cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sonic.c (24492B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * sonic.c
      4 *
      5 * (C) 2005 Finn Thain
      6 *
      7 * Converted to DMA API, added zero-copy buffer handling, and
      8 * (from the mac68k project) introduced dhd's support for 16-bit cards.
      9 *
     10 * (C) 1996,1998 by Thomas Bogendoerfer (tsbogend@alpha.franken.de)
     11 *
     12 * This driver is based on work from Andreas Busse, but most of
     13 * the code is rewritten.
     14 *
     15 * (C) 1995 by Andreas Busse (andy@waldorf-gmbh.de)
     16 *
     17 *    Core code included by system sonic drivers
     18 *
     19 * And... partially rewritten again by David Huggins-Daines in order
     20 * to cope with screwed up Macintosh NICs that may or may not use
     21 * 16-bit DMA.
     22 *
     23 * (C) 1999 David Huggins-Daines <dhd@debian.org>
     24 *
     25 */
     26
     27/*
     28 * Sources: Olivetti M700-10 Risc Personal Computer hardware handbook,
     29 * National Semiconductors data sheet for the DP83932B Sonic Ethernet
     30 * controller, and the files "8390.c" and "skeleton.c" in this directory.
     31 *
     32 * Additional sources: Nat Semi data sheet for the DP83932C and Nat Semi
     33 * Application Note AN-746, the files "lance.c" and "ibmlana.c". See also
     34 * the NetBSD file "sys/arch/mac68k/dev/if_sn.c".
     35 */
     36
     37static unsigned int version_printed;
     38
     39static int sonic_debug = -1;
     40module_param(sonic_debug, int, 0);
     41MODULE_PARM_DESC(sonic_debug, "debug message level");
     42
     43static void sonic_msg_init(struct net_device *dev)
     44{
     45	struct sonic_local *lp = netdev_priv(dev);
     46
     47	lp->msg_enable = netif_msg_init(sonic_debug, 0);
     48
     49	if (version_printed++ == 0)
     50		netif_dbg(lp, drv, dev, "%s", version);
     51}
     52
     53static int sonic_alloc_descriptors(struct net_device *dev)
     54{
     55	struct sonic_local *lp = netdev_priv(dev);
     56
     57	/* Allocate a chunk of memory for the descriptors. Note that this
     58	 * must not cross a 64K boundary. It is smaller than one page which
     59	 * means that page alignment is a sufficient condition.
     60	 */
     61	lp->descriptors =
     62		dma_alloc_coherent(lp->device,
     63				   SIZEOF_SONIC_DESC *
     64				   SONIC_BUS_SCALE(lp->dma_bitmode),
     65				   &lp->descriptors_laddr, GFP_KERNEL);
     66
     67	if (!lp->descriptors)
     68		return -ENOMEM;
     69
     70	lp->cda = lp->descriptors;
     71	lp->tda = lp->cda + SIZEOF_SONIC_CDA *
     72			    SONIC_BUS_SCALE(lp->dma_bitmode);
     73	lp->rda = lp->tda + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
     74			    SONIC_BUS_SCALE(lp->dma_bitmode);
     75	lp->rra = lp->rda + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
     76			    SONIC_BUS_SCALE(lp->dma_bitmode);
     77
     78	lp->cda_laddr = lp->descriptors_laddr;
     79	lp->tda_laddr = lp->cda_laddr + SIZEOF_SONIC_CDA *
     80					SONIC_BUS_SCALE(lp->dma_bitmode);
     81	lp->rda_laddr = lp->tda_laddr + SIZEOF_SONIC_TD * SONIC_NUM_TDS *
     82					SONIC_BUS_SCALE(lp->dma_bitmode);
     83	lp->rra_laddr = lp->rda_laddr + SIZEOF_SONIC_RD * SONIC_NUM_RDS *
     84					SONIC_BUS_SCALE(lp->dma_bitmode);
     85
     86	return 0;
     87}
     88
     89/*
     90 * Open/initialize the SONIC controller.
     91 *
     92 * This routine should set everything up anew at each open, even
     93 *  registers that "should" only need to be set once at boot, so that
     94 *  there is non-reboot way to recover if something goes wrong.
     95 */
     96static int sonic_open(struct net_device *dev)
     97{
     98	struct sonic_local *lp = netdev_priv(dev);
     99	int i;
    100
    101	netif_dbg(lp, ifup, dev, "%s: initializing sonic driver\n", __func__);
    102
    103	spin_lock_init(&lp->lock);
    104
    105	for (i = 0; i < SONIC_NUM_RRS; i++) {
    106		struct sk_buff *skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
    107		if (skb == NULL) {
    108			while(i > 0) { /* free any that were allocated successfully */
    109				i--;
    110				dev_kfree_skb(lp->rx_skb[i]);
    111				lp->rx_skb[i] = NULL;
    112			}
    113			printk(KERN_ERR "%s: couldn't allocate receive buffers\n",
    114			       dev->name);
    115			return -ENOMEM;
    116		}
    117		/* align IP header unless DMA requires otherwise */
    118		if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
    119			skb_reserve(skb, 2);
    120		lp->rx_skb[i] = skb;
    121	}
    122
    123	for (i = 0; i < SONIC_NUM_RRS; i++) {
    124		dma_addr_t laddr = dma_map_single(lp->device, skb_put(lp->rx_skb[i], SONIC_RBSIZE),
    125		                                  SONIC_RBSIZE, DMA_FROM_DEVICE);
    126		if (dma_mapping_error(lp->device, laddr)) {
    127			while(i > 0) { /* free any that were mapped successfully */
    128				i--;
    129				dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
    130				lp->rx_laddr[i] = (dma_addr_t)0;
    131			}
    132			for (i = 0; i < SONIC_NUM_RRS; i++) {
    133				dev_kfree_skb(lp->rx_skb[i]);
    134				lp->rx_skb[i] = NULL;
    135			}
    136			printk(KERN_ERR "%s: couldn't map rx DMA buffers\n",
    137			       dev->name);
    138			return -ENOMEM;
    139		}
    140		lp->rx_laddr[i] = laddr;
    141	}
    142
    143	/*
    144	 * Initialize the SONIC
    145	 */
    146	sonic_init(dev, true);
    147
    148	netif_start_queue(dev);
    149
    150	netif_dbg(lp, ifup, dev, "%s: Initialization done\n", __func__);
    151
    152	return 0;
    153}
    154
    155/* Wait for the SONIC to become idle. */
    156static void sonic_quiesce(struct net_device *dev, u16 mask, bool may_sleep)
    157{
    158	struct sonic_local * __maybe_unused lp = netdev_priv(dev);
    159	int i;
    160	u16 bits;
    161
    162	for (i = 0; i < 1000; ++i) {
    163		bits = SONIC_READ(SONIC_CMD) & mask;
    164		if (!bits)
    165			return;
    166		if (!may_sleep)
    167			udelay(20);
    168		else
    169			usleep_range(100, 200);
    170	}
    171	WARN_ONCE(1, "command deadline expired! 0x%04x\n", bits);
    172}
    173
    174/*
    175 * Close the SONIC device
    176 */
    177static int sonic_close(struct net_device *dev)
    178{
    179	struct sonic_local *lp = netdev_priv(dev);
    180	int i;
    181
    182	netif_dbg(lp, ifdown, dev, "%s\n", __func__);
    183
    184	netif_stop_queue(dev);
    185
    186	/*
    187	 * stop the SONIC, disable interrupts
    188	 */
    189	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
    190	sonic_quiesce(dev, SONIC_CR_ALL, true);
    191
    192	SONIC_WRITE(SONIC_IMR, 0);
    193	SONIC_WRITE(SONIC_ISR, 0x7fff);
    194	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
    195
    196	/* unmap and free skbs that haven't been transmitted */
    197	for (i = 0; i < SONIC_NUM_TDS; i++) {
    198		if(lp->tx_laddr[i]) {
    199			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
    200			lp->tx_laddr[i] = (dma_addr_t)0;
    201		}
    202		if(lp->tx_skb[i]) {
    203			dev_kfree_skb(lp->tx_skb[i]);
    204			lp->tx_skb[i] = NULL;
    205		}
    206	}
    207
    208	/* unmap and free the receive buffers */
    209	for (i = 0; i < SONIC_NUM_RRS; i++) {
    210		if(lp->rx_laddr[i]) {
    211			dma_unmap_single(lp->device, lp->rx_laddr[i], SONIC_RBSIZE, DMA_FROM_DEVICE);
    212			lp->rx_laddr[i] = (dma_addr_t)0;
    213		}
    214		if(lp->rx_skb[i]) {
    215			dev_kfree_skb(lp->rx_skb[i]);
    216			lp->rx_skb[i] = NULL;
    217		}
    218	}
    219
    220	return 0;
    221}
    222
    223static void sonic_tx_timeout(struct net_device *dev, unsigned int txqueue)
    224{
    225	struct sonic_local *lp = netdev_priv(dev);
    226	int i;
    227	/*
    228	 * put the Sonic into software-reset mode and
    229	 * disable all interrupts before releasing DMA buffers
    230	 */
    231	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS);
    232	sonic_quiesce(dev, SONIC_CR_ALL, false);
    233
    234	SONIC_WRITE(SONIC_IMR, 0);
    235	SONIC_WRITE(SONIC_ISR, 0x7fff);
    236	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
    237	/* We could resend the original skbs. Easier to re-initialise. */
    238	for (i = 0; i < SONIC_NUM_TDS; i++) {
    239		if(lp->tx_laddr[i]) {
    240			dma_unmap_single(lp->device, lp->tx_laddr[i], lp->tx_len[i], DMA_TO_DEVICE);
    241			lp->tx_laddr[i] = (dma_addr_t)0;
    242		}
    243		if(lp->tx_skb[i]) {
    244			dev_kfree_skb(lp->tx_skb[i]);
    245			lp->tx_skb[i] = NULL;
    246		}
    247	}
    248	/* Try to restart the adaptor. */
    249	sonic_init(dev, false);
    250	lp->stats.tx_errors++;
    251	netif_trans_update(dev); /* prevent tx timeout */
    252	netif_wake_queue(dev);
    253}
    254
    255/*
    256 * transmit packet
    257 *
    258 * Appends new TD during transmission thus avoiding any TX interrupts
    259 * until we run out of TDs.
    260 * This routine interacts closely with the ISR in that it may,
    261 *   set tx_skb[i]
    262 *   reset the status flags of the new TD
    263 *   set and reset EOL flags
    264 *   stop the tx queue
    265 * The ISR interacts with this routine in various ways. It may,
    266 *   reset tx_skb[i]
    267 *   test the EOL and status flags of the TDs
    268 *   wake the tx queue
    269 * Concurrently with all of this, the SONIC is potentially writing to
    270 * the status flags of the TDs.
    271 */
    272
    273static int sonic_send_packet(struct sk_buff *skb, struct net_device *dev)
    274{
    275	struct sonic_local *lp = netdev_priv(dev);
    276	dma_addr_t laddr;
    277	int length;
    278	int entry;
    279	unsigned long flags;
    280
    281	netif_dbg(lp, tx_queued, dev, "%s: skb=%p\n", __func__, skb);
    282
    283	length = skb->len;
    284	if (length < ETH_ZLEN) {
    285		if (skb_padto(skb, ETH_ZLEN))
    286			return NETDEV_TX_OK;
    287		length = ETH_ZLEN;
    288	}
    289
    290	/*
    291	 * Map the packet data into the logical DMA address space
    292	 */
    293
    294	laddr = dma_map_single(lp->device, skb->data, length, DMA_TO_DEVICE);
    295	if (!laddr) {
    296		pr_err_ratelimited("%s: failed to map tx DMA buffer.\n", dev->name);
    297		dev_kfree_skb_any(skb);
    298		return NETDEV_TX_OK;
    299	}
    300
    301	spin_lock_irqsave(&lp->lock, flags);
    302
    303	entry = (lp->eol_tx + 1) & SONIC_TDS_MASK;
    304
    305	sonic_tda_put(dev, entry, SONIC_TD_STATUS, 0);       /* clear status */
    306	sonic_tda_put(dev, entry, SONIC_TD_FRAG_COUNT, 1);   /* single fragment */
    307	sonic_tda_put(dev, entry, SONIC_TD_PKTSIZE, length); /* length of packet */
    308	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_L, laddr & 0xffff);
    309	sonic_tda_put(dev, entry, SONIC_TD_FRAG_PTR_H, laddr >> 16);
    310	sonic_tda_put(dev, entry, SONIC_TD_FRAG_SIZE, length);
    311	sonic_tda_put(dev, entry, SONIC_TD_LINK,
    312		sonic_tda_get(dev, entry, SONIC_TD_LINK) | SONIC_EOL);
    313
    314	sonic_tda_put(dev, lp->eol_tx, SONIC_TD_LINK, ~SONIC_EOL &
    315		      sonic_tda_get(dev, lp->eol_tx, SONIC_TD_LINK));
    316
    317	netif_dbg(lp, tx_queued, dev, "%s: issuing Tx command\n", __func__);
    318
    319	SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
    320
    321	lp->tx_len[entry] = length;
    322	lp->tx_laddr[entry] = laddr;
    323	lp->tx_skb[entry] = skb;
    324
    325	lp->eol_tx = entry;
    326
    327	entry = (entry + 1) & SONIC_TDS_MASK;
    328	if (lp->tx_skb[entry]) {
    329		/* The ring is full, the ISR has yet to process the next TD. */
    330		netif_dbg(lp, tx_queued, dev, "%s: stopping queue\n", __func__);
    331		netif_stop_queue(dev);
    332		/* after this packet, wait for ISR to free up some TDAs */
    333	}
    334
    335	spin_unlock_irqrestore(&lp->lock, flags);
    336
    337	return NETDEV_TX_OK;
    338}
    339
    340/*
    341 * The typical workload of the driver:
    342 * Handle the network interface interrupts.
    343 */
    344static irqreturn_t sonic_interrupt(int irq, void *dev_id)
    345{
    346	struct net_device *dev = dev_id;
    347	struct sonic_local *lp = netdev_priv(dev);
    348	int status;
    349	unsigned long flags;
    350
    351	/* The lock has two purposes. Firstly, it synchronizes sonic_interrupt()
    352	 * with sonic_send_packet() so that the two functions can share state.
    353	 * Secondly, it makes sonic_interrupt() re-entrant, as that is required
    354	 * by macsonic which must use two IRQs with different priority levels.
    355	 */
    356	spin_lock_irqsave(&lp->lock, flags);
    357
    358	status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
    359	if (!status) {
    360		spin_unlock_irqrestore(&lp->lock, flags);
    361
    362		return IRQ_NONE;
    363	}
    364
    365	do {
    366		SONIC_WRITE(SONIC_ISR, status); /* clear the interrupt(s) */
    367
    368		if (status & SONIC_INT_PKTRX) {
    369			netif_dbg(lp, intr, dev, "%s: packet rx\n", __func__);
    370			sonic_rx(dev);	/* got packet(s) */
    371		}
    372
    373		if (status & SONIC_INT_TXDN) {
    374			int entry = lp->cur_tx;
    375			int td_status;
    376			int freed_some = 0;
    377
    378			/* The state of a Transmit Descriptor may be inferred
    379			 * from { tx_skb[entry], td_status } as follows.
    380			 * { clear, clear } => the TD has never been used
    381			 * { set,   clear } => the TD was handed to SONIC
    382			 * { set,   set   } => the TD was handed back
    383			 * { clear, set   } => the TD is available for re-use
    384			 */
    385
    386			netif_dbg(lp, intr, dev, "%s: tx done\n", __func__);
    387
    388			while (lp->tx_skb[entry] != NULL) {
    389				if ((td_status = sonic_tda_get(dev, entry, SONIC_TD_STATUS)) == 0)
    390					break;
    391
    392				if (td_status & SONIC_TCR_PTX) {
    393					lp->stats.tx_packets++;
    394					lp->stats.tx_bytes += sonic_tda_get(dev, entry, SONIC_TD_PKTSIZE);
    395				} else {
    396					if (td_status & (SONIC_TCR_EXD |
    397					    SONIC_TCR_EXC | SONIC_TCR_BCM))
    398						lp->stats.tx_aborted_errors++;
    399					if (td_status &
    400					    (SONIC_TCR_NCRS | SONIC_TCR_CRLS))
    401						lp->stats.tx_carrier_errors++;
    402					if (td_status & SONIC_TCR_OWC)
    403						lp->stats.tx_window_errors++;
    404					if (td_status & SONIC_TCR_FU)
    405						lp->stats.tx_fifo_errors++;
    406				}
    407
    408				/* We must free the original skb */
    409				dev_consume_skb_irq(lp->tx_skb[entry]);
    410				lp->tx_skb[entry] = NULL;
    411				/* and unmap DMA buffer */
    412				dma_unmap_single(lp->device, lp->tx_laddr[entry], lp->tx_len[entry], DMA_TO_DEVICE);
    413				lp->tx_laddr[entry] = (dma_addr_t)0;
    414				freed_some = 1;
    415
    416				if (sonic_tda_get(dev, entry, SONIC_TD_LINK) & SONIC_EOL) {
    417					entry = (entry + 1) & SONIC_TDS_MASK;
    418					break;
    419				}
    420				entry = (entry + 1) & SONIC_TDS_MASK;
    421			}
    422
    423			if (freed_some || lp->tx_skb[entry] == NULL)
    424				netif_wake_queue(dev);  /* The ring is no longer full */
    425			lp->cur_tx = entry;
    426		}
    427
    428		/*
    429		 * check error conditions
    430		 */
    431		if (status & SONIC_INT_RFO) {
    432			netif_dbg(lp, rx_err, dev, "%s: rx fifo overrun\n",
    433				  __func__);
    434		}
    435		if (status & SONIC_INT_RDE) {
    436			netif_dbg(lp, rx_err, dev, "%s: rx descriptors exhausted\n",
    437				  __func__);
    438		}
    439		if (status & SONIC_INT_RBAE) {
    440			netif_dbg(lp, rx_err, dev, "%s: rx buffer area exceeded\n",
    441				  __func__);
    442		}
    443
    444		/* counter overruns; all counters are 16bit wide */
    445		if (status & SONIC_INT_FAE)
    446			lp->stats.rx_frame_errors += 65536;
    447		if (status & SONIC_INT_CRC)
    448			lp->stats.rx_crc_errors += 65536;
    449		if (status & SONIC_INT_MP)
    450			lp->stats.rx_missed_errors += 65536;
    451
    452		/* transmit error */
    453		if (status & SONIC_INT_TXER) {
    454			u16 tcr = SONIC_READ(SONIC_TCR);
    455
    456			netif_dbg(lp, tx_err, dev, "%s: TXER intr, TCR %04x\n",
    457				  __func__, tcr);
    458
    459			if (tcr & (SONIC_TCR_EXD | SONIC_TCR_EXC |
    460				   SONIC_TCR_FU | SONIC_TCR_BCM)) {
    461				/* Aborted transmission. Try again. */
    462				netif_stop_queue(dev);
    463				SONIC_WRITE(SONIC_CMD, SONIC_CR_TXP);
    464			}
    465		}
    466
    467		/* bus retry */
    468		if (status & SONIC_INT_BR) {
    469			printk(KERN_ERR "%s: Bus retry occurred! Device interrupt disabled.\n",
    470				dev->name);
    471			/* ... to help debug DMA problems causing endless interrupts. */
    472			/* Bounce the eth interface to turn on the interrupt again. */
    473			SONIC_WRITE(SONIC_IMR, 0);
    474		}
    475
    476		status = SONIC_READ(SONIC_ISR) & SONIC_IMR_DEFAULT;
    477	} while (status);
    478
    479	spin_unlock_irqrestore(&lp->lock, flags);
    480
    481	return IRQ_HANDLED;
    482}
    483
    484/* Return the array index corresponding to a given Receive Buffer pointer. */
    485static int index_from_addr(struct sonic_local *lp, dma_addr_t addr,
    486			   unsigned int last)
    487{
    488	unsigned int i = last;
    489
    490	do {
    491		i = (i + 1) & SONIC_RRS_MASK;
    492		if (addr == lp->rx_laddr[i])
    493			return i;
    494	} while (i != last);
    495
    496	return -ENOENT;
    497}
    498
    499/* Allocate and map a new skb to be used as a receive buffer. */
    500static bool sonic_alloc_rb(struct net_device *dev, struct sonic_local *lp,
    501			   struct sk_buff **new_skb, dma_addr_t *new_addr)
    502{
    503	*new_skb = netdev_alloc_skb(dev, SONIC_RBSIZE + 2);
    504	if (!*new_skb)
    505		return false;
    506
    507	if (SONIC_BUS_SCALE(lp->dma_bitmode) == 2)
    508		skb_reserve(*new_skb, 2);
    509
    510	*new_addr = dma_map_single(lp->device, skb_put(*new_skb, SONIC_RBSIZE),
    511				   SONIC_RBSIZE, DMA_FROM_DEVICE);
    512	if (!*new_addr) {
    513		dev_kfree_skb(*new_skb);
    514		*new_skb = NULL;
    515		return false;
    516	}
    517
    518	return true;
    519}
    520
    521/* Place a new receive resource in the Receive Resource Area and update RWP. */
    522static void sonic_update_rra(struct net_device *dev, struct sonic_local *lp,
    523			     dma_addr_t old_addr, dma_addr_t new_addr)
    524{
    525	unsigned int entry = sonic_rr_entry(dev, SONIC_READ(SONIC_RWP));
    526	unsigned int end = sonic_rr_entry(dev, SONIC_READ(SONIC_RRP));
    527	u32 buf;
    528
    529	/* The resources in the range [RRP, RWP) belong to the SONIC. This loop
    530	 * scans the other resources in the RRA, those in the range [RWP, RRP).
    531	 */
    532	do {
    533		buf = (sonic_rra_get(dev, entry, SONIC_RR_BUFADR_H) << 16) |
    534		      sonic_rra_get(dev, entry, SONIC_RR_BUFADR_L);
    535
    536		if (buf == old_addr)
    537			break;
    538
    539		entry = (entry + 1) & SONIC_RRS_MASK;
    540	} while (entry != end);
    541
    542	WARN_ONCE(buf != old_addr, "failed to find resource!\n");
    543
    544	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_H, new_addr >> 16);
    545	sonic_rra_put(dev, entry, SONIC_RR_BUFADR_L, new_addr & 0xffff);
    546
    547	entry = (entry + 1) & SONIC_RRS_MASK;
    548
    549	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, entry));
    550}
    551
    552/*
    553 * We have a good packet(s), pass it/them up the network stack.
    554 */
    555static void sonic_rx(struct net_device *dev)
    556{
    557	struct sonic_local *lp = netdev_priv(dev);
    558	int entry = lp->cur_rx;
    559	int prev_entry = lp->eol_rx;
    560	bool rbe = false;
    561
    562	while (sonic_rda_get(dev, entry, SONIC_RD_IN_USE) == 0) {
    563		u16 status = sonic_rda_get(dev, entry, SONIC_RD_STATUS);
    564
    565		/* If the RD has LPKT set, the chip has finished with the RB */
    566		if ((status & SONIC_RCR_PRX) && (status & SONIC_RCR_LPKT)) {
    567			struct sk_buff *new_skb;
    568			dma_addr_t new_laddr;
    569			u32 addr = (sonic_rda_get(dev, entry,
    570						  SONIC_RD_PKTPTR_H) << 16) |
    571				   sonic_rda_get(dev, entry, SONIC_RD_PKTPTR_L);
    572			int i = index_from_addr(lp, addr, entry);
    573
    574			if (i < 0) {
    575				WARN_ONCE(1, "failed to find buffer!\n");
    576				break;
    577			}
    578
    579			if (sonic_alloc_rb(dev, lp, &new_skb, &new_laddr)) {
    580				struct sk_buff *used_skb = lp->rx_skb[i];
    581				int pkt_len;
    582
    583				/* Pass the used buffer up the stack */
    584				dma_unmap_single(lp->device, addr, SONIC_RBSIZE,
    585						 DMA_FROM_DEVICE);
    586
    587				pkt_len = sonic_rda_get(dev, entry,
    588							SONIC_RD_PKTLEN);
    589				skb_trim(used_skb, pkt_len);
    590				used_skb->protocol = eth_type_trans(used_skb,
    591								    dev);
    592				netif_rx(used_skb);
    593				lp->stats.rx_packets++;
    594				lp->stats.rx_bytes += pkt_len;
    595
    596				lp->rx_skb[i] = new_skb;
    597				lp->rx_laddr[i] = new_laddr;
    598			} else {
    599				/* Failed to obtain a new buffer so re-use it */
    600				new_laddr = addr;
    601				lp->stats.rx_dropped++;
    602			}
    603			/* If RBE is already asserted when RWP advances then
    604			 * it's safe to clear RBE after processing this packet.
    605			 */
    606			rbe = rbe || SONIC_READ(SONIC_ISR) & SONIC_INT_RBE;
    607			sonic_update_rra(dev, lp, addr, new_laddr);
    608		}
    609		/*
    610		 * give back the descriptor
    611		 */
    612		sonic_rda_put(dev, entry, SONIC_RD_STATUS, 0);
    613		sonic_rda_put(dev, entry, SONIC_RD_IN_USE, 1);
    614
    615		prev_entry = entry;
    616		entry = (entry + 1) & SONIC_RDS_MASK;
    617	}
    618
    619	lp->cur_rx = entry;
    620
    621	if (prev_entry != lp->eol_rx) {
    622		/* Advance the EOL flag to put descriptors back into service */
    623		sonic_rda_put(dev, prev_entry, SONIC_RD_LINK, SONIC_EOL |
    624			      sonic_rda_get(dev, prev_entry, SONIC_RD_LINK));
    625		sonic_rda_put(dev, lp->eol_rx, SONIC_RD_LINK, ~SONIC_EOL &
    626			      sonic_rda_get(dev, lp->eol_rx, SONIC_RD_LINK));
    627		lp->eol_rx = prev_entry;
    628	}
    629
    630	if (rbe)
    631		SONIC_WRITE(SONIC_ISR, SONIC_INT_RBE);
    632}
    633
    634
    635/*
    636 * Get the current statistics.
    637 * This may be called with the device open or closed.
    638 */
    639static struct net_device_stats *sonic_get_stats(struct net_device *dev)
    640{
    641	struct sonic_local *lp = netdev_priv(dev);
    642
    643	/* read the tally counter from the SONIC and reset them */
    644	lp->stats.rx_crc_errors += SONIC_READ(SONIC_CRCT);
    645	SONIC_WRITE(SONIC_CRCT, 0xffff);
    646	lp->stats.rx_frame_errors += SONIC_READ(SONIC_FAET);
    647	SONIC_WRITE(SONIC_FAET, 0xffff);
    648	lp->stats.rx_missed_errors += SONIC_READ(SONIC_MPT);
    649	SONIC_WRITE(SONIC_MPT, 0xffff);
    650
    651	return &lp->stats;
    652}
    653
    654
    655/*
    656 * Set or clear the multicast filter for this adaptor.
    657 */
    658static void sonic_multicast_list(struct net_device *dev)
    659{
    660	struct sonic_local *lp = netdev_priv(dev);
    661	unsigned int rcr;
    662	struct netdev_hw_addr *ha;
    663	unsigned char *addr;
    664	int i;
    665
    666	rcr = SONIC_READ(SONIC_RCR) & ~(SONIC_RCR_PRO | SONIC_RCR_AMC);
    667	rcr |= SONIC_RCR_BRD;	/* accept broadcast packets */
    668
    669	if (dev->flags & IFF_PROMISC) {	/* set promiscuous mode */
    670		rcr |= SONIC_RCR_PRO;
    671	} else {
    672		if ((dev->flags & IFF_ALLMULTI) ||
    673		    (netdev_mc_count(dev) > 15)) {
    674			rcr |= SONIC_RCR_AMC;
    675		} else {
    676			unsigned long flags;
    677
    678			netif_dbg(lp, ifup, dev, "%s: mc_count %d\n", __func__,
    679				  netdev_mc_count(dev));
    680			sonic_set_cam_enable(dev, 1);  /* always enable our own address */
    681			i = 1;
    682			netdev_for_each_mc_addr(ha, dev) {
    683				addr = ha->addr;
    684				sonic_cda_put(dev, i, SONIC_CD_CAP0, addr[1] << 8 | addr[0]);
    685				sonic_cda_put(dev, i, SONIC_CD_CAP1, addr[3] << 8 | addr[2]);
    686				sonic_cda_put(dev, i, SONIC_CD_CAP2, addr[5] << 8 | addr[4]);
    687				sonic_set_cam_enable(dev, sonic_get_cam_enable(dev) | (1 << i));
    688				i++;
    689			}
    690			SONIC_WRITE(SONIC_CDC, 16);
    691			SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
    692
    693			/* LCAM and TXP commands can't be used simultaneously */
    694			spin_lock_irqsave(&lp->lock, flags);
    695			sonic_quiesce(dev, SONIC_CR_TXP, false);
    696			SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
    697			sonic_quiesce(dev, SONIC_CR_LCAM, false);
    698			spin_unlock_irqrestore(&lp->lock, flags);
    699		}
    700	}
    701
    702	netif_dbg(lp, ifup, dev, "%s: setting RCR=%x\n", __func__, rcr);
    703
    704	SONIC_WRITE(SONIC_RCR, rcr);
    705}
    706
    707
    708/*
    709 * Initialize the SONIC ethernet controller.
    710 */
    711static int sonic_init(struct net_device *dev, bool may_sleep)
    712{
    713	struct sonic_local *lp = netdev_priv(dev);
    714	int i;
    715
    716	/*
    717	 * put the Sonic into software-reset mode and
    718	 * disable all interrupts
    719	 */
    720	SONIC_WRITE(SONIC_IMR, 0);
    721	SONIC_WRITE(SONIC_ISR, 0x7fff);
    722	SONIC_WRITE(SONIC_CMD, SONIC_CR_RST);
    723
    724	/* While in reset mode, clear CAM Enable register */
    725	SONIC_WRITE(SONIC_CE, 0);
    726
    727	/*
    728	 * clear software reset flag, disable receiver, clear and
    729	 * enable interrupts, then completely initialize the SONIC
    730	 */
    731	SONIC_WRITE(SONIC_CMD, 0);
    732	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXDIS | SONIC_CR_STP);
    733	sonic_quiesce(dev, SONIC_CR_ALL, may_sleep);
    734
    735	/*
    736	 * initialize the receive resource area
    737	 */
    738	netif_dbg(lp, ifup, dev, "%s: initialize receive resource area\n",
    739		  __func__);
    740
    741	for (i = 0; i < SONIC_NUM_RRS; i++) {
    742		u16 bufadr_l = (unsigned long)lp->rx_laddr[i] & 0xffff;
    743		u16 bufadr_h = (unsigned long)lp->rx_laddr[i] >> 16;
    744		sonic_rra_put(dev, i, SONIC_RR_BUFADR_L, bufadr_l);
    745		sonic_rra_put(dev, i, SONIC_RR_BUFADR_H, bufadr_h);
    746		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_L, SONIC_RBSIZE >> 1);
    747		sonic_rra_put(dev, i, SONIC_RR_BUFSIZE_H, 0);
    748	}
    749
    750	/* initialize all RRA registers */
    751	SONIC_WRITE(SONIC_RSA, sonic_rr_addr(dev, 0));
    752	SONIC_WRITE(SONIC_REA, sonic_rr_addr(dev, SONIC_NUM_RRS));
    753	SONIC_WRITE(SONIC_RRP, sonic_rr_addr(dev, 0));
    754	SONIC_WRITE(SONIC_RWP, sonic_rr_addr(dev, SONIC_NUM_RRS - 1));
    755	SONIC_WRITE(SONIC_URRA, lp->rra_laddr >> 16);
    756	SONIC_WRITE(SONIC_EOBC, (SONIC_RBSIZE >> 1) - (lp->dma_bitmode ? 2 : 1));
    757
    758	/* load the resource pointers */
    759	netif_dbg(lp, ifup, dev, "%s: issuing RRRA command\n", __func__);
    760
    761	SONIC_WRITE(SONIC_CMD, SONIC_CR_RRRA);
    762	sonic_quiesce(dev, SONIC_CR_RRRA, may_sleep);
    763
    764	/*
    765	 * Initialize the receive descriptors so that they
    766	 * become a circular linked list, ie. let the last
    767	 * descriptor point to the first again.
    768	 */
    769	netif_dbg(lp, ifup, dev, "%s: initialize receive descriptors\n",
    770		  __func__);
    771
    772	for (i=0; i<SONIC_NUM_RDS; i++) {
    773		sonic_rda_put(dev, i, SONIC_RD_STATUS, 0);
    774		sonic_rda_put(dev, i, SONIC_RD_PKTLEN, 0);
    775		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_L, 0);
    776		sonic_rda_put(dev, i, SONIC_RD_PKTPTR_H, 0);
    777		sonic_rda_put(dev, i, SONIC_RD_SEQNO, 0);
    778		sonic_rda_put(dev, i, SONIC_RD_IN_USE, 1);
    779		sonic_rda_put(dev, i, SONIC_RD_LINK,
    780			lp->rda_laddr +
    781			((i+1) * SIZEOF_SONIC_RD * SONIC_BUS_SCALE(lp->dma_bitmode)));
    782	}
    783	/* fix last descriptor */
    784	sonic_rda_put(dev, SONIC_NUM_RDS - 1, SONIC_RD_LINK,
    785		(lp->rda_laddr & 0xffff) | SONIC_EOL);
    786	lp->eol_rx = SONIC_NUM_RDS - 1;
    787	lp->cur_rx = 0;
    788	SONIC_WRITE(SONIC_URDA, lp->rda_laddr >> 16);
    789	SONIC_WRITE(SONIC_CRDA, lp->rda_laddr & 0xffff);
    790
    791	/*
    792	 * initialize transmit descriptors
    793	 */
    794	netif_dbg(lp, ifup, dev, "%s: initialize transmit descriptors\n",
    795		  __func__);
    796
    797	for (i = 0; i < SONIC_NUM_TDS; i++) {
    798		sonic_tda_put(dev, i, SONIC_TD_STATUS, 0);
    799		sonic_tda_put(dev, i, SONIC_TD_CONFIG, 0);
    800		sonic_tda_put(dev, i, SONIC_TD_PKTSIZE, 0);
    801		sonic_tda_put(dev, i, SONIC_TD_FRAG_COUNT, 0);
    802		sonic_tda_put(dev, i, SONIC_TD_LINK,
    803			(lp->tda_laddr & 0xffff) +
    804			(i + 1) * SIZEOF_SONIC_TD * SONIC_BUS_SCALE(lp->dma_bitmode));
    805		lp->tx_skb[i] = NULL;
    806	}
    807	/* fix last descriptor */
    808	sonic_tda_put(dev, SONIC_NUM_TDS - 1, SONIC_TD_LINK,
    809		(lp->tda_laddr & 0xffff));
    810
    811	SONIC_WRITE(SONIC_UTDA, lp->tda_laddr >> 16);
    812	SONIC_WRITE(SONIC_CTDA, lp->tda_laddr & 0xffff);
    813	lp->cur_tx = 0;
    814	lp->eol_tx = SONIC_NUM_TDS - 1;
    815
    816	/*
    817	 * put our own address to CAM desc[0]
    818	 */
    819	sonic_cda_put(dev, 0, SONIC_CD_CAP0, dev->dev_addr[1] << 8 | dev->dev_addr[0]);
    820	sonic_cda_put(dev, 0, SONIC_CD_CAP1, dev->dev_addr[3] << 8 | dev->dev_addr[2]);
    821	sonic_cda_put(dev, 0, SONIC_CD_CAP2, dev->dev_addr[5] << 8 | dev->dev_addr[4]);
    822	sonic_set_cam_enable(dev, 1);
    823
    824	for (i = 0; i < 16; i++)
    825		sonic_cda_put(dev, i, SONIC_CD_ENTRY_POINTER, i);
    826
    827	/*
    828	 * initialize CAM registers
    829	 */
    830	SONIC_WRITE(SONIC_CDP, lp->cda_laddr & 0xffff);
    831	SONIC_WRITE(SONIC_CDC, 16);
    832
    833	/*
    834	 * load the CAM
    835	 */
    836	SONIC_WRITE(SONIC_CMD, SONIC_CR_LCAM);
    837	sonic_quiesce(dev, SONIC_CR_LCAM, may_sleep);
    838
    839	/*
    840	 * enable receiver, disable loopback
    841	 * and enable all interrupts
    842	 */
    843	SONIC_WRITE(SONIC_RCR, SONIC_RCR_DEFAULT);
    844	SONIC_WRITE(SONIC_TCR, SONIC_TCR_DEFAULT);
    845	SONIC_WRITE(SONIC_ISR, 0x7fff);
    846	SONIC_WRITE(SONIC_IMR, SONIC_IMR_DEFAULT);
    847	SONIC_WRITE(SONIC_CMD, SONIC_CR_RXEN);
    848
    849	netif_dbg(lp, ifup, dev, "%s: new status=%x\n", __func__,
    850		  SONIC_READ(SONIC_CMD));
    851
    852	return 0;
    853}
    854
    855MODULE_LICENSE("GPL");