cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rvu.c (84143B)


      1// SPDX-License-Identifier: GPL-2.0
      2/* Marvell RVU Admin Function driver
      3 *
      4 * Copyright (C) 2018 Marvell.
      5 *
      6 */
      7
      8#include <linux/module.h>
      9#include <linux/interrupt.h>
     10#include <linux/delay.h>
     11#include <linux/irq.h>
     12#include <linux/pci.h>
     13#include <linux/sysfs.h>
     14
     15#include "cgx.h"
     16#include "rvu.h"
     17#include "rvu_reg.h"
     18#include "ptp.h"
     19
     20#include "rvu_trace.h"
     21
     22#define DRV_NAME	"rvu_af"
     23#define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
     24
     25static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
     26
     27static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
     28				struct rvu_block *block, int lf);
     29static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
     30				  struct rvu_block *block, int lf);
     31static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
     32
     33static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
     34			 int type, int num,
     35			 void (mbox_handler)(struct work_struct *),
     36			 void (mbox_up_handler)(struct work_struct *));
     37enum {
     38	TYPE_AFVF,
     39	TYPE_AFPF,
     40};
     41
     42/* Supported devices */
     43static const struct pci_device_id rvu_id_table[] = {
     44	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
     45	{ 0, }  /* end of table */
     46};
     47
     48MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
     49MODULE_DESCRIPTION(DRV_STRING);
     50MODULE_LICENSE("GPL v2");
     51MODULE_DEVICE_TABLE(pci, rvu_id_table);
     52
     53static char *mkex_profile; /* MKEX profile name */
     54module_param(mkex_profile, charp, 0000);
     55MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
     56
     57static char *kpu_profile; /* KPU profile name */
     58module_param(kpu_profile, charp, 0000);
     59MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
     60
     61static void rvu_setup_hw_capabilities(struct rvu *rvu)
     62{
     63	struct rvu_hwinfo *hw = rvu->hw;
     64
     65	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
     66	hw->cap.nix_fixed_txschq_mapping = false;
     67	hw->cap.nix_shaping = true;
     68	hw->cap.nix_tx_link_bp = true;
     69	hw->cap.nix_rx_multicast = true;
     70	hw->cap.nix_shaper_toggle_wait = false;
     71	hw->rvu = rvu;
     72
     73	if (is_rvu_pre_96xx_C0(rvu)) {
     74		hw->cap.nix_fixed_txschq_mapping = true;
     75		hw->cap.nix_txsch_per_cgx_lmac = 4;
     76		hw->cap.nix_txsch_per_lbk_lmac = 132;
     77		hw->cap.nix_txsch_per_sdp_lmac = 76;
     78		hw->cap.nix_shaping = false;
     79		hw->cap.nix_tx_link_bp = false;
     80		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
     81			hw->cap.nix_rx_multicast = false;
     82	}
     83	if (!is_rvu_pre_96xx_C0(rvu))
     84		hw->cap.nix_shaper_toggle_wait = true;
     85
     86	if (!is_rvu_otx2(rvu))
     87		hw->cap.per_pf_mbox_regs = true;
     88}
     89
     90/* Poll a RVU block's register 'offset', for a 'zero'
     91 * or 'nonzero' at bits specified by 'mask'
     92 */
     93int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
     94{
     95	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
     96	bool twice = false;
     97	void __iomem *reg;
     98	u64 reg_val;
     99
    100	reg = rvu->afreg_base + ((block << 28) | offset);
    101again:
    102	reg_val = readq(reg);
    103	if (zero && !(reg_val & mask))
    104		return 0;
    105	if (!zero && (reg_val & mask))
    106		return 0;
    107	if (time_before(jiffies, timeout)) {
    108		usleep_range(1, 5);
    109		goto again;
    110	}
    111	/* In scenarios where CPU is scheduled out before checking
    112	 * 'time_before' (above) and gets scheduled in such that
    113	 * jiffies are beyond timeout value, then check again if HW is
    114	 * done with the operation in the meantime.
    115	 */
    116	if (!twice) {
    117		twice = true;
    118		goto again;
    119	}
    120	return -EBUSY;
    121}
    122
    123int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
    124{
    125	int id;
    126
    127	if (!rsrc->bmap)
    128		return -EINVAL;
    129
    130	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
    131	if (id >= rsrc->max)
    132		return -ENOSPC;
    133
    134	__set_bit(id, rsrc->bmap);
    135
    136	return id;
    137}
    138
    139int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
    140{
    141	int start;
    142
    143	if (!rsrc->bmap)
    144		return -EINVAL;
    145
    146	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
    147	if (start >= rsrc->max)
    148		return -ENOSPC;
    149
    150	bitmap_set(rsrc->bmap, start, nrsrc);
    151	return start;
    152}
    153
    154static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
    155{
    156	if (!rsrc->bmap)
    157		return;
    158	if (start >= rsrc->max)
    159		return;
    160
    161	bitmap_clear(rsrc->bmap, start, nrsrc);
    162}
    163
    164bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
    165{
    166	int start;
    167
    168	if (!rsrc->bmap)
    169		return false;
    170
    171	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
    172	if (start >= rsrc->max)
    173		return false;
    174
    175	return true;
    176}
    177
    178void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
    179{
    180	if (!rsrc->bmap)
    181		return;
    182
    183	__clear_bit(id, rsrc->bmap);
    184}
    185
    186int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
    187{
    188	int used;
    189
    190	if (!rsrc->bmap)
    191		return 0;
    192
    193	used = bitmap_weight(rsrc->bmap, rsrc->max);
    194	return (rsrc->max - used);
    195}
    196
    197bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
    198{
    199	if (!rsrc->bmap)
    200		return false;
    201
    202	return !test_bit(id, rsrc->bmap);
    203}
    204
    205int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
    206{
    207	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
    208			     sizeof(long), GFP_KERNEL);
    209	if (!rsrc->bmap)
    210		return -ENOMEM;
    211	return 0;
    212}
    213
    214void rvu_free_bitmap(struct rsrc_bmap *rsrc)
    215{
    216	kfree(rsrc->bmap);
    217}
    218
    219/* Get block LF's HW index from a PF_FUNC's block slot number */
    220int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
    221{
    222	u16 match = 0;
    223	int lf;
    224
    225	mutex_lock(&rvu->rsrc_lock);
    226	for (lf = 0; lf < block->lf.max; lf++) {
    227		if (block->fn_map[lf] == pcifunc) {
    228			if (slot == match) {
    229				mutex_unlock(&rvu->rsrc_lock);
    230				return lf;
    231			}
    232			match++;
    233		}
    234	}
    235	mutex_unlock(&rvu->rsrc_lock);
    236	return -ENODEV;
    237}
    238
    239/* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
    240 * Some silicon variants of OcteonTX2 supports
    241 * multiple blocks of same type.
    242 *
    243 * @pcifunc has to be zero when no LF is yet attached.
    244 *
    245 * For a pcifunc if LFs are attached from multiple blocks of same type, then
    246 * return blkaddr of first encountered block.
    247 */
    248int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
    249{
    250	int devnum, blkaddr = -ENODEV;
    251	u64 cfg, reg;
    252	bool is_pf;
    253
    254	switch (blktype) {
    255	case BLKTYPE_NPC:
    256		blkaddr = BLKADDR_NPC;
    257		goto exit;
    258	case BLKTYPE_NPA:
    259		blkaddr = BLKADDR_NPA;
    260		goto exit;
    261	case BLKTYPE_NIX:
    262		/* For now assume NIX0 */
    263		if (!pcifunc) {
    264			blkaddr = BLKADDR_NIX0;
    265			goto exit;
    266		}
    267		break;
    268	case BLKTYPE_SSO:
    269		blkaddr = BLKADDR_SSO;
    270		goto exit;
    271	case BLKTYPE_SSOW:
    272		blkaddr = BLKADDR_SSOW;
    273		goto exit;
    274	case BLKTYPE_TIM:
    275		blkaddr = BLKADDR_TIM;
    276		goto exit;
    277	case BLKTYPE_CPT:
    278		/* For now assume CPT0 */
    279		if (!pcifunc) {
    280			blkaddr = BLKADDR_CPT0;
    281			goto exit;
    282		}
    283		break;
    284	}
    285
    286	/* Check if this is a RVU PF or VF */
    287	if (pcifunc & RVU_PFVF_FUNC_MASK) {
    288		is_pf = false;
    289		devnum = rvu_get_hwvf(rvu, pcifunc);
    290	} else {
    291		is_pf = true;
    292		devnum = rvu_get_pf(pcifunc);
    293	}
    294
    295	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
    296	 * 'BLKADDR_NIX1'.
    297	 */
    298	if (blktype == BLKTYPE_NIX) {
    299		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
    300			RVU_PRIV_HWVFX_NIXX_CFG(0);
    301		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
    302		if (cfg) {
    303			blkaddr = BLKADDR_NIX0;
    304			goto exit;
    305		}
    306
    307		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
    308			RVU_PRIV_HWVFX_NIXX_CFG(1);
    309		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
    310		if (cfg)
    311			blkaddr = BLKADDR_NIX1;
    312	}
    313
    314	if (blktype == BLKTYPE_CPT) {
    315		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
    316			RVU_PRIV_HWVFX_CPTX_CFG(0);
    317		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
    318		if (cfg) {
    319			blkaddr = BLKADDR_CPT0;
    320			goto exit;
    321		}
    322
    323		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
    324			RVU_PRIV_HWVFX_CPTX_CFG(1);
    325		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
    326		if (cfg)
    327			blkaddr = BLKADDR_CPT1;
    328	}
    329
    330exit:
    331	if (is_block_implemented(rvu->hw, blkaddr))
    332		return blkaddr;
    333	return -ENODEV;
    334}
    335
    336static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
    337				struct rvu_block *block, u16 pcifunc,
    338				u16 lf, bool attach)
    339{
    340	int devnum, num_lfs = 0;
    341	bool is_pf;
    342	u64 reg;
    343
    344	if (lf >= block->lf.max) {
    345		dev_err(&rvu->pdev->dev,
    346			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
    347			__func__, lf, block->name, block->lf.max);
    348		return;
    349	}
    350
    351	/* Check if this is for a RVU PF or VF */
    352	if (pcifunc & RVU_PFVF_FUNC_MASK) {
    353		is_pf = false;
    354		devnum = rvu_get_hwvf(rvu, pcifunc);
    355	} else {
    356		is_pf = true;
    357		devnum = rvu_get_pf(pcifunc);
    358	}
    359
    360	block->fn_map[lf] = attach ? pcifunc : 0;
    361
    362	switch (block->addr) {
    363	case BLKADDR_NPA:
    364		pfvf->npalf = attach ? true : false;
    365		num_lfs = pfvf->npalf;
    366		break;
    367	case BLKADDR_NIX0:
    368	case BLKADDR_NIX1:
    369		pfvf->nixlf = attach ? true : false;
    370		num_lfs = pfvf->nixlf;
    371		break;
    372	case BLKADDR_SSO:
    373		attach ? pfvf->sso++ : pfvf->sso--;
    374		num_lfs = pfvf->sso;
    375		break;
    376	case BLKADDR_SSOW:
    377		attach ? pfvf->ssow++ : pfvf->ssow--;
    378		num_lfs = pfvf->ssow;
    379		break;
    380	case BLKADDR_TIM:
    381		attach ? pfvf->timlfs++ : pfvf->timlfs--;
    382		num_lfs = pfvf->timlfs;
    383		break;
    384	case BLKADDR_CPT0:
    385		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
    386		num_lfs = pfvf->cptlfs;
    387		break;
    388	case BLKADDR_CPT1:
    389		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
    390		num_lfs = pfvf->cpt1_lfs;
    391		break;
    392	}
    393
    394	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
    395	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
    396}
    397
    398inline int rvu_get_pf(u16 pcifunc)
    399{
    400	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
    401}
    402
    403void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
    404{
    405	u64 cfg;
    406
    407	/* Get numVFs attached to this PF and first HWVF */
    408	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
    409	if (numvfs)
    410		*numvfs = (cfg >> 12) & 0xFF;
    411	if (hwvf)
    412		*hwvf = cfg & 0xFFF;
    413}
    414
    415static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
    416{
    417	int pf, func;
    418	u64 cfg;
    419
    420	pf = rvu_get_pf(pcifunc);
    421	func = pcifunc & RVU_PFVF_FUNC_MASK;
    422
    423	/* Get first HWVF attached to this PF */
    424	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
    425
    426	return ((cfg & 0xFFF) + func - 1);
    427}
    428
    429struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
    430{
    431	/* Check if it is a PF or VF */
    432	if (pcifunc & RVU_PFVF_FUNC_MASK)
    433		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
    434	else
    435		return &rvu->pf[rvu_get_pf(pcifunc)];
    436}
    437
    438static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
    439{
    440	int pf, vf, nvfs;
    441	u64 cfg;
    442
    443	pf = rvu_get_pf(pcifunc);
    444	if (pf >= rvu->hw->total_pfs)
    445		return false;
    446
    447	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
    448		return true;
    449
    450	/* Check if VF is within number of VFs attached to this PF */
    451	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
    452	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
    453	nvfs = (cfg >> 12) & 0xFF;
    454	if (vf >= nvfs)
    455		return false;
    456
    457	return true;
    458}
    459
    460bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
    461{
    462	struct rvu_block *block;
    463
    464	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
    465		return false;
    466
    467	block = &hw->block[blkaddr];
    468	return block->implemented;
    469}
    470
    471static void rvu_check_block_implemented(struct rvu *rvu)
    472{
    473	struct rvu_hwinfo *hw = rvu->hw;
    474	struct rvu_block *block;
    475	int blkid;
    476	u64 cfg;
    477
    478	/* For each block check if 'implemented' bit is set */
    479	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
    480		block = &hw->block[blkid];
    481		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
    482		if (cfg & BIT_ULL(11))
    483			block->implemented = true;
    484	}
    485}
    486
    487static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
    488{
    489	rvu_write64(rvu, BLKADDR_RVUM,
    490		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
    491		    RVU_BLK_RVUM_REVID);
    492}
    493
    494static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
    495{
    496	rvu_write64(rvu, BLKADDR_RVUM,
    497		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
    498}
    499
    500int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
    501{
    502	int err;
    503
    504	if (!block->implemented)
    505		return 0;
    506
    507	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
    508	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
    509			   true);
    510	return err;
    511}
    512
    513static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
    514{
    515	struct rvu_block *block = &rvu->hw->block[blkaddr];
    516	int err;
    517
    518	if (!block->implemented)
    519		return;
    520
    521	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
    522	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
    523	if (err) {
    524		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
    525		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
    526			;
    527	}
    528}
    529
    530static void rvu_reset_all_blocks(struct rvu *rvu)
    531{
    532	/* Do a HW reset of all RVU blocks */
    533	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
    534	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
    535	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
    536	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
    537	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
    538	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
    539	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
    540	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
    541	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
    542	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
    543	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
    544	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
    545	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
    546}
    547
    548static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
    549{
    550	struct rvu_pfvf *pfvf;
    551	u64 cfg;
    552	int lf;
    553
    554	for (lf = 0; lf < block->lf.max; lf++) {
    555		cfg = rvu_read64(rvu, block->addr,
    556				 block->lfcfg_reg | (lf << block->lfshift));
    557		if (!(cfg & BIT_ULL(63)))
    558			continue;
    559
    560		/* Set this resource as being used */
    561		__set_bit(lf, block->lf.bmap);
    562
    563		/* Get, to whom this LF is attached */
    564		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
    565		rvu_update_rsrc_map(rvu, pfvf, block,
    566				    (cfg >> 8) & 0xFFFF, lf, true);
    567
    568		/* Set start MSIX vector for this LF within this PF/VF */
    569		rvu_set_msix_offset(rvu, pfvf, block, lf);
    570	}
    571}
    572
    573static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
    574{
    575	int min_vecs;
    576
    577	if (!vf)
    578		goto check_pf;
    579
    580	if (!nvecs) {
    581		dev_warn(rvu->dev,
    582			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
    583			 pf, vf - 1, nvecs);
    584	}
    585	return;
    586
    587check_pf:
    588	if (pf == 0)
    589		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
    590	else
    591		min_vecs = RVU_PF_INT_VEC_CNT;
    592
    593	if (!(nvecs < min_vecs))
    594		return;
    595	dev_warn(rvu->dev,
    596		 "PF%d is configured with too few vectors, %d, min is %d\n",
    597		 pf, nvecs, min_vecs);
    598}
    599
    600static int rvu_setup_msix_resources(struct rvu *rvu)
    601{
    602	struct rvu_hwinfo *hw = rvu->hw;
    603	int pf, vf, numvfs, hwvf, err;
    604	int nvecs, offset, max_msix;
    605	struct rvu_pfvf *pfvf;
    606	u64 cfg, phy_addr;
    607	dma_addr_t iova;
    608
    609	for (pf = 0; pf < hw->total_pfs; pf++) {
    610		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
    611		/* If PF is not enabled, nothing to do */
    612		if (!((cfg >> 20) & 0x01))
    613			continue;
    614
    615		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
    616
    617		pfvf = &rvu->pf[pf];
    618		/* Get num of MSIX vectors attached to this PF */
    619		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
    620		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
    621		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
    622
    623		/* Alloc msix bitmap for this PF */
    624		err = rvu_alloc_bitmap(&pfvf->msix);
    625		if (err)
    626			return err;
    627
    628		/* Allocate memory for MSIX vector to RVU block LF mapping */
    629		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
    630						sizeof(u16), GFP_KERNEL);
    631		if (!pfvf->msix_lfmap)
    632			return -ENOMEM;
    633
    634		/* For PF0 (AF) firmware will set msix vector offsets for
    635		 * AF, block AF and PF0_INT vectors, so jump to VFs.
    636		 */
    637		if (!pf)
    638			goto setup_vfmsix;
    639
    640		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
    641		 * These are allocated on driver init and never freed,
    642		 * so no need to set 'msix_lfmap' for these.
    643		 */
    644		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
    645		nvecs = (cfg >> 12) & 0xFF;
    646		cfg &= ~0x7FFULL;
    647		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
    648		rvu_write64(rvu, BLKADDR_RVUM,
    649			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
    650setup_vfmsix:
    651		/* Alloc msix bitmap for VFs */
    652		for (vf = 0; vf < numvfs; vf++) {
    653			pfvf =  &rvu->hwvf[hwvf + vf];
    654			/* Get num of MSIX vectors attached to this VF */
    655			cfg = rvu_read64(rvu, BLKADDR_RVUM,
    656					 RVU_PRIV_PFX_MSIX_CFG(pf));
    657			pfvf->msix.max = (cfg & 0xFFF) + 1;
    658			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
    659
    660			/* Alloc msix bitmap for this VF */
    661			err = rvu_alloc_bitmap(&pfvf->msix);
    662			if (err)
    663				return err;
    664
    665			pfvf->msix_lfmap =
    666				devm_kcalloc(rvu->dev, pfvf->msix.max,
    667					     sizeof(u16), GFP_KERNEL);
    668			if (!pfvf->msix_lfmap)
    669				return -ENOMEM;
    670
    671			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
    672			 * These are allocated on driver init and never freed,
    673			 * so no need to set 'msix_lfmap' for these.
    674			 */
    675			cfg = rvu_read64(rvu, BLKADDR_RVUM,
    676					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
    677			nvecs = (cfg >> 12) & 0xFF;
    678			cfg &= ~0x7FFULL;
    679			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
    680			rvu_write64(rvu, BLKADDR_RVUM,
    681				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
    682				    cfg | offset);
    683		}
    684	}
    685
    686	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
    687	 * create an IOMMU mapping for the physical address configured by
    688	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
    689	 */
    690	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
    691	max_msix = cfg & 0xFFFFF;
    692	if (rvu->fwdata && rvu->fwdata->msixtr_base)
    693		phy_addr = rvu->fwdata->msixtr_base;
    694	else
    695		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
    696
    697	iova = dma_map_resource(rvu->dev, phy_addr,
    698				max_msix * PCI_MSIX_ENTRY_SIZE,
    699				DMA_BIDIRECTIONAL, 0);
    700
    701	if (dma_mapping_error(rvu->dev, iova))
    702		return -ENOMEM;
    703
    704	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
    705	rvu->msix_base_iova = iova;
    706	rvu->msixtr_base_phy = phy_addr;
    707
    708	return 0;
    709}
    710
    711static void rvu_reset_msix(struct rvu *rvu)
    712{
    713	/* Restore msixtr base register */
    714	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
    715		    rvu->msixtr_base_phy);
    716}
    717
    718static void rvu_free_hw_resources(struct rvu *rvu)
    719{
    720	struct rvu_hwinfo *hw = rvu->hw;
    721	struct rvu_block *block;
    722	struct rvu_pfvf  *pfvf;
    723	int id, max_msix;
    724	u64 cfg;
    725
    726	rvu_npa_freemem(rvu);
    727	rvu_npc_freemem(rvu);
    728	rvu_nix_freemem(rvu);
    729
    730	/* Free block LF bitmaps */
    731	for (id = 0; id < BLK_COUNT; id++) {
    732		block = &hw->block[id];
    733		kfree(block->lf.bmap);
    734	}
    735
    736	/* Free MSIX bitmaps */
    737	for (id = 0; id < hw->total_pfs; id++) {
    738		pfvf = &rvu->pf[id];
    739		kfree(pfvf->msix.bmap);
    740	}
    741
    742	for (id = 0; id < hw->total_vfs; id++) {
    743		pfvf = &rvu->hwvf[id];
    744		kfree(pfvf->msix.bmap);
    745	}
    746
    747	/* Unmap MSIX vector base IOVA mapping */
    748	if (!rvu->msix_base_iova)
    749		return;
    750	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
    751	max_msix = cfg & 0xFFFFF;
    752	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
    753			   max_msix * PCI_MSIX_ENTRY_SIZE,
    754			   DMA_BIDIRECTIONAL, 0);
    755
    756	rvu_reset_msix(rvu);
    757	mutex_destroy(&rvu->rsrc_lock);
    758}
    759
    760static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
    761{
    762	struct rvu_hwinfo *hw = rvu->hw;
    763	int pf, vf, numvfs, hwvf;
    764	struct rvu_pfvf *pfvf;
    765	u64 *mac;
    766
    767	for (pf = 0; pf < hw->total_pfs; pf++) {
    768		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
    769		if (!pf)
    770			goto lbkvf;
    771
    772		if (!is_pf_cgxmapped(rvu, pf))
    773			continue;
    774		/* Assign MAC address to PF */
    775		pfvf = &rvu->pf[pf];
    776		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
    777			mac = &rvu->fwdata->pf_macs[pf];
    778			if (*mac)
    779				u64_to_ether_addr(*mac, pfvf->mac_addr);
    780			else
    781				eth_random_addr(pfvf->mac_addr);
    782		} else {
    783			eth_random_addr(pfvf->mac_addr);
    784		}
    785		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
    786
    787lbkvf:
    788		/* Assign MAC address to VFs*/
    789		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
    790		for (vf = 0; vf < numvfs; vf++, hwvf++) {
    791			pfvf = &rvu->hwvf[hwvf];
    792			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
    793				mac = &rvu->fwdata->vf_macs[hwvf];
    794				if (*mac)
    795					u64_to_ether_addr(*mac, pfvf->mac_addr);
    796				else
    797					eth_random_addr(pfvf->mac_addr);
    798			} else {
    799				eth_random_addr(pfvf->mac_addr);
    800			}
    801			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
    802		}
    803	}
    804}
    805
    806static int rvu_fwdata_init(struct rvu *rvu)
    807{
    808	u64 fwdbase;
    809	int err;
    810
    811	/* Get firmware data base address */
    812	err = cgx_get_fwdata_base(&fwdbase);
    813	if (err)
    814		goto fail;
    815	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
    816	if (!rvu->fwdata)
    817		goto fail;
    818	if (!is_rvu_fwdata_valid(rvu)) {
    819		dev_err(rvu->dev,
    820			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
    821		iounmap(rvu->fwdata);
    822		rvu->fwdata = NULL;
    823		return -EINVAL;
    824	}
    825	return 0;
    826fail:
    827	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
    828	return -EIO;
    829}
    830
    831static void rvu_fwdata_exit(struct rvu *rvu)
    832{
    833	if (rvu->fwdata)
    834		iounmap(rvu->fwdata);
    835}
    836
    837static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
    838{
    839	struct rvu_hwinfo *hw = rvu->hw;
    840	struct rvu_block *block;
    841	int blkid;
    842	u64 cfg;
    843
    844	/* Init NIX LF's bitmap */
    845	block = &hw->block[blkaddr];
    846	if (!block->implemented)
    847		return 0;
    848	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
    849	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
    850	block->lf.max = cfg & 0xFFF;
    851	block->addr = blkaddr;
    852	block->type = BLKTYPE_NIX;
    853	block->lfshift = 8;
    854	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
    855	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
    856	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
    857	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
    858	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
    859	block->lfreset_reg = NIX_AF_LF_RST;
    860	block->rvu = rvu;
    861	sprintf(block->name, "NIX%d", blkid);
    862	rvu->nix_blkaddr[blkid] = blkaddr;
    863	return rvu_alloc_bitmap(&block->lf);
    864}
    865
    866static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
    867{
    868	struct rvu_hwinfo *hw = rvu->hw;
    869	struct rvu_block *block;
    870	int blkid;
    871	u64 cfg;
    872
    873	/* Init CPT LF's bitmap */
    874	block = &hw->block[blkaddr];
    875	if (!block->implemented)
    876		return 0;
    877	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
    878	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
    879	block->lf.max = cfg & 0xFF;
    880	block->addr = blkaddr;
    881	block->type = BLKTYPE_CPT;
    882	block->multislot = true;
    883	block->lfshift = 3;
    884	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
    885	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
    886	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
    887	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
    888	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
    889	block->lfreset_reg = CPT_AF_LF_RST;
    890	block->rvu = rvu;
    891	sprintf(block->name, "CPT%d", blkid);
    892	return rvu_alloc_bitmap(&block->lf);
    893}
    894
    895static void rvu_get_lbk_bufsize(struct rvu *rvu)
    896{
    897	struct pci_dev *pdev = NULL;
    898	void __iomem *base;
    899	u64 lbk_const;
    900
    901	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
    902			      PCI_DEVID_OCTEONTX2_LBK, pdev);
    903	if (!pdev)
    904		return;
    905
    906	base = pci_ioremap_bar(pdev, 0);
    907	if (!base)
    908		goto err_put;
    909
    910	lbk_const = readq(base + LBK_CONST);
    911
    912	/* cache fifo size */
    913	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
    914
    915	iounmap(base);
    916err_put:
    917	pci_dev_put(pdev);
    918}
    919
    920static int rvu_setup_hw_resources(struct rvu *rvu)
    921{
    922	struct rvu_hwinfo *hw = rvu->hw;
    923	struct rvu_block *block;
    924	int blkid, err;
    925	u64 cfg;
    926
    927	/* Get HW supported max RVU PF & VF count */
    928	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
    929	hw->total_pfs = (cfg >> 32) & 0xFF;
    930	hw->total_vfs = (cfg >> 20) & 0xFFF;
    931	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
    932
    933	/* Init NPA LF's bitmap */
    934	block = &hw->block[BLKADDR_NPA];
    935	if (!block->implemented)
    936		goto nix;
    937	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
    938	block->lf.max = (cfg >> 16) & 0xFFF;
    939	block->addr = BLKADDR_NPA;
    940	block->type = BLKTYPE_NPA;
    941	block->lfshift = 8;
    942	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
    943	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
    944	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
    945	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
    946	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
    947	block->lfreset_reg = NPA_AF_LF_RST;
    948	block->rvu = rvu;
    949	sprintf(block->name, "NPA");
    950	err = rvu_alloc_bitmap(&block->lf);
    951	if (err) {
    952		dev_err(rvu->dev,
    953			"%s: Failed to allocate NPA LF bitmap\n", __func__);
    954		return err;
    955	}
    956
    957nix:
    958	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
    959	if (err) {
    960		dev_err(rvu->dev,
    961			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
    962		return err;
    963	}
    964
    965	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
    966	if (err) {
    967		dev_err(rvu->dev,
    968			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
    969		return err;
    970	}
    971
    972	/* Init SSO group's bitmap */
    973	block = &hw->block[BLKADDR_SSO];
    974	if (!block->implemented)
    975		goto ssow;
    976	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
    977	block->lf.max = cfg & 0xFFFF;
    978	block->addr = BLKADDR_SSO;
    979	block->type = BLKTYPE_SSO;
    980	block->multislot = true;
    981	block->lfshift = 3;
    982	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
    983	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
    984	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
    985	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
    986	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
    987	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
    988	block->rvu = rvu;
    989	sprintf(block->name, "SSO GROUP");
    990	err = rvu_alloc_bitmap(&block->lf);
    991	if (err) {
    992		dev_err(rvu->dev,
    993			"%s: Failed to allocate SSO LF bitmap\n", __func__);
    994		return err;
    995	}
    996
    997ssow:
    998	/* Init SSO workslot's bitmap */
    999	block = &hw->block[BLKADDR_SSOW];
   1000	if (!block->implemented)
   1001		goto tim;
   1002	block->lf.max = (cfg >> 56) & 0xFF;
   1003	block->addr = BLKADDR_SSOW;
   1004	block->type = BLKTYPE_SSOW;
   1005	block->multislot = true;
   1006	block->lfshift = 3;
   1007	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
   1008	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
   1009	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
   1010	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
   1011	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
   1012	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
   1013	block->rvu = rvu;
   1014	sprintf(block->name, "SSOWS");
   1015	err = rvu_alloc_bitmap(&block->lf);
   1016	if (err) {
   1017		dev_err(rvu->dev,
   1018			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
   1019		return err;
   1020	}
   1021
   1022tim:
   1023	/* Init TIM LF's bitmap */
   1024	block = &hw->block[BLKADDR_TIM];
   1025	if (!block->implemented)
   1026		goto cpt;
   1027	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
   1028	block->lf.max = cfg & 0xFFFF;
   1029	block->addr = BLKADDR_TIM;
   1030	block->type = BLKTYPE_TIM;
   1031	block->multislot = true;
   1032	block->lfshift = 3;
   1033	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
   1034	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
   1035	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
   1036	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
   1037	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
   1038	block->lfreset_reg = TIM_AF_LF_RST;
   1039	block->rvu = rvu;
   1040	sprintf(block->name, "TIM");
   1041	err = rvu_alloc_bitmap(&block->lf);
   1042	if (err) {
   1043		dev_err(rvu->dev,
   1044			"%s: Failed to allocate TIM LF bitmap\n", __func__);
   1045		return err;
   1046	}
   1047
   1048cpt:
   1049	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
   1050	if (err) {
   1051		dev_err(rvu->dev,
   1052			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
   1053		return err;
   1054	}
   1055	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
   1056	if (err) {
   1057		dev_err(rvu->dev,
   1058			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
   1059		return err;
   1060	}
   1061
   1062	/* Allocate memory for PFVF data */
   1063	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
   1064			       sizeof(struct rvu_pfvf), GFP_KERNEL);
   1065	if (!rvu->pf) {
   1066		dev_err(rvu->dev,
   1067			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
   1068		return -ENOMEM;
   1069	}
   1070
   1071	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
   1072				 sizeof(struct rvu_pfvf), GFP_KERNEL);
   1073	if (!rvu->hwvf) {
   1074		dev_err(rvu->dev,
   1075			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
   1076		return -ENOMEM;
   1077	}
   1078
   1079	mutex_init(&rvu->rsrc_lock);
   1080
   1081	rvu_fwdata_init(rvu);
   1082
   1083	err = rvu_setup_msix_resources(rvu);
   1084	if (err) {
   1085		dev_err(rvu->dev,
   1086			"%s: Failed to setup MSIX resources\n", __func__);
   1087		return err;
   1088	}
   1089
   1090	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
   1091		block = &hw->block[blkid];
   1092		if (!block->lf.bmap)
   1093			continue;
   1094
   1095		/* Allocate memory for block LF/slot to pcifunc mapping info */
   1096		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
   1097					     sizeof(u16), GFP_KERNEL);
   1098		if (!block->fn_map) {
   1099			err = -ENOMEM;
   1100			goto msix_err;
   1101		}
   1102
   1103		/* Scan all blocks to check if low level firmware has
   1104		 * already provisioned any of the resources to a PF/VF.
   1105		 */
   1106		rvu_scan_block(rvu, block);
   1107	}
   1108
   1109	err = rvu_set_channels_base(rvu);
   1110	if (err)
   1111		goto msix_err;
   1112
   1113	err = rvu_npc_init(rvu);
   1114	if (err) {
   1115		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
   1116		goto npc_err;
   1117	}
   1118
   1119	err = rvu_cgx_init(rvu);
   1120	if (err) {
   1121		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
   1122		goto cgx_err;
   1123	}
   1124
   1125	/* Assign MACs for CGX mapped functions */
   1126	rvu_setup_pfvf_macaddress(rvu);
   1127
   1128	err = rvu_npa_init(rvu);
   1129	if (err) {
   1130		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
   1131		goto npa_err;
   1132	}
   1133
   1134	rvu_get_lbk_bufsize(rvu);
   1135
   1136	err = rvu_nix_init(rvu);
   1137	if (err) {
   1138		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
   1139		goto nix_err;
   1140	}
   1141
   1142	err = rvu_sdp_init(rvu);
   1143	if (err) {
   1144		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
   1145		goto nix_err;
   1146	}
   1147
   1148	rvu_program_channels(rvu);
   1149
   1150	return 0;
   1151
   1152nix_err:
   1153	rvu_nix_freemem(rvu);
   1154npa_err:
   1155	rvu_npa_freemem(rvu);
   1156cgx_err:
   1157	rvu_cgx_exit(rvu);
   1158npc_err:
   1159	rvu_npc_freemem(rvu);
   1160	rvu_fwdata_exit(rvu);
   1161msix_err:
   1162	rvu_reset_msix(rvu);
   1163	return err;
   1164}
   1165
   1166/* NPA and NIX admin queue APIs */
   1167void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
   1168{
   1169	if (!aq)
   1170		return;
   1171
   1172	qmem_free(rvu->dev, aq->inst);
   1173	qmem_free(rvu->dev, aq->res);
   1174	devm_kfree(rvu->dev, aq);
   1175}
   1176
   1177int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
   1178		 int qsize, int inst_size, int res_size)
   1179{
   1180	struct admin_queue *aq;
   1181	int err;
   1182
   1183	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
   1184	if (!*ad_queue)
   1185		return -ENOMEM;
   1186	aq = *ad_queue;
   1187
   1188	/* Alloc memory for instructions i.e AQ */
   1189	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
   1190	if (err) {
   1191		devm_kfree(rvu->dev, aq);
   1192		return err;
   1193	}
   1194
   1195	/* Alloc memory for results */
   1196	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
   1197	if (err) {
   1198		rvu_aq_free(rvu, aq);
   1199		return err;
   1200	}
   1201
   1202	spin_lock_init(&aq->lock);
   1203	return 0;
   1204}
   1205
   1206int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
   1207			   struct ready_msg_rsp *rsp)
   1208{
   1209	if (rvu->fwdata) {
   1210		rsp->rclk_freq = rvu->fwdata->rclk;
   1211		rsp->sclk_freq = rvu->fwdata->sclk;
   1212	}
   1213	return 0;
   1214}
   1215
   1216/* Get current count of a RVU block's LF/slots
   1217 * provisioned to a given RVU func.
   1218 */
   1219u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
   1220{
   1221	switch (blkaddr) {
   1222	case BLKADDR_NPA:
   1223		return pfvf->npalf ? 1 : 0;
   1224	case BLKADDR_NIX0:
   1225	case BLKADDR_NIX1:
   1226		return pfvf->nixlf ? 1 : 0;
   1227	case BLKADDR_SSO:
   1228		return pfvf->sso;
   1229	case BLKADDR_SSOW:
   1230		return pfvf->ssow;
   1231	case BLKADDR_TIM:
   1232		return pfvf->timlfs;
   1233	case BLKADDR_CPT0:
   1234		return pfvf->cptlfs;
   1235	case BLKADDR_CPT1:
   1236		return pfvf->cpt1_lfs;
   1237	}
   1238	return 0;
   1239}
   1240
   1241/* Return true if LFs of block type are attached to pcifunc */
   1242static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
   1243{
   1244	switch (blktype) {
   1245	case BLKTYPE_NPA:
   1246		return pfvf->npalf ? 1 : 0;
   1247	case BLKTYPE_NIX:
   1248		return pfvf->nixlf ? 1 : 0;
   1249	case BLKTYPE_SSO:
   1250		return !!pfvf->sso;
   1251	case BLKTYPE_SSOW:
   1252		return !!pfvf->ssow;
   1253	case BLKTYPE_TIM:
   1254		return !!pfvf->timlfs;
   1255	case BLKTYPE_CPT:
   1256		return pfvf->cptlfs || pfvf->cpt1_lfs;
   1257	}
   1258
   1259	return false;
   1260}
   1261
   1262bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
   1263{
   1264	struct rvu_pfvf *pfvf;
   1265
   1266	if (!is_pf_func_valid(rvu, pcifunc))
   1267		return false;
   1268
   1269	pfvf = rvu_get_pfvf(rvu, pcifunc);
   1270
   1271	/* Check if this PFFUNC has a LF of type blktype attached */
   1272	if (!is_blktype_attached(pfvf, blktype))
   1273		return false;
   1274
   1275	return true;
   1276}
   1277
   1278static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
   1279			   int pcifunc, int slot)
   1280{
   1281	u64 val;
   1282
   1283	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
   1284	rvu_write64(rvu, block->addr, block->lookup_reg, val);
   1285	/* Wait for the lookup to finish */
   1286	/* TODO: put some timeout here */
   1287	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
   1288		;
   1289
   1290	val = rvu_read64(rvu, block->addr, block->lookup_reg);
   1291
   1292	/* Check LF valid bit */
   1293	if (!(val & (1ULL << 12)))
   1294		return -1;
   1295
   1296	return (val & 0xFFF);
   1297}
   1298
   1299int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
   1300			      u16 global_slot, u16 *slot_in_block)
   1301{
   1302	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
   1303	int numlfs, total_lfs = 0, nr_blocks = 0;
   1304	int i, num_blkaddr[BLK_COUNT] = { 0 };
   1305	struct rvu_block *block;
   1306	int blkaddr;
   1307	u16 start_slot;
   1308
   1309	if (!is_blktype_attached(pfvf, blktype))
   1310		return -ENODEV;
   1311
   1312	/* Get all the block addresses from which LFs are attached to
   1313	 * the given pcifunc in num_blkaddr[].
   1314	 */
   1315	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
   1316		block = &rvu->hw->block[blkaddr];
   1317		if (block->type != blktype)
   1318			continue;
   1319		if (!is_block_implemented(rvu->hw, blkaddr))
   1320			continue;
   1321
   1322		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
   1323		if (numlfs) {
   1324			total_lfs += numlfs;
   1325			num_blkaddr[nr_blocks] = blkaddr;
   1326			nr_blocks++;
   1327		}
   1328	}
   1329
   1330	if (global_slot >= total_lfs)
   1331		return -ENODEV;
   1332
   1333	/* Based on the given global slot number retrieve the
   1334	 * correct block address out of all attached block
   1335	 * addresses and slot number in that block.
   1336	 */
   1337	total_lfs = 0;
   1338	blkaddr = -ENODEV;
   1339	for (i = 0; i < nr_blocks; i++) {
   1340		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
   1341		total_lfs += numlfs;
   1342		if (global_slot < total_lfs) {
   1343			blkaddr = num_blkaddr[i];
   1344			start_slot = total_lfs - numlfs;
   1345			*slot_in_block = global_slot - start_slot;
   1346			break;
   1347		}
   1348	}
   1349
   1350	return blkaddr;
   1351}
   1352
   1353static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
   1354{
   1355	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
   1356	struct rvu_hwinfo *hw = rvu->hw;
   1357	struct rvu_block *block;
   1358	int slot, lf, num_lfs;
   1359	int blkaddr;
   1360
   1361	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
   1362	if (blkaddr < 0)
   1363		return;
   1364
   1365	if (blktype == BLKTYPE_NIX)
   1366		rvu_nix_reset_mac(pfvf, pcifunc);
   1367
   1368	block = &hw->block[blkaddr];
   1369
   1370	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
   1371	if (!num_lfs)
   1372		return;
   1373
   1374	for (slot = 0; slot < num_lfs; slot++) {
   1375		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
   1376		if (lf < 0) /* This should never happen */
   1377			continue;
   1378
   1379		/* Disable the LF */
   1380		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
   1381			    (lf << block->lfshift), 0x00ULL);
   1382
   1383		/* Update SW maintained mapping info as well */
   1384		rvu_update_rsrc_map(rvu, pfvf, block,
   1385				    pcifunc, lf, false);
   1386
   1387		/* Free the resource */
   1388		rvu_free_rsrc(&block->lf, lf);
   1389
   1390		/* Clear MSIX vector offset for this LF */
   1391		rvu_clear_msix_offset(rvu, pfvf, block, lf);
   1392	}
   1393}
   1394
   1395static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
   1396			    u16 pcifunc)
   1397{
   1398	struct rvu_hwinfo *hw = rvu->hw;
   1399	bool detach_all = true;
   1400	struct rvu_block *block;
   1401	int blkid;
   1402
   1403	mutex_lock(&rvu->rsrc_lock);
   1404
   1405	/* Check for partial resource detach */
   1406	if (detach && detach->partial)
   1407		detach_all = false;
   1408
   1409	/* Check for RVU block's LFs attached to this func,
   1410	 * if so, detach them.
   1411	 */
   1412	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
   1413		block = &hw->block[blkid];
   1414		if (!block->lf.bmap)
   1415			continue;
   1416		if (!detach_all && detach) {
   1417			if (blkid == BLKADDR_NPA && !detach->npalf)
   1418				continue;
   1419			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
   1420				continue;
   1421			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
   1422				continue;
   1423			else if ((blkid == BLKADDR_SSO) && !detach->sso)
   1424				continue;
   1425			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
   1426				continue;
   1427			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
   1428				continue;
   1429			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
   1430				continue;
   1431			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
   1432				continue;
   1433		}
   1434		rvu_detach_block(rvu, pcifunc, block->type);
   1435	}
   1436
   1437	mutex_unlock(&rvu->rsrc_lock);
   1438	return 0;
   1439}
   1440
   1441int rvu_mbox_handler_detach_resources(struct rvu *rvu,
   1442				      struct rsrc_detach *detach,
   1443				      struct msg_rsp *rsp)
   1444{
   1445	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
   1446}
   1447
   1448int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
   1449{
   1450	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
   1451	int blkaddr = BLKADDR_NIX0, vf;
   1452	struct rvu_pfvf *pf;
   1453
   1454	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
   1455
   1456	/* All CGX mapped PFs are set with assigned NIX block during init */
   1457	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
   1458		blkaddr = pf->nix_blkaddr;
   1459	} else if (is_afvf(pcifunc)) {
   1460		vf = pcifunc - 1;
   1461		/* Assign NIX based on VF number. All even numbered VFs get
   1462		 * NIX0 and odd numbered gets NIX1
   1463		 */
   1464		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
   1465		/* NIX1 is not present on all silicons */
   1466		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
   1467			blkaddr = BLKADDR_NIX0;
   1468	}
   1469
   1470	/* if SDP1 then the blkaddr is NIX1 */
   1471	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
   1472		blkaddr = BLKADDR_NIX1;
   1473
   1474	switch (blkaddr) {
   1475	case BLKADDR_NIX1:
   1476		pfvf->nix_blkaddr = BLKADDR_NIX1;
   1477		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
   1478		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
   1479		break;
   1480	case BLKADDR_NIX0:
   1481	default:
   1482		pfvf->nix_blkaddr = BLKADDR_NIX0;
   1483		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
   1484		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
   1485		break;
   1486	}
   1487
   1488	return pfvf->nix_blkaddr;
   1489}
   1490
   1491static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
   1492				  u16 pcifunc, struct rsrc_attach *attach)
   1493{
   1494	int blkaddr;
   1495
   1496	switch (blktype) {
   1497	case BLKTYPE_NIX:
   1498		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
   1499		break;
   1500	case BLKTYPE_CPT:
   1501		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
   1502			return rvu_get_blkaddr(rvu, blktype, 0);
   1503		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
   1504			  BLKADDR_CPT0;
   1505		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
   1506			return -ENODEV;
   1507		break;
   1508	default:
   1509		return rvu_get_blkaddr(rvu, blktype, 0);
   1510	}
   1511
   1512	if (is_block_implemented(rvu->hw, blkaddr))
   1513		return blkaddr;
   1514
   1515	return -ENODEV;
   1516}
   1517
   1518static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
   1519			     int num_lfs, struct rsrc_attach *attach)
   1520{
   1521	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
   1522	struct rvu_hwinfo *hw = rvu->hw;
   1523	struct rvu_block *block;
   1524	int slot, lf;
   1525	int blkaddr;
   1526	u64 cfg;
   1527
   1528	if (!num_lfs)
   1529		return;
   1530
   1531	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
   1532	if (blkaddr < 0)
   1533		return;
   1534
   1535	block = &hw->block[blkaddr];
   1536	if (!block->lf.bmap)
   1537		return;
   1538
   1539	for (slot = 0; slot < num_lfs; slot++) {
   1540		/* Allocate the resource */
   1541		lf = rvu_alloc_rsrc(&block->lf);
   1542		if (lf < 0)
   1543			return;
   1544
   1545		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
   1546		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
   1547			    (lf << block->lfshift), cfg);
   1548		rvu_update_rsrc_map(rvu, pfvf, block,
   1549				    pcifunc, lf, true);
   1550
   1551		/* Set start MSIX vector for this LF within this PF/VF */
   1552		rvu_set_msix_offset(rvu, pfvf, block, lf);
   1553	}
   1554}
   1555
   1556static int rvu_check_rsrc_availability(struct rvu *rvu,
   1557				       struct rsrc_attach *req, u16 pcifunc)
   1558{
   1559	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
   1560	int free_lfs, mappedlfs, blkaddr;
   1561	struct rvu_hwinfo *hw = rvu->hw;
   1562	struct rvu_block *block;
   1563
   1564	/* Only one NPA LF can be attached */
   1565	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
   1566		block = &hw->block[BLKADDR_NPA];
   1567		free_lfs = rvu_rsrc_free_count(&block->lf);
   1568		if (!free_lfs)
   1569			goto fail;
   1570	} else if (req->npalf) {
   1571		dev_err(&rvu->pdev->dev,
   1572			"Func 0x%x: Invalid req, already has NPA\n",
   1573			 pcifunc);
   1574		return -EINVAL;
   1575	}
   1576
   1577	/* Only one NIX LF can be attached */
   1578	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
   1579		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
   1580						 pcifunc, req);
   1581		if (blkaddr < 0)
   1582			return blkaddr;
   1583		block = &hw->block[blkaddr];
   1584		free_lfs = rvu_rsrc_free_count(&block->lf);
   1585		if (!free_lfs)
   1586			goto fail;
   1587	} else if (req->nixlf) {
   1588		dev_err(&rvu->pdev->dev,
   1589			"Func 0x%x: Invalid req, already has NIX\n",
   1590			pcifunc);
   1591		return -EINVAL;
   1592	}
   1593
   1594	if (req->sso) {
   1595		block = &hw->block[BLKADDR_SSO];
   1596		/* Is request within limits ? */
   1597		if (req->sso > block->lf.max) {
   1598			dev_err(&rvu->pdev->dev,
   1599				"Func 0x%x: Invalid SSO req, %d > max %d\n",
   1600				 pcifunc, req->sso, block->lf.max);
   1601			return -EINVAL;
   1602		}
   1603		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
   1604		free_lfs = rvu_rsrc_free_count(&block->lf);
   1605		/* Check if additional resources are available */
   1606		if (req->sso > mappedlfs &&
   1607		    ((req->sso - mappedlfs) > free_lfs))
   1608			goto fail;
   1609	}
   1610
   1611	if (req->ssow) {
   1612		block = &hw->block[BLKADDR_SSOW];
   1613		if (req->ssow > block->lf.max) {
   1614			dev_err(&rvu->pdev->dev,
   1615				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
   1616				 pcifunc, req->sso, block->lf.max);
   1617			return -EINVAL;
   1618		}
   1619		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
   1620		free_lfs = rvu_rsrc_free_count(&block->lf);
   1621		if (req->ssow > mappedlfs &&
   1622		    ((req->ssow - mappedlfs) > free_lfs))
   1623			goto fail;
   1624	}
   1625
   1626	if (req->timlfs) {
   1627		block = &hw->block[BLKADDR_TIM];
   1628		if (req->timlfs > block->lf.max) {
   1629			dev_err(&rvu->pdev->dev,
   1630				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
   1631				 pcifunc, req->timlfs, block->lf.max);
   1632			return -EINVAL;
   1633		}
   1634		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
   1635		free_lfs = rvu_rsrc_free_count(&block->lf);
   1636		if (req->timlfs > mappedlfs &&
   1637		    ((req->timlfs - mappedlfs) > free_lfs))
   1638			goto fail;
   1639	}
   1640
   1641	if (req->cptlfs) {
   1642		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
   1643						 pcifunc, req);
   1644		if (blkaddr < 0)
   1645			return blkaddr;
   1646		block = &hw->block[blkaddr];
   1647		if (req->cptlfs > block->lf.max) {
   1648			dev_err(&rvu->pdev->dev,
   1649				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
   1650				 pcifunc, req->cptlfs, block->lf.max);
   1651			return -EINVAL;
   1652		}
   1653		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
   1654		free_lfs = rvu_rsrc_free_count(&block->lf);
   1655		if (req->cptlfs > mappedlfs &&
   1656		    ((req->cptlfs - mappedlfs) > free_lfs))
   1657			goto fail;
   1658	}
   1659
   1660	return 0;
   1661
   1662fail:
   1663	dev_info(rvu->dev, "Request for %s failed\n", block->name);
   1664	return -ENOSPC;
   1665}
   1666
   1667static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
   1668				       struct rsrc_attach *attach)
   1669{
   1670	int blkaddr, num_lfs;
   1671
   1672	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
   1673					 attach->hdr.pcifunc, attach);
   1674	if (blkaddr < 0)
   1675		return false;
   1676
   1677	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
   1678					blkaddr);
   1679	/* Requester already has LFs from given block ? */
   1680	return !!num_lfs;
   1681}
   1682
   1683int rvu_mbox_handler_attach_resources(struct rvu *rvu,
   1684				      struct rsrc_attach *attach,
   1685				      struct msg_rsp *rsp)
   1686{
   1687	u16 pcifunc = attach->hdr.pcifunc;
   1688	int err;
   1689
   1690	/* If first request, detach all existing attached resources */
   1691	if (!attach->modify)
   1692		rvu_detach_rsrcs(rvu, NULL, pcifunc);
   1693
   1694	mutex_lock(&rvu->rsrc_lock);
   1695
   1696	/* Check if the request can be accommodated */
   1697	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
   1698	if (err)
   1699		goto exit;
   1700
   1701	/* Now attach the requested resources */
   1702	if (attach->npalf)
   1703		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
   1704
   1705	if (attach->nixlf)
   1706		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
   1707
   1708	if (attach->sso) {
   1709		/* RVU func doesn't know which exact LF or slot is attached
   1710		 * to it, it always sees as slot 0,1,2. So for a 'modify'
   1711		 * request, simply detach all existing attached LFs/slots
   1712		 * and attach a fresh.
   1713		 */
   1714		if (attach->modify)
   1715			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
   1716		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
   1717				 attach->sso, attach);
   1718	}
   1719
   1720	if (attach->ssow) {
   1721		if (attach->modify)
   1722			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
   1723		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
   1724				 attach->ssow, attach);
   1725	}
   1726
   1727	if (attach->timlfs) {
   1728		if (attach->modify)
   1729			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
   1730		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
   1731				 attach->timlfs, attach);
   1732	}
   1733
   1734	if (attach->cptlfs) {
   1735		if (attach->modify &&
   1736		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
   1737			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
   1738		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
   1739				 attach->cptlfs, attach);
   1740	}
   1741
   1742exit:
   1743	mutex_unlock(&rvu->rsrc_lock);
   1744	return err;
   1745}
   1746
   1747static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
   1748			       int blkaddr, int lf)
   1749{
   1750	u16 vec;
   1751
   1752	if (lf < 0)
   1753		return MSIX_VECTOR_INVALID;
   1754
   1755	for (vec = 0; vec < pfvf->msix.max; vec++) {
   1756		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
   1757			return vec;
   1758	}
   1759	return MSIX_VECTOR_INVALID;
   1760}
   1761
   1762static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
   1763				struct rvu_block *block, int lf)
   1764{
   1765	u16 nvecs, vec, offset;
   1766	u64 cfg;
   1767
   1768	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
   1769			 (lf << block->lfshift));
   1770	nvecs = (cfg >> 12) & 0xFF;
   1771
   1772	/* Check and alloc MSIX vectors, must be contiguous */
   1773	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
   1774		return;
   1775
   1776	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
   1777
   1778	/* Config MSIX offset in LF */
   1779	rvu_write64(rvu, block->addr, block->msixcfg_reg |
   1780		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
   1781
   1782	/* Update the bitmap as well */
   1783	for (vec = 0; vec < nvecs; vec++)
   1784		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
   1785}
   1786
   1787static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
   1788				  struct rvu_block *block, int lf)
   1789{
   1790	u16 nvecs, vec, offset;
   1791	u64 cfg;
   1792
   1793	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
   1794			 (lf << block->lfshift));
   1795	nvecs = (cfg >> 12) & 0xFF;
   1796
   1797	/* Clear MSIX offset in LF */
   1798	rvu_write64(rvu, block->addr, block->msixcfg_reg |
   1799		    (lf << block->lfshift), cfg & ~0x7FFULL);
   1800
   1801	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
   1802
   1803	/* Update the mapping */
   1804	for (vec = 0; vec < nvecs; vec++)
   1805		pfvf->msix_lfmap[offset + vec] = 0;
   1806
   1807	/* Free the same in MSIX bitmap */
   1808	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
   1809}
   1810
   1811int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
   1812				 struct msix_offset_rsp *rsp)
   1813{
   1814	struct rvu_hwinfo *hw = rvu->hw;
   1815	u16 pcifunc = req->hdr.pcifunc;
   1816	struct rvu_pfvf *pfvf;
   1817	int lf, slot, blkaddr;
   1818
   1819	pfvf = rvu_get_pfvf(rvu, pcifunc);
   1820	if (!pfvf->msix.bmap)
   1821		return 0;
   1822
   1823	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
   1824	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
   1825	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
   1826
   1827	/* Get BLKADDR from which LFs are attached to pcifunc */
   1828	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
   1829	if (blkaddr < 0) {
   1830		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
   1831	} else {
   1832		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
   1833		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
   1834	}
   1835
   1836	rsp->sso = pfvf->sso;
   1837	for (slot = 0; slot < rsp->sso; slot++) {
   1838		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
   1839		rsp->sso_msixoff[slot] =
   1840			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
   1841	}
   1842
   1843	rsp->ssow = pfvf->ssow;
   1844	for (slot = 0; slot < rsp->ssow; slot++) {
   1845		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
   1846		rsp->ssow_msixoff[slot] =
   1847			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
   1848	}
   1849
   1850	rsp->timlfs = pfvf->timlfs;
   1851	for (slot = 0; slot < rsp->timlfs; slot++) {
   1852		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
   1853		rsp->timlf_msixoff[slot] =
   1854			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
   1855	}
   1856
   1857	rsp->cptlfs = pfvf->cptlfs;
   1858	for (slot = 0; slot < rsp->cptlfs; slot++) {
   1859		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
   1860		rsp->cptlf_msixoff[slot] =
   1861			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
   1862	}
   1863
   1864	rsp->cpt1_lfs = pfvf->cpt1_lfs;
   1865	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
   1866		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
   1867		rsp->cpt1_lf_msixoff[slot] =
   1868			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
   1869	}
   1870
   1871	return 0;
   1872}
   1873
   1874int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
   1875				   struct free_rsrcs_rsp *rsp)
   1876{
   1877	struct rvu_hwinfo *hw = rvu->hw;
   1878	struct rvu_block *block;
   1879	struct nix_txsch *txsch;
   1880	struct nix_hw *nix_hw;
   1881
   1882	mutex_lock(&rvu->rsrc_lock);
   1883
   1884	block = &hw->block[BLKADDR_NPA];
   1885	rsp->npa = rvu_rsrc_free_count(&block->lf);
   1886
   1887	block = &hw->block[BLKADDR_NIX0];
   1888	rsp->nix = rvu_rsrc_free_count(&block->lf);
   1889
   1890	block = &hw->block[BLKADDR_NIX1];
   1891	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
   1892
   1893	block = &hw->block[BLKADDR_SSO];
   1894	rsp->sso = rvu_rsrc_free_count(&block->lf);
   1895
   1896	block = &hw->block[BLKADDR_SSOW];
   1897	rsp->ssow = rvu_rsrc_free_count(&block->lf);
   1898
   1899	block = &hw->block[BLKADDR_TIM];
   1900	rsp->tim = rvu_rsrc_free_count(&block->lf);
   1901
   1902	block = &hw->block[BLKADDR_CPT0];
   1903	rsp->cpt = rvu_rsrc_free_count(&block->lf);
   1904
   1905	block = &hw->block[BLKADDR_CPT1];
   1906	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
   1907
   1908	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
   1909		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
   1910		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
   1911		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
   1912		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
   1913		/* NIX1 */
   1914		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
   1915			goto out;
   1916		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
   1917		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
   1918		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
   1919		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
   1920	} else {
   1921		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
   1922		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
   1923		rsp->schq[NIX_TXSCH_LVL_SMQ] =
   1924				rvu_rsrc_free_count(&txsch->schq);
   1925
   1926		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
   1927		rsp->schq[NIX_TXSCH_LVL_TL4] =
   1928				rvu_rsrc_free_count(&txsch->schq);
   1929
   1930		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
   1931		rsp->schq[NIX_TXSCH_LVL_TL3] =
   1932				rvu_rsrc_free_count(&txsch->schq);
   1933
   1934		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
   1935		rsp->schq[NIX_TXSCH_LVL_TL2] =
   1936				rvu_rsrc_free_count(&txsch->schq);
   1937
   1938		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
   1939			goto out;
   1940
   1941		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
   1942		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
   1943		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
   1944				rvu_rsrc_free_count(&txsch->schq);
   1945
   1946		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
   1947		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
   1948				rvu_rsrc_free_count(&txsch->schq);
   1949
   1950		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
   1951		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
   1952				rvu_rsrc_free_count(&txsch->schq);
   1953
   1954		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
   1955		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
   1956				rvu_rsrc_free_count(&txsch->schq);
   1957	}
   1958
   1959	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
   1960out:
   1961	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
   1962	mutex_unlock(&rvu->rsrc_lock);
   1963
   1964	return 0;
   1965}
   1966
   1967int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
   1968			    struct msg_rsp *rsp)
   1969{
   1970	u16 pcifunc = req->hdr.pcifunc;
   1971	u16 vf, numvfs;
   1972	u64 cfg;
   1973
   1974	vf = pcifunc & RVU_PFVF_FUNC_MASK;
   1975	cfg = rvu_read64(rvu, BLKADDR_RVUM,
   1976			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
   1977	numvfs = (cfg >> 12) & 0xFF;
   1978
   1979	if (vf && vf <= numvfs)
   1980		__rvu_flr_handler(rvu, pcifunc);
   1981	else
   1982		return RVU_INVALID_VF_ID;
   1983
   1984	return 0;
   1985}
   1986
   1987int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
   1988				struct get_hw_cap_rsp *rsp)
   1989{
   1990	struct rvu_hwinfo *hw = rvu->hw;
   1991
   1992	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
   1993	rsp->nix_shaping = hw->cap.nix_shaping;
   1994
   1995	return 0;
   1996}
   1997
   1998int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
   1999				 struct msg_rsp *rsp)
   2000{
   2001	struct rvu_hwinfo *hw = rvu->hw;
   2002	u16 pcifunc = req->hdr.pcifunc;
   2003	struct rvu_pfvf *pfvf;
   2004	int blkaddr, nixlf;
   2005	u16 target;
   2006
   2007	/* Only PF can add VF permissions */
   2008	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
   2009		return -EOPNOTSUPP;
   2010
   2011	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
   2012	pfvf = rvu_get_pfvf(rvu, target);
   2013
   2014	if (req->flags & RESET_VF_PERM) {
   2015		pfvf->flags &= RVU_CLEAR_VF_PERM;
   2016	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
   2017		 (req->flags & VF_TRUSTED)) {
   2018		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
   2019		/* disable multicast and promisc entries */
   2020		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
   2021			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
   2022			if (blkaddr < 0)
   2023				return 0;
   2024			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
   2025					   target, 0);
   2026			if (nixlf < 0)
   2027				return 0;
   2028			npc_enadis_default_mce_entry(rvu, target, nixlf,
   2029						     NIXLF_ALLMULTI_ENTRY,
   2030						     false);
   2031			npc_enadis_default_mce_entry(rvu, target, nixlf,
   2032						     NIXLF_PROMISC_ENTRY,
   2033						     false);
   2034		}
   2035	}
   2036
   2037	return 0;
   2038}
   2039
   2040static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
   2041				struct mbox_msghdr *req)
   2042{
   2043	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
   2044
   2045	/* Check if valid, if not reply with a invalid msg */
   2046	if (req->sig != OTX2_MBOX_REQ_SIG)
   2047		goto bad_message;
   2048
   2049	switch (req->id) {
   2050#define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
   2051	case _id: {							\
   2052		struct _rsp_type *rsp;					\
   2053		int err;						\
   2054									\
   2055		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
   2056			mbox, devid,					\
   2057			sizeof(struct _rsp_type));			\
   2058		/* some handlers should complete even if reply */	\
   2059		/* could not be allocated */				\
   2060		if (!rsp &&						\
   2061		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
   2062		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
   2063		    _id != MBOX_MSG_VF_FLR)				\
   2064			return -ENOMEM;					\
   2065		if (rsp) {						\
   2066			rsp->hdr.id = _id;				\
   2067			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
   2068			rsp->hdr.pcifunc = req->pcifunc;		\
   2069			rsp->hdr.rc = 0;				\
   2070		}							\
   2071									\
   2072		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
   2073						    (struct _req_type *)req, \
   2074						    rsp);		\
   2075		if (rsp && err)						\
   2076			rsp->hdr.rc = err;				\
   2077									\
   2078		trace_otx2_msg_process(mbox->pdev, _id, err);		\
   2079		return rsp ? err : -ENOMEM;				\
   2080	}
   2081MBOX_MESSAGES
   2082#undef M
   2083
   2084bad_message:
   2085	default:
   2086		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
   2087		return -ENODEV;
   2088	}
   2089}
   2090
   2091static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
   2092{
   2093	struct rvu *rvu = mwork->rvu;
   2094	int offset, err, id, devid;
   2095	struct otx2_mbox_dev *mdev;
   2096	struct mbox_hdr *req_hdr;
   2097	struct mbox_msghdr *msg;
   2098	struct mbox_wq_info *mw;
   2099	struct otx2_mbox *mbox;
   2100
   2101	switch (type) {
   2102	case TYPE_AFPF:
   2103		mw = &rvu->afpf_wq_info;
   2104		break;
   2105	case TYPE_AFVF:
   2106		mw = &rvu->afvf_wq_info;
   2107		break;
   2108	default:
   2109		return;
   2110	}
   2111
   2112	devid = mwork - mw->mbox_wrk;
   2113	mbox = &mw->mbox;
   2114	mdev = &mbox->dev[devid];
   2115
   2116	/* Process received mbox messages */
   2117	req_hdr = mdev->mbase + mbox->rx_start;
   2118	if (mw->mbox_wrk[devid].num_msgs == 0)
   2119		return;
   2120
   2121	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
   2122
   2123	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
   2124		msg = mdev->mbase + offset;
   2125
   2126		/* Set which PF/VF sent this message based on mbox IRQ */
   2127		switch (type) {
   2128		case TYPE_AFPF:
   2129			msg->pcifunc &=
   2130				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
   2131			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
   2132			break;
   2133		case TYPE_AFVF:
   2134			msg->pcifunc &=
   2135				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
   2136			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
   2137			break;
   2138		}
   2139
   2140		err = rvu_process_mbox_msg(mbox, devid, msg);
   2141		if (!err) {
   2142			offset = mbox->rx_start + msg->next_msgoff;
   2143			continue;
   2144		}
   2145
   2146		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
   2147			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
   2148				 err, otx2_mbox_id2name(msg->id),
   2149				 msg->id, rvu_get_pf(msg->pcifunc),
   2150				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
   2151		else
   2152			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
   2153				 err, otx2_mbox_id2name(msg->id),
   2154				 msg->id, devid);
   2155	}
   2156	mw->mbox_wrk[devid].num_msgs = 0;
   2157
   2158	/* Send mbox responses to VF/PF */
   2159	otx2_mbox_msg_send(mbox, devid);
   2160}
   2161
   2162static inline void rvu_afpf_mbox_handler(struct work_struct *work)
   2163{
   2164	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
   2165
   2166	__rvu_mbox_handler(mwork, TYPE_AFPF);
   2167}
   2168
   2169static inline void rvu_afvf_mbox_handler(struct work_struct *work)
   2170{
   2171	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
   2172
   2173	__rvu_mbox_handler(mwork, TYPE_AFVF);
   2174}
   2175
   2176static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
   2177{
   2178	struct rvu *rvu = mwork->rvu;
   2179	struct otx2_mbox_dev *mdev;
   2180	struct mbox_hdr *rsp_hdr;
   2181	struct mbox_msghdr *msg;
   2182	struct mbox_wq_info *mw;
   2183	struct otx2_mbox *mbox;
   2184	int offset, id, devid;
   2185
   2186	switch (type) {
   2187	case TYPE_AFPF:
   2188		mw = &rvu->afpf_wq_info;
   2189		break;
   2190	case TYPE_AFVF:
   2191		mw = &rvu->afvf_wq_info;
   2192		break;
   2193	default:
   2194		return;
   2195	}
   2196
   2197	devid = mwork - mw->mbox_wrk_up;
   2198	mbox = &mw->mbox_up;
   2199	mdev = &mbox->dev[devid];
   2200
   2201	rsp_hdr = mdev->mbase + mbox->rx_start;
   2202	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
   2203		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
   2204		return;
   2205	}
   2206
   2207	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
   2208
   2209	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
   2210		msg = mdev->mbase + offset;
   2211
   2212		if (msg->id >= MBOX_MSG_MAX) {
   2213			dev_err(rvu->dev,
   2214				"Mbox msg with unknown ID 0x%x\n", msg->id);
   2215			goto end;
   2216		}
   2217
   2218		if (msg->sig != OTX2_MBOX_RSP_SIG) {
   2219			dev_err(rvu->dev,
   2220				"Mbox msg with wrong signature %x, ID 0x%x\n",
   2221				msg->sig, msg->id);
   2222			goto end;
   2223		}
   2224
   2225		switch (msg->id) {
   2226		case MBOX_MSG_CGX_LINK_EVENT:
   2227			break;
   2228		default:
   2229			if (msg->rc)
   2230				dev_err(rvu->dev,
   2231					"Mbox msg response has err %d, ID 0x%x\n",
   2232					msg->rc, msg->id);
   2233			break;
   2234		}
   2235end:
   2236		offset = mbox->rx_start + msg->next_msgoff;
   2237		mdev->msgs_acked++;
   2238	}
   2239	mw->mbox_wrk_up[devid].up_num_msgs = 0;
   2240
   2241	otx2_mbox_reset(mbox, devid);
   2242}
   2243
   2244static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
   2245{
   2246	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
   2247
   2248	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
   2249}
   2250
   2251static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
   2252{
   2253	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
   2254
   2255	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
   2256}
   2257
   2258static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
   2259				int num, int type)
   2260{
   2261	struct rvu_hwinfo *hw = rvu->hw;
   2262	int region;
   2263	u64 bar4;
   2264
   2265	/* For cn10k platform VF mailbox regions of a PF follows after the
   2266	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
   2267	 * RVU_PF_VF_BAR4_ADDR register.
   2268	 */
   2269	if (type == TYPE_AFVF) {
   2270		for (region = 0; region < num; region++) {
   2271			if (hw->cap.per_pf_mbox_regs) {
   2272				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
   2273						  RVU_AF_PFX_BAR4_ADDR(0)) +
   2274						  MBOX_SIZE;
   2275				bar4 += region * MBOX_SIZE;
   2276			} else {
   2277				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
   2278				bar4 += region * MBOX_SIZE;
   2279			}
   2280			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
   2281			if (!mbox_addr[region])
   2282				goto error;
   2283		}
   2284		return 0;
   2285	}
   2286
   2287	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
   2288	 * PF registers. Whereas for Octeontx2 it is read from
   2289	 * RVU_AF_PF_BAR4_ADDR register.
   2290	 */
   2291	for (region = 0; region < num; region++) {
   2292		if (hw->cap.per_pf_mbox_regs) {
   2293			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
   2294					  RVU_AF_PFX_BAR4_ADDR(region));
   2295		} else {
   2296			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
   2297					  RVU_AF_PF_BAR4_ADDR);
   2298			bar4 += region * MBOX_SIZE;
   2299		}
   2300		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
   2301		if (!mbox_addr[region])
   2302			goto error;
   2303	}
   2304	return 0;
   2305
   2306error:
   2307	while (region--)
   2308		iounmap((void __iomem *)mbox_addr[region]);
   2309	return -ENOMEM;
   2310}
   2311
   2312static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
   2313			 int type, int num,
   2314			 void (mbox_handler)(struct work_struct *),
   2315			 void (mbox_up_handler)(struct work_struct *))
   2316{
   2317	int err = -EINVAL, i, dir, dir_up;
   2318	void __iomem *reg_base;
   2319	struct rvu_work *mwork;
   2320	void **mbox_regions;
   2321	const char *name;
   2322
   2323	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
   2324	if (!mbox_regions)
   2325		return -ENOMEM;
   2326
   2327	switch (type) {
   2328	case TYPE_AFPF:
   2329		name = "rvu_afpf_mailbox";
   2330		dir = MBOX_DIR_AFPF;
   2331		dir_up = MBOX_DIR_AFPF_UP;
   2332		reg_base = rvu->afreg_base;
   2333		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
   2334		if (err)
   2335			goto free_regions;
   2336		break;
   2337	case TYPE_AFVF:
   2338		name = "rvu_afvf_mailbox";
   2339		dir = MBOX_DIR_PFVF;
   2340		dir_up = MBOX_DIR_PFVF_UP;
   2341		reg_base = rvu->pfreg_base;
   2342		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
   2343		if (err)
   2344			goto free_regions;
   2345		break;
   2346	default:
   2347		goto free_regions;
   2348	}
   2349
   2350	mw->mbox_wq = alloc_workqueue(name,
   2351				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
   2352				      num);
   2353	if (!mw->mbox_wq) {
   2354		err = -ENOMEM;
   2355		goto unmap_regions;
   2356	}
   2357
   2358	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
   2359				    sizeof(struct rvu_work), GFP_KERNEL);
   2360	if (!mw->mbox_wrk) {
   2361		err = -ENOMEM;
   2362		goto exit;
   2363	}
   2364
   2365	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
   2366				       sizeof(struct rvu_work), GFP_KERNEL);
   2367	if (!mw->mbox_wrk_up) {
   2368		err = -ENOMEM;
   2369		goto exit;
   2370	}
   2371
   2372	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
   2373				     reg_base, dir, num);
   2374	if (err)
   2375		goto exit;
   2376
   2377	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
   2378				     reg_base, dir_up, num);
   2379	if (err)
   2380		goto exit;
   2381
   2382	for (i = 0; i < num; i++) {
   2383		mwork = &mw->mbox_wrk[i];
   2384		mwork->rvu = rvu;
   2385		INIT_WORK(&mwork->work, mbox_handler);
   2386
   2387		mwork = &mw->mbox_wrk_up[i];
   2388		mwork->rvu = rvu;
   2389		INIT_WORK(&mwork->work, mbox_up_handler);
   2390	}
   2391	kfree(mbox_regions);
   2392	return 0;
   2393
   2394exit:
   2395	destroy_workqueue(mw->mbox_wq);
   2396unmap_regions:
   2397	while (num--)
   2398		iounmap((void __iomem *)mbox_regions[num]);
   2399free_regions:
   2400	kfree(mbox_regions);
   2401	return err;
   2402}
   2403
   2404static void rvu_mbox_destroy(struct mbox_wq_info *mw)
   2405{
   2406	struct otx2_mbox *mbox = &mw->mbox;
   2407	struct otx2_mbox_dev *mdev;
   2408	int devid;
   2409
   2410	if (mw->mbox_wq) {
   2411		destroy_workqueue(mw->mbox_wq);
   2412		mw->mbox_wq = NULL;
   2413	}
   2414
   2415	for (devid = 0; devid < mbox->ndevs; devid++) {
   2416		mdev = &mbox->dev[devid];
   2417		if (mdev->hwbase)
   2418			iounmap((void __iomem *)mdev->hwbase);
   2419	}
   2420
   2421	otx2_mbox_destroy(&mw->mbox);
   2422	otx2_mbox_destroy(&mw->mbox_up);
   2423}
   2424
   2425static void rvu_queue_work(struct mbox_wq_info *mw, int first,
   2426			   int mdevs, u64 intr)
   2427{
   2428	struct otx2_mbox_dev *mdev;
   2429	struct otx2_mbox *mbox;
   2430	struct mbox_hdr *hdr;
   2431	int i;
   2432
   2433	for (i = first; i < mdevs; i++) {
   2434		/* start from 0 */
   2435		if (!(intr & BIT_ULL(i - first)))
   2436			continue;
   2437
   2438		mbox = &mw->mbox;
   2439		mdev = &mbox->dev[i];
   2440		hdr = mdev->mbase + mbox->rx_start;
   2441
   2442		/*The hdr->num_msgs is set to zero immediately in the interrupt
   2443		 * handler to  ensure that it holds a correct value next time
   2444		 * when the interrupt handler is called.
   2445		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
   2446		 * pf>mbox.up_num_msgs holds the data for use in
   2447		 * pfaf_mbox_up_handler.
   2448		 */
   2449
   2450		if (hdr->num_msgs) {
   2451			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
   2452			hdr->num_msgs = 0;
   2453			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
   2454		}
   2455		mbox = &mw->mbox_up;
   2456		mdev = &mbox->dev[i];
   2457		hdr = mdev->mbase + mbox->rx_start;
   2458		if (hdr->num_msgs) {
   2459			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
   2460			hdr->num_msgs = 0;
   2461			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
   2462		}
   2463	}
   2464}
   2465
   2466static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
   2467{
   2468	struct rvu *rvu = (struct rvu *)rvu_irq;
   2469	int vfs = rvu->vfs;
   2470	u64 intr;
   2471
   2472	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
   2473	/* Clear interrupts */
   2474	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
   2475	if (intr)
   2476		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
   2477
   2478	/* Sync with mbox memory region */
   2479	rmb();
   2480
   2481	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
   2482
   2483	/* Handle VF interrupts */
   2484	if (vfs > 64) {
   2485		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
   2486		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
   2487
   2488		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
   2489		vfs -= 64;
   2490	}
   2491
   2492	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
   2493	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
   2494	if (intr)
   2495		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
   2496
   2497	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
   2498
   2499	return IRQ_HANDLED;
   2500}
   2501
   2502static void rvu_enable_mbox_intr(struct rvu *rvu)
   2503{
   2504	struct rvu_hwinfo *hw = rvu->hw;
   2505
   2506	/* Clear spurious irqs, if any */
   2507	rvu_write64(rvu, BLKADDR_RVUM,
   2508		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
   2509
   2510	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
   2511	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
   2512		    INTR_MASK(hw->total_pfs) & ~1ULL);
   2513}
   2514
   2515static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
   2516{
   2517	struct rvu_block *block;
   2518	int slot, lf, num_lfs;
   2519	int err;
   2520
   2521	block = &rvu->hw->block[blkaddr];
   2522	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
   2523					block->addr);
   2524	if (!num_lfs)
   2525		return;
   2526	for (slot = 0; slot < num_lfs; slot++) {
   2527		lf = rvu_get_lf(rvu, block, pcifunc, slot);
   2528		if (lf < 0)
   2529			continue;
   2530
   2531		/* Cleanup LF and reset it */
   2532		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
   2533			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
   2534		else if (block->addr == BLKADDR_NPA)
   2535			rvu_npa_lf_teardown(rvu, pcifunc, lf);
   2536		else if ((block->addr == BLKADDR_CPT0) ||
   2537			 (block->addr == BLKADDR_CPT1))
   2538			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
   2539					    slot);
   2540
   2541		err = rvu_lf_reset(rvu, block, lf);
   2542		if (err) {
   2543			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
   2544				block->addr, lf);
   2545		}
   2546	}
   2547}
   2548
   2549static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
   2550{
   2551	mutex_lock(&rvu->flr_lock);
   2552	/* Reset order should reflect inter-block dependencies:
   2553	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
   2554	 * 2. Flush and reset SSO/SSOW
   2555	 * 3. Cleanup pools (NPA)
   2556	 */
   2557	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
   2558	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
   2559	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
   2560	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
   2561	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
   2562	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
   2563	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
   2564	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
   2565	rvu_reset_lmt_map_tbl(rvu, pcifunc);
   2566	rvu_detach_rsrcs(rvu, NULL, pcifunc);
   2567	mutex_unlock(&rvu->flr_lock);
   2568}
   2569
   2570static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
   2571{
   2572	int reg = 0;
   2573
   2574	/* pcifunc = 0(PF0) | (vf + 1) */
   2575	__rvu_flr_handler(rvu, vf + 1);
   2576
   2577	if (vf >= 64) {
   2578		reg = 1;
   2579		vf = vf - 64;
   2580	}
   2581
   2582	/* Signal FLR finish and enable IRQ */
   2583	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
   2584	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
   2585}
   2586
   2587static void rvu_flr_handler(struct work_struct *work)
   2588{
   2589	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
   2590	struct rvu *rvu = flrwork->rvu;
   2591	u16 pcifunc, numvfs, vf;
   2592	u64 cfg;
   2593	int pf;
   2594
   2595	pf = flrwork - rvu->flr_wrk;
   2596	if (pf >= rvu->hw->total_pfs) {
   2597		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
   2598		return;
   2599	}
   2600
   2601	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
   2602	numvfs = (cfg >> 12) & 0xFF;
   2603	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
   2604
   2605	for (vf = 0; vf < numvfs; vf++)
   2606		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
   2607
   2608	__rvu_flr_handler(rvu, pcifunc);
   2609
   2610	/* Signal FLR finish */
   2611	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
   2612
   2613	/* Enable interrupt */
   2614	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
   2615}
   2616
   2617static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
   2618{
   2619	int dev, vf, reg = 0;
   2620	u64 intr;
   2621
   2622	if (start_vf >= 64)
   2623		reg = 1;
   2624
   2625	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
   2626	if (!intr)
   2627		return;
   2628
   2629	for (vf = 0; vf < numvfs; vf++) {
   2630		if (!(intr & BIT_ULL(vf)))
   2631			continue;
   2632		/* Clear and disable the interrupt */
   2633		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
   2634		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
   2635
   2636		dev = vf + start_vf + rvu->hw->total_pfs;
   2637		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
   2638	}
   2639}
   2640
   2641static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
   2642{
   2643	struct rvu *rvu = (struct rvu *)rvu_irq;
   2644	u64 intr;
   2645	u8  pf;
   2646
   2647	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
   2648	if (!intr)
   2649		goto afvf_flr;
   2650
   2651	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
   2652		if (intr & (1ULL << pf)) {
   2653			/* clear interrupt */
   2654			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
   2655				    BIT_ULL(pf));
   2656			/* Disable the interrupt */
   2657			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
   2658				    BIT_ULL(pf));
   2659			/* PF is already dead do only AF related operations */
   2660			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
   2661		}
   2662	}
   2663
   2664afvf_flr:
   2665	rvu_afvf_queue_flr_work(rvu, 0, 64);
   2666	if (rvu->vfs > 64)
   2667		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
   2668
   2669	return IRQ_HANDLED;
   2670}
   2671
   2672static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
   2673{
   2674	int vf;
   2675
   2676	/* Nothing to be done here other than clearing the
   2677	 * TRPEND bit.
   2678	 */
   2679	for (vf = 0; vf < 64; vf++) {
   2680		if (intr & (1ULL << vf)) {
   2681			/* clear the trpend due to ME(master enable) */
   2682			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
   2683			/* clear interrupt */
   2684			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
   2685		}
   2686	}
   2687}
   2688
   2689/* Handles ME interrupts from VFs of AF */
   2690static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
   2691{
   2692	struct rvu *rvu = (struct rvu *)rvu_irq;
   2693	int vfset;
   2694	u64 intr;
   2695
   2696	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
   2697
   2698	for (vfset = 0; vfset <= 1; vfset++) {
   2699		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
   2700		if (intr)
   2701			rvu_me_handle_vfset(rvu, vfset, intr);
   2702	}
   2703
   2704	return IRQ_HANDLED;
   2705}
   2706
   2707/* Handles ME interrupts from PFs */
   2708static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
   2709{
   2710	struct rvu *rvu = (struct rvu *)rvu_irq;
   2711	u64 intr;
   2712	u8  pf;
   2713
   2714	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
   2715
   2716	/* Nothing to be done here other than clearing the
   2717	 * TRPEND bit.
   2718	 */
   2719	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
   2720		if (intr & (1ULL << pf)) {
   2721			/* clear the trpend due to ME(master enable) */
   2722			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
   2723				    BIT_ULL(pf));
   2724			/* clear interrupt */
   2725			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
   2726				    BIT_ULL(pf));
   2727		}
   2728	}
   2729
   2730	return IRQ_HANDLED;
   2731}
   2732
   2733static void rvu_unregister_interrupts(struct rvu *rvu)
   2734{
   2735	int irq;
   2736
   2737	rvu_cpt_unregister_interrupts(rvu);
   2738
   2739	/* Disable the Mbox interrupt */
   2740	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
   2741		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
   2742
   2743	/* Disable the PF FLR interrupt */
   2744	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
   2745		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
   2746
   2747	/* Disable the PF ME interrupt */
   2748	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
   2749		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
   2750
   2751	for (irq = 0; irq < rvu->num_vec; irq++) {
   2752		if (rvu->irq_allocated[irq]) {
   2753			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
   2754			rvu->irq_allocated[irq] = false;
   2755		}
   2756	}
   2757
   2758	pci_free_irq_vectors(rvu->pdev);
   2759	rvu->num_vec = 0;
   2760}
   2761
   2762static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
   2763{
   2764	struct rvu_pfvf *pfvf = &rvu->pf[0];
   2765	int offset;
   2766
   2767	pfvf = &rvu->pf[0];
   2768	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
   2769
   2770	/* Make sure there are enough MSIX vectors configured so that
   2771	 * VF interrupts can be handled. Offset equal to zero means
   2772	 * that PF vectors are not configured and overlapping AF vectors.
   2773	 */
   2774	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
   2775	       offset;
   2776}
   2777
   2778static int rvu_register_interrupts(struct rvu *rvu)
   2779{
   2780	int ret, offset, pf_vec_start;
   2781
   2782	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
   2783
   2784	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
   2785					   NAME_SIZE, GFP_KERNEL);
   2786	if (!rvu->irq_name)
   2787		return -ENOMEM;
   2788
   2789	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
   2790					  sizeof(bool), GFP_KERNEL);
   2791	if (!rvu->irq_allocated)
   2792		return -ENOMEM;
   2793
   2794	/* Enable MSI-X */
   2795	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
   2796				    rvu->num_vec, PCI_IRQ_MSIX);
   2797	if (ret < 0) {
   2798		dev_err(rvu->dev,
   2799			"RVUAF: Request for %d msix vectors failed, ret %d\n",
   2800			rvu->num_vec, ret);
   2801		return ret;
   2802	}
   2803
   2804	/* Register mailbox interrupt handler */
   2805	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
   2806	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
   2807			  rvu_mbox_intr_handler, 0,
   2808			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
   2809	if (ret) {
   2810		dev_err(rvu->dev,
   2811			"RVUAF: IRQ registration failed for mbox irq\n");
   2812		goto fail;
   2813	}
   2814
   2815	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
   2816
   2817	/* Enable mailbox interrupts from all PFs */
   2818	rvu_enable_mbox_intr(rvu);
   2819
   2820	/* Register FLR interrupt handler */
   2821	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
   2822		"RVUAF FLR");
   2823	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
   2824			  rvu_flr_intr_handler, 0,
   2825			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
   2826			  rvu);
   2827	if (ret) {
   2828		dev_err(rvu->dev,
   2829			"RVUAF: IRQ registration failed for FLR\n");
   2830		goto fail;
   2831	}
   2832	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
   2833
   2834	/* Enable FLR interrupt for all PFs*/
   2835	rvu_write64(rvu, BLKADDR_RVUM,
   2836		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
   2837
   2838	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
   2839		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
   2840
   2841	/* Register ME interrupt handler */
   2842	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
   2843		"RVUAF ME");
   2844	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
   2845			  rvu_me_pf_intr_handler, 0,
   2846			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
   2847			  rvu);
   2848	if (ret) {
   2849		dev_err(rvu->dev,
   2850			"RVUAF: IRQ registration failed for ME\n");
   2851	}
   2852	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
   2853
   2854	/* Clear TRPEND bit for all PF */
   2855	rvu_write64(rvu, BLKADDR_RVUM,
   2856		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
   2857	/* Enable ME interrupt for all PFs*/
   2858	rvu_write64(rvu, BLKADDR_RVUM,
   2859		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
   2860
   2861	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
   2862		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
   2863
   2864	if (!rvu_afvf_msix_vectors_num_ok(rvu))
   2865		return 0;
   2866
   2867	/* Get PF MSIX vectors offset. */
   2868	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
   2869				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
   2870
   2871	/* Register MBOX0 interrupt. */
   2872	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
   2873	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
   2874	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
   2875			  rvu_mbox_intr_handler, 0,
   2876			  &rvu->irq_name[offset * NAME_SIZE],
   2877			  rvu);
   2878	if (ret)
   2879		dev_err(rvu->dev,
   2880			"RVUAF: IRQ registration failed for Mbox0\n");
   2881
   2882	rvu->irq_allocated[offset] = true;
   2883
   2884	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
   2885	 * simply increment current offset by 1.
   2886	 */
   2887	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
   2888	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
   2889	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
   2890			  rvu_mbox_intr_handler, 0,
   2891			  &rvu->irq_name[offset * NAME_SIZE],
   2892			  rvu);
   2893	if (ret)
   2894		dev_err(rvu->dev,
   2895			"RVUAF: IRQ registration failed for Mbox1\n");
   2896
   2897	rvu->irq_allocated[offset] = true;
   2898
   2899	/* Register FLR interrupt handler for AF's VFs */
   2900	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
   2901	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
   2902	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
   2903			  rvu_flr_intr_handler, 0,
   2904			  &rvu->irq_name[offset * NAME_SIZE], rvu);
   2905	if (ret) {
   2906		dev_err(rvu->dev,
   2907			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
   2908		goto fail;
   2909	}
   2910	rvu->irq_allocated[offset] = true;
   2911
   2912	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
   2913	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
   2914	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
   2915			  rvu_flr_intr_handler, 0,
   2916			  &rvu->irq_name[offset * NAME_SIZE], rvu);
   2917	if (ret) {
   2918		dev_err(rvu->dev,
   2919			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
   2920		goto fail;
   2921	}
   2922	rvu->irq_allocated[offset] = true;
   2923
   2924	/* Register ME interrupt handler for AF's VFs */
   2925	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
   2926	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
   2927	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
   2928			  rvu_me_vf_intr_handler, 0,
   2929			  &rvu->irq_name[offset * NAME_SIZE], rvu);
   2930	if (ret) {
   2931		dev_err(rvu->dev,
   2932			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
   2933		goto fail;
   2934	}
   2935	rvu->irq_allocated[offset] = true;
   2936
   2937	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
   2938	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
   2939	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
   2940			  rvu_me_vf_intr_handler, 0,
   2941			  &rvu->irq_name[offset * NAME_SIZE], rvu);
   2942	if (ret) {
   2943		dev_err(rvu->dev,
   2944			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
   2945		goto fail;
   2946	}
   2947	rvu->irq_allocated[offset] = true;
   2948
   2949	ret = rvu_cpt_register_interrupts(rvu);
   2950	if (ret)
   2951		goto fail;
   2952
   2953	return 0;
   2954
   2955fail:
   2956	rvu_unregister_interrupts(rvu);
   2957	return ret;
   2958}
   2959
   2960static void rvu_flr_wq_destroy(struct rvu *rvu)
   2961{
   2962	if (rvu->flr_wq) {
   2963		destroy_workqueue(rvu->flr_wq);
   2964		rvu->flr_wq = NULL;
   2965	}
   2966}
   2967
   2968static int rvu_flr_init(struct rvu *rvu)
   2969{
   2970	int dev, num_devs;
   2971	u64 cfg;
   2972	int pf;
   2973
   2974	/* Enable FLR for all PFs*/
   2975	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
   2976		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
   2977		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
   2978			    cfg | BIT_ULL(22));
   2979	}
   2980
   2981	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
   2982				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
   2983				       1);
   2984	if (!rvu->flr_wq)
   2985		return -ENOMEM;
   2986
   2987	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
   2988	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
   2989				    sizeof(struct rvu_work), GFP_KERNEL);
   2990	if (!rvu->flr_wrk) {
   2991		destroy_workqueue(rvu->flr_wq);
   2992		return -ENOMEM;
   2993	}
   2994
   2995	for (dev = 0; dev < num_devs; dev++) {
   2996		rvu->flr_wrk[dev].rvu = rvu;
   2997		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
   2998	}
   2999
   3000	mutex_init(&rvu->flr_lock);
   3001
   3002	return 0;
   3003}
   3004
   3005static void rvu_disable_afvf_intr(struct rvu *rvu)
   3006{
   3007	int vfs = rvu->vfs;
   3008
   3009	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
   3010	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
   3011	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
   3012	if (vfs <= 64)
   3013		return;
   3014
   3015	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
   3016		      INTR_MASK(vfs - 64));
   3017	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
   3018	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
   3019}
   3020
   3021static void rvu_enable_afvf_intr(struct rvu *rvu)
   3022{
   3023	int vfs = rvu->vfs;
   3024
   3025	/* Clear any pending interrupts and enable AF VF interrupts for
   3026	 * the first 64 VFs.
   3027	 */
   3028	/* Mbox */
   3029	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
   3030	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
   3031
   3032	/* FLR */
   3033	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
   3034	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
   3035	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
   3036
   3037	/* Same for remaining VFs, if any. */
   3038	if (vfs <= 64)
   3039		return;
   3040
   3041	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
   3042	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
   3043		      INTR_MASK(vfs - 64));
   3044
   3045	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
   3046	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
   3047	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
   3048}
   3049
   3050int rvu_get_num_lbk_chans(void)
   3051{
   3052	struct pci_dev *pdev;
   3053	void __iomem *base;
   3054	int ret = -EIO;
   3055
   3056	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
   3057			      NULL);
   3058	if (!pdev)
   3059		goto err;
   3060
   3061	base = pci_ioremap_bar(pdev, 0);
   3062	if (!base)
   3063		goto err_put;
   3064
   3065	/* Read number of available LBK channels from LBK(0)_CONST register. */
   3066	ret = (readq(base + 0x10) >> 32) & 0xffff;
   3067	iounmap(base);
   3068err_put:
   3069	pci_dev_put(pdev);
   3070err:
   3071	return ret;
   3072}
   3073
   3074static int rvu_enable_sriov(struct rvu *rvu)
   3075{
   3076	struct pci_dev *pdev = rvu->pdev;
   3077	int err, chans, vfs;
   3078
   3079	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
   3080		dev_warn(&pdev->dev,
   3081			 "Skipping SRIOV enablement since not enough IRQs are available\n");
   3082		return 0;
   3083	}
   3084
   3085	chans = rvu_get_num_lbk_chans();
   3086	if (chans < 0)
   3087		return chans;
   3088
   3089	vfs = pci_sriov_get_totalvfs(pdev);
   3090
   3091	/* Limit VFs in case we have more VFs than LBK channels available. */
   3092	if (vfs > chans)
   3093		vfs = chans;
   3094
   3095	if (!vfs)
   3096		return 0;
   3097
   3098	/* LBK channel number 63 is used for switching packets between
   3099	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
   3100	 */
   3101	if (vfs > 62)
   3102		vfs = 62;
   3103
   3104	/* Save VFs number for reference in VF interrupts handlers.
   3105	 * Since interrupts might start arriving during SRIOV enablement
   3106	 * ordinary API cannot be used to get number of enabled VFs.
   3107	 */
   3108	rvu->vfs = vfs;
   3109
   3110	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
   3111			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
   3112	if (err)
   3113		return err;
   3114
   3115	rvu_enable_afvf_intr(rvu);
   3116	/* Make sure IRQs are enabled before SRIOV. */
   3117	mb();
   3118
   3119	err = pci_enable_sriov(pdev, vfs);
   3120	if (err) {
   3121		rvu_disable_afvf_intr(rvu);
   3122		rvu_mbox_destroy(&rvu->afvf_wq_info);
   3123		return err;
   3124	}
   3125
   3126	return 0;
   3127}
   3128
   3129static void rvu_disable_sriov(struct rvu *rvu)
   3130{
   3131	rvu_disable_afvf_intr(rvu);
   3132	rvu_mbox_destroy(&rvu->afvf_wq_info);
   3133	pci_disable_sriov(rvu->pdev);
   3134}
   3135
   3136static void rvu_update_module_params(struct rvu *rvu)
   3137{
   3138	const char *default_pfl_name = "default";
   3139
   3140	strscpy(rvu->mkex_pfl_name,
   3141		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
   3142	strscpy(rvu->kpu_pfl_name,
   3143		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
   3144}
   3145
   3146static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
   3147{
   3148	struct device *dev = &pdev->dev;
   3149	struct rvu *rvu;
   3150	int    err;
   3151
   3152	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
   3153	if (!rvu)
   3154		return -ENOMEM;
   3155
   3156	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
   3157	if (!rvu->hw) {
   3158		devm_kfree(dev, rvu);
   3159		return -ENOMEM;
   3160	}
   3161
   3162	pci_set_drvdata(pdev, rvu);
   3163	rvu->pdev = pdev;
   3164	rvu->dev = &pdev->dev;
   3165
   3166	err = pci_enable_device(pdev);
   3167	if (err) {
   3168		dev_err(dev, "Failed to enable PCI device\n");
   3169		goto err_freemem;
   3170	}
   3171
   3172	err = pci_request_regions(pdev, DRV_NAME);
   3173	if (err) {
   3174		dev_err(dev, "PCI request regions failed 0x%x\n", err);
   3175		goto err_disable_device;
   3176	}
   3177
   3178	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
   3179	if (err) {
   3180		dev_err(dev, "DMA mask config failed, abort\n");
   3181		goto err_release_regions;
   3182	}
   3183
   3184	pci_set_master(pdev);
   3185
   3186	rvu->ptp = ptp_get();
   3187	if (IS_ERR(rvu->ptp)) {
   3188		err = PTR_ERR(rvu->ptp);
   3189		if (err == -EPROBE_DEFER)
   3190			goto err_release_regions;
   3191		rvu->ptp = NULL;
   3192	}
   3193
   3194	/* Map Admin function CSRs */
   3195	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
   3196	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
   3197	if (!rvu->afreg_base || !rvu->pfreg_base) {
   3198		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
   3199		err = -ENOMEM;
   3200		goto err_put_ptp;
   3201	}
   3202
   3203	/* Store module params in rvu structure */
   3204	rvu_update_module_params(rvu);
   3205
   3206	/* Check which blocks the HW supports */
   3207	rvu_check_block_implemented(rvu);
   3208
   3209	rvu_reset_all_blocks(rvu);
   3210
   3211	rvu_setup_hw_capabilities(rvu);
   3212
   3213	err = rvu_setup_hw_resources(rvu);
   3214	if (err)
   3215		goto err_put_ptp;
   3216
   3217	/* Init mailbox btw AF and PFs */
   3218	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
   3219			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
   3220			    rvu_afpf_mbox_up_handler);
   3221	if (err) {
   3222		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
   3223		goto err_hwsetup;
   3224	}
   3225
   3226	err = rvu_flr_init(rvu);
   3227	if (err) {
   3228		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
   3229		goto err_mbox;
   3230	}
   3231
   3232	err = rvu_register_interrupts(rvu);
   3233	if (err) {
   3234		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
   3235		goto err_flr;
   3236	}
   3237
   3238	err = rvu_register_dl(rvu);
   3239	if (err) {
   3240		dev_err(dev, "%s: Failed to register devlink\n", __func__);
   3241		goto err_irq;
   3242	}
   3243
   3244	rvu_setup_rvum_blk_revid(rvu);
   3245
   3246	/* Enable AF's VFs (if any) */
   3247	err = rvu_enable_sriov(rvu);
   3248	if (err) {
   3249		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
   3250		goto err_dl;
   3251	}
   3252
   3253	/* Initialize debugfs */
   3254	rvu_dbg_init(rvu);
   3255
   3256	mutex_init(&rvu->rswitch.switch_lock);
   3257
   3258	if (rvu->fwdata)
   3259		ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
   3260			  rvu->fwdata->ptp_ext_tstamp);
   3261
   3262	return 0;
   3263err_dl:
   3264	rvu_unregister_dl(rvu);
   3265err_irq:
   3266	rvu_unregister_interrupts(rvu);
   3267err_flr:
   3268	rvu_flr_wq_destroy(rvu);
   3269err_mbox:
   3270	rvu_mbox_destroy(&rvu->afpf_wq_info);
   3271err_hwsetup:
   3272	rvu_cgx_exit(rvu);
   3273	rvu_fwdata_exit(rvu);
   3274	rvu_reset_all_blocks(rvu);
   3275	rvu_free_hw_resources(rvu);
   3276	rvu_clear_rvum_blk_revid(rvu);
   3277err_put_ptp:
   3278	ptp_put(rvu->ptp);
   3279err_release_regions:
   3280	pci_release_regions(pdev);
   3281err_disable_device:
   3282	pci_disable_device(pdev);
   3283err_freemem:
   3284	pci_set_drvdata(pdev, NULL);
   3285	devm_kfree(&pdev->dev, rvu->hw);
   3286	devm_kfree(dev, rvu);
   3287	return err;
   3288}
   3289
   3290static void rvu_remove(struct pci_dev *pdev)
   3291{
   3292	struct rvu *rvu = pci_get_drvdata(pdev);
   3293
   3294	rvu_dbg_exit(rvu);
   3295	rvu_unregister_dl(rvu);
   3296	rvu_unregister_interrupts(rvu);
   3297	rvu_flr_wq_destroy(rvu);
   3298	rvu_cgx_exit(rvu);
   3299	rvu_fwdata_exit(rvu);
   3300	rvu_mbox_destroy(&rvu->afpf_wq_info);
   3301	rvu_disable_sriov(rvu);
   3302	rvu_reset_all_blocks(rvu);
   3303	rvu_free_hw_resources(rvu);
   3304	rvu_clear_rvum_blk_revid(rvu);
   3305	ptp_put(rvu->ptp);
   3306	pci_release_regions(pdev);
   3307	pci_disable_device(pdev);
   3308	pci_set_drvdata(pdev, NULL);
   3309
   3310	devm_kfree(&pdev->dev, rvu->hw);
   3311	devm_kfree(&pdev->dev, rvu);
   3312}
   3313
   3314static struct pci_driver rvu_driver = {
   3315	.name = DRV_NAME,
   3316	.id_table = rvu_id_table,
   3317	.probe = rvu_probe,
   3318	.remove = rvu_remove,
   3319};
   3320
   3321static int __init rvu_init_module(void)
   3322{
   3323	int err;
   3324
   3325	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
   3326
   3327	err = pci_register_driver(&cgx_driver);
   3328	if (err < 0)
   3329		return err;
   3330
   3331	err = pci_register_driver(&ptp_driver);
   3332	if (err < 0)
   3333		goto ptp_err;
   3334
   3335	err =  pci_register_driver(&rvu_driver);
   3336	if (err < 0)
   3337		goto rvu_err;
   3338
   3339	return 0;
   3340rvu_err:
   3341	pci_unregister_driver(&ptp_driver);
   3342ptp_err:
   3343	pci_unregister_driver(&cgx_driver);
   3344
   3345	return err;
   3346}
   3347
   3348static void __exit rvu_cleanup_module(void)
   3349{
   3350	pci_unregister_driver(&rvu_driver);
   3351	pci_unregister_driver(&ptp_driver);
   3352	pci_unregister_driver(&cgx_driver);
   3353}
   3354
   3355module_init(rvu_init_module);
   3356module_exit(rvu_cleanup_module);