cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

qed_init_fw_funcs.c (58276B)


      1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
      2/* QLogic qed NIC Driver
      3 * Copyright (c) 2015-2017  QLogic Corporation
      4 * Copyright (c) 2019-2021 Marvell International Ltd.
      5 */
      6
      7#include <linux/types.h>
      8#include <linux/crc8.h>
      9#include <linux/delay.h>
     10#include <linux/kernel.h>
     11#include <linux/slab.h>
     12#include <linux/string.h>
     13#include "qed_hsi.h"
     14#include "qed_hw.h"
     15#include "qed_init_ops.h"
     16#include "qed_iro_hsi.h"
     17#include "qed_reg_addr.h"
     18
     19#define CDU_VALIDATION_DEFAULT_CFG CDU_CONTEXT_VALIDATION_DEFAULT_CFG
     20
     21static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES] = {
     22	{400, 336, 352, 368, 304, 384, 416, 352},	/* region 3 offsets */
     23	{528, 496, 416, 512, 448, 512, 544, 480},	/* region 4 offsets */
     24	{608, 544, 496, 576, 576, 592, 624, 560}	/* region 5 offsets */
     25};
     26
     27static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES] = {
     28	{240, 240, 112, 0, 0, 0, 0, 96}	/* region 1 offsets */
     29};
     30
     31/* General constants */
     32#define QM_PQ_MEM_4KB(pq_size)	(pq_size ? DIV_ROUND_UP((pq_size + 1) *	\
     33							QM_PQ_ELEMENT_SIZE, \
     34							0x1000) : 0)
     35#define QM_PQ_SIZE_256B(pq_size)	(pq_size ? DIV_ROUND_UP(pq_size, \
     36								0x100) - 1 : 0)
     37#define QM_INVALID_PQ_ID		0xffff
     38
     39/* Max link speed (in Mbps) */
     40#define QM_MAX_LINK_SPEED               100000
     41
     42/* Feature enable */
     43#define QM_BYPASS_EN	1
     44#define QM_BYTE_CRD_EN	1
     45
     46/* Initial VOQ byte credit */
     47#define QM_INITIAL_VOQ_BYTE_CRD         98304
     48/* Other PQ constants */
     49#define QM_OTHER_PQS_PER_PF	4
     50
     51/* VOQ constants */
     52#define MAX_NUM_VOQS	(MAX_NUM_PORTS_K2 * NUM_TCS_4PORT_K2)
     53#define VOQS_BIT_MASK	(BIT(MAX_NUM_VOQS) - 1)
     54
     55/* WFQ constants */
     56
     57/* PF WFQ increment value, 0x9000 = 4*9*1024 */
     58#define QM_PF_WFQ_INC_VAL(weight)       ((weight) * 0x9000)
     59
     60/* PF WFQ Upper bound, in MB, 10 * burst size of 1ms in 50Gbps */
     61#define QM_PF_WFQ_UPPER_BOUND           62500000
     62
     63/* PF WFQ max increment value, 0.7 * upper bound */
     64#define QM_PF_WFQ_MAX_INC_VAL           ((QM_PF_WFQ_UPPER_BOUND * 7) / 10)
     65
     66/* Number of VOQs in E5 PF WFQ credit register (QmWfqCrd) */
     67#define QM_PF_WFQ_CRD_E5_NUM_VOQS       16
     68
     69/* VP WFQ increment value */
     70#define QM_VP_WFQ_INC_VAL(weight)       ((weight) * QM_VP_WFQ_MIN_INC_VAL)
     71
     72/* VP WFQ min increment value */
     73#define QM_VP_WFQ_MIN_INC_VAL           10800
     74
     75/* VP WFQ max increment value, 2^30 */
     76#define QM_VP_WFQ_MAX_INC_VAL           0x40000000
     77
     78/* VP WFQ bypass threshold */
     79#define QM_VP_WFQ_BYPASS_THRESH         (QM_VP_WFQ_MIN_INC_VAL - 100)
     80
     81/* VP RL credit task cost */
     82#define QM_VP_RL_CRD_TASK_COST          9700
     83
     84/* Bit of VOQ in VP WFQ PQ map */
     85#define QM_VP_WFQ_PQ_VOQ_SHIFT          0
     86
     87/* Bit of PF in VP WFQ PQ map */
     88#define QM_VP_WFQ_PQ_PF_SHIFT   5
     89
     90/* RL constants */
     91
     92/* Period in us */
     93#define QM_RL_PERIOD	5
     94
     95/* Period in 25MHz cycles */
     96#define QM_RL_PERIOD_CLK_25M	(25 * QM_RL_PERIOD)
     97
     98/* RL increment value - rate is specified in mbps */
     99#define QM_RL_INC_VAL(rate)                     ({	\
    100						typeof(rate) __rate = (rate); \
    101						max_t(u32,		\
    102						(u32)(((__rate ? __rate : \
    103						100000) *		\
    104						QM_RL_PERIOD *		\
    105						101) / (8 * 100)), 1); })
    106
    107/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
    108#define QM_PF_RL_UPPER_BOUND	62500000
    109
    110/* Max PF RL increment value is 0.7 * upper bound */
    111#define QM_PF_RL_MAX_INC_VAL	((QM_PF_RL_UPPER_BOUND * 7) / 10)
    112
    113/* QCN RL Upper bound, speed is in Mpbs */
    114#define QM_GLOBAL_RL_UPPER_BOUND(speed)         ((u32)max_t( \
    115		u32,					    \
    116		(u32)(((speed) *			    \
    117		       QM_RL_PERIOD * 101) / (8 * 100)),    \
    118		QM_VP_RL_CRD_TASK_COST			    \
    119		+ 1000))
    120
    121/* AFullOprtnstcCrdMask constants */
    122#define QM_OPPOR_LINE_VOQ_DEF	1
    123#define QM_OPPOR_FW_STOP_DEF	0
    124#define QM_OPPOR_PQ_EMPTY_DEF	1
    125
    126/* Command Queue constants */
    127
    128/* Pure LB CmdQ lines (+spare) */
    129#define PBF_CMDQ_PURE_LB_LINES	150
    130
    131#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
    132	(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
    133	 (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
    134		PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
    135
    136#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
    137	(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
    138	 (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
    139		PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
    140
    141/* Returns the VOQ line credit for the specified number of PBF command lines.
    142 * PBF lines are specified in 256b units.
    143 */
    144#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
    145	((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
    146
    147/* BTB: blocks constants (block size = 256B) */
    148
    149/* 256B blocks in 9700B packet */
    150#define BTB_JUMBO_PKT_BLOCKS	38
    151
    152/* Headroom per-port */
    153#define BTB_HEADROOM_BLOCKS	BTB_JUMBO_PKT_BLOCKS
    154#define BTB_PURE_LB_FACTOR	10
    155
    156/* Factored (hence really 0.7) */
    157#define BTB_PURE_LB_RATIO	7
    158
    159/* QM stop command constants */
    160#define QM_STOP_PQ_MASK_WIDTH		32
    161#define QM_STOP_CMD_ADDR		2
    162#define QM_STOP_CMD_STRUCT_SIZE		2
    163#define QM_STOP_CMD_PAUSE_MASK_OFFSET	0
    164#define QM_STOP_CMD_PAUSE_MASK_SHIFT	0
    165#define QM_STOP_CMD_PAUSE_MASK_MASK	-1
    166#define QM_STOP_CMD_GROUP_ID_OFFSET	1
    167#define QM_STOP_CMD_GROUP_ID_SHIFT	16
    168#define QM_STOP_CMD_GROUP_ID_MASK	15
    169#define QM_STOP_CMD_PQ_TYPE_OFFSET	1
    170#define QM_STOP_CMD_PQ_TYPE_SHIFT	24
    171#define QM_STOP_CMD_PQ_TYPE_MASK	1
    172#define QM_STOP_CMD_MAX_POLL_COUNT	100
    173#define QM_STOP_CMD_POLL_PERIOD_US	500
    174
    175/* QM command macros */
    176#define QM_CMD_STRUCT_SIZE(cmd)	cmd ## _STRUCT_SIZE
    177#define QM_CMD_SET_FIELD(var, cmd, field, value) \
    178	SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
    179		  cmd ## _ ## field, \
    180		  value)
    181
    182#define QM_INIT_TX_PQ_MAP(p_hwfn, map, pq_id, vp_pq_id, rl_valid,	      \
    183			  rl_id, ext_voq, wrr)				      \
    184	do {								      \
    185		u32 __reg = 0;						      \
    186									      \
    187		BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg));	      \
    188		memset(&(map), 0, sizeof(map));				      \
    189		SET_FIELD(__reg, QM_RF_PQ_MAP_PQ_VALID, 1);	      \
    190		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_VALID,	      \
    191			  !!(rl_valid));				      \
    192		SET_FIELD(__reg, QM_RF_PQ_MAP_VP_PQ_ID, (vp_pq_id)); \
    193		SET_FIELD(__reg, QM_RF_PQ_MAP_RL_ID, (rl_id));	      \
    194		SET_FIELD(__reg, QM_RF_PQ_MAP_VOQ, (ext_voq));	      \
    195		SET_FIELD(__reg, QM_RF_PQ_MAP_WRR_WEIGHT_GROUP,      \
    196			  (wrr));					      \
    197									      \
    198		STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id),    \
    199			     __reg);					      \
    200		(map).reg = cpu_to_le32(__reg);				      \
    201	} while (0)
    202
    203#define WRITE_PQ_INFO_TO_RAM	1
    204#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
    205	(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
    206	((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \
    207	(((rl) >> 8) << 9))
    208
    209#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
    210	(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \
    211	XSTORM_PQ_INFO_OFFSET(pq_id))
    212
    213static const char * const s_protocol_types[] = {
    214	"PROTOCOLID_ISCSI", "PROTOCOLID_FCOE", "PROTOCOLID_ROCE",
    215	"PROTOCOLID_CORE", "PROTOCOLID_ETH", "PROTOCOLID_IWARP",
    216	"PROTOCOLID_TOE", "PROTOCOLID_PREROCE", "PROTOCOLID_COMMON",
    217	"PROTOCOLID_TCP", "PROTOCOLID_RDMA", "PROTOCOLID_SCSI",
    218};
    219
    220static const char *s_ramrod_cmd_ids[][28] = {
    221	{
    222	"ISCSI_RAMROD_CMD_ID_UNUSED", "ISCSI_RAMROD_CMD_ID_INIT_FUNC",
    223	 "ISCSI_RAMROD_CMD_ID_DESTROY_FUNC",
    224	 "ISCSI_RAMROD_CMD_ID_OFFLOAD_CONN",
    225	 "ISCSI_RAMROD_CMD_ID_UPDATE_CONN",
    226	 "ISCSI_RAMROD_CMD_ID_TERMINATION_CONN",
    227	 "ISCSI_RAMROD_CMD_ID_CLEAR_SQ", "ISCSI_RAMROD_CMD_ID_MAC_UPDATE",
    228	 "ISCSI_RAMROD_CMD_ID_CONN_STATS", },
    229	{ "FCOE_RAMROD_CMD_ID_INIT_FUNC", "FCOE_RAMROD_CMD_ID_DESTROY_FUNC",
    230	 "FCOE_RAMROD_CMD_ID_STAT_FUNC",
    231	 "FCOE_RAMROD_CMD_ID_OFFLOAD_CONN",
    232	 "FCOE_RAMROD_CMD_ID_TERMINATE_CONN", },
    233	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
    234	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
    235	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
    236	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
    237	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
    238	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
    239	 "RDMA_RAMROD_STOP_NS_TRACKING", "ROCE_RAMROD_CREATE_QP",
    240	 "ROCE_RAMROD_MODIFY_QP", "ROCE_RAMROD_QUERY_QP",
    241	 "ROCE_RAMROD_DESTROY_QP", "ROCE_RAMROD_CREATE_UD_QP",
    242	 "ROCE_RAMROD_DESTROY_UD_QP", "ROCE_RAMROD_FUNC_UPDATE",
    243	 "ROCE_RAMROD_SUSPEND_QP", "ROCE_RAMROD_QUERY_SUSPENDED_QP",
    244	 "ROCE_RAMROD_CREATE_SUSPENDED_QP", "ROCE_RAMROD_RESUME_QP",
    245	 "ROCE_RAMROD_SUSPEND_UD_QP", "ROCE_RAMROD_RESUME_UD_QP",
    246	 "ROCE_RAMROD_CREATE_SUSPENDED_UD_QP", "ROCE_RAMROD_FLUSH_DPT_QP", },
    247	{ "CORE_RAMROD_UNUSED", "CORE_RAMROD_RX_QUEUE_START",
    248	 "CORE_RAMROD_TX_QUEUE_START", "CORE_RAMROD_RX_QUEUE_STOP",
    249	 "CORE_RAMROD_TX_QUEUE_STOP",
    250	 "CORE_RAMROD_RX_QUEUE_FLUSH",
    251	 "CORE_RAMROD_TX_QUEUE_UPDATE", "CORE_RAMROD_QUEUE_STATS_QUERY", },
    252	{ "ETH_RAMROD_UNUSED", "ETH_RAMROD_VPORT_START",
    253	 "ETH_RAMROD_VPORT_UPDATE", "ETH_RAMROD_VPORT_STOP",
    254	 "ETH_RAMROD_RX_QUEUE_START", "ETH_RAMROD_RX_QUEUE_STOP",
    255	 "ETH_RAMROD_TX_QUEUE_START", "ETH_RAMROD_TX_QUEUE_STOP",
    256	 "ETH_RAMROD_FILTERS_UPDATE", "ETH_RAMROD_RX_QUEUE_UPDATE",
    257	 "ETH_RAMROD_RX_CREATE_OPENFLOW_ACTION",
    258	 "ETH_RAMROD_RX_ADD_OPENFLOW_FILTER",
    259	 "ETH_RAMROD_RX_DELETE_OPENFLOW_FILTER",
    260	 "ETH_RAMROD_RX_ADD_UDP_FILTER",
    261	 "ETH_RAMROD_RX_DELETE_UDP_FILTER",
    262	 "ETH_RAMROD_RX_CREATE_GFT_ACTION",
    263	 "ETH_RAMROD_RX_UPDATE_GFT_FILTER", "ETH_RAMROD_TX_QUEUE_UPDATE",
    264	 "ETH_RAMROD_RGFS_FILTER_ADD", "ETH_RAMROD_RGFS_FILTER_DEL",
    265	 "ETH_RAMROD_TGFS_FILTER_ADD", "ETH_RAMROD_TGFS_FILTER_DEL",
    266	 "ETH_RAMROD_GFS_COUNTERS_REPORT_REQUEST", },
    267	{ "RDMA_RAMROD_UNUSED", "RDMA_RAMROD_FUNC_INIT",
    268	 "RDMA_RAMROD_FUNC_CLOSE", "RDMA_RAMROD_REGISTER_MR",
    269	 "RDMA_RAMROD_DEREGISTER_MR", "RDMA_RAMROD_CREATE_CQ",
    270	 "RDMA_RAMROD_RESIZE_CQ", "RDMA_RAMROD_DESTROY_CQ",
    271	 "RDMA_RAMROD_CREATE_SRQ", "RDMA_RAMROD_MODIFY_SRQ",
    272	 "RDMA_RAMROD_DESTROY_SRQ", "RDMA_RAMROD_START_NS_TRACKING",
    273	 "RDMA_RAMROD_STOP_NS_TRACKING",
    274	 "IWARP_RAMROD_CMD_ID_TCP_OFFLOAD",
    275	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD",
    276	 "IWARP_RAMROD_CMD_ID_MPA_OFFLOAD_SEND_RTR",
    277	 "IWARP_RAMROD_CMD_ID_CREATE_QP", "IWARP_RAMROD_CMD_ID_QUERY_QP",
    278	 "IWARP_RAMROD_CMD_ID_MODIFY_QP",
    279	 "IWARP_RAMROD_CMD_ID_DESTROY_QP",
    280	 "IWARP_RAMROD_CMD_ID_ABORT_TCP_OFFLOAD", },
    281	{ NULL }, /*TOE*/
    282	{ NULL }, /*PREROCE*/
    283	{ "COMMON_RAMROD_UNUSED", "COMMON_RAMROD_PF_START",
    284	     "COMMON_RAMROD_PF_STOP", "COMMON_RAMROD_VF_START",
    285	     "COMMON_RAMROD_VF_STOP", "COMMON_RAMROD_PF_UPDATE",
    286	     "COMMON_RAMROD_RL_UPDATE", "COMMON_RAMROD_EMPTY", }
    287};
    288
    289/******************** INTERNAL IMPLEMENTATION *********************/
    290
    291/* Returns the external VOQ number */
    292static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
    293			  u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
    294{
    295	if (tc == PURE_LB_TC)
    296		return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
    297	else
    298		return port_id * max_phys_tcs_per_port + tc;
    299}
    300
    301/* Prepare PF RL enable/disable runtime init values */
    302static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
    303{
    304	STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
    305	if (pf_rl_en) {
    306		u8 num_ext_voqs = MAX_NUM_VOQS;
    307		u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
    308
    309		/* Enable RLs for all VOQs */
    310		STORE_RT_REG(p_hwfn,
    311			     QM_REG_RLPFVOQENABLE_RT_OFFSET,
    312			     (u32)voq_bit_mask);
    313
    314		/* Write RL period */
    315		STORE_RT_REG(p_hwfn,
    316			     QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
    317		STORE_RT_REG(p_hwfn,
    318			     QM_REG_RLPFPERIODTIMER_RT_OFFSET,
    319			     QM_RL_PERIOD_CLK_25M);
    320
    321		/* Set credit threshold for QM bypass flow */
    322		if (QM_BYPASS_EN)
    323			STORE_RT_REG(p_hwfn,
    324				     QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
    325				     QM_PF_RL_UPPER_BOUND);
    326	}
    327}
    328
    329/* Prepare PF WFQ enable/disable runtime init values */
    330static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
    331{
    332	STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
    333
    334	/* Set credit threshold for QM bypass flow */
    335	if (pf_wfq_en && QM_BYPASS_EN)
    336		STORE_RT_REG(p_hwfn,
    337			     QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
    338			     QM_PF_WFQ_UPPER_BOUND);
    339}
    340
    341/* Prepare global RL enable/disable runtime init values */
    342static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en)
    343{
    344	STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
    345		     global_rl_en ? 1 : 0);
    346	if (global_rl_en) {
    347		/* Write RL period (use timer 0 only) */
    348		STORE_RT_REG(p_hwfn,
    349			     QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
    350			     QM_RL_PERIOD_CLK_25M);
    351		STORE_RT_REG(p_hwfn,
    352			     QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
    353			     QM_RL_PERIOD_CLK_25M);
    354
    355		/* Set credit threshold for QM bypass flow */
    356		if (QM_BYPASS_EN)
    357			STORE_RT_REG(p_hwfn,
    358				     QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
    359				     QM_GLOBAL_RL_UPPER_BOUND(10000) - 1);
    360	}
    361}
    362
    363/* Prepare VPORT WFQ enable/disable runtime init values */
    364static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
    365{
    366	STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
    367		     vport_wfq_en ? 1 : 0);
    368
    369	/* Set credit threshold for QM bypass flow */
    370	if (vport_wfq_en && QM_BYPASS_EN)
    371		STORE_RT_REG(p_hwfn,
    372			     QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
    373			     QM_VP_WFQ_BYPASS_THRESH);
    374}
    375
    376/* Prepare runtime init values to allocate PBF command queue lines for
    377 * the specified VOQ.
    378 */
    379static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
    380				       u8 ext_voq, u16 cmdq_lines)
    381{
    382	u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
    383
    384	OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
    385			 (u32)cmdq_lines);
    386	STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
    387		     qm_line_crd);
    388	STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
    389		     qm_line_crd);
    390}
    391
    392/* Prepare runtime init values to allocate PBF command queue lines. */
    393static void
    394qed_cmdq_lines_rt_init(struct qed_hwfn *p_hwfn,
    395		       u8 max_ports_per_engine,
    396		       u8 max_phys_tcs_per_port,
    397		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
    398{
    399	u8 tc, ext_voq, port_id, num_tcs_in_port;
    400	u8 num_ext_voqs = MAX_NUM_VOQS;
    401
    402	/* Clear PBF lines of all VOQs */
    403	for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
    404		STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
    405
    406	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
    407		u16 phys_lines, phys_lines_per_tc;
    408
    409		if (!port_params[port_id].active)
    410			continue;
    411
    412		/* Find number of command queue lines to divide between the
    413		 * active physical TCs.
    414		 */
    415		phys_lines = port_params[port_id].num_pbf_cmd_lines;
    416		phys_lines -= PBF_CMDQ_PURE_LB_LINES;
    417
    418		/* Find #lines per active physical TC */
    419		num_tcs_in_port = 0;
    420		for (tc = 0; tc < max_phys_tcs_per_port; tc++)
    421			if (((port_params[port_id].active_phys_tcs >>
    422			      tc) & 0x1) == 1)
    423				num_tcs_in_port++;
    424		phys_lines_per_tc = phys_lines / num_tcs_in_port;
    425
    426		/* Init registers per active TC */
    427		for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
    428			ext_voq = qed_get_ext_voq(p_hwfn,
    429						  port_id,
    430						  tc, max_phys_tcs_per_port);
    431			if (((port_params[port_id].active_phys_tcs >>
    432			      tc) & 0x1) == 1)
    433				qed_cmdq_lines_voq_rt_init(p_hwfn,
    434							   ext_voq,
    435							   phys_lines_per_tc);
    436		}
    437
    438		/* Init registers for pure LB TC */
    439		ext_voq = qed_get_ext_voq(p_hwfn,
    440					  port_id,
    441					  PURE_LB_TC, max_phys_tcs_per_port);
    442		qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq,
    443					   PBF_CMDQ_PURE_LB_LINES);
    444	}
    445}
    446
    447/* Prepare runtime init values to allocate guaranteed BTB blocks for the
    448 * specified port. The guaranteed BTB space is divided between the TCs as
    449 * follows (shared space Is currently not used):
    450 * 1. Parameters:
    451 *    B - BTB blocks for this port
    452 *    C - Number of physical TCs for this port
    453 * 2. Calculation:
    454 *    a. 38 blocks (9700B jumbo frame) are allocated for global per port
    455 *	 headroom.
    456 *    b. B = B - 38 (remainder after global headroom allocation).
    457 *    c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
    458 *    d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
    459 *    e. B/C blocks are allocated for each physical TC.
    460 * Assumptions:
    461 * - MTU is up to 9700 bytes (38 blocks)
    462 * - All TCs are considered symmetrical (same rate and packet size)
    463 * - No optimization for lossy TC (all are considered lossless). Shared space
    464 *   is not enabled and allocated for each TC.
    465 */
    466static void
    467qed_btb_blocks_rt_init(struct qed_hwfn *p_hwfn,
    468		       u8 max_ports_per_engine,
    469		       u8 max_phys_tcs_per_port,
    470		       struct init_qm_port_params port_params[MAX_NUM_PORTS])
    471{
    472	u32 usable_blocks, pure_lb_blocks, phys_blocks;
    473	u8 tc, ext_voq, port_id, num_tcs_in_port;
    474
    475	for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
    476		if (!port_params[port_id].active)
    477			continue;
    478
    479		/* Subtract headroom blocks */
    480		usable_blocks = port_params[port_id].num_btb_blocks -
    481				BTB_HEADROOM_BLOCKS;
    482
    483		/* Find blocks per physical TC. Use factor to avoid floating
    484		 * arithmethic.
    485		 */
    486		num_tcs_in_port = 0;
    487		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
    488			if (((port_params[port_id].active_phys_tcs >>
    489			      tc) & 0x1) == 1)
    490				num_tcs_in_port++;
    491
    492		pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
    493				 (num_tcs_in_port * BTB_PURE_LB_FACTOR +
    494				  BTB_PURE_LB_RATIO);
    495		pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
    496				       pure_lb_blocks / BTB_PURE_LB_FACTOR);
    497		phys_blocks = (usable_blocks - pure_lb_blocks) /
    498			      num_tcs_in_port;
    499
    500		/* Init physical TCs */
    501		for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
    502			if (((port_params[port_id].active_phys_tcs >>
    503			      tc) & 0x1) == 1) {
    504				ext_voq =
    505					qed_get_ext_voq(p_hwfn,
    506							port_id,
    507							tc,
    508							max_phys_tcs_per_port);
    509				STORE_RT_REG(p_hwfn,
    510					     PBF_BTB_GUARANTEED_RT_OFFSET
    511					     (ext_voq), phys_blocks);
    512			}
    513		}
    514
    515		/* Init pure LB TC */
    516		ext_voq = qed_get_ext_voq(p_hwfn,
    517					  port_id,
    518					  PURE_LB_TC, max_phys_tcs_per_port);
    519		STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
    520			     pure_lb_blocks);
    521	}
    522}
    523
    524/* Prepare runtime init values for the specified RL.
    525 * Set max link speed (100Gbps) per rate limiter.
    526 * Return -1 on error.
    527 */
    528static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn)
    529{
    530	u32 upper_bound = QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) |
    531			  (u32)QM_RL_CRD_REG_SIGN_BIT;
    532	u32 inc_val;
    533	u16 rl_id;
    534
    535	/* Go over all global RLs */
    536	for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) {
    537		inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED);
    538
    539		STORE_RT_REG(p_hwfn,
    540			     QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
    541			     (u32)QM_RL_CRD_REG_SIGN_BIT);
    542		STORE_RT_REG(p_hwfn,
    543			     QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
    544			     upper_bound);
    545		STORE_RT_REG(p_hwfn,
    546			     QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val);
    547	}
    548
    549	return 0;
    550}
    551
    552/* Returns the upper bound for the specified Vport RL parameters.
    553 * link_speed is in Mbps.
    554 * Returns 0 in case of error.
    555 */
    556static u32 qed_get_vport_rl_upper_bound(enum init_qm_rl_type vport_rl_type,
    557					u32 link_speed)
    558{
    559	switch (vport_rl_type) {
    560	case QM_RL_TYPE_NORMAL:
    561		return QM_INITIAL_VOQ_BYTE_CRD;
    562	case QM_RL_TYPE_QCN:
    563		return QM_GLOBAL_RL_UPPER_BOUND(link_speed);
    564	default:
    565		return 0;
    566	}
    567}
    568
    569/* Prepare VPORT RL runtime init values.
    570 * Return -1 on error.
    571 */
    572static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
    573				u16 start_rl,
    574				u16 num_rls,
    575				u32 link_speed,
    576				struct init_qm_rl_params *rl_params)
    577{
    578	u16 i, rl_id;
    579
    580	if (num_rls && start_rl + num_rls >= MAX_QM_GLOBAL_RLS) {
    581		DP_NOTICE(p_hwfn, "Invalid rate limiter configuration\n");
    582		return -1;
    583	}
    584
    585	/* Go over all PF VPORTs */
    586	for (i = 0, rl_id = start_rl; i < num_rls; i++, rl_id++) {
    587		u32 upper_bound, inc_val;
    588
    589		upper_bound =
    590		    qed_get_vport_rl_upper_bound((enum init_qm_rl_type)
    591						 rl_params[i].vport_rl_type,
    592						 link_speed);
    593
    594		inc_val =
    595		    QM_RL_INC_VAL(rl_params[i].vport_rl ?
    596				  rl_params[i].vport_rl : link_speed);
    597		if (inc_val > upper_bound) {
    598			DP_NOTICE(p_hwfn,
    599				  "Invalid RL rate - limit configuration\n");
    600			return -1;
    601		}
    602
    603		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id,
    604			     (u32)QM_RL_CRD_REG_SIGN_BIT);
    605		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id,
    606			     upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
    607		STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id,
    608			     inc_val);
    609	}
    610
    611	return 0;
    612}
    613
    614/* Prepare Tx PQ mapping runtime init values for the specified PF */
    615static int qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
    616				 struct qed_ptt *p_ptt,
    617				 struct qed_qm_pf_rt_init_params *p_params,
    618				 u32 base_mem_addr_4kb)
    619{
    620	u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
    621	struct init_qm_vport_params *vport_params = p_params->vport_params;
    622	u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
    623	u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
    624	struct init_qm_pq_params *pq_params = p_params->pq_params;
    625	u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
    626
    627	num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
    628
    629	first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
    630	last_pq_group = (p_params->start_pq + num_pqs - 1) /
    631			QM_PF_QUEUE_GROUP_SIZE;
    632
    633	pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
    634	vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
    635	mem_addr_4kb = base_mem_addr_4kb;
    636
    637	/* Set mapping from PQ group to PF */
    638	for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
    639		STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
    640			     (u32)(p_params->pf_id));
    641
    642	/* Set PQ sizes */
    643	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
    644		     QM_PQ_SIZE_256B(p_params->num_pf_cids));
    645	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
    646		     QM_PQ_SIZE_256B(p_params->num_vf_cids));
    647
    648	/* Go over all Tx PQs */
    649	for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
    650		u16 *p_first_tx_pq_id, vport_id_in_pf;
    651		struct qm_rf_pq_map tx_pq_map;
    652		u8 tc_id = pq_params[i].tc_id;
    653		bool is_vf_pq;
    654		u8 ext_voq;
    655
    656		ext_voq = qed_get_ext_voq(p_hwfn,
    657					  pq_params[i].port_id,
    658					  tc_id,
    659					  p_params->max_phys_tcs_per_port);
    660		is_vf_pq = (i >= p_params->num_pf_pqs);
    661
    662		/* Update first Tx PQ of VPORT/TC */
    663		vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
    664		p_first_tx_pq_id =
    665		    &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
    666		if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
    667			u32 map_val =
    668				(ext_voq << QM_VP_WFQ_PQ_VOQ_SHIFT) |
    669				(p_params->pf_id << QM_VP_WFQ_PQ_PF_SHIFT);
    670
    671			/* Create new VP PQ */
    672			*p_first_tx_pq_id = pq_id;
    673
    674			/* Map VP PQ to VOQ and PF */
    675			STORE_RT_REG(p_hwfn,
    676				     QM_REG_WFQVPMAP_RT_OFFSET +
    677				     *p_first_tx_pq_id,
    678				     map_val);
    679		}
    680
    681		/* Prepare PQ map entry */
    682		QM_INIT_TX_PQ_MAP(p_hwfn,
    683				  tx_pq_map,
    684				  pq_id,
    685				  *p_first_tx_pq_id,
    686				  pq_params[i].rl_valid,
    687				  pq_params[i].rl_id,
    688				  ext_voq, pq_params[i].wrr_group);
    689
    690		/* Set PQ base address */
    691		STORE_RT_REG(p_hwfn,
    692			     QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
    693			     mem_addr_4kb);
    694
    695		/* Clear PQ pointer table entry (64 bit) */
    696		if (p_params->is_pf_loading)
    697			for (j = 0; j < 2; j++)
    698				STORE_RT_REG(p_hwfn,
    699					     QM_REG_PTRTBLTX_RT_OFFSET +
    700					     (pq_id * 2) + j, 0);
    701
    702		/* Write PQ info to RAM */
    703		if (WRITE_PQ_INFO_TO_RAM != 0) {
    704			u32 pq_info = 0;
    705
    706			pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
    707						  p_params->pf_id,
    708						  tc_id,
    709						  pq_params[i].port_id,
    710						  pq_params[i].rl_valid,
    711						  pq_params[i].rl_id);
    712			qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
    713			       pq_info);
    714		}
    715
    716		/* If VF PQ, add indication to PQ VF mask */
    717		if (is_vf_pq) {
    718			tx_pq_vf_mask[pq_id /
    719				      QM_PF_QUEUE_GROUP_SIZE] |=
    720			    BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
    721			mem_addr_4kb += vport_pq_mem_4kb;
    722		} else {
    723			mem_addr_4kb += pq_mem_4kb;
    724		}
    725	}
    726
    727	/* Store Tx PQ VF mask to size select register */
    728	for (i = 0; i < num_tx_pq_vf_masks; i++)
    729		if (tx_pq_vf_mask[i])
    730			STORE_RT_REG(p_hwfn,
    731				     QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
    732				     tx_pq_vf_mask[i]);
    733
    734	return 0;
    735}
    736
    737/* Prepare Other PQ mapping runtime init values for the specified PF */
    738static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
    739				     u8 pf_id,
    740				     bool is_pf_loading,
    741				     u32 num_pf_cids,
    742				     u32 num_tids, u32 base_mem_addr_4kb)
    743{
    744	u32 pq_size, pq_mem_4kb, mem_addr_4kb;
    745	u16 i, j, pq_id, pq_group;
    746
    747	/* A single other PQ group is used in each PF, where PQ group i is used
    748	 * in PF i.
    749	 */
    750	pq_group = pf_id;
    751	pq_size = num_pf_cids + num_tids;
    752	pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
    753	mem_addr_4kb = base_mem_addr_4kb;
    754
    755	/* Map PQ group to PF */
    756	STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
    757		     (u32)(pf_id));
    758
    759	/* Set PQ sizes */
    760	STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
    761		     QM_PQ_SIZE_256B(pq_size));
    762
    763	for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
    764	     i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
    765		/* Set PQ base address */
    766		STORE_RT_REG(p_hwfn,
    767			     QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
    768			     mem_addr_4kb);
    769
    770		/* Clear PQ pointer table entry */
    771		if (is_pf_loading)
    772			for (j = 0; j < 2; j++)
    773				STORE_RT_REG(p_hwfn,
    774					     QM_REG_PTRTBLOTHER_RT_OFFSET +
    775					     (pq_id * 2) + j, 0);
    776
    777		mem_addr_4kb += pq_mem_4kb;
    778	}
    779}
    780
    781/* Prepare PF WFQ runtime init values for the specified PF.
    782 * Return -1 on error.
    783 */
    784static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
    785			      struct qed_qm_pf_rt_init_params *p_params)
    786{
    787	u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
    788	struct init_qm_pq_params *pq_params = p_params->pq_params;
    789	u32 inc_val, crd_reg_offset;
    790	u8 ext_voq;
    791	u16 i;
    792
    793	inc_val = QM_PF_WFQ_INC_VAL(p_params->pf_wfq);
    794	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
    795		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
    796		return -1;
    797	}
    798
    799	for (i = 0; i < num_tx_pqs; i++) {
    800		ext_voq = qed_get_ext_voq(p_hwfn,
    801					  pq_params[i].port_id,
    802					  pq_params[i].tc_id,
    803					  p_params->max_phys_tcs_per_port);
    804		crd_reg_offset =
    805			(p_params->pf_id < MAX_NUM_PFS_BB ?
    806			 QM_REG_WFQPFCRD_RT_OFFSET :
    807			 QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
    808			ext_voq * MAX_NUM_PFS_BB +
    809			(p_params->pf_id % MAX_NUM_PFS_BB);
    810		OVERWRITE_RT_REG(p_hwfn,
    811				 crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
    812	}
    813
    814	STORE_RT_REG(p_hwfn,
    815		     QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
    816		     QM_PF_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
    817	STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
    818		     inc_val);
    819
    820	return 0;
    821}
    822
    823/* Prepare PF RL runtime init values for the specified PF.
    824 * Return -1 on error.
    825 */
    826static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
    827{
    828	u32 inc_val = QM_RL_INC_VAL(pf_rl);
    829
    830	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
    831		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
    832		return -1;
    833	}
    834
    835	STORE_RT_REG(p_hwfn,
    836		     QM_REG_RLPFCRD_RT_OFFSET + pf_id,
    837		     (u32)QM_RL_CRD_REG_SIGN_BIT);
    838	STORE_RT_REG(p_hwfn,
    839		     QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
    840		     QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
    841	STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
    842
    843	return 0;
    844}
    845
    846/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
    847 * Return -1 on error.
    848 */
    849static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
    850			      u16 num_vports,
    851			      struct init_qm_vport_params *vport_params)
    852{
    853	u16 vport_pq_id, wfq, i;
    854	u32 inc_val;
    855	u8 tc;
    856
    857	/* Go over all PF VPORTs */
    858	for (i = 0; i < num_vports; i++) {
    859		/* Each VPORT can have several VPORT PQ IDs for various TCs */
    860		for (tc = 0; tc < NUM_OF_TCS; tc++) {
    861			/* Check if VPORT/TC is valid */
    862			vport_pq_id = vport_params[i].first_tx_pq_id[tc];
    863			if (vport_pq_id == QM_INVALID_PQ_ID)
    864				continue;
    865
    866			/* Find WFQ weight (per VPORT or per VPORT+TC) */
    867			wfq = vport_params[i].wfq;
    868			wfq = wfq ? wfq : vport_params[i].tc_wfq[tc];
    869			inc_val = QM_VP_WFQ_INC_VAL(wfq);
    870			if (inc_val > QM_VP_WFQ_MAX_INC_VAL) {
    871				DP_NOTICE(p_hwfn,
    872					  "Invalid VPORT WFQ weight configuration\n");
    873				return -1;
    874			}
    875
    876			/* Config registers */
    877			STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET +
    878				     vport_pq_id,
    879				     (u32)QM_WFQ_CRD_REG_SIGN_BIT);
    880			STORE_RT_REG(p_hwfn, QM_REG_WFQVPUPPERBOUND_RT_OFFSET +
    881				     vport_pq_id,
    882				     inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
    883			STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET +
    884				     vport_pq_id, inc_val);
    885		}
    886	}
    887
    888	return 0;
    889}
    890
    891static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
    892				     struct qed_ptt *p_ptt)
    893{
    894	u32 reg_val, i;
    895
    896	for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
    897	     i++) {
    898		udelay(QM_STOP_CMD_POLL_PERIOD_US);
    899		reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
    900	}
    901
    902	/* Check if timeout while waiting for SDM command ready */
    903	if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
    904		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
    905			   "Timeout when waiting for QM SDM command ready signal\n");
    906		return false;
    907	}
    908
    909	return true;
    910}
    911
    912static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
    913			    struct qed_ptt *p_ptt,
    914			    u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
    915{
    916	if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
    917		return false;
    918
    919	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
    920	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
    921	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
    922	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
    923	qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
    924
    925	return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
    926}
    927
    928/******************** INTERFACE IMPLEMENTATION *********************/
    929
    930u32 qed_qm_pf_mem_size(u32 num_pf_cids,
    931		       u32 num_vf_cids,
    932		       u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
    933{
    934	return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
    935	       QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
    936	       QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
    937}
    938
    939int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
    940			  struct qed_qm_common_rt_init_params *p_params)
    941{
    942	u32 mask = 0;
    943
    944	/* Init AFullOprtnstcCrdMask */
    945	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ,
    946		  QM_OPPOR_LINE_VOQ_DEF);
    947	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN);
    948	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ,
    949		  p_params->pf_wfq_en ? 1 : 0);
    950	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ,
    951		  p_params->vport_wfq_en ? 1 : 0);
    952	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL,
    953		  p_params->pf_rl_en ? 1 : 0);
    954	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL,
    955		  p_params->global_rl_en ? 1 : 0);
    956	SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF);
    957	SET_FIELD(mask,
    958		  QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF);
    959	STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
    960
    961	/* Enable/disable PF RL */
    962	qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
    963
    964	/* Enable/disable PF WFQ */
    965	qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
    966
    967	/* Enable/disable global RL */
    968	qed_enable_global_rl(p_hwfn, p_params->global_rl_en);
    969
    970	/* Enable/disable VPORT WFQ */
    971	qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
    972
    973	/* Init PBF CMDQ line credit */
    974	qed_cmdq_lines_rt_init(p_hwfn,
    975			       p_params->max_ports_per_engine,
    976			       p_params->max_phys_tcs_per_port,
    977			       p_params->port_params);
    978
    979	/* Init BTB blocks in PBF */
    980	qed_btb_blocks_rt_init(p_hwfn,
    981			       p_params->max_ports_per_engine,
    982			       p_params->max_phys_tcs_per_port,
    983			       p_params->port_params);
    984
    985	qed_global_rl_rt_init(p_hwfn);
    986
    987	return 0;
    988}
    989
    990int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
    991		      struct qed_ptt *p_ptt,
    992		      struct qed_qm_pf_rt_init_params *p_params)
    993{
    994	struct init_qm_vport_params *vport_params = p_params->vport_params;
    995	u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
    996					       p_params->num_tids) *
    997				 QM_OTHER_PQS_PER_PF;
    998	u16 i;
    999	u8 tc;
   1000
   1001	/* Clear first Tx PQ ID array for each VPORT */
   1002	for (i = 0; i < p_params->num_vports; i++)
   1003		for (tc = 0; tc < NUM_OF_TCS; tc++)
   1004			vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
   1005
   1006	/* Map Other PQs (if any) */
   1007	qed_other_pq_map_rt_init(p_hwfn,
   1008				 p_params->pf_id,
   1009				 p_params->is_pf_loading, p_params->num_pf_cids,
   1010				 p_params->num_tids, 0);
   1011
   1012	/* Map Tx PQs */
   1013	if (qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb))
   1014		return -1;
   1015
   1016	/* Init PF WFQ */
   1017	if (p_params->pf_wfq)
   1018		if (qed_pf_wfq_rt_init(p_hwfn, p_params))
   1019			return -1;
   1020
   1021	/* Init PF RL */
   1022	if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
   1023		return -1;
   1024
   1025	/* Init VPORT WFQ */
   1026	if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
   1027		return -1;
   1028
   1029	/* Set VPORT RL */
   1030	if (qed_vport_rl_rt_init(p_hwfn, p_params->start_rl,
   1031				 p_params->num_rls, p_params->link_speed,
   1032				 p_params->rl_params))
   1033		return -1;
   1034
   1035	return 0;
   1036}
   1037
   1038int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
   1039		    struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
   1040{
   1041	u32 inc_val = QM_PF_WFQ_INC_VAL(pf_wfq);
   1042
   1043	if (!inc_val || inc_val > QM_PF_WFQ_MAX_INC_VAL) {
   1044		DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
   1045		return -1;
   1046	}
   1047
   1048	qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
   1049
   1050	return 0;
   1051}
   1052
   1053int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
   1054		   struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
   1055{
   1056	u32 inc_val = QM_RL_INC_VAL(pf_rl);
   1057
   1058	if (inc_val > QM_PF_RL_MAX_INC_VAL) {
   1059		DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
   1060		return -1;
   1061	}
   1062
   1063	qed_wr(p_hwfn,
   1064	       p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
   1065	qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
   1066
   1067	return 0;
   1068}
   1069
   1070int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
   1071		       struct qed_ptt *p_ptt,
   1072		       u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq)
   1073{
   1074	int result = 0;
   1075	u16 vport_pq_id;
   1076	u8 tc;
   1077
   1078	for (tc = 0; tc < NUM_OF_TCS && !result; tc++) {
   1079		vport_pq_id = first_tx_pq_id[tc];
   1080		if (vport_pq_id != QM_INVALID_PQ_ID)
   1081			result = qed_init_vport_tc_wfq(p_hwfn, p_ptt,
   1082						       vport_pq_id, wfq);
   1083	}
   1084
   1085	return result;
   1086}
   1087
   1088int qed_init_vport_tc_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
   1089			  u16 first_tx_pq_id, u16 wfq)
   1090{
   1091	u32 inc_val;
   1092
   1093	if (first_tx_pq_id == QM_INVALID_PQ_ID)
   1094		return -1;
   1095
   1096	inc_val = QM_VP_WFQ_INC_VAL(wfq);
   1097	if (!inc_val || inc_val > QM_VP_WFQ_MAX_INC_VAL) {
   1098		DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n");
   1099		return -1;
   1100	}
   1101
   1102	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPCRD + first_tx_pq_id * 4,
   1103	       (u32)QM_WFQ_CRD_REG_SIGN_BIT);
   1104	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPUPPERBOUND + first_tx_pq_id * 4,
   1105	       inc_val | QM_WFQ_CRD_REG_SIGN_BIT);
   1106	qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + first_tx_pq_id * 4,
   1107	       inc_val);
   1108
   1109	return 0;
   1110}
   1111
   1112int qed_init_global_rl(struct qed_hwfn *p_hwfn,
   1113		       struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit,
   1114		       enum init_qm_rl_type vport_rl_type)
   1115{
   1116	u32 inc_val, upper_bound;
   1117
   1118	upper_bound =
   1119	    (vport_rl_type ==
   1120	     QM_RL_TYPE_QCN) ? QM_GLOBAL_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) :
   1121	    QM_INITIAL_VOQ_BYTE_CRD;
   1122	inc_val = QM_RL_INC_VAL(rate_limit);
   1123	if (inc_val > upper_bound) {
   1124		DP_NOTICE(p_hwfn, "Invalid VPORT rate limit configuration.\n");
   1125		return -1;
   1126	}
   1127
   1128	qed_wr(p_hwfn, p_ptt,
   1129	       QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
   1130	qed_wr(p_hwfn,
   1131	       p_ptt,
   1132	       QM_REG_RLGLBLUPPERBOUND + rl_id * 4,
   1133	       upper_bound | (u32)QM_RL_CRD_REG_SIGN_BIT);
   1134	qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val);
   1135
   1136	return 0;
   1137}
   1138
   1139bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
   1140			  struct qed_ptt *p_ptt,
   1141			  bool is_release_cmd,
   1142			  bool is_tx_pq, u16 start_pq, u16 num_pqs)
   1143{
   1144	u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
   1145	u32 pq_mask = 0, last_pq, pq_id;
   1146
   1147	last_pq = start_pq + num_pqs - 1;
   1148
   1149	/* Set command's PQ type */
   1150	QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
   1151
   1152	/* Go over requested PQs */
   1153	for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
   1154		/* Set PQ bit in mask (stop command only) */
   1155		if (!is_release_cmd)
   1156			pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
   1157
   1158		/* If last PQ or end of PQ mask, write command */
   1159		if ((pq_id == last_pq) ||
   1160		    (pq_id % QM_STOP_PQ_MASK_WIDTH ==
   1161		     (QM_STOP_PQ_MASK_WIDTH - 1))) {
   1162			QM_CMD_SET_FIELD(cmd_arr,
   1163					 QM_STOP_CMD, PAUSE_MASK, pq_mask);
   1164			QM_CMD_SET_FIELD(cmd_arr,
   1165					 QM_STOP_CMD,
   1166					 GROUP_ID,
   1167					 pq_id / QM_STOP_PQ_MASK_WIDTH);
   1168			if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
   1169					     cmd_arr[0], cmd_arr[1]))
   1170				return false;
   1171			pq_mask = 0;
   1172		}
   1173	}
   1174
   1175	return true;
   1176}
   1177
   1178#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
   1179	do { \
   1180		typeof(var) *__p_var = &(var); \
   1181		typeof(offset) __offset = offset; \
   1182		*__p_var = (*__p_var & ~BIT(__offset)) | \
   1183			   ((enable) ? BIT(__offset) : 0); \
   1184	} while (0)
   1185
   1186#define PRS_ETH_TUNN_OUTPUT_FORMAT     0xF4DAB910
   1187#define PRS_ETH_OUTPUT_FORMAT          0xFFFF4910
   1188
   1189#define ARR_REG_WR(dev, ptt, addr, arr,	arr_size) \
   1190	do { \
   1191		u32 i; \
   1192		\
   1193		for (i = 0; i < (arr_size); i++) \
   1194			qed_wr(dev, ptt, \
   1195			       ((addr) + (4 * i)), \
   1196			       ((u32 *)&(arr))[i]); \
   1197	} while (0)
   1198
   1199/**
   1200 * qed_dmae_to_grc() - Internal function for writing from host to
   1201 * wide-bus registers (split registers are not supported yet).
   1202 *
   1203 * @p_hwfn: HW device data.
   1204 * @p_ptt: PTT window used for writing the registers.
   1205 * @p_data: Pointer to source data.
   1206 * @addr: Destination register address.
   1207 * @len_in_dwords: Data length in dwords (u32).
   1208 *
   1209 * Return: Length of the written data in dwords (u32) or -1 on invalid
   1210 *         input.
   1211 */
   1212static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
   1213			   __le32 *p_data, u32 addr, u32 len_in_dwords)
   1214{
   1215	struct qed_dmae_params params = { 0 };
   1216	u32 *data_cpu;
   1217	int rc;
   1218
   1219	if (!p_data)
   1220		return -1;
   1221
   1222	/* Set DMAE params */
   1223	SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1);
   1224
   1225	/* Execute DMAE command */
   1226	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
   1227			       (u64)(uintptr_t)(p_data),
   1228			       addr, len_in_dwords, &params);
   1229
   1230	/* If not read using DMAE, read using GRC */
   1231	if (rc) {
   1232		DP_VERBOSE(p_hwfn,
   1233			   QED_MSG_DEBUG,
   1234			   "Failed writing to chip using DMAE, using GRC instead\n");
   1235
   1236		/* Swap to CPU byteorder and write to registers using GRC */
   1237		data_cpu = (__force u32 *)p_data;
   1238		le32_to_cpu_array(data_cpu, len_in_dwords);
   1239
   1240		ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords);
   1241		cpu_to_le32_array(data_cpu, len_in_dwords);
   1242	}
   1243
   1244	return len_in_dwords;
   1245}
   1246
   1247void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
   1248			     struct qed_ptt *p_ptt, u16 dest_port)
   1249{
   1250	/* Update PRS register */
   1251	qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
   1252
   1253	/* Update NIG register */
   1254	qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
   1255
   1256	/* Update PBF register */
   1257	qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
   1258}
   1259
   1260void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
   1261			  struct qed_ptt *p_ptt, bool vxlan_enable)
   1262{
   1263	u32 reg_val;
   1264	u8 shift;
   1265
   1266	/* Update PRS register */
   1267	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
   1268	SET_FIELD(reg_val,
   1269		  PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE, vxlan_enable);
   1270	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
   1271	if (reg_val) {
   1272		reg_val =
   1273		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
   1274
   1275		/* Update output  only if tunnel blocks not included. */
   1276		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
   1277			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
   1278			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
   1279	}
   1280
   1281	/* Update NIG register */
   1282	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
   1283	shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
   1284	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
   1285	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
   1286
   1287	/* Update DORQ register */
   1288	qed_wr(p_hwfn,
   1289	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
   1290}
   1291
   1292void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
   1293			struct qed_ptt *p_ptt,
   1294			bool eth_gre_enable, bool ip_gre_enable)
   1295{
   1296	u32 reg_val;
   1297	u8 shift;
   1298
   1299	/* Update PRS register */
   1300	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
   1301	SET_FIELD(reg_val,
   1302		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE,
   1303		  eth_gre_enable);
   1304	SET_FIELD(reg_val,
   1305		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE,
   1306		  ip_gre_enable);
   1307	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
   1308	if (reg_val) {
   1309		reg_val =
   1310		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
   1311
   1312		/* Update output  only if tunnel blocks not included. */
   1313		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
   1314			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
   1315			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
   1316	}
   1317
   1318	/* Update NIG register */
   1319	reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
   1320	shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
   1321	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
   1322	shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
   1323	SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
   1324	qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
   1325
   1326	/* Update DORQ registers */
   1327	qed_wr(p_hwfn,
   1328	       p_ptt,
   1329	       DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
   1330	qed_wr(p_hwfn,
   1331	       p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
   1332}
   1333
   1334void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
   1335			      struct qed_ptt *p_ptt, u16 dest_port)
   1336{
   1337	/* Update PRS register */
   1338	qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
   1339
   1340	/* Update NIG register */
   1341	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
   1342
   1343	/* Update PBF register */
   1344	qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
   1345}
   1346
   1347void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
   1348			   struct qed_ptt *p_ptt,
   1349			   bool eth_geneve_enable, bool ip_geneve_enable)
   1350{
   1351	u32 reg_val;
   1352
   1353	/* Update PRS register */
   1354	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
   1355	SET_FIELD(reg_val,
   1356		  PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE,
   1357		  eth_geneve_enable);
   1358	SET_FIELD(reg_val,
   1359		  PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE,
   1360		  ip_geneve_enable);
   1361	qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
   1362	if (reg_val) {
   1363		reg_val =
   1364		    qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0);
   1365
   1366		/* Update output  only if tunnel blocks not included. */
   1367		if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
   1368			qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0,
   1369			       (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
   1370	}
   1371
   1372	/* Update NIG register */
   1373	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
   1374	       eth_geneve_enable ? 1 : 0);
   1375	qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
   1376
   1377	/* EDPM with geneve tunnel not supported in BB */
   1378	if (QED_IS_BB_B0(p_hwfn->cdev))
   1379		return;
   1380
   1381	/* Update DORQ registers */
   1382	qed_wr(p_hwfn,
   1383	       p_ptt,
   1384	       DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2,
   1385	       eth_geneve_enable ? 1 : 0);
   1386	qed_wr(p_hwfn,
   1387	       p_ptt,
   1388	       DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2,
   1389	       ip_geneve_enable ? 1 : 0);
   1390}
   1391
   1392#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET      3
   1393#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT   0xC8DAB910
   1394
   1395void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
   1396				struct qed_ptt *p_ptt, bool enable)
   1397{
   1398	u32 reg_val, cfg_mask;
   1399
   1400	/* read PRS config register */
   1401	reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
   1402
   1403	/* set VXLAN_NO_L2_ENABLE mask */
   1404	cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
   1405
   1406	if (enable) {
   1407		/* set VXLAN_NO_L2_ENABLE flag */
   1408		reg_val |= cfg_mask;
   1409
   1410		/* update PRS FIC  register */
   1411		qed_wr(p_hwfn,
   1412		       p_ptt,
   1413		       PRS_REG_OUTPUT_FORMAT_4_0,
   1414		       (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
   1415	} else {
   1416		/* clear VXLAN_NO_L2_ENABLE flag */
   1417		reg_val &= ~cfg_mask;
   1418	}
   1419
   1420	/* write PRS config register */
   1421	qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
   1422}
   1423
   1424#define T_ETH_PACKET_ACTION_GFT_EVENTID  23
   1425#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR  272
   1426#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
   1427#define PARSER_ETH_CONN_CM_HDR 0
   1428#define CAM_LINE_SIZE sizeof(u32)
   1429#define RAM_LINE_SIZE sizeof(u64)
   1430#define REG_SIZE sizeof(u32)
   1431
   1432void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
   1433{
   1434	struct regpair ram_line = { 0 };
   1435
   1436	/* Disable gft search for PF */
   1437	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
   1438
   1439	/* Clean ram & cam for next gft session */
   1440
   1441	/* Zero camline */
   1442	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
   1443
   1444	/* Zero ramline */
   1445	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
   1446			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
   1447			sizeof(ram_line) / REG_SIZE);
   1448}
   1449
   1450void qed_gft_config(struct qed_hwfn *p_hwfn,
   1451		    struct qed_ptt *p_ptt,
   1452		    u16 pf_id,
   1453		    bool tcp,
   1454		    bool udp,
   1455		    bool ipv4, bool ipv6, enum gft_profile_type profile_type)
   1456{
   1457	struct regpair ram_line;
   1458	u32 search_non_ip_as_gft;
   1459	u32 reg_val, cam_line;
   1460	u32 lo = 0, hi = 0;
   1461
   1462	if (!ipv6 && !ipv4)
   1463		DP_NOTICE(p_hwfn,
   1464			  "gft_config: must accept at least on of - ipv4 or ipv6'\n");
   1465	if (!tcp && !udp)
   1466		DP_NOTICE(p_hwfn,
   1467			  "gft_config: must accept at least on of - udp or tcp\n");
   1468	if (profile_type >= MAX_GFT_PROFILE_TYPE)
   1469		DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
   1470
   1471	/* Set RFS event ID to be awakened i Tstorm By Prs */
   1472	reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
   1473		  PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
   1474	reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
   1475	qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
   1476
   1477	/* Do not load context only cid in PRS on match. */
   1478	qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
   1479
   1480	/* Do not use tenant ID exist bit for gft search */
   1481	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
   1482
   1483	/* Set Cam */
   1484	cam_line = 0;
   1485	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
   1486
   1487	/* Filters are per PF!! */
   1488	SET_FIELD(cam_line,
   1489		  GFT_CAM_LINE_MAPPED_PF_ID_MASK,
   1490		  GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
   1491	SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
   1492
   1493	if (!(tcp && udp)) {
   1494		SET_FIELD(cam_line,
   1495			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
   1496			  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
   1497		if (tcp)
   1498			SET_FIELD(cam_line,
   1499				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
   1500				  GFT_PROFILE_TCP_PROTOCOL);
   1501		else
   1502			SET_FIELD(cam_line,
   1503				  GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
   1504				  GFT_PROFILE_UDP_PROTOCOL);
   1505	}
   1506
   1507	if (!(ipv4 && ipv6)) {
   1508		SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
   1509		if (ipv4)
   1510			SET_FIELD(cam_line,
   1511				  GFT_CAM_LINE_MAPPED_IP_VERSION,
   1512				  GFT_PROFILE_IPV4);
   1513		else
   1514			SET_FIELD(cam_line,
   1515				  GFT_CAM_LINE_MAPPED_IP_VERSION,
   1516				  GFT_PROFILE_IPV6);
   1517	}
   1518
   1519	/* Write characteristics to cam */
   1520	qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
   1521	       cam_line);
   1522	cam_line =
   1523	    qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
   1524
   1525	/* Write line to RAM - compare to filter 4 tuple */
   1526
   1527	/* Search no IP as GFT */
   1528	search_non_ip_as_gft = 0;
   1529
   1530	/* Tunnel type */
   1531	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
   1532	SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
   1533
   1534	if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
   1535		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
   1536		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
   1537		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
   1538		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
   1539		SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1);
   1540		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
   1541	} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
   1542		SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
   1543		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
   1544		SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1);
   1545	} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
   1546		SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1);
   1547		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
   1548	} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
   1549		SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1);
   1550		SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1);
   1551	} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
   1552		SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
   1553
   1554		/* Allow tunneled traffic without inner IP */
   1555		search_non_ip_as_gft = 1;
   1556	}
   1557
   1558	ram_line.lo = cpu_to_le32(lo);
   1559	ram_line.hi = cpu_to_le32(hi);
   1560
   1561	qed_wr(p_hwfn,
   1562	       p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
   1563	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
   1564			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
   1565			sizeof(ram_line) / REG_SIZE);
   1566
   1567	/* Set default profile so that no filter match will happen */
   1568	ram_line.lo = cpu_to_le32(0xffffffff);
   1569	ram_line.hi = cpu_to_le32(0x3ff);
   1570	qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo,
   1571			PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
   1572			PRS_GFT_CAM_LINES_NO_MATCH,
   1573			sizeof(ram_line) / REG_SIZE);
   1574
   1575	/* Enable gft search */
   1576	qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
   1577}
   1578
   1579DECLARE_CRC8_TABLE(cdu_crc8_table);
   1580
   1581/* Calculate and return CDU validation byte per connection type/region/cid */
   1582static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
   1583{
   1584	const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
   1585	u8 crc, validation_byte = 0;
   1586	static u8 crc8_table_valid; /* automatically initialized to 0 */
   1587	u32 validation_string = 0;
   1588	__be32 data_to_crc;
   1589
   1590	if (!crc8_table_valid) {
   1591		crc8_populate_msb(cdu_crc8_table, 0x07);
   1592		crc8_table_valid = 1;
   1593	}
   1594
   1595	/* The CRC is calculated on the String-to-compress:
   1596	 * [31:8]  = {CID[31:20],CID[11:0]}
   1597	 * [7:4]   = Region
   1598	 * [3:0]   = Type
   1599	 */
   1600	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
   1601		validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
   1602
   1603	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
   1604		validation_string |= ((region & 0xF) << 4);
   1605
   1606	if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
   1607		validation_string |= (conn_type & 0xF);
   1608
   1609	/* Convert to big-endian and calculate CRC8 */
   1610	data_to_crc = cpu_to_be32(validation_string);
   1611	crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc),
   1612		   CRC8_INIT_VALUE);
   1613
   1614	/* The validation byte [7:0] is composed:
   1615	 * for type A validation
   1616	 * [7]          = active configuration bit
   1617	 * [6:0]        = crc[6:0]
   1618	 *
   1619	 * for type B validation
   1620	 * [7]          = active configuration bit
   1621	 * [6:3]        = connection_type[3:0]
   1622	 * [2:0]        = crc[2:0]
   1623	 */
   1624	validation_byte |=
   1625	    ((validation_cfg >>
   1626	      CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
   1627
   1628	if ((validation_cfg >>
   1629	     CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
   1630		validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
   1631	else
   1632		validation_byte |= crc & 0x7F;
   1633
   1634	return validation_byte;
   1635}
   1636
   1637/* Calcualte and set validation bytes for session context */
   1638void qed_calc_session_ctx_validation(void *p_ctx_mem,
   1639				     u16 ctx_size, u8 ctx_type, u32 cid)
   1640{
   1641	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
   1642
   1643	p_ctx = (u8 * const)p_ctx_mem;
   1644	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
   1645	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
   1646	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
   1647
   1648	memset(p_ctx, 0, ctx_size);
   1649
   1650	*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
   1651	*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
   1652	*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
   1653}
   1654
   1655/* Calcualte and set validation bytes for task context */
   1656void qed_calc_task_ctx_validation(void *p_ctx_mem,
   1657				  u16 ctx_size, u8 ctx_type, u32 tid)
   1658{
   1659	u8 *p_ctx, *region1_val_ptr;
   1660
   1661	p_ctx = (u8 * const)p_ctx_mem;
   1662	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
   1663
   1664	memset(p_ctx, 0, ctx_size);
   1665
   1666	*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
   1667}
   1668
   1669/* Memset session context to 0 while preserving validation bytes */
   1670void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
   1671{
   1672	u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
   1673	u8 x_val, t_val, u_val;
   1674
   1675	p_ctx = (u8 * const)p_ctx_mem;
   1676	x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
   1677	t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
   1678	u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
   1679
   1680	x_val = *x_val_ptr;
   1681	t_val = *t_val_ptr;
   1682	u_val = *u_val_ptr;
   1683
   1684	memset(p_ctx, 0, ctx_size);
   1685
   1686	*x_val_ptr = x_val;
   1687	*t_val_ptr = t_val;
   1688	*u_val_ptr = u_val;
   1689}
   1690
   1691/* Memset task context to 0 while preserving validation bytes */
   1692void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
   1693{
   1694	u8 *p_ctx, *region1_val_ptr;
   1695	u8 region1_val;
   1696
   1697	p_ctx = (u8 * const)p_ctx_mem;
   1698	region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
   1699
   1700	region1_val = *region1_val_ptr;
   1701
   1702	memset(p_ctx, 0, ctx_size);
   1703
   1704	*region1_val_ptr = region1_val;
   1705}
   1706
   1707/* Enable and configure context validation */
   1708void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
   1709				   struct qed_ptt *p_ptt)
   1710{
   1711	u32 ctx_validation;
   1712
   1713	/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
   1714	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
   1715	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
   1716
   1717	/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
   1718	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
   1719	qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
   1720
   1721	/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
   1722	ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
   1723	qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
   1724}
   1725
   1726const char *qed_get_protocol_type_str(u32 protocol_type)
   1727{
   1728	if (protocol_type >= ARRAY_SIZE(s_protocol_types))
   1729		return "Invalid protocol type";
   1730
   1731	return s_protocol_types[protocol_type];
   1732}
   1733
   1734const char *qed_get_ramrod_cmd_id_str(u32 protocol_type, u32 ramrod_cmd_id)
   1735{
   1736	const char *ramrod_cmd_id_str;
   1737
   1738	if (protocol_type >= ARRAY_SIZE(s_ramrod_cmd_ids))
   1739		return "Invalid protocol type";
   1740
   1741	if (ramrod_cmd_id >= ARRAY_SIZE(s_ramrod_cmd_ids[0]))
   1742		return "Invalid Ramrod command ID";
   1743
   1744	ramrod_cmd_id_str = s_ramrod_cmd_ids[protocol_type][ramrod_cmd_id];
   1745
   1746	if (!ramrod_cmd_id_str)
   1747		return "Invalid Ramrod command ID";
   1748
   1749	return ramrod_cmd_id_str;
   1750}
   1751
   1752static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
   1753{
   1754	switch (storm_id) {
   1755	case 0:
   1756		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1757		    TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
   1758	case 1:
   1759		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1760		    MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
   1761	case 2:
   1762		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1763		    USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
   1764	case 3:
   1765		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1766		    XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
   1767	case 4:
   1768		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1769		    YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
   1770	case 5:
   1771		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1772		    PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
   1773
   1774	default:
   1775		return 0;
   1776	}
   1777}
   1778
   1779void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
   1780			      struct qed_ptt *p_ptt,
   1781			      u8 assert_level[NUM_STORMS])
   1782{
   1783	u8 storm_id;
   1784
   1785	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
   1786		u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
   1787
   1788		qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
   1789	}
   1790}
   1791
   1792#define PHYS_ADDR_DWORDS        DIV_ROUND_UP(sizeof(dma_addr_t), 4)
   1793#define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4)
   1794
   1795static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
   1796{
   1797	switch (storm_id) {
   1798	case 0:
   1799		return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1800		    TSTORM_OVERLAY_BUF_ADDR_OFFSET;
   1801	case 1:
   1802		return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1803		    MSTORM_OVERLAY_BUF_ADDR_OFFSET;
   1804	case 2:
   1805		return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1806		    USTORM_OVERLAY_BUF_ADDR_OFFSET;
   1807	case 3:
   1808		return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1809		    XSTORM_OVERLAY_BUF_ADDR_OFFSET;
   1810	case 4:
   1811		return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1812		    YSTORM_OVERLAY_BUF_ADDR_OFFSET;
   1813	case 5:
   1814		return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
   1815		    PSTORM_OVERLAY_BUF_ADDR_OFFSET;
   1816
   1817	default:
   1818		return 0;
   1819	}
   1820}
   1821
   1822struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn,
   1823					       const u32 * const
   1824					       fw_overlay_in_buf,
   1825					       u32 buf_size_in_bytes)
   1826{
   1827	u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0;
   1828	struct phys_mem_desc *allocated_mem;
   1829
   1830	if (!buf_size)
   1831		return NULL;
   1832
   1833	allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc),
   1834				GFP_KERNEL);
   1835	if (!allocated_mem)
   1836		return NULL;
   1837
   1838	/* For each Storm, set physical address in RAM */
   1839	while (buf_offset < buf_size) {
   1840		struct phys_mem_desc *storm_mem_desc;
   1841		struct fw_overlay_buf_hdr *hdr;
   1842		u32 storm_buf_size;
   1843		u8 storm_id;
   1844
   1845		hdr =
   1846		    (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset];
   1847		storm_buf_size = GET_FIELD(hdr->data,
   1848					   FW_OVERLAY_BUF_HDR_BUF_SIZE);
   1849		storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID);
   1850		if (storm_id >= NUM_STORMS)
   1851			break;
   1852		storm_mem_desc = allocated_mem + storm_id;
   1853		storm_mem_desc->size = storm_buf_size * sizeof(u32);
   1854
   1855		/* Allocate physical memory for Storm's overlays buffer */
   1856		storm_mem_desc->virt_addr =
   1857		    dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
   1858				       storm_mem_desc->size,
   1859				       &storm_mem_desc->phys_addr, GFP_KERNEL);
   1860		if (!storm_mem_desc->virt_addr)
   1861			break;
   1862
   1863		/* Skip overlays buffer header */
   1864		buf_offset += OVERLAY_HDR_SIZE_DWORDS;
   1865
   1866		/* Copy Storm's overlays buffer to allocated memory */
   1867		memcpy(storm_mem_desc->virt_addr,
   1868		       &fw_overlay_in_buf[buf_offset], storm_mem_desc->size);
   1869
   1870		/* Advance to next Storm */
   1871		buf_offset += storm_buf_size;
   1872	}
   1873
   1874	/* If memory allocation has failed, free all allocated memory */
   1875	if (buf_offset < buf_size) {
   1876		qed_fw_overlay_mem_free(p_hwfn, &allocated_mem);
   1877		return NULL;
   1878	}
   1879
   1880	return allocated_mem;
   1881}
   1882
   1883void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn,
   1884			     struct qed_ptt *p_ptt,
   1885			     struct phys_mem_desc *fw_overlay_mem)
   1886{
   1887	u8 storm_id;
   1888
   1889	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
   1890		struct phys_mem_desc *storm_mem_desc =
   1891		    (struct phys_mem_desc *)fw_overlay_mem + storm_id;
   1892		u32 ram_addr, i;
   1893
   1894		/* Skip Storms with no FW overlays */
   1895		if (!storm_mem_desc->virt_addr)
   1896			continue;
   1897
   1898		/* Calculate overlay RAM GRC address of current PF */
   1899		ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) +
   1900			   sizeof(dma_addr_t) * p_hwfn->rel_pf_id;
   1901
   1902		/* Write Storm's overlay physical address to RAM */
   1903		for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32))
   1904			qed_wr(p_hwfn, p_ptt, ram_addr,
   1905			       ((u32 *)&storm_mem_desc->phys_addr)[i]);
   1906	}
   1907}
   1908
   1909void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn,
   1910			     struct phys_mem_desc **fw_overlay_mem)
   1911{
   1912	u8 storm_id;
   1913
   1914	if (!fw_overlay_mem || !(*fw_overlay_mem))
   1915		return;
   1916
   1917	for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
   1918		struct phys_mem_desc *storm_mem_desc =
   1919		    (struct phys_mem_desc *)*fw_overlay_mem + storm_id;
   1920
   1921		/* Free Storm's physical memory */
   1922		if (storm_mem_desc->virt_addr)
   1923			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
   1924					  storm_mem_desc->size,
   1925					  storm_mem_desc->virt_addr,
   1926					  storm_mem_desc->phys_addr);
   1927	}
   1928
   1929	/* Free allocated virtual memory */
   1930	kfree(*fw_overlay_mem);
   1931	*fw_overlay_mem = NULL;
   1932}