled
   2176	 * 1: Rx flow control is enabled (we can receive pause frames,
   2177	 *    but not send pause frames).
   2178	 * 2: Tx flow control is enabled (we can send pause frames but
   2179	 *    we do not support receiving pause frames).
   2180	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
   2181	 * other: Invalid.
   2182	 */
   2183	switch (hw->fc.current_mode) {
   2184	case ixgbe_fc_none:
   2185		/*
   2186		 * Flow control is disabled by software override or autoneg.
   2187		 * The code below will actually disable it in the HW.
   2188		 */
   2189		break;
   2190	case ixgbe_fc_rx_pause:
   2191		/*
   2192		 * Rx Flow control is enabled and Tx Flow control is
   2193		 * disabled by software override. Since there really
   2194		 * isn't a way to advertise that we are capable of RX
   2195		 * Pause ONLY, we will advertise that we support both
   2196		 * symmetric and asymmetric Rx PAUSE.  Later, we will
   2197		 * disable the adapter's ability to send PAUSE frames.
   2198		 */
   2199		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2200		break;
   2201	case ixgbe_fc_tx_pause:
   2202		/*
   2203		 * Tx Flow control is enabled, and Rx Flow control is
   2204		 * disabled by software override.
   2205		 */
   2206		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2207		break;
   2208	case ixgbe_fc_full:
   2209		/* Flow control (both Rx and Tx) is enabled by SW override. */
   2210		mflcn_reg |= IXGBE_MFLCN_RFCE;
   2211		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
   2212		break;
   2213	default:
   2214		hw_dbg(hw, "Flow control param set incorrectly\n");
   2215		return IXGBE_ERR_CONFIG;
   2216	}
   2217
   2218	/* Set 802.3x based flow control settings. */
   2219	mflcn_reg |= IXGBE_MFLCN_DPF;
   2220	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
   2221	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
   2222
   2223	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
   2224	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
   2225		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
   2226		    hw->fc.high_water[i]) {
   2227			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
   2228			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
   2229			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
   2230		} else {
   2231			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
   2232			/*
   2233			 * In order to prevent Tx hangs when the internal Tx
   2234			 * switch is enabled we must set the high water mark
   2235			 * to the Rx packet buffer size - 24KB.  This allows
   2236			 * the Tx switch to function even under heavy Rx
   2237			 * workloads.
   2238			 */
   2239			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
   2240		}
   2241
   2242		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
   2243	}
   2244
   2245	/* Configure pause time (2 TCs per register) */
   2246	reg = hw->fc.pause_time * 0x00010001U;
   2247	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
   2248		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
   2249
   2250	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
   2251
   2252	return 0;
   2253}
   2254
   2255/**
   2256 *  ixgbe_negotiate_fc - Negotiate flow control
   2257 *  @hw: pointer to hardware structure
   2258 *  @adv_reg: flow control advertised settings
   2259 *  @lp_reg: link partner's flow control settings
   2260 *  @adv_sym: symmetric pause bit in advertisement
   2261 *  @adv_asm: asymmetric pause bit in advertisement
   2262 *  @lp_sym: symmetric pause bit in link partner advertisement
   2263 *  @lp_asm: asymmetric pause bit in link partner advertisement
   2264 *
   2265 *  Find the intersection between advertised settings and link partner's
   2266 *  advertised settings
   2267 **/
   2268s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
   2269		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
   2270{
   2271	if ((!(adv_reg)) ||  (!(lp_reg)))
   2272		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2273
   2274	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
   2275		/*
   2276		 * Now we need to check if the user selected Rx ONLY
   2277		 * of pause frames.  In this case, we had to advertise
   2278		 * FULL flow control because we could not advertise RX
   2279		 * ONLY. Hence, we must now check to see if we need to
   2280		 * turn OFF the TRANSMISSION of PAUSE frames.
   2281		 */
   2282		if (hw->fc.requested_mode == ixgbe_fc_full) {
   2283			hw->fc.current_mode = ixgbe_fc_full;
   2284			hw_dbg(hw, "Flow Control = FULL.\n");
   2285		} else {
   2286			hw->fc.current_mode = ixgbe_fc_rx_pause;
   2287			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
   2288		}
   2289	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2290		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2291		hw->fc.current_mode = ixgbe_fc_tx_pause;
   2292		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
   2293	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
   2294		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
   2295		hw->fc.current_mode = ixgbe_fc_rx_pause;
   2296		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
   2297	} else {
   2298		hw->fc.current_mode = ixgbe_fc_none;
   2299		hw_dbg(hw, "Flow Control = NONE.\n");
   2300	}
   2301	return 0;
   2302}
   2303
   2304/**
   2305 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
   2306 *  @hw: pointer to hardware structure
   2307 *
   2308 *  Enable flow control according on 1 gig fiber.
   2309 **/
   2310static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
   2311{
   2312	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
   2313	s32 ret_val;
   2314
   2315	/*
   2316	 * On multispeed fiber at 1g, bail out if
   2317	 * - link is up but AN did not complete, or if
   2318	 * - link is up and AN completed but timed out
   2319	 */
   2320
   2321	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
   2322	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
   2323	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
   2324		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2325
   2326	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
   2327	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
   2328
   2329	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
   2330			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
   2331			       IXGBE_PCS1GANA_ASM_PAUSE,
   2332			       IXGBE_PCS1GANA_SYM_PAUSE,
   2333			       IXGBE_PCS1GANA_ASM_PAUSE);
   2334
   2335	return ret_val;
   2336}
   2337
   2338/**
   2339 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
   2340 *  @hw: pointer to hardware structure
   2341 *
   2342 *  Enable flow control according to IEEE clause 37.
   2343 **/
   2344static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
   2345{
   2346	u32 links2, anlp1_reg, autoc_reg, links;
   2347	s32 ret_val;
   2348
   2349	/*
   2350	 * On backplane, bail out if
   2351	 * - backplane autoneg was not completed, or if
   2352	 * - we are 82599 and link partner is not AN enabled
   2353	 */
   2354	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
   2355	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
   2356		return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2357
   2358	if (hw->mac.type == ixgbe_mac_82599EB) {
   2359		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
   2360		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
   2361			return IXGBE_ERR_FC_NOT_NEGOTIATED;
   2362	}
   2363	/*
   2364	 * Read the 10g AN autoc and LP ability registers and resolve
   2365	 * local flow control settings accordingly
   2366	 */
   2367	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2368	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
   2369
   2370	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
   2371		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
   2372		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
   2373
   2374	return ret_val;
   2375}
   2376
   2377/**
   2378 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
   2379 *  @hw: pointer to hardware structure
   2380 *
   2381 *  Enable flow control according to IEEE clause 37.
   2382 **/
   2383static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
   2384{
   2385	u16 technology_ability_reg = 0;
   2386	u16 lp_technology_ability_reg = 0;
   2387
   2388	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
   2389			     MDIO_MMD_AN,
   2390			     &technology_ability_reg);
   2391	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
   2392			     MDIO_MMD_AN,
   2393			     &lp_technology_ability_reg);
   2394
   2395	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
   2396				  (u32)lp_technology_ability_reg,
   2397				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
   2398				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
   2399}
   2400
   2401/**
   2402 *  ixgbe_fc_autoneg - Configure flow control
   2403 *  @hw: pointer to hardware structure
   2404 *
   2405 *  Compares our advertised flow control capabilities to those advertised by
   2406 *  our link partner, and determines the proper flow control mode to use.
   2407 **/
   2408void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
   2409{
   2410	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
   2411	ixgbe_link_speed speed;
   2412	bool link_up;
   2413
   2414	/*
   2415	 * AN should have completed when the cable was plugged in.
   2416	 * Look for reasons to bail out.  Bail out if:
   2417	 * - FC autoneg is disabled, or if
   2418	 * - link is not up.
   2419	 *
   2420	 * Since we're being called from an LSC, link is already known to be up.
   2421	 * So use link_up_wait_to_complete=false.
   2422	 */
   2423	if (hw->fc.disable_fc_autoneg)
   2424		goto out;
   2425
   2426	hw->mac.ops.check_link(hw, &speed, &link_up, false);
   2427	if (!link_up)
   2428		goto out;
   2429
   2430	switch (hw->phy.media_type) {
   2431	/* Autoneg flow control on fiber adapters */
   2432	case ixgbe_media_type_fiber:
   2433		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
   2434			ret_val = ixgbe_fc_autoneg_fiber(hw);
   2435		break;
   2436
   2437	/* Autoneg flow control on backplane adapters */
   2438	case ixgbe_media_type_backplane:
   2439		ret_val = ixgbe_fc_autoneg_backplane(hw);
   2440		break;
   2441
   2442	/* Autoneg flow control on copper adapters */
   2443	case ixgbe_media_type_copper:
   2444		if (ixgbe_device_supports_autoneg_fc(hw))
   2445			ret_val = ixgbe_fc_autoneg_copper(hw);
   2446		break;
   2447
   2448	default:
   2449		break;
   2450	}
   2451
   2452out:
   2453	if (ret_val == 0) {
   2454		hw->fc.fc_was_autonegged = true;
   2455	} else {
   2456		hw->fc.fc_was_autonegged = false;
   2457		hw->fc.current_mode = hw->fc.requested_mode;
   2458	}
   2459}
   2460
   2461/**
   2462 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
   2463 * @hw: pointer to hardware structure
   2464 *
   2465 * System-wide timeout range is encoded in PCIe Device Control2 register.
   2466 *
   2467 *  Add 10% to specified maximum and return the number of times to poll for
   2468 *  completion timeout, in units of 100 microsec.  Never return less than
   2469 *  800 = 80 millisec.
   2470 **/
   2471static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
   2472{
   2473	s16 devctl2;
   2474	u32 pollcnt;
   2475
   2476	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
   2477	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
   2478
   2479	switch (devctl2) {
   2480	case IXGBE_PCIDEVCTRL2_65_130ms:
   2481		 pollcnt = 1300;         /* 130 millisec */
   2482		break;
   2483	case IXGBE_PCIDEVCTRL2_260_520ms:
   2484		pollcnt = 5200;         /* 520 millisec */
   2485		break;
   2486	case IXGBE_PCIDEVCTRL2_1_2s:
   2487		pollcnt = 20000;        /* 2 sec */
   2488		break;
   2489	case IXGBE_PCIDEVCTRL2_4_8s:
   2490		pollcnt = 80000;        /* 8 sec */
   2491		break;
   2492	case IXGBE_PCIDEVCTRL2_17_34s:
   2493		pollcnt = 34000;        /* 34 sec */
   2494		break;
   2495	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
   2496	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
   2497	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
   2498	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
   2499	default:
   2500		pollcnt = 800;          /* 80 millisec minimum */
   2501		break;
   2502	}
   2503
   2504	/* add 10% to spec maximum */
   2505	return (pollcnt * 11) / 10;
   2506}
   2507
   2508/**
   2509 *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
   2510 *  @hw: pointer to hardware structure
   2511 *
   2512 *  Disables PCI-Express primary access and verifies there are no pending
   2513 *  requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable
   2514 *  bit hasn't caused the primary requests to be disabled, else 0
   2515 *  is returned signifying primary requests disabled.
   2516 **/
   2517static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
   2518{
   2519	u32 i, poll;
   2520	u16 value;
   2521
   2522	/* Always set this bit to ensure any future transactions are blocked */
   2523	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
   2524
   2525	/* Poll for bit to read as set */
   2526	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
   2527		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
   2528			break;
   2529		usleep_range(100, 120);
   2530	}
   2531	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
   2532		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
   2533		goto gio_disable_fail;
   2534	}
   2535
   2536	/* Exit if primary requests are blocked */
   2537	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
   2538	    ixgbe_removed(hw->hw_addr))
   2539		return 0;
   2540
   2541	/* Poll for primary request bit to clear */
   2542	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
   2543		udelay(100);
   2544		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
   2545			return 0;
   2546	}
   2547
   2548	/*
   2549	 * Two consecutive resets are required via CTRL.RST per datasheet
   2550	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
   2551	 * of this need.  The first reset prevents new primary requests from
   2552	 * being issued by our device.  We then must wait 1usec or more for any
   2553	 * remaining completions from the PCIe bus to trickle in, and then reset
   2554	 * again to clear out any effects they may have had on our device.
   2555	 */
   2556	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
   2557gio_disable_fail:
   2558	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
   2559
   2560	if (hw->mac.type >= ixgbe_mac_X550)
   2561		return 0;
   2562
   2563	/*
   2564	 * Before proceeding, make sure that the PCIe block does not have
   2565	 * transactions pending.
   2566	 */
   2567	poll = ixgbe_pcie_timeout_poll(hw);
   2568	for (i = 0; i < poll; i++) {
   2569		udelay(100);
   2570		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
   2571		if (ixgbe_removed(hw->hw_addr))
   2572			return 0;
   2573		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   2574			return 0;
   2575	}
   2576
   2577	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
   2578	return IXGBE_ERR_PRIMARY_REQUESTS_PENDING;
   2579}
   2580
   2581/**
   2582 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
   2583 *  @hw: pointer to hardware structure
   2584 *  @mask: Mask to specify which semaphore to acquire
   2585 *
   2586 *  Acquires the SWFW semaphore through the GSSR register for the specified
   2587 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2588 **/
   2589s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   2590{
   2591	u32 gssr = 0;
   2592	u32 swmask = mask;
   2593	u32 fwmask = mask << 5;
   2594	u32 timeout = 200;
   2595	u32 i;
   2596
   2597	for (i = 0; i < timeout; i++) {
   2598		/*
   2599		 * SW NVM semaphore bit is used for access to all
   2600		 * SW_FW_SYNC bits (not just NVM)
   2601		 */
   2602		if (ixgbe_get_eeprom_semaphore(hw))
   2603			return IXGBE_ERR_SWFW_SYNC;
   2604
   2605		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2606		if (!(gssr & (fwmask | swmask))) {
   2607			gssr |= swmask;
   2608			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2609			ixgbe_release_eeprom_semaphore(hw);
   2610			return 0;
   2611		} else {
   2612			/* Resource is currently in use by FW or SW */
   2613			ixgbe_release_eeprom_semaphore(hw);
   2614			usleep_range(5000, 10000);
   2615		}
   2616	}
   2617
   2618	/* If time expired clear the bits holding the lock and retry */
   2619	if (gssr & (fwmask | swmask))
   2620		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
   2621
   2622	usleep_range(5000, 10000);
   2623	return IXGBE_ERR_SWFW_SYNC;
   2624}
   2625
   2626/**
   2627 *  ixgbe_release_swfw_sync - Release SWFW semaphore
   2628 *  @hw: pointer to hardware structure
   2629 *  @mask: Mask to specify which semaphore to release
   2630 *
   2631 *  Releases the SWFW semaphore through the GSSR register for the specified
   2632 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
   2633 **/
   2634void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
   2635{
   2636	u32 gssr;
   2637	u32 swmask = mask;
   2638
   2639	ixgbe_get_eeprom_semaphore(hw);
   2640
   2641	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
   2642	gssr &= ~swmask;
   2643	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
   2644
   2645	ixgbe_release_eeprom_semaphore(hw);
   2646}
   2647
   2648/**
   2649 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
   2650 * @hw: pointer to hardware structure
   2651 * @reg_val: Value we read from AUTOC
   2652 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
   2653 *	    true in this the generic case.
   2654 *
   2655 * The default case requires no protection so just to the register read.
   2656 **/
   2657s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
   2658{
   2659	*locked = false;
   2660	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2661	return 0;
   2662}
   2663
   2664/**
   2665 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
   2666 * @hw: pointer to hardware structure
   2667 * @reg_val: value to write to AUTOC
   2668 * @locked: bool to indicate whether the SW/FW lock was already taken by
   2669 *	    previous read.
   2670 **/
   2671s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
   2672{
   2673	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
   2674	return 0;
   2675}
   2676
   2677/**
   2678 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
   2679 *  @hw: pointer to hardware structure
   2680 *
   2681 *  Stops the receive data path and waits for the HW to internally
   2682 *  empty the Rx security block.
   2683 **/
   2684s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
   2685{
   2686#define IXGBE_MAX_SECRX_POLL 40
   2687	int i;
   2688	int secrxreg;
   2689
   2690	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2691	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
   2692	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2693	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
   2694		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
   2695		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
   2696			break;
   2697		else
   2698			/* Use interrupt-safe sleep just in case */
   2699			udelay(1000);
   2700	}
   2701
   2702	/* For informational purposes only */
   2703	if (i >= IXGBE_MAX_SECRX_POLL)
   2704		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
   2705
   2706	return 0;
   2707
   2708}
   2709
   2710/**
   2711 *  ixgbe_enable_rx_buff_generic - Enables the receive data path
   2712 *  @hw: pointer to hardware structure
   2713 *
   2714 *  Enables the receive data path
   2715 **/
   2716s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
   2717{
   2718	u32 secrxreg;
   2719
   2720	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
   2721	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
   2722	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
   2723	IXGBE_WRITE_FLUSH(hw);
   2724
   2725	return 0;
   2726}
   2727
   2728/**
   2729 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
   2730 *  @hw: pointer to hardware structure
   2731 *  @regval: register value to write to RXCTRL
   2732 *
   2733 *  Enables the Rx DMA unit
   2734 **/
   2735s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
   2736{
   2737	if (regval & IXGBE_RXCTRL_RXEN)
   2738		hw->mac.ops.enable_rx(hw);
   2739	else
   2740		hw->mac.ops.disable_rx(hw);
   2741
   2742	return 0;
   2743}
   2744
   2745/**
   2746 *  ixgbe_blink_led_start_generic - Blink LED based on index.
   2747 *  @hw: pointer to hardware structure
   2748 *  @index: led number to blink
   2749 **/
   2750s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
   2751{
   2752	ixgbe_link_speed speed = 0;
   2753	bool link_up = false;
   2754	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
   2755	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2756	bool locked = false;
   2757	s32 ret_val;
   2758
   2759	if (index > 3)
   2760		return IXGBE_ERR_PARAM;
   2761
   2762	/*
   2763	 * Link must be up to auto-blink the LEDs;
   2764	 * Force it if link is down.
   2765	 */
   2766	hw->mac.ops.check_link(hw, &speed, &link_up, false);
   2767
   2768	if (!link_up) {
   2769		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   2770		if (ret_val)
   2771			return ret_val;
   2772
   2773		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2774		autoc_reg |= IXGBE_AUTOC_FLU;
   2775
   2776		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   2777		if (ret_val)
   2778			return ret_val;
   2779
   2780		IXGBE_WRITE_FLUSH(hw);
   2781
   2782		usleep_range(10000, 20000);
   2783	}
   2784
   2785	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2786	led_reg |= IXGBE_LED_BLINK(index);
   2787	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2788	IXGBE_WRITE_FLUSH(hw);
   2789
   2790	return 0;
   2791}
   2792
   2793/**
   2794 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
   2795 *  @hw: pointer to hardware structure
   2796 *  @index: led number to stop blinking
   2797 **/
   2798s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
   2799{
   2800	u32 autoc_reg = 0;
   2801	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
   2802	bool locked = false;
   2803	s32 ret_val;
   2804
   2805	if (index > 3)
   2806		return IXGBE_ERR_PARAM;
   2807
   2808	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
   2809	if (ret_val)
   2810		return ret_val;
   2811
   2812	autoc_reg &= ~IXGBE_AUTOC_FLU;
   2813	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
   2814
   2815	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
   2816	if (ret_val)
   2817		return ret_val;
   2818
   2819	led_reg &= ~IXGBE_LED_MODE_MASK(index);
   2820	led_reg &= ~IXGBE_LED_BLINK(index);
   2821	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
   2822	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
   2823	IXGBE_WRITE_FLUSH(hw);
   2824
   2825	return 0;
   2826}
   2827
   2828/**
   2829 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
   2830 *  @hw: pointer to hardware structure
   2831 *  @san_mac_offset: SAN MAC address offset
   2832 *
   2833 *  This function will read the EEPROM location for the SAN MAC address
   2834 *  pointer, and returns the value at that location.  This is used in both
   2835 *  get and set mac_addr routines.
   2836 **/
   2837static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
   2838					u16 *san_mac_offset)
   2839{
   2840	s32 ret_val;
   2841
   2842	/*
   2843	 * First read the EEPROM pointer to see if the MAC addresses are
   2844	 * available.
   2845	 */
   2846	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
   2847				      san_mac_offset);
   2848	if (ret_val)
   2849		hw_err(hw, "eeprom read at offset %d failed\n",
   2850		       IXGBE_SAN_MAC_ADDR_PTR);
   2851
   2852	return ret_val;
   2853}
   2854
   2855/**
   2856 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
   2857 *  @hw: pointer to hardware structure
   2858 *  @san_mac_addr: SAN MAC address
   2859 *
   2860 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
   2861 *  per-port, so set_lan_id() must be called before reading the addresses.
   2862 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
   2863 *  upon for non-SFP connections, so we must call it here.
   2864 **/
   2865s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
   2866{
   2867	u16 san_mac_data, san_mac_offset;
   2868	u8 i;
   2869	s32 ret_val;
   2870
   2871	/*
   2872	 * First read the EEPROM pointer to see if the MAC addresses are
   2873	 * available.  If they're not, no point in calling set_lan_id() here.
   2874	 */
   2875	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
   2876	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
   2877
   2878		goto san_mac_addr_clr;
   2879
   2880	/* make sure we know which port we need to program */
   2881	hw->mac.ops.set_lan_id(hw);
   2882	/* apply the port offset to the address offset */
   2883	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
   2884			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
   2885	for (i = 0; i < 3; i++) {
   2886		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
   2887					      &san_mac_data);
   2888		if (ret_val) {
   2889			hw_err(hw, "eeprom read at offset %d failed\n",
   2890			       san_mac_offset);
   2891			goto san_mac_addr_clr;
   2892		}
   2893		san_mac_addr[i * 2] = (u8)(san_mac_data);
   2894		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
   2895		san_mac_offset++;
   2896	}
   2897	return 0;
   2898
   2899san_mac_addr_clr:
   2900	/* No addresses available in this EEPROM.  It's not necessarily an
   2901	 * error though, so just wipe the local address and return.
   2902	 */
   2903	for (i = 0; i < 6; i++)
   2904		san_mac_addr[i] = 0xFF;
   2905	return ret_val;
   2906}
   2907
   2908/**
   2909 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
   2910 *  @hw: pointer to hardware structure
   2911 *
   2912 *  Read PCIe configuration space, and get the MSI-X vector count from
   2913 *  the capabilities table.
   2914 **/
   2915u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
   2916{
   2917	u16 msix_count;
   2918	u16 max_msix_count;
   2919	u16 pcie_offset;
   2920
   2921	switch (hw->mac.type) {
   2922	case ixgbe_mac_82598EB:
   2923		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
   2924		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
   2925		break;
   2926	case ixgbe_mac_82599EB:
   2927	case ixgbe_mac_X540:
   2928	case ixgbe_mac_X550:
   2929	case ixgbe_mac_X550EM_x:
   2930	case ixgbe_mac_x550em_a:
   2931		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
   2932		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
   2933		break;
   2934	default:
   2935		return 1;
   2936	}
   2937
   2938	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
   2939	if (ixgbe_removed(hw->hw_addr))
   2940		msix_count = 0;
   2941	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
   2942
   2943	/* MSI-X count is zero-based in HW */
   2944	msix_count++;
   2945
   2946	if (msix_count > max_msix_count)
   2947		msix_count = max_msix_count;
   2948
   2949	return msix_count;
   2950}
   2951
   2952/**
   2953 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
   2954 *  @hw: pointer to hardware struct
   2955 *  @rar: receive address register index to disassociate
   2956 *  @vmdq: VMDq pool index to remove from the rar
   2957 **/
   2958s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   2959{
   2960	u32 mpsar_lo, mpsar_hi;
   2961	u32 rar_entries = hw->mac.num_rar_entries;
   2962
   2963	/* Make sure we are using a valid rar index range */
   2964	if (rar >= rar_entries) {
   2965		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
   2966		return IXGBE_ERR_INVALID_ARGUMENT;
   2967	}
   2968
   2969	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   2970	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   2971
   2972	if (ixgbe_removed(hw->hw_addr))
   2973		return 0;
   2974
   2975	if (!mpsar_lo && !mpsar_hi)
   2976		return 0;
   2977
   2978	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
   2979		if (mpsar_lo) {
   2980			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   2981			mpsar_lo = 0;
   2982		}
   2983		if (mpsar_hi) {
   2984			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   2985			mpsar_hi = 0;
   2986		}
   2987	} else if (vmdq < 32) {
   2988		mpsar_lo &= ~BIT(vmdq);
   2989		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
   2990	} else {
   2991		mpsar_hi &= ~BIT(vmdq - 32);
   2992		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
   2993	}
   2994
   2995	/* was that the last pool using this rar? */
   2996	if (mpsar_lo == 0 && mpsar_hi == 0 &&
   2997	    rar != 0 && rar != hw->mac.san_mac_rar_index)
   2998		hw->mac.ops.clear_rar(hw, rar);
   2999
   3000	return 0;
   3001}
   3002
   3003/**
   3004 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
   3005 *  @hw: pointer to hardware struct
   3006 *  @rar: receive address register index to associate with a VMDq index
   3007 *  @vmdq: VMDq pool index
   3008 **/
   3009s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
   3010{
   3011	u32 mpsar;
   3012	u32 rar_entries = hw->mac.num_rar_entries;
   3013
   3014	/* Make sure we are using a valid rar index range */
   3015	if (rar >= rar_entries) {
   3016		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
   3017		return IXGBE_ERR_INVALID_ARGUMENT;
   3018	}
   3019
   3020	if (vmdq < 32) {
   3021		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
   3022		mpsar |= BIT(vmdq);
   3023		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
   3024	} else {
   3025		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
   3026		mpsar |= BIT(vmdq - 32);
   3027		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
   3028	}
   3029	return 0;
   3030}
   3031
   3032/**
   3033 *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
   3034 *  @hw: pointer to hardware struct
   3035 *  @vmdq: VMDq pool index
   3036 *
   3037 *  This function should only be involved in the IOV mode.
   3038 *  In IOV mode, Default pool is next pool after the number of
   3039 *  VFs advertized and not 0.
   3040 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
   3041 **/
   3042s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
   3043{
   3044	u32 rar = hw->mac.san_mac_rar_index;
   3045
   3046	if (vmdq < 32) {
   3047		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
   3048		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
   3049	} else {
   3050		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
   3051		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
   3052	}
   3053
   3054	return 0;
   3055}
   3056
   3057/**
   3058 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
   3059 *  @hw: pointer to hardware structure
   3060 **/
   3061s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
   3062{
   3063	int i;
   3064
   3065	for (i = 0; i < 128; i++)
   3066		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
   3067
   3068	return 0;
   3069}
   3070
   3071/**
   3072 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
   3073 *  @hw: pointer to hardware structure
   3074 *  @vlan: VLAN id to write to VLAN filter
   3075 *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
   3076 *		  vlanid not found
   3077 *
   3078 *  return the VLVF index where this VLAN id should be placed
   3079 *
   3080 **/
   3081static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
   3082{
   3083	s32 regindex, first_empty_slot;
   3084	u32 bits;
   3085
   3086	/* short cut the special case */
   3087	if (vlan == 0)
   3088		return 0;
   3089
   3090	/* if vlvf_bypass is set we don't want to use an empty slot, we
   3091	 * will simply bypass the VLVF if there are no entries present in the
   3092	 * VLVF that contain our VLAN
   3093	 */
   3094	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
   3095
   3096	/* add VLAN enable bit for comparison */
   3097	vlan |= IXGBE_VLVF_VIEN;
   3098
   3099	/* Search for the vlan id in the VLVF entries. Save off the first empty
   3100	 * slot found along the way.
   3101	 *
   3102	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
   3103	 */
   3104	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
   3105		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
   3106		if (bits == vlan)
   3107			return regindex;
   3108		if (!first_empty_slot && !bits)
   3109			first_empty_slot = regindex;
   3110	}
   3111
   3112	/* If we are here then we didn't find the VLAN.  Return first empty
   3113	 * slot we found during our search, else error.
   3114	 */
   3115	if (!first_empty_slot)
   3116		hw_dbg(hw, "No space in VLVF.\n");
   3117
   3118	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
   3119}
   3120
   3121/**
   3122 *  ixgbe_set_vfta_generic - Set VLAN filter table
   3123 *  @hw: pointer to hardware structure
   3124 *  @vlan: VLAN id to write to VLAN filter
   3125 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
   3126 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
   3127 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
   3128 *
   3129 *  Turn on/off specified VLAN in the VLAN filter table.
   3130 **/
   3131s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
   3132			   bool vlan_on, bool vlvf_bypass)
   3133{
   3134	u32 regidx, vfta_delta, vfta, bits;
   3135	s32 vlvf_index;
   3136
   3137	if ((vlan > 4095) || (vind > 63))
   3138		return IXGBE_ERR_PARAM;
   3139
   3140	/*
   3141	 * this is a 2 part operation - first the VFTA, then the
   3142	 * VLVF and VLVFB if VT Mode is set
   3143	 * We don't write the VFTA until we know the VLVF part succeeded.
   3144	 */
   3145
   3146	/* Part 1
   3147	 * The VFTA is a bitstring made up of 128 32-bit registers
   3148	 * that enable the particular VLAN id, much like the MTA:
   3149	 *    bits[11-5]: which register
   3150	 *    bits[4-0]:  which bit in the register
   3151	 */
   3152	regidx = vlan / 32;
   3153	vfta_delta = BIT(vlan % 32);
   3154	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
   3155
   3156	/* vfta_delta represents the difference between the current value
   3157	 * of vfta and the value we want in the register.  Since the diff
   3158	 * is an XOR mask we can just update vfta using an XOR.
   3159	 */
   3160	vfta_delta &= vlan_on ? ~vfta : vfta;
   3161	vfta ^= vfta_delta;
   3162
   3163	/* Part 2
   3164	 * If VT Mode is set
   3165	 *   Either vlan_on
   3166	 *     make sure the vlan is in VLVF
   3167	 *     set the vind bit in the matching VLVFB
   3168	 *   Or !vlan_on
   3169	 *     clear the pool bit and possibly the vind
   3170	 */
   3171	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
   3172		goto vfta_update;
   3173
   3174	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
   3175	if (vlvf_index < 0) {
   3176		if (vlvf_bypass)
   3177			goto vfta_update;
   3178		return vlvf_index;
   3179	}
   3180
   3181	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
   3182
   3183	/* set the pool bit */
   3184	bits |= BIT(vind % 32);
   3185	if (vlan_on)
   3186		goto vlvf_update;
   3187
   3188	/* clear the pool bit */
   3189	bits ^= BIT(vind % 32);
   3190
   3191	if (!bits &&
   3192	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
   3193		/* Clear VFTA first, then disable VLVF.  Otherwise
   3194		 * we run the risk of stray packets leaking into
   3195		 * the PF via the default pool
   3196		 */
   3197		if (vfta_delta)
   3198			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   3199
   3200		/* disable VLVF and clear remaining bit from pool */
   3201		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
   3202		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
   3203
   3204		return 0;
   3205	}
   3206
   3207	/* If there are still bits set in the VLVFB registers
   3208	 * for the VLAN ID indicated we need to see if the
   3209	 * caller is requesting that we clear the VFTA entry bit.
   3210	 * If the caller has requested that we clear the VFTA
   3211	 * entry bit but there are still pools/VFs using this VLAN
   3212	 * ID entry then ignore the request.  We're not worried
   3213	 * about the case where we're turning the VFTA VLAN ID
   3214	 * entry bit on, only when requested to turn it off as
   3215	 * there may be multiple pools and/or VFs using the
   3216	 * VLAN ID entry.  In that case we cannot clear the
   3217	 * VFTA bit until all pools/VFs using that VLAN ID have also
   3218	 * been cleared.  This will be indicated by "bits" being
   3219	 * zero.
   3220	 */
   3221	vfta_delta = 0;
   3222
   3223vlvf_update:
   3224	/* record pool change and enable VLAN ID if not already enabled */
   3225	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
   3226	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
   3227
   3228vfta_update:
   3229	/* Update VFTA now that we are ready for traffic */
   3230	if (vfta_delta)
   3231		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
   3232
   3233	return 0;
   3234}
   3235
   3236/**
   3237 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
   3238 *  @hw: pointer to hardware structure
   3239 *
   3240 *  Clears the VLAN filer table, and the VMDq index associated with the filter
   3241 **/
   3242s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
   3243{
   3244	u32 offset;
   3245
   3246	for (offset = 0; offset < hw->mac.vft_size; offset++)
   3247		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
   3248
   3249	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
   3250		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
   3251		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
   3252		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
   3253	}
   3254
   3255	return 0;
   3256}
   3257
   3258/**
   3259 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
   3260 *  @hw: pointer to hardware structure
   3261 *
   3262 *  Contains the logic to identify if we need to verify link for the
   3263 *  crosstalk fix
   3264 **/
   3265static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
   3266{
   3267	/* Does FW say we need the fix */
   3268	if (!hw->need_crosstalk_fix)
   3269		return false;
   3270
   3271	/* Only consider SFP+ PHYs i.e. media type fiber */
   3272	switch (hw->mac.ops.get_media_type(hw)) {
   3273	case ixgbe_media_type_fiber:
   3274	case ixgbe_media_type_fiber_qsfp:
   3275		break;
   3276	default:
   3277		return false;
   3278	}
   3279
   3280	return true;
   3281}
   3282
   3283/**
   3284 *  ixgbe_check_mac_link_generic - Determine link and speed status
   3285 *  @hw: pointer to hardware structure
   3286 *  @speed: pointer to link speed
   3287 *  @link_up: true when link is up
   3288 *  @link_up_wait_to_complete: bool used to wait for link up or not
   3289 *
   3290 *  Reads the links register to determine if link is up and the current speed
   3291 **/
   3292s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
   3293				 bool *link_up, bool link_up_wait_to_complete)
   3294{
   3295	u32 links_reg, links_orig;
   3296	u32 i;
   3297
   3298	/* If Crosstalk fix enabled do the sanity check of making sure
   3299	 * the SFP+ cage is full.
   3300	 */
   3301	if (ixgbe_need_crosstalk_fix(hw)) {
   3302		u32 sfp_cage_full;
   3303
   3304		switch (hw->mac.type) {
   3305		case ixgbe_mac_82599EB:
   3306			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   3307					IXGBE_ESDP_SDP2;
   3308			break;
   3309		case ixgbe_mac_X550EM_x:
   3310		case ixgbe_mac_x550em_a:
   3311			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
   3312					IXGBE_ESDP_SDP0;
   3313			break;
   3314		default:
   3315			/* sanity check - No SFP+ devices here */
   3316			sfp_cage_full = false;
   3317			break;
   3318		}
   3319
   3320		if (!sfp_cage_full) {
   3321			*link_up = false;
   3322			*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3323			return 0;
   3324		}
   3325	}
   3326
   3327	/* clear the old state */
   3328	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3329
   3330	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3331
   3332	if (links_orig != links_reg) {
   3333		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
   3334		       links_orig, links_reg);
   3335	}
   3336
   3337	if (link_up_wait_to_complete) {
   3338		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
   3339			if (links_reg & IXGBE_LINKS_UP) {
   3340				*link_up = true;
   3341				break;
   3342			} else {
   3343				*link_up = false;
   3344			}
   3345			msleep(100);
   3346			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
   3347		}
   3348	} else {
   3349		if (links_reg & IXGBE_LINKS_UP)
   3350			*link_up = true;
   3351		else
   3352			*link_up = false;
   3353	}
   3354
   3355	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
   3356	case IXGBE_LINKS_SPEED_10G_82599:
   3357		if ((hw->mac.type >= ixgbe_mac_X550) &&
   3358		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
   3359			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
   3360		else
   3361			*speed = IXGBE_LINK_SPEED_10GB_FULL;
   3362		break;
   3363	case IXGBE_LINKS_SPEED_1G_82599:
   3364		*speed = IXGBE_LINK_SPEED_1GB_FULL;
   3365		break;
   3366	case IXGBE_LINKS_SPEED_100_82599:
   3367		if ((hw->mac.type >= ixgbe_mac_X550) &&
   3368		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
   3369			*speed = IXGBE_LINK_SPEED_5GB_FULL;
   3370		else
   3371			*speed = IXGBE_LINK_SPEED_100_FULL;
   3372		break;
   3373	case IXGBE_LINKS_SPEED_10_X550EM_A:
   3374		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3375		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
   3376		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
   3377			*speed = IXGBE_LINK_SPEED_10_FULL;
   3378		}
   3379		break;
   3380	default:
   3381		*speed = IXGBE_LINK_SPEED_UNKNOWN;
   3382	}
   3383
   3384	return 0;
   3385}
   3386
   3387/**
   3388 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
   3389 *  the EEPROM
   3390 *  @hw: pointer to hardware structure
   3391 *  @wwnn_prefix: the alternative WWNN prefix
   3392 *  @wwpn_prefix: the alternative WWPN prefix
   3393 *
   3394 *  This function will read the EEPROM from the alternative SAN MAC address
   3395 *  block to check the support for the alternative WWNN/WWPN prefix support.
   3396 **/
   3397s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
   3398					u16 *wwpn_prefix)
   3399{
   3400	u16 offset, caps;
   3401	u16 alt_san_mac_blk_offset;
   3402
   3403	/* clear output first */
   3404	*wwnn_prefix = 0xFFFF;
   3405	*wwpn_prefix = 0xFFFF;
   3406
   3407	/* check if alternative SAN MAC is supported */
   3408	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
   3409	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
   3410		goto wwn_prefix_err;
   3411
   3412	if ((alt_san_mac_blk_offset == 0) ||
   3413	    (alt_san_mac_blk_offset == 0xFFFF))
   3414		return 0;
   3415
   3416	/* check capability in alternative san mac address block */
   3417	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
   3418	if (hw->eeprom.ops.read(hw, offset, &caps))
   3419		goto wwn_prefix_err;
   3420	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
   3421		return 0;
   3422
   3423	/* get the corresponding prefix for WWNN/WWPN */
   3424	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
   3425	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
   3426		hw_err(hw, "eeprom read at offset %d failed\n", offset);
   3427
   3428	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
   3429	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
   3430		goto wwn_prefix_err;
   3431
   3432	return 0;
   3433
   3434wwn_prefix_err:
   3435	hw_err(hw, "eeprom read at offset %d failed\n", offset);
   3436	return 0;
   3437}
   3438
   3439/**
   3440 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
   3441 *  @hw: pointer to hardware structure
   3442 *  @enable: enable or disable switch for MAC anti-spoofing
   3443 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
   3444 *
   3445 **/
   3446void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   3447{
   3448	int vf_target_reg = vf >> 3;
   3449	int vf_target_shift = vf % 8;
   3450	u32 pfvfspoof;
   3451
   3452	if (hw->mac.type == ixgbe_mac_82598EB)
   3453		return;
   3454
   3455	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   3456	if (enable)
   3457		pfvfspoof |= BIT(vf_target_shift);
   3458	else
   3459		pfvfspoof &= ~BIT(vf_target_shift);
   3460	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   3461}
   3462
   3463/**
   3464 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
   3465 *  @hw: pointer to hardware structure
   3466 *  @enable: enable or disable switch for VLAN anti-spoofing
   3467 *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
   3468 *
   3469 **/
   3470void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
   3471{
   3472	int vf_target_reg = vf >> 3;
   3473	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
   3474	u32 pfvfspoof;
   3475
   3476	if (hw->mac.type == ixgbe_mac_82598EB)
   3477		return;
   3478
   3479	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
   3480	if (enable)
   3481		pfvfspoof |= BIT(vf_target_shift);
   3482	else
   3483		pfvfspoof &= ~BIT(vf_target_shift);
   3484	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
   3485}
   3486
   3487/**
   3488 *  ixgbe_get_device_caps_generic - Get additional device capabilities
   3489 *  @hw: pointer to hardware structure
   3490 *  @device_caps: the EEPROM word with the extra device capabilities
   3491 *
   3492 *  This function will read the EEPROM location for the device capabilities,
   3493 *  and return the word through device_caps.
   3494 **/
   3495s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
   3496{
   3497	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
   3498
   3499	return 0;
   3500}
   3501
   3502/**
   3503 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
   3504 * @hw: pointer to hardware structure
   3505 * @num_pb: number of packet buffers to allocate
   3506 * @headroom: reserve n KB of headroom
   3507 * @strategy: packet buffer allocation strategy
   3508 **/
   3509void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
   3510			     int num_pb,
   3511			     u32 headroom,
   3512			     int strategy)
   3513{
   3514	u32 pbsize = hw->mac.rx_pb_size;
   3515	int i = 0;
   3516	u32 rxpktsize, txpktsize, txpbthresh;
   3517
   3518	/* Reserve headroom */
   3519	pbsize -= headroom;
   3520
   3521	if (!num_pb)
   3522		num_pb = 1;
   3523
   3524	/* Divide remaining packet buffer space amongst the number
   3525	 * of packet buffers requested using supplied strategy.
   3526	 */
   3527	switch (strategy) {
   3528	case (PBA_STRATEGY_WEIGHTED):
   3529		/* pba_80_48 strategy weight first half of packet buffer with
   3530		 * 5/8 of the packet buffer space.
   3531		 */
   3532		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
   3533		pbsize -= rxpktsize * (num_pb / 2);
   3534		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
   3535		for (; i < (num_pb / 2); i++)
   3536			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   3537		fallthrough; /* configure remaining packet buffers */
   3538	case (PBA_STRATEGY_EQUAL):
   3539		/* Divide the remaining Rx packet buffer evenly among the TCs */
   3540		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
   3541		for (; i < num_pb; i++)
   3542			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
   3543		break;
   3544	default:
   3545		break;
   3546	}
   3547
   3548	/*
   3549	 * Setup Tx packet buffer and threshold equally for all TCs
   3550	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
   3551	 * 10 since the largest packet we support is just over 9K.
   3552	 */
   3553	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
   3554	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
   3555	for (i = 0; i < num_pb; i++) {
   3556		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
   3557		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
   3558	}
   3559
   3560	/* Clear unused TCs, if any, to zero buffer size*/
   3561	for (; i < IXGBE_MAX_PB; i++) {
   3562		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
   3563		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
   3564		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
   3565	}
   3566}
   3567
   3568/**
   3569 *  ixgbe_calculate_checksum - Calculate checksum for buffer
   3570 *  @buffer: pointer to EEPROM
   3571 *  @length: size of EEPROM to calculate a checksum for
   3572 *
   3573 *  Calculates the checksum for some buffer on a specified length.  The
   3574 *  checksum calculated is returned.
   3575 **/
   3576u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
   3577{
   3578	u32 i;
   3579	u8 sum = 0;
   3580
   3581	if (!buffer)
   3582		return 0;
   3583
   3584	for (i = 0; i < length; i++)
   3585		sum += buffer[i];
   3586
   3587	return (u8) (0 - sum);
   3588}
   3589
   3590/**
   3591 *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
   3592 *  @hw: pointer to the HW structure
   3593 *  @buffer: command to write and where the return status will be placed
   3594 *  @length: length of buffer, must be multiple of 4 bytes
   3595 *  @timeout: time in ms to wait for command completion
   3596 *
   3597 *  Communicates with the manageability block. On success return 0
   3598 *  else returns semaphore error when encountering an error acquiring
   3599 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   3600 *
   3601 *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
   3602 *  by the caller.
   3603 **/
   3604s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
   3605		       u32 timeout)
   3606{
   3607	u32 hicr, i, fwsts;
   3608	u16 dword_len;
   3609
   3610	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   3611		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
   3612		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3613	}
   3614
   3615	/* Set bit 9 of FWSTS clearing FW reset indication */
   3616	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
   3617	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
   3618
   3619	/* Check that the host interface is enabled. */
   3620	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3621	if (!(hicr & IXGBE_HICR_EN)) {
   3622		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
   3623		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3624	}
   3625
   3626	/* Calculate length in DWORDs. We must be DWORD aligned */
   3627	if (length % sizeof(u32)) {
   3628		hw_dbg(hw, "Buffer length failure, not aligned to dword");
   3629		return IXGBE_ERR_INVALID_ARGUMENT;
   3630	}
   3631
   3632	dword_len = length >> 2;
   3633
   3634	/* The device driver writes the relevant command block
   3635	 * into the ram area.
   3636	 */
   3637	for (i = 0; i < dword_len; i++)
   3638		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
   3639				      i, (__force u32)cpu_to_le32(buffer[i]));
   3640
   3641	/* Setting this bit tells the ARC that a new command is pending. */
   3642	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
   3643
   3644	for (i = 0; i < timeout; i++) {
   3645		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
   3646		if (!(hicr & IXGBE_HICR_C))
   3647			break;
   3648		usleep_range(1000, 2000);
   3649	}
   3650
   3651	/* Check command successful completion. */
   3652	if ((timeout && i == timeout) ||
   3653	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
   3654		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3655
   3656	return 0;
   3657}
   3658
   3659/**
   3660 *  ixgbe_host_interface_command - Issue command to manageability block
   3661 *  @hw: pointer to the HW structure
   3662 *  @buffer: contains the command to write and where the return status will
   3663 *           be placed
   3664 *  @length: length of buffer, must be multiple of 4 bytes
   3665 *  @timeout: time in ms to wait for command completion
   3666 *  @return_data: read and return data from the buffer (true) or not (false)
   3667 *  Needed because FW structures are big endian and decoding of
   3668 *  these fields can be 8 bit or 16 bit based on command. Decoding
   3669 *  is not easily understood without making a table of commands.
   3670 *  So we will leave this up to the caller to read back the data
   3671 *  in these cases.
   3672 *
   3673 *  Communicates with the manageability block.  On success return 0
   3674 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
   3675 **/
   3676s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
   3677				 u32 length, u32 timeout,
   3678				 bool return_data)
   3679{
   3680	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
   3681	struct ixgbe_hic_hdr *hdr = buffer;
   3682	u32 *u32arr = buffer;
   3683	u16 buf_len, dword_len;
   3684	s32 status;
   3685	u32 bi;
   3686
   3687	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
   3688		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
   3689		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3690	}
   3691	/* Take management host interface semaphore */
   3692	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   3693	if (status)
   3694		return status;
   3695
   3696	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
   3697	if (status)
   3698		goto rel_out;
   3699
   3700	if (!return_data)
   3701		goto rel_out;
   3702
   3703	/* Calculate length in DWORDs */
   3704	dword_len = hdr_size >> 2;
   3705
   3706	/* first pull in the header so we know the buffer length */
   3707	for (bi = 0; bi < dword_len; bi++) {
   3708		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3709		le32_to_cpus(&u32arr[bi]);
   3710	}
   3711
   3712	/* If there is any thing in data position pull it in */
   3713	buf_len = hdr->buf_len;
   3714	if (!buf_len)
   3715		goto rel_out;
   3716
   3717	if (length < round_up(buf_len, 4) + hdr_size) {
   3718		hw_dbg(hw, "Buffer not large enough for reply message.\n");
   3719		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3720		goto rel_out;
   3721	}
   3722
   3723	/* Calculate length in DWORDs, add 3 for odd lengths */
   3724	dword_len = (buf_len + 3) >> 2;
   3725
   3726	/* Pull in the rest of the buffer (bi is where we left off) */
   3727	for (; bi <= dword_len; bi++) {
   3728		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
   3729		le32_to_cpus(&u32arr[bi]);
   3730	}
   3731
   3732rel_out:
   3733	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
   3734
   3735	return status;
   3736}
   3737
   3738/**
   3739 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
   3740 *  @hw: pointer to the HW structure
   3741 *  @maj: driver version major number
   3742 *  @min: driver version minor number
   3743 *  @build: driver version build number
   3744 *  @sub: driver version sub build number
   3745 *  @len: length of driver_ver string
   3746 *  @driver_ver: driver string
   3747 *
   3748 *  Sends driver version number to firmware through the manageability
   3749 *  block.  On success return 0
   3750 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
   3751 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
   3752 **/
   3753s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
   3754				 u8 build, u8 sub, __always_unused u16 len,
   3755				 __always_unused const char *driver_ver)
   3756{
   3757	struct ixgbe_hic_drv_info fw_cmd;
   3758	int i;
   3759	s32 ret_val;
   3760
   3761	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
   3762	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
   3763	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
   3764	fw_cmd.port_num = hw->bus.func;
   3765	fw_cmd.ver_maj = maj;
   3766	fw_cmd.ver_min = min;
   3767	fw_cmd.ver_build = build;
   3768	fw_cmd.ver_sub = sub;
   3769	fw_cmd.hdr.checksum = 0;
   3770	fw_cmd.pad = 0;
   3771	fw_cmd.pad2 = 0;
   3772	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
   3773				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
   3774
   3775	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
   3776		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
   3777						       sizeof(fw_cmd),
   3778						       IXGBE_HI_COMMAND_TIMEOUT,
   3779						       true);
   3780		if (ret_val != 0)
   3781			continue;
   3782
   3783		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
   3784		    FW_CEM_RESP_STATUS_SUCCESS)
   3785			ret_val = 0;
   3786		else
   3787			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
   3788
   3789		break;
   3790	}
   3791
   3792	return ret_val;
   3793}
   3794
   3795/**
   3796 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
   3797 * @hw: pointer to the hardware structure
   3798 *
   3799 * The 82599 and x540 MACs can experience issues if TX work is still pending
   3800 * when a reset occurs.  This function prevents this by flushing the PCIe
   3801 * buffers on the system.
   3802 **/
   3803void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
   3804{
   3805	u32 gcr_ext, hlreg0, i, poll;
   3806	u16 value;
   3807
   3808	/*
   3809	 * If double reset is not requested then all transactions should
   3810	 * already be clear and as such there is no work to do
   3811	 */
   3812	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
   3813		return;
   3814
   3815	/*
   3816	 * Set loopback enable to prevent any transmits from being sent
   3817	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
   3818	 * has already been cleared.
   3819	 */
   3820	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
   3821	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
   3822
   3823	/* wait for a last completion before clearing buffers */
   3824	IXGBE_WRITE_FLUSH(hw);
   3825	usleep_range(3000, 6000);
   3826
   3827	/* Before proceeding, make sure that the PCIe block does not have
   3828	 * transactions pending.
   3829	 */
   3830	poll = ixgbe_pcie_timeout_poll(hw);
   3831	for (i = 0; i < poll; i++) {
   3832		usleep_range(100, 200);
   3833		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
   3834		if (ixgbe_removed(hw->hw_addr))
   3835			break;
   3836		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
   3837			break;
   3838	}
   3839
   3840	/* initiate cleaning flow for buffers in the PCIe transaction layer */
   3841	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
   3842	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
   3843			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
   3844
   3845	/* Flush all writes and allow 20usec for all transactions to clear */
   3846	IXGBE_WRITE_FLUSH(hw);
   3847	udelay(20);
   3848
   3849	/* restore previous register values */
   3850	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
   3851	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
   3852}
   3853
   3854static const u8 ixgbe_emc_temp_data[4] = {
   3855	IXGBE_EMC_INTERNAL_DATA,
   3856	IXGBE_EMC_DIODE1_DATA,
   3857	IXGBE_EMC_DIODE2_DATA,
   3858	IXGBE_EMC_DIODE3_DATA
   3859};
   3860static const u8 ixgbe_emc_therm_limit[4] = {
   3861	IXGBE_EMC_INTERNAL_THERM_LIMIT,
   3862	IXGBE_EMC_DIODE1_THERM_LIMIT,
   3863	IXGBE_EMC_DIODE2_THERM_LIMIT,
   3864	IXGBE_EMC_DIODE3_THERM_LIMIT
   3865};
   3866
   3867/**
   3868 *  ixgbe_get_ets_data - Extracts the ETS bit data
   3869 *  @hw: pointer to hardware structure
   3870 *  @ets_cfg: extected ETS data
   3871 *  @ets_offset: offset of ETS data
   3872 *
   3873 *  Returns error code.
   3874 **/
   3875static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
   3876			      u16 *ets_offset)
   3877{
   3878	s32 status;
   3879
   3880	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
   3881	if (status)
   3882		return status;
   3883
   3884	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
   3885		return IXGBE_NOT_IMPLEMENTED;
   3886
   3887	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
   3888	if (status)
   3889		return status;
   3890
   3891	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
   3892		return IXGBE_NOT_IMPLEMENTED;
   3893
   3894	return 0;
   3895}
   3896
   3897/**
   3898 *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
   3899 *  @hw: pointer to hardware structure
   3900 *
   3901 *  Returns the thermal sensor data structure
   3902 **/
   3903s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
   3904{
   3905	s32 status;
   3906	u16 ets_offset;
   3907	u16 ets_cfg;
   3908	u16 ets_sensor;
   3909	u8  num_sensors;
   3910	u8  i;
   3911	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
   3912
   3913	/* Only support thermal sensors attached to physical port 0 */
   3914	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
   3915		return IXGBE_NOT_IMPLEMENTED;
   3916
   3917	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
   3918	if (status)
   3919		return status;
   3920
   3921	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
   3922	if (num_sensors > IXGBE_MAX_SENSORS)
   3923		num_sensors = IXGBE_MAX_SENSORS;
   3924
   3925	for (i = 0; i < num_sensors; i++) {
   3926		u8  sensor_index;
   3927		u8  sensor_location;
   3928
   3929		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
   3930					     &ets_sensor);
   3931		if (status)
   3932			return status;
   3933
   3934		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
   3935				IXGBE_ETS_DATA_INDEX_SHIFT);
   3936		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
   3937				   IXGBE_ETS_DATA_LOC_SHIFT);
   3938
   3939		if (sensor_location != 0) {
   3940			status = hw->phy.ops.read_i2c_byte(hw,
   3941					ixgbe_emc_temp_data[sensor_index],
   3942					IXGBE_I2C_THERMAL_SENSOR_ADDR,
   3943					&data->sensor[i].temp);
   3944			if (status)
   3945				return status;
   3946		}
   3947	}
   3948
   3949	return 0;
   3950}
   3951
   3952/**
   3953 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
   3954 * @hw: pointer to hardware structure
   3955 *
   3956 * Inits the thermal sensor thresholds according to the NVM map
   3957 * and save off the threshold and location values into mac.thermal_sensor_data
   3958 **/
   3959s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
   3960{
   3961	s32 status;
   3962	u16 ets_offset;
   3963	u16 ets_cfg;
   3964	u16 ets_sensor;
   3965	u8  low_thresh_delta;
   3966	u8  num_sensors;
   3967	u8  therm_limit;
   3968	u8  i;
   3969	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
   3970
   3971	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
   3972
   3973	/* Only support thermal sensors attached to physical port 0 */
   3974	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
   3975		return IXGBE_NOT_IMPLEMENTED;
   3976
   3977	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
   3978	if (status)
   3979		return status;
   3980
   3981	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
   3982			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
   3983	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
   3984	if (num_sensors > IXGBE_MAX_SENSORS)
   3985		num_sensors = IXGBE_MAX_SENSORS;
   3986
   3987	for (i = 0; i < num_sensors; i++) {
   3988		u8  sensor_index;
   3989		u8  sensor_location;
   3990
   3991		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
   3992			hw_err(hw, "eeprom read at offset %d failed\n",
   3993			       ets_offset + 1 + i);
   3994			continue;
   3995		}
   3996		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
   3997				IXGBE_ETS_DATA_INDEX_SHIFT);
   3998		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
   3999				   IXGBE_ETS_DATA_LOC_SHIFT);
   4000		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
   4001
   4002		hw->phy.ops.write_i2c_byte(hw,
   4003			ixgbe_emc_therm_limit[sensor_index],
   4004			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
   4005
   4006		if (sensor_location == 0)
   4007			continue;
   4008
   4009		data->sensor[i].location = sensor_location;
   4010		data->sensor[i].caution_thresh = therm_limit;
   4011		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
   4012	}
   4013
   4014	return 0;
   4015}
   4016
   4017/**
   4018 *  ixgbe_get_orom_version - Return option ROM from EEPROM
   4019 *
   4020 *  @hw: pointer to hardware structure
   4021 *  @nvm_ver: pointer to output structure
   4022 *
   4023 *  if valid option ROM version, nvm_ver->or_valid set to true
   4024 *  else nvm_ver->or_valid is false.
   4025 **/
   4026void ixgbe_get_orom_version(struct ixgbe_hw *hw,
   4027			    struct ixgbe_nvm_version *nvm_ver)
   4028{
   4029	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
   4030
   4031	nvm_ver->or_valid = false;
   4032	/* Option Rom may or may not be present.  Start with pointer */
   4033	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
   4034
   4035	/* make sure offset is valid */
   4036	if (offset == 0x0 || offset == NVM_INVALID_PTR)
   4037		return;
   4038
   4039	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
   4040	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
   4041
   4042	/* option rom exists and is valid */
   4043	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
   4044	    eeprom_cfg_blkl == NVM_VER_INVALID ||
   4045	    eeprom_cfg_blkh == NVM_VER_INVALID)
   4046		return;
   4047
   4048	nvm_ver->or_valid = true;
   4049	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
   4050	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
   4051			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
   4052	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
   4053}
   4054
   4055/**
   4056 *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
   4057 *  @hw: pointer to hardware structure
   4058 *  @nvm_ver: pointer to output structure
   4059 *
   4060 *  if valid OEM product version, nvm_ver->oem_valid set to true
   4061 *  else nvm_ver->oem_valid is false.
   4062 **/
   4063void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
   4064				struct ixgbe_nvm_version *nvm_ver)
   4065{
   4066	u16 rel_num, prod_ver, mod_len, cap, offset;
   4067
   4068	nvm_ver->oem_valid = false;
   4069	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
   4070
   4071	/* Return is offset to OEM Product Version block is invalid */
   4072	if (offset == 0x0 || offset == NVM_INVALID_PTR)
   4073		return;
   4074
   4075	/* Read product version block */
   4076	hw->eeprom.ops.read(hw, offset, &mod_len);
   4077	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
   4078
   4079	/* Return if OEM product version block is invalid */
   4080	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
   4081	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
   4082		return;
   4083
   4084	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
   4085	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
   4086
   4087	/* Return if version is invalid */
   4088	if ((rel_num | prod_ver) == 0x0 ||
   4089	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
   4090		return;
   4091
   4092	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
   4093	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
   4094	nvm_ver->oem_release = rel_num;
   4095	nvm_ver->oem_valid = true;
   4096}
   4097
   4098/**
   4099 *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
   4100 *
   4101 *  @hw: pointer to hardware structure
   4102 *  @nvm_ver: pointer to output structure
   4103 *
   4104 *  word read errors will return 0xFFFF
   4105 **/
   4106void ixgbe_get_etk_id(struct ixgbe_hw *hw,
   4107		      struct ixgbe_nvm_version *nvm_ver)
   4108{
   4109	u16 etk_id_l, etk_id_h;
   4110
   4111	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
   4112		etk_id_l = NVM_VER_INVALID;
   4113	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
   4114		etk_id_h = NVM_VER_INVALID;
   4115
   4116	/* The word order for the version format is determined by high order
   4117	 * word bit 15.
   4118	 */
   4119	if ((etk_id_h & NVM_ETK_VALID) == 0) {
   4120		nvm_ver->etk_id = etk_id_h;
   4121		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
   4122	} else {
   4123		nvm_ver->etk_id = etk_id_l;
   4124		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
   4125	}
   4126}
   4127
   4128void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
   4129{
   4130	u32 rxctrl;
   4131
   4132	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4133	if (rxctrl & IXGBE_RXCTRL_RXEN) {
   4134		if (hw->mac.type != ixgbe_mac_82598EB) {
   4135			u32 pfdtxgswc;
   4136
   4137			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4138			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
   4139				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
   4140				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4141				hw->mac.set_lben = true;
   4142			} else {
   4143				hw->mac.set_lben = false;
   4144			}
   4145		}
   4146		rxctrl &= ~IXGBE_RXCTRL_RXEN;
   4147		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
   4148	}
   4149}
   4150
   4151void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
   4152{
   4153	u32 rxctrl;
   4154
   4155	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
   4156	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
   4157
   4158	if (hw->mac.type != ixgbe_mac_82598EB) {
   4159		if (hw->mac.set_lben) {
   4160			u32 pfdtxgswc;
   4161
   4162			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
   4163			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
   4164			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
   4165			hw->mac.set_lben = false;
   4166		}
   4167	}
   4168}
   4169
   4170/** ixgbe_mng_present - returns true when management capability is present
   4171 * @hw: pointer to hardware structure
   4172 **/
   4173bool ixgbe_mng_present(struct ixgbe_hw *hw)
   4174{
   4175	u32 fwsm;
   4176
   4177	if (hw->mac.type < ixgbe_mac_82599EB)
   4178		return false;
   4179
   4180	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
   4181
   4182	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
   4183}
   4184
   4185/**
   4186 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
   4187 *  @hw: pointer to hardware structure
   4188 *  @speed: new link speed
   4189 *  @autoneg_wait_to_complete: true when waiting for completion is needed
   4190 *
   4191 *  Set the link speed in the MAC and/or PHY register and restarts link.
   4192 */
   4193s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
   4194					  ixgbe_link_speed speed,
   4195					  bool autoneg_wait_to_complete)
   4196{
   4197	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4198	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
   4199	s32 status = 0;
   4200	u32 speedcnt = 0;
   4201	u32 i = 0;
   4202	bool autoneg, link_up = false;
   4203
   4204	/* Mask off requested but non-supported speeds */
   4205	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
   4206	if (status)
   4207		return status;
   4208
   4209	speed &= link_speed;
   4210
   4211	/* Try each speed one by one, highest priority first.  We do this in
   4212	 * software because 10Gb fiber doesn't support speed autonegotiation.
   4213	 */
   4214	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
   4215		speedcnt++;
   4216		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
   4217
   4218		/* Set the module link speed */
   4219		switch (hw->phy.media_type) {
   4220		case ixgbe_media_type_fiber:
   4221			hw->mac.ops.set_rate_select_speed(hw,
   4222						    IXGBE_LINK_SPEED_10GB_FULL);
   4223			break;
   4224		case ixgbe_media_type_fiber_qsfp:
   4225			/* QSFP module automatically detects MAC link speed */
   4226			break;
   4227		default:
   4228			hw_dbg(hw, "Unexpected media type\n");
   4229			break;
   4230		}
   4231
   4232		/* Allow module to change analog characteristics (1G->10G) */
   4233		msleep(40);
   4234
   4235		status = hw->mac.ops.setup_mac_link(hw,
   4236						    IXGBE_LINK_SPEED_10GB_FULL,
   4237						    autoneg_wait_to_complete);
   4238		if (status)
   4239			return status;
   4240
   4241		/* Flap the Tx laser if it has not already been done */
   4242		if (hw->mac.ops.flap_tx_laser)
   4243			hw->mac.ops.flap_tx_laser(hw);
   4244
   4245		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
   4246		 * Section 73.10.2, we may have to wait up to 500ms if KR is
   4247		 * attempted.  82599 uses the same timing for 10g SFI.
   4248		 */
   4249		for (i = 0; i < 5; i++) {
   4250			/* Wait for the link partner to also set speed */
   4251			msleep(100);
   4252
   4253			/* If we have link, just jump out */
   4254			status = hw->mac.ops.check_link(hw, &link_speed,
   4255							&link_up, false);
   4256			if (status)
   4257				return status;
   4258
   4259			if (link_up)
   4260				goto out;
   4261		}
   4262	}
   4263
   4264	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
   4265		speedcnt++;
   4266		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
   4267			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
   4268
   4269		/* Set the module link speed */
   4270		switch (hw->phy.media_type) {
   4271		case ixgbe_media_type_fiber:
   4272			hw->mac.ops.set_rate_select_speed(hw,
   4273						     IXGBE_LINK_SPEED_1GB_FULL);
   4274			break;
   4275		case ixgbe_media_type_fiber_qsfp:
   4276			/* QSFP module automatically detects link speed */
   4277			break;
   4278		default:
   4279			hw_dbg(hw, "Unexpected media type\n");
   4280			break;
   4281		}
   4282
   4283		/* Allow module to change analog characteristics (10G->1G) */
   4284		msleep(40);
   4285
   4286		status = hw->mac.ops.setup_mac_link(hw,
   4287						    IXGBE_LINK_SPEED_1GB_FULL,
   4288						    autoneg_wait_to_complete);
   4289		if (status)
   4290			return status;
   4291
   4292		/* Flap the Tx laser if it has not already been done */
   4293		if (hw->mac.ops.flap_tx_laser)
   4294			hw->mac.ops.flap_tx_laser(hw);
   4295
   4296		/* Wait for the link partner to also set speed */
   4297		msleep(100);
   4298
   4299		/* If we have link, just jump out */
   4300		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
   4301						false);
   4302		if (status)
   4303			return status;
   4304
   4305		if (link_up)
   4306			goto out;
   4307	}
   4308
   4309	/* We didn't get link.  Configure back to the highest speed we tried,
   4310	 * (if there was more than one).  We call ourselves back with just the
   4311	 * single highest speed that the user requested.
   4312	 */
   4313	if (speedcnt > 1)
   4314		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
   4315						      highest_link_speed,
   4316						      autoneg_wait_to_complete);
   4317
   4318out:
   4319	/* Set autoneg_advertised value based on input link speed */
   4320	hw->phy.autoneg_advertised = 0;
   4321
   4322	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
   4323		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
   4324
   4325	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
   4326		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
   4327
   4328	return status;
   4329}
   4330
   4331/**
   4332 *  ixgbe_set_soft_rate_select_speed - Set module link speed
   4333 *  @hw: pointer to hardware structure
   4334 *  @speed: link speed to set
   4335 *
   4336 *  Set module link speed via the soft rate select.
   4337 */
   4338void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
   4339				      ixgbe_link_speed speed)
   4340{
   4341	s32 status;
   4342	u8 rs, eeprom_data;
   4343
   4344	switch (speed) {
   4345	case IXGBE_LINK_SPEED_10GB_FULL:
   4346		/* one bit mask same as setting on */
   4347		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
   4348		break;
   4349	case IXGBE_LINK_SPEED_1GB_FULL:
   4350		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
   4351		break;
   4352	default:
   4353		hw_dbg(hw, "Invalid fixed module speed\n");
   4354		return;
   4355	}
   4356
   4357	/* Set RS0 */
   4358	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4359					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4360					   &eeprom_data);
   4361	if (status) {
   4362		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
   4363		return;
   4364	}
   4365
   4366	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4367
   4368	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
   4369					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4370					    eeprom_data);
   4371	if (status) {
   4372		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
   4373		return;
   4374	}
   4375
   4376	/* Set RS1 */
   4377	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4378					   IXGBE_I2C_EEPROM_DEV_ADDR2,
   4379					   &eeprom_data);
   4380	if (status) {
   4381		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
   4382		return;
   4383	}
   4384
   4385	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
   4386
   4387	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
   4388					    IXGBE_I2C_EEPROM_DEV_ADDR2,
   4389					    eeprom_data);
   4390	if (status) {
   4391		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
   4392		return;
   4393	}
   4394}