cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

qed_int.c (69806B)


      1// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
      2/* QLogic qed NIC Driver
      3 * Copyright (c) 2015-2017  QLogic Corporation
      4 * Copyright (c) 2019-2020 Marvell International Ltd.
      5 */
      6
      7#include <linux/types.h>
      8#include <asm/byteorder.h>
      9#include <linux/io.h>
     10#include <linux/bitops.h>
     11#include <linux/delay.h>
     12#include <linux/dma-mapping.h>
     13#include <linux/errno.h>
     14#include <linux/interrupt.h>
     15#include <linux/kernel.h>
     16#include <linux/pci.h>
     17#include <linux/slab.h>
     18#include <linux/string.h>
     19#include "qed.h"
     20#include "qed_hsi.h"
     21#include "qed_hw.h"
     22#include "qed_init_ops.h"
     23#include "qed_int.h"
     24#include "qed_mcp.h"
     25#include "qed_reg_addr.h"
     26#include "qed_sp.h"
     27#include "qed_sriov.h"
     28#include "qed_vf.h"
     29
     30struct qed_pi_info {
     31	qed_int_comp_cb_t	comp_cb;
     32	void			*cookie;
     33};
     34
     35struct qed_sb_sp_info {
     36	struct qed_sb_info sb_info;
     37
     38	/* per protocol index data */
     39	struct qed_pi_info pi_info_arr[PIS_PER_SB];
     40};
     41
     42enum qed_attention_type {
     43	QED_ATTN_TYPE_ATTN,
     44	QED_ATTN_TYPE_PARITY,
     45};
     46
     47#define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
     48	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
     49
     50struct aeu_invert_reg_bit {
     51	char bit_name[30];
     52
     53#define ATTENTION_PARITY                (1 << 0)
     54
     55#define ATTENTION_LENGTH_MASK           (0x00000ff0)
     56#define ATTENTION_LENGTH_SHIFT          (4)
     57#define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
     58					 ATTENTION_LENGTH_SHIFT)
     59#define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
     60#define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
     61#define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
     62					 ATTENTION_PARITY)
     63
     64/* Multiple bits start with this offset */
     65#define ATTENTION_OFFSET_MASK           (0x000ff000)
     66#define ATTENTION_OFFSET_SHIFT          (12)
     67
     68#define ATTENTION_BB_MASK               (0x00700000)
     69#define ATTENTION_BB_SHIFT              (20)
     70#define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
     71#define ATTENTION_BB_DIFFERENT          BIT(23)
     72
     73#define ATTENTION_CLEAR_ENABLE          BIT(28)
     74	unsigned int flags;
     75
     76	/* Callback to call if attention will be triggered */
     77	int (*cb)(struct qed_hwfn *p_hwfn);
     78
     79	enum block_id block_index;
     80};
     81
     82struct aeu_invert_reg {
     83	struct aeu_invert_reg_bit bits[32];
     84};
     85
     86#define MAX_ATTN_GRPS           (8)
     87#define NUM_ATTN_REGS           (9)
     88
     89/* Specific HW attention callbacks */
     90static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
     91{
     92	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
     93
     94	/* This might occur on certain instances; Log it once then mask it */
     95	DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
     96		tmp);
     97	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
     98	       0xffffffff);
     99
    100	return 0;
    101}
    102
    103#define QED_PSWHST_ATTENTION_INCORRECT_ACCESS		(0x1)
    104#define ATTENTION_INCORRECT_ACCESS_WR_MASK		(0x1)
    105#define ATTENTION_INCORRECT_ACCESS_WR_SHIFT		(0)
    106#define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK		(0xf)
    107#define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT		(1)
    108#define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK	(0x1)
    109#define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT	(5)
    110#define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK		(0xff)
    111#define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT		(6)
    112#define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK		(0xf)
    113#define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT		(14)
    114#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK		(0xff)
    115#define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT	(18)
    116static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
    117{
    118	u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    119			 PSWHST_REG_INCORRECT_ACCESS_VALID);
    120
    121	if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
    122		u32 addr, data, length;
    123
    124		addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    125			      PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
    126		data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    127			      PSWHST_REG_INCORRECT_ACCESS_DATA);
    128		length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    129				PSWHST_REG_INCORRECT_ACCESS_LENGTH);
    130
    131		DP_INFO(p_hwfn->cdev,
    132			"Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
    133			addr, length,
    134			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
    135			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
    136			(u8) GET_FIELD(data,
    137				       ATTENTION_INCORRECT_ACCESS_VF_VALID),
    138			(u8) GET_FIELD(data,
    139				       ATTENTION_INCORRECT_ACCESS_CLIENT),
    140			(u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
    141			(u8) GET_FIELD(data,
    142				       ATTENTION_INCORRECT_ACCESS_BYTE_EN),
    143			data);
    144	}
    145
    146	return 0;
    147}
    148
    149#define QED_GRC_ATTENTION_VALID_BIT	(1 << 0)
    150#define QED_GRC_ATTENTION_ADDRESS_MASK	(0x7fffff)
    151#define QED_GRC_ATTENTION_ADDRESS_SHIFT	(0)
    152#define QED_GRC_ATTENTION_RDWR_BIT	(1 << 23)
    153#define QED_GRC_ATTENTION_MASTER_MASK	(0xf)
    154#define QED_GRC_ATTENTION_MASTER_SHIFT	(24)
    155#define QED_GRC_ATTENTION_PF_MASK	(0xf)
    156#define QED_GRC_ATTENTION_PF_SHIFT	(0)
    157#define QED_GRC_ATTENTION_VF_MASK	(0xff)
    158#define QED_GRC_ATTENTION_VF_SHIFT	(4)
    159#define QED_GRC_ATTENTION_PRIV_MASK	(0x3)
    160#define QED_GRC_ATTENTION_PRIV_SHIFT	(14)
    161#define QED_GRC_ATTENTION_PRIV_VF	(0)
    162static const char *attn_master_to_str(u8 master)
    163{
    164	switch (master) {
    165	case 1: return "PXP";
    166	case 2: return "MCP";
    167	case 3: return "MSDM";
    168	case 4: return "PSDM";
    169	case 5: return "YSDM";
    170	case 6: return "USDM";
    171	case 7: return "TSDM";
    172	case 8: return "XSDM";
    173	case 9: return "DBU";
    174	case 10: return "DMAE";
    175	default:
    176		return "Unknown";
    177	}
    178}
    179
    180static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
    181{
    182	u32 tmp, tmp2;
    183
    184	/* We've already cleared the timeout interrupt register, so we learn
    185	 * of interrupts via the validity register
    186	 */
    187	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    188		     GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
    189	if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
    190		goto out;
    191
    192	/* Read the GRC timeout information */
    193	tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    194		     GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
    195	tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    196		      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
    197
    198	DP_INFO(p_hwfn->cdev,
    199		"GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
    200		tmp2, tmp,
    201		(tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
    202		GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
    203		attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
    204		GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
    205		(GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
    206		 QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
    207		GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
    208
    209out:
    210	/* Regardles of anything else, clean the validity bit */
    211	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
    212	       GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
    213	return 0;
    214}
    215
    216#define PGLUE_ATTENTION_VALID			(1 << 29)
    217#define PGLUE_ATTENTION_RD_VALID		(1 << 26)
    218#define PGLUE_ATTENTION_DETAILS_PFID_MASK	(0xf)
    219#define PGLUE_ATTENTION_DETAILS_PFID_SHIFT	(20)
    220#define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK	(0x1)
    221#define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT	(19)
    222#define PGLUE_ATTENTION_DETAILS_VFID_MASK	(0xff)
    223#define PGLUE_ATTENTION_DETAILS_VFID_SHIFT	(24)
    224#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK	(0x1)
    225#define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT	(21)
    226#define PGLUE_ATTENTION_DETAILS2_BME_MASK	(0x1)
    227#define PGLUE_ATTENTION_DETAILS2_BME_SHIFT	(22)
    228#define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK	(0x1)
    229#define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT	(23)
    230#define PGLUE_ATTENTION_ICPL_VALID		(1 << 23)
    231#define PGLUE_ATTENTION_ZLR_VALID		(1 << 25)
    232#define PGLUE_ATTENTION_ILT_VALID		(1 << 23)
    233
    234int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
    235				bool hw_init)
    236{
    237	char msg[256];
    238	u32 tmp;
    239
    240	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
    241	if (tmp & PGLUE_ATTENTION_VALID) {
    242		u32 addr_lo, addr_hi, details;
    243
    244		addr_lo = qed_rd(p_hwfn, p_ptt,
    245				 PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
    246		addr_hi = qed_rd(p_hwfn, p_ptt,
    247				 PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
    248		details = qed_rd(p_hwfn, p_ptt,
    249				 PGLUE_B_REG_TX_ERR_WR_DETAILS);
    250
    251		snprintf(msg, sizeof(msg),
    252			 "Illegal write by chip to [%08x:%08x] blocked.\n"
    253			 "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
    254			 "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]",
    255			 addr_hi, addr_lo, details,
    256			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
    257			 (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
    258			 !!GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VF_VALID),
    259			 tmp,
    260			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_WAS_ERR),
    261			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_BME),
    262			 !!GET_FIELD(tmp, PGLUE_ATTENTION_DETAILS2_FID_EN));
    263
    264		if (hw_init)
    265			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
    266		else
    267			DP_NOTICE(p_hwfn, "%s\n", msg);
    268	}
    269
    270	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
    271	if (tmp & PGLUE_ATTENTION_RD_VALID) {
    272		u32 addr_lo, addr_hi, details;
    273
    274		addr_lo = qed_rd(p_hwfn, p_ptt,
    275				 PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
    276		addr_hi = qed_rd(p_hwfn, p_ptt,
    277				 PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
    278		details = qed_rd(p_hwfn, p_ptt,
    279				 PGLUE_B_REG_TX_ERR_RD_DETAILS);
    280
    281		DP_NOTICE(p_hwfn,
    282			  "Illegal read by chip from [%08x:%08x] blocked.\n"
    283			  "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
    284			  "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
    285			  addr_hi, addr_lo, details,
    286			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
    287			  (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
    288			  GET_FIELD(details,
    289				    PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
    290			  tmp,
    291			  GET_FIELD(tmp,
    292				    PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
    293			  GET_FIELD(tmp,
    294				    PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
    295			  GET_FIELD(tmp,
    296				    PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
    297	}
    298
    299	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
    300	if (tmp & PGLUE_ATTENTION_ICPL_VALID) {
    301		snprintf(msg, sizeof(msg), "ICPL error - %08x", tmp);
    302
    303		if (hw_init)
    304			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "%s\n", msg);
    305		else
    306			DP_NOTICE(p_hwfn, "%s\n", msg);
    307	}
    308
    309	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
    310	if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
    311		u32 addr_hi, addr_lo;
    312
    313		addr_lo = qed_rd(p_hwfn, p_ptt,
    314				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
    315		addr_hi = qed_rd(p_hwfn, p_ptt,
    316				 PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
    317
    318		DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
    319			  tmp, addr_hi, addr_lo);
    320	}
    321
    322	tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
    323	if (tmp & PGLUE_ATTENTION_ILT_VALID) {
    324		u32 addr_hi, addr_lo, details;
    325
    326		addr_lo = qed_rd(p_hwfn, p_ptt,
    327				 PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
    328		addr_hi = qed_rd(p_hwfn, p_ptt,
    329				 PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
    330		details = qed_rd(p_hwfn, p_ptt,
    331				 PGLUE_B_REG_VF_ILT_ERR_DETAILS);
    332
    333		DP_NOTICE(p_hwfn,
    334			  "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
    335			  details, tmp, addr_hi, addr_lo);
    336	}
    337
    338	/* Clear the indications */
    339	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
    340
    341	return 0;
    342}
    343
    344static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
    345{
    346	return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt, false);
    347}
    348
    349static int qed_fw_assertion(struct qed_hwfn *p_hwfn)
    350{
    351	qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_FW_ASSERT,
    352			  "FW assertion!\n");
    353
    354	/* Clear assert indications */
    355	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MISC_REG_AEU_GENERAL_ATTN_32, 0);
    356
    357	return -EINVAL;
    358}
    359
    360static int qed_general_attention_35(struct qed_hwfn *p_hwfn)
    361{
    362	DP_INFO(p_hwfn, "General attention 35!\n");
    363
    364	return 0;
    365}
    366
    367#define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
    368#define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
    369#define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
    370#define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
    371#define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
    372
    373#define QED_DB_REC_COUNT                        1000
    374#define QED_DB_REC_INTERVAL                     100
    375
    376static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
    377				  struct qed_ptt *p_ptt)
    378{
    379	u32 count = QED_DB_REC_COUNT;
    380	u32 usage = 1;
    381
    382	/* Flush any pending (e)dpms as they may never arrive */
    383	qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
    384
    385	/* wait for usage to zero or count to run out. This is necessary since
    386	 * EDPM doorbell transactions can take multiple 64b cycles, and as such
    387	 * can "split" over the pci. Possibly, the doorbell drop can happen with
    388	 * half an EDPM in the queue and other half dropped. Another EDPM
    389	 * doorbell to the same address (from doorbell recovery mechanism or
    390	 * from the doorbelling entity) could have first half dropped and second
    391	 * half interpreted as continuation of the first. To prevent such
    392	 * malformed doorbells from reaching the device, flush the queue before
    393	 * releasing the overflow sticky indication.
    394	 */
    395	while (count-- && usage) {
    396		usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
    397		udelay(QED_DB_REC_INTERVAL);
    398	}
    399
    400	/* should have been depleted by now */
    401	if (usage) {
    402		DP_NOTICE(p_hwfn->cdev,
    403			  "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
    404			  QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
    405		return -EBUSY;
    406	}
    407
    408	return 0;
    409}
    410
    411int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
    412{
    413	u32 attn_ovfl, cur_ovfl;
    414	int rc;
    415
    416	attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
    417				       &p_hwfn->db_recovery_info.overflow);
    418	cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
    419	if (!cur_ovfl && !attn_ovfl)
    420		return 0;
    421
    422	DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
    423		  attn_ovfl, cur_ovfl);
    424
    425	if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
    426		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
    427		if (rc)
    428			return rc;
    429	}
    430
    431	/* Release overflow sticky indication (stop silently dropping everything) */
    432	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
    433
    434	/* Repeat all last doorbells (doorbell drop recovery) */
    435	qed_db_recovery_execute(p_hwfn);
    436
    437	return 0;
    438}
    439
    440static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
    441{
    442	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
    443	u32 overflow;
    444	int rc;
    445
    446	overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
    447	if (!overflow)
    448		goto out;
    449
    450	/* Run PF doorbell recovery in next periodic handler */
    451	set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
    452
    453	if (!p_hwfn->db_bar_no_edpm) {
    454		rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
    455		if (rc)
    456			goto out;
    457	}
    458
    459	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
    460out:
    461	/* Schedule the handler even if overflow was not detected */
    462	qed_periodic_db_rec_start(p_hwfn);
    463}
    464
    465static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
    466{
    467	u32 int_sts, first_drop_reason, details, address, all_drops_reason;
    468	struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
    469
    470	int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
    471	if (int_sts == 0xdeadbeaf) {
    472		DP_NOTICE(p_hwfn->cdev,
    473			  "DORQ is being reset, skipping int_sts handler\n");
    474
    475		return 0;
    476	}
    477
    478	/* int_sts may be zero since all PFs were interrupted for doorbell
    479	 * overflow but another one already handled it. Can abort here. If
    480	 * This PF also requires overflow recovery we will be interrupted again.
    481	 * The masked almost full indication may also be set. Ignoring.
    482	 */
    483	if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
    484		return 0;
    485
    486	DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
    487
    488	/* check if db_drop or overflow happened */
    489	if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
    490		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
    491		/* Obtain data about db drop/overflow */
    492		first_drop_reason = qed_rd(p_hwfn, p_ptt,
    493					   DORQ_REG_DB_DROP_REASON) &
    494		    QED_DORQ_ATTENTION_REASON_MASK;
    495		details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
    496		address = qed_rd(p_hwfn, p_ptt,
    497				 DORQ_REG_DB_DROP_DETAILS_ADDRESS);
    498		all_drops_reason = qed_rd(p_hwfn, p_ptt,
    499					  DORQ_REG_DB_DROP_DETAILS_REASON);
    500
    501		/* Log info */
    502		DP_NOTICE(p_hwfn->cdev,
    503			  "Doorbell drop occurred\n"
    504			  "Address\t\t0x%08x\t(second BAR address)\n"
    505			  "FID\t\t0x%04x\t\t(Opaque FID)\n"
    506			  "Size\t\t0x%04x\t\t(in bytes)\n"
    507			  "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
    508			  "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
    509			  address,
    510			  GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
    511			  GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
    512			  first_drop_reason, all_drops_reason);
    513
    514		/* Clear the doorbell drop details and prepare for next drop */
    515		qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
    516
    517		/* Mark interrupt as handled (note: even if drop was due to a different
    518		 * reason than overflow we mark as handled)
    519		 */
    520		qed_wr(p_hwfn,
    521		       p_ptt,
    522		       DORQ_REG_INT_STS_WR,
    523		       DORQ_REG_INT_STS_DB_DROP |
    524		       DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
    525
    526		/* If there are no indications other than drop indications, success */
    527		if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
    528				 DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
    529				 DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
    530			return 0;
    531	}
    532
    533	/* Some other indication was present - non recoverable */
    534	DP_INFO(p_hwfn, "DORQ fatal attention\n");
    535
    536	return -EINVAL;
    537}
    538
    539static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
    540{
    541	if (p_hwfn->cdev->recov_in_prog)
    542		return 0;
    543
    544	p_hwfn->db_recovery_info.dorq_attn = true;
    545	qed_dorq_attn_overflow(p_hwfn);
    546
    547	return qed_dorq_attn_int_sts(p_hwfn);
    548}
    549
    550static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
    551{
    552	if (p_hwfn->db_recovery_info.dorq_attn)
    553		goto out;
    554
    555	/* Call DORQ callback if the attention was missed */
    556	qed_dorq_attn_cb(p_hwfn);
    557out:
    558	p_hwfn->db_recovery_info.dorq_attn = false;
    559}
    560
    561/* Instead of major changes to the data-structure, we have a some 'special'
    562 * identifiers for sources that changed meaning between adapters.
    563 */
    564enum aeu_invert_reg_special_type {
    565	AEU_INVERT_REG_SPECIAL_CNIG_0,
    566	AEU_INVERT_REG_SPECIAL_CNIG_1,
    567	AEU_INVERT_REG_SPECIAL_CNIG_2,
    568	AEU_INVERT_REG_SPECIAL_CNIG_3,
    569	AEU_INVERT_REG_SPECIAL_MAX,
    570};
    571
    572static struct aeu_invert_reg_bit
    573aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
    574	{"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
    575	{"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
    576	{"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
    577	{"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
    578};
    579
    580/* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
    581static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
    582	{
    583		{       /* After Invert 1 */
    584			{"GPIO0 function%d",
    585			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
    586		}
    587	},
    588
    589	{
    590		{       /* After Invert 2 */
    591			{"PGLUE config_space", ATTENTION_SINGLE,
    592			 NULL, MAX_BLOCK_ID},
    593			{"PGLUE misc_flr", ATTENTION_SINGLE,
    594			 NULL, MAX_BLOCK_ID},
    595			{"PGLUE B RBC", ATTENTION_PAR_INT,
    596			 qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
    597			{"PGLUE misc_mctp", ATTENTION_SINGLE,
    598			 NULL, MAX_BLOCK_ID},
    599			{"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
    600			{"SMB event", ATTENTION_SINGLE,	NULL, MAX_BLOCK_ID},
    601			{"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
    602			{"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
    603					  (1 << ATTENTION_OFFSET_SHIFT),
    604			 NULL, MAX_BLOCK_ID},
    605			{"PCIE glue/PXP VPD %d",
    606			 (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
    607		}
    608	},
    609
    610	{
    611		{       /* After Invert 3 */
    612			{"General Attention %d",
    613			 (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
    614		}
    615	},
    616
    617	{
    618		{       /* After Invert 4 */
    619			{"General Attention 32", ATTENTION_SINGLE |
    620			 ATTENTION_CLEAR_ENABLE, qed_fw_assertion,
    621			 MAX_BLOCK_ID},
    622			{"General Attention %d",
    623			 (2 << ATTENTION_LENGTH_SHIFT) |
    624			 (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
    625			{"General Attention 35", ATTENTION_SINGLE |
    626			 ATTENTION_CLEAR_ENABLE, qed_general_attention_35,
    627			 MAX_BLOCK_ID},
    628			{"NWS Parity",
    629			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
    630			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
    631			 NULL, BLOCK_NWS},
    632			{"NWS Interrupt",
    633			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
    634			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
    635			 NULL, BLOCK_NWS},
    636			{"NWM Parity",
    637			 ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
    638			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
    639			 NULL, BLOCK_NWM},
    640			{"NWM Interrupt",
    641			 ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
    642			 ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
    643			 NULL, BLOCK_NWM},
    644			{"MCP CPU", ATTENTION_SINGLE,
    645			 qed_mcp_attn_cb, MAX_BLOCK_ID},
    646			{"MCP Watchdog timer", ATTENTION_SINGLE,
    647			 NULL, MAX_BLOCK_ID},
    648			{"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
    649			{"AVS stop status ready", ATTENTION_SINGLE,
    650			 NULL, MAX_BLOCK_ID},
    651			{"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
    652			{"MSTAT per-path", ATTENTION_PAR_INT,
    653			 NULL, MAX_BLOCK_ID},
    654			{"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
    655			 NULL, MAX_BLOCK_ID},
    656			{"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
    657			{"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
    658			{"BTB",	ATTENTION_PAR_INT, NULL, BLOCK_BTB},
    659			{"BRB",	ATTENTION_PAR_INT, NULL, BLOCK_BRB},
    660			{"PRS",	ATTENTION_PAR_INT, NULL, BLOCK_PRS},
    661		}
    662	},
    663
    664	{
    665		{       /* After Invert 5 */
    666			{"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
    667			{"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
    668			{"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
    669			{"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
    670			{"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
    671			{"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
    672			{"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
    673			{"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
    674			{"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
    675			{"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
    676			{"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
    677			{"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
    678			{"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
    679			{"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
    680			{"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
    681			{"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
    682		}
    683	},
    684
    685	{
    686		{       /* After Invert 6 */
    687			{"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
    688			{"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
    689			{"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
    690			{"XCM",	ATTENTION_PAR_INT, NULL, BLOCK_XCM},
    691			{"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
    692			{"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
    693			{"YCM",	ATTENTION_PAR_INT, NULL, BLOCK_YCM},
    694			{"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
    695			{"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
    696			{"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
    697			{"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
    698			{"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
    699			{"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
    700			{"DORQ", ATTENTION_PAR_INT,
    701			 qed_dorq_attn_cb, BLOCK_DORQ},
    702			{"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
    703			{"IPC",	ATTENTION_PAR_INT, NULL, BLOCK_IPC},
    704		}
    705	},
    706
    707	{
    708		{       /* After Invert 7 */
    709			{"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
    710			{"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
    711			{"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
    712			{"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
    713			{"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
    714			{"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
    715			{"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
    716			{"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
    717			{"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
    718			{"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
    719			{"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
    720			{"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
    721			{"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
    722			{"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
    723			{"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
    724			{"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
    725			{"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
    726		}
    727	},
    728
    729	{
    730		{       /* After Invert 8 */
    731			{"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
    732			 NULL, BLOCK_PSWRQ2},
    733			{"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
    734			{"PSWWR (pci_clk)", ATTENTION_PAR_INT,
    735			 NULL, BLOCK_PSWWR2},
    736			{"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
    737			{"PSWRD (pci_clk)", ATTENTION_PAR_INT,
    738			 NULL, BLOCK_PSWRD2},
    739			{"PSWHST", ATTENTION_PAR_INT,
    740			 qed_pswhst_attn_cb, BLOCK_PSWHST},
    741			{"PSWHST (pci_clk)", ATTENTION_PAR_INT,
    742			 NULL, BLOCK_PSWHST2},
    743			{"GRC",	ATTENTION_PAR_INT,
    744			 qed_grc_attn_cb, BLOCK_GRC},
    745			{"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
    746			{"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
    747			{"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
    748			{"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
    749			{"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
    750			{"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
    751			{"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
    752			{"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
    753			{"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
    754			{"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
    755			 NULL, BLOCK_PGLCS},
    756			{"PERST_B assertion", ATTENTION_SINGLE,
    757			 NULL, MAX_BLOCK_ID},
    758			{"PERST_B deassertion", ATTENTION_SINGLE,
    759			 NULL, MAX_BLOCK_ID},
    760			{"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
    761			 NULL, MAX_BLOCK_ID},
    762		}
    763	},
    764
    765	{
    766		{       /* After Invert 9 */
    767			{"MCP Latched memory", ATTENTION_PAR,
    768			 NULL, MAX_BLOCK_ID},
    769			{"MCP Latched scratchpad cache", ATTENTION_SINGLE,
    770			 NULL, MAX_BLOCK_ID},
    771			{"MCP Latched ump_tx", ATTENTION_PAR,
    772			 NULL, MAX_BLOCK_ID},
    773			{"MCP Latched scratchpad", ATTENTION_PAR,
    774			 NULL, MAX_BLOCK_ID},
    775			{"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
    776			 NULL, MAX_BLOCK_ID},
    777		}
    778	},
    779};
    780
    781static struct aeu_invert_reg_bit *
    782qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
    783		      struct aeu_invert_reg_bit *p_bit)
    784{
    785	if (!QED_IS_BB(p_hwfn->cdev))
    786		return p_bit;
    787
    788	if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
    789		return p_bit;
    790
    791	return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
    792				  ATTENTION_BB_SHIFT];
    793}
    794
    795static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
    796				   struct aeu_invert_reg_bit *p_bit)
    797{
    798	return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
    799		   ATTENTION_PARITY);
    800}
    801
    802#define ATTN_STATE_BITS         (0xfff)
    803#define ATTN_BITS_MASKABLE      (0x3ff)
    804struct qed_sb_attn_info {
    805	/* Virtual & Physical address of the SB */
    806	struct atten_status_block       *sb_attn;
    807	dma_addr_t			sb_phys;
    808
    809	/* Last seen running index */
    810	u16				index;
    811
    812	/* A mask of the AEU bits resulting in a parity error */
    813	u32				parity_mask[NUM_ATTN_REGS];
    814
    815	/* A pointer to the attention description structure */
    816	struct aeu_invert_reg		*p_aeu_desc;
    817
    818	/* Previously asserted attentions, which are still unasserted */
    819	u16				known_attn;
    820
    821	/* Cleanup address for the link's general hw attention */
    822	u32				mfw_attn_addr;
    823};
    824
    825static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
    826				      struct qed_sb_attn_info *p_sb_desc)
    827{
    828	u16 rc = 0, index;
    829
    830	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
    831	if (p_sb_desc->index != index) {
    832		p_sb_desc->index	= index;
    833		rc		      = QED_SB_ATT_IDX;
    834	}
    835
    836	return rc;
    837}
    838
    839/**
    840 * qed_int_assertion() - Handle asserted attention bits.
    841 *
    842 * @p_hwfn: HW device data.
    843 * @asserted_bits: Newly asserted bits.
    844 *
    845 * Return: Zero value.
    846 */
    847static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
    848{
    849	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
    850	u32 igu_mask;
    851
    852	/* Mask the source of the attention in the IGU */
    853	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
    854	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
    855		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
    856	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
    857	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
    858
    859	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    860		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
    861		   sb_attn_sw->known_attn,
    862		   sb_attn_sw->known_attn | asserted_bits);
    863	sb_attn_sw->known_attn |= asserted_bits;
    864
    865	/* Handle MCP events */
    866	if (asserted_bits & 0x100) {
    867		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
    868		/* Clean the MCP attention */
    869		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
    870		       sb_attn_sw->mfw_attn_addr, 0);
    871	}
    872
    873	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
    874		      GTT_BAR0_MAP_REG_IGU_CMD +
    875		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
    876			IGU_CMD_INT_ACK_BASE) << 3),
    877		      (u32)asserted_bits);
    878
    879	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
    880		   asserted_bits);
    881
    882	return 0;
    883}
    884
    885static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
    886			       enum block_id id,
    887			       enum dbg_attn_type type, bool b_clear)
    888{
    889	struct dbg_attn_block_result attn_results;
    890	enum dbg_status status;
    891
    892	memset(&attn_results, 0, sizeof(attn_results));
    893
    894	status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
    895				   b_clear, &attn_results);
    896	if (status != DBG_STATUS_OK)
    897		DP_NOTICE(p_hwfn,
    898			  "Failed to parse attention information [status: %s]\n",
    899			  qed_dbg_get_status_str(status));
    900	else
    901		qed_dbg_parse_attn(p_hwfn, &attn_results);
    902}
    903
    904/**
    905 * qed_int_deassertion_aeu_bit() - Handles the effects of a single
    906 * cause of the attention.
    907 *
    908 * @p_hwfn: HW device data.
    909 * @p_aeu: Descriptor of an AEU bit which caused the attention.
    910 * @aeu_en_reg: Register offset of the AEU enable reg. which configured
    911 *              this bit to this group.
    912 * @p_bit_name: AEU bit description for logging purposes.
    913 * @bitmask: Index of this bit in the aeu_en_reg.
    914 *
    915 * Return: Zero on success, negative errno otherwise.
    916 */
    917static int
    918qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
    919			    struct aeu_invert_reg_bit *p_aeu,
    920			    u32 aeu_en_reg,
    921			    const char *p_bit_name, u32 bitmask)
    922{
    923	bool b_fatal = false;
    924	int rc = -EINVAL;
    925	u32 val;
    926
    927	DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
    928		p_bit_name, bitmask);
    929
    930	/* Call callback before clearing the interrupt status */
    931	if (p_aeu->cb) {
    932		DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
    933			p_bit_name);
    934		rc = p_aeu->cb(p_hwfn);
    935	}
    936
    937	if (rc)
    938		b_fatal = true;
    939
    940	/* Print HW block interrupt registers */
    941	if (p_aeu->block_index != MAX_BLOCK_ID)
    942		qed_int_attn_print(p_hwfn, p_aeu->block_index,
    943				   ATTN_TYPE_INTERRUPT, !b_fatal);
    944
    945	/* Reach assertion if attention is fatal */
    946	if (b_fatal)
    947		qed_hw_err_notify(p_hwfn, p_hwfn->p_dpc_ptt, QED_HW_ERR_HW_ATTN,
    948				  "`%s': Fatal attention\n",
    949				  p_bit_name);
    950	else /* If the attention is benign, no need to prevent it */
    951		goto out;
    952
    953	/* Prevent this Attention from being asserted in the future */
    954	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
    955	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
    956	DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
    957		p_bit_name);
    958
    959	/* Re-enable FW aassertion (Gen 32) interrupts */
    960	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    961		     MISC_REG_AEU_ENABLE4_IGU_OUT_0);
    962	val |= MISC_REG_AEU_ENABLE4_IGU_OUT_0_GENERAL_ATTN32;
    963	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
    964	       MISC_REG_AEU_ENABLE4_IGU_OUT_0, val);
    965
    966out:
    967	return rc;
    968}
    969
    970/**
    971 * qed_int_deassertion_parity() - Handle a single parity AEU source.
    972 *
    973 * @p_hwfn: HW device data.
    974 * @p_aeu: Descriptor of an AEU bit which caused the parity.
    975 * @aeu_en_reg: Address of the AEU enable register.
    976 * @bit_index: Index (0-31) of an AEU bit.
    977 */
    978static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
    979				       struct aeu_invert_reg_bit *p_aeu,
    980				       u32 aeu_en_reg, u8 bit_index)
    981{
    982	u32 block_id = p_aeu->block_index, mask, val;
    983
    984	DP_NOTICE(p_hwfn->cdev,
    985		  "%s parity attention is set [address 0x%08x, bit %d]\n",
    986		  p_aeu->bit_name, aeu_en_reg, bit_index);
    987
    988	if (block_id != MAX_BLOCK_ID) {
    989		qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
    990
    991		/* In BB, there's a single parity bit for several blocks */
    992		if (block_id == BLOCK_BTB) {
    993			qed_int_attn_print(p_hwfn, BLOCK_OPTE,
    994					   ATTN_TYPE_PARITY, false);
    995			qed_int_attn_print(p_hwfn, BLOCK_MCP,
    996					   ATTN_TYPE_PARITY, false);
    997		}
    998	}
    999
   1000	/* Prevent this parity error from being re-asserted */
   1001	mask = ~BIT(bit_index);
   1002	val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
   1003	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
   1004	DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
   1005		p_aeu->bit_name);
   1006}
   1007
   1008/**
   1009 * qed_int_deassertion() - Handle deassertion of previously asserted
   1010 * attentions.
   1011 *
   1012 * @p_hwfn: HW device data.
   1013 * @deasserted_bits: newly deasserted bits.
   1014 *
   1015 * Return: Zero value.
   1016 */
   1017static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
   1018			       u16 deasserted_bits)
   1019{
   1020	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
   1021	u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
   1022	u8 i, j, k, bit_idx;
   1023	int rc = 0;
   1024
   1025	/* Read the attention registers in the AEU */
   1026	for (i = 0; i < NUM_ATTN_REGS; i++) {
   1027		aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
   1028					MISC_REG_AEU_AFTER_INVERT_1_IGU +
   1029					i * 0x4);
   1030		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1031			   "Deasserted bits [%d]: %08x\n",
   1032			   i, aeu_inv_arr[i]);
   1033	}
   1034
   1035	/* Find parity attentions first */
   1036	for (i = 0; i < NUM_ATTN_REGS; i++) {
   1037		struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
   1038		u32 parities;
   1039
   1040		aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
   1041		en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
   1042
   1043		/* Skip register in which no parity bit is currently set */
   1044		parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
   1045		if (!parities)
   1046			continue;
   1047
   1048		for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
   1049			struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
   1050
   1051			if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
   1052			    !!(parities & BIT(bit_idx)))
   1053				qed_int_deassertion_parity(p_hwfn, p_bit,
   1054							   aeu_en, bit_idx);
   1055
   1056			bit_idx += ATTENTION_LENGTH(p_bit->flags);
   1057		}
   1058	}
   1059
   1060	/* Find non-parity cause for attention and act */
   1061	for (k = 0; k < MAX_ATTN_GRPS; k++) {
   1062		struct aeu_invert_reg_bit *p_aeu;
   1063
   1064		/* Handle only groups whose attention is currently deasserted */
   1065		if (!(deasserted_bits & (1 << k)))
   1066			continue;
   1067
   1068		for (i = 0; i < NUM_ATTN_REGS; i++) {
   1069			u32 bits;
   1070
   1071			aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
   1072				 i * sizeof(u32) +
   1073				 k * sizeof(u32) * NUM_ATTN_REGS;
   1074
   1075			en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
   1076			bits = aeu_inv_arr[i] & en;
   1077
   1078			/* Skip if no bit from this group is currently set */
   1079			if (!bits)
   1080				continue;
   1081
   1082			/* Find all set bits from current register which belong
   1083			 * to current group, making them responsible for the
   1084			 * previous assertion.
   1085			 */
   1086			for (j = 0, bit_idx = 0; bit_idx < 32 && j < 32; j++) {
   1087				long unsigned int bitmask;
   1088				u8 bit, bit_len;
   1089
   1090				p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
   1091				p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
   1092
   1093				bit = bit_idx;
   1094				bit_len = ATTENTION_LENGTH(p_aeu->flags);
   1095				if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
   1096					/* Skip Parity */
   1097					bit++;
   1098					bit_len--;
   1099				}
   1100
   1101				bitmask = bits & (((1 << bit_len) - 1) << bit);
   1102				bitmask >>= bit;
   1103
   1104				if (bitmask) {
   1105					u32 flags = p_aeu->flags;
   1106					char bit_name[30];
   1107					u8 num;
   1108
   1109					num = (u8)find_first_bit(&bitmask,
   1110								 bit_len);
   1111
   1112					/* Some bits represent more than a
   1113					 * a single interrupt. Correctly print
   1114					 * their name.
   1115					 */
   1116					if (ATTENTION_LENGTH(flags) > 2 ||
   1117					    ((flags & ATTENTION_PAR_INT) &&
   1118					     ATTENTION_LENGTH(flags) > 1))
   1119						snprintf(bit_name, 30,
   1120							 p_aeu->bit_name, num);
   1121					else
   1122						strlcpy(bit_name,
   1123							p_aeu->bit_name, 30);
   1124
   1125					/* We now need to pass bitmask in its
   1126					 * correct position.
   1127					 */
   1128					bitmask <<= bit;
   1129
   1130					/* Handle source of the attention */
   1131					qed_int_deassertion_aeu_bit(p_hwfn,
   1132								    p_aeu,
   1133								    aeu_en,
   1134								    bit_name,
   1135								    bitmask);
   1136				}
   1137
   1138				bit_idx += ATTENTION_LENGTH(p_aeu->flags);
   1139			}
   1140		}
   1141	}
   1142
   1143	/* Handle missed DORQ attention */
   1144	qed_dorq_attn_handler(p_hwfn);
   1145
   1146	/* Clear IGU indication for the deasserted bits */
   1147	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
   1148				    GTT_BAR0_MAP_REG_IGU_CMD +
   1149				    ((IGU_CMD_ATTN_BIT_CLR_UPPER -
   1150				      IGU_CMD_INT_ACK_BASE) << 3),
   1151				    ~((u32)deasserted_bits));
   1152
   1153	/* Unmask deasserted attentions in IGU */
   1154	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
   1155	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
   1156	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
   1157
   1158	/* Clear deassertion from inner state */
   1159	sb_attn_sw->known_attn &= ~deasserted_bits;
   1160
   1161	return rc;
   1162}
   1163
   1164static int qed_int_attentions(struct qed_hwfn *p_hwfn)
   1165{
   1166	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
   1167	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
   1168	u32 attn_bits = 0, attn_acks = 0;
   1169	u16 asserted_bits, deasserted_bits;
   1170	__le16 index;
   1171	int rc = 0;
   1172
   1173	/* Read current attention bits/acks - safeguard against attentions
   1174	 * by guaranting work on a synchronized timeframe
   1175	 */
   1176	do {
   1177		index = p_sb_attn->sb_index;
   1178		/* finish reading index before the loop condition */
   1179		dma_rmb();
   1180		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
   1181		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
   1182	} while (index != p_sb_attn->sb_index);
   1183	p_sb_attn->sb_index = index;
   1184
   1185	/* Attention / Deassertion are meaningful (and in correct state)
   1186	 * only when they differ and consistent with known state - deassertion
   1187	 * when previous attention & current ack, and assertion when current
   1188	 * attention with no previous attention
   1189	 */
   1190	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
   1191		~p_sb_attn_sw->known_attn;
   1192	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
   1193		p_sb_attn_sw->known_attn;
   1194
   1195	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
   1196		DP_INFO(p_hwfn,
   1197			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
   1198			index, attn_bits, attn_acks, asserted_bits,
   1199			deasserted_bits, p_sb_attn_sw->known_attn);
   1200	} else if (asserted_bits == 0x100) {
   1201		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1202			   "MFW indication via attention\n");
   1203	} else {
   1204		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1205			   "MFW indication [deassertion]\n");
   1206	}
   1207
   1208	if (asserted_bits) {
   1209		rc = qed_int_assertion(p_hwfn, asserted_bits);
   1210		if (rc)
   1211			return rc;
   1212	}
   1213
   1214	if (deasserted_bits)
   1215		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
   1216
   1217	return rc;
   1218}
   1219
   1220static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
   1221			    void __iomem *igu_addr, u32 ack_cons)
   1222{
   1223	u32 igu_ack;
   1224
   1225	igu_ack = ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
   1226		   (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
   1227		   (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
   1228		   (IGU_SEG_ACCESS_ATTN <<
   1229		    IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
   1230
   1231	DIRECT_REG_WR(igu_addr, igu_ack);
   1232
   1233	/* Both segments (interrupts & acks) are written to same place address;
   1234	 * Need to guarantee all commands will be received (in-order) by HW.
   1235	 */
   1236	barrier();
   1237}
   1238
   1239void qed_int_sp_dpc(struct tasklet_struct *t)
   1240{
   1241	struct qed_hwfn *p_hwfn = from_tasklet(p_hwfn, t, sp_dpc);
   1242	struct qed_pi_info *pi_info = NULL;
   1243	struct qed_sb_attn_info *sb_attn;
   1244	struct qed_sb_info *sb_info;
   1245	int arr_size;
   1246	u16 rc = 0;
   1247
   1248	if (!p_hwfn->p_sp_sb) {
   1249		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
   1250		return;
   1251	}
   1252
   1253	sb_info = &p_hwfn->p_sp_sb->sb_info;
   1254	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
   1255	if (!sb_info) {
   1256		DP_ERR(p_hwfn->cdev,
   1257		       "Status block is NULL - cannot ack interrupts\n");
   1258		return;
   1259	}
   1260
   1261	if (!p_hwfn->p_sb_attn) {
   1262		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
   1263		return;
   1264	}
   1265	sb_attn = p_hwfn->p_sb_attn;
   1266
   1267	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
   1268		   p_hwfn, p_hwfn->my_id);
   1269
   1270	/* Disable ack for def status block. Required both for msix +
   1271	 * inta in non-mask mode, in inta does no harm.
   1272	 */
   1273	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
   1274
   1275	/* Gather Interrupts/Attentions information */
   1276	if (!sb_info->sb_virt) {
   1277		DP_ERR(p_hwfn->cdev,
   1278		       "Interrupt Status block is NULL - cannot check for new interrupts!\n");
   1279	} else {
   1280		u32 tmp_index = sb_info->sb_ack;
   1281
   1282		rc = qed_sb_update_sb_idx(sb_info);
   1283		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
   1284			   "Interrupt indices: 0x%08x --> 0x%08x\n",
   1285			   tmp_index, sb_info->sb_ack);
   1286	}
   1287
   1288	if (!sb_attn || !sb_attn->sb_attn) {
   1289		DP_ERR(p_hwfn->cdev,
   1290		       "Attentions Status block is NULL - cannot check for new attentions!\n");
   1291	} else {
   1292		u16 tmp_index = sb_attn->index;
   1293
   1294		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
   1295		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
   1296			   "Attention indices: 0x%08x --> 0x%08x\n",
   1297			   tmp_index, sb_attn->index);
   1298	}
   1299
   1300	/* Check if we expect interrupts at this time. if not just ack them */
   1301	if (!(rc & QED_SB_EVENT_MASK)) {
   1302		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
   1303		return;
   1304	}
   1305
   1306	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
   1307	if (!p_hwfn->p_dpc_ptt) {
   1308		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
   1309		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
   1310		return;
   1311	}
   1312
   1313	if (rc & QED_SB_ATT_IDX)
   1314		qed_int_attentions(p_hwfn);
   1315
   1316	if (rc & QED_SB_IDX) {
   1317		int pi;
   1318
   1319		/* Look for a free index */
   1320		for (pi = 0; pi < arr_size; pi++) {
   1321			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
   1322			if (pi_info->comp_cb)
   1323				pi_info->comp_cb(p_hwfn, pi_info->cookie);
   1324		}
   1325	}
   1326
   1327	if (sb_attn && (rc & QED_SB_ATT_IDX))
   1328		/* This should be done before the interrupts are enabled,
   1329		 * since otherwise a new attention will be generated.
   1330		 */
   1331		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
   1332
   1333	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
   1334}
   1335
   1336static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
   1337{
   1338	struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
   1339
   1340	if (!p_sb)
   1341		return;
   1342
   1343	if (p_sb->sb_attn)
   1344		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
   1345				  SB_ATTN_ALIGNED_SIZE(p_hwfn),
   1346				  p_sb->sb_attn, p_sb->sb_phys);
   1347	kfree(p_sb);
   1348	p_hwfn->p_sb_attn = NULL;
   1349}
   1350
   1351static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
   1352				  struct qed_ptt *p_ptt)
   1353{
   1354	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
   1355
   1356	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
   1357
   1358	sb_info->index = 0;
   1359	sb_info->known_attn = 0;
   1360
   1361	/* Configure Attention Status Block in IGU */
   1362	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
   1363	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
   1364	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
   1365	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
   1366}
   1367
   1368static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
   1369				 struct qed_ptt *p_ptt,
   1370				 void *sb_virt_addr, dma_addr_t sb_phy_addr)
   1371{
   1372	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
   1373	int i, j, k;
   1374
   1375	sb_info->sb_attn = sb_virt_addr;
   1376	sb_info->sb_phys = sb_phy_addr;
   1377
   1378	/* Set the pointer to the AEU descriptors */
   1379	sb_info->p_aeu_desc = aeu_descs;
   1380
   1381	/* Calculate Parity Masks */
   1382	memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
   1383	for (i = 0; i < NUM_ATTN_REGS; i++) {
   1384		/* j is array index, k is bit index */
   1385		for (j = 0, k = 0; k < 32 && j < 32; j++) {
   1386			struct aeu_invert_reg_bit *p_aeu;
   1387
   1388			p_aeu = &aeu_descs[i].bits[j];
   1389			if (qed_int_is_parity_flag(p_hwfn, p_aeu))
   1390				sb_info->parity_mask[i] |= 1 << k;
   1391
   1392			k += ATTENTION_LENGTH(p_aeu->flags);
   1393		}
   1394		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1395			   "Attn Mask [Reg %d]: 0x%08x\n",
   1396			   i, sb_info->parity_mask[i]);
   1397	}
   1398
   1399	/* Set the address of cleanup for the mcp attention */
   1400	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
   1401				 MISC_REG_AEU_GENERAL_ATTN_0;
   1402
   1403	qed_int_sb_attn_setup(p_hwfn, p_ptt);
   1404}
   1405
   1406static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
   1407				 struct qed_ptt *p_ptt)
   1408{
   1409	struct qed_dev *cdev = p_hwfn->cdev;
   1410	struct qed_sb_attn_info *p_sb;
   1411	dma_addr_t p_phys = 0;
   1412	void *p_virt;
   1413
   1414	/* SB struct */
   1415	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
   1416	if (!p_sb)
   1417		return -ENOMEM;
   1418
   1419	/* SB ring  */
   1420	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
   1421				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
   1422				    &p_phys, GFP_KERNEL);
   1423
   1424	if (!p_virt) {
   1425		kfree(p_sb);
   1426		return -ENOMEM;
   1427	}
   1428
   1429	/* Attention setup */
   1430	p_hwfn->p_sb_attn = p_sb;
   1431	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
   1432
   1433	return 0;
   1434}
   1435
   1436/* coalescing timeout = timeset << (timer_res + 1) */
   1437#define QED_CAU_DEF_RX_USECS 24
   1438#define QED_CAU_DEF_TX_USECS 48
   1439
   1440void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
   1441			   struct cau_sb_entry *p_sb_entry,
   1442			   u8 pf_id, u16 vf_number, u8 vf_valid)
   1443{
   1444	struct qed_dev *cdev = p_hwfn->cdev;
   1445	u32 cau_state, params = 0, data = 0;
   1446	u8 timer_res;
   1447
   1448	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
   1449
   1450	SET_FIELD(params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
   1451	SET_FIELD(params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
   1452	SET_FIELD(params, CAU_SB_ENTRY_VF_VALID, vf_valid);
   1453	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
   1454	SET_FIELD(params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
   1455
   1456	cau_state = CAU_HC_DISABLE_STATE;
   1457
   1458	if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
   1459		cau_state = CAU_HC_ENABLE_STATE;
   1460		if (!cdev->rx_coalesce_usecs)
   1461			cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
   1462		if (!cdev->tx_coalesce_usecs)
   1463			cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
   1464	}
   1465
   1466	/* Coalesce = (timeset << timer-res), timeset is 7bit wide */
   1467	if (cdev->rx_coalesce_usecs <= 0x7F)
   1468		timer_res = 0;
   1469	else if (cdev->rx_coalesce_usecs <= 0xFF)
   1470		timer_res = 1;
   1471	else
   1472		timer_res = 2;
   1473
   1474	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
   1475
   1476	if (cdev->tx_coalesce_usecs <= 0x7F)
   1477		timer_res = 0;
   1478	else if (cdev->tx_coalesce_usecs <= 0xFF)
   1479		timer_res = 1;
   1480	else
   1481		timer_res = 2;
   1482
   1483	SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
   1484	p_sb_entry->params = cpu_to_le32(params);
   1485
   1486	SET_FIELD(data, CAU_SB_ENTRY_STATE0, cau_state);
   1487	SET_FIELD(data, CAU_SB_ENTRY_STATE1, cau_state);
   1488	p_sb_entry->data = cpu_to_le32(data);
   1489}
   1490
   1491static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
   1492				struct qed_ptt *p_ptt,
   1493				u16 igu_sb_id,
   1494				u32 pi_index,
   1495				enum qed_coalescing_fsm coalescing_fsm,
   1496				u8 timeset)
   1497{
   1498	u32 sb_offset, pi_offset;
   1499	u32 prod = 0;
   1500
   1501	if (IS_VF(p_hwfn->cdev))
   1502		return;
   1503
   1504	SET_FIELD(prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
   1505	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
   1506		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 0);
   1507	else
   1508		SET_FIELD(prod, CAU_PI_ENTRY_FSM_SEL, 1);
   1509
   1510	sb_offset = igu_sb_id * PIS_PER_SB;
   1511	pi_offset = sb_offset + pi_index;
   1512
   1513	if (p_hwfn->hw_init_done)
   1514		qed_wr(p_hwfn, p_ptt,
   1515		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32), prod);
   1516	else
   1517		STORE_RT_REG(p_hwfn, CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
   1518			     prod);
   1519}
   1520
   1521void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
   1522			 struct qed_ptt *p_ptt,
   1523			 dma_addr_t sb_phys,
   1524			 u16 igu_sb_id, u16 vf_number, u8 vf_valid)
   1525{
   1526	struct cau_sb_entry sb_entry;
   1527
   1528	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
   1529			      vf_number, vf_valid);
   1530
   1531	if (p_hwfn->hw_init_done) {
   1532		/* Wide-bus, initialize via DMAE */
   1533		u64 phys_addr = (u64)sb_phys;
   1534
   1535		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
   1536				  CAU_REG_SB_ADDR_MEMORY +
   1537				  igu_sb_id * sizeof(u64), 2, NULL);
   1538		qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
   1539				  CAU_REG_SB_VAR_MEMORY +
   1540				  igu_sb_id * sizeof(u64), 2, NULL);
   1541	} else {
   1542		/* Initialize Status Block Address */
   1543		STORE_RT_REG_AGG(p_hwfn,
   1544				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
   1545				 igu_sb_id * 2,
   1546				 sb_phys);
   1547
   1548		STORE_RT_REG_AGG(p_hwfn,
   1549				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
   1550				 igu_sb_id * 2,
   1551				 sb_entry);
   1552	}
   1553
   1554	/* Configure pi coalescing if set */
   1555	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
   1556		u8 num_tc = p_hwfn->hw_info.num_hw_tc;
   1557		u8 timeset, timer_res;
   1558		u8 i;
   1559
   1560		/* timeset = (coalesce >> timer-res), timeset is 7bit wide */
   1561		if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
   1562			timer_res = 0;
   1563		else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
   1564			timer_res = 1;
   1565		else
   1566			timer_res = 2;
   1567		timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
   1568		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
   1569				    QED_COAL_RX_STATE_MACHINE, timeset);
   1570
   1571		if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
   1572			timer_res = 0;
   1573		else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
   1574			timer_res = 1;
   1575		else
   1576			timer_res = 2;
   1577		timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
   1578		for (i = 0; i < num_tc; i++) {
   1579			qed_int_cau_conf_pi(p_hwfn, p_ptt,
   1580					    igu_sb_id, TX_PI(i),
   1581					    QED_COAL_TX_STATE_MACHINE,
   1582					    timeset);
   1583		}
   1584	}
   1585}
   1586
   1587void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
   1588		      struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
   1589{
   1590	/* zero status block and ack counter */
   1591	sb_info->sb_ack = 0;
   1592	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
   1593
   1594	if (IS_PF(p_hwfn->cdev))
   1595		qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
   1596				    sb_info->igu_sb_id, 0, 0);
   1597}
   1598
   1599struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
   1600{
   1601	struct qed_igu_block *p_block;
   1602	u16 igu_id;
   1603
   1604	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
   1605	     igu_id++) {
   1606		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
   1607
   1608		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
   1609		    !(p_block->status & QED_IGU_STATUS_FREE))
   1610			continue;
   1611
   1612		if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
   1613			return p_block;
   1614	}
   1615
   1616	return NULL;
   1617}
   1618
   1619static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
   1620{
   1621	struct qed_igu_block *p_block;
   1622	u16 igu_id;
   1623
   1624	for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
   1625	     igu_id++) {
   1626		p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
   1627
   1628		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
   1629		    !p_block->is_pf ||
   1630		    p_block->vector_number != vector_id)
   1631			continue;
   1632
   1633		return igu_id;
   1634	}
   1635
   1636	return QED_SB_INVALID_IDX;
   1637}
   1638
   1639u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
   1640{
   1641	u16 igu_sb_id;
   1642
   1643	/* Assuming continuous set of IGU SBs dedicated for given PF */
   1644	if (sb_id == QED_SP_SB_ID)
   1645		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
   1646	else if (IS_PF(p_hwfn->cdev))
   1647		igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
   1648	else
   1649		igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
   1650
   1651	if (sb_id == QED_SP_SB_ID)
   1652		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1653			   "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
   1654	else
   1655		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1656			   "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
   1657
   1658	return igu_sb_id;
   1659}
   1660
   1661int qed_int_sb_init(struct qed_hwfn *p_hwfn,
   1662		    struct qed_ptt *p_ptt,
   1663		    struct qed_sb_info *sb_info,
   1664		    void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
   1665{
   1666	sb_info->sb_virt = sb_virt_addr;
   1667	sb_info->sb_phys = sb_phy_addr;
   1668
   1669	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
   1670
   1671	if (sb_id != QED_SP_SB_ID) {
   1672		if (IS_PF(p_hwfn->cdev)) {
   1673			struct qed_igu_info *p_info;
   1674			struct qed_igu_block *p_block;
   1675
   1676			p_info = p_hwfn->hw_info.p_igu_info;
   1677			p_block = &p_info->entry[sb_info->igu_sb_id];
   1678
   1679			p_block->sb_info = sb_info;
   1680			p_block->status &= ~QED_IGU_STATUS_FREE;
   1681			p_info->usage.free_cnt--;
   1682		} else {
   1683			qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
   1684		}
   1685	}
   1686
   1687	sb_info->cdev = p_hwfn->cdev;
   1688
   1689	/* The igu address will hold the absolute address that needs to be
   1690	 * written to for a specific status block
   1691	 */
   1692	if (IS_PF(p_hwfn->cdev)) {
   1693		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
   1694						  GTT_BAR0_MAP_REG_IGU_CMD +
   1695						  (sb_info->igu_sb_id << 3);
   1696	} else {
   1697		sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
   1698						  PXP_VF_BAR0_START_IGU +
   1699						  ((IGU_CMD_INT_ACK_BASE +
   1700						    sb_info->igu_sb_id) << 3);
   1701	}
   1702
   1703	sb_info->flags |= QED_SB_INFO_INIT;
   1704
   1705	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
   1706
   1707	return 0;
   1708}
   1709
   1710int qed_int_sb_release(struct qed_hwfn *p_hwfn,
   1711		       struct qed_sb_info *sb_info, u16 sb_id)
   1712{
   1713	struct qed_igu_block *p_block;
   1714	struct qed_igu_info *p_info;
   1715
   1716	if (!sb_info)
   1717		return 0;
   1718
   1719	/* zero status block and ack counter */
   1720	sb_info->sb_ack = 0;
   1721	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
   1722
   1723	if (IS_VF(p_hwfn->cdev)) {
   1724		qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
   1725		return 0;
   1726	}
   1727
   1728	p_info = p_hwfn->hw_info.p_igu_info;
   1729	p_block = &p_info->entry[sb_info->igu_sb_id];
   1730
   1731	/* Vector 0 is reserved to Default SB */
   1732	if (!p_block->vector_number) {
   1733		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
   1734		return -EINVAL;
   1735	}
   1736
   1737	/* Lose reference to client's SB info, and fix counters */
   1738	p_block->sb_info = NULL;
   1739	p_block->status |= QED_IGU_STATUS_FREE;
   1740	p_info->usage.free_cnt++;
   1741
   1742	return 0;
   1743}
   1744
   1745static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
   1746{
   1747	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
   1748
   1749	if (!p_sb)
   1750		return;
   1751
   1752	if (p_sb->sb_info.sb_virt)
   1753		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
   1754				  SB_ALIGNED_SIZE(p_hwfn),
   1755				  p_sb->sb_info.sb_virt,
   1756				  p_sb->sb_info.sb_phys);
   1757	kfree(p_sb);
   1758	p_hwfn->p_sp_sb = NULL;
   1759}
   1760
   1761static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
   1762{
   1763	struct qed_sb_sp_info *p_sb;
   1764	dma_addr_t p_phys = 0;
   1765	void *p_virt;
   1766
   1767	/* SB struct */
   1768	p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
   1769	if (!p_sb)
   1770		return -ENOMEM;
   1771
   1772	/* SB ring  */
   1773	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
   1774				    SB_ALIGNED_SIZE(p_hwfn),
   1775				    &p_phys, GFP_KERNEL);
   1776	if (!p_virt) {
   1777		kfree(p_sb);
   1778		return -ENOMEM;
   1779	}
   1780
   1781	/* Status Block setup */
   1782	p_hwfn->p_sp_sb = p_sb;
   1783	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
   1784			p_phys, QED_SP_SB_ID);
   1785
   1786	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
   1787
   1788	return 0;
   1789}
   1790
   1791int qed_int_register_cb(struct qed_hwfn *p_hwfn,
   1792			qed_int_comp_cb_t comp_cb,
   1793			void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
   1794{
   1795	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
   1796	int rc = -ENOMEM;
   1797	u8 pi;
   1798
   1799	/* Look for a free index */
   1800	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
   1801		if (p_sp_sb->pi_info_arr[pi].comp_cb)
   1802			continue;
   1803
   1804		p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
   1805		p_sp_sb->pi_info_arr[pi].cookie = cookie;
   1806		*sb_idx = pi;
   1807		*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
   1808		rc = 0;
   1809		break;
   1810	}
   1811
   1812	return rc;
   1813}
   1814
   1815int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
   1816{
   1817	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
   1818
   1819	if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
   1820		return -ENOMEM;
   1821
   1822	p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
   1823	p_sp_sb->pi_info_arr[pi].cookie = NULL;
   1824
   1825	return 0;
   1826}
   1827
   1828u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
   1829{
   1830	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
   1831}
   1832
   1833void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
   1834			    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
   1835{
   1836	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
   1837
   1838	p_hwfn->cdev->int_mode = int_mode;
   1839	switch (p_hwfn->cdev->int_mode) {
   1840	case QED_INT_MODE_INTA:
   1841		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
   1842		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
   1843		break;
   1844
   1845	case QED_INT_MODE_MSI:
   1846		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
   1847		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
   1848		break;
   1849
   1850	case QED_INT_MODE_MSIX:
   1851		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
   1852		break;
   1853	case QED_INT_MODE_POLL:
   1854		break;
   1855	}
   1856
   1857	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
   1858}
   1859
   1860static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
   1861				    struct qed_ptt *p_ptt)
   1862{
   1863
   1864	/* Configure AEU signal change to produce attentions */
   1865	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
   1866	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
   1867	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
   1868	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
   1869
   1870	/* Unmask AEU signals toward IGU */
   1871	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
   1872}
   1873
   1874int
   1875qed_int_igu_enable(struct qed_hwfn *p_hwfn,
   1876		   struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
   1877{
   1878	int rc = 0;
   1879
   1880	qed_int_igu_enable_attn(p_hwfn, p_ptt);
   1881
   1882	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
   1883		rc = qed_slowpath_irq_req(p_hwfn);
   1884		if (rc) {
   1885			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
   1886			return -EINVAL;
   1887		}
   1888		p_hwfn->b_int_requested = true;
   1889	}
   1890	/* Enable interrupt Generation */
   1891	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
   1892	p_hwfn->b_int_enabled = 1;
   1893
   1894	return rc;
   1895}
   1896
   1897void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
   1898{
   1899	p_hwfn->b_int_enabled = 0;
   1900
   1901	if (IS_VF(p_hwfn->cdev))
   1902		return;
   1903
   1904	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
   1905}
   1906
   1907#define IGU_CLEANUP_SLEEP_LENGTH                (1000)
   1908static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
   1909				   struct qed_ptt *p_ptt,
   1910				   u16 igu_sb_id,
   1911				   bool cleanup_set, u16 opaque_fid)
   1912{
   1913	u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
   1914	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
   1915	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
   1916
   1917	/* Set the data field */
   1918	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
   1919	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
   1920	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
   1921
   1922	/* Set the control register */
   1923	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
   1924	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
   1925	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
   1926
   1927	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
   1928
   1929	barrier();
   1930
   1931	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
   1932
   1933	/* calculate where to read the status bit from */
   1934	sb_bit = 1 << (igu_sb_id % 32);
   1935	sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
   1936
   1937	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
   1938
   1939	/* Now wait for the command to complete */
   1940	do {
   1941		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
   1942
   1943		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
   1944			break;
   1945
   1946		usleep_range(5000, 10000);
   1947	} while (--sleep_cnt);
   1948
   1949	if (!sleep_cnt)
   1950		DP_NOTICE(p_hwfn,
   1951			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
   1952			  val, igu_sb_id);
   1953}
   1954
   1955void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
   1956				     struct qed_ptt *p_ptt,
   1957				     u16 igu_sb_id, u16 opaque, bool b_set)
   1958{
   1959	struct qed_igu_block *p_block;
   1960	int pi, i;
   1961
   1962	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
   1963	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   1964		   "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
   1965		   igu_sb_id,
   1966		   p_block->function_id,
   1967		   p_block->is_pf, p_block->vector_number);
   1968
   1969	/* Set */
   1970	if (b_set)
   1971		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
   1972
   1973	/* Clear */
   1974	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
   1975
   1976	/* Wait for the IGU SB to cleanup */
   1977	for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
   1978		u32 val;
   1979
   1980		val = qed_rd(p_hwfn, p_ptt,
   1981			     IGU_REG_WRITE_DONE_PENDING +
   1982			     ((igu_sb_id / 32) * 4));
   1983		if (val & BIT((igu_sb_id % 32)))
   1984			usleep_range(10, 20);
   1985		else
   1986			break;
   1987	}
   1988	if (i == IGU_CLEANUP_SLEEP_LENGTH)
   1989		DP_NOTICE(p_hwfn,
   1990			  "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
   1991			  igu_sb_id);
   1992
   1993	/* Clear the CAU for the SB */
   1994	for (pi = 0; pi < 12; pi++)
   1995		qed_wr(p_hwfn, p_ptt,
   1996		       CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
   1997}
   1998
   1999void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
   2000			      struct qed_ptt *p_ptt,
   2001			      bool b_set, bool b_slowpath)
   2002{
   2003	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
   2004	struct qed_igu_block *p_block;
   2005	u16 igu_sb_id = 0;
   2006	u32 val = 0;
   2007
   2008	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
   2009	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
   2010	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
   2011	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
   2012
   2013	for (igu_sb_id = 0;
   2014	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
   2015		p_block = &p_info->entry[igu_sb_id];
   2016
   2017		if (!(p_block->status & QED_IGU_STATUS_VALID) ||
   2018		    !p_block->is_pf ||
   2019		    (p_block->status & QED_IGU_STATUS_DSB))
   2020			continue;
   2021
   2022		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
   2023						p_hwfn->hw_info.opaque_fid,
   2024						b_set);
   2025	}
   2026
   2027	if (b_slowpath)
   2028		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
   2029						p_info->igu_dsb_id,
   2030						p_hwfn->hw_info.opaque_fid,
   2031						b_set);
   2032}
   2033
   2034int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
   2035{
   2036	struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
   2037	struct qed_igu_block *p_block;
   2038	int pf_sbs, vf_sbs;
   2039	u16 igu_sb_id;
   2040	u32 val, rval;
   2041
   2042	if (!RESC_NUM(p_hwfn, QED_SB)) {
   2043		p_info->b_allow_pf_vf_change = false;
   2044	} else {
   2045		/* Use the numbers the MFW have provided -
   2046		 * don't forget MFW accounts for the default SB as well.
   2047		 */
   2048		p_info->b_allow_pf_vf_change = true;
   2049
   2050		if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
   2051			DP_INFO(p_hwfn,
   2052				"MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
   2053				RESC_NUM(p_hwfn, QED_SB) - 1,
   2054				p_info->usage.cnt);
   2055			p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
   2056		}
   2057
   2058		if (IS_PF_SRIOV(p_hwfn)) {
   2059			u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
   2060
   2061			if (vfs != p_info->usage.iov_cnt)
   2062				DP_VERBOSE(p_hwfn,
   2063					   NETIF_MSG_INTR,
   2064					   "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
   2065					   p_info->usage.iov_cnt, vfs);
   2066
   2067			/* At this point we know how many SBs we have totally
   2068			 * in IGU + number of PF SBs. So we can validate that
   2069			 * we'd have sufficient for VF.
   2070			 */
   2071			if (vfs > p_info->usage.free_cnt +
   2072			    p_info->usage.free_cnt_iov - p_info->usage.cnt) {
   2073				DP_NOTICE(p_hwfn,
   2074					  "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
   2075					  p_info->usage.free_cnt +
   2076					  p_info->usage.free_cnt_iov,
   2077					  p_info->usage.cnt, vfs);
   2078				return -EINVAL;
   2079			}
   2080
   2081			/* Currently cap the number of VFs SBs by the
   2082			 * number of VFs.
   2083			 */
   2084			p_info->usage.iov_cnt = vfs;
   2085		}
   2086	}
   2087
   2088	/* Mark all SBs as free, now in the right PF/VFs division */
   2089	p_info->usage.free_cnt = p_info->usage.cnt;
   2090	p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
   2091	p_info->usage.orig = p_info->usage.cnt;
   2092	p_info->usage.iov_orig = p_info->usage.iov_cnt;
   2093
   2094	/* We now proceed to re-configure the IGU cam to reflect the initial
   2095	 * configuration. We can start with the Default SB.
   2096	 */
   2097	pf_sbs = p_info->usage.cnt;
   2098	vf_sbs = p_info->usage.iov_cnt;
   2099
   2100	for (igu_sb_id = p_info->igu_dsb_id;
   2101	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
   2102		p_block = &p_info->entry[igu_sb_id];
   2103		val = 0;
   2104
   2105		if (!(p_block->status & QED_IGU_STATUS_VALID))
   2106			continue;
   2107
   2108		if (p_block->status & QED_IGU_STATUS_DSB) {
   2109			p_block->function_id = p_hwfn->rel_pf_id;
   2110			p_block->is_pf = 1;
   2111			p_block->vector_number = 0;
   2112			p_block->status = QED_IGU_STATUS_VALID |
   2113					  QED_IGU_STATUS_PF |
   2114					  QED_IGU_STATUS_DSB;
   2115		} else if (pf_sbs) {
   2116			pf_sbs--;
   2117			p_block->function_id = p_hwfn->rel_pf_id;
   2118			p_block->is_pf = 1;
   2119			p_block->vector_number = p_info->usage.cnt - pf_sbs;
   2120			p_block->status = QED_IGU_STATUS_VALID |
   2121					  QED_IGU_STATUS_PF |
   2122					  QED_IGU_STATUS_FREE;
   2123		} else if (vf_sbs) {
   2124			p_block->function_id =
   2125			    p_hwfn->cdev->p_iov_info->first_vf_in_pf +
   2126			    p_info->usage.iov_cnt - vf_sbs;
   2127			p_block->is_pf = 0;
   2128			p_block->vector_number = 0;
   2129			p_block->status = QED_IGU_STATUS_VALID |
   2130					  QED_IGU_STATUS_FREE;
   2131			vf_sbs--;
   2132		} else {
   2133			p_block->function_id = 0;
   2134			p_block->is_pf = 0;
   2135			p_block->vector_number = 0;
   2136		}
   2137
   2138		SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
   2139			  p_block->function_id);
   2140		SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
   2141		SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
   2142			  p_block->vector_number);
   2143
   2144		/* VF entries would be enabled when VF is initializaed */
   2145		SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
   2146
   2147		rval = qed_rd(p_hwfn, p_ptt,
   2148			      IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
   2149
   2150		if (rval != val) {
   2151			qed_wr(p_hwfn, p_ptt,
   2152			       IGU_REG_MAPPING_MEMORY +
   2153			       sizeof(u32) * igu_sb_id, val);
   2154
   2155			DP_VERBOSE(p_hwfn,
   2156				   NETIF_MSG_INTR,
   2157				   "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
   2158				   igu_sb_id,
   2159				   p_block->function_id,
   2160				   p_block->is_pf,
   2161				   p_block->vector_number, rval, val);
   2162		}
   2163	}
   2164
   2165	return 0;
   2166}
   2167
   2168static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
   2169				       struct qed_ptt *p_ptt, u16 igu_sb_id)
   2170{
   2171	u32 val = qed_rd(p_hwfn, p_ptt,
   2172			 IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
   2173	struct qed_igu_block *p_block;
   2174
   2175	p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
   2176
   2177	/* Fill the block information */
   2178	p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
   2179	p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
   2180	p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
   2181	p_block->igu_sb_id = igu_sb_id;
   2182}
   2183
   2184int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
   2185{
   2186	struct qed_igu_info *p_igu_info;
   2187	struct qed_igu_block *p_block;
   2188	u32 min_vf = 0, max_vf = 0;
   2189	u16 igu_sb_id;
   2190
   2191	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
   2192	if (!p_hwfn->hw_info.p_igu_info)
   2193		return -ENOMEM;
   2194
   2195	p_igu_info = p_hwfn->hw_info.p_igu_info;
   2196
   2197	/* Distinguish between existent and non-existent default SB */
   2198	p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
   2199
   2200	/* Find the range of VF ids whose SB belong to this PF */
   2201	if (p_hwfn->cdev->p_iov_info) {
   2202		struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
   2203
   2204		min_vf	= p_iov->first_vf_in_pf;
   2205		max_vf	= p_iov->first_vf_in_pf + p_iov->total_vfs;
   2206	}
   2207
   2208	for (igu_sb_id = 0;
   2209	     igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
   2210		/* Read current entry; Notice it might not belong to this PF */
   2211		qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
   2212		p_block = &p_igu_info->entry[igu_sb_id];
   2213
   2214		if ((p_block->is_pf) &&
   2215		    (p_block->function_id == p_hwfn->rel_pf_id)) {
   2216			p_block->status = QED_IGU_STATUS_PF |
   2217					  QED_IGU_STATUS_VALID |
   2218					  QED_IGU_STATUS_FREE;
   2219
   2220			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
   2221				p_igu_info->usage.cnt++;
   2222		} else if (!(p_block->is_pf) &&
   2223			   (p_block->function_id >= min_vf) &&
   2224			   (p_block->function_id < max_vf)) {
   2225			/* Available for VFs of this PF */
   2226			p_block->status = QED_IGU_STATUS_VALID |
   2227					  QED_IGU_STATUS_FREE;
   2228
   2229			if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
   2230				p_igu_info->usage.iov_cnt++;
   2231		}
   2232
   2233		/* Mark the First entry belonging to the PF or its VFs
   2234		 * as the default SB [we'll reset IGU prior to first usage].
   2235		 */
   2236		if ((p_block->status & QED_IGU_STATUS_VALID) &&
   2237		    (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
   2238			p_igu_info->igu_dsb_id = igu_sb_id;
   2239			p_block->status |= QED_IGU_STATUS_DSB;
   2240		}
   2241
   2242		/* limit number of prints by having each PF print only its
   2243		 * entries with the exception of PF0 which would print
   2244		 * everything.
   2245		 */
   2246		if ((p_block->status & QED_IGU_STATUS_VALID) ||
   2247		    (p_hwfn->abs_pf_id == 0)) {
   2248			DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   2249				   "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
   2250				   igu_sb_id, p_block->function_id,
   2251				   p_block->is_pf, p_block->vector_number);
   2252		}
   2253	}
   2254
   2255	if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
   2256		DP_NOTICE(p_hwfn,
   2257			  "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
   2258			  p_igu_info->igu_dsb_id);
   2259		return -EINVAL;
   2260	}
   2261
   2262	/* All non default SB are considered free at this point */
   2263	p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
   2264	p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
   2265
   2266	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
   2267		   "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
   2268		   p_igu_info->igu_dsb_id,
   2269		   p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
   2270
   2271	return 0;
   2272}
   2273
   2274/**
   2275 * qed_int_igu_init_rt() - Initialize IGU runtime registers.
   2276 *
   2277 * @p_hwfn: HW device data.
   2278 */
   2279void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
   2280{
   2281	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
   2282
   2283	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
   2284}
   2285
   2286u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
   2287{
   2288	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
   2289			       IGU_CMD_INT_ACK_BASE;
   2290	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
   2291			       IGU_CMD_INT_ACK_BASE;
   2292	u32 intr_status_hi = 0, intr_status_lo = 0;
   2293	u64 intr_status = 0;
   2294
   2295	intr_status_lo = REG_RD(p_hwfn,
   2296				GTT_BAR0_MAP_REG_IGU_CMD +
   2297				lsb_igu_cmd_addr * 8);
   2298	intr_status_hi = REG_RD(p_hwfn,
   2299				GTT_BAR0_MAP_REG_IGU_CMD +
   2300				msb_igu_cmd_addr * 8);
   2301	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
   2302
   2303	return intr_status;
   2304}
   2305
   2306static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
   2307{
   2308	tasklet_setup(&p_hwfn->sp_dpc, qed_int_sp_dpc);
   2309	p_hwfn->b_sp_dpc_enabled = true;
   2310}
   2311
   2312int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
   2313{
   2314	int rc = 0;
   2315
   2316	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
   2317	if (rc)
   2318		return rc;
   2319
   2320	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
   2321
   2322	return rc;
   2323}
   2324
   2325void qed_int_free(struct qed_hwfn *p_hwfn)
   2326{
   2327	qed_int_sp_sb_free(p_hwfn);
   2328	qed_int_sb_attn_free(p_hwfn);
   2329}
   2330
   2331void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
   2332{
   2333	qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
   2334	qed_int_sb_attn_setup(p_hwfn, p_ptt);
   2335	qed_int_sp_dpc_setup(p_hwfn);
   2336}
   2337
   2338void qed_int_get_num_sbs(struct qed_hwfn	*p_hwfn,
   2339			 struct qed_sb_cnt_info *p_sb_cnt_info)
   2340{
   2341	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
   2342
   2343	if (!info || !p_sb_cnt_info)
   2344		return;
   2345
   2346	memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
   2347}
   2348
   2349void qed_int_disable_post_isr_release(struct qed_dev *cdev)
   2350{
   2351	int i;
   2352
   2353	for_each_hwfn(cdev, i)
   2354		cdev->hwfns[i].b_int_requested = false;
   2355}
   2356
   2357void qed_int_attn_clr_enable(struct qed_dev *cdev, bool clr_enable)
   2358{
   2359	cdev->attn_clr_en = clr_enable;
   2360}
   2361
   2362int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
   2363			  u8 timer_res, u16 sb_id, bool tx)
   2364{
   2365	struct cau_sb_entry sb_entry;
   2366	u32 params;
   2367	int rc;
   2368
   2369	if (!p_hwfn->hw_init_done) {
   2370		DP_ERR(p_hwfn, "hardware not initialized yet\n");
   2371		return -EINVAL;
   2372	}
   2373
   2374	rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
   2375			       sb_id * sizeof(u64),
   2376			       (u64)(uintptr_t)&sb_entry, 2, NULL);
   2377	if (rc) {
   2378		DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
   2379		return rc;
   2380	}
   2381
   2382	params = le32_to_cpu(sb_entry.params);
   2383
   2384	if (tx)
   2385		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
   2386	else
   2387		SET_FIELD(params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
   2388
   2389	sb_entry.params = cpu_to_le32(params);
   2390
   2391	rc = qed_dmae_host2grc(p_hwfn, p_ptt,
   2392			       (u64)(uintptr_t)&sb_entry,
   2393			       CAU_REG_SB_VAR_MEMORY +
   2394			       sb_id * sizeof(u64), 2, NULL);
   2395	if (rc) {
   2396		DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
   2397		return rc;
   2398	}
   2399
   2400	return rc;
   2401}
   2402
   2403int qed_int_get_sb_dbg(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
   2404		       struct qed_sb_info *p_sb, struct qed_sb_info_dbg *p_info)
   2405{
   2406	u16 sbid = p_sb->igu_sb_id;
   2407	u32 i;
   2408
   2409	if (IS_VF(p_hwfn->cdev))
   2410		return -EINVAL;
   2411
   2412	if (sbid >= NUM_OF_SBS(p_hwfn->cdev))
   2413		return -EINVAL;
   2414
   2415	p_info->igu_prod = qed_rd(p_hwfn, p_ptt, IGU_REG_PRODUCER_MEMORY + sbid * 4);
   2416	p_info->igu_cons = qed_rd(p_hwfn, p_ptt, IGU_REG_CONSUMER_MEM + sbid * 4);
   2417
   2418	for (i = 0; i < PIS_PER_SB; i++)
   2419		p_info->pi[i] = (u16)qed_rd(p_hwfn, p_ptt,
   2420					    CAU_REG_PI_MEMORY + sbid * 4 * PIS_PER_SB + i * 4);
   2421
   2422	return 0;
   2423}