cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vxge-traffic.c (66080B)


      1/******************************************************************************
      2 * This software may be used and distributed according to the terms of
      3 * the GNU General Public License (GPL), incorporated herein by reference.
      4 * Drivers based on or derived from this code fall under the GPL and must
      5 * retain the authorship, copyright and license notice.  This file is not
      6 * a complete program and may only be used when the entire operating
      7 * system is licensed under the GPL.
      8 * See the file COPYING in this distribution for more information.
      9 *
     10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
     11 *                 Virtualized Server Adapter.
     12 * Copyright(c) 2002-2010 Exar Corp.
     13 ******************************************************************************/
     14#include <linux/etherdevice.h>
     15#include <linux/io-64-nonatomic-lo-hi.h>
     16#include <linux/prefetch.h>
     17
     18#include "vxge-traffic.h"
     19#include "vxge-config.h"
     20#include "vxge-main.h"
     21
     22/*
     23 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
     24 * @vp: Virtual Path handle.
     25 *
     26 * Enable vpath interrupts. The function is to be executed the last in
     27 * vpath initialization sequence.
     28 *
     29 * See also: vxge_hw_vpath_intr_disable()
     30 */
     31enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
     32{
     33	struct __vxge_hw_virtualpath *vpath;
     34	struct vxge_hw_vpath_reg __iomem *vp_reg;
     35	enum vxge_hw_status status = VXGE_HW_OK;
     36	if (vp == NULL) {
     37		status = VXGE_HW_ERR_INVALID_HANDLE;
     38		goto exit;
     39	}
     40
     41	vpath = vp->vpath;
     42
     43	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
     44		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
     45		goto exit;
     46	}
     47
     48	vp_reg = vpath->vp_reg;
     49
     50	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
     51
     52	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     53			&vp_reg->general_errors_reg);
     54
     55	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     56			&vp_reg->pci_config_errors_reg);
     57
     58	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     59			&vp_reg->mrpcim_to_vpath_alarm_reg);
     60
     61	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     62			&vp_reg->srpcim_to_vpath_alarm_reg);
     63
     64	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     65			&vp_reg->vpath_ppif_int_status);
     66
     67	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     68			&vp_reg->srpcim_msg_to_vpath_reg);
     69
     70	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     71			&vp_reg->vpath_pcipif_int_status);
     72
     73	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     74			&vp_reg->prc_alarm_reg);
     75
     76	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     77			&vp_reg->wrdma_alarm_status);
     78
     79	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     80			&vp_reg->asic_ntwk_vp_err_reg);
     81
     82	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     83			&vp_reg->xgmac_vp_int_status);
     84
     85	readq(&vp_reg->vpath_general_int_status);
     86
     87	/* Mask unwanted interrupts */
     88
     89	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     90			&vp_reg->vpath_pcipif_int_mask);
     91
     92	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     93			&vp_reg->srpcim_msg_to_vpath_mask);
     94
     95	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     96			&vp_reg->srpcim_to_vpath_alarm_mask);
     97
     98	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
     99			&vp_reg->mrpcim_to_vpath_alarm_mask);
    100
    101	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    102			&vp_reg->pci_config_errors_mask);
    103
    104	/* Unmask the individual interrupts */
    105
    106	writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
    107		VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
    108		VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
    109		VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
    110		&vp_reg->general_errors_mask);
    111
    112	__vxge_hw_pio_mem_write32_upper(
    113		(u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
    114		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
    115		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
    116		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
    117		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
    118		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
    119		&vp_reg->kdfcctl_errors_mask);
    120
    121	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
    122
    123	__vxge_hw_pio_mem_write32_upper(
    124		(u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
    125		&vp_reg->prc_alarm_mask);
    126
    127	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
    128	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
    129
    130	if (vpath->hldev->first_vp_id != vpath->vp_id)
    131		__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    132			&vp_reg->asic_ntwk_vp_err_mask);
    133	else
    134		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
    135		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
    136		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
    137		&vp_reg->asic_ntwk_vp_err_mask);
    138
    139	__vxge_hw_pio_mem_write32_upper(0,
    140		&vp_reg->vpath_general_int_mask);
    141exit:
    142	return status;
    143
    144}
    145
    146/*
    147 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
    148 * @vp: Virtual Path handle.
    149 *
    150 * Disable vpath interrupts. The function is to be executed the last in
    151 * vpath initialization sequence.
    152 *
    153 * See also: vxge_hw_vpath_intr_enable()
    154 */
    155enum vxge_hw_status vxge_hw_vpath_intr_disable(
    156			struct __vxge_hw_vpath_handle *vp)
    157{
    158	struct __vxge_hw_virtualpath *vpath;
    159	enum vxge_hw_status status = VXGE_HW_OK;
    160	struct vxge_hw_vpath_reg __iomem *vp_reg;
    161	if (vp == NULL) {
    162		status = VXGE_HW_ERR_INVALID_HANDLE;
    163		goto exit;
    164	}
    165
    166	vpath = vp->vpath;
    167
    168	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
    169		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
    170		goto exit;
    171	}
    172	vp_reg = vpath->vp_reg;
    173
    174	__vxge_hw_pio_mem_write32_upper(
    175		(u32)VXGE_HW_INTR_MASK_ALL,
    176		&vp_reg->vpath_general_int_mask);
    177
    178	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
    179
    180	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    181			&vp_reg->general_errors_mask);
    182
    183	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    184			&vp_reg->pci_config_errors_mask);
    185
    186	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    187			&vp_reg->mrpcim_to_vpath_alarm_mask);
    188
    189	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    190			&vp_reg->srpcim_to_vpath_alarm_mask);
    191
    192	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    193			&vp_reg->vpath_ppif_int_mask);
    194
    195	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    196			&vp_reg->srpcim_msg_to_vpath_mask);
    197
    198	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    199			&vp_reg->vpath_pcipif_int_mask);
    200
    201	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    202			&vp_reg->wrdma_alarm_mask);
    203
    204	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    205			&vp_reg->prc_alarm_mask);
    206
    207	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    208			&vp_reg->xgmac_vp_int_mask);
    209
    210	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
    211			&vp_reg->asic_ntwk_vp_err_mask);
    212
    213exit:
    214	return status;
    215}
    216
    217void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
    218{
    219	struct vxge_hw_vpath_reg __iomem *vp_reg;
    220	struct vxge_hw_vp_config *config;
    221	u64 val64;
    222
    223	if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
    224		return;
    225
    226	vp_reg = fifo->vp_reg;
    227	config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
    228
    229	if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
    230		config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
    231		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
    232		val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
    233		fifo->tim_tti_cfg1_saved = val64;
    234		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
    235	}
    236}
    237
    238void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
    239{
    240	u64 val64 = ring->tim_rti_cfg1_saved;
    241
    242	val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
    243	ring->tim_rti_cfg1_saved = val64;
    244	writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
    245}
    246
    247void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
    248{
    249	u64 val64 = fifo->tim_tti_cfg3_saved;
    250	u64 timer = (fifo->rtimer * 1000) / 272;
    251
    252	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
    253	if (timer)
    254		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
    255			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
    256
    257	writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
    258	/* tti_cfg3_saved is not updated again because it is
    259	 * initialized at one place only - init time.
    260	 */
    261}
    262
    263void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
    264{
    265	u64 val64 = ring->tim_rti_cfg3_saved;
    266	u64 timer = (ring->rtimer * 1000) / 272;
    267
    268	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
    269	if (timer)
    270		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
    271			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
    272
    273	writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
    274	/* rti_cfg3_saved is not updated again because it is
    275	 * initialized at one place only - init time.
    276	 */
    277}
    278
    279/**
    280 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
    281 * @channel: Channel for rx or tx handle
    282 * @msix_id:  MSIX ID
    283 *
    284 * The function masks the msix interrupt for the given msix_id
    285 *
    286 * Returns: 0
    287 */
    288void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
    289{
    290
    291	__vxge_hw_pio_mem_write32_upper(
    292		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
    293		&channel->common_reg->set_msix_mask_vect[msix_id%4]);
    294}
    295
    296/**
    297 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
    298 * @channel: Channel for rx or tx handle
    299 * @msix_id:  MSI ID
    300 *
    301 * The function unmasks the msix interrupt for the given msix_id
    302 *
    303 * Returns: 0
    304 */
    305void
    306vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
    307{
    308
    309	__vxge_hw_pio_mem_write32_upper(
    310		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
    311		&channel->common_reg->clear_msix_mask_vect[msix_id%4]);
    312}
    313
    314/**
    315 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
    316 * @channel: Channel for rx or tx handle
    317 * @msix_id:  MSI ID
    318 *
    319 * The function unmasks the msix interrupt for the given msix_id
    320 * if configured in MSIX oneshot mode
    321 *
    322 * Returns: 0
    323 */
    324void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
    325{
    326	__vxge_hw_pio_mem_write32_upper(
    327		(u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
    328		&channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
    329}
    330
    331/**
    332 * vxge_hw_device_set_intr_type - Updates the configuration
    333 *		with new interrupt type.
    334 * @hldev: HW device handle.
    335 * @intr_mode: New interrupt type
    336 */
    337u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
    338{
    339
    340	if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
    341	   (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
    342	   (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
    343	   (intr_mode != VXGE_HW_INTR_MODE_DEF))
    344		intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
    345
    346	hldev->config.intr_mode = intr_mode;
    347	return intr_mode;
    348}
    349
    350/**
    351 * vxge_hw_device_intr_enable - Enable interrupts.
    352 * @hldev: HW device handle.
    353 *
    354 * Enable Titan interrupts. The function is to be executed the last in
    355 * Titan initialization sequence.
    356 *
    357 * See also: vxge_hw_device_intr_disable()
    358 */
    359void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
    360{
    361	u32 i;
    362	u64 val64;
    363	u32 val32;
    364
    365	vxge_hw_device_mask_all(hldev);
    366
    367	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
    368
    369		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
    370			continue;
    371
    372		vxge_hw_vpath_intr_enable(
    373			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
    374	}
    375
    376	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
    377		val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
    378			hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
    379
    380		if (val64 != 0) {
    381			writeq(val64, &hldev->common_reg->tim_int_status0);
    382
    383			writeq(~val64, &hldev->common_reg->tim_int_mask0);
    384		}
    385
    386		val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
    387			hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
    388
    389		if (val32 != 0) {
    390			__vxge_hw_pio_mem_write32_upper(val32,
    391					&hldev->common_reg->tim_int_status1);
    392
    393			__vxge_hw_pio_mem_write32_upper(~val32,
    394					&hldev->common_reg->tim_int_mask1);
    395		}
    396	}
    397
    398	val64 = readq(&hldev->common_reg->titan_general_int_status);
    399
    400	vxge_hw_device_unmask_all(hldev);
    401}
    402
    403/**
    404 * vxge_hw_device_intr_disable - Disable Titan interrupts.
    405 * @hldev: HW device handle.
    406 *
    407 * Disable Titan interrupts.
    408 *
    409 * See also: vxge_hw_device_intr_enable()
    410 */
    411void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
    412{
    413	u32 i;
    414
    415	vxge_hw_device_mask_all(hldev);
    416
    417	/* mask all the tim interrupts */
    418	writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
    419	__vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
    420		&hldev->common_reg->tim_int_mask1);
    421
    422	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
    423
    424		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
    425			continue;
    426
    427		vxge_hw_vpath_intr_disable(
    428			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
    429	}
    430}
    431
    432/**
    433 * vxge_hw_device_mask_all - Mask all device interrupts.
    434 * @hldev: HW device handle.
    435 *
    436 * Mask	all device interrupts.
    437 *
    438 * See also: vxge_hw_device_unmask_all()
    439 */
    440void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
    441{
    442	u64 val64;
    443
    444	val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
    445		VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
    446
    447	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
    448				&hldev->common_reg->titan_mask_all_int);
    449}
    450
    451/**
    452 * vxge_hw_device_unmask_all - Unmask all device interrupts.
    453 * @hldev: HW device handle.
    454 *
    455 * Unmask all device interrupts.
    456 *
    457 * See also: vxge_hw_device_mask_all()
    458 */
    459void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
    460{
    461	u64 val64 = 0;
    462
    463	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
    464		val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
    465
    466	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
    467			&hldev->common_reg->titan_mask_all_int);
    468}
    469
    470/**
    471 * vxge_hw_device_flush_io - Flush io writes.
    472 * @hldev: HW device handle.
    473 *
    474 * The function	performs a read operation to flush io writes.
    475 *
    476 * Returns: void
    477 */
    478void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
    479{
    480	readl(&hldev->common_reg->titan_general_int_status);
    481}
    482
    483/**
    484 * __vxge_hw_device_handle_error - Handle error
    485 * @hldev: HW device
    486 * @vp_id: Vpath Id
    487 * @type: Error type. Please see enum vxge_hw_event{}
    488 *
    489 * Handle error.
    490 */
    491static enum vxge_hw_status
    492__vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
    493			      enum vxge_hw_event type)
    494{
    495	switch (type) {
    496	case VXGE_HW_EVENT_UNKNOWN:
    497		break;
    498	case VXGE_HW_EVENT_RESET_START:
    499	case VXGE_HW_EVENT_RESET_COMPLETE:
    500	case VXGE_HW_EVENT_LINK_DOWN:
    501	case VXGE_HW_EVENT_LINK_UP:
    502		goto out;
    503	case VXGE_HW_EVENT_ALARM_CLEARED:
    504		goto out;
    505	case VXGE_HW_EVENT_ECCERR:
    506	case VXGE_HW_EVENT_MRPCIM_ECCERR:
    507		goto out;
    508	case VXGE_HW_EVENT_FIFO_ERR:
    509	case VXGE_HW_EVENT_VPATH_ERR:
    510	case VXGE_HW_EVENT_CRITICAL_ERR:
    511	case VXGE_HW_EVENT_SERR:
    512		break;
    513	case VXGE_HW_EVENT_SRPCIM_SERR:
    514	case VXGE_HW_EVENT_MRPCIM_SERR:
    515		goto out;
    516	case VXGE_HW_EVENT_SLOT_FREEZE:
    517		break;
    518	default:
    519		vxge_assert(0);
    520		goto out;
    521	}
    522
    523	/* notify driver */
    524	if (hldev->uld_callbacks->crit_err)
    525		hldev->uld_callbacks->crit_err(hldev,
    526			type, vp_id);
    527out:
    528
    529	return VXGE_HW_OK;
    530}
    531
    532/*
    533 * __vxge_hw_device_handle_link_down_ind
    534 * @hldev: HW device handle.
    535 *
    536 * Link down indication handler. The function is invoked by HW when
    537 * Titan indicates that the link is down.
    538 */
    539static enum vxge_hw_status
    540__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
    541{
    542	/*
    543	 * If the previous link state is not down, return.
    544	 */
    545	if (hldev->link_state == VXGE_HW_LINK_DOWN)
    546		goto exit;
    547
    548	hldev->link_state = VXGE_HW_LINK_DOWN;
    549
    550	/* notify driver */
    551	if (hldev->uld_callbacks->link_down)
    552		hldev->uld_callbacks->link_down(hldev);
    553exit:
    554	return VXGE_HW_OK;
    555}
    556
    557/*
    558 * __vxge_hw_device_handle_link_up_ind
    559 * @hldev: HW device handle.
    560 *
    561 * Link up indication handler. The function is invoked by HW when
    562 * Titan indicates that the link is up for programmable amount of time.
    563 */
    564static enum vxge_hw_status
    565__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
    566{
    567	/*
    568	 * If the previous link state is not down, return.
    569	 */
    570	if (hldev->link_state == VXGE_HW_LINK_UP)
    571		goto exit;
    572
    573	hldev->link_state = VXGE_HW_LINK_UP;
    574
    575	/* notify driver */
    576	if (hldev->uld_callbacks->link_up)
    577		hldev->uld_callbacks->link_up(hldev);
    578exit:
    579	return VXGE_HW_OK;
    580}
    581
    582/*
    583 * __vxge_hw_vpath_alarm_process - Process Alarms.
    584 * @vpath: Virtual Path.
    585 * @skip_alarms: Do not clear the alarms
    586 *
    587 * Process vpath alarms.
    588 *
    589 */
    590static enum vxge_hw_status
    591__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
    592			      u32 skip_alarms)
    593{
    594	u64 val64;
    595	u64 alarm_status;
    596	u64 pic_status;
    597	struct __vxge_hw_device *hldev = NULL;
    598	enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
    599	u64 mask64;
    600	struct vxge_hw_vpath_stats_sw_info *sw_stats;
    601	struct vxge_hw_vpath_reg __iomem *vp_reg;
    602
    603	if (vpath == NULL) {
    604		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
    605			alarm_event);
    606		goto out2;
    607	}
    608
    609	hldev = vpath->hldev;
    610	vp_reg = vpath->vp_reg;
    611	alarm_status = readq(&vp_reg->vpath_general_int_status);
    612
    613	if (alarm_status == VXGE_HW_ALL_FOXES) {
    614		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
    615			alarm_event);
    616		goto out;
    617	}
    618
    619	sw_stats = vpath->sw_stats;
    620
    621	if (alarm_status & ~(
    622		VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
    623		VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
    624		VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
    625		VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
    626		sw_stats->error_stats.unknown_alarms++;
    627
    628		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
    629			alarm_event);
    630		goto out;
    631	}
    632
    633	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
    634
    635		val64 = readq(&vp_reg->xgmac_vp_int_status);
    636
    637		if (val64 &
    638		VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
    639
    640			val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
    641
    642			if (((val64 &
    643			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
    644			     (!(val64 &
    645				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
    646			    ((val64 &
    647			     VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
    648			     (!(val64 &
    649				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
    650				     ))) {
    651				sw_stats->error_stats.network_sustained_fault++;
    652
    653				writeq(
    654				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
    655					&vp_reg->asic_ntwk_vp_err_mask);
    656
    657				__vxge_hw_device_handle_link_down_ind(hldev);
    658				alarm_event = VXGE_HW_SET_LEVEL(
    659					VXGE_HW_EVENT_LINK_DOWN, alarm_event);
    660			}
    661
    662			if (((val64 &
    663			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
    664			     (!(val64 &
    665				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
    666			    ((val64 &
    667			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
    668			     (!(val64 &
    669				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
    670				     ))) {
    671
    672				sw_stats->error_stats.network_sustained_ok++;
    673
    674				writeq(
    675				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
    676					&vp_reg->asic_ntwk_vp_err_mask);
    677
    678				__vxge_hw_device_handle_link_up_ind(hldev);
    679				alarm_event = VXGE_HW_SET_LEVEL(
    680					VXGE_HW_EVENT_LINK_UP, alarm_event);
    681			}
    682
    683			writeq(VXGE_HW_INTR_MASK_ALL,
    684				&vp_reg->asic_ntwk_vp_err_reg);
    685
    686			alarm_event = VXGE_HW_SET_LEVEL(
    687				VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
    688
    689			if (skip_alarms)
    690				return VXGE_HW_OK;
    691		}
    692	}
    693
    694	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
    695
    696		pic_status = readq(&vp_reg->vpath_ppif_int_status);
    697
    698		if (pic_status &
    699		    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
    700
    701			val64 = readq(&vp_reg->general_errors_reg);
    702			mask64 = readq(&vp_reg->general_errors_mask);
    703
    704			if ((val64 &
    705				VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
    706				~mask64) {
    707				sw_stats->error_stats.ini_serr_det++;
    708
    709				alarm_event = VXGE_HW_SET_LEVEL(
    710					VXGE_HW_EVENT_SERR, alarm_event);
    711			}
    712
    713			if ((val64 &
    714			    VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
    715				~mask64) {
    716				sw_stats->error_stats.dblgen_fifo0_overflow++;
    717
    718				alarm_event = VXGE_HW_SET_LEVEL(
    719					VXGE_HW_EVENT_FIFO_ERR, alarm_event);
    720			}
    721
    722			if ((val64 &
    723			    VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
    724				~mask64)
    725				sw_stats->error_stats.statsb_pif_chain_error++;
    726
    727			if ((val64 &
    728			   VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
    729				~mask64)
    730				sw_stats->error_stats.statsb_drop_timeout++;
    731
    732			if ((val64 &
    733				VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
    734				~mask64)
    735				sw_stats->error_stats.target_illegal_access++;
    736
    737			if (!skip_alarms) {
    738				writeq(VXGE_HW_INTR_MASK_ALL,
    739					&vp_reg->general_errors_reg);
    740				alarm_event = VXGE_HW_SET_LEVEL(
    741					VXGE_HW_EVENT_ALARM_CLEARED,
    742					alarm_event);
    743			}
    744		}
    745
    746		if (pic_status &
    747		    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
    748
    749			val64 = readq(&vp_reg->kdfcctl_errors_reg);
    750			mask64 = readq(&vp_reg->kdfcctl_errors_mask);
    751
    752			if ((val64 &
    753			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
    754				~mask64) {
    755				sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
    756
    757				alarm_event = VXGE_HW_SET_LEVEL(
    758					VXGE_HW_EVENT_FIFO_ERR,
    759					alarm_event);
    760			}
    761
    762			if ((val64 &
    763			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
    764				~mask64) {
    765				sw_stats->error_stats.kdfcctl_fifo0_poison++;
    766
    767				alarm_event = VXGE_HW_SET_LEVEL(
    768					VXGE_HW_EVENT_FIFO_ERR,
    769					alarm_event);
    770			}
    771
    772			if ((val64 &
    773			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
    774				~mask64) {
    775				sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
    776
    777				alarm_event = VXGE_HW_SET_LEVEL(
    778					VXGE_HW_EVENT_FIFO_ERR,
    779					alarm_event);
    780			}
    781
    782			if (!skip_alarms) {
    783				writeq(VXGE_HW_INTR_MASK_ALL,
    784					&vp_reg->kdfcctl_errors_reg);
    785				alarm_event = VXGE_HW_SET_LEVEL(
    786					VXGE_HW_EVENT_ALARM_CLEARED,
    787					alarm_event);
    788			}
    789		}
    790
    791	}
    792
    793	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
    794
    795		val64 = readq(&vp_reg->wrdma_alarm_status);
    796
    797		if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
    798
    799			val64 = readq(&vp_reg->prc_alarm_reg);
    800			mask64 = readq(&vp_reg->prc_alarm_mask);
    801
    802			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
    803				~mask64)
    804				sw_stats->error_stats.prc_ring_bumps++;
    805
    806			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
    807				~mask64) {
    808				sw_stats->error_stats.prc_rxdcm_sc_err++;
    809
    810				alarm_event = VXGE_HW_SET_LEVEL(
    811					VXGE_HW_EVENT_VPATH_ERR,
    812					alarm_event);
    813			}
    814
    815			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
    816				& ~mask64) {
    817				sw_stats->error_stats.prc_rxdcm_sc_abort++;
    818
    819				alarm_event = VXGE_HW_SET_LEVEL(
    820						VXGE_HW_EVENT_VPATH_ERR,
    821						alarm_event);
    822			}
    823
    824			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
    825				 & ~mask64) {
    826				sw_stats->error_stats.prc_quanta_size_err++;
    827
    828				alarm_event = VXGE_HW_SET_LEVEL(
    829					VXGE_HW_EVENT_VPATH_ERR,
    830					alarm_event);
    831			}
    832
    833			if (!skip_alarms) {
    834				writeq(VXGE_HW_INTR_MASK_ALL,
    835					&vp_reg->prc_alarm_reg);
    836				alarm_event = VXGE_HW_SET_LEVEL(
    837						VXGE_HW_EVENT_ALARM_CLEARED,
    838						alarm_event);
    839			}
    840		}
    841	}
    842out:
    843	hldev->stats.sw_dev_err_stats.vpath_alarms++;
    844out2:
    845	if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
    846		(alarm_event == VXGE_HW_EVENT_UNKNOWN))
    847		return VXGE_HW_OK;
    848
    849	__vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
    850
    851	if (alarm_event == VXGE_HW_EVENT_SERR)
    852		return VXGE_HW_ERR_CRITICAL;
    853
    854	return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
    855		VXGE_HW_ERR_SLOT_FREEZE :
    856		(alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
    857		VXGE_HW_ERR_VPATH;
    858}
    859
    860/**
    861 * vxge_hw_device_begin_irq - Begin IRQ processing.
    862 * @hldev: HW device handle.
    863 * @skip_alarms: Do not clear the alarms
    864 * @reason: "Reason" for the interrupt, the value of Titan's
    865 *	general_int_status register.
    866 *
    867 * The function	performs two actions, It first checks whether (shared IRQ) the
    868 * interrupt was raised	by the device. Next, it	masks the device interrupts.
    869 *
    870 * Note:
    871 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
    872 * bridge. Therefore, two back-to-back interrupts are potentially possible.
    873 *
    874 * Returns: 0, if the interrupt	is not "ours" (note that in this case the
    875 * device remain enabled).
    876 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
    877 * status.
    878 */
    879enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
    880					     u32 skip_alarms, u64 *reason)
    881{
    882	u32 i;
    883	u64 val64;
    884	u64 adapter_status;
    885	u64 vpath_mask;
    886	enum vxge_hw_status ret = VXGE_HW_OK;
    887
    888	val64 = readq(&hldev->common_reg->titan_general_int_status);
    889
    890	if (unlikely(!val64)) {
    891		/* not Titan interrupt	*/
    892		*reason	= 0;
    893		ret = VXGE_HW_ERR_WRONG_IRQ;
    894		goto exit;
    895	}
    896
    897	if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
    898
    899		adapter_status = readq(&hldev->common_reg->adapter_status);
    900
    901		if (adapter_status == VXGE_HW_ALL_FOXES) {
    902
    903			__vxge_hw_device_handle_error(hldev,
    904				NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
    905			*reason	= 0;
    906			ret = VXGE_HW_ERR_SLOT_FREEZE;
    907			goto exit;
    908		}
    909	}
    910
    911	hldev->stats.sw_dev_info_stats.total_intr_cnt++;
    912
    913	*reason	= val64;
    914
    915	vpath_mask = hldev->vpaths_deployed >>
    916				(64 - VXGE_HW_MAX_VIRTUAL_PATHS);
    917
    918	if (val64 &
    919	    VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
    920		hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
    921
    922		return VXGE_HW_OK;
    923	}
    924
    925	hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
    926
    927	if (unlikely(val64 &
    928			VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
    929
    930		enum vxge_hw_status error_level = VXGE_HW_OK;
    931
    932		hldev->stats.sw_dev_err_stats.vpath_alarms++;
    933
    934		for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
    935
    936			if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
    937				continue;
    938
    939			ret = __vxge_hw_vpath_alarm_process(
    940				&hldev->virtual_paths[i], skip_alarms);
    941
    942			error_level = VXGE_HW_SET_LEVEL(ret, error_level);
    943
    944			if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
    945				(ret == VXGE_HW_ERR_SLOT_FREEZE)))
    946				break;
    947		}
    948
    949		ret = error_level;
    950	}
    951exit:
    952	return ret;
    953}
    954
    955/**
    956 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
    957 * condition that has caused the Tx and RX interrupt.
    958 * @hldev: HW device.
    959 *
    960 * Acknowledge (that is, clear) the condition that has caused
    961 * the Tx and Rx interrupt.
    962 * See also: vxge_hw_device_begin_irq(),
    963 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
    964 */
    965void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
    966{
    967
    968	if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
    969	   (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
    970		writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
    971				 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
    972				&hldev->common_reg->tim_int_status0);
    973	}
    974
    975	if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
    976	   (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
    977		__vxge_hw_pio_mem_write32_upper(
    978				(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
    979				 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
    980				&hldev->common_reg->tim_int_status1);
    981	}
    982}
    983
    984/*
    985 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
    986 * @channel: Channel
    987 * @dtrh: Buffer to return the DTR pointer
    988 *
    989 * Allocates a dtr from the reserve array. If the reserve array is empty,
    990 * it swaps the reserve and free arrays.
    991 *
    992 */
    993static enum vxge_hw_status
    994vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
    995{
    996	if (channel->reserve_ptr - channel->reserve_top > 0) {
    997_alloc_after_swap:
    998		*dtrh =	channel->reserve_arr[--channel->reserve_ptr];
    999
   1000		return VXGE_HW_OK;
   1001	}
   1002
   1003	/* switch between empty	and full arrays	*/
   1004
   1005	/* the idea behind such	a design is that by having free	and reserved
   1006	 * arrays separated we basically separated irq and non-irq parts.
   1007	 * i.e.	no additional lock need	to be done when	we free	a resource */
   1008
   1009	if (channel->length - channel->free_ptr > 0) {
   1010		swap(channel->reserve_arr, channel->free_arr);
   1011		channel->reserve_ptr = channel->length;
   1012		channel->reserve_top = channel->free_ptr;
   1013		channel->free_ptr = channel->length;
   1014
   1015		channel->stats->reserve_free_swaps_cnt++;
   1016
   1017		goto _alloc_after_swap;
   1018	}
   1019
   1020	channel->stats->full_cnt++;
   1021
   1022	*dtrh =	NULL;
   1023	return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
   1024}
   1025
   1026/*
   1027 * vxge_hw_channel_dtr_post - Post a dtr to the channel
   1028 * @channelh: Channel
   1029 * @dtrh: DTR pointer
   1030 *
   1031 * Posts a dtr to work array.
   1032 *
   1033 */
   1034static void
   1035vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
   1036{
   1037	vxge_assert(channel->work_arr[channel->post_index] == NULL);
   1038
   1039	channel->work_arr[channel->post_index++] = dtrh;
   1040
   1041	/* wrap-around */
   1042	if (channel->post_index	== channel->length)
   1043		channel->post_index = 0;
   1044}
   1045
   1046/*
   1047 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
   1048 * @channel: Channel
   1049 * @dtr: Buffer to return the next completed DTR pointer
   1050 *
   1051 * Returns the next completed dtr with out removing it from work array
   1052 *
   1053 */
   1054void
   1055vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
   1056{
   1057	vxge_assert(channel->compl_index < channel->length);
   1058
   1059	*dtrh =	channel->work_arr[channel->compl_index];
   1060	prefetch(*dtrh);
   1061}
   1062
   1063/*
   1064 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
   1065 * @channel: Channel handle
   1066 *
   1067 * Removes the next completed dtr from work array
   1068 *
   1069 */
   1070void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
   1071{
   1072	channel->work_arr[channel->compl_index]	= NULL;
   1073
   1074	/* wrap-around */
   1075	if (++channel->compl_index == channel->length)
   1076		channel->compl_index = 0;
   1077
   1078	channel->stats->total_compl_cnt++;
   1079}
   1080
   1081/*
   1082 * vxge_hw_channel_dtr_free - Frees a dtr
   1083 * @channel: Channel handle
   1084 * @dtr:  DTR pointer
   1085 *
   1086 * Returns the dtr to free array
   1087 *
   1088 */
   1089void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
   1090{
   1091	channel->free_arr[--channel->free_ptr] = dtrh;
   1092}
   1093
   1094/*
   1095 * vxge_hw_channel_dtr_count
   1096 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
   1097 *
   1098 * Retrieve number of DTRs available. This function can not be called
   1099 * from data path. ring_initial_replenishi() is the only user.
   1100 */
   1101int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
   1102{
   1103	return (channel->reserve_ptr - channel->reserve_top) +
   1104		(channel->length - channel->free_ptr);
   1105}
   1106
   1107/**
   1108 * vxge_hw_ring_rxd_reserve	- Reserve ring descriptor.
   1109 * @ring: Handle to the ring object used for receive
   1110 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
   1111 * with a valid handle.
   1112 *
   1113 * Reserve Rx descriptor for the subsequent filling-in driver
   1114 * and posting on the corresponding channel (@channelh)
   1115 * via vxge_hw_ring_rxd_post().
   1116 *
   1117 * Returns: VXGE_HW_OK - success.
   1118 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
   1119 *
   1120 */
   1121enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
   1122	void **rxdh)
   1123{
   1124	enum vxge_hw_status status;
   1125	struct __vxge_hw_channel *channel;
   1126
   1127	channel = &ring->channel;
   1128
   1129	status = vxge_hw_channel_dtr_alloc(channel, rxdh);
   1130
   1131	if (status == VXGE_HW_OK) {
   1132		struct vxge_hw_ring_rxd_1 *rxdp =
   1133			(struct vxge_hw_ring_rxd_1 *)*rxdh;
   1134
   1135		rxdp->control_0	= rxdp->control_1 = 0;
   1136	}
   1137
   1138	return status;
   1139}
   1140
   1141/**
   1142 * vxge_hw_ring_rxd_free - Free descriptor.
   1143 * @ring: Handle to the ring object used for receive
   1144 * @rxdh: Descriptor handle.
   1145 *
   1146 * Free	the reserved descriptor. This operation is "symmetrical" to
   1147 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
   1148 * lifecycle.
   1149 *
   1150 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
   1151 * be:
   1152 *
   1153 * - reserved (vxge_hw_ring_rxd_reserve);
   1154 *
   1155 * - posted	(vxge_hw_ring_rxd_post);
   1156 *
   1157 * - completed (vxge_hw_ring_rxd_next_completed);
   1158 *
   1159 * - and recycled again	(vxge_hw_ring_rxd_free).
   1160 *
   1161 * For alternative state transitions and more details please refer to
   1162 * the design doc.
   1163 *
   1164 */
   1165void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
   1166{
   1167	struct __vxge_hw_channel *channel;
   1168
   1169	channel = &ring->channel;
   1170
   1171	vxge_hw_channel_dtr_free(channel, rxdh);
   1172
   1173}
   1174
   1175/**
   1176 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
   1177 * @ring: Handle to the ring object used for receive
   1178 * @rxdh: Descriptor handle.
   1179 *
   1180 * This routine prepares a rxd and posts
   1181 */
   1182void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
   1183{
   1184	struct __vxge_hw_channel *channel;
   1185
   1186	channel = &ring->channel;
   1187
   1188	vxge_hw_channel_dtr_post(channel, rxdh);
   1189}
   1190
   1191/**
   1192 * vxge_hw_ring_rxd_post_post - Process rxd after post.
   1193 * @ring: Handle to the ring object used for receive
   1194 * @rxdh: Descriptor handle.
   1195 *
   1196 * Processes rxd after post
   1197 */
   1198void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
   1199{
   1200	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
   1201
   1202	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
   1203
   1204	if (ring->stats->common_stats.usage_cnt > 0)
   1205		ring->stats->common_stats.usage_cnt--;
   1206}
   1207
   1208/**
   1209 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
   1210 * @ring: Handle to the ring object used for receive
   1211 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
   1212 *
   1213 * Post	descriptor on the ring.
   1214 * Prior to posting the	descriptor should be filled in accordance with
   1215 * Host/Titan interface specification for a given service (LL, etc.).
   1216 *
   1217 */
   1218void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
   1219{
   1220	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
   1221	struct __vxge_hw_channel *channel;
   1222
   1223	channel = &ring->channel;
   1224
   1225	wmb();
   1226	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
   1227
   1228	vxge_hw_channel_dtr_post(channel, rxdh);
   1229
   1230	if (ring->stats->common_stats.usage_cnt > 0)
   1231		ring->stats->common_stats.usage_cnt--;
   1232}
   1233
   1234/**
   1235 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
   1236 * @ring: Handle to the ring object used for receive
   1237 * @rxdh: Descriptor handle.
   1238 *
   1239 * Processes rxd after post with memory barrier.
   1240 */
   1241void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
   1242{
   1243	wmb();
   1244	vxge_hw_ring_rxd_post_post(ring, rxdh);
   1245}
   1246
   1247/**
   1248 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
   1249 * @ring: Handle to the ring object used for receive
   1250 * @rxdh: Descriptor handle. Returned by HW.
   1251 * @t_code:	Transfer code, as per Titan User Guide,
   1252 *	 Receive Descriptor Format. Returned by HW.
   1253 *
   1254 * Retrieve the	_next_ completed descriptor.
   1255 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
   1256 * driver of new completed descriptors. After that
   1257 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
   1258 * completions (the very first completion is passed by HW via
   1259 * vxge_hw_ring_callback_f).
   1260 *
   1261 * Implementation-wise, the driver is free to call
   1262 * vxge_hw_ring_rxd_next_completed either immediately from inside the
   1263 * ring callback, or in a deferred fashion and separate (from HW)
   1264 * context.
   1265 *
   1266 * Non-zero @t_code means failure to fill-in receive buffer(s)
   1267 * of the descriptor.
   1268 * For instance, parity	error detected during the data transfer.
   1269 * In this case	Titan will complete the descriptor and indicate
   1270 * for the host	that the received data is not to be used.
   1271 * For details please refer to Titan User Guide.
   1272 *
   1273 * Returns: VXGE_HW_OK - success.
   1274 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
   1275 * are currently available for processing.
   1276 *
   1277 * See also: vxge_hw_ring_callback_f{},
   1278 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
   1279 */
   1280enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
   1281	struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
   1282{
   1283	struct __vxge_hw_channel *channel;
   1284	struct vxge_hw_ring_rxd_1 *rxdp;
   1285	enum vxge_hw_status status = VXGE_HW_OK;
   1286	u64 control_0, own;
   1287
   1288	channel = &ring->channel;
   1289
   1290	vxge_hw_channel_dtr_try_complete(channel, rxdh);
   1291
   1292	rxdp = *rxdh;
   1293	if (rxdp == NULL) {
   1294		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
   1295		goto exit;
   1296	}
   1297
   1298	control_0 = rxdp->control_0;
   1299	own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
   1300	*t_code	= (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
   1301
   1302	/* check whether it is not the end */
   1303	if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
   1304
   1305		vxge_assert((rxdp)->host_control !=
   1306				0);
   1307
   1308		++ring->cmpl_cnt;
   1309		vxge_hw_channel_dtr_complete(channel);
   1310
   1311		vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
   1312
   1313		ring->stats->common_stats.usage_cnt++;
   1314		if (ring->stats->common_stats.usage_max <
   1315				ring->stats->common_stats.usage_cnt)
   1316			ring->stats->common_stats.usage_max =
   1317				ring->stats->common_stats.usage_cnt;
   1318
   1319		status = VXGE_HW_OK;
   1320		goto exit;
   1321	}
   1322
   1323	/* reset it. since we don't want to return
   1324	 * garbage to the driver */
   1325	*rxdh =	NULL;
   1326	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
   1327exit:
   1328	return status;
   1329}
   1330
   1331/**
   1332 * vxge_hw_ring_handle_tcode - Handle transfer code.
   1333 * @ring: Handle to the ring object used for receive
   1334 * @rxdh: Descriptor handle.
   1335 * @t_code: One of the enumerated (and documented in the Titan user guide)
   1336 * "transfer codes".
   1337 *
   1338 * Handle descriptor's transfer code. The latter comes with each completed
   1339 * descriptor.
   1340 *
   1341 * Returns: one of the enum vxge_hw_status{} enumerated types.
   1342 * VXGE_HW_OK			- for success.
   1343 * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
   1344 */
   1345enum vxge_hw_status vxge_hw_ring_handle_tcode(
   1346	struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
   1347{
   1348	enum vxge_hw_status status = VXGE_HW_OK;
   1349
   1350	/* If the t_code is not supported and if the
   1351	 * t_code is other than 0x5 (unparseable packet
   1352	 * such as unknown UPV6 header), Drop it !!!
   1353	 */
   1354
   1355	if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
   1356		t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
   1357		status = VXGE_HW_OK;
   1358		goto exit;
   1359	}
   1360
   1361	if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
   1362		status = VXGE_HW_ERR_INVALID_TCODE;
   1363		goto exit;
   1364	}
   1365
   1366	ring->stats->rxd_t_code_err_cnt[t_code]++;
   1367exit:
   1368	return status;
   1369}
   1370
   1371/**
   1372 * __vxge_hw_non_offload_db_post - Post non offload doorbell
   1373 *
   1374 * @fifo: fifohandle
   1375 * @txdl_ptr: The starting location of the TxDL in host memory
   1376 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
   1377 * @no_snoop: No snoop flags
   1378 *
   1379 * This function posts a non-offload doorbell to doorbell FIFO
   1380 *
   1381 */
   1382static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
   1383	u64 txdl_ptr, u32 num_txds, u32 no_snoop)
   1384{
   1385	writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
   1386		VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
   1387		VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
   1388		&fifo->nofl_db->control_0);
   1389
   1390	writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
   1391}
   1392
   1393/**
   1394 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
   1395 * the fifo
   1396 * @fifoh: Handle to the fifo object used for non offload send
   1397 */
   1398u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
   1399{
   1400	return vxge_hw_channel_dtr_count(&fifoh->channel);
   1401}
   1402
   1403/**
   1404 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
   1405 * @fifo: Handle to the fifo object used for non offload send
   1406 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
   1407 *        with a valid handle.
   1408 * @txdl_priv: Buffer to return the pointer to per txdl space
   1409 *
   1410 * Reserve a single TxDL (that is, fifo descriptor)
   1411 * for the subsequent filling-in by driver)
   1412 * and posting on the corresponding channel (@channelh)
   1413 * via vxge_hw_fifo_txdl_post().
   1414 *
   1415 * Note: it is the responsibility of driver to reserve multiple descriptors
   1416 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
   1417 * carries up to configured number (fifo.max_frags) of contiguous buffers.
   1418 *
   1419 * Returns: VXGE_HW_OK - success;
   1420 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
   1421 *
   1422 */
   1423enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
   1424	struct __vxge_hw_fifo *fifo,
   1425	void **txdlh, void **txdl_priv)
   1426{
   1427	struct __vxge_hw_channel *channel;
   1428	enum vxge_hw_status status;
   1429	int i;
   1430
   1431	channel = &fifo->channel;
   1432
   1433	status = vxge_hw_channel_dtr_alloc(channel, txdlh);
   1434
   1435	if (status == VXGE_HW_OK) {
   1436		struct vxge_hw_fifo_txd *txdp =
   1437			(struct vxge_hw_fifo_txd *)*txdlh;
   1438		struct __vxge_hw_fifo_txdl_priv *priv;
   1439
   1440		priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
   1441
   1442		/* reset the TxDL's private */
   1443		priv->align_dma_offset = 0;
   1444		priv->align_vaddr_start = priv->align_vaddr;
   1445		priv->align_used_frags = 0;
   1446		priv->frags = 0;
   1447		priv->alloc_frags = fifo->config->max_frags;
   1448		priv->next_txdl_priv = NULL;
   1449
   1450		*txdl_priv = (void *)(size_t)txdp->host_control;
   1451
   1452		for (i = 0; i < fifo->config->max_frags; i++) {
   1453			txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
   1454			txdp->control_0 = txdp->control_1 = 0;
   1455		}
   1456	}
   1457
   1458	return status;
   1459}
   1460
   1461/**
   1462 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
   1463 * descriptor.
   1464 * @fifo: Handle to the fifo object used for non offload send
   1465 * @txdlh: Descriptor handle.
   1466 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
   1467 *            (of buffers).
   1468 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
   1469 * @size: Size of the data buffer (in bytes).
   1470 *
   1471 * This API is part of the preparation of the transmit descriptor for posting
   1472 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
   1473 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
   1474 * All three APIs fill in the fields of the fifo descriptor,
   1475 * in accordance with the Titan specification.
   1476 *
   1477 */
   1478void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
   1479				  void *txdlh, u32 frag_idx,
   1480				  dma_addr_t dma_pointer, u32 size)
   1481{
   1482	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
   1483	struct vxge_hw_fifo_txd *txdp, *txdp_last;
   1484
   1485	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
   1486	txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
   1487
   1488	if (frag_idx != 0)
   1489		txdp->control_0 = txdp->control_1 = 0;
   1490	else {
   1491		txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
   1492			VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
   1493		txdp->control_1 |= fifo->interrupt_type;
   1494		txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
   1495			fifo->tx_intr_num);
   1496		if (txdl_priv->frags) {
   1497			txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
   1498			(txdl_priv->frags - 1);
   1499			txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
   1500				VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
   1501		}
   1502	}
   1503
   1504	vxge_assert(frag_idx < txdl_priv->alloc_frags);
   1505
   1506	txdp->buffer_pointer = (u64)dma_pointer;
   1507	txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
   1508	fifo->stats->total_buffers++;
   1509	txdl_priv->frags++;
   1510}
   1511
   1512/**
   1513 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
   1514 * @fifo: Handle to the fifo object used for non offload send
   1515 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
   1516 *
   1517 * Post descriptor on the 'fifo' type channel for transmission.
   1518 * Prior to posting the descriptor should be filled in accordance with
   1519 * Host/Titan interface specification for a given service (LL, etc.).
   1520 *
   1521 */
   1522void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
   1523{
   1524	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
   1525	struct vxge_hw_fifo_txd *txdp_last;
   1526	struct vxge_hw_fifo_txd *txdp_first;
   1527
   1528	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
   1529	txdp_first = txdlh;
   1530
   1531	txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
   1532	txdp_last->control_0 |=
   1533	      VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
   1534	txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
   1535
   1536	vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
   1537
   1538	__vxge_hw_non_offload_db_post(fifo,
   1539		(u64)txdl_priv->dma_addr,
   1540		txdl_priv->frags - 1,
   1541		fifo->no_snoop_bits);
   1542
   1543	fifo->stats->total_posts++;
   1544	fifo->stats->common_stats.usage_cnt++;
   1545	if (fifo->stats->common_stats.usage_max <
   1546		fifo->stats->common_stats.usage_cnt)
   1547		fifo->stats->common_stats.usage_max =
   1548			fifo->stats->common_stats.usage_cnt;
   1549}
   1550
   1551/**
   1552 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
   1553 * @fifo: Handle to the fifo object used for non offload send
   1554 * @txdlh: Descriptor handle. Returned by HW.
   1555 * @t_code: Transfer code, as per Titan User Guide,
   1556 *          Transmit Descriptor Format.
   1557 *          Returned by HW.
   1558 *
   1559 * Retrieve the _next_ completed descriptor.
   1560 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
   1561 * driver of new completed descriptors. After that
   1562 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
   1563 * completions (the very first completion is passed by HW via
   1564 * vxge_hw_channel_callback_f).
   1565 *
   1566 * Implementation-wise, the driver is free to call
   1567 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
   1568 * channel callback, or in a deferred fashion and separate (from HW)
   1569 * context.
   1570 *
   1571 * Non-zero @t_code means failure to process the descriptor.
   1572 * The failure could happen, for instance, when the link is
   1573 * down, in which case Titan completes the descriptor because it
   1574 * is not able to send the data out.
   1575 *
   1576 * For details please refer to Titan User Guide.
   1577 *
   1578 * Returns: VXGE_HW_OK - success.
   1579 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
   1580 * are currently available for processing.
   1581 *
   1582 */
   1583enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
   1584	struct __vxge_hw_fifo *fifo, void **txdlh,
   1585	enum vxge_hw_fifo_tcode *t_code)
   1586{
   1587	struct __vxge_hw_channel *channel;
   1588	struct vxge_hw_fifo_txd *txdp;
   1589	enum vxge_hw_status status = VXGE_HW_OK;
   1590
   1591	channel = &fifo->channel;
   1592
   1593	vxge_hw_channel_dtr_try_complete(channel, txdlh);
   1594
   1595	txdp = *txdlh;
   1596	if (txdp == NULL) {
   1597		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
   1598		goto exit;
   1599	}
   1600
   1601	/* check whether host owns it */
   1602	if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
   1603
   1604		vxge_assert(txdp->host_control != 0);
   1605
   1606		vxge_hw_channel_dtr_complete(channel);
   1607
   1608		*t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
   1609
   1610		if (fifo->stats->common_stats.usage_cnt > 0)
   1611			fifo->stats->common_stats.usage_cnt--;
   1612
   1613		status = VXGE_HW_OK;
   1614		goto exit;
   1615	}
   1616
   1617	/* no more completions */
   1618	*txdlh = NULL;
   1619	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
   1620exit:
   1621	return status;
   1622}
   1623
   1624/**
   1625 * vxge_hw_fifo_handle_tcode - Handle transfer code.
   1626 * @fifo: Handle to the fifo object used for non offload send
   1627 * @txdlh: Descriptor handle.
   1628 * @t_code: One of the enumerated (and documented in the Titan user guide)
   1629 *          "transfer codes".
   1630 *
   1631 * Handle descriptor's transfer code. The latter comes with each completed
   1632 * descriptor.
   1633 *
   1634 * Returns: one of the enum vxge_hw_status{} enumerated types.
   1635 * VXGE_HW_OK - for success.
   1636 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
   1637 */
   1638enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
   1639					      void *txdlh,
   1640					      enum vxge_hw_fifo_tcode t_code)
   1641{
   1642	enum vxge_hw_status status = VXGE_HW_OK;
   1643
   1644	if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
   1645		status = VXGE_HW_ERR_INVALID_TCODE;
   1646		goto exit;
   1647	}
   1648
   1649	fifo->stats->txd_t_code_err_cnt[t_code]++;
   1650exit:
   1651	return status;
   1652}
   1653
   1654/**
   1655 * vxge_hw_fifo_txdl_free - Free descriptor.
   1656 * @fifo: Handle to the fifo object used for non offload send
   1657 * @txdlh: Descriptor handle.
   1658 *
   1659 * Free the reserved descriptor. This operation is "symmetrical" to
   1660 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
   1661 * lifecycle.
   1662 *
   1663 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
   1664 * be:
   1665 *
   1666 * - reserved (vxge_hw_fifo_txdl_reserve);
   1667 *
   1668 * - posted (vxge_hw_fifo_txdl_post);
   1669 *
   1670 * - completed (vxge_hw_fifo_txdl_next_completed);
   1671 *
   1672 * - and recycled again (vxge_hw_fifo_txdl_free).
   1673 *
   1674 * For alternative state transitions and more details please refer to
   1675 * the design doc.
   1676 *
   1677 */
   1678void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
   1679{
   1680	struct __vxge_hw_channel *channel;
   1681
   1682	channel = &fifo->channel;
   1683
   1684	vxge_hw_channel_dtr_free(channel, txdlh);
   1685}
   1686
   1687/**
   1688 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath to MAC address table.
   1689 * @vp: Vpath handle.
   1690 * @macaddr: MAC address to be added for this vpath into the list
   1691 * @macaddr_mask: MAC address mask for macaddr
   1692 * @duplicate_mode: Duplicate MAC address add mode. Please see
   1693 *             enum vxge_hw_vpath_mac_addr_add_mode{}
   1694 *
   1695 * Adds the given mac address and mac address mask into the list for this
   1696 * vpath.
   1697 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
   1698 * vxge_hw_vpath_mac_addr_get_next
   1699 *
   1700 */
   1701enum vxge_hw_status
   1702vxge_hw_vpath_mac_addr_add(
   1703	struct __vxge_hw_vpath_handle *vp,
   1704	u8 *macaddr,
   1705	u8 *macaddr_mask,
   1706	enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
   1707{
   1708	u32 i;
   1709	u64 data1 = 0ULL;
   1710	u64 data2 = 0ULL;
   1711	enum vxge_hw_status status = VXGE_HW_OK;
   1712
   1713	if (vp == NULL) {
   1714		status = VXGE_HW_ERR_INVALID_HANDLE;
   1715		goto exit;
   1716	}
   1717
   1718	for (i = 0; i < ETH_ALEN; i++) {
   1719		data1 <<= 8;
   1720		data1 |= (u8)macaddr[i];
   1721
   1722		data2 <<= 8;
   1723		data2 |= (u8)macaddr_mask[i];
   1724	}
   1725
   1726	switch (duplicate_mode) {
   1727	case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
   1728		i = 0;
   1729		break;
   1730	case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
   1731		i = 1;
   1732		break;
   1733	case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
   1734		i = 2;
   1735		break;
   1736	default:
   1737		i = 0;
   1738		break;
   1739	}
   1740
   1741	status = __vxge_hw_vpath_rts_table_set(vp,
   1742			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
   1743			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
   1744			0,
   1745			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
   1746			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
   1747			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
   1748exit:
   1749	return status;
   1750}
   1751
   1752/**
   1753 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry
   1754 * @vp: Vpath handle.
   1755 * @macaddr: First MAC address entry for this vpath in the list
   1756 * @macaddr_mask: MAC address mask for macaddr
   1757 *
   1758 * Get the first mac address entry for this vpath from MAC address table.
   1759 * Return: the first mac address and mac address mask in the list for this
   1760 * vpath.
   1761 * see also: vxge_hw_vpath_mac_addr_get_next
   1762 *
   1763 */
   1764enum vxge_hw_status
   1765vxge_hw_vpath_mac_addr_get(
   1766	struct __vxge_hw_vpath_handle *vp,
   1767	u8 *macaddr,
   1768	u8 *macaddr_mask)
   1769{
   1770	u32 i;
   1771	u64 data1 = 0ULL;
   1772	u64 data2 = 0ULL;
   1773	enum vxge_hw_status status = VXGE_HW_OK;
   1774
   1775	if (vp == NULL) {
   1776		status = VXGE_HW_ERR_INVALID_HANDLE;
   1777		goto exit;
   1778	}
   1779
   1780	status = __vxge_hw_vpath_rts_table_get(vp,
   1781			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
   1782			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
   1783			0, &data1, &data2);
   1784
   1785	if (status != VXGE_HW_OK)
   1786		goto exit;
   1787
   1788	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
   1789
   1790	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
   1791
   1792	for (i = ETH_ALEN; i > 0; i--) {
   1793		macaddr[i-1] = (u8)(data1 & 0xFF);
   1794		data1 >>= 8;
   1795
   1796		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
   1797		data2 >>= 8;
   1798	}
   1799exit:
   1800	return status;
   1801}
   1802
   1803/**
   1804 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry
   1805 * @vp: Vpath handle.
   1806 * @macaddr: Next MAC address entry for this vpath in the list
   1807 * @macaddr_mask: MAC address mask for macaddr
   1808 *
   1809 * Get the next mac address entry for this vpath from MAC address table.
   1810 * Return: the next mac address and mac address mask in the list for this
   1811 * vpath.
   1812 * see also: vxge_hw_vpath_mac_addr_get
   1813 *
   1814 */
   1815enum vxge_hw_status
   1816vxge_hw_vpath_mac_addr_get_next(
   1817	struct __vxge_hw_vpath_handle *vp,
   1818	u8 *macaddr,
   1819	u8 *macaddr_mask)
   1820{
   1821	u32 i;
   1822	u64 data1 = 0ULL;
   1823	u64 data2 = 0ULL;
   1824	enum vxge_hw_status status = VXGE_HW_OK;
   1825
   1826	if (vp == NULL) {
   1827		status = VXGE_HW_ERR_INVALID_HANDLE;
   1828		goto exit;
   1829	}
   1830
   1831	status = __vxge_hw_vpath_rts_table_get(vp,
   1832			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
   1833			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
   1834			0, &data1, &data2);
   1835
   1836	if (status != VXGE_HW_OK)
   1837		goto exit;
   1838
   1839	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
   1840
   1841	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
   1842
   1843	for (i = ETH_ALEN; i > 0; i--) {
   1844		macaddr[i-1] = (u8)(data1 & 0xFF);
   1845		data1 >>= 8;
   1846
   1847		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
   1848		data2 >>= 8;
   1849	}
   1850
   1851exit:
   1852	return status;
   1853}
   1854
   1855/**
   1856 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath to MAC address table.
   1857 * @vp: Vpath handle.
   1858 * @macaddr: MAC address to be added for this vpath into the list
   1859 * @macaddr_mask: MAC address mask for macaddr
   1860 *
   1861 * Delete the given mac address and mac address mask into the list for this
   1862 * vpath.
   1863 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
   1864 * vxge_hw_vpath_mac_addr_get_next
   1865 *
   1866 */
   1867enum vxge_hw_status
   1868vxge_hw_vpath_mac_addr_delete(
   1869	struct __vxge_hw_vpath_handle *vp,
   1870	u8 *macaddr,
   1871	u8 *macaddr_mask)
   1872{
   1873	u32 i;
   1874	u64 data1 = 0ULL;
   1875	u64 data2 = 0ULL;
   1876	enum vxge_hw_status status = VXGE_HW_OK;
   1877
   1878	if (vp == NULL) {
   1879		status = VXGE_HW_ERR_INVALID_HANDLE;
   1880		goto exit;
   1881	}
   1882
   1883	for (i = 0; i < ETH_ALEN; i++) {
   1884		data1 <<= 8;
   1885		data1 |= (u8)macaddr[i];
   1886
   1887		data2 <<= 8;
   1888		data2 |= (u8)macaddr_mask[i];
   1889	}
   1890
   1891	status = __vxge_hw_vpath_rts_table_set(vp,
   1892			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
   1893			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
   1894			0,
   1895			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
   1896			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
   1897exit:
   1898	return status;
   1899}
   1900
   1901/**
   1902 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath to vlan id table.
   1903 * @vp: Vpath handle.
   1904 * @vid: vlan id to be added for this vpath into the list
   1905 *
   1906 * Adds the given vlan id into the list for this  vpath.
   1907 * see also: vxge_hw_vpath_vid_delete
   1908 *
   1909 */
   1910enum vxge_hw_status
   1911vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
   1912{
   1913	enum vxge_hw_status status = VXGE_HW_OK;
   1914
   1915	if (vp == NULL) {
   1916		status = VXGE_HW_ERR_INVALID_HANDLE;
   1917		goto exit;
   1918	}
   1919
   1920	status = __vxge_hw_vpath_rts_table_set(vp,
   1921			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
   1922			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
   1923			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
   1924exit:
   1925	return status;
   1926}
   1927
   1928/**
   1929 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
   1930 *               to vlan id table.
   1931 * @vp: Vpath handle.
   1932 * @vid: vlan id to be added for this vpath into the list
   1933 *
   1934 * Adds the given vlan id into the list for this  vpath.
   1935 * see also: vxge_hw_vpath_vid_add
   1936 *
   1937 */
   1938enum vxge_hw_status
   1939vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
   1940{
   1941	enum vxge_hw_status status = VXGE_HW_OK;
   1942
   1943	if (vp == NULL) {
   1944		status = VXGE_HW_ERR_INVALID_HANDLE;
   1945		goto exit;
   1946	}
   1947
   1948	status = __vxge_hw_vpath_rts_table_set(vp,
   1949			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
   1950			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
   1951			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
   1952exit:
   1953	return status;
   1954}
   1955
   1956/**
   1957 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
   1958 * @vp: Vpath handle.
   1959 *
   1960 * Enable promiscuous mode of Titan-e operation.
   1961 *
   1962 * See also: vxge_hw_vpath_promisc_disable().
   1963 */
   1964enum vxge_hw_status vxge_hw_vpath_promisc_enable(
   1965			struct __vxge_hw_vpath_handle *vp)
   1966{
   1967	u64 val64;
   1968	struct __vxge_hw_virtualpath *vpath;
   1969	enum vxge_hw_status status = VXGE_HW_OK;
   1970
   1971	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
   1972		status = VXGE_HW_ERR_INVALID_HANDLE;
   1973		goto exit;
   1974	}
   1975
   1976	vpath = vp->vpath;
   1977
   1978	/* Enable promiscuous mode for function 0 only */
   1979	if (!(vpath->hldev->access_rights &
   1980		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
   1981		return VXGE_HW_OK;
   1982
   1983	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
   1984
   1985	if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
   1986
   1987		val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
   1988			 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
   1989			 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
   1990			 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
   1991
   1992		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
   1993	}
   1994exit:
   1995	return status;
   1996}
   1997
   1998/**
   1999 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
   2000 * @vp: Vpath handle.
   2001 *
   2002 * Disable promiscuous mode of Titan-e operation.
   2003 *
   2004 * See also: vxge_hw_vpath_promisc_enable().
   2005 */
   2006enum vxge_hw_status vxge_hw_vpath_promisc_disable(
   2007			struct __vxge_hw_vpath_handle *vp)
   2008{
   2009	u64 val64;
   2010	struct __vxge_hw_virtualpath *vpath;
   2011	enum vxge_hw_status status = VXGE_HW_OK;
   2012
   2013	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
   2014		status = VXGE_HW_ERR_INVALID_HANDLE;
   2015		goto exit;
   2016	}
   2017
   2018	vpath = vp->vpath;
   2019
   2020	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
   2021
   2022	if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
   2023
   2024		val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
   2025			   VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
   2026			   VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
   2027
   2028		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
   2029	}
   2030exit:
   2031	return status;
   2032}
   2033
   2034/*
   2035 * vxge_hw_vpath_bcast_enable - Enable broadcast
   2036 * @vp: Vpath handle.
   2037 *
   2038 * Enable receiving broadcasts.
   2039 */
   2040enum vxge_hw_status vxge_hw_vpath_bcast_enable(
   2041			struct __vxge_hw_vpath_handle *vp)
   2042{
   2043	u64 val64;
   2044	struct __vxge_hw_virtualpath *vpath;
   2045	enum vxge_hw_status status = VXGE_HW_OK;
   2046
   2047	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
   2048		status = VXGE_HW_ERR_INVALID_HANDLE;
   2049		goto exit;
   2050	}
   2051
   2052	vpath = vp->vpath;
   2053
   2054	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
   2055
   2056	if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
   2057		val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
   2058		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
   2059	}
   2060exit:
   2061	return status;
   2062}
   2063
   2064/**
   2065 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
   2066 * @vp: Vpath handle.
   2067 *
   2068 * Enable Titan-e multicast addresses.
   2069 * Returns: VXGE_HW_OK on success.
   2070 *
   2071 */
   2072enum vxge_hw_status vxge_hw_vpath_mcast_enable(
   2073			struct __vxge_hw_vpath_handle *vp)
   2074{
   2075	u64 val64;
   2076	struct __vxge_hw_virtualpath *vpath;
   2077	enum vxge_hw_status status = VXGE_HW_OK;
   2078
   2079	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
   2080		status = VXGE_HW_ERR_INVALID_HANDLE;
   2081		goto exit;
   2082	}
   2083
   2084	vpath = vp->vpath;
   2085
   2086	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
   2087
   2088	if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
   2089		val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
   2090		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
   2091	}
   2092exit:
   2093	return status;
   2094}
   2095
   2096/**
   2097 * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
   2098 * @vp: Vpath handle.
   2099 *
   2100 * Disable Titan-e multicast addresses.
   2101 * Returns: VXGE_HW_OK - success.
   2102 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
   2103 *
   2104 */
   2105enum vxge_hw_status
   2106vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
   2107{
   2108	u64 val64;
   2109	struct __vxge_hw_virtualpath *vpath;
   2110	enum vxge_hw_status status = VXGE_HW_OK;
   2111
   2112	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
   2113		status = VXGE_HW_ERR_INVALID_HANDLE;
   2114		goto exit;
   2115	}
   2116
   2117	vpath = vp->vpath;
   2118
   2119	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
   2120
   2121	if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
   2122		val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
   2123		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
   2124	}
   2125exit:
   2126	return status;
   2127}
   2128
   2129/*
   2130 * vxge_hw_vpath_alarm_process - Process Alarms.
   2131 * @vpath: Virtual Path.
   2132 * @skip_alarms: Do not clear the alarms
   2133 *
   2134 * Process vpath alarms.
   2135 *
   2136 */
   2137enum vxge_hw_status vxge_hw_vpath_alarm_process(
   2138			struct __vxge_hw_vpath_handle *vp,
   2139			u32 skip_alarms)
   2140{
   2141	enum vxge_hw_status status = VXGE_HW_OK;
   2142
   2143	if (vp == NULL) {
   2144		status = VXGE_HW_ERR_INVALID_HANDLE;
   2145		goto exit;
   2146	}
   2147
   2148	status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
   2149exit:
   2150	return status;
   2151}
   2152
   2153/**
   2154 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
   2155 *                            alrms
   2156 * @vp: Virtual Path handle.
   2157 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
   2158 *             interrupts(Can be repeated). If fifo or ring are not enabled
   2159 *             the MSIX vector for that should be set to 0
   2160 * @alarm_msix_id: MSIX vector for alarm.
   2161 *
   2162 * This API will associate a given MSIX vector numbers with the four TIM
   2163 * interrupts and alarm interrupt.
   2164 */
   2165void
   2166vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
   2167		       int alarm_msix_id)
   2168{
   2169	u64 val64;
   2170	struct __vxge_hw_virtualpath *vpath = vp->vpath;
   2171	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
   2172	u32 vp_id = vp->vpath->vp_id;
   2173
   2174	val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
   2175		  (vp_id * 4) + tim_msix_id[0]) |
   2176		 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
   2177		  (vp_id * 4) + tim_msix_id[1]);
   2178
   2179	writeq(val64, &vp_reg->interrupt_cfg0);
   2180
   2181	writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
   2182			(vpath->hldev->first_vp_id * 4) + alarm_msix_id),
   2183			&vp_reg->interrupt_cfg2);
   2184
   2185	if (vpath->hldev->config.intr_mode ==
   2186					VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
   2187		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
   2188				VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
   2189				0, 32), &vp_reg->one_shot_vect0_en);
   2190		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
   2191				VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
   2192				0, 32), &vp_reg->one_shot_vect1_en);
   2193		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
   2194				VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
   2195				0, 32), &vp_reg->one_shot_vect2_en);
   2196	}
   2197}
   2198
   2199/**
   2200 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
   2201 * @vp: Virtual Path handle.
   2202 * @msix_id:  MSIX ID
   2203 *
   2204 * The function masks the msix interrupt for the given msix_id
   2205 *
   2206 * Returns: 0,
   2207 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
   2208 * status.
   2209 * See also:
   2210 */
   2211void
   2212vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
   2213{
   2214	struct __vxge_hw_device *hldev = vp->vpath->hldev;
   2215	__vxge_hw_pio_mem_write32_upper(
   2216		(u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
   2217		&hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
   2218}
   2219
   2220/**
   2221 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
   2222 * @vp: Virtual Path handle.
   2223 * @msix_id:  MSI ID
   2224 *
   2225 * The function clears the msix interrupt for the given msix_id
   2226 *
   2227 * Returns: 0,
   2228 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
   2229 * status.
   2230 * See also:
   2231 */
   2232void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
   2233{
   2234	struct __vxge_hw_device *hldev = vp->vpath->hldev;
   2235
   2236	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT)
   2237		__vxge_hw_pio_mem_write32_upper(
   2238			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
   2239			&hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
   2240	else
   2241		__vxge_hw_pio_mem_write32_upper(
   2242			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
   2243			&hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
   2244}
   2245
   2246/**
   2247 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
   2248 * @vp: Virtual Path handle.
   2249 * @msix_id:  MSI ID
   2250 *
   2251 * The function unmasks the msix interrupt for the given msix_id
   2252 *
   2253 * Returns: 0,
   2254 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
   2255 * status.
   2256 * See also:
   2257 */
   2258void
   2259vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
   2260{
   2261	struct __vxge_hw_device *hldev = vp->vpath->hldev;
   2262	__vxge_hw_pio_mem_write32_upper(
   2263			(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
   2264			&hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
   2265}
   2266
   2267/**
   2268 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
   2269 * @vp: Virtual Path handle.
   2270 *
   2271 * Mask Tx and Rx vpath interrupts.
   2272 *
   2273 * See also: vxge_hw_vpath_inta_mask_tx_rx()
   2274 */
   2275void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
   2276{
   2277	u64	tim_int_mask0[4] = {[0 ...3] = 0};
   2278	u32	tim_int_mask1[4] = {[0 ...3] = 0};
   2279	u64	val64;
   2280	struct __vxge_hw_device *hldev = vp->vpath->hldev;
   2281
   2282	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
   2283		tim_int_mask1, vp->vpath->vp_id);
   2284
   2285	val64 = readq(&hldev->common_reg->tim_int_mask0);
   2286
   2287	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
   2288		(tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
   2289		writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
   2290			tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
   2291			&hldev->common_reg->tim_int_mask0);
   2292	}
   2293
   2294	val64 = readl(&hldev->common_reg->tim_int_mask1);
   2295
   2296	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
   2297		(tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
   2298		__vxge_hw_pio_mem_write32_upper(
   2299			(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
   2300			tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
   2301			&hldev->common_reg->tim_int_mask1);
   2302	}
   2303}
   2304
   2305/**
   2306 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
   2307 * @vp: Virtual Path handle.
   2308 *
   2309 * Unmask Tx and Rx vpath interrupts.
   2310 *
   2311 * See also: vxge_hw_vpath_inta_mask_tx_rx()
   2312 */
   2313void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
   2314{
   2315	u64	tim_int_mask0[4] = {[0 ...3] = 0};
   2316	u32	tim_int_mask1[4] = {[0 ...3] = 0};
   2317	u64	val64;
   2318	struct __vxge_hw_device *hldev = vp->vpath->hldev;
   2319
   2320	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
   2321		tim_int_mask1, vp->vpath->vp_id);
   2322
   2323	val64 = readq(&hldev->common_reg->tim_int_mask0);
   2324
   2325	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
   2326	   (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
   2327		writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
   2328			tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
   2329			&hldev->common_reg->tim_int_mask0);
   2330	}
   2331
   2332	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
   2333	   (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
   2334		__vxge_hw_pio_mem_write32_upper(
   2335			(~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
   2336			  tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
   2337			&hldev->common_reg->tim_int_mask1);
   2338	}
   2339}
   2340
   2341/**
   2342 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
   2343 * descriptors and process the same.
   2344 * @ring: Handle to the ring object used for receive
   2345 *
   2346 * The function	polls the Rx for the completed	descriptors and	calls
   2347 * the driver via supplied completion	callback.
   2348 *
   2349 * Returns: VXGE_HW_OK, if the polling is completed successful.
   2350 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
   2351 * descriptors available which are yet to be processed.
   2352 *
   2353 * See also: vxge_hw_vpath_poll_rx()
   2354 */
   2355enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
   2356{
   2357	u8 t_code;
   2358	enum vxge_hw_status status = VXGE_HW_OK;
   2359	void *first_rxdh;
   2360	int new_count = 0;
   2361
   2362	ring->cmpl_cnt = 0;
   2363
   2364	status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
   2365	if (status == VXGE_HW_OK)
   2366		ring->callback(ring, first_rxdh,
   2367			t_code, ring->channel.userdata);
   2368
   2369	if (ring->cmpl_cnt != 0) {
   2370		ring->doorbell_cnt += ring->cmpl_cnt;
   2371		if (ring->doorbell_cnt >= ring->rxds_limit) {
   2372			/*
   2373			 * Each RxD is of 4 qwords, update the number of
   2374			 * qwords replenished
   2375			 */
   2376			new_count = (ring->doorbell_cnt * 4);
   2377
   2378			/* For each block add 4 more qwords */
   2379			ring->total_db_cnt += ring->doorbell_cnt;
   2380			if (ring->total_db_cnt >= ring->rxds_per_block) {
   2381				new_count += 4;
   2382				/* Reset total count */
   2383				ring->total_db_cnt %= ring->rxds_per_block;
   2384			}
   2385			writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
   2386				&ring->vp_reg->prc_rxd_doorbell);
   2387			readl(&ring->common_reg->titan_general_int_status);
   2388			ring->doorbell_cnt = 0;
   2389		}
   2390	}
   2391
   2392	return status;
   2393}
   2394
   2395/**
   2396 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process the same.
   2397 * @fifo: Handle to the fifo object used for non offload send
   2398 * @skb_ptr: pointer to skb
   2399 * @nr_skb: number of skbs
   2400 * @more: more is coming
   2401 *
   2402 * The function polls the Tx for the completed descriptors and calls
   2403 * the driver via supplied completion callback.
   2404 *
   2405 * Returns: VXGE_HW_OK, if the polling is completed successful.
   2406 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
   2407 * descriptors available which are yet to be processed.
   2408 */
   2409enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
   2410					struct sk_buff ***skb_ptr, int nr_skb,
   2411					int *more)
   2412{
   2413	enum vxge_hw_fifo_tcode t_code;
   2414	void *first_txdlh;
   2415	enum vxge_hw_status status = VXGE_HW_OK;
   2416	struct __vxge_hw_channel *channel;
   2417
   2418	channel = &fifo->channel;
   2419
   2420	status = vxge_hw_fifo_txdl_next_completed(fifo,
   2421				&first_txdlh, &t_code);
   2422	if (status == VXGE_HW_OK)
   2423		if (fifo->callback(fifo, first_txdlh, t_code,
   2424			channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
   2425			status = VXGE_HW_COMPLETIONS_REMAIN;
   2426
   2427	return status;
   2428}