cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ksz884x.c (181253B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
      4 *
      5 * Copyright (c) 2009-2010 Micrel, Inc.
      6 * 	Tristram Ha <Tristram.Ha@micrel.com>
      7 */
      8
      9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     10
     11#include <linux/init.h>
     12#include <linux/interrupt.h>
     13#include <linux/kernel.h>
     14#include <linux/module.h>
     15#include <linux/ioport.h>
     16#include <linux/pci.h>
     17#include <linux/proc_fs.h>
     18#include <linux/mii.h>
     19#include <linux/platform_device.h>
     20#include <linux/ethtool.h>
     21#include <linux/etherdevice.h>
     22#include <linux/in.h>
     23#include <linux/ip.h>
     24#include <linux/if_vlan.h>
     25#include <linux/crc32.h>
     26#include <linux/sched.h>
     27#include <linux/slab.h>
     28#include <linux/micrel_phy.h>
     29
     30
     31/* DMA Registers */
     32
     33#define KS_DMA_TX_CTRL			0x0000
     34#define DMA_TX_ENABLE			0x00000001
     35#define DMA_TX_CRC_ENABLE		0x00000002
     36#define DMA_TX_PAD_ENABLE		0x00000004
     37#define DMA_TX_LOOPBACK			0x00000100
     38#define DMA_TX_FLOW_ENABLE		0x00000200
     39#define DMA_TX_CSUM_IP			0x00010000
     40#define DMA_TX_CSUM_TCP			0x00020000
     41#define DMA_TX_CSUM_UDP			0x00040000
     42#define DMA_TX_BURST_SIZE		0x3F000000
     43
     44#define KS_DMA_RX_CTRL			0x0004
     45#define DMA_RX_ENABLE			0x00000001
     46#define KS884X_DMA_RX_MULTICAST		0x00000002
     47#define DMA_RX_PROMISCUOUS		0x00000004
     48#define DMA_RX_ERROR			0x00000008
     49#define DMA_RX_UNICAST			0x00000010
     50#define DMA_RX_ALL_MULTICAST		0x00000020
     51#define DMA_RX_BROADCAST		0x00000040
     52#define DMA_RX_FLOW_ENABLE		0x00000200
     53#define DMA_RX_CSUM_IP			0x00010000
     54#define DMA_RX_CSUM_TCP			0x00020000
     55#define DMA_RX_CSUM_UDP			0x00040000
     56#define DMA_RX_BURST_SIZE		0x3F000000
     57
     58#define DMA_BURST_SHIFT			24
     59#define DMA_BURST_DEFAULT		8
     60
     61#define KS_DMA_TX_START			0x0008
     62#define KS_DMA_RX_START			0x000C
     63#define DMA_START			0x00000001
     64
     65#define KS_DMA_TX_ADDR			0x0010
     66#define KS_DMA_RX_ADDR			0x0014
     67
     68#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
     69#define DMA_ADDR_LIST_SHIFT		2
     70
     71/* MTR0 */
     72#define KS884X_MULTICAST_0_OFFSET	0x0020
     73#define KS884X_MULTICAST_1_OFFSET	0x0021
     74#define KS884X_MULTICAST_2_OFFSET	0x0022
     75#define KS884x_MULTICAST_3_OFFSET	0x0023
     76/* MTR1 */
     77#define KS884X_MULTICAST_4_OFFSET	0x0024
     78#define KS884X_MULTICAST_5_OFFSET	0x0025
     79#define KS884X_MULTICAST_6_OFFSET	0x0026
     80#define KS884X_MULTICAST_7_OFFSET	0x0027
     81
     82/* Interrupt Registers */
     83
     84/* INTEN */
     85#define KS884X_INTERRUPTS_ENABLE	0x0028
     86/* INTST */
     87#define KS884X_INTERRUPTS_STATUS	0x002C
     88
     89#define KS884X_INT_RX_STOPPED		0x02000000
     90#define KS884X_INT_TX_STOPPED		0x04000000
     91#define KS884X_INT_RX_OVERRUN		0x08000000
     92#define KS884X_INT_TX_EMPTY		0x10000000
     93#define KS884X_INT_RX			0x20000000
     94#define KS884X_INT_TX			0x40000000
     95#define KS884X_INT_PHY			0x80000000
     96
     97#define KS884X_INT_RX_MASK		\
     98	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
     99#define KS884X_INT_TX_MASK		\
    100	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
    101#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
    102
    103/* MAC Additional Station Address */
    104
    105/* MAAL0 */
    106#define KS_ADD_ADDR_0_LO		0x0080
    107/* MAAH0 */
    108#define KS_ADD_ADDR_0_HI		0x0084
    109/* MAAL1 */
    110#define KS_ADD_ADDR_1_LO		0x0088
    111/* MAAH1 */
    112#define KS_ADD_ADDR_1_HI		0x008C
    113/* MAAL2 */
    114#define KS_ADD_ADDR_2_LO		0x0090
    115/* MAAH2 */
    116#define KS_ADD_ADDR_2_HI		0x0094
    117/* MAAL3 */
    118#define KS_ADD_ADDR_3_LO		0x0098
    119/* MAAH3 */
    120#define KS_ADD_ADDR_3_HI		0x009C
    121/* MAAL4 */
    122#define KS_ADD_ADDR_4_LO		0x00A0
    123/* MAAH4 */
    124#define KS_ADD_ADDR_4_HI		0x00A4
    125/* MAAL5 */
    126#define KS_ADD_ADDR_5_LO		0x00A8
    127/* MAAH5 */
    128#define KS_ADD_ADDR_5_HI		0x00AC
    129/* MAAL6 */
    130#define KS_ADD_ADDR_6_LO		0x00B0
    131/* MAAH6 */
    132#define KS_ADD_ADDR_6_HI		0x00B4
    133/* MAAL7 */
    134#define KS_ADD_ADDR_7_LO		0x00B8
    135/* MAAH7 */
    136#define KS_ADD_ADDR_7_HI		0x00BC
    137/* MAAL8 */
    138#define KS_ADD_ADDR_8_LO		0x00C0
    139/* MAAH8 */
    140#define KS_ADD_ADDR_8_HI		0x00C4
    141/* MAAL9 */
    142#define KS_ADD_ADDR_9_LO		0x00C8
    143/* MAAH9 */
    144#define KS_ADD_ADDR_9_HI		0x00CC
    145/* MAAL10 */
    146#define KS_ADD_ADDR_A_LO		0x00D0
    147/* MAAH10 */
    148#define KS_ADD_ADDR_A_HI		0x00D4
    149/* MAAL11 */
    150#define KS_ADD_ADDR_B_LO		0x00D8
    151/* MAAH11 */
    152#define KS_ADD_ADDR_B_HI		0x00DC
    153/* MAAL12 */
    154#define KS_ADD_ADDR_C_LO		0x00E0
    155/* MAAH12 */
    156#define KS_ADD_ADDR_C_HI		0x00E4
    157/* MAAL13 */
    158#define KS_ADD_ADDR_D_LO		0x00E8
    159/* MAAH13 */
    160#define KS_ADD_ADDR_D_HI		0x00EC
    161/* MAAL14 */
    162#define KS_ADD_ADDR_E_LO		0x00F0
    163/* MAAH14 */
    164#define KS_ADD_ADDR_E_HI		0x00F4
    165/* MAAL15 */
    166#define KS_ADD_ADDR_F_LO		0x00F8
    167/* MAAH15 */
    168#define KS_ADD_ADDR_F_HI		0x00FC
    169
    170#define ADD_ADDR_HI_MASK		0x0000FFFF
    171#define ADD_ADDR_ENABLE			0x80000000
    172#define ADD_ADDR_INCR			8
    173
    174/* Miscellaneous Registers */
    175
    176/* MARL */
    177#define KS884X_ADDR_0_OFFSET		0x0200
    178#define KS884X_ADDR_1_OFFSET		0x0201
    179/* MARM */
    180#define KS884X_ADDR_2_OFFSET		0x0202
    181#define KS884X_ADDR_3_OFFSET		0x0203
    182/* MARH */
    183#define KS884X_ADDR_4_OFFSET		0x0204
    184#define KS884X_ADDR_5_OFFSET		0x0205
    185
    186/* OBCR */
    187#define KS884X_BUS_CTRL_OFFSET		0x0210
    188
    189#define BUS_SPEED_125_MHZ		0x0000
    190#define BUS_SPEED_62_5_MHZ		0x0001
    191#define BUS_SPEED_41_66_MHZ		0x0002
    192#define BUS_SPEED_25_MHZ		0x0003
    193
    194/* EEPCR */
    195#define KS884X_EEPROM_CTRL_OFFSET	0x0212
    196
    197#define EEPROM_CHIP_SELECT		0x0001
    198#define EEPROM_SERIAL_CLOCK		0x0002
    199#define EEPROM_DATA_OUT			0x0004
    200#define EEPROM_DATA_IN			0x0008
    201#define EEPROM_ACCESS_ENABLE		0x0010
    202
    203/* MBIR */
    204#define KS884X_MEM_INFO_OFFSET		0x0214
    205
    206#define RX_MEM_TEST_FAILED		0x0008
    207#define RX_MEM_TEST_FINISHED		0x0010
    208#define TX_MEM_TEST_FAILED		0x0800
    209#define TX_MEM_TEST_FINISHED		0x1000
    210
    211/* GCR */
    212#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
    213#define GLOBAL_SOFTWARE_RESET		0x0001
    214
    215#define KS8841_POWER_MANAGE_OFFSET	0x0218
    216
    217/* WFCR */
    218#define KS8841_WOL_CTRL_OFFSET		0x021A
    219#define KS8841_WOL_MAGIC_ENABLE		0x0080
    220#define KS8841_WOL_FRAME3_ENABLE	0x0008
    221#define KS8841_WOL_FRAME2_ENABLE	0x0004
    222#define KS8841_WOL_FRAME1_ENABLE	0x0002
    223#define KS8841_WOL_FRAME0_ENABLE	0x0001
    224
    225/* WF0 */
    226#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
    227#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
    228#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
    229
    230/* IACR */
    231#define KS884X_IACR_P			0x04A0
    232#define KS884X_IACR_OFFSET		KS884X_IACR_P
    233
    234/* IADR1 */
    235#define KS884X_IADR1_P			0x04A2
    236#define KS884X_IADR2_P			0x04A4
    237#define KS884X_IADR3_P			0x04A6
    238#define KS884X_IADR4_P			0x04A8
    239#define KS884X_IADR5_P			0x04AA
    240
    241#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
    242#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
    243
    244#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
    245#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
    246#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
    247#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
    248#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
    249#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
    250#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
    251#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
    252#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
    253
    254/* P1MBCR */
    255#define KS884X_P1MBCR_P			0x04D0
    256#define KS884X_P1MBSR_P			0x04D2
    257#define KS884X_PHY1ILR_P		0x04D4
    258#define KS884X_PHY1IHR_P		0x04D6
    259#define KS884X_P1ANAR_P			0x04D8
    260#define KS884X_P1ANLPR_P		0x04DA
    261
    262/* P2MBCR */
    263#define KS884X_P2MBCR_P			0x04E0
    264#define KS884X_P2MBSR_P			0x04E2
    265#define KS884X_PHY2ILR_P		0x04E4
    266#define KS884X_PHY2IHR_P		0x04E6
    267#define KS884X_P2ANAR_P			0x04E8
    268#define KS884X_P2ANLPR_P		0x04EA
    269
    270#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
    271#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
    272
    273#define KS884X_PHY_CTRL_OFFSET		0x00
    274
    275#define KS884X_PHY_STATUS_OFFSET	0x02
    276
    277#define KS884X_PHY_ID_1_OFFSET		0x04
    278#define KS884X_PHY_ID_2_OFFSET		0x06
    279
    280#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
    281
    282#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
    283
    284/* P1VCT */
    285#define KS884X_P1VCT_P			0x04F0
    286#define KS884X_P1PHYCTRL_P		0x04F2
    287
    288/* P2VCT */
    289#define KS884X_P2VCT_P			0x04F4
    290#define KS884X_P2PHYCTRL_P		0x04F6
    291
    292#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
    293#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
    294
    295#define KS884X_PHY_LINK_MD_OFFSET	0x00
    296
    297#define PHY_START_CABLE_DIAG		0x8000
    298#define PHY_CABLE_DIAG_RESULT		0x6000
    299#define PHY_CABLE_STAT_NORMAL		0x0000
    300#define PHY_CABLE_STAT_OPEN		0x2000
    301#define PHY_CABLE_STAT_SHORT		0x4000
    302#define PHY_CABLE_STAT_FAILED		0x6000
    303#define PHY_CABLE_10M_SHORT		0x1000
    304#define PHY_CABLE_FAULT_COUNTER		0x01FF
    305
    306#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
    307
    308#define PHY_STAT_REVERSED_POLARITY	0x0020
    309#define PHY_STAT_MDIX			0x0010
    310#define PHY_FORCE_LINK			0x0008
    311#define PHY_POWER_SAVING_DISABLE	0x0004
    312#define PHY_REMOTE_LOOPBACK		0x0002
    313
    314/* SIDER */
    315#define KS884X_SIDER_P			0x0400
    316#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
    317#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
    318
    319#define REG_FAMILY_ID			0x88
    320
    321#define REG_CHIP_ID_41			0x8810
    322#define REG_CHIP_ID_42			0x8800
    323
    324#define KS884X_CHIP_ID_MASK_41		0xFF10
    325#define KS884X_CHIP_ID_MASK		0xFFF0
    326#define KS884X_CHIP_ID_SHIFT		4
    327#define KS884X_REVISION_MASK		0x000E
    328#define KS884X_REVISION_SHIFT		1
    329#define KS8842_START			0x0001
    330
    331#define CHIP_IP_41_M			0x8810
    332#define CHIP_IP_42_M			0x8800
    333#define CHIP_IP_61_M			0x8890
    334#define CHIP_IP_62_M			0x8880
    335
    336#define CHIP_IP_41_P			0x8850
    337#define CHIP_IP_42_P			0x8840
    338#define CHIP_IP_61_P			0x88D0
    339#define CHIP_IP_62_P			0x88C0
    340
    341/* SGCR1 */
    342#define KS8842_SGCR1_P			0x0402
    343#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
    344
    345#define SWITCH_PASS_ALL			0x8000
    346#define SWITCH_TX_FLOW_CTRL		0x2000
    347#define SWITCH_RX_FLOW_CTRL		0x1000
    348#define SWITCH_CHECK_LENGTH		0x0800
    349#define SWITCH_AGING_ENABLE		0x0400
    350#define SWITCH_FAST_AGING		0x0200
    351#define SWITCH_AGGR_BACKOFF		0x0100
    352#define SWITCH_PASS_PAUSE		0x0008
    353#define SWITCH_LINK_AUTO_AGING		0x0001
    354
    355/* SGCR2 */
    356#define KS8842_SGCR2_P			0x0404
    357#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
    358
    359#define SWITCH_VLAN_ENABLE		0x8000
    360#define SWITCH_IGMP_SNOOP		0x4000
    361#define IPV6_MLD_SNOOP_ENABLE		0x2000
    362#define IPV6_MLD_SNOOP_OPTION		0x1000
    363#define PRIORITY_SCHEME_SELECT		0x0800
    364#define SWITCH_MIRROR_RX_TX		0x0100
    365#define UNICAST_VLAN_BOUNDARY		0x0080
    366#define MULTICAST_STORM_DISABLE		0x0040
    367#define SWITCH_BACK_PRESSURE		0x0020
    368#define FAIR_FLOW_CTRL			0x0010
    369#define NO_EXC_COLLISION_DROP		0x0008
    370#define SWITCH_HUGE_PACKET		0x0004
    371#define SWITCH_LEGAL_PACKET		0x0002
    372#define SWITCH_BUF_RESERVE		0x0001
    373
    374/* SGCR3 */
    375#define KS8842_SGCR3_P			0x0406
    376#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
    377
    378#define BROADCAST_STORM_RATE_LO		0xFF00
    379#define SWITCH_REPEATER			0x0080
    380#define SWITCH_HALF_DUPLEX		0x0040
    381#define SWITCH_FLOW_CTRL		0x0020
    382#define SWITCH_10_MBIT			0x0010
    383#define SWITCH_REPLACE_NULL_VID		0x0008
    384#define BROADCAST_STORM_RATE_HI		0x0007
    385
    386#define BROADCAST_STORM_RATE		0x07FF
    387
    388/* SGCR4 */
    389#define KS8842_SGCR4_P			0x0408
    390
    391/* SGCR5 */
    392#define KS8842_SGCR5_P			0x040A
    393#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
    394
    395#define LED_MODE			0x8200
    396#define LED_SPEED_DUPLEX_ACT		0x0000
    397#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
    398#define LED_DUPLEX_10_100		0x0200
    399
    400/* SGCR6 */
    401#define KS8842_SGCR6_P			0x0410
    402#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
    403
    404#define KS8842_PRIORITY_MASK		3
    405#define KS8842_PRIORITY_SHIFT		2
    406
    407/* SGCR7 */
    408#define KS8842_SGCR7_P			0x0412
    409#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
    410
    411#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
    412#define SWITCH_UNK_DEF_PORT_3		0x0004
    413#define SWITCH_UNK_DEF_PORT_2		0x0002
    414#define SWITCH_UNK_DEF_PORT_1		0x0001
    415
    416/* MACAR1 */
    417#define KS8842_MACAR1_P			0x0470
    418#define KS8842_MACAR2_P			0x0472
    419#define KS8842_MACAR3_P			0x0474
    420#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
    421#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
    422#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
    423#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
    424#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
    425#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
    426
    427/* TOSR1 */
    428#define KS8842_TOSR1_P			0x0480
    429#define KS8842_TOSR2_P			0x0482
    430#define KS8842_TOSR3_P			0x0484
    431#define KS8842_TOSR4_P			0x0486
    432#define KS8842_TOSR5_P			0x0488
    433#define KS8842_TOSR6_P			0x048A
    434#define KS8842_TOSR7_P			0x0490
    435#define KS8842_TOSR8_P			0x0492
    436#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
    437#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
    438#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
    439#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
    440#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
    441#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
    442
    443#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
    444#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
    445
    446/* P1CR1 */
    447#define KS8842_P1CR1_P			0x0500
    448#define KS8842_P1CR2_P			0x0502
    449#define KS8842_P1VIDR_P			0x0504
    450#define KS8842_P1CR3_P			0x0506
    451#define KS8842_P1IRCR_P			0x0508
    452#define KS8842_P1ERCR_P			0x050A
    453#define KS884X_P1SCSLMD_P		0x0510
    454#define KS884X_P1CR4_P			0x0512
    455#define KS884X_P1SR_P			0x0514
    456
    457/* P2CR1 */
    458#define KS8842_P2CR1_P			0x0520
    459#define KS8842_P2CR2_P			0x0522
    460#define KS8842_P2VIDR_P			0x0524
    461#define KS8842_P2CR3_P			0x0526
    462#define KS8842_P2IRCR_P			0x0528
    463#define KS8842_P2ERCR_P			0x052A
    464#define KS884X_P2SCSLMD_P		0x0530
    465#define KS884X_P2CR4_P			0x0532
    466#define KS884X_P2SR_P			0x0534
    467
    468/* P3CR1 */
    469#define KS8842_P3CR1_P			0x0540
    470#define KS8842_P3CR2_P			0x0542
    471#define KS8842_P3VIDR_P			0x0544
    472#define KS8842_P3CR3_P			0x0546
    473#define KS8842_P3IRCR_P			0x0548
    474#define KS8842_P3ERCR_P			0x054A
    475
    476#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
    477#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
    478#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
    479
    480#define PORT_CTRL_ADDR(port, addr)		\
    481	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
    482		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
    483
    484#define KS8842_PORT_CTRL_1_OFFSET	0x00
    485
    486#define PORT_BROADCAST_STORM		0x0080
    487#define PORT_DIFFSERV_ENABLE		0x0040
    488#define PORT_802_1P_ENABLE		0x0020
    489#define PORT_BASED_PRIORITY_MASK	0x0018
    490#define PORT_BASED_PRIORITY_BASE	0x0003
    491#define PORT_BASED_PRIORITY_SHIFT	3
    492#define PORT_BASED_PRIORITY_0		0x0000
    493#define PORT_BASED_PRIORITY_1		0x0008
    494#define PORT_BASED_PRIORITY_2		0x0010
    495#define PORT_BASED_PRIORITY_3		0x0018
    496#define PORT_INSERT_TAG			0x0004
    497#define PORT_REMOVE_TAG			0x0002
    498#define PORT_PRIO_QUEUE_ENABLE		0x0001
    499
    500#define KS8842_PORT_CTRL_2_OFFSET	0x02
    501
    502#define PORT_INGRESS_VLAN_FILTER	0x4000
    503#define PORT_DISCARD_NON_VID		0x2000
    504#define PORT_FORCE_FLOW_CTRL		0x1000
    505#define PORT_BACK_PRESSURE		0x0800
    506#define PORT_TX_ENABLE			0x0400
    507#define PORT_RX_ENABLE			0x0200
    508#define PORT_LEARN_DISABLE		0x0100
    509#define PORT_MIRROR_SNIFFER		0x0080
    510#define PORT_MIRROR_RX			0x0040
    511#define PORT_MIRROR_TX			0x0020
    512#define PORT_USER_PRIORITY_CEILING	0x0008
    513#define PORT_VLAN_MEMBERSHIP		0x0007
    514
    515#define KS8842_PORT_CTRL_VID_OFFSET	0x04
    516
    517#define PORT_DEFAULT_VID		0x0001
    518
    519#define KS8842_PORT_CTRL_3_OFFSET	0x06
    520
    521#define PORT_INGRESS_LIMIT_MODE		0x000C
    522#define PORT_INGRESS_ALL		0x0000
    523#define PORT_INGRESS_UNICAST		0x0004
    524#define PORT_INGRESS_MULTICAST		0x0008
    525#define PORT_INGRESS_BROADCAST		0x000C
    526#define PORT_COUNT_IFG			0x0002
    527#define PORT_COUNT_PREAMBLE		0x0001
    528
    529#define KS8842_PORT_IN_RATE_OFFSET	0x08
    530#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
    531
    532#define PORT_PRIORITY_RATE		0x0F
    533#define PORT_PRIORITY_RATE_SHIFT	4
    534
    535#define KS884X_PORT_LINK_MD		0x10
    536
    537#define PORT_CABLE_10M_SHORT		0x8000
    538#define PORT_CABLE_DIAG_RESULT		0x6000
    539#define PORT_CABLE_STAT_NORMAL		0x0000
    540#define PORT_CABLE_STAT_OPEN		0x2000
    541#define PORT_CABLE_STAT_SHORT		0x4000
    542#define PORT_CABLE_STAT_FAILED		0x6000
    543#define PORT_START_CABLE_DIAG		0x1000
    544#define PORT_FORCE_LINK			0x0800
    545#define PORT_POWER_SAVING_DISABLE	0x0400
    546#define PORT_PHY_REMOTE_LOOPBACK	0x0200
    547#define PORT_CABLE_FAULT_COUNTER	0x01FF
    548
    549#define KS884X_PORT_CTRL_4_OFFSET	0x12
    550
    551#define PORT_LED_OFF			0x8000
    552#define PORT_TX_DISABLE			0x4000
    553#define PORT_AUTO_NEG_RESTART		0x2000
    554#define PORT_REMOTE_FAULT_DISABLE	0x1000
    555#define PORT_POWER_DOWN			0x0800
    556#define PORT_AUTO_MDIX_DISABLE		0x0400
    557#define PORT_FORCE_MDIX			0x0200
    558#define PORT_LOOPBACK			0x0100
    559#define PORT_AUTO_NEG_ENABLE		0x0080
    560#define PORT_FORCE_100_MBIT		0x0040
    561#define PORT_FORCE_FULL_DUPLEX		0x0020
    562#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
    563#define PORT_AUTO_NEG_100BTX_FD		0x0008
    564#define PORT_AUTO_NEG_100BTX		0x0004
    565#define PORT_AUTO_NEG_10BT_FD		0x0002
    566#define PORT_AUTO_NEG_10BT		0x0001
    567
    568#define KS884X_PORT_STATUS_OFFSET	0x14
    569
    570#define PORT_HP_MDIX			0x8000
    571#define PORT_REVERSED_POLARITY		0x2000
    572#define PORT_RX_FLOW_CTRL		0x0800
    573#define PORT_TX_FLOW_CTRL		0x1000
    574#define PORT_STATUS_SPEED_100MBIT	0x0400
    575#define PORT_STATUS_FULL_DUPLEX		0x0200
    576#define PORT_REMOTE_FAULT		0x0100
    577#define PORT_MDIX_STATUS		0x0080
    578#define PORT_AUTO_NEG_COMPLETE		0x0040
    579#define PORT_STATUS_LINK_GOOD		0x0020
    580#define PORT_REMOTE_SYM_PAUSE		0x0010
    581#define PORT_REMOTE_100BTX_FD		0x0008
    582#define PORT_REMOTE_100BTX		0x0004
    583#define PORT_REMOTE_10BT_FD		0x0002
    584#define PORT_REMOTE_10BT		0x0001
    585
    586/*
    587#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
    588#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
    589#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
    590#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
    591#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
    592#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
    593*/
    594
    595#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
    596#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
    597#define STATIC_MAC_TABLE_VALID		0x00080000
    598#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
    599#define STATIC_MAC_TABLE_USE_FID	0x00200000
    600#define STATIC_MAC_TABLE_FID		0x03C00000
    601
    602#define STATIC_MAC_FWD_PORTS_SHIFT	16
    603#define STATIC_MAC_FID_SHIFT		22
    604
    605/*
    606#define VLAN_TABLE_VID			00-00000000-00000FFF
    607#define VLAN_TABLE_FID			00-00000000-0000F000
    608#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
    609#define VLAN_TABLE_VALID		00-00000000-00080000
    610*/
    611
    612#define VLAN_TABLE_VID			0x00000FFF
    613#define VLAN_TABLE_FID			0x0000F000
    614#define VLAN_TABLE_MEMBERSHIP		0x00070000
    615#define VLAN_TABLE_VALID		0x00080000
    616
    617#define VLAN_TABLE_FID_SHIFT		12
    618#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
    619
    620/*
    621#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
    622#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
    623#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
    624#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
    625#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
    626#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
    627#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
    628#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
    629*/
    630
    631#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
    632#define DYNAMIC_MAC_TABLE_FID		0x000F0000
    633#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
    634#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
    635#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
    636
    637#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
    638#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
    639#define DYNAMIC_MAC_TABLE_RESERVED	0x78
    640#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
    641
    642#define DYNAMIC_MAC_FID_SHIFT		16
    643#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
    644#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
    645#define DYNAMIC_MAC_ENTRIES_SHIFT	24
    646#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
    647
    648/*
    649#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
    650#define MIB_COUNTER_VALID		00-00000000-40000000
    651#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
    652*/
    653
    654#define MIB_COUNTER_VALUE		0x3FFFFFFF
    655#define MIB_COUNTER_VALID		0x40000000
    656#define MIB_COUNTER_OVERFLOW		0x80000000
    657
    658#define MIB_PACKET_DROPPED		0x0000FFFF
    659
    660#define KS_MIB_PACKET_DROPPED_TX_0	0x100
    661#define KS_MIB_PACKET_DROPPED_TX_1	0x101
    662#define KS_MIB_PACKET_DROPPED_TX	0x102
    663#define KS_MIB_PACKET_DROPPED_RX_0	0x103
    664#define KS_MIB_PACKET_DROPPED_RX_1	0x104
    665#define KS_MIB_PACKET_DROPPED_RX	0x105
    666
    667/* Change default LED mode. */
    668#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
    669
    670#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
    671
    672#define MAX_ETHERNET_BODY_SIZE		1500
    673#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
    674
    675#define MAX_ETHERNET_PACKET_SIZE	\
    676	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
    677
    678#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
    679#define MAX_RX_BUF_SIZE			(1912 + 4)
    680
    681#define ADDITIONAL_ENTRIES		16
    682#define MAX_MULTICAST_LIST		32
    683
    684#define HW_MULTICAST_SIZE		8
    685
    686#define HW_TO_DEV_PORT(port)		(port - 1)
    687
    688enum {
    689	media_connected,
    690	media_disconnected
    691};
    692
    693enum {
    694	OID_COUNTER_UNKOWN,
    695
    696	OID_COUNTER_FIRST,
    697
    698	/* total transmit errors */
    699	OID_COUNTER_XMIT_ERROR,
    700
    701	/* total receive errors */
    702	OID_COUNTER_RCV_ERROR,
    703
    704	OID_COUNTER_LAST
    705};
    706
    707/*
    708 * Hardware descriptor definitions
    709 */
    710
    711#define DESC_ALIGNMENT			16
    712#define BUFFER_ALIGNMENT		8
    713
    714#define NUM_OF_RX_DESC			64
    715#define NUM_OF_TX_DESC			64
    716
    717#define KS_DESC_RX_FRAME_LEN		0x000007FF
    718#define KS_DESC_RX_FRAME_TYPE		0x00008000
    719#define KS_DESC_RX_ERROR_CRC		0x00010000
    720#define KS_DESC_RX_ERROR_RUNT		0x00020000
    721#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
    722#define KS_DESC_RX_ERROR_PHY		0x00080000
    723#define KS884X_DESC_RX_PORT_MASK	0x00300000
    724#define KS_DESC_RX_MULTICAST		0x01000000
    725#define KS_DESC_RX_ERROR		0x02000000
    726#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
    727#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
    728#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
    729#define KS_DESC_RX_LAST			0x20000000
    730#define KS_DESC_RX_FIRST		0x40000000
    731#define KS_DESC_RX_ERROR_COND		\
    732	(KS_DESC_RX_ERROR_CRC |		\
    733	KS_DESC_RX_ERROR_RUNT |		\
    734	KS_DESC_RX_ERROR_PHY |		\
    735	KS_DESC_RX_ERROR_TOO_LONG)
    736
    737#define KS_DESC_HW_OWNED		0x80000000
    738
    739#define KS_DESC_BUF_SIZE		0x000007FF
    740#define KS884X_DESC_TX_PORT_MASK	0x00300000
    741#define KS_DESC_END_OF_RING		0x02000000
    742#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
    743#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
    744#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
    745#define KS_DESC_TX_LAST			0x20000000
    746#define KS_DESC_TX_FIRST		0x40000000
    747#define KS_DESC_TX_INTERRUPT		0x80000000
    748
    749#define KS_DESC_PORT_SHIFT		20
    750
    751#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
    752
    753#define KS_DESC_TX_MASK			\
    754	(KS_DESC_TX_INTERRUPT |		\
    755	KS_DESC_TX_FIRST |		\
    756	KS_DESC_TX_LAST |		\
    757	KS_DESC_TX_CSUM_GEN_IP |	\
    758	KS_DESC_TX_CSUM_GEN_TCP |	\
    759	KS_DESC_TX_CSUM_GEN_UDP |	\
    760	KS_DESC_BUF_SIZE)
    761
    762struct ksz_desc_rx_stat {
    763#ifdef __BIG_ENDIAN_BITFIELD
    764	u32 hw_owned:1;
    765	u32 first_desc:1;
    766	u32 last_desc:1;
    767	u32 csum_err_ip:1;
    768	u32 csum_err_tcp:1;
    769	u32 csum_err_udp:1;
    770	u32 error:1;
    771	u32 multicast:1;
    772	u32 src_port:4;
    773	u32 err_phy:1;
    774	u32 err_too_long:1;
    775	u32 err_runt:1;
    776	u32 err_crc:1;
    777	u32 frame_type:1;
    778	u32 reserved1:4;
    779	u32 frame_len:11;
    780#else
    781	u32 frame_len:11;
    782	u32 reserved1:4;
    783	u32 frame_type:1;
    784	u32 err_crc:1;
    785	u32 err_runt:1;
    786	u32 err_too_long:1;
    787	u32 err_phy:1;
    788	u32 src_port:4;
    789	u32 multicast:1;
    790	u32 error:1;
    791	u32 csum_err_udp:1;
    792	u32 csum_err_tcp:1;
    793	u32 csum_err_ip:1;
    794	u32 last_desc:1;
    795	u32 first_desc:1;
    796	u32 hw_owned:1;
    797#endif
    798};
    799
    800struct ksz_desc_tx_stat {
    801#ifdef __BIG_ENDIAN_BITFIELD
    802	u32 hw_owned:1;
    803	u32 reserved1:31;
    804#else
    805	u32 reserved1:31;
    806	u32 hw_owned:1;
    807#endif
    808};
    809
    810struct ksz_desc_rx_buf {
    811#ifdef __BIG_ENDIAN_BITFIELD
    812	u32 reserved4:6;
    813	u32 end_of_ring:1;
    814	u32 reserved3:14;
    815	u32 buf_size:11;
    816#else
    817	u32 buf_size:11;
    818	u32 reserved3:14;
    819	u32 end_of_ring:1;
    820	u32 reserved4:6;
    821#endif
    822};
    823
    824struct ksz_desc_tx_buf {
    825#ifdef __BIG_ENDIAN_BITFIELD
    826	u32 intr:1;
    827	u32 first_seg:1;
    828	u32 last_seg:1;
    829	u32 csum_gen_ip:1;
    830	u32 csum_gen_tcp:1;
    831	u32 csum_gen_udp:1;
    832	u32 end_of_ring:1;
    833	u32 reserved4:1;
    834	u32 dest_port:4;
    835	u32 reserved3:9;
    836	u32 buf_size:11;
    837#else
    838	u32 buf_size:11;
    839	u32 reserved3:9;
    840	u32 dest_port:4;
    841	u32 reserved4:1;
    842	u32 end_of_ring:1;
    843	u32 csum_gen_udp:1;
    844	u32 csum_gen_tcp:1;
    845	u32 csum_gen_ip:1;
    846	u32 last_seg:1;
    847	u32 first_seg:1;
    848	u32 intr:1;
    849#endif
    850};
    851
    852union desc_stat {
    853	struct ksz_desc_rx_stat rx;
    854	struct ksz_desc_tx_stat tx;
    855	u32 data;
    856};
    857
    858union desc_buf {
    859	struct ksz_desc_rx_buf rx;
    860	struct ksz_desc_tx_buf tx;
    861	u32 data;
    862};
    863
    864/**
    865 * struct ksz_hw_desc - Hardware descriptor data structure
    866 * @ctrl:	Descriptor control value.
    867 * @buf:	Descriptor buffer value.
    868 * @addr:	Physical address of memory buffer.
    869 * @next:	Pointer to next hardware descriptor.
    870 */
    871struct ksz_hw_desc {
    872	union desc_stat ctrl;
    873	union desc_buf buf;
    874	u32 addr;
    875	u32 next;
    876};
    877
    878/**
    879 * struct ksz_sw_desc - Software descriptor data structure
    880 * @ctrl:	Descriptor control value.
    881 * @buf:	Descriptor buffer value.
    882 * @buf_size:	Current buffers size value in hardware descriptor.
    883 */
    884struct ksz_sw_desc {
    885	union desc_stat ctrl;
    886	union desc_buf buf;
    887	u32 buf_size;
    888};
    889
    890/**
    891 * struct ksz_dma_buf - OS dependent DMA buffer data structure
    892 * @skb:	Associated socket buffer.
    893 * @dma:	Associated physical DMA address.
    894 * @len:	Actual len used.
    895 */
    896struct ksz_dma_buf {
    897	struct sk_buff *skb;
    898	dma_addr_t dma;
    899	int len;
    900};
    901
    902/**
    903 * struct ksz_desc - Descriptor structure
    904 * @phw:	Hardware descriptor pointer to uncached physical memory.
    905 * @sw:		Cached memory to hold hardware descriptor values for
    906 * 		manipulation.
    907 * @dma_buf:	Operating system dependent data structure to hold physical
    908 * 		memory buffer allocation information.
    909 */
    910struct ksz_desc {
    911	struct ksz_hw_desc *phw;
    912	struct ksz_sw_desc sw;
    913	struct ksz_dma_buf dma_buf;
    914};
    915
    916#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
    917
    918/**
    919 * struct ksz_desc_info - Descriptor information data structure
    920 * @ring:	First descriptor in the ring.
    921 * @cur:	Current descriptor being manipulated.
    922 * @ring_virt:	First hardware descriptor in the ring.
    923 * @ring_phys:	The physical address of the first descriptor of the ring.
    924 * @size:	Size of hardware descriptor.
    925 * @alloc:	Number of descriptors allocated.
    926 * @avail:	Number of descriptors available for use.
    927 * @last:	Index for last descriptor released to hardware.
    928 * @next:	Index for next descriptor available for use.
    929 * @mask:	Mask for index wrapping.
    930 */
    931struct ksz_desc_info {
    932	struct ksz_desc *ring;
    933	struct ksz_desc *cur;
    934	struct ksz_hw_desc *ring_virt;
    935	u32 ring_phys;
    936	int size;
    937	int alloc;
    938	int avail;
    939	int last;
    940	int next;
    941	int mask;
    942};
    943
    944/*
    945 * KSZ8842 switch definitions
    946 */
    947
    948enum {
    949	TABLE_STATIC_MAC = 0,
    950	TABLE_VLAN,
    951	TABLE_DYNAMIC_MAC,
    952	TABLE_MIB
    953};
    954
    955#define LEARNED_MAC_TABLE_ENTRIES	1024
    956#define STATIC_MAC_TABLE_ENTRIES	8
    957
    958/**
    959 * struct ksz_mac_table - Static MAC table data structure
    960 * @mac_addr:	MAC address to filter.
    961 * @vid:	VID value.
    962 * @fid:	FID value.
    963 * @ports:	Port membership.
    964 * @override:	Override setting.
    965 * @use_fid:	FID use setting.
    966 * @valid:	Valid setting indicating the entry is being used.
    967 */
    968struct ksz_mac_table {
    969	u8 mac_addr[ETH_ALEN];
    970	u16 vid;
    971	u8 fid;
    972	u8 ports;
    973	u8 override:1;
    974	u8 use_fid:1;
    975	u8 valid:1;
    976};
    977
    978#define VLAN_TABLE_ENTRIES		16
    979
    980/**
    981 * struct ksz_vlan_table - VLAN table data structure
    982 * @vid:	VID value.
    983 * @fid:	FID value.
    984 * @member:	Port membership.
    985 */
    986struct ksz_vlan_table {
    987	u16 vid;
    988	u8 fid;
    989	u8 member;
    990};
    991
    992#define DIFFSERV_ENTRIES		64
    993#define PRIO_802_1P_ENTRIES		8
    994#define PRIO_QUEUES			4
    995
    996#define SWITCH_PORT_NUM			2
    997#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
    998#define HOST_MASK			(1 << SWITCH_PORT_NUM)
    999#define PORT_MASK			7
   1000
   1001#define MAIN_PORT			0
   1002#define OTHER_PORT			1
   1003#define HOST_PORT			SWITCH_PORT_NUM
   1004
   1005#define PORT_COUNTER_NUM		0x20
   1006#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
   1007
   1008#define MIB_COUNTER_RX_LO_PRIORITY	0x00
   1009#define MIB_COUNTER_RX_HI_PRIORITY	0x01
   1010#define MIB_COUNTER_RX_UNDERSIZE	0x02
   1011#define MIB_COUNTER_RX_FRAGMENT		0x03
   1012#define MIB_COUNTER_RX_OVERSIZE		0x04
   1013#define MIB_COUNTER_RX_JABBER		0x05
   1014#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
   1015#define MIB_COUNTER_RX_CRC_ERR		0x07
   1016#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
   1017#define MIB_COUNTER_RX_CTRL_8808	0x09
   1018#define MIB_COUNTER_RX_PAUSE		0x0A
   1019#define MIB_COUNTER_RX_BROADCAST	0x0B
   1020#define MIB_COUNTER_RX_MULTICAST	0x0C
   1021#define MIB_COUNTER_RX_UNICAST		0x0D
   1022#define MIB_COUNTER_RX_OCTET_64		0x0E
   1023#define MIB_COUNTER_RX_OCTET_65_127	0x0F
   1024#define MIB_COUNTER_RX_OCTET_128_255	0x10
   1025#define MIB_COUNTER_RX_OCTET_256_511	0x11
   1026#define MIB_COUNTER_RX_OCTET_512_1023	0x12
   1027#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
   1028#define MIB_COUNTER_TX_LO_PRIORITY	0x14
   1029#define MIB_COUNTER_TX_HI_PRIORITY	0x15
   1030#define MIB_COUNTER_TX_LATE_COLLISION	0x16
   1031#define MIB_COUNTER_TX_PAUSE		0x17
   1032#define MIB_COUNTER_TX_BROADCAST	0x18
   1033#define MIB_COUNTER_TX_MULTICAST	0x19
   1034#define MIB_COUNTER_TX_UNICAST		0x1A
   1035#define MIB_COUNTER_TX_DEFERRED		0x1B
   1036#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
   1037#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
   1038#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
   1039#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
   1040
   1041#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
   1042#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
   1043
   1044/**
   1045 * struct ksz_port_mib - Port MIB data structure
   1046 * @cnt_ptr:	Current pointer to MIB counter index.
   1047 * @link_down:	Indication the link has just gone down.
   1048 * @state:	Connection status of the port.
   1049 * @mib_start:	The starting counter index.  Some ports do not start at 0.
   1050 * @counter:	64-bit MIB counter value.
   1051 * @dropped:	Temporary buffer to remember last read packet dropped values.
   1052 *
   1053 * MIB counters needs to be read periodically so that counters do not get
   1054 * overflowed and give incorrect values.  A right balance is needed to
   1055 * satisfy this condition and not waste too much CPU time.
   1056 *
   1057 * It is pointless to read MIB counters when the port is disconnected.  The
   1058 * @state provides the connection status so that MIB counters are read only
   1059 * when the port is connected.  The @link_down indicates the port is just
   1060 * disconnected so that all MIB counters are read one last time to update the
   1061 * information.
   1062 */
   1063struct ksz_port_mib {
   1064	u8 cnt_ptr;
   1065	u8 link_down;
   1066	u8 state;
   1067	u8 mib_start;
   1068
   1069	u64 counter[TOTAL_PORT_COUNTER_NUM];
   1070	u32 dropped[2];
   1071};
   1072
   1073/**
   1074 * struct ksz_port_cfg - Port configuration data structure
   1075 * @vid:	VID value.
   1076 * @member:	Port membership.
   1077 * @port_prio:	Port priority.
   1078 * @rx_rate:	Receive priority rate.
   1079 * @tx_rate:	Transmit priority rate.
   1080 * @stp_state:	Current Spanning Tree Protocol state.
   1081 */
   1082struct ksz_port_cfg {
   1083	u16 vid;
   1084	u8 member;
   1085	u8 port_prio;
   1086	u32 rx_rate[PRIO_QUEUES];
   1087	u32 tx_rate[PRIO_QUEUES];
   1088	int stp_state;
   1089};
   1090
   1091/**
   1092 * struct ksz_switch - KSZ8842 switch data structure
   1093 * @mac_table:	MAC table entries information.
   1094 * @vlan_table:	VLAN table entries information.
   1095 * @port_cfg:	Port configuration information.
   1096 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
   1097 * 		(bit7 ~ bit2) field.
   1098 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
   1099 * 		Tag priority field.
   1100 * @br_addr:	Bridge address.  Used for STP.
   1101 * @other_addr:	Other MAC address.  Used for multiple network device mode.
   1102 * @broad_per:	Broadcast storm percentage.
   1103 * @member:	Current port membership.  Used for STP.
   1104 */
   1105struct ksz_switch {
   1106	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
   1107	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
   1108	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
   1109
   1110	u8 diffserv[DIFFSERV_ENTRIES];
   1111	u8 p_802_1p[PRIO_802_1P_ENTRIES];
   1112
   1113	u8 br_addr[ETH_ALEN];
   1114	u8 other_addr[ETH_ALEN];
   1115
   1116	u8 broad_per;
   1117	u8 member;
   1118};
   1119
   1120#define TX_RATE_UNIT			10000
   1121
   1122/**
   1123 * struct ksz_port_info - Port information data structure
   1124 * @state:	Connection status of the port.
   1125 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
   1126 * @duplex:	Duplex mode.
   1127 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
   1128 * @partner:	Auto-negotiation partner setting.  Used to determine link.
   1129 * @port_id:	Port index to access actual hardware register.
   1130 * @pdev:	Pointer to OS dependent network device.
   1131 */
   1132struct ksz_port_info {
   1133	uint state;
   1134	uint tx_rate;
   1135	u8 duplex;
   1136	u8 advertised;
   1137	u8 partner;
   1138	u8 port_id;
   1139	void *pdev;
   1140};
   1141
   1142#define MAX_TX_HELD_SIZE		52000
   1143
   1144/* Hardware features and bug fixes. */
   1145#define LINK_INT_WORKING		(1 << 0)
   1146#define SMALL_PACKET_TX_BUG		(1 << 1)
   1147#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
   1148#define RX_HUGE_FRAME			(1 << 4)
   1149#define STP_SUPPORT			(1 << 8)
   1150
   1151/* Software overrides. */
   1152#define PAUSE_FLOW_CTRL			(1 << 0)
   1153#define FAST_AGING			(1 << 1)
   1154
   1155/**
   1156 * struct ksz_hw - KSZ884X hardware data structure
   1157 * @io:			Virtual address assigned.
   1158 * @ksz_switch:		Pointer to KSZ8842 switch.
   1159 * @port_info:		Port information.
   1160 * @port_mib:		Port MIB information.
   1161 * @dev_count:		Number of network devices this hardware supports.
   1162 * @dst_ports:		Destination ports in switch for transmission.
   1163 * @id:			Hardware ID.  Used for display only.
   1164 * @mib_cnt:		Number of MIB counters this hardware has.
   1165 * @mib_port_cnt:	Number of ports with MIB counters.
   1166 * @tx_cfg:		Cached transmit control settings.
   1167 * @rx_cfg:		Cached receive control settings.
   1168 * @intr_mask:		Current interrupt mask.
   1169 * @intr_set:		Current interrup set.
   1170 * @intr_blocked:	Interrupt blocked.
   1171 * @rx_desc_info:	Receive descriptor information.
   1172 * @tx_desc_info:	Transmit descriptor information.
   1173 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
   1174 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
   1175 * @tx_size:		Transmit data size.  Used for TX optimization.
   1176 * 			The maximum is defined by MAX_TX_HELD_SIZE.
   1177 * @perm_addr:		Permanent MAC address.
   1178 * @override_addr:	Overridden MAC address.
   1179 * @address:		Additional MAC address entries.
   1180 * @addr_list_size:	Additional MAC address list size.
   1181 * @mac_override:	Indication of MAC address overridden.
   1182 * @promiscuous:	Counter to keep track of promiscuous mode set.
   1183 * @all_multi:		Counter to keep track of all multicast mode set.
   1184 * @multi_list:		Multicast address entries.
   1185 * @multi_bits:		Cached multicast hash table settings.
   1186 * @multi_list_size:	Multicast address list size.
   1187 * @enabled:		Indication of hardware enabled.
   1188 * @rx_stop:		Indication of receive process stop.
   1189 * @reserved2:		none
   1190 * @features:		Hardware features to enable.
   1191 * @overrides:		Hardware features to override.
   1192 * @parent:		Pointer to parent, network device private structure.
   1193 */
   1194struct ksz_hw {
   1195	void __iomem *io;
   1196
   1197	struct ksz_switch *ksz_switch;
   1198	struct ksz_port_info port_info[SWITCH_PORT_NUM];
   1199	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
   1200	int dev_count;
   1201	int dst_ports;
   1202	int id;
   1203	int mib_cnt;
   1204	int mib_port_cnt;
   1205
   1206	u32 tx_cfg;
   1207	u32 rx_cfg;
   1208	u32 intr_mask;
   1209	u32 intr_set;
   1210	uint intr_blocked;
   1211
   1212	struct ksz_desc_info rx_desc_info;
   1213	struct ksz_desc_info tx_desc_info;
   1214
   1215	int tx_int_cnt;
   1216	int tx_int_mask;
   1217	int tx_size;
   1218
   1219	u8 perm_addr[ETH_ALEN];
   1220	u8 override_addr[ETH_ALEN];
   1221	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
   1222	u8 addr_list_size;
   1223	u8 mac_override;
   1224	u8 promiscuous;
   1225	u8 all_multi;
   1226	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
   1227	u8 multi_bits[HW_MULTICAST_SIZE];
   1228	u8 multi_list_size;
   1229
   1230	u8 enabled;
   1231	u8 rx_stop;
   1232	u8 reserved2[1];
   1233
   1234	uint features;
   1235	uint overrides;
   1236
   1237	void *parent;
   1238};
   1239
   1240enum {
   1241	PHY_NO_FLOW_CTRL,
   1242	PHY_FLOW_CTRL,
   1243	PHY_TX_ONLY,
   1244	PHY_RX_ONLY
   1245};
   1246
   1247/**
   1248 * struct ksz_port - Virtual port data structure
   1249 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
   1250 * 			duplex, and 0 for auto, which normally results in full
   1251 * 			duplex.
   1252 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
   1253 * 			0 for auto, which normally results in 100 Mbit.
   1254 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
   1255 * 			force.
   1256 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
   1257 * 			control, and PHY_FLOW_CTRL for flow control.
   1258 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
   1259 * 			Mbit PHY.
   1260 * @first_port:		Index of first port this port supports.
   1261 * @mib_port_cnt:	Number of ports with MIB counters.
   1262 * @port_cnt:		Number of ports this port supports.
   1263 * @counter:		Port statistics counter.
   1264 * @hw:			Pointer to hardware structure.
   1265 * @linked:		Pointer to port information linked to this port.
   1266 */
   1267struct ksz_port {
   1268	u8 duplex;
   1269	u8 speed;
   1270	u8 force_link;
   1271	u8 flow_ctrl;
   1272
   1273	int first_port;
   1274	int mib_port_cnt;
   1275	int port_cnt;
   1276	u64 counter[OID_COUNTER_LAST];
   1277
   1278	struct ksz_hw *hw;
   1279	struct ksz_port_info *linked;
   1280};
   1281
   1282/**
   1283 * struct ksz_timer_info - Timer information data structure
   1284 * @timer:	Kernel timer.
   1285 * @cnt:	Running timer counter.
   1286 * @max:	Number of times to run timer; -1 for infinity.
   1287 * @period:	Timer period in jiffies.
   1288 */
   1289struct ksz_timer_info {
   1290	struct timer_list timer;
   1291	int cnt;
   1292	int max;
   1293	int period;
   1294};
   1295
   1296/**
   1297 * struct ksz_shared_mem - OS dependent shared memory data structure
   1298 * @dma_addr:	Physical DMA address allocated.
   1299 * @alloc_size:	Allocation size.
   1300 * @phys:	Actual physical address used.
   1301 * @alloc_virt:	Virtual address allocated.
   1302 * @virt:	Actual virtual address used.
   1303 */
   1304struct ksz_shared_mem {
   1305	dma_addr_t dma_addr;
   1306	uint alloc_size;
   1307	uint phys;
   1308	u8 *alloc_virt;
   1309	u8 *virt;
   1310};
   1311
   1312/**
   1313 * struct ksz_counter_info - OS dependent counter information data structure
   1314 * @counter:	Wait queue to wakeup after counters are read.
   1315 * @time:	Next time in jiffies to read counter.
   1316 * @read:	Indication of counters read in full or not.
   1317 */
   1318struct ksz_counter_info {
   1319	wait_queue_head_t counter;
   1320	unsigned long time;
   1321	int read;
   1322};
   1323
   1324/**
   1325 * struct dev_info - Network device information data structure
   1326 * @dev:		Pointer to network device.
   1327 * @pdev:		Pointer to PCI device.
   1328 * @hw:			Hardware structure.
   1329 * @desc_pool:		Physical memory used for descriptor pool.
   1330 * @hwlock:		Spinlock to prevent hardware from accessing.
   1331 * @lock:		Mutex lock to prevent device from accessing.
   1332 * @dev_rcv:		Receive process function used.
   1333 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
   1334 * @skb_index:		Buffer index for receiving fragments.
   1335 * @skb_len:		Buffer length for receiving fragments.
   1336 * @mib_read:		Workqueue to read MIB counters.
   1337 * @mib_timer_info:	Timer to read MIB counters.
   1338 * @counter:		Used for MIB reading.
   1339 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
   1340 * 			the maximum is MAX_RX_BUF_SIZE.
   1341 * @opened:		Counter to keep track of device open.
   1342 * @rx_tasklet:		Receive processing tasklet.
   1343 * @tx_tasklet:		Transmit processing tasklet.
   1344 * @wol_enable:		Wake-on-LAN enable set by ethtool.
   1345 * @wol_support:	Wake-on-LAN support used by ethtool.
   1346 * @pme_wait:		Used for KSZ8841 power management.
   1347 */
   1348struct dev_info {
   1349	struct net_device *dev;
   1350	struct pci_dev *pdev;
   1351
   1352	struct ksz_hw hw;
   1353	struct ksz_shared_mem desc_pool;
   1354
   1355	spinlock_t hwlock;
   1356	struct mutex lock;
   1357
   1358	int (*dev_rcv)(struct dev_info *);
   1359
   1360	struct sk_buff *last_skb;
   1361	int skb_index;
   1362	int skb_len;
   1363
   1364	struct work_struct mib_read;
   1365	struct ksz_timer_info mib_timer_info;
   1366	struct ksz_counter_info counter[TOTAL_PORT_NUM];
   1367
   1368	int mtu;
   1369	int opened;
   1370
   1371	struct tasklet_struct rx_tasklet;
   1372	struct tasklet_struct tx_tasklet;
   1373
   1374	int wol_enable;
   1375	int wol_support;
   1376	unsigned long pme_wait;
   1377};
   1378
   1379/**
   1380 * struct dev_priv - Network device private data structure
   1381 * @adapter:		Adapter device information.
   1382 * @port:		Port information.
   1383 * @monitor_timer_info:	Timer to monitor ports.
   1384 * @proc_sem:		Semaphore for proc accessing.
   1385 * @id:			Device ID.
   1386 * @mii_if:		MII interface information.
   1387 * @advertising:	Temporary variable to store advertised settings.
   1388 * @msg_enable:		The message flags controlling driver output.
   1389 * @media_state:	The connection status of the device.
   1390 * @multicast:		The all multicast state of the device.
   1391 * @promiscuous:	The promiscuous state of the device.
   1392 */
   1393struct dev_priv {
   1394	struct dev_info *adapter;
   1395	struct ksz_port port;
   1396	struct ksz_timer_info monitor_timer_info;
   1397
   1398	struct semaphore proc_sem;
   1399	int id;
   1400
   1401	struct mii_if_info mii_if;
   1402	u32 advertising;
   1403
   1404	u32 msg_enable;
   1405	int media_state;
   1406	int multicast;
   1407	int promiscuous;
   1408};
   1409
   1410#define DRV_NAME		"KSZ884X PCI"
   1411#define DEVICE_NAME		"KSZ884x PCI"
   1412#define DRV_VERSION		"1.0.0"
   1413#define DRV_RELDATE		"Feb 8, 2010"
   1414
   1415static char version[] =
   1416	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
   1417
   1418static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
   1419
   1420/*
   1421 * Interrupt processing primary routines
   1422 */
   1423
   1424static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
   1425{
   1426	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
   1427}
   1428
   1429static inline void hw_dis_intr(struct ksz_hw *hw)
   1430{
   1431	hw->intr_blocked = hw->intr_mask;
   1432	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
   1433	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
   1434}
   1435
   1436static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
   1437{
   1438	hw->intr_set = interrupt;
   1439	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
   1440}
   1441
   1442static inline void hw_ena_intr(struct ksz_hw *hw)
   1443{
   1444	hw->intr_blocked = 0;
   1445	hw_set_intr(hw, hw->intr_mask);
   1446}
   1447
   1448static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
   1449{
   1450	hw->intr_mask &= ~(bit);
   1451}
   1452
   1453static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
   1454{
   1455	u32 read_intr;
   1456
   1457	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
   1458	hw->intr_set = read_intr & ~interrupt;
   1459	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
   1460	hw_dis_intr_bit(hw, interrupt);
   1461}
   1462
   1463/**
   1464 * hw_turn_on_intr - turn on specified interrupts
   1465 * @hw: 	The hardware instance.
   1466 * @bit:	The interrupt bits to be on.
   1467 *
   1468 * This routine turns on the specified interrupts in the interrupt mask so that
   1469 * those interrupts will be enabled.
   1470 */
   1471static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
   1472{
   1473	hw->intr_mask |= bit;
   1474
   1475	if (!hw->intr_blocked)
   1476		hw_set_intr(hw, hw->intr_mask);
   1477}
   1478
   1479static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
   1480{
   1481	u32 read_intr;
   1482
   1483	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
   1484	hw->intr_set = read_intr | interrupt;
   1485	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
   1486}
   1487
   1488static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
   1489{
   1490	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
   1491	*status = *status & hw->intr_set;
   1492}
   1493
   1494static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
   1495{
   1496	if (interrupt)
   1497		hw_ena_intr(hw);
   1498}
   1499
   1500/**
   1501 * hw_block_intr - block hardware interrupts
   1502 * @hw: The hardware instance.
   1503 *
   1504 * This function blocks all interrupts of the hardware and returns the current
   1505 * interrupt enable mask so that interrupts can be restored later.
   1506 *
   1507 * Return the current interrupt enable mask.
   1508 */
   1509static uint hw_block_intr(struct ksz_hw *hw)
   1510{
   1511	uint interrupt = 0;
   1512
   1513	if (!hw->intr_blocked) {
   1514		hw_dis_intr(hw);
   1515		interrupt = hw->intr_blocked;
   1516	}
   1517	return interrupt;
   1518}
   1519
   1520/*
   1521 * Hardware descriptor routines
   1522 */
   1523
   1524static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
   1525{
   1526	status.rx.hw_owned = 0;
   1527	desc->phw->ctrl.data = cpu_to_le32(status.data);
   1528}
   1529
   1530static inline void release_desc(struct ksz_desc *desc)
   1531{
   1532	desc->sw.ctrl.tx.hw_owned = 1;
   1533	if (desc->sw.buf_size != desc->sw.buf.data) {
   1534		desc->sw.buf_size = desc->sw.buf.data;
   1535		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
   1536	}
   1537	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
   1538}
   1539
   1540static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
   1541{
   1542	*desc = &info->ring[info->last];
   1543	info->last++;
   1544	info->last &= info->mask;
   1545	info->avail--;
   1546	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
   1547}
   1548
   1549static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
   1550{
   1551	desc->phw->addr = cpu_to_le32(addr);
   1552}
   1553
   1554static inline void set_rx_len(struct ksz_desc *desc, u32 len)
   1555{
   1556	desc->sw.buf.rx.buf_size = len;
   1557}
   1558
   1559static inline void get_tx_pkt(struct ksz_desc_info *info,
   1560	struct ksz_desc **desc)
   1561{
   1562	*desc = &info->ring[info->next];
   1563	info->next++;
   1564	info->next &= info->mask;
   1565	info->avail--;
   1566	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
   1567}
   1568
   1569static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
   1570{
   1571	desc->phw->addr = cpu_to_le32(addr);
   1572}
   1573
   1574static inline void set_tx_len(struct ksz_desc *desc, u32 len)
   1575{
   1576	desc->sw.buf.tx.buf_size = len;
   1577}
   1578
   1579/* Switch functions */
   1580
   1581#define TABLE_READ			0x10
   1582#define TABLE_SEL_SHIFT			2
   1583
   1584#define HW_DELAY(hw, reg)			\
   1585	do {					\
   1586		readw(hw->io + reg);		\
   1587	} while (0)
   1588
   1589/**
   1590 * sw_r_table - read 4 bytes of data from switch table
   1591 * @hw:		The hardware instance.
   1592 * @table:	The table selector.
   1593 * @addr:	The address of the table entry.
   1594 * @data:	Buffer to store the read data.
   1595 *
   1596 * This routine reads 4 bytes of data from the table of the switch.
   1597 * Hardware interrupts are disabled to minimize corruption of read data.
   1598 */
   1599static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
   1600{
   1601	u16 ctrl_addr;
   1602	uint interrupt;
   1603
   1604	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
   1605
   1606	interrupt = hw_block_intr(hw);
   1607
   1608	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
   1609	HW_DELAY(hw, KS884X_IACR_OFFSET);
   1610	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
   1611
   1612	hw_restore_intr(hw, interrupt);
   1613}
   1614
   1615/**
   1616 * sw_w_table_64 - write 8 bytes of data to the switch table
   1617 * @hw:		The hardware instance.
   1618 * @table:	The table selector.
   1619 * @addr:	The address of the table entry.
   1620 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
   1621 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
   1622 *
   1623 * This routine writes 8 bytes of data to the table of the switch.
   1624 * Hardware interrupts are disabled to minimize corruption of written data.
   1625 */
   1626static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
   1627	u32 data_lo)
   1628{
   1629	u16 ctrl_addr;
   1630	uint interrupt;
   1631
   1632	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
   1633
   1634	interrupt = hw_block_intr(hw);
   1635
   1636	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
   1637	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
   1638
   1639	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
   1640	HW_DELAY(hw, KS884X_IACR_OFFSET);
   1641
   1642	hw_restore_intr(hw, interrupt);
   1643}
   1644
   1645/**
   1646 * sw_w_sta_mac_table - write to the static MAC table
   1647 * @hw: 	The hardware instance.
   1648 * @addr:	The address of the table entry.
   1649 * @mac_addr:	The MAC address.
   1650 * @ports:	The port members.
   1651 * @override:	The flag to override the port receive/transmit settings.
   1652 * @valid:	The flag to indicate entry is valid.
   1653 * @use_fid:	The flag to indicate the FID is valid.
   1654 * @fid:	The FID value.
   1655 *
   1656 * This routine writes an entry of the static MAC table of the switch.  It
   1657 * calls sw_w_table_64() to write the data.
   1658 */
   1659static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
   1660	u8 ports, int override, int valid, int use_fid, u8 fid)
   1661{
   1662	u32 data_hi;
   1663	u32 data_lo;
   1664
   1665	data_lo = ((u32) mac_addr[2] << 24) |
   1666		((u32) mac_addr[3] << 16) |
   1667		((u32) mac_addr[4] << 8) | mac_addr[5];
   1668	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
   1669	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
   1670
   1671	if (override)
   1672		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
   1673	if (use_fid) {
   1674		data_hi |= STATIC_MAC_TABLE_USE_FID;
   1675		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
   1676	}
   1677	if (valid)
   1678		data_hi |= STATIC_MAC_TABLE_VALID;
   1679
   1680	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
   1681}
   1682
   1683/**
   1684 * sw_r_vlan_table - read from the VLAN table
   1685 * @hw: 	The hardware instance.
   1686 * @addr:	The address of the table entry.
   1687 * @vid:	Buffer to store the VID.
   1688 * @fid:	Buffer to store the VID.
   1689 * @member:	Buffer to store the port membership.
   1690 *
   1691 * This function reads an entry of the VLAN table of the switch.  It calls
   1692 * sw_r_table() to get the data.
   1693 *
   1694 * Return 0 if the entry is valid; otherwise -1.
   1695 */
   1696static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
   1697	u8 *member)
   1698{
   1699	u32 data;
   1700
   1701	sw_r_table(hw, TABLE_VLAN, addr, &data);
   1702	if (data & VLAN_TABLE_VALID) {
   1703		*vid = (u16)(data & VLAN_TABLE_VID);
   1704		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
   1705		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
   1706			VLAN_TABLE_MEMBERSHIP_SHIFT);
   1707		return 0;
   1708	}
   1709	return -1;
   1710}
   1711
   1712/**
   1713 * port_r_mib_cnt - read MIB counter
   1714 * @hw: 	The hardware instance.
   1715 * @port:	The port index.
   1716 * @addr:	The address of the counter.
   1717 * @cnt:	Buffer to store the counter.
   1718 *
   1719 * This routine reads a MIB counter of the port.
   1720 * Hardware interrupts are disabled to minimize corruption of read data.
   1721 */
   1722static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
   1723{
   1724	u32 data;
   1725	u16 ctrl_addr;
   1726	uint interrupt;
   1727	int timeout;
   1728
   1729	ctrl_addr = addr + PORT_COUNTER_NUM * port;
   1730
   1731	interrupt = hw_block_intr(hw);
   1732
   1733	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
   1734	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
   1735	HW_DELAY(hw, KS884X_IACR_OFFSET);
   1736
   1737	for (timeout = 100; timeout > 0; timeout--) {
   1738		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
   1739
   1740		if (data & MIB_COUNTER_VALID) {
   1741			if (data & MIB_COUNTER_OVERFLOW)
   1742				*cnt += MIB_COUNTER_VALUE + 1;
   1743			*cnt += data & MIB_COUNTER_VALUE;
   1744			break;
   1745		}
   1746	}
   1747
   1748	hw_restore_intr(hw, interrupt);
   1749}
   1750
   1751/**
   1752 * port_r_mib_pkt - read dropped packet counts
   1753 * @hw: 	The hardware instance.
   1754 * @port:	The port index.
   1755 * @last:	last one
   1756 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
   1757 *
   1758 * This routine reads the dropped packet counts of the port.
   1759 * Hardware interrupts are disabled to minimize corruption of read data.
   1760 */
   1761static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
   1762{
   1763	u32 cur;
   1764	u32 data;
   1765	u16 ctrl_addr;
   1766	uint interrupt;
   1767	int index;
   1768
   1769	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
   1770	do {
   1771		interrupt = hw_block_intr(hw);
   1772
   1773		ctrl_addr = (u16) index;
   1774		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
   1775			<< 8);
   1776		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
   1777		HW_DELAY(hw, KS884X_IACR_OFFSET);
   1778		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
   1779
   1780		hw_restore_intr(hw, interrupt);
   1781
   1782		data &= MIB_PACKET_DROPPED;
   1783		cur = *last;
   1784		if (data != cur) {
   1785			*last = data;
   1786			if (data < cur)
   1787				data += MIB_PACKET_DROPPED + 1;
   1788			data -= cur;
   1789			*cnt += data;
   1790		}
   1791		++last;
   1792		++cnt;
   1793		index -= KS_MIB_PACKET_DROPPED_TX -
   1794			KS_MIB_PACKET_DROPPED_TX_0 + 1;
   1795	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
   1796}
   1797
   1798/**
   1799 * port_r_cnt - read MIB counters periodically
   1800 * @hw: 	The hardware instance.
   1801 * @port:	The port index.
   1802 *
   1803 * This routine is used to read the counters of the port periodically to avoid
   1804 * counter overflow.  The hardware should be acquired first before calling this
   1805 * routine.
   1806 *
   1807 * Return non-zero when not all counters not read.
   1808 */
   1809static int port_r_cnt(struct ksz_hw *hw, int port)
   1810{
   1811	struct ksz_port_mib *mib = &hw->port_mib[port];
   1812
   1813	if (mib->mib_start < PORT_COUNTER_NUM)
   1814		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
   1815			port_r_mib_cnt(hw, port, mib->cnt_ptr,
   1816				&mib->counter[mib->cnt_ptr]);
   1817			++mib->cnt_ptr;
   1818		}
   1819	if (hw->mib_cnt > PORT_COUNTER_NUM)
   1820		port_r_mib_pkt(hw, port, mib->dropped,
   1821			&mib->counter[PORT_COUNTER_NUM]);
   1822	mib->cnt_ptr = 0;
   1823	return 0;
   1824}
   1825
   1826/**
   1827 * port_init_cnt - initialize MIB counter values
   1828 * @hw: 	The hardware instance.
   1829 * @port:	The port index.
   1830 *
   1831 * This routine is used to initialize all counters to zero if the hardware
   1832 * cannot do it after reset.
   1833 */
   1834static void port_init_cnt(struct ksz_hw *hw, int port)
   1835{
   1836	struct ksz_port_mib *mib = &hw->port_mib[port];
   1837
   1838	mib->cnt_ptr = 0;
   1839	if (mib->mib_start < PORT_COUNTER_NUM)
   1840		do {
   1841			port_r_mib_cnt(hw, port, mib->cnt_ptr,
   1842				&mib->counter[mib->cnt_ptr]);
   1843			++mib->cnt_ptr;
   1844		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
   1845	if (hw->mib_cnt > PORT_COUNTER_NUM)
   1846		port_r_mib_pkt(hw, port, mib->dropped,
   1847			&mib->counter[PORT_COUNTER_NUM]);
   1848	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
   1849	mib->cnt_ptr = 0;
   1850}
   1851
   1852/*
   1853 * Port functions
   1854 */
   1855
   1856/**
   1857 * port_chk - check port register bits
   1858 * @hw: 	The hardware instance.
   1859 * @port:	The port index.
   1860 * @offset:	The offset of the port register.
   1861 * @bits:	The data bits to check.
   1862 *
   1863 * This function checks whether the specified bits of the port register are set
   1864 * or not.
   1865 *
   1866 * Return 0 if the bits are not set.
   1867 */
   1868static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
   1869{
   1870	u32 addr;
   1871	u16 data;
   1872
   1873	PORT_CTRL_ADDR(port, addr);
   1874	addr += offset;
   1875	data = readw(hw->io + addr);
   1876	return (data & bits) == bits;
   1877}
   1878
   1879/**
   1880 * port_cfg - set port register bits
   1881 * @hw: 	The hardware instance.
   1882 * @port:	The port index.
   1883 * @offset:	The offset of the port register.
   1884 * @bits:	The data bits to set.
   1885 * @set:	The flag indicating whether the bits are to be set or not.
   1886 *
   1887 * This routine sets or resets the specified bits of the port register.
   1888 */
   1889static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
   1890	int set)
   1891{
   1892	u32 addr;
   1893	u16 data;
   1894
   1895	PORT_CTRL_ADDR(port, addr);
   1896	addr += offset;
   1897	data = readw(hw->io + addr);
   1898	if (set)
   1899		data |= bits;
   1900	else
   1901		data &= ~bits;
   1902	writew(data, hw->io + addr);
   1903}
   1904
   1905/**
   1906 * port_chk_shift - check port bit
   1907 * @hw: 	The hardware instance.
   1908 * @port:	The port index.
   1909 * @addr:	The offset of the register.
   1910 * @shift:	Number of bits to shift.
   1911 *
   1912 * This function checks whether the specified port is set in the register or
   1913 * not.
   1914 *
   1915 * Return 0 if the port is not set.
   1916 */
   1917static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
   1918{
   1919	u16 data;
   1920	u16 bit = 1 << port;
   1921
   1922	data = readw(hw->io + addr);
   1923	data >>= shift;
   1924	return (data & bit) == bit;
   1925}
   1926
   1927/**
   1928 * port_cfg_shift - set port bit
   1929 * @hw: 	The hardware instance.
   1930 * @port:	The port index.
   1931 * @addr:	The offset of the register.
   1932 * @shift:	Number of bits to shift.
   1933 * @set:	The flag indicating whether the port is to be set or not.
   1934 *
   1935 * This routine sets or resets the specified port in the register.
   1936 */
   1937static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
   1938	int set)
   1939{
   1940	u16 data;
   1941	u16 bits = 1 << port;
   1942
   1943	data = readw(hw->io + addr);
   1944	bits <<= shift;
   1945	if (set)
   1946		data |= bits;
   1947	else
   1948		data &= ~bits;
   1949	writew(data, hw->io + addr);
   1950}
   1951
   1952/**
   1953 * port_r8 - read byte from port register
   1954 * @hw: 	The hardware instance.
   1955 * @port:	The port index.
   1956 * @offset:	The offset of the port register.
   1957 * @data:	Buffer to store the data.
   1958 *
   1959 * This routine reads a byte from the port register.
   1960 */
   1961static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
   1962{
   1963	u32 addr;
   1964
   1965	PORT_CTRL_ADDR(port, addr);
   1966	addr += offset;
   1967	*data = readb(hw->io + addr);
   1968}
   1969
   1970/**
   1971 * port_r16 - read word from port register.
   1972 * @hw: 	The hardware instance.
   1973 * @port:	The port index.
   1974 * @offset:	The offset of the port register.
   1975 * @data:	Buffer to store the data.
   1976 *
   1977 * This routine reads a word from the port register.
   1978 */
   1979static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
   1980{
   1981	u32 addr;
   1982
   1983	PORT_CTRL_ADDR(port, addr);
   1984	addr += offset;
   1985	*data = readw(hw->io + addr);
   1986}
   1987
   1988/**
   1989 * port_w16 - write word to port register.
   1990 * @hw: 	The hardware instance.
   1991 * @port:	The port index.
   1992 * @offset:	The offset of the port register.
   1993 * @data:	Data to write.
   1994 *
   1995 * This routine writes a word to the port register.
   1996 */
   1997static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
   1998{
   1999	u32 addr;
   2000
   2001	PORT_CTRL_ADDR(port, addr);
   2002	addr += offset;
   2003	writew(data, hw->io + addr);
   2004}
   2005
   2006/**
   2007 * sw_chk - check switch register bits
   2008 * @hw: 	The hardware instance.
   2009 * @addr:	The address of the switch register.
   2010 * @bits:	The data bits to check.
   2011 *
   2012 * This function checks whether the specified bits of the switch register are
   2013 * set or not.
   2014 *
   2015 * Return 0 if the bits are not set.
   2016 */
   2017static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
   2018{
   2019	u16 data;
   2020
   2021	data = readw(hw->io + addr);
   2022	return (data & bits) == bits;
   2023}
   2024
   2025/**
   2026 * sw_cfg - set switch register bits
   2027 * @hw: 	The hardware instance.
   2028 * @addr:	The address of the switch register.
   2029 * @bits:	The data bits to set.
   2030 * @set:	The flag indicating whether the bits are to be set or not.
   2031 *
   2032 * This function sets or resets the specified bits of the switch register.
   2033 */
   2034static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
   2035{
   2036	u16 data;
   2037
   2038	data = readw(hw->io + addr);
   2039	if (set)
   2040		data |= bits;
   2041	else
   2042		data &= ~bits;
   2043	writew(data, hw->io + addr);
   2044}
   2045
   2046/* Bandwidth */
   2047
   2048static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
   2049{
   2050	port_cfg(hw, p,
   2051		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
   2052}
   2053
   2054static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
   2055{
   2056	return port_chk(hw, p,
   2057		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
   2058}
   2059
   2060/* Driver set switch broadcast storm protection at 10% rate. */
   2061#define BROADCAST_STORM_PROTECTION_RATE	10
   2062
   2063/* 148,800 frames * 67 ms / 100 */
   2064#define BROADCAST_STORM_VALUE		9969
   2065
   2066/**
   2067 * sw_cfg_broad_storm - configure broadcast storm threshold
   2068 * @hw: 	The hardware instance.
   2069 * @percent:	Broadcast storm threshold in percent of transmit rate.
   2070 *
   2071 * This routine configures the broadcast storm threshold of the switch.
   2072 */
   2073static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
   2074{
   2075	u16 data;
   2076	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
   2077
   2078	if (value > BROADCAST_STORM_RATE)
   2079		value = BROADCAST_STORM_RATE;
   2080
   2081	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
   2082	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
   2083	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
   2084	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
   2085}
   2086
   2087/**
   2088 * sw_get_broad_storm - get broadcast storm threshold
   2089 * @hw: 	The hardware instance.
   2090 * @percent:	Buffer to store the broadcast storm threshold percentage.
   2091 *
   2092 * This routine retrieves the broadcast storm threshold of the switch.
   2093 */
   2094static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
   2095{
   2096	int num;
   2097	u16 data;
   2098
   2099	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
   2100	num = (data & BROADCAST_STORM_RATE_HI);
   2101	num <<= 8;
   2102	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
   2103	num = DIV_ROUND_CLOSEST(num * 100, BROADCAST_STORM_VALUE);
   2104	*percent = (u8) num;
   2105}
   2106
   2107/**
   2108 * sw_dis_broad_storm - disable broadstorm
   2109 * @hw: 	The hardware instance.
   2110 * @port:	The port index.
   2111 *
   2112 * This routine disables the broadcast storm limit function of the switch.
   2113 */
   2114static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
   2115{
   2116	port_cfg_broad_storm(hw, port, 0);
   2117}
   2118
   2119/**
   2120 * sw_ena_broad_storm - enable broadcast storm
   2121 * @hw: 	The hardware instance.
   2122 * @port:	The port index.
   2123 *
   2124 * This routine enables the broadcast storm limit function of the switch.
   2125 */
   2126static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
   2127{
   2128	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
   2129	port_cfg_broad_storm(hw, port, 1);
   2130}
   2131
   2132/**
   2133 * sw_init_broad_storm - initialize broadcast storm
   2134 * @hw: 	The hardware instance.
   2135 *
   2136 * This routine initializes the broadcast storm limit function of the switch.
   2137 */
   2138static void sw_init_broad_storm(struct ksz_hw *hw)
   2139{
   2140	int port;
   2141
   2142	hw->ksz_switch->broad_per = 1;
   2143	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
   2144	for (port = 0; port < TOTAL_PORT_NUM; port++)
   2145		sw_dis_broad_storm(hw, port);
   2146	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
   2147}
   2148
   2149/**
   2150 * hw_cfg_broad_storm - configure broadcast storm
   2151 * @hw: 	The hardware instance.
   2152 * @percent:	Broadcast storm threshold in percent of transmit rate.
   2153 *
   2154 * This routine configures the broadcast storm threshold of the switch.
   2155 * It is called by user functions.  The hardware should be acquired first.
   2156 */
   2157static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
   2158{
   2159	if (percent > 100)
   2160		percent = 100;
   2161
   2162	sw_cfg_broad_storm(hw, percent);
   2163	sw_get_broad_storm(hw, &percent);
   2164	hw->ksz_switch->broad_per = percent;
   2165}
   2166
   2167/**
   2168 * sw_dis_prio_rate - disable switch priority rate
   2169 * @hw: 	The hardware instance.
   2170 * @port:	The port index.
   2171 *
   2172 * This routine disables the priority rate function of the switch.
   2173 */
   2174static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
   2175{
   2176	u32 addr;
   2177
   2178	PORT_CTRL_ADDR(port, addr);
   2179	addr += KS8842_PORT_IN_RATE_OFFSET;
   2180	writel(0, hw->io + addr);
   2181}
   2182
   2183/**
   2184 * sw_init_prio_rate - initialize switch prioirty rate
   2185 * @hw: 	The hardware instance.
   2186 *
   2187 * This routine initializes the priority rate function of the switch.
   2188 */
   2189static void sw_init_prio_rate(struct ksz_hw *hw)
   2190{
   2191	int port;
   2192	int prio;
   2193	struct ksz_switch *sw = hw->ksz_switch;
   2194
   2195	for (port = 0; port < TOTAL_PORT_NUM; port++) {
   2196		for (prio = 0; prio < PRIO_QUEUES; prio++) {
   2197			sw->port_cfg[port].rx_rate[prio] =
   2198			sw->port_cfg[port].tx_rate[prio] = 0;
   2199		}
   2200		sw_dis_prio_rate(hw, port);
   2201	}
   2202}
   2203
   2204/* Communication */
   2205
   2206static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
   2207{
   2208	port_cfg(hw, p,
   2209		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
   2210}
   2211
   2212static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
   2213{
   2214	port_cfg(hw, p,
   2215		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
   2216}
   2217
   2218static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
   2219{
   2220	return port_chk(hw, p,
   2221		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
   2222}
   2223
   2224static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
   2225{
   2226	return port_chk(hw, p,
   2227		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
   2228}
   2229
   2230/* Spanning Tree */
   2231
   2232static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
   2233{
   2234	port_cfg(hw, p,
   2235		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
   2236}
   2237
   2238static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
   2239{
   2240	port_cfg(hw, p,
   2241		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
   2242}
   2243
   2244static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
   2245{
   2246	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
   2247}
   2248
   2249static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
   2250{
   2251	if (!(hw->overrides & FAST_AGING)) {
   2252		sw_cfg_fast_aging(hw, 1);
   2253		mdelay(1);
   2254		sw_cfg_fast_aging(hw, 0);
   2255	}
   2256}
   2257
   2258/* VLAN */
   2259
   2260static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
   2261{
   2262	port_cfg(hw, p,
   2263		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
   2264}
   2265
   2266static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
   2267{
   2268	port_cfg(hw, p,
   2269		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
   2270}
   2271
   2272static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
   2273{
   2274	return port_chk(hw, p,
   2275		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
   2276}
   2277
   2278static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
   2279{
   2280	return port_chk(hw, p,
   2281		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
   2282}
   2283
   2284static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
   2285{
   2286	port_cfg(hw, p,
   2287		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
   2288}
   2289
   2290static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
   2291{
   2292	port_cfg(hw, p,
   2293		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
   2294}
   2295
   2296static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
   2297{
   2298	return port_chk(hw, p,
   2299		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
   2300}
   2301
   2302static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
   2303{
   2304	return port_chk(hw, p,
   2305		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
   2306}
   2307
   2308/* Mirroring */
   2309
   2310static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
   2311{
   2312	port_cfg(hw, p,
   2313		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
   2314}
   2315
   2316static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
   2317{
   2318	port_cfg(hw, p,
   2319		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
   2320}
   2321
   2322static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
   2323{
   2324	port_cfg(hw, p,
   2325		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
   2326}
   2327
   2328static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
   2329{
   2330	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
   2331}
   2332
   2333static void sw_init_mirror(struct ksz_hw *hw)
   2334{
   2335	int port;
   2336
   2337	for (port = 0; port < TOTAL_PORT_NUM; port++) {
   2338		port_cfg_mirror_sniffer(hw, port, 0);
   2339		port_cfg_mirror_rx(hw, port, 0);
   2340		port_cfg_mirror_tx(hw, port, 0);
   2341	}
   2342	sw_cfg_mirror_rx_tx(hw, 0);
   2343}
   2344
   2345static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
   2346{
   2347	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
   2348		SWITCH_UNK_DEF_PORT_ENABLE, set);
   2349}
   2350
   2351static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
   2352{
   2353	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
   2354		SWITCH_UNK_DEF_PORT_ENABLE);
   2355}
   2356
   2357static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
   2358{
   2359	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
   2360}
   2361
   2362static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
   2363{
   2364	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
   2365}
   2366
   2367/* Priority */
   2368
   2369static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
   2370{
   2371	port_cfg(hw, p,
   2372		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
   2373}
   2374
   2375static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
   2376{
   2377	port_cfg(hw, p,
   2378		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
   2379}
   2380
   2381static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
   2382{
   2383	port_cfg(hw, p,
   2384		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
   2385}
   2386
   2387static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
   2388{
   2389	port_cfg(hw, p,
   2390		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
   2391}
   2392
   2393static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
   2394{
   2395	return port_chk(hw, p,
   2396		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
   2397}
   2398
   2399static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
   2400{
   2401	return port_chk(hw, p,
   2402		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
   2403}
   2404
   2405static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
   2406{
   2407	return port_chk(hw, p,
   2408		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
   2409}
   2410
   2411static inline int port_chk_prio(struct ksz_hw *hw, int p)
   2412{
   2413	return port_chk(hw, p,
   2414		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
   2415}
   2416
   2417/**
   2418 * sw_dis_diffserv - disable switch DiffServ priority
   2419 * @hw: 	The hardware instance.
   2420 * @port:	The port index.
   2421 *
   2422 * This routine disables the DiffServ priority function of the switch.
   2423 */
   2424static void sw_dis_diffserv(struct ksz_hw *hw, int port)
   2425{
   2426	port_cfg_diffserv(hw, port, 0);
   2427}
   2428
   2429/**
   2430 * sw_dis_802_1p - disable switch 802.1p priority
   2431 * @hw: 	The hardware instance.
   2432 * @port:	The port index.
   2433 *
   2434 * This routine disables the 802.1p priority function of the switch.
   2435 */
   2436static void sw_dis_802_1p(struct ksz_hw *hw, int port)
   2437{
   2438	port_cfg_802_1p(hw, port, 0);
   2439}
   2440
   2441/**
   2442 * sw_cfg_replace_null_vid -
   2443 * @hw: 	The hardware instance.
   2444 * @set:	The flag to disable or enable.
   2445 *
   2446 */
   2447static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
   2448{
   2449	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
   2450}
   2451
   2452/**
   2453 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
   2454 * @hw: 	The hardware instance.
   2455 * @port:	The port index.
   2456 * @set:	The flag to disable or enable.
   2457 *
   2458 * This routine enables the 802.1p priority re-mapping function of the switch.
   2459 * That allows 802.1p priority field to be replaced with the port's default
   2460 * tag's priority value if the ingress packet's 802.1p priority has a higher
   2461 * priority than port's default tag's priority.
   2462 */
   2463static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
   2464{
   2465	port_cfg_replace_vid(hw, port, set);
   2466}
   2467
   2468/**
   2469 * sw_cfg_port_based - configure switch port based priority
   2470 * @hw: 	The hardware instance.
   2471 * @port:	The port index.
   2472 * @prio:	The priority to set.
   2473 *
   2474 * This routine configures the port based priority of the switch.
   2475 */
   2476static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
   2477{
   2478	u16 data;
   2479
   2480	if (prio > PORT_BASED_PRIORITY_BASE)
   2481		prio = PORT_BASED_PRIORITY_BASE;
   2482
   2483	hw->ksz_switch->port_cfg[port].port_prio = prio;
   2484
   2485	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
   2486	data &= ~PORT_BASED_PRIORITY_MASK;
   2487	data |= prio << PORT_BASED_PRIORITY_SHIFT;
   2488	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
   2489}
   2490
   2491/**
   2492 * sw_dis_multi_queue - disable transmit multiple queues
   2493 * @hw: 	The hardware instance.
   2494 * @port:	The port index.
   2495 *
   2496 * This routine disables the transmit multiple queues selection of the switch
   2497 * port.  Only single transmit queue on the port.
   2498 */
   2499static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
   2500{
   2501	port_cfg_prio(hw, port, 0);
   2502}
   2503
   2504/**
   2505 * sw_init_prio - initialize switch priority
   2506 * @hw: 	The hardware instance.
   2507 *
   2508 * This routine initializes the switch QoS priority functions.
   2509 */
   2510static void sw_init_prio(struct ksz_hw *hw)
   2511{
   2512	int port;
   2513	int tos;
   2514	struct ksz_switch *sw = hw->ksz_switch;
   2515
   2516	/*
   2517	 * Init all the 802.1p tag priority value to be assigned to different
   2518	 * priority queue.
   2519	 */
   2520	sw->p_802_1p[0] = 0;
   2521	sw->p_802_1p[1] = 0;
   2522	sw->p_802_1p[2] = 1;
   2523	sw->p_802_1p[3] = 1;
   2524	sw->p_802_1p[4] = 2;
   2525	sw->p_802_1p[5] = 2;
   2526	sw->p_802_1p[6] = 3;
   2527	sw->p_802_1p[7] = 3;
   2528
   2529	/*
   2530	 * Init all the DiffServ priority value to be assigned to priority
   2531	 * queue 0.
   2532	 */
   2533	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
   2534		sw->diffserv[tos] = 0;
   2535
   2536	/* All QoS functions disabled. */
   2537	for (port = 0; port < TOTAL_PORT_NUM; port++) {
   2538		sw_dis_multi_queue(hw, port);
   2539		sw_dis_diffserv(hw, port);
   2540		sw_dis_802_1p(hw, port);
   2541		sw_cfg_replace_vid(hw, port, 0);
   2542
   2543		sw->port_cfg[port].port_prio = 0;
   2544		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
   2545	}
   2546	sw_cfg_replace_null_vid(hw, 0);
   2547}
   2548
   2549/**
   2550 * port_get_def_vid - get port default VID.
   2551 * @hw: 	The hardware instance.
   2552 * @port:	The port index.
   2553 * @vid:	Buffer to store the VID.
   2554 *
   2555 * This routine retrieves the default VID of the port.
   2556 */
   2557static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
   2558{
   2559	u32 addr;
   2560
   2561	PORT_CTRL_ADDR(port, addr);
   2562	addr += KS8842_PORT_CTRL_VID_OFFSET;
   2563	*vid = readw(hw->io + addr);
   2564}
   2565
   2566/**
   2567 * sw_init_vlan - initialize switch VLAN
   2568 * @hw: 	The hardware instance.
   2569 *
   2570 * This routine initializes the VLAN function of the switch.
   2571 */
   2572static void sw_init_vlan(struct ksz_hw *hw)
   2573{
   2574	int port;
   2575	int entry;
   2576	struct ksz_switch *sw = hw->ksz_switch;
   2577
   2578	/* Read 16 VLAN entries from device's VLAN table. */
   2579	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
   2580		sw_r_vlan_table(hw, entry,
   2581			&sw->vlan_table[entry].vid,
   2582			&sw->vlan_table[entry].fid,
   2583			&sw->vlan_table[entry].member);
   2584	}
   2585
   2586	for (port = 0; port < TOTAL_PORT_NUM; port++) {
   2587		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
   2588		sw->port_cfg[port].member = PORT_MASK;
   2589	}
   2590}
   2591
   2592/**
   2593 * sw_cfg_port_base_vlan - configure port-based VLAN membership
   2594 * @hw: 	The hardware instance.
   2595 * @port:	The port index.
   2596 * @member:	The port-based VLAN membership.
   2597 *
   2598 * This routine configures the port-based VLAN membership of the port.
   2599 */
   2600static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
   2601{
   2602	u32 addr;
   2603	u8 data;
   2604
   2605	PORT_CTRL_ADDR(port, addr);
   2606	addr += KS8842_PORT_CTRL_2_OFFSET;
   2607
   2608	data = readb(hw->io + addr);
   2609	data &= ~PORT_VLAN_MEMBERSHIP;
   2610	data |= (member & PORT_MASK);
   2611	writeb(data, hw->io + addr);
   2612
   2613	hw->ksz_switch->port_cfg[port].member = member;
   2614}
   2615
   2616/**
   2617 * sw_get_addr - get the switch MAC address.
   2618 * @hw: 	The hardware instance.
   2619 * @mac_addr:	Buffer to store the MAC address.
   2620 *
   2621 * This function retrieves the MAC address of the switch.
   2622 */
   2623static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
   2624{
   2625	int i;
   2626
   2627	for (i = 0; i < 6; i += 2) {
   2628		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
   2629		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
   2630	}
   2631}
   2632
   2633/**
   2634 * sw_set_addr - configure switch MAC address
   2635 * @hw: 	The hardware instance.
   2636 * @mac_addr:	The MAC address.
   2637 *
   2638 * This function configures the MAC address of the switch.
   2639 */
   2640static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
   2641{
   2642	int i;
   2643
   2644	for (i = 0; i < 6; i += 2) {
   2645		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
   2646		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
   2647	}
   2648}
   2649
   2650/**
   2651 * sw_set_global_ctrl - set switch global control
   2652 * @hw: 	The hardware instance.
   2653 *
   2654 * This routine sets the global control of the switch function.
   2655 */
   2656static void sw_set_global_ctrl(struct ksz_hw *hw)
   2657{
   2658	u16 data;
   2659
   2660	/* Enable switch MII flow control. */
   2661	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
   2662	data |= SWITCH_FLOW_CTRL;
   2663	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
   2664
   2665	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
   2666
   2667	/* Enable aggressive back off algorithm in half duplex mode. */
   2668	data |= SWITCH_AGGR_BACKOFF;
   2669
   2670	/* Enable automatic fast aging when link changed detected. */
   2671	data |= SWITCH_AGING_ENABLE;
   2672	data |= SWITCH_LINK_AUTO_AGING;
   2673
   2674	if (hw->overrides & FAST_AGING)
   2675		data |= SWITCH_FAST_AGING;
   2676	else
   2677		data &= ~SWITCH_FAST_AGING;
   2678	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
   2679
   2680	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
   2681
   2682	/* Enable no excessive collision drop. */
   2683	data |= NO_EXC_COLLISION_DROP;
   2684	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
   2685}
   2686
   2687enum {
   2688	STP_STATE_DISABLED = 0,
   2689	STP_STATE_LISTENING,
   2690	STP_STATE_LEARNING,
   2691	STP_STATE_FORWARDING,
   2692	STP_STATE_BLOCKED,
   2693	STP_STATE_SIMPLE
   2694};
   2695
   2696/**
   2697 * port_set_stp_state - configure port spanning tree state
   2698 * @hw: 	The hardware instance.
   2699 * @port:	The port index.
   2700 * @state:	The spanning tree state.
   2701 *
   2702 * This routine configures the spanning tree state of the port.
   2703 */
   2704static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
   2705{
   2706	u16 data;
   2707
   2708	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
   2709	switch (state) {
   2710	case STP_STATE_DISABLED:
   2711		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
   2712		data |= PORT_LEARN_DISABLE;
   2713		break;
   2714	case STP_STATE_LISTENING:
   2715/*
   2716 * No need to turn on transmit because of port direct mode.
   2717 * Turning on receive is required if static MAC table is not setup.
   2718 */
   2719		data &= ~PORT_TX_ENABLE;
   2720		data |= PORT_RX_ENABLE;
   2721		data |= PORT_LEARN_DISABLE;
   2722		break;
   2723	case STP_STATE_LEARNING:
   2724		data &= ~PORT_TX_ENABLE;
   2725		data |= PORT_RX_ENABLE;
   2726		data &= ~PORT_LEARN_DISABLE;
   2727		break;
   2728	case STP_STATE_FORWARDING:
   2729		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
   2730		data &= ~PORT_LEARN_DISABLE;
   2731		break;
   2732	case STP_STATE_BLOCKED:
   2733/*
   2734 * Need to setup static MAC table with override to keep receiving BPDU
   2735 * messages.  See sw_init_stp routine.
   2736 */
   2737		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
   2738		data |= PORT_LEARN_DISABLE;
   2739		break;
   2740	case STP_STATE_SIMPLE:
   2741		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
   2742		data |= PORT_LEARN_DISABLE;
   2743		break;
   2744	}
   2745	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
   2746	hw->ksz_switch->port_cfg[port].stp_state = state;
   2747}
   2748
   2749#define STP_ENTRY			0
   2750#define BROADCAST_ENTRY			1
   2751#define BRIDGE_ADDR_ENTRY		2
   2752#define IPV6_ADDR_ENTRY			3
   2753
   2754/**
   2755 * sw_clr_sta_mac_table - clear static MAC table
   2756 * @hw: 	The hardware instance.
   2757 *
   2758 * This routine clears the static MAC table.
   2759 */
   2760static void sw_clr_sta_mac_table(struct ksz_hw *hw)
   2761{
   2762	struct ksz_mac_table *entry;
   2763	int i;
   2764
   2765	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
   2766		entry = &hw->ksz_switch->mac_table[i];
   2767		sw_w_sta_mac_table(hw, i,
   2768			entry->mac_addr, entry->ports,
   2769			entry->override, 0,
   2770			entry->use_fid, entry->fid);
   2771	}
   2772}
   2773
   2774/**
   2775 * sw_init_stp - initialize switch spanning tree support
   2776 * @hw: 	The hardware instance.
   2777 *
   2778 * This routine initializes the spanning tree support of the switch.
   2779 */
   2780static void sw_init_stp(struct ksz_hw *hw)
   2781{
   2782	struct ksz_mac_table *entry;
   2783
   2784	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
   2785	entry->mac_addr[0] = 0x01;
   2786	entry->mac_addr[1] = 0x80;
   2787	entry->mac_addr[2] = 0xC2;
   2788	entry->mac_addr[3] = 0x00;
   2789	entry->mac_addr[4] = 0x00;
   2790	entry->mac_addr[5] = 0x00;
   2791	entry->ports = HOST_MASK;
   2792	entry->override = 1;
   2793	entry->valid = 1;
   2794	sw_w_sta_mac_table(hw, STP_ENTRY,
   2795		entry->mac_addr, entry->ports,
   2796		entry->override, entry->valid,
   2797		entry->use_fid, entry->fid);
   2798}
   2799
   2800/**
   2801 * sw_block_addr - block certain packets from the host port
   2802 * @hw: 	The hardware instance.
   2803 *
   2804 * This routine blocks certain packets from reaching to the host port.
   2805 */
   2806static void sw_block_addr(struct ksz_hw *hw)
   2807{
   2808	struct ksz_mac_table *entry;
   2809	int i;
   2810
   2811	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
   2812		entry = &hw->ksz_switch->mac_table[i];
   2813		entry->valid = 0;
   2814		sw_w_sta_mac_table(hw, i,
   2815			entry->mac_addr, entry->ports,
   2816			entry->override, entry->valid,
   2817			entry->use_fid, entry->fid);
   2818	}
   2819}
   2820
   2821static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
   2822{
   2823	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
   2824}
   2825
   2826static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
   2827{
   2828	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
   2829}
   2830
   2831static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
   2832{
   2833	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
   2834}
   2835
   2836static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
   2837{
   2838	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
   2839}
   2840
   2841static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
   2842{
   2843	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
   2844}
   2845
   2846static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
   2847{
   2848	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
   2849}
   2850
   2851static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
   2852{
   2853	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
   2854}
   2855
   2856static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
   2857{
   2858	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
   2859}
   2860
   2861static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
   2862{
   2863	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
   2864}
   2865
   2866static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
   2867{
   2868	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
   2869}
   2870
   2871static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
   2872{
   2873	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
   2874}
   2875
   2876static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
   2877{
   2878	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
   2879}
   2880
   2881/**
   2882 * hw_r_phy - read data from PHY register
   2883 * @hw: 	The hardware instance.
   2884 * @port:	Port to read.
   2885 * @reg:	PHY register to read.
   2886 * @val:	Buffer to store the read data.
   2887 *
   2888 * This routine reads data from the PHY register.
   2889 */
   2890static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
   2891{
   2892	int phy;
   2893
   2894	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
   2895	*val = readw(hw->io + phy);
   2896}
   2897
   2898/**
   2899 * hw_w_phy - write data to PHY register
   2900 * @hw: 	The hardware instance.
   2901 * @port:	Port to write.
   2902 * @reg:	PHY register to write.
   2903 * @val:	Word data to write.
   2904 *
   2905 * This routine writes data to the PHY register.
   2906 */
   2907static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
   2908{
   2909	int phy;
   2910
   2911	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
   2912	writew(val, hw->io + phy);
   2913}
   2914
   2915/*
   2916 * EEPROM access functions
   2917 */
   2918
   2919#define AT93C_CODE			0
   2920#define AT93C_WR_OFF			0x00
   2921#define AT93C_WR_ALL			0x10
   2922#define AT93C_ER_ALL			0x20
   2923#define AT93C_WR_ON			0x30
   2924
   2925#define AT93C_WRITE			1
   2926#define AT93C_READ			2
   2927#define AT93C_ERASE			3
   2928
   2929#define EEPROM_DELAY			4
   2930
   2931static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
   2932{
   2933	u16 data;
   2934
   2935	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
   2936	data &= ~gpio;
   2937	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
   2938}
   2939
   2940static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
   2941{
   2942	u16 data;
   2943
   2944	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
   2945	data |= gpio;
   2946	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
   2947}
   2948
   2949static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
   2950{
   2951	u16 data;
   2952
   2953	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
   2954	return (u8)(data & gpio);
   2955}
   2956
   2957static void eeprom_clk(struct ksz_hw *hw)
   2958{
   2959	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
   2960	udelay(EEPROM_DELAY);
   2961	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
   2962	udelay(EEPROM_DELAY);
   2963}
   2964
   2965static u16 spi_r(struct ksz_hw *hw)
   2966{
   2967	int i;
   2968	u16 temp = 0;
   2969
   2970	for (i = 15; i >= 0; i--) {
   2971		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
   2972		udelay(EEPROM_DELAY);
   2973
   2974		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
   2975
   2976		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
   2977		udelay(EEPROM_DELAY);
   2978	}
   2979	return temp;
   2980}
   2981
   2982static void spi_w(struct ksz_hw *hw, u16 data)
   2983{
   2984	int i;
   2985
   2986	for (i = 15; i >= 0; i--) {
   2987		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
   2988			drop_gpio(hw, EEPROM_DATA_OUT);
   2989		eeprom_clk(hw);
   2990	}
   2991}
   2992
   2993static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
   2994{
   2995	int i;
   2996
   2997	/* Initial start bit */
   2998	raise_gpio(hw, EEPROM_DATA_OUT);
   2999	eeprom_clk(hw);
   3000
   3001	/* AT93C operation */
   3002	for (i = 1; i >= 0; i--) {
   3003		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
   3004			drop_gpio(hw, EEPROM_DATA_OUT);
   3005		eeprom_clk(hw);
   3006	}
   3007
   3008	/* Address location */
   3009	for (i = 5; i >= 0; i--) {
   3010		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
   3011			drop_gpio(hw, EEPROM_DATA_OUT);
   3012		eeprom_clk(hw);
   3013	}
   3014}
   3015
   3016#define EEPROM_DATA_RESERVED		0
   3017#define EEPROM_DATA_MAC_ADDR_0		1
   3018#define EEPROM_DATA_MAC_ADDR_1		2
   3019#define EEPROM_DATA_MAC_ADDR_2		3
   3020#define EEPROM_DATA_SUBSYS_ID		4
   3021#define EEPROM_DATA_SUBSYS_VEN_ID	5
   3022#define EEPROM_DATA_PM_CAP		6
   3023
   3024/* User defined EEPROM data */
   3025#define EEPROM_DATA_OTHER_MAC_ADDR	9
   3026
   3027/**
   3028 * eeprom_read - read from AT93C46 EEPROM
   3029 * @hw: 	The hardware instance.
   3030 * @reg:	The register offset.
   3031 *
   3032 * This function reads a word from the AT93C46 EEPROM.
   3033 *
   3034 * Return the data value.
   3035 */
   3036static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
   3037{
   3038	u16 data;
   3039
   3040	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
   3041
   3042	spi_reg(hw, AT93C_READ, reg);
   3043	data = spi_r(hw);
   3044
   3045	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
   3046
   3047	return data;
   3048}
   3049
   3050/**
   3051 * eeprom_write - write to AT93C46 EEPROM
   3052 * @hw: 	The hardware instance.
   3053 * @reg:	The register offset.
   3054 * @data:	The data value.
   3055 *
   3056 * This procedure writes a word to the AT93C46 EEPROM.
   3057 */
   3058static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
   3059{
   3060	int timeout;
   3061
   3062	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
   3063
   3064	/* Enable write. */
   3065	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
   3066	drop_gpio(hw, EEPROM_CHIP_SELECT);
   3067	udelay(1);
   3068
   3069	/* Erase the register. */
   3070	raise_gpio(hw, EEPROM_CHIP_SELECT);
   3071	spi_reg(hw, AT93C_ERASE, reg);
   3072	drop_gpio(hw, EEPROM_CHIP_SELECT);
   3073	udelay(1);
   3074
   3075	/* Check operation complete. */
   3076	raise_gpio(hw, EEPROM_CHIP_SELECT);
   3077	timeout = 8;
   3078	mdelay(2);
   3079	do {
   3080		mdelay(1);
   3081	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
   3082	drop_gpio(hw, EEPROM_CHIP_SELECT);
   3083	udelay(1);
   3084
   3085	/* Write the register. */
   3086	raise_gpio(hw, EEPROM_CHIP_SELECT);
   3087	spi_reg(hw, AT93C_WRITE, reg);
   3088	spi_w(hw, data);
   3089	drop_gpio(hw, EEPROM_CHIP_SELECT);
   3090	udelay(1);
   3091
   3092	/* Check operation complete. */
   3093	raise_gpio(hw, EEPROM_CHIP_SELECT);
   3094	timeout = 8;
   3095	mdelay(2);
   3096	do {
   3097		mdelay(1);
   3098	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
   3099	drop_gpio(hw, EEPROM_CHIP_SELECT);
   3100	udelay(1);
   3101
   3102	/* Disable write. */
   3103	raise_gpio(hw, EEPROM_CHIP_SELECT);
   3104	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
   3105
   3106	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
   3107}
   3108
   3109/*
   3110 * Link detection routines
   3111 */
   3112
   3113static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
   3114{
   3115	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
   3116	switch (port->flow_ctrl) {
   3117	case PHY_FLOW_CTRL:
   3118		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
   3119		break;
   3120	/* Not supported. */
   3121	case PHY_TX_ONLY:
   3122	case PHY_RX_ONLY:
   3123	default:
   3124		break;
   3125	}
   3126	return ctrl;
   3127}
   3128
   3129static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
   3130{
   3131	u32 rx_cfg;
   3132	u32 tx_cfg;
   3133
   3134	rx_cfg = hw->rx_cfg;
   3135	tx_cfg = hw->tx_cfg;
   3136	if (rx)
   3137		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
   3138	else
   3139		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
   3140	if (tx)
   3141		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
   3142	else
   3143		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
   3144	if (hw->enabled) {
   3145		if (rx_cfg != hw->rx_cfg)
   3146			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
   3147		if (tx_cfg != hw->tx_cfg)
   3148			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
   3149	}
   3150}
   3151
   3152static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
   3153	u16 local, u16 remote)
   3154{
   3155	int rx;
   3156	int tx;
   3157
   3158	if (hw->overrides & PAUSE_FLOW_CTRL)
   3159		return;
   3160
   3161	rx = tx = 0;
   3162	if (port->force_link)
   3163		rx = tx = 1;
   3164	if (remote & LPA_PAUSE_CAP) {
   3165		if (local & ADVERTISE_PAUSE_CAP) {
   3166			rx = tx = 1;
   3167		} else if ((remote & LPA_PAUSE_ASYM) &&
   3168			   (local &
   3169			    (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) ==
   3170			   ADVERTISE_PAUSE_ASYM) {
   3171			tx = 1;
   3172		}
   3173	} else if (remote & LPA_PAUSE_ASYM) {
   3174		if ((local & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
   3175		    == (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM))
   3176			rx = 1;
   3177	}
   3178	if (!hw->ksz_switch)
   3179		set_flow_ctrl(hw, rx, tx);
   3180}
   3181
   3182static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
   3183	struct ksz_port_info *info, u16 link_status)
   3184{
   3185	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
   3186			!(hw->overrides & PAUSE_FLOW_CTRL)) {
   3187		u32 cfg = hw->tx_cfg;
   3188
   3189		/* Disable flow control in the half duplex mode. */
   3190		if (1 == info->duplex)
   3191			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
   3192		if (hw->enabled && cfg != hw->tx_cfg)
   3193			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
   3194	}
   3195}
   3196
   3197/**
   3198 * port_get_link_speed - get current link status
   3199 * @port: 	The port instance.
   3200 *
   3201 * This routine reads PHY registers to determine the current link status of the
   3202 * switch ports.
   3203 */
   3204static void port_get_link_speed(struct ksz_port *port)
   3205{
   3206	uint interrupt;
   3207	struct ksz_port_info *info;
   3208	struct ksz_port_info *linked = NULL;
   3209	struct ksz_hw *hw = port->hw;
   3210	u16 data;
   3211	u16 status;
   3212	u8 local;
   3213	u8 remote;
   3214	int i;
   3215	int p;
   3216	int change = 0;
   3217
   3218	interrupt = hw_block_intr(hw);
   3219
   3220	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
   3221		info = &hw->port_info[p];
   3222		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
   3223		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
   3224
   3225		/*
   3226		 * Link status is changing all the time even when there is no
   3227		 * cable connection!
   3228		 */
   3229		remote = status & (PORT_AUTO_NEG_COMPLETE |
   3230			PORT_STATUS_LINK_GOOD);
   3231		local = (u8) data;
   3232
   3233		/* No change to status. */
   3234		if (local == info->advertised && remote == info->partner)
   3235			continue;
   3236
   3237		info->advertised = local;
   3238		info->partner = remote;
   3239		if (status & PORT_STATUS_LINK_GOOD) {
   3240
   3241			/* Remember the first linked port. */
   3242			if (!linked)
   3243				linked = info;
   3244
   3245			info->tx_rate = 10 * TX_RATE_UNIT;
   3246			if (status & PORT_STATUS_SPEED_100MBIT)
   3247				info->tx_rate = 100 * TX_RATE_UNIT;
   3248
   3249			info->duplex = 1;
   3250			if (status & PORT_STATUS_FULL_DUPLEX)
   3251				info->duplex = 2;
   3252
   3253			if (media_connected != info->state) {
   3254				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
   3255					&data);
   3256				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
   3257					&status);
   3258				determine_flow_ctrl(hw, port, data, status);
   3259				if (hw->ksz_switch) {
   3260					port_cfg_back_pressure(hw, p,
   3261						(1 == info->duplex));
   3262				}
   3263				change |= 1 << i;
   3264				port_cfg_change(hw, port, info, status);
   3265			}
   3266			info->state = media_connected;
   3267		} else {
   3268			if (media_disconnected != info->state) {
   3269				change |= 1 << i;
   3270
   3271				/* Indicate the link just goes down. */
   3272				hw->port_mib[p].link_down = 1;
   3273			}
   3274			info->state = media_disconnected;
   3275		}
   3276		hw->port_mib[p].state = (u8) info->state;
   3277	}
   3278
   3279	if (linked && media_disconnected == port->linked->state)
   3280		port->linked = linked;
   3281
   3282	hw_restore_intr(hw, interrupt);
   3283}
   3284
   3285#define PHY_RESET_TIMEOUT		10
   3286
   3287/**
   3288 * port_set_link_speed - set port speed
   3289 * @port: 	The port instance.
   3290 *
   3291 * This routine sets the link speed of the switch ports.
   3292 */
   3293static void port_set_link_speed(struct ksz_port *port)
   3294{
   3295	struct ksz_hw *hw = port->hw;
   3296	u16 data;
   3297	u16 cfg;
   3298	u8 status;
   3299	int i;
   3300	int p;
   3301
   3302	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
   3303		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
   3304		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
   3305
   3306		cfg = 0;
   3307		if (status & PORT_STATUS_LINK_GOOD)
   3308			cfg = data;
   3309
   3310		data |= PORT_AUTO_NEG_ENABLE;
   3311		data = advertised_flow_ctrl(port, data);
   3312
   3313		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
   3314			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
   3315
   3316		/* Check if manual configuration is specified by the user. */
   3317		if (port->speed || port->duplex) {
   3318			if (10 == port->speed)
   3319				data &= ~(PORT_AUTO_NEG_100BTX_FD |
   3320					PORT_AUTO_NEG_100BTX);
   3321			else if (100 == port->speed)
   3322				data &= ~(PORT_AUTO_NEG_10BT_FD |
   3323					PORT_AUTO_NEG_10BT);
   3324			if (1 == port->duplex)
   3325				data &= ~(PORT_AUTO_NEG_100BTX_FD |
   3326					PORT_AUTO_NEG_10BT_FD);
   3327			else if (2 == port->duplex)
   3328				data &= ~(PORT_AUTO_NEG_100BTX |
   3329					PORT_AUTO_NEG_10BT);
   3330		}
   3331		if (data != cfg) {
   3332			data |= PORT_AUTO_NEG_RESTART;
   3333			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
   3334		}
   3335	}
   3336}
   3337
   3338/**
   3339 * port_force_link_speed - force port speed
   3340 * @port: 	The port instance.
   3341 *
   3342 * This routine forces the link speed of the switch ports.
   3343 */
   3344static void port_force_link_speed(struct ksz_port *port)
   3345{
   3346	struct ksz_hw *hw = port->hw;
   3347	u16 data;
   3348	int i;
   3349	int phy;
   3350	int p;
   3351
   3352	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
   3353		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
   3354		hw_r_phy_ctrl(hw, phy, &data);
   3355
   3356		data &= ~BMCR_ANENABLE;
   3357
   3358		if (10 == port->speed)
   3359			data &= ~BMCR_SPEED100;
   3360		else if (100 == port->speed)
   3361			data |= BMCR_SPEED100;
   3362		if (1 == port->duplex)
   3363			data &= ~BMCR_FULLDPLX;
   3364		else if (2 == port->duplex)
   3365			data |= BMCR_FULLDPLX;
   3366		hw_w_phy_ctrl(hw, phy, data);
   3367	}
   3368}
   3369
   3370static void port_set_power_saving(struct ksz_port *port, int enable)
   3371{
   3372	struct ksz_hw *hw = port->hw;
   3373	int i;
   3374	int p;
   3375
   3376	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
   3377		port_cfg(hw, p,
   3378			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
   3379}
   3380
   3381/*
   3382 * KSZ8841 power management functions
   3383 */
   3384
   3385/**
   3386 * hw_chk_wol_pme_status - check PMEN pin
   3387 * @hw: 	The hardware instance.
   3388 *
   3389 * This function is used to check PMEN pin is asserted.
   3390 *
   3391 * Return 1 if PMEN pin is asserted; otherwise, 0.
   3392 */
   3393static int hw_chk_wol_pme_status(struct ksz_hw *hw)
   3394{
   3395	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
   3396	struct pci_dev *pdev = hw_priv->pdev;
   3397	u16 data;
   3398
   3399	if (!pdev->pm_cap)
   3400		return 0;
   3401	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
   3402	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
   3403}
   3404
   3405/**
   3406 * hw_clr_wol_pme_status - clear PMEN pin
   3407 * @hw: 	The hardware instance.
   3408 *
   3409 * This routine is used to clear PME_Status to deassert PMEN pin.
   3410 */
   3411static void hw_clr_wol_pme_status(struct ksz_hw *hw)
   3412{
   3413	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
   3414	struct pci_dev *pdev = hw_priv->pdev;
   3415	u16 data;
   3416
   3417	if (!pdev->pm_cap)
   3418		return;
   3419
   3420	/* Clear PME_Status to deassert PMEN pin. */
   3421	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
   3422	data |= PCI_PM_CTRL_PME_STATUS;
   3423	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
   3424}
   3425
   3426/**
   3427 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
   3428 * @hw: 	The hardware instance.
   3429 * @set:	The flag indicating whether to enable or disable.
   3430 *
   3431 * This routine is used to enable or disable Wake-on-LAN.
   3432 */
   3433static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
   3434{
   3435	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
   3436	struct pci_dev *pdev = hw_priv->pdev;
   3437	u16 data;
   3438
   3439	if (!pdev->pm_cap)
   3440		return;
   3441	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
   3442	data &= ~PCI_PM_CTRL_STATE_MASK;
   3443	if (set)
   3444		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
   3445	else
   3446		data &= ~PCI_PM_CTRL_PME_ENABLE;
   3447	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
   3448}
   3449
   3450/**
   3451 * hw_cfg_wol - configure Wake-on-LAN features
   3452 * @hw: 	The hardware instance.
   3453 * @frame:	The pattern frame bit.
   3454 * @set:	The flag indicating whether to enable or disable.
   3455 *
   3456 * This routine is used to enable or disable certain Wake-on-LAN features.
   3457 */
   3458static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
   3459{
   3460	u16 data;
   3461
   3462	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
   3463	if (set)
   3464		data |= frame;
   3465	else
   3466		data &= ~frame;
   3467	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
   3468}
   3469
   3470/**
   3471 * hw_set_wol_frame - program Wake-on-LAN pattern
   3472 * @hw: 	The hardware instance.
   3473 * @i:		The frame index.
   3474 * @mask_size:	The size of the mask.
   3475 * @mask:	Mask to ignore certain bytes in the pattern.
   3476 * @frame_size:	The size of the frame.
   3477 * @pattern:	The frame data.
   3478 *
   3479 * This routine is used to program Wake-on-LAN pattern.
   3480 */
   3481static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
   3482	const u8 *mask, uint frame_size, const u8 *pattern)
   3483{
   3484	int bits;
   3485	int from;
   3486	int len;
   3487	int to;
   3488	u32 crc;
   3489	u8 data[64];
   3490	u8 val = 0;
   3491
   3492	if (frame_size > mask_size * 8)
   3493		frame_size = mask_size * 8;
   3494	if (frame_size > 64)
   3495		frame_size = 64;
   3496
   3497	i *= 0x10;
   3498	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
   3499	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
   3500
   3501	bits = len = from = to = 0;
   3502	do {
   3503		if (bits) {
   3504			if ((val & 1))
   3505				data[to++] = pattern[from];
   3506			val >>= 1;
   3507			++from;
   3508			--bits;
   3509		} else {
   3510			val = mask[len];
   3511			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
   3512				+ len);
   3513			++len;
   3514			if (val)
   3515				bits = 8;
   3516			else
   3517				from += 8;
   3518		}
   3519	} while (from < (int) frame_size);
   3520	if (val) {
   3521		bits = mask[len - 1];
   3522		val <<= (from % 8);
   3523		bits &= ~val;
   3524		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
   3525			1);
   3526	}
   3527	crc = ether_crc(to, data);
   3528	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
   3529}
   3530
   3531/**
   3532 * hw_add_wol_arp - add ARP pattern
   3533 * @hw: 	The hardware instance.
   3534 * @ip_addr:	The IPv4 address assigned to the device.
   3535 *
   3536 * This routine is used to add ARP pattern for waking up the host.
   3537 */
   3538static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
   3539{
   3540	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
   3541	u8 pattern[42] = {
   3542		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
   3543		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
   3544		0x08, 0x06,
   3545		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
   3546		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
   3547		0x00, 0x00, 0x00, 0x00,
   3548		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
   3549		0x00, 0x00, 0x00, 0x00 };
   3550
   3551	memcpy(&pattern[38], ip_addr, 4);
   3552	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
   3553}
   3554
   3555/**
   3556 * hw_add_wol_bcast - add broadcast pattern
   3557 * @hw: 	The hardware instance.
   3558 *
   3559 * This routine is used to add broadcast pattern for waking up the host.
   3560 */
   3561static void hw_add_wol_bcast(struct ksz_hw *hw)
   3562{
   3563	static const u8 mask[] = { 0x3F };
   3564	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
   3565
   3566	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
   3567}
   3568
   3569/**
   3570 * hw_add_wol_mcast - add multicast pattern
   3571 * @hw: 	The hardware instance.
   3572 *
   3573 * This routine is used to add multicast pattern for waking up the host.
   3574 *
   3575 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
   3576 * by IPv6 ping command.  Note that multicast packets are filtred through the
   3577 * multicast hash table, so not all multicast packets can wake up the host.
   3578 */
   3579static void hw_add_wol_mcast(struct ksz_hw *hw)
   3580{
   3581	static const u8 mask[] = { 0x3F };
   3582	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
   3583
   3584	memcpy(&pattern[3], &hw->override_addr[3], 3);
   3585	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
   3586}
   3587
   3588/**
   3589 * hw_add_wol_ucast - add unicast pattern
   3590 * @hw: 	The hardware instance.
   3591 *
   3592 * This routine is used to add unicast pattern to wakeup the host.
   3593 *
   3594 * It is assumed the unicast packet is directed to the device, as the hardware
   3595 * can only receive them in normal case.
   3596 */
   3597static void hw_add_wol_ucast(struct ksz_hw *hw)
   3598{
   3599	static const u8 mask[] = { 0x3F };
   3600
   3601	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
   3602}
   3603
   3604/**
   3605 * hw_enable_wol - enable Wake-on-LAN
   3606 * @hw: 	The hardware instance.
   3607 * @wol_enable:	The Wake-on-LAN settings.
   3608 * @net_addr:	The IPv4 address assigned to the device.
   3609 *
   3610 * This routine is used to enable Wake-on-LAN depending on driver settings.
   3611 */
   3612static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
   3613{
   3614	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
   3615	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
   3616	hw_add_wol_ucast(hw);
   3617	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
   3618	hw_add_wol_mcast(hw);
   3619	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
   3620	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
   3621	hw_add_wol_arp(hw, net_addr);
   3622}
   3623
   3624/**
   3625 * hw_init - check driver is correct for the hardware
   3626 * @hw: 	The hardware instance.
   3627 *
   3628 * This function checks the hardware is correct for this driver and sets the
   3629 * hardware up for proper initialization.
   3630 *
   3631 * Return number of ports or 0 if not right.
   3632 */
   3633static int hw_init(struct ksz_hw *hw)
   3634{
   3635	int rc = 0;
   3636	u16 data;
   3637	u16 revision;
   3638
   3639	/* Set bus speed to 125MHz. */
   3640	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
   3641
   3642	/* Check KSZ884x chip ID. */
   3643	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
   3644
   3645	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
   3646	data &= KS884X_CHIP_ID_MASK_41;
   3647	if (REG_CHIP_ID_41 == data)
   3648		rc = 1;
   3649	else if (REG_CHIP_ID_42 == data)
   3650		rc = 2;
   3651	else
   3652		return 0;
   3653
   3654	/* Setup hardware features or bug workarounds. */
   3655	if (revision <= 1) {
   3656		hw->features |= SMALL_PACKET_TX_BUG;
   3657		if (1 == rc)
   3658			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
   3659	}
   3660	return rc;
   3661}
   3662
   3663/**
   3664 * hw_reset - reset the hardware
   3665 * @hw: 	The hardware instance.
   3666 *
   3667 * This routine resets the hardware.
   3668 */
   3669static void hw_reset(struct ksz_hw *hw)
   3670{
   3671	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
   3672
   3673	/* Wait for device to reset. */
   3674	mdelay(10);
   3675
   3676	/* Write 0 to clear device reset. */
   3677	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
   3678}
   3679
   3680/**
   3681 * hw_setup - setup the hardware
   3682 * @hw: 	The hardware instance.
   3683 *
   3684 * This routine setup the hardware for proper operation.
   3685 */
   3686static void hw_setup(struct ksz_hw *hw)
   3687{
   3688#if SET_DEFAULT_LED
   3689	u16 data;
   3690
   3691	/* Change default LED mode. */
   3692	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
   3693	data &= ~LED_MODE;
   3694	data |= SET_DEFAULT_LED;
   3695	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
   3696#endif
   3697
   3698	/* Setup transmit control. */
   3699	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
   3700		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
   3701
   3702	/* Setup receive control. */
   3703	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
   3704		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
   3705	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
   3706
   3707	/* Hardware cannot handle UDP packet in IP fragments. */
   3708	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
   3709
   3710	if (hw->all_multi)
   3711		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
   3712	if (hw->promiscuous)
   3713		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
   3714}
   3715
   3716/**
   3717 * hw_setup_intr - setup interrupt mask
   3718 * @hw: 	The hardware instance.
   3719 *
   3720 * This routine setup the interrupt mask for proper operation.
   3721 */
   3722static void hw_setup_intr(struct ksz_hw *hw)
   3723{
   3724	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
   3725}
   3726
   3727static void ksz_check_desc_num(struct ksz_desc_info *info)
   3728{
   3729#define MIN_DESC_SHIFT  2
   3730
   3731	int alloc = info->alloc;
   3732	int shift;
   3733
   3734	shift = 0;
   3735	while (!(alloc & 1)) {
   3736		shift++;
   3737		alloc >>= 1;
   3738	}
   3739	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
   3740		pr_alert("Hardware descriptor numbers not right!\n");
   3741		while (alloc) {
   3742			shift++;
   3743			alloc >>= 1;
   3744		}
   3745		if (shift < MIN_DESC_SHIFT)
   3746			shift = MIN_DESC_SHIFT;
   3747		alloc = 1 << shift;
   3748		info->alloc = alloc;
   3749	}
   3750	info->mask = info->alloc - 1;
   3751}
   3752
   3753static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
   3754{
   3755	int i;
   3756	u32 phys = desc_info->ring_phys;
   3757	struct ksz_hw_desc *desc = desc_info->ring_virt;
   3758	struct ksz_desc *cur = desc_info->ring;
   3759	struct ksz_desc *previous = NULL;
   3760
   3761	for (i = 0; i < desc_info->alloc; i++) {
   3762		cur->phw = desc++;
   3763		phys += desc_info->size;
   3764		previous = cur++;
   3765		previous->phw->next = cpu_to_le32(phys);
   3766	}
   3767	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
   3768	previous->sw.buf.rx.end_of_ring = 1;
   3769	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
   3770
   3771	desc_info->avail = desc_info->alloc;
   3772	desc_info->last = desc_info->next = 0;
   3773
   3774	desc_info->cur = desc_info->ring;
   3775}
   3776
   3777/**
   3778 * hw_set_desc_base - set descriptor base addresses
   3779 * @hw: 	The hardware instance.
   3780 * @tx_addr:	The transmit descriptor base.
   3781 * @rx_addr:	The receive descriptor base.
   3782 *
   3783 * This routine programs the descriptor base addresses after reset.
   3784 */
   3785static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
   3786{
   3787	/* Set base address of Tx/Rx descriptors. */
   3788	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
   3789	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
   3790}
   3791
   3792static void hw_reset_pkts(struct ksz_desc_info *info)
   3793{
   3794	info->cur = info->ring;
   3795	info->avail = info->alloc;
   3796	info->last = info->next = 0;
   3797}
   3798
   3799static inline void hw_resume_rx(struct ksz_hw *hw)
   3800{
   3801	writel(DMA_START, hw->io + KS_DMA_RX_START);
   3802}
   3803
   3804/**
   3805 * hw_start_rx - start receiving
   3806 * @hw: 	The hardware instance.
   3807 *
   3808 * This routine starts the receive function of the hardware.
   3809 */
   3810static void hw_start_rx(struct ksz_hw *hw)
   3811{
   3812	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
   3813
   3814	/* Notify when the receive stops. */
   3815	hw->intr_mask |= KS884X_INT_RX_STOPPED;
   3816
   3817	writel(DMA_START, hw->io + KS_DMA_RX_START);
   3818	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
   3819	hw->rx_stop++;
   3820
   3821	/* Variable overflows. */
   3822	if (0 == hw->rx_stop)
   3823		hw->rx_stop = 2;
   3824}
   3825
   3826/**
   3827 * hw_stop_rx - stop receiving
   3828 * @hw: 	The hardware instance.
   3829 *
   3830 * This routine stops the receive function of the hardware.
   3831 */
   3832static void hw_stop_rx(struct ksz_hw *hw)
   3833{
   3834	hw->rx_stop = 0;
   3835	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
   3836	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
   3837}
   3838
   3839/**
   3840 * hw_start_tx - start transmitting
   3841 * @hw: 	The hardware instance.
   3842 *
   3843 * This routine starts the transmit function of the hardware.
   3844 */
   3845static void hw_start_tx(struct ksz_hw *hw)
   3846{
   3847	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
   3848}
   3849
   3850/**
   3851 * hw_stop_tx - stop transmitting
   3852 * @hw: 	The hardware instance.
   3853 *
   3854 * This routine stops the transmit function of the hardware.
   3855 */
   3856static void hw_stop_tx(struct ksz_hw *hw)
   3857{
   3858	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
   3859}
   3860
   3861/**
   3862 * hw_disable - disable hardware
   3863 * @hw: 	The hardware instance.
   3864 *
   3865 * This routine disables the hardware.
   3866 */
   3867static void hw_disable(struct ksz_hw *hw)
   3868{
   3869	hw_stop_rx(hw);
   3870	hw_stop_tx(hw);
   3871	hw->enabled = 0;
   3872}
   3873
   3874/**
   3875 * hw_enable - enable hardware
   3876 * @hw: 	The hardware instance.
   3877 *
   3878 * This routine enables the hardware.
   3879 */
   3880static void hw_enable(struct ksz_hw *hw)
   3881{
   3882	hw_start_tx(hw);
   3883	hw_start_rx(hw);
   3884	hw->enabled = 1;
   3885}
   3886
   3887/**
   3888 * hw_alloc_pkt - allocate enough descriptors for transmission
   3889 * @hw: 	The hardware instance.
   3890 * @length:	The length of the packet.
   3891 * @physical:	Number of descriptors required.
   3892 *
   3893 * This function allocates descriptors for transmission.
   3894 *
   3895 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
   3896 */
   3897static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
   3898{
   3899	/* Always leave one descriptor free. */
   3900	if (hw->tx_desc_info.avail <= 1)
   3901		return 0;
   3902
   3903	/* Allocate a descriptor for transmission and mark it current. */
   3904	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
   3905	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
   3906
   3907	/* Keep track of number of transmit descriptors used so far. */
   3908	++hw->tx_int_cnt;
   3909	hw->tx_size += length;
   3910
   3911	/* Cannot hold on too much data. */
   3912	if (hw->tx_size >= MAX_TX_HELD_SIZE)
   3913		hw->tx_int_cnt = hw->tx_int_mask + 1;
   3914
   3915	if (physical > hw->tx_desc_info.avail)
   3916		return 1;
   3917
   3918	return hw->tx_desc_info.avail;
   3919}
   3920
   3921/**
   3922 * hw_send_pkt - mark packet for transmission
   3923 * @hw: 	The hardware instance.
   3924 *
   3925 * This routine marks the packet for transmission in PCI version.
   3926 */
   3927static void hw_send_pkt(struct ksz_hw *hw)
   3928{
   3929	struct ksz_desc *cur = hw->tx_desc_info.cur;
   3930
   3931	cur->sw.buf.tx.last_seg = 1;
   3932
   3933	/* Interrupt only after specified number of descriptors used. */
   3934	if (hw->tx_int_cnt > hw->tx_int_mask) {
   3935		cur->sw.buf.tx.intr = 1;
   3936		hw->tx_int_cnt = 0;
   3937		hw->tx_size = 0;
   3938	}
   3939
   3940	/* KSZ8842 supports port directed transmission. */
   3941	cur->sw.buf.tx.dest_port = hw->dst_ports;
   3942
   3943	release_desc(cur);
   3944
   3945	writel(0, hw->io + KS_DMA_TX_START);
   3946}
   3947
   3948static int empty_addr(u8 *addr)
   3949{
   3950	u32 *addr1 = (u32 *) addr;
   3951	u16 *addr2 = (u16 *) &addr[4];
   3952
   3953	return 0 == *addr1 && 0 == *addr2;
   3954}
   3955
   3956/**
   3957 * hw_set_addr - set MAC address
   3958 * @hw: 	The hardware instance.
   3959 *
   3960 * This routine programs the MAC address of the hardware when the address is
   3961 * overridden.
   3962 */
   3963static void hw_set_addr(struct ksz_hw *hw)
   3964{
   3965	int i;
   3966
   3967	for (i = 0; i < ETH_ALEN; i++)
   3968		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
   3969			hw->io + KS884X_ADDR_0_OFFSET + i);
   3970
   3971	sw_set_addr(hw, hw->override_addr);
   3972}
   3973
   3974/**
   3975 * hw_read_addr - read MAC address
   3976 * @hw: 	The hardware instance.
   3977 *
   3978 * This routine retrieves the MAC address of the hardware.
   3979 */
   3980static void hw_read_addr(struct ksz_hw *hw)
   3981{
   3982	int i;
   3983
   3984	for (i = 0; i < ETH_ALEN; i++)
   3985		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
   3986			KS884X_ADDR_0_OFFSET + i);
   3987
   3988	if (!hw->mac_override) {
   3989		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
   3990		if (empty_addr(hw->override_addr)) {
   3991			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
   3992			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
   3993			       ETH_ALEN);
   3994			hw->override_addr[5] += hw->id;
   3995			hw_set_addr(hw);
   3996		}
   3997	}
   3998}
   3999
   4000static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
   4001{
   4002	int i;
   4003	u32 mac_addr_lo;
   4004	u32 mac_addr_hi;
   4005
   4006	mac_addr_hi = 0;
   4007	for (i = 0; i < 2; i++) {
   4008		mac_addr_hi <<= 8;
   4009		mac_addr_hi |= mac_addr[i];
   4010	}
   4011	mac_addr_hi |= ADD_ADDR_ENABLE;
   4012	mac_addr_lo = 0;
   4013	for (i = 2; i < 6; i++) {
   4014		mac_addr_lo <<= 8;
   4015		mac_addr_lo |= mac_addr[i];
   4016	}
   4017	index *= ADD_ADDR_INCR;
   4018
   4019	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
   4020	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
   4021}
   4022
   4023static void hw_set_add_addr(struct ksz_hw *hw)
   4024{
   4025	int i;
   4026
   4027	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
   4028		if (empty_addr(hw->address[i]))
   4029			writel(0, hw->io + ADD_ADDR_INCR * i +
   4030				KS_ADD_ADDR_0_HI);
   4031		else
   4032			hw_ena_add_addr(hw, i, hw->address[i]);
   4033	}
   4034}
   4035
   4036static int hw_add_addr(struct ksz_hw *hw, const u8 *mac_addr)
   4037{
   4038	int i;
   4039	int j = ADDITIONAL_ENTRIES;
   4040
   4041	if (ether_addr_equal(hw->override_addr, mac_addr))
   4042		return 0;
   4043	for (i = 0; i < hw->addr_list_size; i++) {
   4044		if (ether_addr_equal(hw->address[i], mac_addr))
   4045			return 0;
   4046		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
   4047			j = i;
   4048	}
   4049	if (j < ADDITIONAL_ENTRIES) {
   4050		memcpy(hw->address[j], mac_addr, ETH_ALEN);
   4051		hw_ena_add_addr(hw, j, hw->address[j]);
   4052		return 0;
   4053	}
   4054	return -1;
   4055}
   4056
   4057static int hw_del_addr(struct ksz_hw *hw, const u8 *mac_addr)
   4058{
   4059	int i;
   4060
   4061	for (i = 0; i < hw->addr_list_size; i++) {
   4062		if (ether_addr_equal(hw->address[i], mac_addr)) {
   4063			eth_zero_addr(hw->address[i]);
   4064			writel(0, hw->io + ADD_ADDR_INCR * i +
   4065				KS_ADD_ADDR_0_HI);
   4066			return 0;
   4067		}
   4068	}
   4069	return -1;
   4070}
   4071
   4072/**
   4073 * hw_clr_multicast - clear multicast addresses
   4074 * @hw: 	The hardware instance.
   4075 *
   4076 * This routine removes all multicast addresses set in the hardware.
   4077 */
   4078static void hw_clr_multicast(struct ksz_hw *hw)
   4079{
   4080	int i;
   4081
   4082	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
   4083		hw->multi_bits[i] = 0;
   4084
   4085		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
   4086	}
   4087}
   4088
   4089/**
   4090 * hw_set_grp_addr - set multicast addresses
   4091 * @hw: 	The hardware instance.
   4092 *
   4093 * This routine programs multicast addresses for the hardware to accept those
   4094 * addresses.
   4095 */
   4096static void hw_set_grp_addr(struct ksz_hw *hw)
   4097{
   4098	int i;
   4099	int index;
   4100	int position;
   4101	int value;
   4102
   4103	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
   4104
   4105	for (i = 0; i < hw->multi_list_size; i++) {
   4106		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
   4107		index = position >> 3;
   4108		value = 1 << (position & 7);
   4109		hw->multi_bits[index] |= (u8) value;
   4110	}
   4111
   4112	for (i = 0; i < HW_MULTICAST_SIZE; i++)
   4113		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
   4114			i);
   4115}
   4116
   4117/**
   4118 * hw_set_multicast - enable or disable all multicast receiving
   4119 * @hw: 	The hardware instance.
   4120 * @multicast:	To turn on or off the all multicast feature.
   4121 *
   4122 * This routine enables/disables the hardware to accept all multicast packets.
   4123 */
   4124static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
   4125{
   4126	/* Stop receiving for reconfiguration. */
   4127	hw_stop_rx(hw);
   4128
   4129	if (multicast)
   4130		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
   4131	else
   4132		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
   4133
   4134	if (hw->enabled)
   4135		hw_start_rx(hw);
   4136}
   4137
   4138/**
   4139 * hw_set_promiscuous - enable or disable promiscuous receiving
   4140 * @hw: 	The hardware instance.
   4141 * @prom:	To turn on or off the promiscuous feature.
   4142 *
   4143 * This routine enables/disables the hardware to accept all packets.
   4144 */
   4145static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
   4146{
   4147	/* Stop receiving for reconfiguration. */
   4148	hw_stop_rx(hw);
   4149
   4150	if (prom)
   4151		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
   4152	else
   4153		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
   4154
   4155	if (hw->enabled)
   4156		hw_start_rx(hw);
   4157}
   4158
   4159/**
   4160 * sw_enable - enable the switch
   4161 * @hw: 	The hardware instance.
   4162 * @enable:	The flag to enable or disable the switch
   4163 *
   4164 * This routine is used to enable/disable the switch in KSZ8842.
   4165 */
   4166static void sw_enable(struct ksz_hw *hw, int enable)
   4167{
   4168	int port;
   4169
   4170	for (port = 0; port < SWITCH_PORT_NUM; port++) {
   4171		if (hw->dev_count > 1) {
   4172			/* Set port-base vlan membership with host port. */
   4173			sw_cfg_port_base_vlan(hw, port,
   4174				HOST_MASK | (1 << port));
   4175			port_set_stp_state(hw, port, STP_STATE_DISABLED);
   4176		} else {
   4177			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
   4178			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
   4179		}
   4180	}
   4181	if (hw->dev_count > 1)
   4182		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
   4183	else
   4184		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
   4185
   4186	if (enable)
   4187		enable = KS8842_START;
   4188	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
   4189}
   4190
   4191/**
   4192 * sw_setup - setup the switch
   4193 * @hw: 	The hardware instance.
   4194 *
   4195 * This routine setup the hardware switch engine for default operation.
   4196 */
   4197static void sw_setup(struct ksz_hw *hw)
   4198{
   4199	int port;
   4200
   4201	sw_set_global_ctrl(hw);
   4202
   4203	/* Enable switch broadcast storm protection at 10% percent rate. */
   4204	sw_init_broad_storm(hw);
   4205	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
   4206	for (port = 0; port < SWITCH_PORT_NUM; port++)
   4207		sw_ena_broad_storm(hw, port);
   4208
   4209	sw_init_prio(hw);
   4210
   4211	sw_init_mirror(hw);
   4212
   4213	sw_init_prio_rate(hw);
   4214
   4215	sw_init_vlan(hw);
   4216
   4217	if (hw->features & STP_SUPPORT)
   4218		sw_init_stp(hw);
   4219	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   4220			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
   4221		hw->overrides |= PAUSE_FLOW_CTRL;
   4222	sw_enable(hw, 1);
   4223}
   4224
   4225/**
   4226 * ksz_start_timer - start kernel timer
   4227 * @info:	Kernel timer information.
   4228 * @time:	The time tick.
   4229 *
   4230 * This routine starts the kernel timer after the specified time tick.
   4231 */
   4232static void ksz_start_timer(struct ksz_timer_info *info, int time)
   4233{
   4234	info->cnt = 0;
   4235	info->timer.expires = jiffies + time;
   4236	add_timer(&info->timer);
   4237
   4238	/* infinity */
   4239	info->max = -1;
   4240}
   4241
   4242/**
   4243 * ksz_stop_timer - stop kernel timer
   4244 * @info:	Kernel timer information.
   4245 *
   4246 * This routine stops the kernel timer.
   4247 */
   4248static void ksz_stop_timer(struct ksz_timer_info *info)
   4249{
   4250	if (info->max) {
   4251		info->max = 0;
   4252		del_timer_sync(&info->timer);
   4253	}
   4254}
   4255
   4256static void ksz_init_timer(struct ksz_timer_info *info, int period,
   4257	void (*function)(struct timer_list *))
   4258{
   4259	info->max = 0;
   4260	info->period = period;
   4261	timer_setup(&info->timer, function, 0);
   4262}
   4263
   4264static void ksz_update_timer(struct ksz_timer_info *info)
   4265{
   4266	++info->cnt;
   4267	if (info->max > 0) {
   4268		if (info->cnt < info->max) {
   4269			info->timer.expires = jiffies + info->period;
   4270			add_timer(&info->timer);
   4271		} else
   4272			info->max = 0;
   4273	} else if (info->max < 0) {
   4274		info->timer.expires = jiffies + info->period;
   4275		add_timer(&info->timer);
   4276	}
   4277}
   4278
   4279/**
   4280 * ksz_alloc_soft_desc - allocate software descriptors
   4281 * @desc_info:	Descriptor information structure.
   4282 * @transmit:	Indication that descriptors are for transmit.
   4283 *
   4284 * This local function allocates software descriptors for manipulation in
   4285 * memory.
   4286 *
   4287 * Return 0 if successful.
   4288 */
   4289static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
   4290{
   4291	desc_info->ring = kcalloc(desc_info->alloc, sizeof(struct ksz_desc),
   4292				  GFP_KERNEL);
   4293	if (!desc_info->ring)
   4294		return 1;
   4295	hw_init_desc(desc_info, transmit);
   4296	return 0;
   4297}
   4298
   4299/**
   4300 * ksz_alloc_desc - allocate hardware descriptors
   4301 * @adapter:	Adapter information structure.
   4302 *
   4303 * This local function allocates hardware descriptors for receiving and
   4304 * transmitting.
   4305 *
   4306 * Return 0 if successful.
   4307 */
   4308static int ksz_alloc_desc(struct dev_info *adapter)
   4309{
   4310	struct ksz_hw *hw = &adapter->hw;
   4311	int offset;
   4312
   4313	/* Allocate memory for RX & TX descriptors. */
   4314	adapter->desc_pool.alloc_size =
   4315		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
   4316		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
   4317		DESC_ALIGNMENT;
   4318
   4319	adapter->desc_pool.alloc_virt =
   4320		dma_alloc_coherent(&adapter->pdev->dev,
   4321				   adapter->desc_pool.alloc_size,
   4322				   &adapter->desc_pool.dma_addr, GFP_KERNEL);
   4323	if (adapter->desc_pool.alloc_virt == NULL) {
   4324		adapter->desc_pool.alloc_size = 0;
   4325		return 1;
   4326	}
   4327
   4328	/* Align to the next cache line boundary. */
   4329	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
   4330		(DESC_ALIGNMENT -
   4331		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
   4332	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
   4333	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
   4334
   4335	/* Allocate receive/transmit descriptors. */
   4336	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
   4337		adapter->desc_pool.virt;
   4338	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
   4339	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
   4340	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
   4341		(adapter->desc_pool.virt + offset);
   4342	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
   4343
   4344	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
   4345		return 1;
   4346	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
   4347		return 1;
   4348
   4349	return 0;
   4350}
   4351
   4352/**
   4353 * free_dma_buf - release DMA buffer resources
   4354 * @adapter:	Adapter information structure.
   4355 * @dma_buf:	pointer to buf
   4356 * @direction:	to or from device
   4357 *
   4358 * This routine is just a helper function to release the DMA buffer resources.
   4359 */
   4360static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
   4361	int direction)
   4362{
   4363	dma_unmap_single(&adapter->pdev->dev, dma_buf->dma, dma_buf->len,
   4364			 direction);
   4365	dev_kfree_skb(dma_buf->skb);
   4366	dma_buf->skb = NULL;
   4367	dma_buf->dma = 0;
   4368}
   4369
   4370/**
   4371 * ksz_init_rx_buffers - initialize receive descriptors
   4372 * @adapter:	Adapter information structure.
   4373 *
   4374 * This routine initializes DMA buffers for receiving.
   4375 */
   4376static void ksz_init_rx_buffers(struct dev_info *adapter)
   4377{
   4378	int i;
   4379	struct ksz_desc *desc;
   4380	struct ksz_dma_buf *dma_buf;
   4381	struct ksz_hw *hw = &adapter->hw;
   4382	struct ksz_desc_info *info = &hw->rx_desc_info;
   4383
   4384	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
   4385		get_rx_pkt(info, &desc);
   4386
   4387		dma_buf = DMA_BUFFER(desc);
   4388		if (dma_buf->skb && dma_buf->len != adapter->mtu)
   4389			free_dma_buf(adapter, dma_buf, DMA_FROM_DEVICE);
   4390		dma_buf->len = adapter->mtu;
   4391		if (!dma_buf->skb)
   4392			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
   4393		if (dma_buf->skb && !dma_buf->dma)
   4394			dma_buf->dma = dma_map_single(&adapter->pdev->dev,
   4395						skb_tail_pointer(dma_buf->skb),
   4396						dma_buf->len,
   4397						DMA_FROM_DEVICE);
   4398
   4399		/* Set descriptor. */
   4400		set_rx_buf(desc, dma_buf->dma);
   4401		set_rx_len(desc, dma_buf->len);
   4402		release_desc(desc);
   4403	}
   4404}
   4405
   4406/**
   4407 * ksz_alloc_mem - allocate memory for hardware descriptors
   4408 * @adapter:	Adapter information structure.
   4409 *
   4410 * This function allocates memory for use by hardware descriptors for receiving
   4411 * and transmitting.
   4412 *
   4413 * Return 0 if successful.
   4414 */
   4415static int ksz_alloc_mem(struct dev_info *adapter)
   4416{
   4417	struct ksz_hw *hw = &adapter->hw;
   4418
   4419	/* Determine the number of receive and transmit descriptors. */
   4420	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
   4421	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
   4422
   4423	/* Determine how many descriptors to skip transmit interrupt. */
   4424	hw->tx_int_cnt = 0;
   4425	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
   4426	if (hw->tx_int_mask > 8)
   4427		hw->tx_int_mask = 8;
   4428	while (hw->tx_int_mask) {
   4429		hw->tx_int_cnt++;
   4430		hw->tx_int_mask >>= 1;
   4431	}
   4432	if (hw->tx_int_cnt) {
   4433		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
   4434		hw->tx_int_cnt = 0;
   4435	}
   4436
   4437	/* Determine the descriptor size. */
   4438	hw->rx_desc_info.size =
   4439		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
   4440		DESC_ALIGNMENT) * DESC_ALIGNMENT);
   4441	hw->tx_desc_info.size =
   4442		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
   4443		DESC_ALIGNMENT) * DESC_ALIGNMENT);
   4444	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
   4445		pr_alert("Hardware descriptor size not right!\n");
   4446	ksz_check_desc_num(&hw->rx_desc_info);
   4447	ksz_check_desc_num(&hw->tx_desc_info);
   4448
   4449	/* Allocate descriptors. */
   4450	if (ksz_alloc_desc(adapter))
   4451		return 1;
   4452
   4453	return 0;
   4454}
   4455
   4456/**
   4457 * ksz_free_desc - free software and hardware descriptors
   4458 * @adapter:	Adapter information structure.
   4459 *
   4460 * This local routine frees the software and hardware descriptors allocated by
   4461 * ksz_alloc_desc().
   4462 */
   4463static void ksz_free_desc(struct dev_info *adapter)
   4464{
   4465	struct ksz_hw *hw = &adapter->hw;
   4466
   4467	/* Reset descriptor. */
   4468	hw->rx_desc_info.ring_virt = NULL;
   4469	hw->tx_desc_info.ring_virt = NULL;
   4470	hw->rx_desc_info.ring_phys = 0;
   4471	hw->tx_desc_info.ring_phys = 0;
   4472
   4473	/* Free memory. */
   4474	if (adapter->desc_pool.alloc_virt)
   4475		dma_free_coherent(&adapter->pdev->dev,
   4476				  adapter->desc_pool.alloc_size,
   4477				  adapter->desc_pool.alloc_virt,
   4478				  adapter->desc_pool.dma_addr);
   4479
   4480	/* Reset resource pool. */
   4481	adapter->desc_pool.alloc_size = 0;
   4482	adapter->desc_pool.alloc_virt = NULL;
   4483
   4484	kfree(hw->rx_desc_info.ring);
   4485	hw->rx_desc_info.ring = NULL;
   4486	kfree(hw->tx_desc_info.ring);
   4487	hw->tx_desc_info.ring = NULL;
   4488}
   4489
   4490/**
   4491 * ksz_free_buffers - free buffers used in the descriptors
   4492 * @adapter:	Adapter information structure.
   4493 * @desc_info:	Descriptor information structure.
   4494 * @direction:	to or from device
   4495 *
   4496 * This local routine frees buffers used in the DMA buffers.
   4497 */
   4498static void ksz_free_buffers(struct dev_info *adapter,
   4499	struct ksz_desc_info *desc_info, int direction)
   4500{
   4501	int i;
   4502	struct ksz_dma_buf *dma_buf;
   4503	struct ksz_desc *desc = desc_info->ring;
   4504
   4505	for (i = 0; i < desc_info->alloc; i++) {
   4506		dma_buf = DMA_BUFFER(desc);
   4507		if (dma_buf->skb)
   4508			free_dma_buf(adapter, dma_buf, direction);
   4509		desc++;
   4510	}
   4511}
   4512
   4513/**
   4514 * ksz_free_mem - free all resources used by descriptors
   4515 * @adapter:	Adapter information structure.
   4516 *
   4517 * This local routine frees all the resources allocated by ksz_alloc_mem().
   4518 */
   4519static void ksz_free_mem(struct dev_info *adapter)
   4520{
   4521	/* Free transmit buffers. */
   4522	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info, DMA_TO_DEVICE);
   4523
   4524	/* Free receive buffers. */
   4525	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info, DMA_FROM_DEVICE);
   4526
   4527	/* Free descriptors. */
   4528	ksz_free_desc(adapter);
   4529}
   4530
   4531static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
   4532	u64 *counter)
   4533{
   4534	int i;
   4535	int mib;
   4536	int port;
   4537	struct ksz_port_mib *port_mib;
   4538
   4539	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
   4540	for (i = 0, port = first; i < cnt; i++, port++) {
   4541		port_mib = &hw->port_mib[port];
   4542		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
   4543			counter[mib] += port_mib->counter[mib];
   4544	}
   4545}
   4546
   4547/**
   4548 * send_packet - send packet
   4549 * @skb:	Socket buffer.
   4550 * @dev:	Network device.
   4551 *
   4552 * This routine is used to send a packet out to the network.
   4553 */
   4554static void send_packet(struct sk_buff *skb, struct net_device *dev)
   4555{
   4556	struct ksz_desc *desc;
   4557	struct ksz_desc *first;
   4558	struct dev_priv *priv = netdev_priv(dev);
   4559	struct dev_info *hw_priv = priv->adapter;
   4560	struct ksz_hw *hw = &hw_priv->hw;
   4561	struct ksz_desc_info *info = &hw->tx_desc_info;
   4562	struct ksz_dma_buf *dma_buf;
   4563	int len;
   4564	int last_frag = skb_shinfo(skb)->nr_frags;
   4565
   4566	/*
   4567	 * KSZ8842 with multiple device interfaces needs to be told which port
   4568	 * to send.
   4569	 */
   4570	if (hw->dev_count > 1)
   4571		hw->dst_ports = 1 << priv->port.first_port;
   4572
   4573	/* Hardware will pad the length to 60. */
   4574	len = skb->len;
   4575
   4576	/* Remember the very first descriptor. */
   4577	first = info->cur;
   4578	desc = first;
   4579
   4580	dma_buf = DMA_BUFFER(desc);
   4581	if (last_frag) {
   4582		int frag;
   4583		skb_frag_t *this_frag;
   4584
   4585		dma_buf->len = skb_headlen(skb);
   4586
   4587		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
   4588					      dma_buf->len, DMA_TO_DEVICE);
   4589		set_tx_buf(desc, dma_buf->dma);
   4590		set_tx_len(desc, dma_buf->len);
   4591
   4592		frag = 0;
   4593		do {
   4594			this_frag = &skb_shinfo(skb)->frags[frag];
   4595
   4596			/* Get a new descriptor. */
   4597			get_tx_pkt(info, &desc);
   4598
   4599			/* Keep track of descriptors used so far. */
   4600			++hw->tx_int_cnt;
   4601
   4602			dma_buf = DMA_BUFFER(desc);
   4603			dma_buf->len = skb_frag_size(this_frag);
   4604
   4605			dma_buf->dma = dma_map_single(&hw_priv->pdev->dev,
   4606						      skb_frag_address(this_frag),
   4607						      dma_buf->len,
   4608						      DMA_TO_DEVICE);
   4609			set_tx_buf(desc, dma_buf->dma);
   4610			set_tx_len(desc, dma_buf->len);
   4611
   4612			frag++;
   4613			if (frag == last_frag)
   4614				break;
   4615
   4616			/* Do not release the last descriptor here. */
   4617			release_desc(desc);
   4618		} while (1);
   4619
   4620		/* current points to the last descriptor. */
   4621		info->cur = desc;
   4622
   4623		/* Release the first descriptor. */
   4624		release_desc(first);
   4625	} else {
   4626		dma_buf->len = len;
   4627
   4628		dma_buf->dma = dma_map_single(&hw_priv->pdev->dev, skb->data,
   4629					      dma_buf->len, DMA_TO_DEVICE);
   4630		set_tx_buf(desc, dma_buf->dma);
   4631		set_tx_len(desc, dma_buf->len);
   4632	}
   4633
   4634	if (skb->ip_summed == CHECKSUM_PARTIAL) {
   4635		(desc)->sw.buf.tx.csum_gen_tcp = 1;
   4636		(desc)->sw.buf.tx.csum_gen_udp = 1;
   4637	}
   4638
   4639	/*
   4640	 * The last descriptor holds the packet so that it can be returned to
   4641	 * network subsystem after all descriptors are transmitted.
   4642	 */
   4643	dma_buf->skb = skb;
   4644
   4645	hw_send_pkt(hw);
   4646
   4647	/* Update transmit statistics. */
   4648	dev->stats.tx_packets++;
   4649	dev->stats.tx_bytes += len;
   4650}
   4651
   4652/**
   4653 * transmit_cleanup - clean up transmit descriptors
   4654 * @hw_priv:	Network device.
   4655 * @normal:	break if owned
   4656 *
   4657 * This routine is called to clean up the transmitted buffers.
   4658 */
   4659static void transmit_cleanup(struct dev_info *hw_priv, int normal)
   4660{
   4661	int last;
   4662	union desc_stat status;
   4663	struct ksz_hw *hw = &hw_priv->hw;
   4664	struct ksz_desc_info *info = &hw->tx_desc_info;
   4665	struct ksz_desc *desc;
   4666	struct ksz_dma_buf *dma_buf;
   4667	struct net_device *dev = NULL;
   4668
   4669	spin_lock_irq(&hw_priv->hwlock);
   4670	last = info->last;
   4671
   4672	while (info->avail < info->alloc) {
   4673		/* Get next descriptor which is not hardware owned. */
   4674		desc = &info->ring[last];
   4675		status.data = le32_to_cpu(desc->phw->ctrl.data);
   4676		if (status.tx.hw_owned) {
   4677			if (normal)
   4678				break;
   4679			else
   4680				reset_desc(desc, status);
   4681		}
   4682
   4683		dma_buf = DMA_BUFFER(desc);
   4684		dma_unmap_single(&hw_priv->pdev->dev, dma_buf->dma,
   4685				 dma_buf->len, DMA_TO_DEVICE);
   4686
   4687		/* This descriptor contains the last buffer in the packet. */
   4688		if (dma_buf->skb) {
   4689			dev = dma_buf->skb->dev;
   4690
   4691			/* Release the packet back to network subsystem. */
   4692			dev_kfree_skb_irq(dma_buf->skb);
   4693			dma_buf->skb = NULL;
   4694		}
   4695
   4696		/* Free the transmitted descriptor. */
   4697		last++;
   4698		last &= info->mask;
   4699		info->avail++;
   4700	}
   4701	info->last = last;
   4702	spin_unlock_irq(&hw_priv->hwlock);
   4703
   4704	/* Notify the network subsystem that the packet has been sent. */
   4705	if (dev)
   4706		netif_trans_update(dev);
   4707}
   4708
   4709/**
   4710 * tx_done - transmit done processing
   4711 * @hw_priv:	Network device.
   4712 *
   4713 * This routine is called when the transmit interrupt is triggered, indicating
   4714 * either a packet is sent successfully or there are transmit errors.
   4715 */
   4716static void tx_done(struct dev_info *hw_priv)
   4717{
   4718	struct ksz_hw *hw = &hw_priv->hw;
   4719	int port;
   4720
   4721	transmit_cleanup(hw_priv, 1);
   4722
   4723	for (port = 0; port < hw->dev_count; port++) {
   4724		struct net_device *dev = hw->port_info[port].pdev;
   4725
   4726		if (netif_running(dev) && netif_queue_stopped(dev))
   4727			netif_wake_queue(dev);
   4728	}
   4729}
   4730
   4731static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
   4732{
   4733	skb->dev = old->dev;
   4734	skb->protocol = old->protocol;
   4735	skb->ip_summed = old->ip_summed;
   4736	skb->csum = old->csum;
   4737	skb_set_network_header(skb, ETH_HLEN);
   4738
   4739	dev_consume_skb_any(old);
   4740}
   4741
   4742/**
   4743 * netdev_tx - send out packet
   4744 * @skb:	Socket buffer.
   4745 * @dev:	Network device.
   4746 *
   4747 * This function is used by the upper network layer to send out a packet.
   4748 *
   4749 * Return 0 if successful; otherwise an error code indicating failure.
   4750 */
   4751static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
   4752{
   4753	struct dev_priv *priv = netdev_priv(dev);
   4754	struct dev_info *hw_priv = priv->adapter;
   4755	struct ksz_hw *hw = &hw_priv->hw;
   4756	int left;
   4757	int num = 1;
   4758	int rc = 0;
   4759
   4760	if (hw->features & SMALL_PACKET_TX_BUG) {
   4761		struct sk_buff *org_skb = skb;
   4762
   4763		if (skb->len <= 48) {
   4764			if (skb_end_pointer(skb) - skb->data >= 50) {
   4765				memset(&skb->data[skb->len], 0, 50 - skb->len);
   4766				skb->len = 50;
   4767			} else {
   4768				skb = netdev_alloc_skb(dev, 50);
   4769				if (!skb)
   4770					return NETDEV_TX_BUSY;
   4771				memcpy(skb->data, org_skb->data, org_skb->len);
   4772				memset(&skb->data[org_skb->len], 0,
   4773					50 - org_skb->len);
   4774				skb->len = 50;
   4775				copy_old_skb(org_skb, skb);
   4776			}
   4777		}
   4778	}
   4779
   4780	spin_lock_irq(&hw_priv->hwlock);
   4781
   4782	num = skb_shinfo(skb)->nr_frags + 1;
   4783	left = hw_alloc_pkt(hw, skb->len, num);
   4784	if (left) {
   4785		if (left < num ||
   4786		    (CHECKSUM_PARTIAL == skb->ip_summed &&
   4787		     skb->protocol == htons(ETH_P_IPV6))) {
   4788			struct sk_buff *org_skb = skb;
   4789
   4790			skb = netdev_alloc_skb(dev, org_skb->len);
   4791			if (!skb) {
   4792				rc = NETDEV_TX_BUSY;
   4793				goto unlock;
   4794			}
   4795			skb_copy_and_csum_dev(org_skb, skb->data);
   4796			org_skb->ip_summed = CHECKSUM_NONE;
   4797			skb->len = org_skb->len;
   4798			copy_old_skb(org_skb, skb);
   4799		}
   4800		send_packet(skb, dev);
   4801		if (left <= num)
   4802			netif_stop_queue(dev);
   4803	} else {
   4804		/* Stop the transmit queue until packet is allocated. */
   4805		netif_stop_queue(dev);
   4806		rc = NETDEV_TX_BUSY;
   4807	}
   4808unlock:
   4809	spin_unlock_irq(&hw_priv->hwlock);
   4810
   4811	return rc;
   4812}
   4813
   4814/**
   4815 * netdev_tx_timeout - transmit timeout processing
   4816 * @dev:	Network device.
   4817 * @txqueue:	index of hanging queue
   4818 *
   4819 * This routine is called when the transmit timer expires.  That indicates the
   4820 * hardware is not running correctly because transmit interrupts are not
   4821 * triggered to free up resources so that the transmit routine can continue
   4822 * sending out packets.  The hardware is reset to correct the problem.
   4823 */
   4824static void netdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
   4825{
   4826	static unsigned long last_reset;
   4827
   4828	struct dev_priv *priv = netdev_priv(dev);
   4829	struct dev_info *hw_priv = priv->adapter;
   4830	struct ksz_hw *hw = &hw_priv->hw;
   4831	int port;
   4832
   4833	if (hw->dev_count > 1) {
   4834		/*
   4835		 * Only reset the hardware if time between calls is long
   4836		 * enough.
   4837		 */
   4838		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
   4839			hw_priv = NULL;
   4840	}
   4841
   4842	last_reset = jiffies;
   4843	if (hw_priv) {
   4844		hw_dis_intr(hw);
   4845		hw_disable(hw);
   4846
   4847		transmit_cleanup(hw_priv, 0);
   4848		hw_reset_pkts(&hw->rx_desc_info);
   4849		hw_reset_pkts(&hw->tx_desc_info);
   4850		ksz_init_rx_buffers(hw_priv);
   4851
   4852		hw_reset(hw);
   4853
   4854		hw_set_desc_base(hw,
   4855			hw->tx_desc_info.ring_phys,
   4856			hw->rx_desc_info.ring_phys);
   4857		hw_set_addr(hw);
   4858		if (hw->all_multi)
   4859			hw_set_multicast(hw, hw->all_multi);
   4860		else if (hw->multi_list_size)
   4861			hw_set_grp_addr(hw);
   4862
   4863		if (hw->dev_count > 1) {
   4864			hw_set_add_addr(hw);
   4865			for (port = 0; port < SWITCH_PORT_NUM; port++) {
   4866				struct net_device *port_dev;
   4867
   4868				port_set_stp_state(hw, port,
   4869					STP_STATE_DISABLED);
   4870
   4871				port_dev = hw->port_info[port].pdev;
   4872				if (netif_running(port_dev))
   4873					port_set_stp_state(hw, port,
   4874						STP_STATE_SIMPLE);
   4875			}
   4876		}
   4877
   4878		hw_enable(hw);
   4879		hw_ena_intr(hw);
   4880	}
   4881
   4882	netif_trans_update(dev);
   4883	netif_wake_queue(dev);
   4884}
   4885
   4886static inline void csum_verified(struct sk_buff *skb)
   4887{
   4888	unsigned short protocol;
   4889	struct iphdr *iph;
   4890
   4891	protocol = skb->protocol;
   4892	skb_reset_network_header(skb);
   4893	iph = (struct iphdr *) skb_network_header(skb);
   4894	if (protocol == htons(ETH_P_8021Q)) {
   4895		protocol = iph->tot_len;
   4896		skb_set_network_header(skb, VLAN_HLEN);
   4897		iph = (struct iphdr *) skb_network_header(skb);
   4898	}
   4899	if (protocol == htons(ETH_P_IP)) {
   4900		if (iph->protocol == IPPROTO_TCP)
   4901			skb->ip_summed = CHECKSUM_UNNECESSARY;
   4902	}
   4903}
   4904
   4905static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
   4906	struct ksz_desc *desc, union desc_stat status)
   4907{
   4908	int packet_len;
   4909	struct dev_priv *priv = netdev_priv(dev);
   4910	struct dev_info *hw_priv = priv->adapter;
   4911	struct ksz_dma_buf *dma_buf;
   4912	struct sk_buff *skb;
   4913
   4914	/* Received length includes 4-byte CRC. */
   4915	packet_len = status.rx.frame_len - 4;
   4916
   4917	dma_buf = DMA_BUFFER(desc);
   4918	dma_sync_single_for_cpu(&hw_priv->pdev->dev, dma_buf->dma,
   4919				packet_len + 4, DMA_FROM_DEVICE);
   4920
   4921	do {
   4922		/* skb->data != skb->head */
   4923		skb = netdev_alloc_skb(dev, packet_len + 2);
   4924		if (!skb) {
   4925			dev->stats.rx_dropped++;
   4926			return -ENOMEM;
   4927		}
   4928
   4929		/*
   4930		 * Align socket buffer in 4-byte boundary for better
   4931		 * performance.
   4932		 */
   4933		skb_reserve(skb, 2);
   4934
   4935		skb_put_data(skb, dma_buf->skb->data, packet_len);
   4936	} while (0);
   4937
   4938	skb->protocol = eth_type_trans(skb, dev);
   4939
   4940	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
   4941		csum_verified(skb);
   4942
   4943	/* Update receive statistics. */
   4944	dev->stats.rx_packets++;
   4945	dev->stats.rx_bytes += packet_len;
   4946
   4947	/* Notify upper layer for received packet. */
   4948	netif_rx(skb);
   4949
   4950	return 0;
   4951}
   4952
   4953static int dev_rcv_packets(struct dev_info *hw_priv)
   4954{
   4955	int next;
   4956	union desc_stat status;
   4957	struct ksz_hw *hw = &hw_priv->hw;
   4958	struct net_device *dev = hw->port_info[0].pdev;
   4959	struct ksz_desc_info *info = &hw->rx_desc_info;
   4960	int left = info->alloc;
   4961	struct ksz_desc *desc;
   4962	int received = 0;
   4963
   4964	next = info->next;
   4965	while (left--) {
   4966		/* Get next descriptor which is not hardware owned. */
   4967		desc = &info->ring[next];
   4968		status.data = le32_to_cpu(desc->phw->ctrl.data);
   4969		if (status.rx.hw_owned)
   4970			break;
   4971
   4972		/* Status valid only when last descriptor bit is set. */
   4973		if (status.rx.last_desc && status.rx.first_desc) {
   4974			if (rx_proc(dev, hw, desc, status))
   4975				goto release_packet;
   4976			received++;
   4977		}
   4978
   4979release_packet:
   4980		release_desc(desc);
   4981		next++;
   4982		next &= info->mask;
   4983	}
   4984	info->next = next;
   4985
   4986	return received;
   4987}
   4988
   4989static int port_rcv_packets(struct dev_info *hw_priv)
   4990{
   4991	int next;
   4992	union desc_stat status;
   4993	struct ksz_hw *hw = &hw_priv->hw;
   4994	struct net_device *dev = hw->port_info[0].pdev;
   4995	struct ksz_desc_info *info = &hw->rx_desc_info;
   4996	int left = info->alloc;
   4997	struct ksz_desc *desc;
   4998	int received = 0;
   4999
   5000	next = info->next;
   5001	while (left--) {
   5002		/* Get next descriptor which is not hardware owned. */
   5003		desc = &info->ring[next];
   5004		status.data = le32_to_cpu(desc->phw->ctrl.data);
   5005		if (status.rx.hw_owned)
   5006			break;
   5007
   5008		if (hw->dev_count > 1) {
   5009			/* Get received port number. */
   5010			int p = HW_TO_DEV_PORT(status.rx.src_port);
   5011
   5012			dev = hw->port_info[p].pdev;
   5013			if (!netif_running(dev))
   5014				goto release_packet;
   5015		}
   5016
   5017		/* Status valid only when last descriptor bit is set. */
   5018		if (status.rx.last_desc && status.rx.first_desc) {
   5019			if (rx_proc(dev, hw, desc, status))
   5020				goto release_packet;
   5021			received++;
   5022		}
   5023
   5024release_packet:
   5025		release_desc(desc);
   5026		next++;
   5027		next &= info->mask;
   5028	}
   5029	info->next = next;
   5030
   5031	return received;
   5032}
   5033
   5034static int dev_rcv_special(struct dev_info *hw_priv)
   5035{
   5036	int next;
   5037	union desc_stat status;
   5038	struct ksz_hw *hw = &hw_priv->hw;
   5039	struct net_device *dev = hw->port_info[0].pdev;
   5040	struct ksz_desc_info *info = &hw->rx_desc_info;
   5041	int left = info->alloc;
   5042	struct ksz_desc *desc;
   5043	int received = 0;
   5044
   5045	next = info->next;
   5046	while (left--) {
   5047		/* Get next descriptor which is not hardware owned. */
   5048		desc = &info->ring[next];
   5049		status.data = le32_to_cpu(desc->phw->ctrl.data);
   5050		if (status.rx.hw_owned)
   5051			break;
   5052
   5053		if (hw->dev_count > 1) {
   5054			/* Get received port number. */
   5055			int p = HW_TO_DEV_PORT(status.rx.src_port);
   5056
   5057			dev = hw->port_info[p].pdev;
   5058			if (!netif_running(dev))
   5059				goto release_packet;
   5060		}
   5061
   5062		/* Status valid only when last descriptor bit is set. */
   5063		if (status.rx.last_desc && status.rx.first_desc) {
   5064			/*
   5065			 * Receive without error.  With receive errors
   5066			 * disabled, packets with receive errors will be
   5067			 * dropped, so no need to check the error bit.
   5068			 */
   5069			if (!status.rx.error || (status.data &
   5070					KS_DESC_RX_ERROR_COND) ==
   5071					KS_DESC_RX_ERROR_TOO_LONG) {
   5072				if (rx_proc(dev, hw, desc, status))
   5073					goto release_packet;
   5074				received++;
   5075			} else {
   5076				struct dev_priv *priv = netdev_priv(dev);
   5077
   5078				/* Update receive error statistics. */
   5079				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
   5080			}
   5081		}
   5082
   5083release_packet:
   5084		release_desc(desc);
   5085		next++;
   5086		next &= info->mask;
   5087	}
   5088	info->next = next;
   5089
   5090	return received;
   5091}
   5092
   5093static void rx_proc_task(struct tasklet_struct *t)
   5094{
   5095	struct dev_info *hw_priv = from_tasklet(hw_priv, t, rx_tasklet);
   5096	struct ksz_hw *hw = &hw_priv->hw;
   5097
   5098	if (!hw->enabled)
   5099		return;
   5100	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
   5101
   5102		/* In case receive process is suspended because of overrun. */
   5103		hw_resume_rx(hw);
   5104
   5105		/* tasklets are interruptible. */
   5106		spin_lock_irq(&hw_priv->hwlock);
   5107		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
   5108		spin_unlock_irq(&hw_priv->hwlock);
   5109	} else {
   5110		hw_ack_intr(hw, KS884X_INT_RX);
   5111		tasklet_schedule(&hw_priv->rx_tasklet);
   5112	}
   5113}
   5114
   5115static void tx_proc_task(struct tasklet_struct *t)
   5116{
   5117	struct dev_info *hw_priv = from_tasklet(hw_priv, t, tx_tasklet);
   5118	struct ksz_hw *hw = &hw_priv->hw;
   5119
   5120	hw_ack_intr(hw, KS884X_INT_TX_MASK);
   5121
   5122	tx_done(hw_priv);
   5123
   5124	/* tasklets are interruptible. */
   5125	spin_lock_irq(&hw_priv->hwlock);
   5126	hw_turn_on_intr(hw, KS884X_INT_TX);
   5127	spin_unlock_irq(&hw_priv->hwlock);
   5128}
   5129
   5130static inline void handle_rx_stop(struct ksz_hw *hw)
   5131{
   5132	/* Receive just has been stopped. */
   5133	if (0 == hw->rx_stop)
   5134		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
   5135	else if (hw->rx_stop > 1) {
   5136		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
   5137			hw_start_rx(hw);
   5138		} else {
   5139			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
   5140			hw->rx_stop = 0;
   5141		}
   5142	} else
   5143		/* Receive just has been started. */
   5144		hw->rx_stop++;
   5145}
   5146
   5147/**
   5148 * netdev_intr - interrupt handling
   5149 * @irq:	Interrupt number.
   5150 * @dev_id:	Network device.
   5151 *
   5152 * This function is called by upper network layer to signal interrupt.
   5153 *
   5154 * Return IRQ_HANDLED if interrupt is handled.
   5155 */
   5156static irqreturn_t netdev_intr(int irq, void *dev_id)
   5157{
   5158	uint int_enable = 0;
   5159	struct net_device *dev = (struct net_device *) dev_id;
   5160	struct dev_priv *priv = netdev_priv(dev);
   5161	struct dev_info *hw_priv = priv->adapter;
   5162	struct ksz_hw *hw = &hw_priv->hw;
   5163
   5164	spin_lock(&hw_priv->hwlock);
   5165
   5166	hw_read_intr(hw, &int_enable);
   5167
   5168	/* Not our interrupt! */
   5169	if (!int_enable) {
   5170		spin_unlock(&hw_priv->hwlock);
   5171		return IRQ_NONE;
   5172	}
   5173
   5174	do {
   5175		hw_ack_intr(hw, int_enable);
   5176		int_enable &= hw->intr_mask;
   5177
   5178		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
   5179			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
   5180			tasklet_schedule(&hw_priv->tx_tasklet);
   5181		}
   5182
   5183		if (likely(int_enable & KS884X_INT_RX)) {
   5184			hw_dis_intr_bit(hw, KS884X_INT_RX);
   5185			tasklet_schedule(&hw_priv->rx_tasklet);
   5186		}
   5187
   5188		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
   5189			dev->stats.rx_fifo_errors++;
   5190			hw_resume_rx(hw);
   5191		}
   5192
   5193		if (unlikely(int_enable & KS884X_INT_PHY)) {
   5194			struct ksz_port *port = &priv->port;
   5195
   5196			hw->features |= LINK_INT_WORKING;
   5197			port_get_link_speed(port);
   5198		}
   5199
   5200		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
   5201			handle_rx_stop(hw);
   5202			break;
   5203		}
   5204
   5205		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
   5206			u32 data;
   5207
   5208			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
   5209			pr_info("Tx stopped\n");
   5210			data = readl(hw->io + KS_DMA_TX_CTRL);
   5211			if (!(data & DMA_TX_ENABLE))
   5212				pr_info("Tx disabled\n");
   5213			break;
   5214		}
   5215	} while (0);
   5216
   5217	hw_ena_intr(hw);
   5218
   5219	spin_unlock(&hw_priv->hwlock);
   5220
   5221	return IRQ_HANDLED;
   5222}
   5223
   5224/*
   5225 * Linux network device functions
   5226 */
   5227
   5228
   5229#ifdef CONFIG_NET_POLL_CONTROLLER
   5230static void netdev_netpoll(struct net_device *dev)
   5231{
   5232	struct dev_priv *priv = netdev_priv(dev);
   5233	struct dev_info *hw_priv = priv->adapter;
   5234
   5235	hw_dis_intr(&hw_priv->hw);
   5236	netdev_intr(dev->irq, dev);
   5237}
   5238#endif
   5239
   5240static void bridge_change(struct ksz_hw *hw)
   5241{
   5242	int port;
   5243	u8  member;
   5244	struct ksz_switch *sw = hw->ksz_switch;
   5245
   5246	/* No ports in forwarding state. */
   5247	if (!sw->member) {
   5248		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
   5249		sw_block_addr(hw);
   5250	}
   5251	for (port = 0; port < SWITCH_PORT_NUM; port++) {
   5252		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
   5253			member = HOST_MASK | sw->member;
   5254		else
   5255			member = HOST_MASK | (1 << port);
   5256		if (member != sw->port_cfg[port].member)
   5257			sw_cfg_port_base_vlan(hw, port, member);
   5258	}
   5259}
   5260
   5261/**
   5262 * netdev_close - close network device
   5263 * @dev:	Network device.
   5264 *
   5265 * This function process the close operation of network device.  This is caused
   5266 * by the user command "ifconfig ethX down."
   5267 *
   5268 * Return 0 if successful; otherwise an error code indicating failure.
   5269 */
   5270static int netdev_close(struct net_device *dev)
   5271{
   5272	struct dev_priv *priv = netdev_priv(dev);
   5273	struct dev_info *hw_priv = priv->adapter;
   5274	struct ksz_port *port = &priv->port;
   5275	struct ksz_hw *hw = &hw_priv->hw;
   5276	int pi;
   5277
   5278	netif_stop_queue(dev);
   5279
   5280	ksz_stop_timer(&priv->monitor_timer_info);
   5281
   5282	/* Need to shut the port manually in multiple device interfaces mode. */
   5283	if (hw->dev_count > 1) {
   5284		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
   5285
   5286		/* Port is closed.  Need to change bridge setting. */
   5287		if (hw->features & STP_SUPPORT) {
   5288			pi = 1 << port->first_port;
   5289			if (hw->ksz_switch->member & pi) {
   5290				hw->ksz_switch->member &= ~pi;
   5291				bridge_change(hw);
   5292			}
   5293		}
   5294	}
   5295	if (port->first_port > 0)
   5296		hw_del_addr(hw, dev->dev_addr);
   5297	if (!hw_priv->wol_enable)
   5298		port_set_power_saving(port, true);
   5299
   5300	if (priv->multicast)
   5301		--hw->all_multi;
   5302	if (priv->promiscuous)
   5303		--hw->promiscuous;
   5304
   5305	hw_priv->opened--;
   5306	if (!(hw_priv->opened)) {
   5307		ksz_stop_timer(&hw_priv->mib_timer_info);
   5308		flush_work(&hw_priv->mib_read);
   5309
   5310		hw_dis_intr(hw);
   5311		hw_disable(hw);
   5312		hw_clr_multicast(hw);
   5313
   5314		/* Delay for receive task to stop scheduling itself. */
   5315		msleep(2000 / HZ);
   5316
   5317		tasklet_kill(&hw_priv->rx_tasklet);
   5318		tasklet_kill(&hw_priv->tx_tasklet);
   5319		free_irq(dev->irq, hw_priv->dev);
   5320
   5321		transmit_cleanup(hw_priv, 0);
   5322		hw_reset_pkts(&hw->rx_desc_info);
   5323		hw_reset_pkts(&hw->tx_desc_info);
   5324
   5325		/* Clean out static MAC table when the switch is shutdown. */
   5326		if (hw->features & STP_SUPPORT)
   5327			sw_clr_sta_mac_table(hw);
   5328	}
   5329
   5330	return 0;
   5331}
   5332
   5333static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
   5334{
   5335	if (hw->ksz_switch) {
   5336		u32 data;
   5337
   5338		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
   5339		if (hw->features & RX_HUGE_FRAME)
   5340			data |= SWITCH_HUGE_PACKET;
   5341		else
   5342			data &= ~SWITCH_HUGE_PACKET;
   5343		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
   5344	}
   5345	if (hw->features & RX_HUGE_FRAME) {
   5346		hw->rx_cfg |= DMA_RX_ERROR;
   5347		hw_priv->dev_rcv = dev_rcv_special;
   5348	} else {
   5349		hw->rx_cfg &= ~DMA_RX_ERROR;
   5350		if (hw->dev_count > 1)
   5351			hw_priv->dev_rcv = port_rcv_packets;
   5352		else
   5353			hw_priv->dev_rcv = dev_rcv_packets;
   5354	}
   5355}
   5356
   5357static int prepare_hardware(struct net_device *dev)
   5358{
   5359	struct dev_priv *priv = netdev_priv(dev);
   5360	struct dev_info *hw_priv = priv->adapter;
   5361	struct ksz_hw *hw = &hw_priv->hw;
   5362	int rc = 0;
   5363
   5364	/* Remember the network device that requests interrupts. */
   5365	hw_priv->dev = dev;
   5366	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
   5367	if (rc)
   5368		return rc;
   5369	tasklet_setup(&hw_priv->rx_tasklet, rx_proc_task);
   5370	tasklet_setup(&hw_priv->tx_tasklet, tx_proc_task);
   5371
   5372	hw->promiscuous = 0;
   5373	hw->all_multi = 0;
   5374	hw->multi_list_size = 0;
   5375
   5376	hw_reset(hw);
   5377
   5378	hw_set_desc_base(hw,
   5379		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
   5380	hw_set_addr(hw);
   5381	hw_cfg_huge_frame(hw_priv, hw);
   5382	ksz_init_rx_buffers(hw_priv);
   5383	return 0;
   5384}
   5385
   5386static void set_media_state(struct net_device *dev, int media_state)
   5387{
   5388	struct dev_priv *priv = netdev_priv(dev);
   5389
   5390	if (media_state == priv->media_state)
   5391		netif_carrier_on(dev);
   5392	else
   5393		netif_carrier_off(dev);
   5394	netif_info(priv, link, dev, "link %s\n",
   5395		   media_state == priv->media_state ? "on" : "off");
   5396}
   5397
   5398/**
   5399 * netdev_open - open network device
   5400 * @dev:	Network device.
   5401 *
   5402 * This function process the open operation of network device.  This is caused
   5403 * by the user command "ifconfig ethX up."
   5404 *
   5405 * Return 0 if successful; otherwise an error code indicating failure.
   5406 */
   5407static int netdev_open(struct net_device *dev)
   5408{
   5409	struct dev_priv *priv = netdev_priv(dev);
   5410	struct dev_info *hw_priv = priv->adapter;
   5411	struct ksz_hw *hw = &hw_priv->hw;
   5412	struct ksz_port *port = &priv->port;
   5413	unsigned long next_jiffies;
   5414	int i;
   5415	int p;
   5416	int rc = 0;
   5417
   5418	next_jiffies = jiffies + HZ * 2;
   5419	priv->multicast = 0;
   5420	priv->promiscuous = 0;
   5421
   5422	/* Reset device statistics. */
   5423	memset(&dev->stats, 0, sizeof(struct net_device_stats));
   5424	memset((void *) port->counter, 0,
   5425		(sizeof(u64) * OID_COUNTER_LAST));
   5426
   5427	if (!(hw_priv->opened)) {
   5428		rc = prepare_hardware(dev);
   5429		if (rc)
   5430			return rc;
   5431		for (i = 0; i < hw->mib_port_cnt; i++) {
   5432			next_jiffies += HZ * 1;
   5433			hw_priv->counter[i].time = next_jiffies;
   5434			hw->port_mib[i].state = media_disconnected;
   5435			port_init_cnt(hw, i);
   5436		}
   5437		if (hw->ksz_switch)
   5438			hw->port_mib[HOST_PORT].state = media_connected;
   5439		else {
   5440			hw_add_wol_bcast(hw);
   5441			hw_cfg_wol_pme(hw, 0);
   5442			hw_clr_wol_pme_status(&hw_priv->hw);
   5443		}
   5444	}
   5445	port_set_power_saving(port, false);
   5446
   5447	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
   5448		/*
   5449		 * Initialize to invalid value so that link detection
   5450		 * is done.
   5451		 */
   5452		hw->port_info[p].partner = 0xFF;
   5453		hw->port_info[p].state = media_disconnected;
   5454	}
   5455
   5456	/* Need to open the port in multiple device interfaces mode. */
   5457	if (hw->dev_count > 1) {
   5458		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
   5459		if (port->first_port > 0)
   5460			hw_add_addr(hw, dev->dev_addr);
   5461	}
   5462
   5463	port_get_link_speed(port);
   5464	if (port->force_link)
   5465		port_force_link_speed(port);
   5466	else
   5467		port_set_link_speed(port);
   5468
   5469	if (!(hw_priv->opened)) {
   5470		hw_setup_intr(hw);
   5471		hw_enable(hw);
   5472		hw_ena_intr(hw);
   5473
   5474		if (hw->mib_port_cnt)
   5475			ksz_start_timer(&hw_priv->mib_timer_info,
   5476				hw_priv->mib_timer_info.period);
   5477	}
   5478
   5479	hw_priv->opened++;
   5480
   5481	ksz_start_timer(&priv->monitor_timer_info,
   5482		priv->monitor_timer_info.period);
   5483
   5484	priv->media_state = port->linked->state;
   5485
   5486	set_media_state(dev, media_connected);
   5487	netif_start_queue(dev);
   5488
   5489	return 0;
   5490}
   5491
   5492/* RX errors = rx_errors */
   5493/* RX dropped = rx_dropped */
   5494/* RX overruns = rx_fifo_errors */
   5495/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
   5496/* TX errors = tx_errors */
   5497/* TX dropped = tx_dropped */
   5498/* TX overruns = tx_fifo_errors */
   5499/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
   5500/* collisions = collisions */
   5501
   5502/**
   5503 * netdev_query_statistics - query network device statistics
   5504 * @dev:	Network device.
   5505 *
   5506 * This function returns the statistics of the network device.  The device
   5507 * needs not be opened.
   5508 *
   5509 * Return network device statistics.
   5510 */
   5511static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
   5512{
   5513	struct dev_priv *priv = netdev_priv(dev);
   5514	struct ksz_port *port = &priv->port;
   5515	struct ksz_hw *hw = &priv->adapter->hw;
   5516	struct ksz_port_mib *mib;
   5517	int i;
   5518	int p;
   5519
   5520	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
   5521	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
   5522
   5523	/* Reset to zero to add count later. */
   5524	dev->stats.multicast = 0;
   5525	dev->stats.collisions = 0;
   5526	dev->stats.rx_length_errors = 0;
   5527	dev->stats.rx_crc_errors = 0;
   5528	dev->stats.rx_frame_errors = 0;
   5529	dev->stats.tx_window_errors = 0;
   5530
   5531	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
   5532		mib = &hw->port_mib[p];
   5533
   5534		dev->stats.multicast += (unsigned long)
   5535			mib->counter[MIB_COUNTER_RX_MULTICAST];
   5536
   5537		dev->stats.collisions += (unsigned long)
   5538			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
   5539
   5540		dev->stats.rx_length_errors += (unsigned long)(
   5541			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
   5542			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
   5543			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
   5544			mib->counter[MIB_COUNTER_RX_JABBER]);
   5545		dev->stats.rx_crc_errors += (unsigned long)
   5546			mib->counter[MIB_COUNTER_RX_CRC_ERR];
   5547		dev->stats.rx_frame_errors += (unsigned long)(
   5548			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
   5549			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
   5550
   5551		dev->stats.tx_window_errors += (unsigned long)
   5552			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
   5553	}
   5554
   5555	return &dev->stats;
   5556}
   5557
   5558/**
   5559 * netdev_set_mac_address - set network device MAC address
   5560 * @dev:	Network device.
   5561 * @addr:	Buffer of MAC address.
   5562 *
   5563 * This function is used to set the MAC address of the network device.
   5564 *
   5565 * Return 0 to indicate success.
   5566 */
   5567static int netdev_set_mac_address(struct net_device *dev, void *addr)
   5568{
   5569	struct dev_priv *priv = netdev_priv(dev);
   5570	struct dev_info *hw_priv = priv->adapter;
   5571	struct ksz_hw *hw = &hw_priv->hw;
   5572	struct sockaddr *mac = addr;
   5573	uint interrupt;
   5574
   5575	if (priv->port.first_port > 0)
   5576		hw_del_addr(hw, dev->dev_addr);
   5577	else {
   5578		hw->mac_override = 1;
   5579		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
   5580	}
   5581
   5582	eth_hw_addr_set(dev, mac->sa_data);
   5583
   5584	interrupt = hw_block_intr(hw);
   5585
   5586	if (priv->port.first_port > 0)
   5587		hw_add_addr(hw, dev->dev_addr);
   5588	else
   5589		hw_set_addr(hw);
   5590	hw_restore_intr(hw, interrupt);
   5591
   5592	return 0;
   5593}
   5594
   5595static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
   5596	struct ksz_hw *hw, int promiscuous)
   5597{
   5598	if (promiscuous != priv->promiscuous) {
   5599		u8 prev_state = hw->promiscuous;
   5600
   5601		if (promiscuous)
   5602			++hw->promiscuous;
   5603		else
   5604			--hw->promiscuous;
   5605		priv->promiscuous = promiscuous;
   5606
   5607		/* Turn on/off promiscuous mode. */
   5608		if (hw->promiscuous <= 1 && prev_state <= 1)
   5609			hw_set_promiscuous(hw, hw->promiscuous);
   5610
   5611		/*
   5612		 * Port is not in promiscuous mode, meaning it is released
   5613		 * from the bridge.
   5614		 */
   5615		if ((hw->features & STP_SUPPORT) && !promiscuous &&
   5616		    netif_is_bridge_port(dev)) {
   5617			struct ksz_switch *sw = hw->ksz_switch;
   5618			int port = priv->port.first_port;
   5619
   5620			port_set_stp_state(hw, port, STP_STATE_DISABLED);
   5621			port = 1 << port;
   5622			if (sw->member & port) {
   5623				sw->member &= ~port;
   5624				bridge_change(hw);
   5625			}
   5626		}
   5627	}
   5628}
   5629
   5630static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
   5631	int multicast)
   5632{
   5633	if (multicast != priv->multicast) {
   5634		u8 all_multi = hw->all_multi;
   5635
   5636		if (multicast)
   5637			++hw->all_multi;
   5638		else
   5639			--hw->all_multi;
   5640		priv->multicast = multicast;
   5641
   5642		/* Turn on/off all multicast mode. */
   5643		if (hw->all_multi <= 1 && all_multi <= 1)
   5644			hw_set_multicast(hw, hw->all_multi);
   5645	}
   5646}
   5647
   5648/**
   5649 * netdev_set_rx_mode
   5650 * @dev:	Network device.
   5651 *
   5652 * This routine is used to set multicast addresses or put the network device
   5653 * into promiscuous mode.
   5654 */
   5655static void netdev_set_rx_mode(struct net_device *dev)
   5656{
   5657	struct dev_priv *priv = netdev_priv(dev);
   5658	struct dev_info *hw_priv = priv->adapter;
   5659	struct ksz_hw *hw = &hw_priv->hw;
   5660	struct netdev_hw_addr *ha;
   5661	int multicast = (dev->flags & IFF_ALLMULTI);
   5662
   5663	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
   5664
   5665	if (hw_priv->hw.dev_count > 1)
   5666		multicast |= (dev->flags & IFF_MULTICAST);
   5667	dev_set_multicast(priv, hw, multicast);
   5668
   5669	/* Cannot use different hashes in multiple device interfaces mode. */
   5670	if (hw_priv->hw.dev_count > 1)
   5671		return;
   5672
   5673	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
   5674		int i = 0;
   5675
   5676		/* List too big to support so turn on all multicast mode. */
   5677		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
   5678			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
   5679				hw->multi_list_size = MAX_MULTICAST_LIST;
   5680				++hw->all_multi;
   5681				hw_set_multicast(hw, hw->all_multi);
   5682			}
   5683			return;
   5684		}
   5685
   5686		netdev_for_each_mc_addr(ha, dev) {
   5687			if (i >= MAX_MULTICAST_LIST)
   5688				break;
   5689			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
   5690		}
   5691		hw->multi_list_size = (u8) i;
   5692		hw_set_grp_addr(hw);
   5693	} else {
   5694		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
   5695			--hw->all_multi;
   5696			hw_set_multicast(hw, hw->all_multi);
   5697		}
   5698		hw->multi_list_size = 0;
   5699		hw_clr_multicast(hw);
   5700	}
   5701}
   5702
   5703static int netdev_change_mtu(struct net_device *dev, int new_mtu)
   5704{
   5705	struct dev_priv *priv = netdev_priv(dev);
   5706	struct dev_info *hw_priv = priv->adapter;
   5707	struct ksz_hw *hw = &hw_priv->hw;
   5708	int hw_mtu;
   5709
   5710	if (netif_running(dev))
   5711		return -EBUSY;
   5712
   5713	/* Cannot use different MTU in multiple device interfaces mode. */
   5714	if (hw->dev_count > 1)
   5715		if (dev != hw_priv->dev)
   5716			return 0;
   5717
   5718	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
   5719	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
   5720		hw->features |= RX_HUGE_FRAME;
   5721		hw_mtu = MAX_RX_BUF_SIZE;
   5722	} else {
   5723		hw->features &= ~RX_HUGE_FRAME;
   5724		hw_mtu = REGULAR_RX_BUF_SIZE;
   5725	}
   5726	hw_mtu = (hw_mtu + 3) & ~3;
   5727	hw_priv->mtu = hw_mtu;
   5728	dev->mtu = new_mtu;
   5729
   5730	return 0;
   5731}
   5732
   5733/**
   5734 * netdev_ioctl - I/O control processing
   5735 * @dev:	Network device.
   5736 * @ifr:	Interface request structure.
   5737 * @cmd:	I/O control code.
   5738 *
   5739 * This function is used to process I/O control calls.
   5740 *
   5741 * Return 0 to indicate success.
   5742 */
   5743static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
   5744{
   5745	struct dev_priv *priv = netdev_priv(dev);
   5746	struct dev_info *hw_priv = priv->adapter;
   5747	struct ksz_hw *hw = &hw_priv->hw;
   5748	struct ksz_port *port = &priv->port;
   5749	int result = 0;
   5750	struct mii_ioctl_data *data = if_mii(ifr);
   5751
   5752	if (down_interruptible(&priv->proc_sem))
   5753		return -ERESTARTSYS;
   5754
   5755	switch (cmd) {
   5756	/* Get address of MII PHY in use. */
   5757	case SIOCGMIIPHY:
   5758		data->phy_id = priv->id;
   5759		fallthrough;
   5760
   5761	/* Read MII PHY register. */
   5762	case SIOCGMIIREG:
   5763		if (data->phy_id != priv->id || data->reg_num >= 6)
   5764			result = -EIO;
   5765		else
   5766			hw_r_phy(hw, port->linked->port_id, data->reg_num,
   5767				&data->val_out);
   5768		break;
   5769
   5770	/* Write MII PHY register. */
   5771	case SIOCSMIIREG:
   5772		if (!capable(CAP_NET_ADMIN))
   5773			result = -EPERM;
   5774		else if (data->phy_id != priv->id || data->reg_num >= 6)
   5775			result = -EIO;
   5776		else
   5777			hw_w_phy(hw, port->linked->port_id, data->reg_num,
   5778				data->val_in);
   5779		break;
   5780
   5781	default:
   5782		result = -EOPNOTSUPP;
   5783	}
   5784
   5785	up(&priv->proc_sem);
   5786
   5787	return result;
   5788}
   5789
   5790/*
   5791 * MII support
   5792 */
   5793
   5794/**
   5795 * mdio_read - read PHY register
   5796 * @dev:	Network device.
   5797 * @phy_id:	The PHY id.
   5798 * @reg_num:	The register number.
   5799 *
   5800 * This function returns the PHY register value.
   5801 *
   5802 * Return the register value.
   5803 */
   5804static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
   5805{
   5806	struct dev_priv *priv = netdev_priv(dev);
   5807	struct ksz_port *port = &priv->port;
   5808	struct ksz_hw *hw = port->hw;
   5809	u16 val_out;
   5810
   5811	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
   5812	return val_out;
   5813}
   5814
   5815/**
   5816 * mdio_write - set PHY register
   5817 * @dev:	Network device.
   5818 * @phy_id:	The PHY id.
   5819 * @reg_num:	The register number.
   5820 * @val:	The register value.
   5821 *
   5822 * This procedure sets the PHY register value.
   5823 */
   5824static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
   5825{
   5826	struct dev_priv *priv = netdev_priv(dev);
   5827	struct ksz_port *port = &priv->port;
   5828	struct ksz_hw *hw = port->hw;
   5829	int i;
   5830	int pi;
   5831
   5832	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
   5833		hw_w_phy(hw, pi, reg_num << 1, val);
   5834}
   5835
   5836/*
   5837 * ethtool support
   5838 */
   5839
   5840#define EEPROM_SIZE			0x40
   5841
   5842static u16 eeprom_data[EEPROM_SIZE] = { 0 };
   5843
   5844#define ADVERTISED_ALL			\
   5845	(ADVERTISED_10baseT_Half |	\
   5846	ADVERTISED_10baseT_Full |	\
   5847	ADVERTISED_100baseT_Half |	\
   5848	ADVERTISED_100baseT_Full)
   5849
   5850/* These functions use the MII functions in mii.c. */
   5851
   5852/**
   5853 * netdev_get_link_ksettings - get network device settings
   5854 * @dev:	Network device.
   5855 * @cmd:	Ethtool command.
   5856 *
   5857 * This function queries the PHY and returns its state in the ethtool command.
   5858 *
   5859 * Return 0 if successful; otherwise an error code.
   5860 */
   5861static int netdev_get_link_ksettings(struct net_device *dev,
   5862				     struct ethtool_link_ksettings *cmd)
   5863{
   5864	struct dev_priv *priv = netdev_priv(dev);
   5865	struct dev_info *hw_priv = priv->adapter;
   5866
   5867	mutex_lock(&hw_priv->lock);
   5868	mii_ethtool_get_link_ksettings(&priv->mii_if, cmd);
   5869	ethtool_link_ksettings_add_link_mode(cmd, advertising, TP);
   5870	mutex_unlock(&hw_priv->lock);
   5871
   5872	/* Save advertised settings for workaround in next function. */
   5873	ethtool_convert_link_mode_to_legacy_u32(&priv->advertising,
   5874						cmd->link_modes.advertising);
   5875
   5876	return 0;
   5877}
   5878
   5879/**
   5880 * netdev_set_link_ksettings - set network device settings
   5881 * @dev:	Network device.
   5882 * @cmd:	Ethtool command.
   5883 *
   5884 * This function sets the PHY according to the ethtool command.
   5885 *
   5886 * Return 0 if successful; otherwise an error code.
   5887 */
   5888static int netdev_set_link_ksettings(struct net_device *dev,
   5889				     const struct ethtool_link_ksettings *cmd)
   5890{
   5891	struct dev_priv *priv = netdev_priv(dev);
   5892	struct dev_info *hw_priv = priv->adapter;
   5893	struct ksz_port *port = &priv->port;
   5894	struct ethtool_link_ksettings copy_cmd;
   5895	u32 speed = cmd->base.speed;
   5896	u32 advertising;
   5897	int rc;
   5898
   5899	ethtool_convert_link_mode_to_legacy_u32(&advertising,
   5900						cmd->link_modes.advertising);
   5901
   5902	/*
   5903	 * ethtool utility does not change advertised setting if auto
   5904	 * negotiation is not specified explicitly.
   5905	 */
   5906	if (cmd->base.autoneg && priv->advertising == advertising) {
   5907		advertising |= ADVERTISED_ALL;
   5908		if (10 == speed)
   5909			advertising &=
   5910				~(ADVERTISED_100baseT_Full |
   5911				ADVERTISED_100baseT_Half);
   5912		else if (100 == speed)
   5913			advertising &=
   5914				~(ADVERTISED_10baseT_Full |
   5915				ADVERTISED_10baseT_Half);
   5916		if (0 == cmd->base.duplex)
   5917			advertising &=
   5918				~(ADVERTISED_100baseT_Full |
   5919				ADVERTISED_10baseT_Full);
   5920		else if (1 == cmd->base.duplex)
   5921			advertising &=
   5922				~(ADVERTISED_100baseT_Half |
   5923				ADVERTISED_10baseT_Half);
   5924	}
   5925	mutex_lock(&hw_priv->lock);
   5926	if (cmd->base.autoneg &&
   5927	    (advertising & ADVERTISED_ALL) == ADVERTISED_ALL) {
   5928		port->duplex = 0;
   5929		port->speed = 0;
   5930		port->force_link = 0;
   5931	} else {
   5932		port->duplex = cmd->base.duplex + 1;
   5933		if (1000 != speed)
   5934			port->speed = speed;
   5935		if (cmd->base.autoneg)
   5936			port->force_link = 0;
   5937		else
   5938			port->force_link = 1;
   5939	}
   5940
   5941	memcpy(&copy_cmd, cmd, sizeof(copy_cmd));
   5942	ethtool_convert_legacy_u32_to_link_mode(copy_cmd.link_modes.advertising,
   5943						advertising);
   5944	rc = mii_ethtool_set_link_ksettings(
   5945		&priv->mii_if,
   5946		(const struct ethtool_link_ksettings *)&copy_cmd);
   5947	mutex_unlock(&hw_priv->lock);
   5948	return rc;
   5949}
   5950
   5951/**
   5952 * netdev_nway_reset - restart auto-negotiation
   5953 * @dev:	Network device.
   5954 *
   5955 * This function restarts the PHY for auto-negotiation.
   5956 *
   5957 * Return 0 if successful; otherwise an error code.
   5958 */
   5959static int netdev_nway_reset(struct net_device *dev)
   5960{
   5961	struct dev_priv *priv = netdev_priv(dev);
   5962	struct dev_info *hw_priv = priv->adapter;
   5963	int rc;
   5964
   5965	mutex_lock(&hw_priv->lock);
   5966	rc = mii_nway_restart(&priv->mii_if);
   5967	mutex_unlock(&hw_priv->lock);
   5968	return rc;
   5969}
   5970
   5971/**
   5972 * netdev_get_link - get network device link status
   5973 * @dev:	Network device.
   5974 *
   5975 * This function gets the link status from the PHY.
   5976 *
   5977 * Return true if PHY is linked and false otherwise.
   5978 */
   5979static u32 netdev_get_link(struct net_device *dev)
   5980{
   5981	struct dev_priv *priv = netdev_priv(dev);
   5982	int rc;
   5983
   5984	rc = mii_link_ok(&priv->mii_if);
   5985	return rc;
   5986}
   5987
   5988/**
   5989 * netdev_get_drvinfo - get network driver information
   5990 * @dev:	Network device.
   5991 * @info:	Ethtool driver info data structure.
   5992 *
   5993 * This procedure returns the driver information.
   5994 */
   5995static void netdev_get_drvinfo(struct net_device *dev,
   5996	struct ethtool_drvinfo *info)
   5997{
   5998	struct dev_priv *priv = netdev_priv(dev);
   5999	struct dev_info *hw_priv = priv->adapter;
   6000
   6001	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
   6002	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
   6003	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
   6004		sizeof(info->bus_info));
   6005}
   6006
   6007static struct hw_regs {
   6008	int start;
   6009	int end;
   6010} hw_regs_range[] = {
   6011	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
   6012	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
   6013	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
   6014	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
   6015	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
   6016	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
   6017	{ 0, 0 }
   6018};
   6019
   6020/**
   6021 * netdev_get_regs_len - get length of register dump
   6022 * @dev:	Network device.
   6023 *
   6024 * This function returns the length of the register dump.
   6025 *
   6026 * Return length of the register dump.
   6027 */
   6028static int netdev_get_regs_len(struct net_device *dev)
   6029{
   6030	struct hw_regs *range = hw_regs_range;
   6031	int regs_len = 0x10 * sizeof(u32);
   6032
   6033	while (range->end > range->start) {
   6034		regs_len += (range->end - range->start + 3) / 4 * 4;
   6035		range++;
   6036	}
   6037	return regs_len;
   6038}
   6039
   6040/**
   6041 * netdev_get_regs - get register dump
   6042 * @dev:	Network device.
   6043 * @regs:	Ethtool registers data structure.
   6044 * @ptr:	Buffer to store the register values.
   6045 *
   6046 * This procedure dumps the register values in the provided buffer.
   6047 */
   6048static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
   6049	void *ptr)
   6050{
   6051	struct dev_priv *priv = netdev_priv(dev);
   6052	struct dev_info *hw_priv = priv->adapter;
   6053	struct ksz_hw *hw = &hw_priv->hw;
   6054	int *buf = (int *) ptr;
   6055	struct hw_regs *range = hw_regs_range;
   6056	int len;
   6057
   6058	mutex_lock(&hw_priv->lock);
   6059	regs->version = 0;
   6060	for (len = 0; len < 0x40; len += 4) {
   6061		pci_read_config_dword(hw_priv->pdev, len, buf);
   6062		buf++;
   6063	}
   6064	while (range->end > range->start) {
   6065		for (len = range->start; len < range->end; len += 4) {
   6066			*buf = readl(hw->io + len);
   6067			buf++;
   6068		}
   6069		range++;
   6070	}
   6071	mutex_unlock(&hw_priv->lock);
   6072}
   6073
   6074#define WOL_SUPPORT			\
   6075	(WAKE_PHY | WAKE_MAGIC |	\
   6076	WAKE_UCAST | WAKE_MCAST |	\
   6077	WAKE_BCAST | WAKE_ARP)
   6078
   6079/**
   6080 * netdev_get_wol - get Wake-on-LAN support
   6081 * @dev:	Network device.
   6082 * @wol:	Ethtool Wake-on-LAN data structure.
   6083 *
   6084 * This procedure returns Wake-on-LAN support.
   6085 */
   6086static void netdev_get_wol(struct net_device *dev,
   6087	struct ethtool_wolinfo *wol)
   6088{
   6089	struct dev_priv *priv = netdev_priv(dev);
   6090	struct dev_info *hw_priv = priv->adapter;
   6091
   6092	wol->supported = hw_priv->wol_support;
   6093	wol->wolopts = hw_priv->wol_enable;
   6094	memset(&wol->sopass, 0, sizeof(wol->sopass));
   6095}
   6096
   6097/**
   6098 * netdev_set_wol - set Wake-on-LAN support
   6099 * @dev:	Network device.
   6100 * @wol:	Ethtool Wake-on-LAN data structure.
   6101 *
   6102 * This function sets Wake-on-LAN support.
   6103 *
   6104 * Return 0 if successful; otherwise an error code.
   6105 */
   6106static int netdev_set_wol(struct net_device *dev,
   6107	struct ethtool_wolinfo *wol)
   6108{
   6109	struct dev_priv *priv = netdev_priv(dev);
   6110	struct dev_info *hw_priv = priv->adapter;
   6111
   6112	/* Need to find a way to retrieve the device IP address. */
   6113	static const u8 net_addr[] = { 192, 168, 1, 1 };
   6114
   6115	if (wol->wolopts & ~hw_priv->wol_support)
   6116		return -EINVAL;
   6117
   6118	hw_priv->wol_enable = wol->wolopts;
   6119
   6120	/* Link wakeup cannot really be disabled. */
   6121	if (wol->wolopts)
   6122		hw_priv->wol_enable |= WAKE_PHY;
   6123	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
   6124	return 0;
   6125}
   6126
   6127/**
   6128 * netdev_get_msglevel - get debug message level
   6129 * @dev:	Network device.
   6130 *
   6131 * This function returns current debug message level.
   6132 *
   6133 * Return current debug message flags.
   6134 */
   6135static u32 netdev_get_msglevel(struct net_device *dev)
   6136{
   6137	struct dev_priv *priv = netdev_priv(dev);
   6138
   6139	return priv->msg_enable;
   6140}
   6141
   6142/**
   6143 * netdev_set_msglevel - set debug message level
   6144 * @dev:	Network device.
   6145 * @value:	Debug message flags.
   6146 *
   6147 * This procedure sets debug message level.
   6148 */
   6149static void netdev_set_msglevel(struct net_device *dev, u32 value)
   6150{
   6151	struct dev_priv *priv = netdev_priv(dev);
   6152
   6153	priv->msg_enable = value;
   6154}
   6155
   6156/**
   6157 * netdev_get_eeprom_len - get EEPROM length
   6158 * @dev:	Network device.
   6159 *
   6160 * This function returns the length of the EEPROM.
   6161 *
   6162 * Return length of the EEPROM.
   6163 */
   6164static int netdev_get_eeprom_len(struct net_device *dev)
   6165{
   6166	return EEPROM_SIZE * 2;
   6167}
   6168
   6169#define EEPROM_MAGIC			0x10A18842
   6170
   6171/**
   6172 * netdev_get_eeprom - get EEPROM data
   6173 * @dev:	Network device.
   6174 * @eeprom:	Ethtool EEPROM data structure.
   6175 * @data:	Buffer to store the EEPROM data.
   6176 *
   6177 * This function dumps the EEPROM data in the provided buffer.
   6178 *
   6179 * Return 0 if successful; otherwise an error code.
   6180 */
   6181static int netdev_get_eeprom(struct net_device *dev,
   6182	struct ethtool_eeprom *eeprom, u8 *data)
   6183{
   6184	struct dev_priv *priv = netdev_priv(dev);
   6185	struct dev_info *hw_priv = priv->adapter;
   6186	u8 *eeprom_byte = (u8 *) eeprom_data;
   6187	int i;
   6188	int len;
   6189
   6190	len = (eeprom->offset + eeprom->len + 1) / 2;
   6191	for (i = eeprom->offset / 2; i < len; i++)
   6192		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
   6193	eeprom->magic = EEPROM_MAGIC;
   6194	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
   6195
   6196	return 0;
   6197}
   6198
   6199/**
   6200 * netdev_set_eeprom - write EEPROM data
   6201 * @dev:	Network device.
   6202 * @eeprom:	Ethtool EEPROM data structure.
   6203 * @data:	Data buffer.
   6204 *
   6205 * This function modifies the EEPROM data one byte at a time.
   6206 *
   6207 * Return 0 if successful; otherwise an error code.
   6208 */
   6209static int netdev_set_eeprom(struct net_device *dev,
   6210	struct ethtool_eeprom *eeprom, u8 *data)
   6211{
   6212	struct dev_priv *priv = netdev_priv(dev);
   6213	struct dev_info *hw_priv = priv->adapter;
   6214	u16 eeprom_word[EEPROM_SIZE];
   6215	u8 *eeprom_byte = (u8 *) eeprom_word;
   6216	int i;
   6217	int len;
   6218
   6219	if (eeprom->magic != EEPROM_MAGIC)
   6220		return -EINVAL;
   6221
   6222	len = (eeprom->offset + eeprom->len + 1) / 2;
   6223	for (i = eeprom->offset / 2; i < len; i++)
   6224		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
   6225	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
   6226	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
   6227	for (i = 0; i < EEPROM_SIZE; i++)
   6228		if (eeprom_word[i] != eeprom_data[i]) {
   6229			eeprom_data[i] = eeprom_word[i];
   6230			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
   6231	}
   6232
   6233	return 0;
   6234}
   6235
   6236/**
   6237 * netdev_get_pauseparam - get flow control parameters
   6238 * @dev:	Network device.
   6239 * @pause:	Ethtool PAUSE settings data structure.
   6240 *
   6241 * This procedure returns the PAUSE control flow settings.
   6242 */
   6243static void netdev_get_pauseparam(struct net_device *dev,
   6244	struct ethtool_pauseparam *pause)
   6245{
   6246	struct dev_priv *priv = netdev_priv(dev);
   6247	struct dev_info *hw_priv = priv->adapter;
   6248	struct ksz_hw *hw = &hw_priv->hw;
   6249
   6250	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
   6251	if (!hw->ksz_switch) {
   6252		pause->rx_pause =
   6253			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
   6254		pause->tx_pause =
   6255			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
   6256	} else {
   6257		pause->rx_pause =
   6258			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   6259				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
   6260		pause->tx_pause =
   6261			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   6262				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
   6263	}
   6264}
   6265
   6266/**
   6267 * netdev_set_pauseparam - set flow control parameters
   6268 * @dev:	Network device.
   6269 * @pause:	Ethtool PAUSE settings data structure.
   6270 *
   6271 * This function sets the PAUSE control flow settings.
   6272 * Not implemented yet.
   6273 *
   6274 * Return 0 if successful; otherwise an error code.
   6275 */
   6276static int netdev_set_pauseparam(struct net_device *dev,
   6277	struct ethtool_pauseparam *pause)
   6278{
   6279	struct dev_priv *priv = netdev_priv(dev);
   6280	struct dev_info *hw_priv = priv->adapter;
   6281	struct ksz_hw *hw = &hw_priv->hw;
   6282	struct ksz_port *port = &priv->port;
   6283
   6284	mutex_lock(&hw_priv->lock);
   6285	if (pause->autoneg) {
   6286		if (!pause->rx_pause && !pause->tx_pause)
   6287			port->flow_ctrl = PHY_NO_FLOW_CTRL;
   6288		else
   6289			port->flow_ctrl = PHY_FLOW_CTRL;
   6290		hw->overrides &= ~PAUSE_FLOW_CTRL;
   6291		port->force_link = 0;
   6292		if (hw->ksz_switch) {
   6293			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   6294				SWITCH_RX_FLOW_CTRL, 1);
   6295			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   6296				SWITCH_TX_FLOW_CTRL, 1);
   6297		}
   6298		port_set_link_speed(port);
   6299	} else {
   6300		hw->overrides |= PAUSE_FLOW_CTRL;
   6301		if (hw->ksz_switch) {
   6302			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   6303				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
   6304			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
   6305				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
   6306		} else
   6307			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
   6308	}
   6309	mutex_unlock(&hw_priv->lock);
   6310
   6311	return 0;
   6312}
   6313
   6314/**
   6315 * netdev_get_ringparam - get tx/rx ring parameters
   6316 * @dev:	Network device.
   6317 * @ring:	Ethtool RING settings data structure.
   6318 * @kernel_ring:	Ethtool external RING settings data structure.
   6319 * @extack:	Netlink handle.
   6320 *
   6321 * This procedure returns the TX/RX ring settings.
   6322 */
   6323static void netdev_get_ringparam(struct net_device *dev,
   6324				 struct ethtool_ringparam *ring,
   6325				 struct kernel_ethtool_ringparam *kernel_ring,
   6326				 struct netlink_ext_ack *extack)
   6327{
   6328	struct dev_priv *priv = netdev_priv(dev);
   6329	struct dev_info *hw_priv = priv->adapter;
   6330	struct ksz_hw *hw = &hw_priv->hw;
   6331
   6332	ring->tx_max_pending = (1 << 9);
   6333	ring->tx_pending = hw->tx_desc_info.alloc;
   6334	ring->rx_max_pending = (1 << 9);
   6335	ring->rx_pending = hw->rx_desc_info.alloc;
   6336}
   6337
   6338#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
   6339
   6340static struct {
   6341	char string[ETH_GSTRING_LEN];
   6342} ethtool_stats_keys[STATS_LEN] = {
   6343	{ "rx_lo_priority_octets" },
   6344	{ "rx_hi_priority_octets" },
   6345	{ "rx_undersize_packets" },
   6346	{ "rx_fragments" },
   6347	{ "rx_oversize_packets" },
   6348	{ "rx_jabbers" },
   6349	{ "rx_symbol_errors" },
   6350	{ "rx_crc_errors" },
   6351	{ "rx_align_errors" },
   6352	{ "rx_mac_ctrl_packets" },
   6353	{ "rx_pause_packets" },
   6354	{ "rx_bcast_packets" },
   6355	{ "rx_mcast_packets" },
   6356	{ "rx_ucast_packets" },
   6357	{ "rx_64_or_less_octet_packets" },
   6358	{ "rx_65_to_127_octet_packets" },
   6359	{ "rx_128_to_255_octet_packets" },
   6360	{ "rx_256_to_511_octet_packets" },
   6361	{ "rx_512_to_1023_octet_packets" },
   6362	{ "rx_1024_to_1522_octet_packets" },
   6363
   6364	{ "tx_lo_priority_octets" },
   6365	{ "tx_hi_priority_octets" },
   6366	{ "tx_late_collisions" },
   6367	{ "tx_pause_packets" },
   6368	{ "tx_bcast_packets" },
   6369	{ "tx_mcast_packets" },
   6370	{ "tx_ucast_packets" },
   6371	{ "tx_deferred" },
   6372	{ "tx_total_collisions" },
   6373	{ "tx_excessive_collisions" },
   6374	{ "tx_single_collisions" },
   6375	{ "tx_mult_collisions" },
   6376
   6377	{ "rx_discards" },
   6378	{ "tx_discards" },
   6379};
   6380
   6381/**
   6382 * netdev_get_strings - get statistics identity strings
   6383 * @dev:	Network device.
   6384 * @stringset:	String set identifier.
   6385 * @buf:	Buffer to store the strings.
   6386 *
   6387 * This procedure returns the strings used to identify the statistics.
   6388 */
   6389static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
   6390{
   6391	struct dev_priv *priv = netdev_priv(dev);
   6392	struct dev_info *hw_priv = priv->adapter;
   6393	struct ksz_hw *hw = &hw_priv->hw;
   6394
   6395	if (ETH_SS_STATS == stringset)
   6396		memcpy(buf, &ethtool_stats_keys,
   6397			ETH_GSTRING_LEN * hw->mib_cnt);
   6398}
   6399
   6400/**
   6401 * netdev_get_sset_count - get statistics size
   6402 * @dev:	Network device.
   6403 * @sset:	The statistics set number.
   6404 *
   6405 * This function returns the size of the statistics to be reported.
   6406 *
   6407 * Return size of the statistics to be reported.
   6408 */
   6409static int netdev_get_sset_count(struct net_device *dev, int sset)
   6410{
   6411	struct dev_priv *priv = netdev_priv(dev);
   6412	struct dev_info *hw_priv = priv->adapter;
   6413	struct ksz_hw *hw = &hw_priv->hw;
   6414
   6415	switch (sset) {
   6416	case ETH_SS_STATS:
   6417		return hw->mib_cnt;
   6418	default:
   6419		return -EOPNOTSUPP;
   6420	}
   6421}
   6422
   6423/**
   6424 * netdev_get_ethtool_stats - get network device statistics
   6425 * @dev:	Network device.
   6426 * @stats:	Ethtool statistics data structure.
   6427 * @data:	Buffer to store the statistics.
   6428 *
   6429 * This procedure returns the statistics.
   6430 */
   6431static void netdev_get_ethtool_stats(struct net_device *dev,
   6432	struct ethtool_stats *stats, u64 *data)
   6433{
   6434	struct dev_priv *priv = netdev_priv(dev);
   6435	struct dev_info *hw_priv = priv->adapter;
   6436	struct ksz_hw *hw = &hw_priv->hw;
   6437	struct ksz_port *port = &priv->port;
   6438	int n_stats = stats->n_stats;
   6439	int i;
   6440	int n;
   6441	int p;
   6442	u64 counter[TOTAL_PORT_COUNTER_NUM];
   6443
   6444	mutex_lock(&hw_priv->lock);
   6445	n = SWITCH_PORT_NUM;
   6446	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
   6447		if (media_connected == hw->port_mib[p].state) {
   6448			hw_priv->counter[p].read = 1;
   6449
   6450			/* Remember first port that requests read. */
   6451			if (n == SWITCH_PORT_NUM)
   6452				n = p;
   6453		}
   6454	}
   6455	mutex_unlock(&hw_priv->lock);
   6456
   6457	if (n < SWITCH_PORT_NUM)
   6458		schedule_work(&hw_priv->mib_read);
   6459
   6460	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
   6461		p = n;
   6462		wait_event_interruptible_timeout(
   6463			hw_priv->counter[p].counter,
   6464			2 == hw_priv->counter[p].read,
   6465			HZ * 1);
   6466	} else
   6467		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
   6468			if (0 == i) {
   6469				wait_event_interruptible_timeout(
   6470					hw_priv->counter[p].counter,
   6471					2 == hw_priv->counter[p].read,
   6472					HZ * 2);
   6473			} else if (hw->port_mib[p].cnt_ptr) {
   6474				wait_event_interruptible_timeout(
   6475					hw_priv->counter[p].counter,
   6476					2 == hw_priv->counter[p].read,
   6477					HZ * 1);
   6478			}
   6479		}
   6480
   6481	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
   6482	n = hw->mib_cnt;
   6483	if (n > n_stats)
   6484		n = n_stats;
   6485	n_stats -= n;
   6486	for (i = 0; i < n; i++)
   6487		*data++ = counter[i];
   6488}
   6489
   6490/**
   6491 * netdev_set_features - set receive checksum support
   6492 * @dev:	Network device.
   6493 * @features:	New device features (offloads).
   6494 *
   6495 * This function sets receive checksum support setting.
   6496 *
   6497 * Return 0 if successful; otherwise an error code.
   6498 */
   6499static int netdev_set_features(struct net_device *dev,
   6500	netdev_features_t features)
   6501{
   6502	struct dev_priv *priv = netdev_priv(dev);
   6503	struct dev_info *hw_priv = priv->adapter;
   6504	struct ksz_hw *hw = &hw_priv->hw;
   6505
   6506	mutex_lock(&hw_priv->lock);
   6507
   6508	/* see note in hw_setup() */
   6509	if (features & NETIF_F_RXCSUM)
   6510		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
   6511	else
   6512		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
   6513
   6514	if (hw->enabled)
   6515		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
   6516
   6517	mutex_unlock(&hw_priv->lock);
   6518
   6519	return 0;
   6520}
   6521
   6522static const struct ethtool_ops netdev_ethtool_ops = {
   6523	.nway_reset		= netdev_nway_reset,
   6524	.get_link		= netdev_get_link,
   6525	.get_drvinfo		= netdev_get_drvinfo,
   6526	.get_regs_len		= netdev_get_regs_len,
   6527	.get_regs		= netdev_get_regs,
   6528	.get_wol		= netdev_get_wol,
   6529	.set_wol		= netdev_set_wol,
   6530	.get_msglevel		= netdev_get_msglevel,
   6531	.set_msglevel		= netdev_set_msglevel,
   6532	.get_eeprom_len		= netdev_get_eeprom_len,
   6533	.get_eeprom		= netdev_get_eeprom,
   6534	.set_eeprom		= netdev_set_eeprom,
   6535	.get_pauseparam		= netdev_get_pauseparam,
   6536	.set_pauseparam		= netdev_set_pauseparam,
   6537	.get_ringparam		= netdev_get_ringparam,
   6538	.get_strings		= netdev_get_strings,
   6539	.get_sset_count		= netdev_get_sset_count,
   6540	.get_ethtool_stats	= netdev_get_ethtool_stats,
   6541	.get_link_ksettings	= netdev_get_link_ksettings,
   6542	.set_link_ksettings	= netdev_set_link_ksettings,
   6543};
   6544
   6545/*
   6546 * Hardware monitoring
   6547 */
   6548
   6549static void update_link(struct net_device *dev, struct dev_priv *priv,
   6550	struct ksz_port *port)
   6551{
   6552	if (priv->media_state != port->linked->state) {
   6553		priv->media_state = port->linked->state;
   6554		if (netif_running(dev))
   6555			set_media_state(dev, media_connected);
   6556	}
   6557}
   6558
   6559static void mib_read_work(struct work_struct *work)
   6560{
   6561	struct dev_info *hw_priv =
   6562		container_of(work, struct dev_info, mib_read);
   6563	struct ksz_hw *hw = &hw_priv->hw;
   6564	unsigned long next_jiffies;
   6565	struct ksz_port_mib *mib;
   6566	int i;
   6567
   6568	next_jiffies = jiffies;
   6569	for (i = 0; i < hw->mib_port_cnt; i++) {
   6570		mib = &hw->port_mib[i];
   6571
   6572		/* Reading MIB counters or requested to read. */
   6573		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
   6574
   6575			/* Need to process receive interrupt. */
   6576			if (port_r_cnt(hw, i))
   6577				break;
   6578			hw_priv->counter[i].read = 0;
   6579
   6580			/* Finish reading counters. */
   6581			if (0 == mib->cnt_ptr) {
   6582				hw_priv->counter[i].read = 2;
   6583				wake_up_interruptible(
   6584					&hw_priv->counter[i].counter);
   6585			}
   6586		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
   6587			/* Only read MIB counters when the port is connected. */
   6588			if (media_connected == mib->state)
   6589				hw_priv->counter[i].read = 1;
   6590			next_jiffies += HZ * 1 * hw->mib_port_cnt;
   6591			hw_priv->counter[i].time = next_jiffies;
   6592
   6593		/* Port is just disconnected. */
   6594		} else if (mib->link_down) {
   6595			mib->link_down = 0;
   6596
   6597			/* Read counters one last time after link is lost. */
   6598			hw_priv->counter[i].read = 1;
   6599		}
   6600	}
   6601}
   6602
   6603static void mib_monitor(struct timer_list *t)
   6604{
   6605	struct dev_info *hw_priv = from_timer(hw_priv, t, mib_timer_info.timer);
   6606
   6607	mib_read_work(&hw_priv->mib_read);
   6608
   6609	/* This is used to verify Wake-on-LAN is working. */
   6610	if (hw_priv->pme_wait) {
   6611		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
   6612			hw_clr_wol_pme_status(&hw_priv->hw);
   6613			hw_priv->pme_wait = 0;
   6614		}
   6615	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
   6616
   6617		/* PME is asserted.  Wait 2 seconds to clear it. */
   6618		hw_priv->pme_wait = jiffies + HZ * 2;
   6619	}
   6620
   6621	ksz_update_timer(&hw_priv->mib_timer_info);
   6622}
   6623
   6624/**
   6625 * dev_monitor - periodic monitoring
   6626 * @t:	timer list containing a network device pointer.
   6627 *
   6628 * This routine is run in a kernel timer to monitor the network device.
   6629 */
   6630static void dev_monitor(struct timer_list *t)
   6631{
   6632	struct dev_priv *priv = from_timer(priv, t, monitor_timer_info.timer);
   6633	struct net_device *dev = priv->mii_if.dev;
   6634	struct dev_info *hw_priv = priv->adapter;
   6635	struct ksz_hw *hw = &hw_priv->hw;
   6636	struct ksz_port *port = &priv->port;
   6637
   6638	if (!(hw->features & LINK_INT_WORKING))
   6639		port_get_link_speed(port);
   6640	update_link(dev, priv, port);
   6641
   6642	ksz_update_timer(&priv->monitor_timer_info);
   6643}
   6644
   6645/*
   6646 * Linux network device interface functions
   6647 */
   6648
   6649/* Driver exported variables */
   6650
   6651static int msg_enable;
   6652
   6653static char *macaddr = ":";
   6654static char *mac1addr = ":";
   6655
   6656/*
   6657 * This enables multiple network device mode for KSZ8842, which contains a
   6658 * switch with two physical ports.  Some users like to take control of the
   6659 * ports for running Spanning Tree Protocol.  The driver will create an
   6660 * additional eth? device for the other port.
   6661 *
   6662 * Some limitations are the network devices cannot have different MTU and
   6663 * multicast hash tables.
   6664 */
   6665static int multi_dev;
   6666
   6667/*
   6668 * As most users select multiple network device mode to use Spanning Tree
   6669 * Protocol, this enables a feature in which most unicast and multicast packets
   6670 * are forwarded inside the switch and not passed to the host.  Only packets
   6671 * that need the host's attention are passed to it.  This prevents the host
   6672 * wasting CPU time to examine each and every incoming packets and do the
   6673 * forwarding itself.
   6674 *
   6675 * As the hack requires the private bridge header, the driver cannot compile
   6676 * with just the kernel headers.
   6677 *
   6678 * Enabling STP support also turns on multiple network device mode.
   6679 */
   6680static int stp;
   6681
   6682/*
   6683 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
   6684 * needs that.  However, fast aging is used to flush the dynamic MAC table when
   6685 * STP support is enabled.
   6686 */
   6687static int fast_aging;
   6688
   6689/**
   6690 * netdev_init - initialize network device.
   6691 * @dev:	Network device.
   6692 *
   6693 * This function initializes the network device.
   6694 *
   6695 * Return 0 if successful; otherwise an error code indicating failure.
   6696 */
   6697static int __init netdev_init(struct net_device *dev)
   6698{
   6699	struct dev_priv *priv = netdev_priv(dev);
   6700
   6701	/* 500 ms timeout */
   6702	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
   6703		dev_monitor);
   6704
   6705	/* 500 ms timeout */
   6706	dev->watchdog_timeo = HZ / 2;
   6707
   6708	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
   6709
   6710	/*
   6711	 * Hardware does not really support IPv6 checksum generation, but
   6712	 * driver actually runs faster with this on.
   6713	 */
   6714	dev->hw_features |= NETIF_F_IPV6_CSUM;
   6715
   6716	dev->features |= dev->hw_features;
   6717
   6718	sema_init(&priv->proc_sem, 1);
   6719
   6720	priv->mii_if.phy_id_mask = 0x1;
   6721	priv->mii_if.reg_num_mask = 0x7;
   6722	priv->mii_if.dev = dev;
   6723	priv->mii_if.mdio_read = mdio_read;
   6724	priv->mii_if.mdio_write = mdio_write;
   6725	priv->mii_if.phy_id = priv->port.first_port + 1;
   6726
   6727	priv->msg_enable = netif_msg_init(msg_enable,
   6728		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
   6729
   6730	return 0;
   6731}
   6732
   6733static const struct net_device_ops netdev_ops = {
   6734	.ndo_init		= netdev_init,
   6735	.ndo_open		= netdev_open,
   6736	.ndo_stop		= netdev_close,
   6737	.ndo_get_stats		= netdev_query_statistics,
   6738	.ndo_start_xmit		= netdev_tx,
   6739	.ndo_tx_timeout		= netdev_tx_timeout,
   6740	.ndo_change_mtu		= netdev_change_mtu,
   6741	.ndo_set_features	= netdev_set_features,
   6742	.ndo_set_mac_address	= netdev_set_mac_address,
   6743	.ndo_validate_addr	= eth_validate_addr,
   6744	.ndo_eth_ioctl		= netdev_ioctl,
   6745	.ndo_set_rx_mode	= netdev_set_rx_mode,
   6746#ifdef CONFIG_NET_POLL_CONTROLLER
   6747	.ndo_poll_controller	= netdev_netpoll,
   6748#endif
   6749};
   6750
   6751static void netdev_free(struct net_device *dev)
   6752{
   6753	if (dev->watchdog_timeo)
   6754		unregister_netdev(dev);
   6755
   6756	free_netdev(dev);
   6757}
   6758
   6759struct platform_info {
   6760	struct dev_info dev_info;
   6761	struct net_device *netdev[SWITCH_PORT_NUM];
   6762};
   6763
   6764static int net_device_present;
   6765
   6766static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
   6767{
   6768	int i;
   6769	int j;
   6770	int got_num;
   6771	int num;
   6772
   6773	i = j = num = got_num = 0;
   6774	while (j < ETH_ALEN) {
   6775		if (macaddr[i]) {
   6776			int digit;
   6777
   6778			got_num = 1;
   6779			digit = hex_to_bin(macaddr[i]);
   6780			if (digit >= 0)
   6781				num = num * 16 + digit;
   6782			else if (':' == macaddr[i])
   6783				got_num = 2;
   6784			else
   6785				break;
   6786		} else if (got_num)
   6787			got_num = 2;
   6788		else
   6789			break;
   6790		if (2 == got_num) {
   6791			if (MAIN_PORT == port) {
   6792				hw_priv->hw.override_addr[j++] = (u8) num;
   6793				hw_priv->hw.override_addr[5] +=
   6794					hw_priv->hw.id;
   6795			} else {
   6796				hw_priv->hw.ksz_switch->other_addr[j++] =
   6797					(u8) num;
   6798				hw_priv->hw.ksz_switch->other_addr[5] +=
   6799					hw_priv->hw.id;
   6800			}
   6801			num = got_num = 0;
   6802		}
   6803		i++;
   6804	}
   6805	if (ETH_ALEN == j) {
   6806		if (MAIN_PORT == port)
   6807			hw_priv->hw.mac_override = 1;
   6808	}
   6809}
   6810
   6811#define KS884X_DMA_MASK			(~0x0UL)
   6812
   6813static void read_other_addr(struct ksz_hw *hw)
   6814{
   6815	int i;
   6816	u16 data[3];
   6817	struct ksz_switch *sw = hw->ksz_switch;
   6818
   6819	for (i = 0; i < 3; i++)
   6820		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
   6821	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
   6822		sw->other_addr[5] = (u8) data[0];
   6823		sw->other_addr[4] = (u8)(data[0] >> 8);
   6824		sw->other_addr[3] = (u8) data[1];
   6825		sw->other_addr[2] = (u8)(data[1] >> 8);
   6826		sw->other_addr[1] = (u8) data[2];
   6827		sw->other_addr[0] = (u8)(data[2] >> 8);
   6828	}
   6829}
   6830
   6831#ifndef PCI_VENDOR_ID_MICREL_KS
   6832#define PCI_VENDOR_ID_MICREL_KS		0x16c6
   6833#endif
   6834
   6835static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
   6836{
   6837	struct net_device *dev;
   6838	struct dev_priv *priv;
   6839	struct dev_info *hw_priv;
   6840	struct ksz_hw *hw;
   6841	struct platform_info *info;
   6842	struct ksz_port *port;
   6843	unsigned long reg_base;
   6844	unsigned long reg_len;
   6845	int cnt;
   6846	int i;
   6847	int mib_port_count;
   6848	int pi;
   6849	int port_count;
   6850	int result;
   6851	char banner[sizeof(version)];
   6852	struct ksz_switch *sw = NULL;
   6853
   6854	result = pci_enable_device(pdev);
   6855	if (result)
   6856		return result;
   6857
   6858	result = -ENODEV;
   6859
   6860	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) ||
   6861	    dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))
   6862		return result;
   6863
   6864	reg_base = pci_resource_start(pdev, 0);
   6865	reg_len = pci_resource_len(pdev, 0);
   6866	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
   6867		return result;
   6868
   6869	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
   6870		return result;
   6871	pci_set_master(pdev);
   6872
   6873	result = -ENOMEM;
   6874
   6875	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
   6876	if (!info)
   6877		goto pcidev_init_dev_err;
   6878
   6879	hw_priv = &info->dev_info;
   6880	hw_priv->pdev = pdev;
   6881
   6882	hw = &hw_priv->hw;
   6883
   6884	hw->io = ioremap(reg_base, reg_len);
   6885	if (!hw->io)
   6886		goto pcidev_init_io_err;
   6887
   6888	cnt = hw_init(hw);
   6889	if (!cnt) {
   6890		if (msg_enable & NETIF_MSG_PROBE)
   6891			pr_alert("chip not detected\n");
   6892		result = -ENODEV;
   6893		goto pcidev_init_alloc_err;
   6894	}
   6895
   6896	snprintf(banner, sizeof(banner), "%s", version);
   6897	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
   6898	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
   6899	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
   6900
   6901	/* Assume device is KSZ8841. */
   6902	hw->dev_count = 1;
   6903	port_count = 1;
   6904	mib_port_count = 1;
   6905	hw->addr_list_size = 0;
   6906	hw->mib_cnt = PORT_COUNTER_NUM;
   6907	hw->mib_port_cnt = 1;
   6908
   6909	/* KSZ8842 has a switch with multiple ports. */
   6910	if (2 == cnt) {
   6911		if (fast_aging)
   6912			hw->overrides |= FAST_AGING;
   6913
   6914		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
   6915
   6916		/* Multiple network device interfaces are required. */
   6917		if (multi_dev) {
   6918			hw->dev_count = SWITCH_PORT_NUM;
   6919			hw->addr_list_size = SWITCH_PORT_NUM - 1;
   6920		}
   6921
   6922		/* Single network device has multiple ports. */
   6923		if (1 == hw->dev_count) {
   6924			port_count = SWITCH_PORT_NUM;
   6925			mib_port_count = SWITCH_PORT_NUM;
   6926		}
   6927		hw->mib_port_cnt = TOTAL_PORT_NUM;
   6928		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
   6929		if (!hw->ksz_switch)
   6930			goto pcidev_init_alloc_err;
   6931
   6932		sw = hw->ksz_switch;
   6933	}
   6934	for (i = 0; i < hw->mib_port_cnt; i++)
   6935		hw->port_mib[i].mib_start = 0;
   6936
   6937	hw->parent = hw_priv;
   6938
   6939	/* Default MTU is 1500. */
   6940	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
   6941
   6942	if (ksz_alloc_mem(hw_priv))
   6943		goto pcidev_init_mem_err;
   6944
   6945	hw_priv->hw.id = net_device_present;
   6946
   6947	spin_lock_init(&hw_priv->hwlock);
   6948	mutex_init(&hw_priv->lock);
   6949
   6950	for (i = 0; i < TOTAL_PORT_NUM; i++)
   6951		init_waitqueue_head(&hw_priv->counter[i].counter);
   6952
   6953	if (macaddr[0] != ':')
   6954		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
   6955
   6956	/* Read MAC address and initialize override address if not overridden. */
   6957	hw_read_addr(hw);
   6958
   6959	/* Multiple device interfaces mode requires a second MAC address. */
   6960	if (hw->dev_count > 1) {
   6961		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
   6962		read_other_addr(hw);
   6963		if (mac1addr[0] != ':')
   6964			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
   6965	}
   6966
   6967	hw_setup(hw);
   6968	if (hw->ksz_switch)
   6969		sw_setup(hw);
   6970	else {
   6971		hw_priv->wol_support = WOL_SUPPORT;
   6972		hw_priv->wol_enable = 0;
   6973	}
   6974
   6975	INIT_WORK(&hw_priv->mib_read, mib_read_work);
   6976
   6977	/* 500 ms timeout */
   6978	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
   6979		mib_monitor);
   6980
   6981	for (i = 0; i < hw->dev_count; i++) {
   6982		dev = alloc_etherdev(sizeof(struct dev_priv));
   6983		if (!dev)
   6984			goto pcidev_init_reg_err;
   6985		SET_NETDEV_DEV(dev, &pdev->dev);
   6986		info->netdev[i] = dev;
   6987
   6988		priv = netdev_priv(dev);
   6989		priv->adapter = hw_priv;
   6990		priv->id = net_device_present++;
   6991
   6992		port = &priv->port;
   6993		port->port_cnt = port_count;
   6994		port->mib_port_cnt = mib_port_count;
   6995		port->first_port = i;
   6996		port->flow_ctrl = PHY_FLOW_CTRL;
   6997
   6998		port->hw = hw;
   6999		port->linked = &hw->port_info[port->first_port];
   7000
   7001		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
   7002			hw->port_info[pi].port_id = pi;
   7003			hw->port_info[pi].pdev = dev;
   7004			hw->port_info[pi].state = media_disconnected;
   7005		}
   7006
   7007		dev->mem_start = (unsigned long) hw->io;
   7008		dev->mem_end = dev->mem_start + reg_len - 1;
   7009		dev->irq = pdev->irq;
   7010		if (MAIN_PORT == i)
   7011			eth_hw_addr_set(dev, hw_priv->hw.override_addr);
   7012		else {
   7013			u8 addr[ETH_ALEN];
   7014
   7015			ether_addr_copy(addr, sw->other_addr);
   7016			if (ether_addr_equal(sw->other_addr, hw->override_addr))
   7017				addr[5] += port->first_port;
   7018			eth_hw_addr_set(dev, addr);
   7019		}
   7020
   7021		dev->netdev_ops = &netdev_ops;
   7022		dev->ethtool_ops = &netdev_ethtool_ops;
   7023
   7024		/* MTU range: 60 - 1894 */
   7025		dev->min_mtu = ETH_ZLEN;
   7026		dev->max_mtu = MAX_RX_BUF_SIZE -
   7027			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
   7028
   7029		if (register_netdev(dev))
   7030			goto pcidev_init_reg_err;
   7031		port_set_power_saving(port, true);
   7032	}
   7033
   7034	pci_dev_get(hw_priv->pdev);
   7035	pci_set_drvdata(pdev, info);
   7036	return 0;
   7037
   7038pcidev_init_reg_err:
   7039	for (i = 0; i < hw->dev_count; i++) {
   7040		if (info->netdev[i]) {
   7041			netdev_free(info->netdev[i]);
   7042			info->netdev[i] = NULL;
   7043		}
   7044	}
   7045
   7046pcidev_init_mem_err:
   7047	ksz_free_mem(hw_priv);
   7048	kfree(hw->ksz_switch);
   7049
   7050pcidev_init_alloc_err:
   7051	iounmap(hw->io);
   7052
   7053pcidev_init_io_err:
   7054	kfree(info);
   7055
   7056pcidev_init_dev_err:
   7057	release_mem_region(reg_base, reg_len);
   7058
   7059	return result;
   7060}
   7061
   7062static void pcidev_exit(struct pci_dev *pdev)
   7063{
   7064	int i;
   7065	struct platform_info *info = pci_get_drvdata(pdev);
   7066	struct dev_info *hw_priv = &info->dev_info;
   7067
   7068	release_mem_region(pci_resource_start(pdev, 0),
   7069		pci_resource_len(pdev, 0));
   7070	for (i = 0; i < hw_priv->hw.dev_count; i++) {
   7071		if (info->netdev[i])
   7072			netdev_free(info->netdev[i]);
   7073	}
   7074	if (hw_priv->hw.io)
   7075		iounmap(hw_priv->hw.io);
   7076	ksz_free_mem(hw_priv);
   7077	kfree(hw_priv->hw.ksz_switch);
   7078	pci_dev_put(hw_priv->pdev);
   7079	kfree(info);
   7080}
   7081
   7082static int __maybe_unused pcidev_resume(struct device *dev_d)
   7083{
   7084	int i;
   7085	struct platform_info *info = dev_get_drvdata(dev_d);
   7086	struct dev_info *hw_priv = &info->dev_info;
   7087	struct ksz_hw *hw = &hw_priv->hw;
   7088
   7089	device_wakeup_disable(dev_d);
   7090
   7091	if (hw_priv->wol_enable)
   7092		hw_cfg_wol_pme(hw, 0);
   7093	for (i = 0; i < hw->dev_count; i++) {
   7094		if (info->netdev[i]) {
   7095			struct net_device *dev = info->netdev[i];
   7096
   7097			if (netif_running(dev)) {
   7098				netdev_open(dev);
   7099				netif_device_attach(dev);
   7100			}
   7101		}
   7102	}
   7103	return 0;
   7104}
   7105
   7106static int __maybe_unused pcidev_suspend(struct device *dev_d)
   7107{
   7108	int i;
   7109	struct platform_info *info = dev_get_drvdata(dev_d);
   7110	struct dev_info *hw_priv = &info->dev_info;
   7111	struct ksz_hw *hw = &hw_priv->hw;
   7112
   7113	/* Need to find a way to retrieve the device IP address. */
   7114	static const u8 net_addr[] = { 192, 168, 1, 1 };
   7115
   7116	for (i = 0; i < hw->dev_count; i++) {
   7117		if (info->netdev[i]) {
   7118			struct net_device *dev = info->netdev[i];
   7119
   7120			if (netif_running(dev)) {
   7121				netif_device_detach(dev);
   7122				netdev_close(dev);
   7123			}
   7124		}
   7125	}
   7126	if (hw_priv->wol_enable) {
   7127		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
   7128		hw_cfg_wol_pme(hw, 1);
   7129	}
   7130
   7131	device_wakeup_enable(dev_d);
   7132	return 0;
   7133}
   7134
   7135static char pcidev_name[] = "ksz884xp";
   7136
   7137static const struct pci_device_id pcidev_table[] = {
   7138	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
   7139		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
   7140	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
   7141		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
   7142	{ 0 }
   7143};
   7144
   7145MODULE_DEVICE_TABLE(pci, pcidev_table);
   7146
   7147static SIMPLE_DEV_PM_OPS(pcidev_pm_ops, pcidev_suspend, pcidev_resume);
   7148
   7149static struct pci_driver pci_device_driver = {
   7150	.driver.pm	= &pcidev_pm_ops,
   7151	.name		= pcidev_name,
   7152	.id_table	= pcidev_table,
   7153	.probe		= pcidev_init,
   7154	.remove		= pcidev_exit
   7155};
   7156
   7157module_pci_driver(pci_device_driver);
   7158
   7159MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
   7160MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
   7161MODULE_LICENSE("GPL");
   7162
   7163module_param_named(message, msg_enable, int, 0);
   7164MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
   7165
   7166module_param(macaddr, charp, 0);
   7167module_param(mac1addr, charp, 0);
   7168module_param(fast_aging, int, 0);
   7169module_param(multi_dev, int, 0);
   7170module_param(stp, int, 0);
   7171MODULE_PARM_DESC(macaddr, "MAC address");
   7172MODULE_PARM_DESC(mac1addr, "Second MAC address");
   7173MODULE_PARM_DESC(fast_aging, "Fast aging");
   7174MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
   7175MODULE_PARM_DESC(stp, "STP support");