cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ns83820.c (61816B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2#define VERSION "0.23"
      3/* ns83820.c by Benjamin LaHaise with contributions.
      4 *
      5 * Questions/comments/discussion to linux-ns83820@kvack.org.
      6 *
      7 * $Revision: 1.34.2.23 $
      8 *
      9 * Copyright 2001 Benjamin LaHaise.
     10 * Copyright 2001, 2002 Red Hat.
     11 *
     12 * Mmmm, chocolate vanilla mocha...
     13 *
     14 * ChangeLog
     15 * =========
     16 *	20010414	0.1 - created
     17 *	20010622	0.2 - basic rx and tx.
     18 *	20010711	0.3 - added duplex and link state detection support.
     19 *	20010713	0.4 - zero copy, no hangs.
     20 *			0.5 - 64 bit dma support (davem will hate me for this)
     21 *			    - disable jumbo frames to avoid tx hangs
     22 *			    - work around tx deadlocks on my 1.02 card via
     23 *			      fiddling with TXCFG
     24 *	20010810	0.6 - use pci dma api for ringbuffers, work on ia64
     25 *	20010816	0.7 - misc cleanups
     26 *	20010826	0.8 - fix critical zero copy bugs
     27 *			0.9 - internal experiment
     28 *	20010827	0.10 - fix ia64 unaligned access.
     29 *	20010906	0.11 - accept all packets with checksum errors as
     30 *			       otherwise fragments get lost
     31 *			     - fix >> 32 bugs
     32 *			0.12 - add statistics counters
     33 *			     - add allmulti/promisc support
     34 *	20011009	0.13 - hotplug support, other smaller pci api cleanups
     35 *	20011204	0.13a - optical transceiver support added
     36 *				by Michael Clark <michael@metaparadigm.com>
     37 *	20011205	0.13b - call register_netdev earlier in initialization
     38 *				suppress duplicate link status messages
     39 *	20011117 	0.14 - ethtool GDRVINFO, GLINK support from jgarzik
     40 *	20011204 	0.15	get ppc (big endian) working
     41 *	20011218	0.16	various cleanups
     42 *	20020310	0.17	speedups
     43 *	20020610	0.18 -	actually use the pci dma api for highmem
     44 *			     -	remove pci latency register fiddling
     45 *			0.19 -	better bist support
     46 *			     -	add ihr and reset_phy parameters
     47 *			     -	gmii bus probing
     48 *			     -	fix missed txok introduced during performance
     49 *				tuning
     50 *			0.20 -	fix stupid RFEN thinko.  i am such a smurf.
     51 *	20040828	0.21 -	add hardware vlan accleration
     52 *				by Neil Horman <nhorman@redhat.com>
     53 *	20050406	0.22 -	improved DAC ifdefs from Andi Kleen
     54 *			     -	removal of dead code from Adrian Bunk
     55 *			     -	fix half duplex collision behaviour
     56 * Driver Overview
     57 * ===============
     58 *
     59 * This driver was originally written for the National Semiconductor
     60 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
     61 * this code will turn out to be a) clean, b) correct, and c) fast.
     62 * With that in mind, I'm aiming to split the code up as much as
     63 * reasonably possible.  At present there are X major sections that
     64 * break down into a) packet receive, b) packet transmit, c) link
     65 * management, d) initialization and configuration.  Where possible,
     66 * these code paths are designed to run in parallel.
     67 *
     68 * This driver has been tested and found to work with the following
     69 * cards (in no particular order):
     70 *
     71 *	Cameo		SOHO-GA2000T	SOHO-GA2500T
     72 *	D-Link		DGE-500T
     73 *	PureData	PDP8023Z-TG
     74 *	SMC		SMC9452TX	SMC9462TX
     75 *	Netgear		GA621
     76 *
     77 * Special thanks to SMC for providing hardware to test this driver on.
     78 *
     79 * Reports of success or failure would be greatly appreciated.
     80 */
     81//#define dprintk		printk
     82#define dprintk(x...)		do { } while (0)
     83
     84#include <linux/module.h>
     85#include <linux/moduleparam.h>
     86#include <linux/types.h>
     87#include <linux/pci.h>
     88#include <linux/dma-mapping.h>
     89#include <linux/netdevice.h>
     90#include <linux/etherdevice.h>
     91#include <linux/delay.h>
     92#include <linux/workqueue.h>
     93#include <linux/init.h>
     94#include <linux/interrupt.h>
     95#include <linux/ip.h>	/* for iph */
     96#include <linux/in.h>	/* for IPPROTO_... */
     97#include <linux/compiler.h>
     98#include <linux/prefetch.h>
     99#include <linux/ethtool.h>
    100#include <linux/sched.h>
    101#include <linux/timer.h>
    102#include <linux/if_vlan.h>
    103#include <linux/rtnetlink.h>
    104#include <linux/jiffies.h>
    105#include <linux/slab.h>
    106
    107#include <asm/io.h>
    108#include <linux/uaccess.h>
    109
    110#define DRV_NAME "ns83820"
    111
    112/* Global parameters.  See module_param near the bottom. */
    113static int ihr = 2;
    114static int reset_phy = 0;
    115static int lnksts = 0;		/* CFG_LNKSTS bit polarity */
    116
    117/* Dprintk is used for more interesting debug events */
    118#undef Dprintk
    119#define	Dprintk			dprintk
    120
    121/* tunables */
    122#define RX_BUF_SIZE	1500	/* 8192 */
    123#if IS_ENABLED(CONFIG_VLAN_8021Q)
    124#define NS83820_VLAN_ACCEL_SUPPORT
    125#endif
    126
    127/* Must not exceed ~65000. */
    128#define NR_RX_DESC	64
    129#define NR_TX_DESC	128
    130
    131/* not tunable */
    132#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)	/* rx/tx mac addr + type */
    133
    134#define MIN_TX_DESC_FREE	8
    135
    136/* register defines */
    137#define CFGCS		0x04
    138
    139#define CR_TXE		0x00000001
    140#define CR_TXD		0x00000002
    141/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
    142 * The Receive engine skips one descriptor and moves
    143 * onto the next one!! */
    144#define CR_RXE		0x00000004
    145#define CR_RXD		0x00000008
    146#define CR_TXR		0x00000010
    147#define CR_RXR		0x00000020
    148#define CR_SWI		0x00000080
    149#define CR_RST		0x00000100
    150
    151#define PTSCR_EEBIST_FAIL       0x00000001
    152#define PTSCR_EEBIST_EN         0x00000002
    153#define PTSCR_EELOAD_EN         0x00000004
    154#define PTSCR_RBIST_FAIL        0x000001b8
    155#define PTSCR_RBIST_DONE        0x00000200
    156#define PTSCR_RBIST_EN          0x00000400
    157#define PTSCR_RBIST_RST         0x00002000
    158
    159#define MEAR_EEDI		0x00000001
    160#define MEAR_EEDO		0x00000002
    161#define MEAR_EECLK		0x00000004
    162#define MEAR_EESEL		0x00000008
    163#define MEAR_MDIO		0x00000010
    164#define MEAR_MDDIR		0x00000020
    165#define MEAR_MDC		0x00000040
    166
    167#define ISR_TXDESC3	0x40000000
    168#define ISR_TXDESC2	0x20000000
    169#define ISR_TXDESC1	0x10000000
    170#define ISR_TXDESC0	0x08000000
    171#define ISR_RXDESC3	0x04000000
    172#define ISR_RXDESC2	0x02000000
    173#define ISR_RXDESC1	0x01000000
    174#define ISR_RXDESC0	0x00800000
    175#define ISR_TXRCMP	0x00400000
    176#define ISR_RXRCMP	0x00200000
    177#define ISR_DPERR	0x00100000
    178#define ISR_SSERR	0x00080000
    179#define ISR_RMABT	0x00040000
    180#define ISR_RTABT	0x00020000
    181#define ISR_RXSOVR	0x00010000
    182#define ISR_HIBINT	0x00008000
    183#define ISR_PHY		0x00004000
    184#define ISR_PME		0x00002000
    185#define ISR_SWI		0x00001000
    186#define ISR_MIB		0x00000800
    187#define ISR_TXURN	0x00000400
    188#define ISR_TXIDLE	0x00000200
    189#define ISR_TXERR	0x00000100
    190#define ISR_TXDESC	0x00000080
    191#define ISR_TXOK	0x00000040
    192#define ISR_RXORN	0x00000020
    193#define ISR_RXIDLE	0x00000010
    194#define ISR_RXEARLY	0x00000008
    195#define ISR_RXERR	0x00000004
    196#define ISR_RXDESC	0x00000002
    197#define ISR_RXOK	0x00000001
    198
    199#define TXCFG_CSI	0x80000000
    200#define TXCFG_HBI	0x40000000
    201#define TXCFG_MLB	0x20000000
    202#define TXCFG_ATP	0x10000000
    203#define TXCFG_ECRETRY	0x00800000
    204#define TXCFG_BRST_DIS	0x00080000
    205#define TXCFG_MXDMA1024	0x00000000
    206#define TXCFG_MXDMA512	0x00700000
    207#define TXCFG_MXDMA256	0x00600000
    208#define TXCFG_MXDMA128	0x00500000
    209#define TXCFG_MXDMA64	0x00400000
    210#define TXCFG_MXDMA32	0x00300000
    211#define TXCFG_MXDMA16	0x00200000
    212#define TXCFG_MXDMA8	0x00100000
    213
    214#define CFG_LNKSTS	0x80000000
    215#define CFG_SPDSTS	0x60000000
    216#define CFG_SPDSTS1	0x40000000
    217#define CFG_SPDSTS0	0x20000000
    218#define CFG_DUPSTS	0x10000000
    219#define CFG_TBI_EN	0x01000000
    220#define CFG_MODE_1000	0x00400000
    221/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
    222 * Read the Phy response and then configure the MAC accordingly */
    223#define CFG_AUTO_1000	0x00200000
    224#define CFG_PINT_CTL	0x001c0000
    225#define CFG_PINT_DUPSTS	0x00100000
    226#define CFG_PINT_LNKSTS	0x00080000
    227#define CFG_PINT_SPDSTS	0x00040000
    228#define CFG_TMRTEST	0x00020000
    229#define CFG_MRM_DIS	0x00010000
    230#define CFG_MWI_DIS	0x00008000
    231#define CFG_T64ADDR	0x00004000
    232#define CFG_PCI64_DET	0x00002000
    233#define CFG_DATA64_EN	0x00001000
    234#define CFG_M64ADDR	0x00000800
    235#define CFG_PHY_RST	0x00000400
    236#define CFG_PHY_DIS	0x00000200
    237#define CFG_EXTSTS_EN	0x00000100
    238#define CFG_REQALG	0x00000080
    239#define CFG_SB		0x00000040
    240#define CFG_POW		0x00000020
    241#define CFG_EXD		0x00000010
    242#define CFG_PESEL	0x00000008
    243#define CFG_BROM_DIS	0x00000004
    244#define CFG_EXT_125	0x00000002
    245#define CFG_BEM		0x00000001
    246
    247#define EXTSTS_UDPPKT	0x00200000
    248#define EXTSTS_TCPPKT	0x00080000
    249#define EXTSTS_IPPKT	0x00020000
    250#define EXTSTS_VPKT	0x00010000
    251#define EXTSTS_VTG_MASK	0x0000ffff
    252
    253#define SPDSTS_POLARITY	(CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
    254
    255#define MIBC_MIBS	0x00000008
    256#define MIBC_ACLR	0x00000004
    257#define MIBC_FRZ	0x00000002
    258#define MIBC_WRN	0x00000001
    259
    260#define PCR_PSEN	(1 << 31)
    261#define PCR_PS_MCAST	(1 << 30)
    262#define PCR_PS_DA	(1 << 29)
    263#define PCR_STHI_8	(3 << 23)
    264#define PCR_STLO_4	(1 << 23)
    265#define PCR_FFHI_8K	(3 << 21)
    266#define PCR_FFLO_4K	(1 << 21)
    267#define PCR_PAUSE_CNT	0xFFFE
    268
    269#define RXCFG_AEP	0x80000000
    270#define RXCFG_ARP	0x40000000
    271#define RXCFG_STRIPCRC	0x20000000
    272#define RXCFG_RX_FD	0x10000000
    273#define RXCFG_ALP	0x08000000
    274#define RXCFG_AIRL	0x04000000
    275#define RXCFG_MXDMA512	0x00700000
    276#define RXCFG_DRTH	0x0000003e
    277#define RXCFG_DRTH0	0x00000002
    278
    279#define RFCR_RFEN	0x80000000
    280#define RFCR_AAB	0x40000000
    281#define RFCR_AAM	0x20000000
    282#define RFCR_AAU	0x10000000
    283#define RFCR_APM	0x08000000
    284#define RFCR_APAT	0x07800000
    285#define RFCR_APAT3	0x04000000
    286#define RFCR_APAT2	0x02000000
    287#define RFCR_APAT1	0x01000000
    288#define RFCR_APAT0	0x00800000
    289#define RFCR_AARP	0x00400000
    290#define RFCR_MHEN	0x00200000
    291#define RFCR_UHEN	0x00100000
    292#define RFCR_ULM	0x00080000
    293
    294#define VRCR_RUDPE	0x00000080
    295#define VRCR_RTCPE	0x00000040
    296#define VRCR_RIPE	0x00000020
    297#define VRCR_IPEN	0x00000010
    298#define VRCR_DUTF	0x00000008
    299#define VRCR_DVTF	0x00000004
    300#define VRCR_VTREN	0x00000002
    301#define VRCR_VTDEN	0x00000001
    302
    303#define VTCR_PPCHK	0x00000008
    304#define VTCR_GCHK	0x00000004
    305#define VTCR_VPPTI	0x00000002
    306#define VTCR_VGTI	0x00000001
    307
    308#define CR		0x00
    309#define CFG		0x04
    310#define MEAR		0x08
    311#define PTSCR		0x0c
    312#define	ISR		0x10
    313#define	IMR		0x14
    314#define	IER		0x18
    315#define	IHR		0x1c
    316#define TXDP		0x20
    317#define TXDP_HI		0x24
    318#define TXCFG		0x28
    319#define GPIOR		0x2c
    320#define RXDP		0x30
    321#define RXDP_HI		0x34
    322#define RXCFG		0x38
    323#define PQCR		0x3c
    324#define WCSR		0x40
    325#define PCR		0x44
    326#define RFCR		0x48
    327#define RFDR		0x4c
    328
    329#define SRR		0x58
    330
    331#define VRCR		0xbc
    332#define VTCR		0xc0
    333#define VDR		0xc4
    334#define CCSR		0xcc
    335
    336#define TBICR		0xe0
    337#define TBISR		0xe4
    338#define TANAR		0xe8
    339#define TANLPAR		0xec
    340#define TANER		0xf0
    341#define TESR		0xf4
    342
    343#define TBICR_MR_AN_ENABLE	0x00001000
    344#define TBICR_MR_RESTART_AN	0x00000200
    345
    346#define TBISR_MR_LINK_STATUS	0x00000020
    347#define TBISR_MR_AN_COMPLETE	0x00000004
    348
    349#define TANAR_PS2 		0x00000100
    350#define TANAR_PS1 		0x00000080
    351#define TANAR_HALF_DUP 		0x00000040
    352#define TANAR_FULL_DUP 		0x00000020
    353
    354#define GPIOR_GP5_OE		0x00000200
    355#define GPIOR_GP4_OE		0x00000100
    356#define GPIOR_GP3_OE		0x00000080
    357#define GPIOR_GP2_OE		0x00000040
    358#define GPIOR_GP1_OE		0x00000020
    359#define GPIOR_GP3_OUT		0x00000004
    360#define GPIOR_GP1_OUT		0x00000001
    361
    362#define LINK_AUTONEGOTIATE	0x01
    363#define LINK_DOWN		0x02
    364#define LINK_UP			0x04
    365
    366#define HW_ADDR_LEN	sizeof(dma_addr_t)
    367#define desc_addr_set(desc, addr)				\
    368	do {							\
    369		((desc)[0] = cpu_to_le32(addr));		\
    370		if (HW_ADDR_LEN == 8)		 		\
    371			(desc)[1] = cpu_to_le32(((u64)addr) >> 32);	\
    372	} while(0)
    373#define desc_addr_get(desc)					\
    374	(le32_to_cpu((desc)[0]) | \
    375	(HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
    376
    377#define DESC_LINK		0
    378#define DESC_BUFPTR		(DESC_LINK + HW_ADDR_LEN/4)
    379#define DESC_CMDSTS		(DESC_BUFPTR + HW_ADDR_LEN/4)
    380#define DESC_EXTSTS		(DESC_CMDSTS + 4/4)
    381
    382#define CMDSTS_OWN	0x80000000
    383#define CMDSTS_MORE	0x40000000
    384#define CMDSTS_INTR	0x20000000
    385#define CMDSTS_ERR	0x10000000
    386#define CMDSTS_OK	0x08000000
    387#define CMDSTS_RUNT	0x00200000
    388#define CMDSTS_LEN_MASK	0x0000ffff
    389
    390#define CMDSTS_DEST_MASK	0x01800000
    391#define CMDSTS_DEST_SELF	0x00800000
    392#define CMDSTS_DEST_MULTI	0x01000000
    393
    394#define DESC_SIZE	8		/* Should be cache line sized */
    395
    396struct rx_info {
    397	spinlock_t	lock;
    398	int		up;
    399	unsigned long	idle;
    400
    401	struct sk_buff	*skbs[NR_RX_DESC];
    402
    403	__le32		*next_rx_desc;
    404	u16		next_rx, next_empty;
    405
    406	__le32		*descs;
    407	dma_addr_t	phy_descs;
    408};
    409
    410
    411struct ns83820 {
    412	u8			__iomem *base;
    413
    414	struct pci_dev		*pci_dev;
    415	struct net_device	*ndev;
    416
    417	struct rx_info		rx_info;
    418	struct tasklet_struct	rx_tasklet;
    419
    420	unsigned		ihr;
    421	struct work_struct	tq_refill;
    422
    423	/* protects everything below.  irqsave when using. */
    424	spinlock_t		misc_lock;
    425
    426	u32			CFG_cache;
    427
    428	u32			MEAR_cache;
    429	u32			IMR_cache;
    430
    431	unsigned		linkstate;
    432
    433	spinlock_t	tx_lock;
    434
    435	u16		tx_done_idx;
    436	u16		tx_idx;
    437	volatile u16	tx_free_idx;	/* idx of free desc chain */
    438	u16		tx_intr_idx;
    439
    440	atomic_t	nr_tx_skbs;
    441	struct sk_buff	*tx_skbs[NR_TX_DESC];
    442
    443	char		pad[16] __attribute__((aligned(16)));
    444	__le32		*tx_descs;
    445	dma_addr_t	tx_phy_descs;
    446
    447	struct timer_list	tx_watchdog;
    448};
    449
    450static inline struct ns83820 *PRIV(struct net_device *dev)
    451{
    452	return netdev_priv(dev);
    453}
    454
    455#define __kick_rx(dev)	writel(CR_RXE, dev->base + CR)
    456
    457static inline void kick_rx(struct net_device *ndev)
    458{
    459	struct ns83820 *dev = PRIV(ndev);
    460	dprintk("kick_rx: maybe kicking\n");
    461	if (test_and_clear_bit(0, &dev->rx_info.idle)) {
    462		dprintk("actually kicking\n");
    463		writel(dev->rx_info.phy_descs +
    464			(4 * DESC_SIZE * dev->rx_info.next_rx),
    465		       dev->base + RXDP);
    466		if (dev->rx_info.next_rx == dev->rx_info.next_empty)
    467			printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
    468				ndev->name);
    469		__kick_rx(dev);
    470	}
    471}
    472
    473//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
    474#define start_tx_okay(dev)	\
    475	(((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
    476
    477/* Packet Receiver
    478 *
    479 * The hardware supports linked lists of receive descriptors for
    480 * which ownership is transferred back and forth by means of an
    481 * ownership bit.  While the hardware does support the use of a
    482 * ring for receive descriptors, we only make use of a chain in
    483 * an attempt to reduce bus traffic under heavy load scenarios.
    484 * This will also make bugs a bit more obvious.  The current code
    485 * only makes use of a single rx chain; I hope to implement
    486 * priority based rx for version 1.0.  Goal: even under overload
    487 * conditions, still route realtime traffic with as low jitter as
    488 * possible.
    489 */
    490static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
    491{
    492	desc_addr_set(desc + DESC_LINK, link);
    493	desc_addr_set(desc + DESC_BUFPTR, buf);
    494	desc[DESC_EXTSTS] = cpu_to_le32(extsts);
    495	mb();
    496	desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
    497}
    498
    499#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
    500static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
    501{
    502	unsigned next_empty;
    503	u32 cmdsts;
    504	__le32 *sg;
    505	dma_addr_t buf;
    506
    507	next_empty = dev->rx_info.next_empty;
    508
    509	/* don't overrun last rx marker */
    510	if (unlikely(nr_rx_empty(dev) <= 2)) {
    511		kfree_skb(skb);
    512		return 1;
    513	}
    514
    515#if 0
    516	dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
    517		dev->rx_info.next_empty,
    518		dev->rx_info.nr_used,
    519		dev->rx_info.next_rx
    520		);
    521#endif
    522
    523	sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
    524	BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
    525	dev->rx_info.skbs[next_empty] = skb;
    526
    527	dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
    528	cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
    529	buf = dma_map_single(&dev->pci_dev->dev, skb->data, REAL_RX_BUF_SIZE,
    530			     DMA_FROM_DEVICE);
    531	build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
    532	/* update link of previous rx */
    533	if (likely(next_empty != dev->rx_info.next_rx))
    534		dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
    535
    536	return 0;
    537}
    538
    539static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
    540{
    541	struct ns83820 *dev = PRIV(ndev);
    542	unsigned i;
    543	unsigned long flags = 0;
    544
    545	if (unlikely(nr_rx_empty(dev) <= 2))
    546		return 0;
    547
    548	dprintk("rx_refill(%p)\n", ndev);
    549	if (gfp == GFP_ATOMIC)
    550		spin_lock_irqsave(&dev->rx_info.lock, flags);
    551	for (i=0; i<NR_RX_DESC; i++) {
    552		struct sk_buff *skb;
    553		long res;
    554
    555		/* extra 16 bytes for alignment */
    556		skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
    557		if (unlikely(!skb))
    558			break;
    559
    560		skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
    561		if (gfp != GFP_ATOMIC)
    562			spin_lock_irqsave(&dev->rx_info.lock, flags);
    563		res = ns83820_add_rx_skb(dev, skb);
    564		if (gfp != GFP_ATOMIC)
    565			spin_unlock_irqrestore(&dev->rx_info.lock, flags);
    566		if (res) {
    567			i = 1;
    568			break;
    569		}
    570	}
    571	if (gfp == GFP_ATOMIC)
    572		spin_unlock_irqrestore(&dev->rx_info.lock, flags);
    573
    574	return i ? 0 : -ENOMEM;
    575}
    576
    577static void rx_refill_atomic(struct net_device *ndev)
    578{
    579	rx_refill(ndev, GFP_ATOMIC);
    580}
    581
    582/* REFILL */
    583static inline void queue_refill(struct work_struct *work)
    584{
    585	struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
    586	struct net_device *ndev = dev->ndev;
    587
    588	rx_refill(ndev, GFP_KERNEL);
    589	if (dev->rx_info.up)
    590		kick_rx(ndev);
    591}
    592
    593static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
    594{
    595	build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
    596}
    597
    598static void phy_intr(struct net_device *ndev)
    599{
    600	struct ns83820 *dev = PRIV(ndev);
    601	static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
    602	u32 cfg, new_cfg;
    603	u32 tanar, tanlpar;
    604	int speed, fullduplex, newlinkstate;
    605
    606	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
    607
    608	if (dev->CFG_cache & CFG_TBI_EN) {
    609		u32 __maybe_unused tbisr;
    610
    611		/* we have an optical transceiver */
    612		tbisr = readl(dev->base + TBISR);
    613		tanar = readl(dev->base + TANAR);
    614		tanlpar = readl(dev->base + TANLPAR);
    615		dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
    616			tbisr, tanar, tanlpar);
    617
    618		if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
    619		      (tanar & TANAR_FULL_DUP)) ) {
    620
    621			/* both of us are full duplex */
    622			writel(readl(dev->base + TXCFG)
    623			       | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
    624			       dev->base + TXCFG);
    625			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
    626			       dev->base + RXCFG);
    627			/* Light up full duplex LED */
    628			writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
    629			       dev->base + GPIOR);
    630
    631		} else if (((tanlpar & TANAR_HALF_DUP) &&
    632			    (tanar & TANAR_HALF_DUP)) ||
    633			   ((tanlpar & TANAR_FULL_DUP) &&
    634			    (tanar & TANAR_HALF_DUP)) ||
    635			   ((tanlpar & TANAR_HALF_DUP) &&
    636			    (tanar & TANAR_FULL_DUP))) {
    637
    638			/* one or both of us are half duplex */
    639			writel((readl(dev->base + TXCFG)
    640				& ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
    641			       dev->base + TXCFG);
    642			writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
    643			       dev->base + RXCFG);
    644			/* Turn off full duplex LED */
    645			writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
    646			       dev->base + GPIOR);
    647		}
    648
    649		speed = 4; /* 1000F */
    650
    651	} else {
    652		/* we have a copper transceiver */
    653		new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
    654
    655		if (cfg & CFG_SPDSTS1)
    656			new_cfg |= CFG_MODE_1000;
    657		else
    658			new_cfg &= ~CFG_MODE_1000;
    659
    660		speed = ((cfg / CFG_SPDSTS0) & 3);
    661		fullduplex = (cfg & CFG_DUPSTS);
    662
    663		if (fullduplex) {
    664			new_cfg |= CFG_SB;
    665			writel(readl(dev->base + TXCFG)
    666					| TXCFG_CSI | TXCFG_HBI,
    667			       dev->base + TXCFG);
    668			writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
    669			       dev->base + RXCFG);
    670		} else {
    671			writel(readl(dev->base + TXCFG)
    672					& ~(TXCFG_CSI | TXCFG_HBI),
    673			       dev->base + TXCFG);
    674			writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
    675			       dev->base + RXCFG);
    676		}
    677
    678		if ((cfg & CFG_LNKSTS) &&
    679		    ((new_cfg ^ dev->CFG_cache) != 0)) {
    680			writel(new_cfg, dev->base + CFG);
    681			dev->CFG_cache = new_cfg;
    682		}
    683
    684		dev->CFG_cache &= ~CFG_SPDSTS;
    685		dev->CFG_cache |= cfg & CFG_SPDSTS;
    686	}
    687
    688	newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
    689
    690	if (newlinkstate & LINK_UP &&
    691	    dev->linkstate != newlinkstate) {
    692		netif_start_queue(ndev);
    693		netif_wake_queue(ndev);
    694		printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
    695			ndev->name,
    696			speeds[speed],
    697			fullduplex ? "full" : "half");
    698	} else if (newlinkstate & LINK_DOWN &&
    699		   dev->linkstate != newlinkstate) {
    700		netif_stop_queue(ndev);
    701		printk(KERN_INFO "%s: link now down.\n", ndev->name);
    702	}
    703
    704	dev->linkstate = newlinkstate;
    705}
    706
    707static int ns83820_setup_rx(struct net_device *ndev)
    708{
    709	struct ns83820 *dev = PRIV(ndev);
    710	unsigned i;
    711	int ret;
    712
    713	dprintk("ns83820_setup_rx(%p)\n", ndev);
    714
    715	dev->rx_info.idle = 1;
    716	dev->rx_info.next_rx = 0;
    717	dev->rx_info.next_rx_desc = dev->rx_info.descs;
    718	dev->rx_info.next_empty = 0;
    719
    720	for (i=0; i<NR_RX_DESC; i++)
    721		clear_rx_desc(dev, i);
    722
    723	writel(0, dev->base + RXDP_HI);
    724	writel(dev->rx_info.phy_descs, dev->base + RXDP);
    725
    726	ret = rx_refill(ndev, GFP_KERNEL);
    727	if (!ret) {
    728		dprintk("starting receiver\n");
    729		/* prevent the interrupt handler from stomping on us */
    730		spin_lock_irq(&dev->rx_info.lock);
    731
    732		writel(0x0001, dev->base + CCSR);
    733		writel(0, dev->base + RFCR);
    734		writel(0x7fc00000, dev->base + RFCR);
    735		writel(0xffc00000, dev->base + RFCR);
    736
    737		dev->rx_info.up = 1;
    738
    739		phy_intr(ndev);
    740
    741		/* Okay, let it rip */
    742		spin_lock(&dev->misc_lock);
    743		dev->IMR_cache |= ISR_PHY;
    744		dev->IMR_cache |= ISR_RXRCMP;
    745		//dev->IMR_cache |= ISR_RXERR;
    746		//dev->IMR_cache |= ISR_RXOK;
    747		dev->IMR_cache |= ISR_RXORN;
    748		dev->IMR_cache |= ISR_RXSOVR;
    749		dev->IMR_cache |= ISR_RXDESC;
    750		dev->IMR_cache |= ISR_RXIDLE;
    751		dev->IMR_cache |= ISR_TXDESC;
    752		dev->IMR_cache |= ISR_TXIDLE;
    753
    754		writel(dev->IMR_cache, dev->base + IMR);
    755		writel(1, dev->base + IER);
    756		spin_unlock(&dev->misc_lock);
    757
    758		kick_rx(ndev);
    759
    760		spin_unlock_irq(&dev->rx_info.lock);
    761	}
    762	return ret;
    763}
    764
    765static void ns83820_cleanup_rx(struct ns83820 *dev)
    766{
    767	unsigned i;
    768	unsigned long flags;
    769
    770	dprintk("ns83820_cleanup_rx(%p)\n", dev);
    771
    772	/* disable receive interrupts */
    773	spin_lock_irqsave(&dev->misc_lock, flags);
    774	dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
    775	writel(dev->IMR_cache, dev->base + IMR);
    776	spin_unlock_irqrestore(&dev->misc_lock, flags);
    777
    778	/* synchronize with the interrupt handler and kill it */
    779	dev->rx_info.up = 0;
    780	synchronize_irq(dev->pci_dev->irq);
    781
    782	/* touch the pci bus... */
    783	readl(dev->base + IMR);
    784
    785	/* assumes the transmitter is already disabled and reset */
    786	writel(0, dev->base + RXDP_HI);
    787	writel(0, dev->base + RXDP);
    788
    789	for (i=0; i<NR_RX_DESC; i++) {
    790		struct sk_buff *skb = dev->rx_info.skbs[i];
    791		dev->rx_info.skbs[i] = NULL;
    792		clear_rx_desc(dev, i);
    793		kfree_skb(skb);
    794	}
    795}
    796
    797static void ns83820_rx_kick(struct net_device *ndev)
    798{
    799	struct ns83820 *dev = PRIV(ndev);
    800	/*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
    801		if (dev->rx_info.up) {
    802			rx_refill_atomic(ndev);
    803			kick_rx(ndev);
    804		}
    805	}
    806
    807	if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
    808		schedule_work(&dev->tq_refill);
    809	else
    810		kick_rx(ndev);
    811	if (dev->rx_info.idle)
    812		printk(KERN_DEBUG "%s: BAD\n", ndev->name);
    813}
    814
    815/* rx_irq
    816 *
    817 */
    818static void rx_irq(struct net_device *ndev)
    819{
    820	struct ns83820 *dev = PRIV(ndev);
    821	struct rx_info *info = &dev->rx_info;
    822	unsigned next_rx;
    823	int rx_rc, len;
    824	u32 cmdsts;
    825	__le32 *desc;
    826	unsigned long flags;
    827	int nr = 0;
    828
    829	dprintk("rx_irq(%p)\n", ndev);
    830	dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
    831		readl(dev->base + RXDP),
    832		(long)(dev->rx_info.phy_descs),
    833		(int)dev->rx_info.next_rx,
    834		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
    835		(int)dev->rx_info.next_empty,
    836		(dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
    837		);
    838
    839	spin_lock_irqsave(&info->lock, flags);
    840	if (!info->up)
    841		goto out;
    842
    843	dprintk("walking descs\n");
    844	next_rx = info->next_rx;
    845	desc = info->next_rx_desc;
    846	while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
    847	       (cmdsts != CMDSTS_OWN)) {
    848		struct sk_buff *skb;
    849		u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
    850		dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
    851
    852		dprintk("cmdsts: %08x\n", cmdsts);
    853		dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
    854		dprintk("extsts: %08x\n", extsts);
    855
    856		skb = info->skbs[next_rx];
    857		info->skbs[next_rx] = NULL;
    858		info->next_rx = (next_rx + 1) % NR_RX_DESC;
    859
    860		mb();
    861		clear_rx_desc(dev, next_rx);
    862
    863		dma_unmap_single(&dev->pci_dev->dev, bufptr, RX_BUF_SIZE,
    864				 DMA_FROM_DEVICE);
    865		len = cmdsts & CMDSTS_LEN_MASK;
    866#ifdef NS83820_VLAN_ACCEL_SUPPORT
    867		/* NH: As was mentioned below, this chip is kinda
    868		 * brain dead about vlan tag stripping.  Frames
    869		 * that are 64 bytes with a vlan header appended
    870		 * like arp frames, or pings, are flagged as Runts
    871		 * when the tag is stripped and hardware.  This
    872		 * also means that the OK bit in the descriptor
    873		 * is cleared when the frame comes in so we have
    874		 * to do a specific length check here to make sure
    875		 * the frame would have been ok, had we not stripped
    876		 * the tag.
    877		 */
    878		if (likely((CMDSTS_OK & cmdsts) ||
    879			((cmdsts & CMDSTS_RUNT) && len >= 56))) {
    880#else
    881		if (likely(CMDSTS_OK & cmdsts)) {
    882#endif
    883			skb_put(skb, len);
    884			if (unlikely(!skb))
    885				goto netdev_mangle_me_harder_failed;
    886			if (cmdsts & CMDSTS_DEST_MULTI)
    887				ndev->stats.multicast++;
    888			ndev->stats.rx_packets++;
    889			ndev->stats.rx_bytes += len;
    890			if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
    891				skb->ip_summed = CHECKSUM_UNNECESSARY;
    892			} else {
    893				skb_checksum_none_assert(skb);
    894			}
    895			skb->protocol = eth_type_trans(skb, ndev);
    896#ifdef NS83820_VLAN_ACCEL_SUPPORT
    897			if(extsts & EXTSTS_VPKT) {
    898				unsigned short tag;
    899
    900				tag = ntohs(extsts & EXTSTS_VTG_MASK);
    901				__vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag);
    902			}
    903#endif
    904			rx_rc = netif_rx(skb);
    905			if (NET_RX_DROP == rx_rc) {
    906netdev_mangle_me_harder_failed:
    907				ndev->stats.rx_dropped++;
    908			}
    909		} else {
    910			dev_kfree_skb_irq(skb);
    911		}
    912
    913		nr++;
    914		next_rx = info->next_rx;
    915		desc = info->descs + (DESC_SIZE * next_rx);
    916	}
    917	info->next_rx = next_rx;
    918	info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
    919
    920out:
    921	if (0 && !nr) {
    922		Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
    923	}
    924
    925	spin_unlock_irqrestore(&info->lock, flags);
    926}
    927
    928static void rx_action(struct tasklet_struct *t)
    929{
    930	struct ns83820 *dev = from_tasklet(dev, t, rx_tasklet);
    931	struct net_device *ndev = dev->ndev;
    932	rx_irq(ndev);
    933	writel(ihr, dev->base + IHR);
    934
    935	spin_lock_irq(&dev->misc_lock);
    936	dev->IMR_cache |= ISR_RXDESC;
    937	writel(dev->IMR_cache, dev->base + IMR);
    938	spin_unlock_irq(&dev->misc_lock);
    939
    940	rx_irq(ndev);
    941	ns83820_rx_kick(ndev);
    942}
    943
    944/* Packet Transmit code
    945 */
    946static inline void kick_tx(struct ns83820 *dev)
    947{
    948	dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
    949		dev, dev->tx_idx, dev->tx_free_idx);
    950	writel(CR_TXE, dev->base + CR);
    951}
    952
    953/* No spinlock needed on the transmit irq path as the interrupt handler is
    954 * serialized.
    955 */
    956static void do_tx_done(struct net_device *ndev)
    957{
    958	struct ns83820 *dev = PRIV(ndev);
    959	u32 cmdsts, tx_done_idx;
    960	__le32 *desc;
    961
    962	dprintk("do_tx_done(%p)\n", ndev);
    963	tx_done_idx = dev->tx_done_idx;
    964	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
    965
    966	dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
    967		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
    968	while ((tx_done_idx != dev->tx_free_idx) &&
    969	       !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
    970		struct sk_buff *skb;
    971		unsigned len;
    972		dma_addr_t addr;
    973
    974		if (cmdsts & CMDSTS_ERR)
    975			ndev->stats.tx_errors++;
    976		if (cmdsts & CMDSTS_OK)
    977			ndev->stats.tx_packets++;
    978		if (cmdsts & CMDSTS_OK)
    979			ndev->stats.tx_bytes += cmdsts & 0xffff;
    980
    981		dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
    982			tx_done_idx, dev->tx_free_idx, cmdsts);
    983		skb = dev->tx_skbs[tx_done_idx];
    984		dev->tx_skbs[tx_done_idx] = NULL;
    985		dprintk("done(%p)\n", skb);
    986
    987		len = cmdsts & CMDSTS_LEN_MASK;
    988		addr = desc_addr_get(desc + DESC_BUFPTR);
    989		if (skb) {
    990			dma_unmap_single(&dev->pci_dev->dev, addr, len,
    991					 DMA_TO_DEVICE);
    992			dev_consume_skb_irq(skb);
    993			atomic_dec(&dev->nr_tx_skbs);
    994		} else
    995			dma_unmap_page(&dev->pci_dev->dev, addr, len,
    996				       DMA_TO_DEVICE);
    997
    998		tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
    999		dev->tx_done_idx = tx_done_idx;
   1000		desc[DESC_CMDSTS] = cpu_to_le32(0);
   1001		mb();
   1002		desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
   1003	}
   1004
   1005	/* Allow network stack to resume queueing packets after we've
   1006	 * finished transmitting at least 1/4 of the packets in the queue.
   1007	 */
   1008	if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
   1009		dprintk("start_queue(%p)\n", ndev);
   1010		netif_start_queue(ndev);
   1011		netif_wake_queue(ndev);
   1012	}
   1013}
   1014
   1015static void ns83820_cleanup_tx(struct ns83820 *dev)
   1016{
   1017	unsigned i;
   1018
   1019	for (i=0; i<NR_TX_DESC; i++) {
   1020		struct sk_buff *skb = dev->tx_skbs[i];
   1021		dev->tx_skbs[i] = NULL;
   1022		if (skb) {
   1023			__le32 *desc = dev->tx_descs + (i * DESC_SIZE);
   1024			dma_unmap_single(&dev->pci_dev->dev,
   1025					 desc_addr_get(desc + DESC_BUFPTR),
   1026					 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
   1027					 DMA_TO_DEVICE);
   1028			dev_kfree_skb_irq(skb);
   1029			atomic_dec(&dev->nr_tx_skbs);
   1030		}
   1031	}
   1032
   1033	memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
   1034}
   1035
   1036/* transmit routine.  This code relies on the network layer serializing
   1037 * its calls in, but will run happily in parallel with the interrupt
   1038 * handler.  This code currently has provisions for fragmenting tx buffers
   1039 * while trying to track down a bug in either the zero copy code or
   1040 * the tx fifo (hence the MAX_FRAG_LEN).
   1041 */
   1042static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
   1043					   struct net_device *ndev)
   1044{
   1045	struct ns83820 *dev = PRIV(ndev);
   1046	u32 free_idx, cmdsts, extsts;
   1047	int nr_free, nr_frags;
   1048	unsigned tx_done_idx, last_idx;
   1049	dma_addr_t buf;
   1050	unsigned len;
   1051	skb_frag_t *frag;
   1052	int stopped = 0;
   1053	int do_intr = 0;
   1054	volatile __le32 *first_desc;
   1055
   1056	dprintk("ns83820_hard_start_xmit\n");
   1057
   1058	nr_frags =  skb_shinfo(skb)->nr_frags;
   1059again:
   1060	if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
   1061		netif_stop_queue(ndev);
   1062		if (unlikely(dev->CFG_cache & CFG_LNKSTS))
   1063			return NETDEV_TX_BUSY;
   1064		netif_start_queue(ndev);
   1065	}
   1066
   1067	last_idx = free_idx = dev->tx_free_idx;
   1068	tx_done_idx = dev->tx_done_idx;
   1069	nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
   1070	nr_free -= 1;
   1071	if (nr_free <= nr_frags) {
   1072		dprintk("stop_queue - not enough(%p)\n", ndev);
   1073		netif_stop_queue(ndev);
   1074
   1075		/* Check again: we may have raced with a tx done irq */
   1076		if (dev->tx_done_idx != tx_done_idx) {
   1077			dprintk("restart queue(%p)\n", ndev);
   1078			netif_start_queue(ndev);
   1079			goto again;
   1080		}
   1081		return NETDEV_TX_BUSY;
   1082	}
   1083
   1084	if (free_idx == dev->tx_intr_idx) {
   1085		do_intr = 1;
   1086		dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
   1087	}
   1088
   1089	nr_free -= nr_frags;
   1090	if (nr_free < MIN_TX_DESC_FREE) {
   1091		dprintk("stop_queue - last entry(%p)\n", ndev);
   1092		netif_stop_queue(ndev);
   1093		stopped = 1;
   1094	}
   1095
   1096	frag = skb_shinfo(skb)->frags;
   1097	if (!nr_frags)
   1098		frag = NULL;
   1099	extsts = 0;
   1100	if (skb->ip_summed == CHECKSUM_PARTIAL) {
   1101		extsts |= EXTSTS_IPPKT;
   1102		if (IPPROTO_TCP == ip_hdr(skb)->protocol)
   1103			extsts |= EXTSTS_TCPPKT;
   1104		else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
   1105			extsts |= EXTSTS_UDPPKT;
   1106	}
   1107
   1108#ifdef NS83820_VLAN_ACCEL_SUPPORT
   1109	if (skb_vlan_tag_present(skb)) {
   1110		/* fetch the vlan tag info out of the
   1111		 * ancillary data if the vlan code
   1112		 * is using hw vlan acceleration
   1113		 */
   1114		short tag = skb_vlan_tag_get(skb);
   1115		extsts |= (EXTSTS_VPKT | htons(tag));
   1116	}
   1117#endif
   1118
   1119	len = skb->len;
   1120	if (nr_frags)
   1121		len -= skb->data_len;
   1122	buf = dma_map_single(&dev->pci_dev->dev, skb->data, len,
   1123			     DMA_TO_DEVICE);
   1124
   1125	first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
   1126
   1127	for (;;) {
   1128		volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
   1129
   1130		dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
   1131			(unsigned long long)buf);
   1132		last_idx = free_idx;
   1133		free_idx = (free_idx + 1) % NR_TX_DESC;
   1134		desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
   1135		desc_addr_set(desc + DESC_BUFPTR, buf);
   1136		desc[DESC_EXTSTS] = cpu_to_le32(extsts);
   1137
   1138		cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
   1139		cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
   1140		cmdsts |= len;
   1141		desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
   1142
   1143		if (!nr_frags)
   1144			break;
   1145
   1146		buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0,
   1147				       skb_frag_size(frag), DMA_TO_DEVICE);
   1148		dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
   1149			(long long)buf, (long) page_to_pfn(frag->page),
   1150			frag->page_offset);
   1151		len = skb_frag_size(frag);
   1152		frag++;
   1153		nr_frags--;
   1154	}
   1155	dprintk("done pkt\n");
   1156
   1157	spin_lock_irq(&dev->tx_lock);
   1158	dev->tx_skbs[last_idx] = skb;
   1159	first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
   1160	dev->tx_free_idx = free_idx;
   1161	atomic_inc(&dev->nr_tx_skbs);
   1162	spin_unlock_irq(&dev->tx_lock);
   1163
   1164	kick_tx(dev);
   1165
   1166	/* Check again: we may have raced with a tx done irq */
   1167	if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
   1168		netif_start_queue(ndev);
   1169
   1170	return NETDEV_TX_OK;
   1171}
   1172
   1173static void ns83820_update_stats(struct ns83820 *dev)
   1174{
   1175	struct net_device *ndev = dev->ndev;
   1176	u8 __iomem *base = dev->base;
   1177
   1178	/* the DP83820 will freeze counters, so we need to read all of them */
   1179	ndev->stats.rx_errors		+= readl(base + 0x60) & 0xffff;
   1180	ndev->stats.rx_crc_errors	+= readl(base + 0x64) & 0xffff;
   1181	ndev->stats.rx_missed_errors	+= readl(base + 0x68) & 0xffff;
   1182	ndev->stats.rx_frame_errors	+= readl(base + 0x6c) & 0xffff;
   1183	/*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
   1184	ndev->stats.rx_length_errors	+= readl(base + 0x74) & 0xffff;
   1185	ndev->stats.rx_length_errors	+= readl(base + 0x78) & 0xffff;
   1186	/*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
   1187	/*ndev->stats.rx_pause_count += */  readl(base + 0x80);
   1188	/*ndev->stats.tx_pause_count += */  readl(base + 0x84);
   1189	ndev->stats.tx_carrier_errors	+= readl(base + 0x88) & 0xff;
   1190}
   1191
   1192static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
   1193{
   1194	struct ns83820 *dev = PRIV(ndev);
   1195
   1196	/* somewhat overkill */
   1197	spin_lock_irq(&dev->misc_lock);
   1198	ns83820_update_stats(dev);
   1199	spin_unlock_irq(&dev->misc_lock);
   1200
   1201	return &ndev->stats;
   1202}
   1203
   1204/* Let ethtool retrieve info */
   1205static int ns83820_get_link_ksettings(struct net_device *ndev,
   1206				      struct ethtool_link_ksettings *cmd)
   1207{
   1208	struct ns83820 *dev = PRIV(ndev);
   1209	u32 cfg, tbicr;
   1210	int fullduplex   = 0;
   1211	u32 supported;
   1212
   1213	/*
   1214	 * Here's the list of available ethtool commands from other drivers:
   1215	 *	cmd->advertising =
   1216	 *	ethtool_cmd_speed_set(cmd, ...)
   1217	 *	cmd->duplex =
   1218	 *	cmd->port = 0;
   1219	 *	cmd->phy_address =
   1220	 *	cmd->transceiver = 0;
   1221	 *	cmd->autoneg =
   1222	 *	cmd->maxtxpkt = 0;
   1223	 *	cmd->maxrxpkt = 0;
   1224	 */
   1225
   1226	/* read current configuration */
   1227	cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
   1228	readl(dev->base + TANAR);
   1229	tbicr = readl(dev->base + TBICR);
   1230
   1231	fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
   1232
   1233	supported = SUPPORTED_Autoneg;
   1234
   1235	if (dev->CFG_cache & CFG_TBI_EN) {
   1236		/* we have optical interface */
   1237		supported |= SUPPORTED_1000baseT_Half |
   1238					SUPPORTED_1000baseT_Full |
   1239					SUPPORTED_FIBRE;
   1240		cmd->base.port       = PORT_FIBRE;
   1241	} else {
   1242		/* we have copper */
   1243		supported |= SUPPORTED_10baseT_Half |
   1244			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
   1245			SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half |
   1246			SUPPORTED_1000baseT_Full |
   1247			SUPPORTED_MII;
   1248		cmd->base.port = PORT_MII;
   1249	}
   1250
   1251	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
   1252						supported);
   1253
   1254	cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
   1255	switch (cfg / CFG_SPDSTS0 & 3) {
   1256	case 2:
   1257		cmd->base.speed = SPEED_1000;
   1258		break;
   1259	case 1:
   1260		cmd->base.speed = SPEED_100;
   1261		break;
   1262	default:
   1263		cmd->base.speed = SPEED_10;
   1264		break;
   1265	}
   1266	cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE)
   1267		? AUTONEG_ENABLE : AUTONEG_DISABLE;
   1268	return 0;
   1269}
   1270
   1271/* Let ethool change settings*/
   1272static int ns83820_set_link_ksettings(struct net_device *ndev,
   1273				      const struct ethtool_link_ksettings *cmd)
   1274{
   1275	struct ns83820 *dev = PRIV(ndev);
   1276	u32 cfg, tanar;
   1277	int have_optical = 0;
   1278	int fullduplex   = 0;
   1279
   1280	/* read current configuration */
   1281	cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
   1282	tanar = readl(dev->base + TANAR);
   1283
   1284	if (dev->CFG_cache & CFG_TBI_EN) {
   1285		/* we have optical */
   1286		have_optical = 1;
   1287		fullduplex   = (tanar & TANAR_FULL_DUP);
   1288
   1289	} else {
   1290		/* we have copper */
   1291		fullduplex = cfg & CFG_DUPSTS;
   1292	}
   1293
   1294	spin_lock_irq(&dev->misc_lock);
   1295	spin_lock(&dev->tx_lock);
   1296
   1297	/* Set duplex */
   1298	if (cmd->base.duplex != fullduplex) {
   1299		if (have_optical) {
   1300			/*set full duplex*/
   1301			if (cmd->base.duplex == DUPLEX_FULL) {
   1302				/* force full duplex */
   1303				writel(readl(dev->base + TXCFG)
   1304					| TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
   1305					dev->base + TXCFG);
   1306				writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
   1307					dev->base + RXCFG);
   1308				/* Light up full duplex LED */
   1309				writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
   1310					dev->base + GPIOR);
   1311			} else {
   1312				/*TODO: set half duplex */
   1313			}
   1314
   1315		} else {
   1316			/*we have copper*/
   1317			/* TODO: Set duplex for copper cards */
   1318		}
   1319		printk(KERN_INFO "%s: Duplex set via ethtool\n",
   1320		ndev->name);
   1321	}
   1322
   1323	/* Set autonegotiation */
   1324	if (1) {
   1325		if (cmd->base.autoneg == AUTONEG_ENABLE) {
   1326			/* restart auto negotiation */
   1327			writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
   1328				dev->base + TBICR);
   1329			writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
   1330				dev->linkstate = LINK_AUTONEGOTIATE;
   1331
   1332			printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
   1333				ndev->name);
   1334		} else {
   1335			/* disable auto negotiation */
   1336			writel(0x00000000, dev->base + TBICR);
   1337		}
   1338
   1339		printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
   1340				cmd->base.autoneg ? "ENABLED" : "DISABLED");
   1341	}
   1342
   1343	phy_intr(ndev);
   1344	spin_unlock(&dev->tx_lock);
   1345	spin_unlock_irq(&dev->misc_lock);
   1346
   1347	return 0;
   1348}
   1349/* end ethtool get/set support -df */
   1350
   1351static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
   1352{
   1353	struct ns83820 *dev = PRIV(ndev);
   1354	strlcpy(info->driver, "ns83820", sizeof(info->driver));
   1355	strlcpy(info->version, VERSION, sizeof(info->version));
   1356	strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info));
   1357}
   1358
   1359static u32 ns83820_get_link(struct net_device *ndev)
   1360{
   1361	struct ns83820 *dev = PRIV(ndev);
   1362	u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
   1363	return cfg & CFG_LNKSTS ? 1 : 0;
   1364}
   1365
   1366static const struct ethtool_ops ops = {
   1367	.get_drvinfo     = ns83820_get_drvinfo,
   1368	.get_link        = ns83820_get_link,
   1369	.get_link_ksettings = ns83820_get_link_ksettings,
   1370	.set_link_ksettings = ns83820_set_link_ksettings,
   1371};
   1372
   1373static inline void ns83820_disable_interrupts(struct ns83820 *dev)
   1374{
   1375	writel(0, dev->base + IMR);
   1376	writel(0, dev->base + IER);
   1377	readl(dev->base + IER);
   1378}
   1379
   1380/* this function is called in irq context from the ISR */
   1381static void ns83820_mib_isr(struct ns83820 *dev)
   1382{
   1383	unsigned long flags;
   1384	spin_lock_irqsave(&dev->misc_lock, flags);
   1385	ns83820_update_stats(dev);
   1386	spin_unlock_irqrestore(&dev->misc_lock, flags);
   1387}
   1388
   1389static void ns83820_do_isr(struct net_device *ndev, u32 isr);
   1390static irqreturn_t ns83820_irq(int foo, void *data)
   1391{
   1392	struct net_device *ndev = data;
   1393	struct ns83820 *dev = PRIV(ndev);
   1394	u32 isr;
   1395	dprintk("ns83820_irq(%p)\n", ndev);
   1396
   1397	dev->ihr = 0;
   1398
   1399	isr = readl(dev->base + ISR);
   1400	dprintk("irq: %08x\n", isr);
   1401	ns83820_do_isr(ndev, isr);
   1402	return IRQ_HANDLED;
   1403}
   1404
   1405static void ns83820_do_isr(struct net_device *ndev, u32 isr)
   1406{
   1407	struct ns83820 *dev = PRIV(ndev);
   1408	unsigned long flags;
   1409
   1410#ifdef DEBUG
   1411	if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
   1412		Dprintk("odd isr? 0x%08x\n", isr);
   1413#endif
   1414
   1415	if (ISR_RXIDLE & isr) {
   1416		dev->rx_info.idle = 1;
   1417		Dprintk("oh dear, we are idle\n");
   1418		ns83820_rx_kick(ndev);
   1419	}
   1420
   1421	if ((ISR_RXDESC | ISR_RXOK) & isr) {
   1422		prefetch(dev->rx_info.next_rx_desc);
   1423
   1424		spin_lock_irqsave(&dev->misc_lock, flags);
   1425		dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
   1426		writel(dev->IMR_cache, dev->base + IMR);
   1427		spin_unlock_irqrestore(&dev->misc_lock, flags);
   1428
   1429		tasklet_schedule(&dev->rx_tasklet);
   1430		//rx_irq(ndev);
   1431		//writel(4, dev->base + IHR);
   1432	}
   1433
   1434	if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
   1435		ns83820_rx_kick(ndev);
   1436
   1437	if (unlikely(ISR_RXSOVR & isr)) {
   1438		//printk("overrun: rxsovr\n");
   1439		ndev->stats.rx_fifo_errors++;
   1440	}
   1441
   1442	if (unlikely(ISR_RXORN & isr)) {
   1443		//printk("overrun: rxorn\n");
   1444		ndev->stats.rx_fifo_errors++;
   1445	}
   1446
   1447	if ((ISR_RXRCMP & isr) && dev->rx_info.up)
   1448		writel(CR_RXE, dev->base + CR);
   1449
   1450	if (ISR_TXIDLE & isr) {
   1451		u32 txdp;
   1452		txdp = readl(dev->base + TXDP);
   1453		dprintk("txdp: %08x\n", txdp);
   1454		txdp -= dev->tx_phy_descs;
   1455		dev->tx_idx = txdp / (DESC_SIZE * 4);
   1456		if (dev->tx_idx >= NR_TX_DESC) {
   1457			printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
   1458			dev->tx_idx = 0;
   1459		}
   1460		/* The may have been a race between a pci originated read
   1461		 * and the descriptor update from the cpu.  Just in case,
   1462		 * kick the transmitter if the hardware thinks it is on a
   1463		 * different descriptor than we are.
   1464		 */
   1465		if (dev->tx_idx != dev->tx_free_idx)
   1466			kick_tx(dev);
   1467	}
   1468
   1469	/* Defer tx ring processing until more than a minimum amount of
   1470	 * work has accumulated
   1471	 */
   1472	if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
   1473		spin_lock_irqsave(&dev->tx_lock, flags);
   1474		do_tx_done(ndev);
   1475		spin_unlock_irqrestore(&dev->tx_lock, flags);
   1476
   1477		/* Disable TxOk if there are no outstanding tx packets.
   1478		 */
   1479		if ((dev->tx_done_idx == dev->tx_free_idx) &&
   1480		    (dev->IMR_cache & ISR_TXOK)) {
   1481			spin_lock_irqsave(&dev->misc_lock, flags);
   1482			dev->IMR_cache &= ~ISR_TXOK;
   1483			writel(dev->IMR_cache, dev->base + IMR);
   1484			spin_unlock_irqrestore(&dev->misc_lock, flags);
   1485		}
   1486	}
   1487
   1488	/* The TxIdle interrupt can come in before the transmit has
   1489	 * completed.  Normally we reap packets off of the combination
   1490	 * of TxDesc and TxIdle and leave TxOk disabled (since it
   1491	 * occurs on every packet), but when no further irqs of this
   1492	 * nature are expected, we must enable TxOk.
   1493	 */
   1494	if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
   1495		spin_lock_irqsave(&dev->misc_lock, flags);
   1496		dev->IMR_cache |= ISR_TXOK;
   1497		writel(dev->IMR_cache, dev->base + IMR);
   1498		spin_unlock_irqrestore(&dev->misc_lock, flags);
   1499	}
   1500
   1501	/* MIB interrupt: one of the statistics counters is about to overflow */
   1502	if (unlikely(ISR_MIB & isr))
   1503		ns83820_mib_isr(dev);
   1504
   1505	/* PHY: Link up/down/negotiation state change */
   1506	if (unlikely(ISR_PHY & isr))
   1507		phy_intr(ndev);
   1508
   1509#if 0	/* Still working on the interrupt mitigation strategy */
   1510	if (dev->ihr)
   1511		writel(dev->ihr, dev->base + IHR);
   1512#endif
   1513}
   1514
   1515static void ns83820_do_reset(struct ns83820 *dev, u32 which)
   1516{
   1517	Dprintk("resetting chip...\n");
   1518	writel(which, dev->base + CR);
   1519	do {
   1520		schedule();
   1521	} while (readl(dev->base + CR) & which);
   1522	Dprintk("okay!\n");
   1523}
   1524
   1525static int ns83820_stop(struct net_device *ndev)
   1526{
   1527	struct ns83820 *dev = PRIV(ndev);
   1528
   1529	/* FIXME: protect against interrupt handler? */
   1530	del_timer_sync(&dev->tx_watchdog);
   1531
   1532	ns83820_disable_interrupts(dev);
   1533
   1534	dev->rx_info.up = 0;
   1535	synchronize_irq(dev->pci_dev->irq);
   1536
   1537	ns83820_do_reset(dev, CR_RST);
   1538
   1539	synchronize_irq(dev->pci_dev->irq);
   1540
   1541	spin_lock_irq(&dev->misc_lock);
   1542	dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
   1543	spin_unlock_irq(&dev->misc_lock);
   1544
   1545	ns83820_cleanup_rx(dev);
   1546	ns83820_cleanup_tx(dev);
   1547
   1548	return 0;
   1549}
   1550
   1551static void ns83820_tx_timeout(struct net_device *ndev, unsigned int txqueue)
   1552{
   1553	struct ns83820 *dev = PRIV(ndev);
   1554        u32 tx_done_idx;
   1555	__le32 *desc;
   1556	unsigned long flags;
   1557
   1558	spin_lock_irqsave(&dev->tx_lock, flags);
   1559
   1560	tx_done_idx = dev->tx_done_idx;
   1561	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
   1562
   1563	printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
   1564		ndev->name,
   1565		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
   1566
   1567#if defined(DEBUG)
   1568	{
   1569		u32 isr;
   1570		isr = readl(dev->base + ISR);
   1571		printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
   1572		ns83820_do_isr(ndev, isr);
   1573	}
   1574#endif
   1575
   1576	do_tx_done(ndev);
   1577
   1578	tx_done_idx = dev->tx_done_idx;
   1579	desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
   1580
   1581	printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
   1582		ndev->name,
   1583		tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
   1584
   1585	spin_unlock_irqrestore(&dev->tx_lock, flags);
   1586}
   1587
   1588static void ns83820_tx_watch(struct timer_list *t)
   1589{
   1590	struct ns83820 *dev = from_timer(dev, t, tx_watchdog);
   1591	struct net_device *ndev = dev->ndev;
   1592
   1593#if defined(DEBUG)
   1594	printk("ns83820_tx_watch: %u %u %d\n",
   1595		dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
   1596		);
   1597#endif
   1598
   1599	if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
   1600	    dev->tx_done_idx != dev->tx_free_idx) {
   1601		printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
   1602			ndev->name,
   1603			dev->tx_done_idx, dev->tx_free_idx,
   1604			atomic_read(&dev->nr_tx_skbs));
   1605		ns83820_tx_timeout(ndev, UINT_MAX);
   1606	}
   1607
   1608	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
   1609}
   1610
   1611static int ns83820_open(struct net_device *ndev)
   1612{
   1613	struct ns83820 *dev = PRIV(ndev);
   1614	unsigned i;
   1615	u32 desc;
   1616	int ret;
   1617
   1618	dprintk("ns83820_open\n");
   1619
   1620	writel(0, dev->base + PQCR);
   1621
   1622	ret = ns83820_setup_rx(ndev);
   1623	if (ret)
   1624		goto failed;
   1625
   1626	memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
   1627	for (i=0; i<NR_TX_DESC; i++) {
   1628		dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
   1629				= cpu_to_le32(
   1630				  dev->tx_phy_descs
   1631				  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
   1632	}
   1633
   1634	dev->tx_idx = 0;
   1635	dev->tx_done_idx = 0;
   1636	desc = dev->tx_phy_descs;
   1637	writel(0, dev->base + TXDP_HI);
   1638	writel(desc, dev->base + TXDP);
   1639
   1640	timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0);
   1641	mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
   1642
   1643	netif_start_queue(ndev);	/* FIXME: wait for phy to come up */
   1644
   1645	return 0;
   1646
   1647failed:
   1648	ns83820_stop(ndev);
   1649	return ret;
   1650}
   1651
   1652static void ns83820_getmac(struct ns83820 *dev, struct net_device *ndev)
   1653{
   1654	u8 mac[ETH_ALEN];
   1655	unsigned i;
   1656
   1657	for (i=0; i<3; i++) {
   1658		u32 data;
   1659
   1660		/* Read from the perfect match memory: this is loaded by
   1661		 * the chip from the EEPROM via the EELOAD self test.
   1662		 */
   1663		writel(i*2, dev->base + RFCR);
   1664		data = readl(dev->base + RFDR);
   1665
   1666		mac[i * 2] = data;
   1667		mac[i * 2 + 1] = data >> 8;
   1668	}
   1669	eth_hw_addr_set(ndev, mac);
   1670}
   1671
   1672static void ns83820_set_multicast(struct net_device *ndev)
   1673{
   1674	struct ns83820 *dev = PRIV(ndev);
   1675	u8 __iomem *rfcr = dev->base + RFCR;
   1676	u32 and_mask = 0xffffffff;
   1677	u32 or_mask = 0;
   1678	u32 val;
   1679
   1680	if (ndev->flags & IFF_PROMISC)
   1681		or_mask |= RFCR_AAU | RFCR_AAM;
   1682	else
   1683		and_mask &= ~(RFCR_AAU | RFCR_AAM);
   1684
   1685	if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
   1686		or_mask |= RFCR_AAM;
   1687	else
   1688		and_mask &= ~RFCR_AAM;
   1689
   1690	spin_lock_irq(&dev->misc_lock);
   1691	val = (readl(rfcr) & and_mask) | or_mask;
   1692	/* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
   1693	writel(val & ~RFCR_RFEN, rfcr);
   1694	writel(val, rfcr);
   1695	spin_unlock_irq(&dev->misc_lock);
   1696}
   1697
   1698static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
   1699{
   1700	struct ns83820 *dev = PRIV(ndev);
   1701	int timed_out = 0;
   1702	unsigned long start;
   1703	u32 status;
   1704	int loops = 0;
   1705
   1706	dprintk("%s: start %s\n", ndev->name, name);
   1707
   1708	start = jiffies;
   1709
   1710	writel(enable, dev->base + PTSCR);
   1711	for (;;) {
   1712		loops++;
   1713		status = readl(dev->base + PTSCR);
   1714		if (!(status & enable))
   1715			break;
   1716		if (status & done)
   1717			break;
   1718		if (status & fail)
   1719			break;
   1720		if (time_after_eq(jiffies, start + HZ)) {
   1721			timed_out = 1;
   1722			break;
   1723		}
   1724		schedule_timeout_uninterruptible(1);
   1725	}
   1726
   1727	if (status & fail)
   1728		printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
   1729			ndev->name, name, status, fail);
   1730	else if (timed_out)
   1731		printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
   1732			ndev->name, name, status);
   1733
   1734	dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
   1735}
   1736
   1737#ifdef PHY_CODE_IS_FINISHED
   1738static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
   1739{
   1740	/* drive MDC low */
   1741	dev->MEAR_cache &= ~MEAR_MDC;
   1742	writel(dev->MEAR_cache, dev->base + MEAR);
   1743	readl(dev->base + MEAR);
   1744
   1745	/* enable output, set bit */
   1746	dev->MEAR_cache |= MEAR_MDDIR;
   1747	if (bit)
   1748		dev->MEAR_cache |= MEAR_MDIO;
   1749	else
   1750		dev->MEAR_cache &= ~MEAR_MDIO;
   1751
   1752	/* set the output bit */
   1753	writel(dev->MEAR_cache, dev->base + MEAR);
   1754	readl(dev->base + MEAR);
   1755
   1756	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
   1757	udelay(1);
   1758
   1759	/* drive MDC high causing the data bit to be latched */
   1760	dev->MEAR_cache |= MEAR_MDC;
   1761	writel(dev->MEAR_cache, dev->base + MEAR);
   1762	readl(dev->base + MEAR);
   1763
   1764	/* Wait again... */
   1765	udelay(1);
   1766}
   1767
   1768static int ns83820_mii_read_bit(struct ns83820 *dev)
   1769{
   1770	int bit;
   1771
   1772	/* drive MDC low, disable output */
   1773	dev->MEAR_cache &= ~MEAR_MDC;
   1774	dev->MEAR_cache &= ~MEAR_MDDIR;
   1775	writel(dev->MEAR_cache, dev->base + MEAR);
   1776	readl(dev->base + MEAR);
   1777
   1778	/* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
   1779	udelay(1);
   1780
   1781	/* drive MDC high causing the data bit to be latched */
   1782	bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
   1783	dev->MEAR_cache |= MEAR_MDC;
   1784	writel(dev->MEAR_cache, dev->base + MEAR);
   1785
   1786	/* Wait again... */
   1787	udelay(1);
   1788
   1789	return bit;
   1790}
   1791
   1792static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
   1793{
   1794	unsigned data = 0;
   1795	int i;
   1796
   1797	/* read some garbage so that we eventually sync up */
   1798	for (i=0; i<64; i++)
   1799		ns83820_mii_read_bit(dev);
   1800
   1801	ns83820_mii_write_bit(dev, 0);	/* start */
   1802	ns83820_mii_write_bit(dev, 1);
   1803	ns83820_mii_write_bit(dev, 1);	/* opcode read */
   1804	ns83820_mii_write_bit(dev, 0);
   1805
   1806	/* write out the phy address: 5 bits, msb first */
   1807	for (i=0; i<5; i++)
   1808		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
   1809
   1810	/* write out the register address, 5 bits, msb first */
   1811	for (i=0; i<5; i++)
   1812		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
   1813
   1814	ns83820_mii_read_bit(dev);	/* turn around cycles */
   1815	ns83820_mii_read_bit(dev);
   1816
   1817	/* read in the register data, 16 bits msb first */
   1818	for (i=0; i<16; i++) {
   1819		data <<= 1;
   1820		data |= ns83820_mii_read_bit(dev);
   1821	}
   1822
   1823	return data;
   1824}
   1825
   1826static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
   1827{
   1828	int i;
   1829
   1830	/* read some garbage so that we eventually sync up */
   1831	for (i=0; i<64; i++)
   1832		ns83820_mii_read_bit(dev);
   1833
   1834	ns83820_mii_write_bit(dev, 0);	/* start */
   1835	ns83820_mii_write_bit(dev, 1);
   1836	ns83820_mii_write_bit(dev, 0);	/* opcode read */
   1837	ns83820_mii_write_bit(dev, 1);
   1838
   1839	/* write out the phy address: 5 bits, msb first */
   1840	for (i=0; i<5; i++)
   1841		ns83820_mii_write_bit(dev, phy & (0x10 >> i));
   1842
   1843	/* write out the register address, 5 bits, msb first */
   1844	for (i=0; i<5; i++)
   1845		ns83820_mii_write_bit(dev, reg & (0x10 >> i));
   1846
   1847	ns83820_mii_read_bit(dev);	/* turn around cycles */
   1848	ns83820_mii_read_bit(dev);
   1849
   1850	/* read in the register data, 16 bits msb first */
   1851	for (i=0; i<16; i++)
   1852		ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
   1853
   1854	return data;
   1855}
   1856
   1857static void ns83820_probe_phy(struct net_device *ndev)
   1858{
   1859	struct ns83820 *dev = PRIV(ndev);
   1860	int j;
   1861	unsigned a, b;
   1862
   1863	for (j = 0; j < 0x16; j += 4) {
   1864		dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
   1865			ndev->name, j,
   1866			ns83820_mii_read_reg(dev, 1, 0 + j),
   1867			ns83820_mii_read_reg(dev, 1, 1 + j),
   1868			ns83820_mii_read_reg(dev, 1, 2 + j),
   1869			ns83820_mii_read_reg(dev, 1, 3 + j)
   1870			);
   1871	}
   1872
   1873	/* read firmware version: memory addr is 0x8402 and 0x8403 */
   1874	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
   1875	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
   1876	a = ns83820_mii_read_reg(dev, 1, 0x1d);
   1877
   1878	ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
   1879	ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
   1880	b = ns83820_mii_read_reg(dev, 1, 0x1d);
   1881	dprintk("version: 0x%04x 0x%04x\n", a, b);
   1882}
   1883#endif
   1884
   1885static const struct net_device_ops netdev_ops = {
   1886	.ndo_open		= ns83820_open,
   1887	.ndo_stop		= ns83820_stop,
   1888	.ndo_start_xmit		= ns83820_hard_start_xmit,
   1889	.ndo_get_stats		= ns83820_get_stats,
   1890	.ndo_set_rx_mode	= ns83820_set_multicast,
   1891	.ndo_validate_addr	= eth_validate_addr,
   1892	.ndo_set_mac_address	= eth_mac_addr,
   1893	.ndo_tx_timeout		= ns83820_tx_timeout,
   1894};
   1895
   1896static int ns83820_init_one(struct pci_dev *pci_dev,
   1897			    const struct pci_device_id *id)
   1898{
   1899	struct net_device *ndev;
   1900	struct ns83820 *dev;
   1901	long addr;
   1902	int err;
   1903	int using_dac = 0;
   1904
   1905	/* See if we can set the dma mask early on; failure is fatal. */
   1906	if (sizeof(dma_addr_t) == 8 &&
   1907		!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(64))) {
   1908		using_dac = 1;
   1909	} else if (!dma_set_mask(&pci_dev->dev, DMA_BIT_MASK(32))) {
   1910		using_dac = 0;
   1911	} else {
   1912		dev_warn(&pci_dev->dev, "dma_set_mask failed!\n");
   1913		return -ENODEV;
   1914	}
   1915
   1916	ndev = alloc_etherdev(sizeof(struct ns83820));
   1917	err = -ENOMEM;
   1918	if (!ndev)
   1919		goto out;
   1920
   1921	dev = PRIV(ndev);
   1922	dev->ndev = ndev;
   1923
   1924	spin_lock_init(&dev->rx_info.lock);
   1925	spin_lock_init(&dev->tx_lock);
   1926	spin_lock_init(&dev->misc_lock);
   1927	dev->pci_dev = pci_dev;
   1928
   1929	SET_NETDEV_DEV(ndev, &pci_dev->dev);
   1930
   1931	INIT_WORK(&dev->tq_refill, queue_refill);
   1932	tasklet_setup(&dev->rx_tasklet, rx_action);
   1933
   1934	err = pci_enable_device(pci_dev);
   1935	if (err) {
   1936		dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
   1937		goto out_free;
   1938	}
   1939
   1940	pci_set_master(pci_dev);
   1941	addr = pci_resource_start(pci_dev, 1);
   1942	dev->base = ioremap(addr, PAGE_SIZE);
   1943	dev->tx_descs = dma_alloc_coherent(&pci_dev->dev,
   1944					   4 * DESC_SIZE * NR_TX_DESC,
   1945					   &dev->tx_phy_descs, GFP_KERNEL);
   1946	dev->rx_info.descs = dma_alloc_coherent(&pci_dev->dev,
   1947						4 * DESC_SIZE * NR_RX_DESC,
   1948						&dev->rx_info.phy_descs, GFP_KERNEL);
   1949	err = -ENOMEM;
   1950	if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
   1951		goto out_disable;
   1952
   1953	dprintk("%p: %08lx  %p: %08lx\n",
   1954		dev->tx_descs, (long)dev->tx_phy_descs,
   1955		dev->rx_info.descs, (long)dev->rx_info.phy_descs);
   1956
   1957	ns83820_disable_interrupts(dev);
   1958
   1959	dev->IMR_cache = 0;
   1960
   1961	err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
   1962			  DRV_NAME, ndev);
   1963	if (err) {
   1964		dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
   1965			pci_dev->irq, err);
   1966		goto out_disable;
   1967	}
   1968
   1969	/*
   1970	 * FIXME: we are holding rtnl_lock() over obscenely long area only
   1971	 * because some of the setup code uses dev->name.  It's Wrong(tm) -
   1972	 * we should be using driver-specific names for all that stuff.
   1973	 * For now that will do, but we really need to come back and kill
   1974	 * most of the dev_alloc_name() users later.
   1975	 */
   1976	rtnl_lock();
   1977	err = dev_alloc_name(ndev, ndev->name);
   1978	if (err < 0) {
   1979		dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
   1980		goto out_free_irq;
   1981	}
   1982
   1983	printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
   1984		ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
   1985		pci_dev->subsystem_vendor, pci_dev->subsystem_device);
   1986
   1987	ndev->netdev_ops = &netdev_ops;
   1988	ndev->ethtool_ops = &ops;
   1989	ndev->watchdog_timeo = 5 * HZ;
   1990	pci_set_drvdata(pci_dev, ndev);
   1991
   1992	ns83820_do_reset(dev, CR_RST);
   1993
   1994	/* Must reset the ram bist before running it */
   1995	writel(PTSCR_RBIST_RST, dev->base + PTSCR);
   1996	ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
   1997			 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
   1998	ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
   1999			 PTSCR_EEBIST_FAIL);
   2000	ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
   2001
   2002	/* I love config registers */
   2003	dev->CFG_cache = readl(dev->base + CFG);
   2004
   2005	if ((dev->CFG_cache & CFG_PCI64_DET)) {
   2006		printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
   2007			ndev->name);
   2008		/*dev->CFG_cache |= CFG_DATA64_EN;*/
   2009		if (!(dev->CFG_cache & CFG_DATA64_EN))
   2010			printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
   2011				ndev->name);
   2012	} else
   2013		dev->CFG_cache &= ~(CFG_DATA64_EN);
   2014
   2015	dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
   2016			   CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
   2017			   CFG_M64ADDR);
   2018	dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
   2019			  CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
   2020	dev->CFG_cache |= CFG_REQALG;
   2021	dev->CFG_cache |= CFG_POW;
   2022	dev->CFG_cache |= CFG_TMRTEST;
   2023
   2024	/* When compiled with 64 bit addressing, we must always enable
   2025	 * the 64 bit descriptor format.
   2026	 */
   2027	if (sizeof(dma_addr_t) == 8)
   2028		dev->CFG_cache |= CFG_M64ADDR;
   2029	if (using_dac)
   2030		dev->CFG_cache |= CFG_T64ADDR;
   2031
   2032	/* Big endian mode does not seem to do what the docs suggest */
   2033	dev->CFG_cache &= ~CFG_BEM;
   2034
   2035	/* setup optical transceiver if we have one */
   2036	if (dev->CFG_cache & CFG_TBI_EN) {
   2037		printk(KERN_INFO "%s: enabling optical transceiver\n",
   2038			ndev->name);
   2039		writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
   2040
   2041		/* setup auto negotiation feature advertisement */
   2042		writel(readl(dev->base + TANAR)
   2043		       | TANAR_HALF_DUP | TANAR_FULL_DUP,
   2044		       dev->base + TANAR);
   2045
   2046		/* start auto negotiation */
   2047		writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
   2048		       dev->base + TBICR);
   2049		writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
   2050		dev->linkstate = LINK_AUTONEGOTIATE;
   2051
   2052		dev->CFG_cache |= CFG_MODE_1000;
   2053	}
   2054
   2055	writel(dev->CFG_cache, dev->base + CFG);
   2056	dprintk("CFG: %08x\n", dev->CFG_cache);
   2057
   2058	if (reset_phy) {
   2059		printk(KERN_INFO "%s: resetting phy\n", ndev->name);
   2060		writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
   2061		msleep(10);
   2062		writel(dev->CFG_cache, dev->base + CFG);
   2063	}
   2064
   2065#if 0	/* Huh?  This sets the PCI latency register.  Should be done via
   2066	 * the PCI layer.  FIXME.
   2067	 */
   2068	if (readl(dev->base + SRR))
   2069		writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
   2070#endif
   2071
   2072	/* Note!  The DMA burst size interacts with packet
   2073	 * transmission, such that the largest packet that
   2074	 * can be transmitted is 8192 - FLTH - burst size.
   2075	 * If only the transmit fifo was larger...
   2076	 */
   2077	/* Ramit : 1024 DMA is not a good idea, it ends up banging
   2078	 * some DELL and COMPAQ SMP systems */
   2079	writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
   2080		| ((1600 / 32) * 0x100),
   2081		dev->base + TXCFG);
   2082
   2083	/* Flush the interrupt holdoff timer */
   2084	writel(0x000, dev->base + IHR);
   2085	writel(0x100, dev->base + IHR);
   2086	writel(0x000, dev->base + IHR);
   2087
   2088	/* Set Rx to full duplex, don't accept runt, errored, long or length
   2089	 * range errored packets.  Use 512 byte DMA.
   2090	 */
   2091	/* Ramit : 1024 DMA is not a good idea, it ends up banging
   2092	 * some DELL and COMPAQ SMP systems
   2093	 * Turn on ALP, only we are accpeting Jumbo Packets */
   2094	writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
   2095		| RXCFG_STRIPCRC
   2096		//| RXCFG_ALP
   2097		| (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
   2098
   2099	/* Disable priority queueing */
   2100	writel(0, dev->base + PQCR);
   2101
   2102	/* Enable IP checksum validation and detetion of VLAN headers.
   2103	 * Note: do not set the reject options as at least the 0x102
   2104	 * revision of the chip does not properly accept IP fragments
   2105	 * at least for UDP.
   2106	 */
   2107	/* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
   2108	 * the MAC it calculates the packetsize AFTER stripping the VLAN
   2109	 * header, and if a VLAN Tagged packet of 64 bytes is received (like
   2110	 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
   2111	 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
   2112	 * it discrards it!.  These guys......
   2113	 * also turn on tag stripping if hardware acceleration is enabled
   2114	 */
   2115#ifdef NS83820_VLAN_ACCEL_SUPPORT
   2116#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
   2117#else
   2118#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
   2119#endif
   2120	writel(VRCR_INIT_VALUE, dev->base + VRCR);
   2121
   2122	/* Enable per-packet TCP/UDP/IP checksumming
   2123	 * and per packet vlan tag insertion if
   2124	 * vlan hardware acceleration is enabled
   2125	 */
   2126#ifdef NS83820_VLAN_ACCEL_SUPPORT
   2127#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
   2128#else
   2129#define VTCR_INIT_VALUE VTCR_PPCHK
   2130#endif
   2131	writel(VTCR_INIT_VALUE, dev->base + VTCR);
   2132
   2133	/* Ramit : Enable async and sync pause frames */
   2134	/* writel(0, dev->base + PCR); */
   2135	writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
   2136		PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
   2137		dev->base + PCR);
   2138
   2139	/* Disable Wake On Lan */
   2140	writel(0, dev->base + WCSR);
   2141
   2142	ns83820_getmac(dev, ndev);
   2143
   2144	/* Yes, we support dumb IP checksum on transmit */
   2145	ndev->features |= NETIF_F_SG;
   2146	ndev->features |= NETIF_F_IP_CSUM;
   2147
   2148	ndev->min_mtu = 0;
   2149
   2150#ifdef NS83820_VLAN_ACCEL_SUPPORT
   2151	/* We also support hardware vlan acceleration */
   2152	ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
   2153#endif
   2154
   2155	if (using_dac) {
   2156		printk(KERN_INFO "%s: using 64 bit addressing.\n",
   2157			ndev->name);
   2158		ndev->features |= NETIF_F_HIGHDMA;
   2159	}
   2160
   2161	printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
   2162		ndev->name,
   2163		(unsigned)readl(dev->base + SRR) >> 8,
   2164		(unsigned)readl(dev->base + SRR) & 0xff,
   2165		ndev->dev_addr, addr, pci_dev->irq,
   2166		(ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
   2167		);
   2168
   2169#ifdef PHY_CODE_IS_FINISHED
   2170	ns83820_probe_phy(ndev);
   2171#endif
   2172
   2173	err = register_netdevice(ndev);
   2174	if (err) {
   2175		printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
   2176		goto out_cleanup;
   2177	}
   2178	rtnl_unlock();
   2179
   2180	return 0;
   2181
   2182out_cleanup:
   2183	ns83820_disable_interrupts(dev); /* paranoia */
   2184out_free_irq:
   2185	rtnl_unlock();
   2186	free_irq(pci_dev->irq, ndev);
   2187out_disable:
   2188	if (dev->base)
   2189		iounmap(dev->base);
   2190	dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
   2191			  dev->tx_descs, dev->tx_phy_descs);
   2192	dma_free_coherent(&pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
   2193			  dev->rx_info.descs, dev->rx_info.phy_descs);
   2194	pci_disable_device(pci_dev);
   2195out_free:
   2196	free_netdev(ndev);
   2197out:
   2198	return err;
   2199}
   2200
   2201static void ns83820_remove_one(struct pci_dev *pci_dev)
   2202{
   2203	struct net_device *ndev = pci_get_drvdata(pci_dev);
   2204	struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
   2205
   2206	if (!ndev)			/* paranoia */
   2207		return;
   2208
   2209	ns83820_disable_interrupts(dev); /* paranoia */
   2210
   2211	unregister_netdev(ndev);
   2212	free_irq(dev->pci_dev->irq, ndev);
   2213	iounmap(dev->base);
   2214	dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_TX_DESC,
   2215			  dev->tx_descs, dev->tx_phy_descs);
   2216	dma_free_coherent(&dev->pci_dev->dev, 4 * DESC_SIZE * NR_RX_DESC,
   2217			  dev->rx_info.descs, dev->rx_info.phy_descs);
   2218	pci_disable_device(dev->pci_dev);
   2219	free_netdev(ndev);
   2220}
   2221
   2222static const struct pci_device_id ns83820_pci_tbl[] = {
   2223	{ 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
   2224	{ 0, },
   2225};
   2226
   2227static struct pci_driver driver = {
   2228	.name		= "ns83820",
   2229	.id_table	= ns83820_pci_tbl,
   2230	.probe		= ns83820_init_one,
   2231	.remove		= ns83820_remove_one,
   2232#if 0	/* FIXME: implement */
   2233	.suspend	= ,
   2234	.resume		= ,
   2235#endif
   2236};
   2237
   2238
   2239static int __init ns83820_init(void)
   2240{
   2241	printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
   2242	return pci_register_driver(&driver);
   2243}
   2244
   2245static void __exit ns83820_exit(void)
   2246{
   2247	pci_unregister_driver(&driver);
   2248}
   2249
   2250MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
   2251MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
   2252MODULE_LICENSE("GPL");
   2253
   2254MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
   2255
   2256module_param(lnksts, int, 0);
   2257MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
   2258
   2259module_param(ihr, int, 0);
   2260MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
   2261
   2262module_param(reset_phy, int, 0);
   2263MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
   2264
   2265module_init(ns83820_init);
   2266module_exit(ns83820_exit);