cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ks8851_spi.c (12548B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* drivers/net/ethernet/micrel/ks8851.c
      3 *
      4 * Copyright 2009 Simtec Electronics
      5 *	http://www.simtec.co.uk/
      6 *	Ben Dooks <ben@simtec.co.uk>
      7 */
      8
      9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     10
     11#include <linux/interrupt.h>
     12#include <linux/module.h>
     13#include <linux/kernel.h>
     14#include <linux/netdevice.h>
     15#include <linux/etherdevice.h>
     16#include <linux/ethtool.h>
     17#include <linux/cache.h>
     18#include <linux/crc32.h>
     19#include <linux/mii.h>
     20#include <linux/regulator/consumer.h>
     21
     22#include <linux/spi/spi.h>
     23#include <linux/gpio.h>
     24#include <linux/of_gpio.h>
     25#include <linux/of_net.h>
     26
     27#include "ks8851.h"
     28
     29static int msg_enable;
     30
     31/**
     32 * struct ks8851_net_spi - KS8851 SPI driver private data
     33 * @lock: Lock to ensure that the device is not accessed when busy.
     34 * @tx_work: Work queue for tx packets
     35 * @ks8851: KS8851 driver common private data
     36 * @spidev: The spi device we're bound to.
     37 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
     38 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
     39 * @spi_xfer1: @spi_msg1 SPI transfer structure
     40 * @spi_xfer2: @spi_msg2 SPI transfer structure
     41 *
     42 * The @lock ensures that the chip is protected when certain operations are
     43 * in progress. When the read or write packet transfer is in progress, most
     44 * of the chip registers are not ccessible until the transfer is finished and
     45 * the DMA has been de-asserted.
     46 */
     47struct ks8851_net_spi {
     48	struct ks8851_net	ks8851;
     49	struct mutex		lock;
     50	struct work_struct	tx_work;
     51	struct spi_device	*spidev;
     52	struct spi_message	spi_msg1;
     53	struct spi_message	spi_msg2;
     54	struct spi_transfer	spi_xfer1;
     55	struct spi_transfer	spi_xfer2[2];
     56};
     57
     58#define to_ks8851_spi(ks) container_of((ks), struct ks8851_net_spi, ks8851)
     59
     60/* SPI frame opcodes */
     61#define KS_SPIOP_RD	0x00
     62#define KS_SPIOP_WR	0x40
     63#define KS_SPIOP_RXFIFO	0x80
     64#define KS_SPIOP_TXFIFO	0xC0
     65
     66/* shift for byte-enable data */
     67#define BYTE_EN(_x)	((_x) << 2)
     68
     69/* turn register number and byte-enable mask into data for start of packet */
     70#define MK_OP(_byteen, _reg)	\
     71	(BYTE_EN(_byteen) | (_reg) << (8 + 2) | (_reg) >> 6)
     72
     73/**
     74 * ks8851_lock_spi - register access lock
     75 * @ks: The chip state
     76 * @flags: Spinlock flags
     77 *
     78 * Claim chip register access lock
     79 */
     80static void ks8851_lock_spi(struct ks8851_net *ks, unsigned long *flags)
     81{
     82	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
     83
     84	mutex_lock(&kss->lock);
     85}
     86
     87/**
     88 * ks8851_unlock_spi - register access unlock
     89 * @ks: The chip state
     90 * @flags: Spinlock flags
     91 *
     92 * Release chip register access lock
     93 */
     94static void ks8851_unlock_spi(struct ks8851_net *ks, unsigned long *flags)
     95{
     96	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
     97
     98	mutex_unlock(&kss->lock);
     99}
    100
    101/* SPI register read/write calls.
    102 *
    103 * All these calls issue SPI transactions to access the chip's registers. They
    104 * all require that the necessary lock is held to prevent accesses when the
    105 * chip is busy transferring packet data (RX/TX FIFO accesses).
    106 */
    107
    108/**
    109 * ks8851_wrreg16_spi - write 16bit register value to chip via SPI
    110 * @ks: The chip state
    111 * @reg: The register address
    112 * @val: The value to write
    113 *
    114 * Issue a write to put the value @val into the register specified in @reg.
    115 */
    116static void ks8851_wrreg16_spi(struct ks8851_net *ks, unsigned int reg,
    117			       unsigned int val)
    118{
    119	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
    120	struct spi_transfer *xfer = &kss->spi_xfer1;
    121	struct spi_message *msg = &kss->spi_msg1;
    122	__le16 txb[2];
    123	int ret;
    124
    125	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
    126	txb[1] = cpu_to_le16(val);
    127
    128	xfer->tx_buf = txb;
    129	xfer->rx_buf = NULL;
    130	xfer->len = 4;
    131
    132	ret = spi_sync(kss->spidev, msg);
    133	if (ret < 0)
    134		netdev_err(ks->netdev, "spi_sync() failed\n");
    135}
    136
    137/**
    138 * ks8851_rdreg - issue read register command and return the data
    139 * @ks: The device state
    140 * @op: The register address and byte enables in message format.
    141 * @rxb: The RX buffer to return the result into
    142 * @rxl: The length of data expected.
    143 *
    144 * This is the low level read call that issues the necessary spi message(s)
    145 * to read data from the register specified in @op.
    146 */
    147static void ks8851_rdreg(struct ks8851_net *ks, unsigned int op,
    148			 u8 *rxb, unsigned int rxl)
    149{
    150	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
    151	struct spi_transfer *xfer;
    152	struct spi_message *msg;
    153	__le16 *txb = (__le16 *)ks->txd;
    154	u8 *trx = ks->rxd;
    155	int ret;
    156
    157	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
    158
    159	if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) {
    160		msg = &kss->spi_msg2;
    161		xfer = kss->spi_xfer2;
    162
    163		xfer->tx_buf = txb;
    164		xfer->rx_buf = NULL;
    165		xfer->len = 2;
    166
    167		xfer++;
    168		xfer->tx_buf = NULL;
    169		xfer->rx_buf = trx;
    170		xfer->len = rxl;
    171	} else {
    172		msg = &kss->spi_msg1;
    173		xfer = &kss->spi_xfer1;
    174
    175		xfer->tx_buf = txb;
    176		xfer->rx_buf = trx;
    177		xfer->len = rxl + 2;
    178	}
    179
    180	ret = spi_sync(kss->spidev, msg);
    181	if (ret < 0)
    182		netdev_err(ks->netdev, "read: spi_sync() failed\n");
    183	else if (kss->spidev->master->flags & SPI_MASTER_HALF_DUPLEX)
    184		memcpy(rxb, trx, rxl);
    185	else
    186		memcpy(rxb, trx + 2, rxl);
    187}
    188
    189/**
    190 * ks8851_rdreg16_spi - read 16 bit register from device via SPI
    191 * @ks: The chip information
    192 * @reg: The register address
    193 *
    194 * Read a 16bit register from the chip, returning the result
    195 */
    196static unsigned int ks8851_rdreg16_spi(struct ks8851_net *ks, unsigned int reg)
    197{
    198	__le16 rx = 0;
    199
    200	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
    201	return le16_to_cpu(rx);
    202}
    203
    204/**
    205 * ks8851_rdfifo_spi - read data from the receive fifo via SPI
    206 * @ks: The device state.
    207 * @buff: The buffer address
    208 * @len: The length of the data to read
    209 *
    210 * Issue an RXQ FIFO read command and read the @len amount of data from
    211 * the FIFO into the buffer specified by @buff.
    212 */
    213static void ks8851_rdfifo_spi(struct ks8851_net *ks, u8 *buff, unsigned int len)
    214{
    215	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
    216	struct spi_transfer *xfer = kss->spi_xfer2;
    217	struct spi_message *msg = &kss->spi_msg2;
    218	u8 txb[1];
    219	int ret;
    220
    221	netif_dbg(ks, rx_status, ks->netdev,
    222		  "%s: %d@%p\n", __func__, len, buff);
    223
    224	/* set the operation we're issuing */
    225	txb[0] = KS_SPIOP_RXFIFO;
    226
    227	xfer->tx_buf = txb;
    228	xfer->rx_buf = NULL;
    229	xfer->len = 1;
    230
    231	xfer++;
    232	xfer->rx_buf = buff;
    233	xfer->tx_buf = NULL;
    234	xfer->len = len;
    235
    236	ret = spi_sync(kss->spidev, msg);
    237	if (ret < 0)
    238		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
    239}
    240
    241/**
    242 * ks8851_wrfifo_spi - write packet to TX FIFO via SPI
    243 * @ks: The device state.
    244 * @txp: The sk_buff to transmit.
    245 * @irq: IRQ on completion of the packet.
    246 *
    247 * Send the @txp to the chip. This means creating the relevant packet header
    248 * specifying the length of the packet and the other information the chip
    249 * needs, such as IRQ on completion. Send the header and the packet data to
    250 * the device.
    251 */
    252static void ks8851_wrfifo_spi(struct ks8851_net *ks, struct sk_buff *txp,
    253			      bool irq)
    254{
    255	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
    256	struct spi_transfer *xfer = kss->spi_xfer2;
    257	struct spi_message *msg = &kss->spi_msg2;
    258	unsigned int fid = 0;
    259	int ret;
    260
    261	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
    262		  __func__, txp, txp->len, txp->data, irq);
    263
    264	fid = ks->fid++;
    265	fid &= TXFR_TXFID_MASK;
    266
    267	if (irq)
    268		fid |= TXFR_TXIC;	/* irq on completion */
    269
    270	/* start header at txb[1] to align txw entries */
    271	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
    272	ks->txh.txw[1] = cpu_to_le16(fid);
    273	ks->txh.txw[2] = cpu_to_le16(txp->len);
    274
    275	xfer->tx_buf = &ks->txh.txb[1];
    276	xfer->rx_buf = NULL;
    277	xfer->len = 5;
    278
    279	xfer++;
    280	xfer->tx_buf = txp->data;
    281	xfer->rx_buf = NULL;
    282	xfer->len = ALIGN(txp->len, 4);
    283
    284	ret = spi_sync(kss->spidev, msg);
    285	if (ret < 0)
    286		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
    287}
    288
    289/**
    290 * ks8851_rx_skb_spi - receive skbuff
    291 * @ks: The device state
    292 * @skb: The skbuff
    293 */
    294static void ks8851_rx_skb_spi(struct ks8851_net *ks, struct sk_buff *skb)
    295{
    296	netif_rx(skb);
    297}
    298
    299/**
    300 * ks8851_tx_work - process tx packet(s)
    301 * @work: The work strucutre what was scheduled.
    302 *
    303 * This is called when a number of packets have been scheduled for
    304 * transmission and need to be sent to the device.
    305 */
    306static void ks8851_tx_work(struct work_struct *work)
    307{
    308	struct ks8851_net_spi *kss;
    309	struct ks8851_net *ks;
    310	unsigned long flags;
    311	struct sk_buff *txb;
    312	bool last;
    313
    314	kss = container_of(work, struct ks8851_net_spi, tx_work);
    315	ks = &kss->ks8851;
    316	last = skb_queue_empty(&ks->txq);
    317
    318	ks8851_lock_spi(ks, &flags);
    319
    320	while (!last) {
    321		txb = skb_dequeue(&ks->txq);
    322		last = skb_queue_empty(&ks->txq);
    323
    324		if (txb) {
    325			ks8851_wrreg16_spi(ks, KS_RXQCR,
    326					   ks->rc_rxqcr | RXQCR_SDA);
    327			ks8851_wrfifo_spi(ks, txb, last);
    328			ks8851_wrreg16_spi(ks, KS_RXQCR, ks->rc_rxqcr);
    329			ks8851_wrreg16_spi(ks, KS_TXQCR, TXQCR_METFE);
    330
    331			ks8851_done_tx(ks, txb);
    332		}
    333	}
    334
    335	ks8851_unlock_spi(ks, &flags);
    336}
    337
    338/**
    339 * ks8851_flush_tx_work_spi - flush outstanding TX work
    340 * @ks: The device state
    341 */
    342static void ks8851_flush_tx_work_spi(struct ks8851_net *ks)
    343{
    344	struct ks8851_net_spi *kss = to_ks8851_spi(ks);
    345
    346	flush_work(&kss->tx_work);
    347}
    348
    349/**
    350 * calc_txlen - calculate size of message to send packet
    351 * @len: Length of data
    352 *
    353 * Returns the size of the TXFIFO message needed to send
    354 * this packet.
    355 */
    356static unsigned int calc_txlen(unsigned int len)
    357{
    358	return ALIGN(len + 4, 4);
    359}
    360
    361/**
    362 * ks8851_start_xmit_spi - transmit packet using SPI
    363 * @skb: The buffer to transmit
    364 * @dev: The device used to transmit the packet.
    365 *
    366 * Called by the network layer to transmit the @skb. Queue the packet for
    367 * the device and schedule the necessary work to transmit the packet when
    368 * it is free.
    369 *
    370 * We do this to firstly avoid sleeping with the network device locked,
    371 * and secondly so we can round up more than one packet to transmit which
    372 * means we can try and avoid generating too many transmit done interrupts.
    373 */
    374static netdev_tx_t ks8851_start_xmit_spi(struct sk_buff *skb,
    375					 struct net_device *dev)
    376{
    377	unsigned int needed = calc_txlen(skb->len);
    378	struct ks8851_net *ks = netdev_priv(dev);
    379	netdev_tx_t ret = NETDEV_TX_OK;
    380	struct ks8851_net_spi *kss;
    381
    382	kss = to_ks8851_spi(ks);
    383
    384	netif_dbg(ks, tx_queued, ks->netdev,
    385		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
    386
    387	spin_lock(&ks->statelock);
    388
    389	if (needed > ks->tx_space) {
    390		netif_stop_queue(dev);
    391		ret = NETDEV_TX_BUSY;
    392	} else {
    393		ks->tx_space -= needed;
    394		skb_queue_tail(&ks->txq, skb);
    395	}
    396
    397	spin_unlock(&ks->statelock);
    398	schedule_work(&kss->tx_work);
    399
    400	return ret;
    401}
    402
    403static int ks8851_probe_spi(struct spi_device *spi)
    404{
    405	struct device *dev = &spi->dev;
    406	struct ks8851_net_spi *kss;
    407	struct net_device *netdev;
    408	struct ks8851_net *ks;
    409
    410	netdev = devm_alloc_etherdev(dev, sizeof(struct ks8851_net_spi));
    411	if (!netdev)
    412		return -ENOMEM;
    413
    414	spi->bits_per_word = 8;
    415
    416	ks = netdev_priv(netdev);
    417
    418	ks->lock = ks8851_lock_spi;
    419	ks->unlock = ks8851_unlock_spi;
    420	ks->rdreg16 = ks8851_rdreg16_spi;
    421	ks->wrreg16 = ks8851_wrreg16_spi;
    422	ks->rdfifo = ks8851_rdfifo_spi;
    423	ks->wrfifo = ks8851_wrfifo_spi;
    424	ks->start_xmit = ks8851_start_xmit_spi;
    425	ks->rx_skb = ks8851_rx_skb_spi;
    426	ks->flush_tx_work = ks8851_flush_tx_work_spi;
    427
    428#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
    429		 IRQ_TXI |	/* TX done */		\
    430		 IRQ_RXI |	/* RX done */		\
    431		 IRQ_SPIBEI |	/* SPI bus error */	\
    432		 IRQ_TXPSI |	/* TX process stop */	\
    433		 IRQ_RXPSI)	/* RX process stop */
    434	ks->rc_ier = STD_IRQ;
    435
    436	kss = to_ks8851_spi(ks);
    437
    438	kss->spidev = spi;
    439	mutex_init(&kss->lock);
    440	INIT_WORK(&kss->tx_work, ks8851_tx_work);
    441
    442	/* initialise pre-made spi transfer messages */
    443	spi_message_init(&kss->spi_msg1);
    444	spi_message_add_tail(&kss->spi_xfer1, &kss->spi_msg1);
    445
    446	spi_message_init(&kss->spi_msg2);
    447	spi_message_add_tail(&kss->spi_xfer2[0], &kss->spi_msg2);
    448	spi_message_add_tail(&kss->spi_xfer2[1], &kss->spi_msg2);
    449
    450	netdev->irq = spi->irq;
    451
    452	return ks8851_probe_common(netdev, dev, msg_enable);
    453}
    454
    455static void ks8851_remove_spi(struct spi_device *spi)
    456{
    457	ks8851_remove_common(&spi->dev);
    458}
    459
    460static const struct of_device_id ks8851_match_table[] = {
    461	{ .compatible = "micrel,ks8851" },
    462	{ }
    463};
    464MODULE_DEVICE_TABLE(of, ks8851_match_table);
    465
    466static struct spi_driver ks8851_driver = {
    467	.driver = {
    468		.name = "ks8851",
    469		.of_match_table = ks8851_match_table,
    470		.pm = &ks8851_pm_ops,
    471	},
    472	.probe = ks8851_probe_spi,
    473	.remove = ks8851_remove_spi,
    474};
    475module_spi_driver(ks8851_driver);
    476
    477MODULE_DESCRIPTION("KS8851 Network driver");
    478MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
    479MODULE_LICENSE("GPL");
    480
    481module_param_named(message, msg_enable, int, 0);
    482MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
    483MODULE_ALIAS("spi:ks8851");