cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

emac-mac.c (44443B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
      3 */
      4
      5/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
      6 */
      7
      8#include <linux/tcp.h>
      9#include <linux/ip.h>
     10#include <linux/ipv6.h>
     11#include <linux/crc32.h>
     12#include <linux/if_vlan.h>
     13#include <linux/jiffies.h>
     14#include <linux/phy.h>
     15#include <linux/of.h>
     16#include <net/ip6_checksum.h>
     17#include "emac.h"
     18#include "emac-sgmii.h"
     19
     20/* EMAC_MAC_CTRL */
     21#define SINGLE_PAUSE_MODE       	0x10000000
     22#define DEBUG_MODE                      0x08000000
     23#define BROAD_EN                        0x04000000
     24#define MULTI_ALL                       0x02000000
     25#define RX_CHKSUM_EN                    0x01000000
     26#define HUGE                            0x00800000
     27#define SPEED(x)			(((x) & 0x3) << 20)
     28#define SPEED_MASK			SPEED(0x3)
     29#define SIMR                            0x00080000
     30#define TPAUSE                          0x00010000
     31#define PROM_MODE                       0x00008000
     32#define VLAN_STRIP                      0x00004000
     33#define PRLEN_BMSK                      0x00003c00
     34#define PRLEN_SHFT                      10
     35#define HUGEN                           0x00000200
     36#define FLCHK                           0x00000100
     37#define PCRCE                           0x00000080
     38#define CRCE                            0x00000040
     39#define FULLD                           0x00000020
     40#define MAC_LP_EN                       0x00000010
     41#define RXFC                            0x00000008
     42#define TXFC                            0x00000004
     43#define RXEN                            0x00000002
     44#define TXEN                            0x00000001
     45
     46/* EMAC_DESC_CTRL_3 */
     47#define RFD_RING_SIZE_BMSK                                       0xfff
     48
     49/* EMAC_DESC_CTRL_4 */
     50#define RX_BUFFER_SIZE_BMSK                                     0xffff
     51
     52/* EMAC_DESC_CTRL_6 */
     53#define RRD_RING_SIZE_BMSK                                       0xfff
     54
     55/* EMAC_DESC_CTRL_9 */
     56#define TPD_RING_SIZE_BMSK                                      0xffff
     57
     58/* EMAC_TXQ_CTRL_0 */
     59#define NUM_TXF_BURST_PREF_BMSK                             0xffff0000
     60#define NUM_TXF_BURST_PREF_SHFT                                     16
     61#define LS_8023_SP                                                0x80
     62#define TXQ_MODE                                                  0x40
     63#define TXQ_EN                                                    0x20
     64#define IP_OP_SP                                                  0x10
     65#define NUM_TPD_BURST_PREF_BMSK                                    0xf
     66#define NUM_TPD_BURST_PREF_SHFT                                      0
     67
     68/* EMAC_TXQ_CTRL_1 */
     69#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK                        0x7ff
     70
     71/* EMAC_TXQ_CTRL_2 */
     72#define TXF_HWM_BMSK                                         0xfff0000
     73#define TXF_LWM_BMSK                                             0xfff
     74
     75/* EMAC_RXQ_CTRL_0 */
     76#define RXQ_EN                                                 BIT(31)
     77#define CUT_THRU_EN                                            BIT(30)
     78#define RSS_HASH_EN                                            BIT(29)
     79#define NUM_RFD_BURST_PREF_BMSK                              0x3f00000
     80#define NUM_RFD_BURST_PREF_SHFT                                     20
     81#define IDT_TABLE_SIZE_BMSK                                    0x1ff00
     82#define IDT_TABLE_SIZE_SHFT                                          8
     83#define SP_IPV6                                                   0x80
     84
     85/* EMAC_RXQ_CTRL_1 */
     86#define JUMBO_1KAH_BMSK                                         0xf000
     87#define JUMBO_1KAH_SHFT                                             12
     88#define RFD_PREF_LOW_TH                                           0x10
     89#define RFD_PREF_LOW_THRESHOLD_BMSK                              0xfc0
     90#define RFD_PREF_LOW_THRESHOLD_SHFT                                  6
     91#define RFD_PREF_UP_TH                                            0x10
     92#define RFD_PREF_UP_THRESHOLD_BMSK                                0x3f
     93#define RFD_PREF_UP_THRESHOLD_SHFT                                   0
     94
     95/* EMAC_RXQ_CTRL_2 */
     96#define RXF_DOF_THRESFHOLD                                       0x1a0
     97#define RXF_DOF_THRESHOLD_BMSK                               0xfff0000
     98#define RXF_DOF_THRESHOLD_SHFT                                      16
     99#define RXF_UOF_THRESFHOLD                                        0xbe
    100#define RXF_UOF_THRESHOLD_BMSK                                   0xfff
    101#define RXF_UOF_THRESHOLD_SHFT                                       0
    102
    103/* EMAC_RXQ_CTRL_3 */
    104#define RXD_TIMER_BMSK                                      0xffff0000
    105#define RXD_THRESHOLD_BMSK                                       0xfff
    106#define RXD_THRESHOLD_SHFT                                           0
    107
    108/* EMAC_DMA_CTRL */
    109#define DMAW_DLY_CNT_BMSK                                      0xf0000
    110#define DMAW_DLY_CNT_SHFT                                           16
    111#define DMAR_DLY_CNT_BMSK                                       0xf800
    112#define DMAR_DLY_CNT_SHFT                                           11
    113#define DMAR_REQ_PRI                                             0x400
    114#define REGWRBLEN_BMSK                                           0x380
    115#define REGWRBLEN_SHFT                                               7
    116#define REGRDBLEN_BMSK                                            0x70
    117#define REGRDBLEN_SHFT                                               4
    118#define OUT_ORDER_MODE                                             0x4
    119#define ENH_ORDER_MODE                                             0x2
    120#define IN_ORDER_MODE                                              0x1
    121
    122/* EMAC_MAILBOX_13 */
    123#define RFD3_PROC_IDX_BMSK                                   0xfff0000
    124#define RFD3_PROC_IDX_SHFT                                          16
    125#define RFD3_PROD_IDX_BMSK                                       0xfff
    126#define RFD3_PROD_IDX_SHFT                                           0
    127
    128/* EMAC_MAILBOX_2 */
    129#define NTPD_CONS_IDX_BMSK                                  0xffff0000
    130#define NTPD_CONS_IDX_SHFT                                          16
    131
    132/* EMAC_MAILBOX_3 */
    133#define RFD0_CONS_IDX_BMSK                                       0xfff
    134#define RFD0_CONS_IDX_SHFT                                           0
    135
    136/* EMAC_MAILBOX_11 */
    137#define H3TPD_PROD_IDX_BMSK                                 0xffff0000
    138#define H3TPD_PROD_IDX_SHFT                                         16
    139
    140/* EMAC_AXI_MAST_CTRL */
    141#define DATA_BYTE_SWAP                                             0x8
    142#define MAX_BOUND                                                  0x2
    143#define MAX_BTYPE                                                  0x1
    144
    145/* EMAC_MAILBOX_12 */
    146#define H3TPD_CONS_IDX_BMSK                                 0xffff0000
    147#define H3TPD_CONS_IDX_SHFT                                         16
    148
    149/* EMAC_MAILBOX_9 */
    150#define H2TPD_PROD_IDX_BMSK                                     0xffff
    151#define H2TPD_PROD_IDX_SHFT                                          0
    152
    153/* EMAC_MAILBOX_10 */
    154#define H1TPD_CONS_IDX_BMSK                                 0xffff0000
    155#define H1TPD_CONS_IDX_SHFT                                         16
    156#define H2TPD_CONS_IDX_BMSK                                     0xffff
    157#define H2TPD_CONS_IDX_SHFT                                          0
    158
    159/* EMAC_ATHR_HEADER_CTRL */
    160#define HEADER_CNT_EN                                              0x2
    161#define HEADER_ENABLE                                              0x1
    162
    163/* EMAC_MAILBOX_0 */
    164#define RFD0_PROC_IDX_BMSK                                   0xfff0000
    165#define RFD0_PROC_IDX_SHFT                                          16
    166#define RFD0_PROD_IDX_BMSK                                       0xfff
    167#define RFD0_PROD_IDX_SHFT                                           0
    168
    169/* EMAC_MAILBOX_5 */
    170#define RFD1_PROC_IDX_BMSK                                   0xfff0000
    171#define RFD1_PROC_IDX_SHFT                                          16
    172#define RFD1_PROD_IDX_BMSK                                       0xfff
    173#define RFD1_PROD_IDX_SHFT                                           0
    174
    175/* EMAC_MISC_CTRL */
    176#define RX_UNCPL_INT_EN                                            0x1
    177
    178/* EMAC_MAILBOX_7 */
    179#define RFD2_CONS_IDX_BMSK                                   0xfff0000
    180#define RFD2_CONS_IDX_SHFT                                          16
    181#define RFD1_CONS_IDX_BMSK                                       0xfff
    182#define RFD1_CONS_IDX_SHFT                                           0
    183
    184/* EMAC_MAILBOX_8 */
    185#define RFD3_CONS_IDX_BMSK                                       0xfff
    186#define RFD3_CONS_IDX_SHFT                                           0
    187
    188/* EMAC_MAILBOX_15 */
    189#define NTPD_PROD_IDX_BMSK                                      0xffff
    190#define NTPD_PROD_IDX_SHFT                                           0
    191
    192/* EMAC_MAILBOX_16 */
    193#define H1TPD_PROD_IDX_BMSK                                     0xffff
    194#define H1TPD_PROD_IDX_SHFT                                          0
    195
    196#define RXQ0_RSS_HSTYP_IPV6_TCP_EN                                0x20
    197#define RXQ0_RSS_HSTYP_IPV6_EN                                    0x10
    198#define RXQ0_RSS_HSTYP_IPV4_TCP_EN                                 0x8
    199#define RXQ0_RSS_HSTYP_IPV4_EN                                     0x4
    200
    201/* EMAC_EMAC_WRAPPER_TX_TS_INX */
    202#define EMAC_WRAPPER_TX_TS_EMPTY                               BIT(31)
    203#define EMAC_WRAPPER_TX_TS_INX_BMSK                             0xffff
    204
    205struct emac_skb_cb {
    206	u32           tpd_idx;
    207	unsigned long jiffies;
    208};
    209
    210#define EMAC_SKB_CB(skb)	((struct emac_skb_cb *)(skb)->cb)
    211#define EMAC_RSS_IDT_SIZE	256
    212#define JUMBO_1KAH		0x4
    213#define RXD_TH			0x100
    214#define EMAC_TPD_LAST_FRAGMENT	0x80000000
    215#define EMAC_TPD_TSTAMP_SAVE	0x80000000
    216
    217/* EMAC Errors in emac_rrd.word[3] */
    218#define EMAC_RRD_L4F		BIT(14)
    219#define EMAC_RRD_IPF		BIT(15)
    220#define EMAC_RRD_CRC		BIT(21)
    221#define EMAC_RRD_FAE		BIT(22)
    222#define EMAC_RRD_TRN		BIT(23)
    223#define EMAC_RRD_RNT		BIT(24)
    224#define EMAC_RRD_INC		BIT(25)
    225#define EMAC_RRD_FOV		BIT(29)
    226#define EMAC_RRD_LEN		BIT(30)
    227
    228/* Error bits that will result in a received frame being discarded */
    229#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
    230			EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
    231			EMAC_RRD_FOV | EMAC_RRD_LEN)
    232#define EMAC_RRD_STATS_DW_IDX 3
    233
    234#define EMAC_RRD(RXQ, SIZE, IDX)	((RXQ)->rrd.v_addr + (SIZE * (IDX)))
    235#define EMAC_RFD(RXQ, SIZE, IDX)	((RXQ)->rfd.v_addr + (SIZE * (IDX)))
    236#define EMAC_TPD(TXQ, SIZE, IDX)	((TXQ)->tpd.v_addr + (SIZE * (IDX)))
    237
    238#define GET_RFD_BUFFER(RXQ, IDX)	(&((RXQ)->rfd.rfbuff[(IDX)]))
    239#define GET_TPD_BUFFER(RTQ, IDX)	(&((RTQ)->tpd.tpbuff[(IDX)]))
    240
    241#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD	8
    242
    243#define ISR_RX_PKT      (\
    244	RX_PKT_INT0     |\
    245	RX_PKT_INT1     |\
    246	RX_PKT_INT2     |\
    247	RX_PKT_INT3)
    248
    249void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
    250{
    251	u32 crc32, bit, reg, mta;
    252
    253	/* Calculate the CRC of the MAC address */
    254	crc32 = ether_crc(ETH_ALEN, addr);
    255
    256	/* The HASH Table is an array of 2 32-bit registers. It is
    257	 * treated like an array of 64 bits (BitArray[hash_value]).
    258	 * Use the upper 6 bits of the above CRC as the hash value.
    259	 */
    260	reg = (crc32 >> 31) & 0x1;
    261	bit = (crc32 >> 26) & 0x1F;
    262
    263	mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
    264	mta |= BIT(bit);
    265	writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
    266}
    267
    268void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
    269{
    270	writel(0, adpt->base + EMAC_HASH_TAB_REG0);
    271	writel(0, adpt->base + EMAC_HASH_TAB_REG1);
    272}
    273
    274/* definitions for RSS */
    275#define EMAC_RSS_KEY(_i, _type) \
    276		(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
    277#define EMAC_RSS_TBL(_i, _type) \
    278		(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
    279
    280/* Config MAC modes */
    281void emac_mac_mode_config(struct emac_adapter *adpt)
    282{
    283	struct net_device *netdev = adpt->netdev;
    284	u32 mac;
    285
    286	mac = readl(adpt->base + EMAC_MAC_CTRL);
    287	mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
    288
    289	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
    290		mac |= VLAN_STRIP;
    291
    292	if (netdev->flags & IFF_PROMISC)
    293		mac |= PROM_MODE;
    294
    295	if (netdev->flags & IFF_ALLMULTI)
    296		mac |= MULTI_ALL;
    297
    298	writel(mac, adpt->base + EMAC_MAC_CTRL);
    299}
    300
    301/* Config descriptor rings */
    302static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
    303{
    304	/* TPD (Transmit Packet Descriptor) */
    305	writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
    306	       adpt->base + EMAC_DESC_CTRL_1);
    307
    308	writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
    309	       adpt->base + EMAC_DESC_CTRL_8);
    310
    311	writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
    312	       adpt->base + EMAC_DESC_CTRL_9);
    313
    314	/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
    315	writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
    316	       adpt->base + EMAC_DESC_CTRL_0);
    317
    318	writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
    319	       adpt->base + EMAC_DESC_CTRL_2);
    320	writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
    321	       adpt->base + EMAC_DESC_CTRL_5);
    322
    323	writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
    324	       adpt->base + EMAC_DESC_CTRL_3);
    325	writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
    326	       adpt->base + EMAC_DESC_CTRL_6);
    327
    328	writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
    329	       adpt->base + EMAC_DESC_CTRL_4);
    330
    331	writel(0, adpt->base + EMAC_DESC_CTRL_11);
    332
    333	/* Load all of the base addresses above and ensure that triggering HW to
    334	 * read ring pointers is flushed
    335	 */
    336	writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
    337}
    338
    339/* Config transmit parameters */
    340static void emac_mac_tx_config(struct emac_adapter *adpt)
    341{
    342	u32 val;
    343
    344	writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
    345	       JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
    346
    347	val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
    348	       NUM_TPD_BURST_PREF_BMSK;
    349
    350	val |= TXQ_MODE | LS_8023_SP;
    351	val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
    352		NUM_TXF_BURST_PREF_BMSK;
    353
    354	writel(val, adpt->base + EMAC_TXQ_CTRL_0);
    355	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
    356			  (TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
    357}
    358
    359/* Config receive parameters */
    360static void emac_mac_rx_config(struct emac_adapter *adpt)
    361{
    362	u32 val;
    363
    364	val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
    365	       NUM_RFD_BURST_PREF_BMSK;
    366	val |= (SP_IPV6 | CUT_THRU_EN);
    367
    368	writel(val, adpt->base + EMAC_RXQ_CTRL_0);
    369
    370	val = readl(adpt->base + EMAC_RXQ_CTRL_1);
    371	val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
    372		 RFD_PREF_UP_THRESHOLD_BMSK);
    373	val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
    374		(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
    375		(RFD_PREF_UP_TH  << RFD_PREF_UP_THRESHOLD_SHFT);
    376	writel(val, adpt->base + EMAC_RXQ_CTRL_1);
    377
    378	val = readl(adpt->base + EMAC_RXQ_CTRL_2);
    379	val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
    380	val |= (RXF_DOF_THRESFHOLD  << RXF_DOF_THRESHOLD_SHFT) |
    381		(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
    382	writel(val, adpt->base + EMAC_RXQ_CTRL_2);
    383
    384	val = readl(adpt->base + EMAC_RXQ_CTRL_3);
    385	val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
    386	val |= RXD_TH << RXD_THRESHOLD_SHFT;
    387	writel(val, adpt->base + EMAC_RXQ_CTRL_3);
    388}
    389
    390/* Config dma */
    391static void emac_mac_dma_config(struct emac_adapter *adpt)
    392{
    393	u32 dma_ctrl = DMAR_REQ_PRI;
    394
    395	switch (adpt->dma_order) {
    396	case emac_dma_ord_in:
    397		dma_ctrl |= IN_ORDER_MODE;
    398		break;
    399	case emac_dma_ord_enh:
    400		dma_ctrl |= ENH_ORDER_MODE;
    401		break;
    402	case emac_dma_ord_out:
    403		dma_ctrl |= OUT_ORDER_MODE;
    404		break;
    405	default:
    406		break;
    407	}
    408
    409	dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
    410						REGRDBLEN_BMSK;
    411	dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
    412						REGWRBLEN_BMSK;
    413	dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
    414						DMAR_DLY_CNT_BMSK;
    415	dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
    416						DMAW_DLY_CNT_BMSK;
    417
    418	/* config DMA and ensure that configuration is flushed to HW */
    419	writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
    420}
    421
    422/* set MAC address */
    423static void emac_set_mac_address(struct emac_adapter *adpt, const u8 *addr)
    424{
    425	u32 sta;
    426
    427	/* for example: 00-A0-C6-11-22-33
    428	 * 0<-->C6112233, 1<-->00A0.
    429	 */
    430
    431	/* low 32bit word */
    432	sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
    433	      (((u32)addr[4]) << 8)  | (((u32)addr[5]));
    434	writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
    435
    436	/* hight 32bit word */
    437	sta = (((u32)addr[0]) << 8) | (u32)addr[1];
    438	writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
    439}
    440
    441static void emac_mac_config(struct emac_adapter *adpt)
    442{
    443	struct net_device *netdev = adpt->netdev;
    444	unsigned int max_frame;
    445	u32 val;
    446
    447	emac_set_mac_address(adpt, netdev->dev_addr);
    448
    449	max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
    450	adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
    451		ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
    452
    453	emac_mac_dma_rings_config(adpt);
    454
    455	writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
    456	       adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
    457
    458	emac_mac_tx_config(adpt);
    459	emac_mac_rx_config(adpt);
    460	emac_mac_dma_config(adpt);
    461
    462	val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
    463	val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
    464	val |= MAX_BTYPE;
    465	writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
    466	writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
    467	writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
    468}
    469
    470void emac_mac_reset(struct emac_adapter *adpt)
    471{
    472	emac_mac_stop(adpt);
    473
    474	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
    475	usleep_range(100, 150); /* reset may take up to 100usec */
    476
    477	/* interrupt clear-on-read */
    478	emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
    479}
    480
    481static void emac_mac_start(struct emac_adapter *adpt)
    482{
    483	struct phy_device *phydev = adpt->phydev;
    484	u32 mac, csr1;
    485
    486	/* enable tx queue */
    487	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
    488
    489	/* enable rx queue */
    490	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
    491
    492	/* enable mac control */
    493	mac = readl(adpt->base + EMAC_MAC_CTRL);
    494	csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
    495
    496	mac |= TXEN | RXEN;     /* enable RX/TX */
    497
    498	/* Configure MAC flow control. If set to automatic, then match
    499	 * whatever the PHY does. Otherwise, enable or disable it, depending
    500	 * on what the user configured via ethtool.
    501	 */
    502	mac &= ~(RXFC | TXFC);
    503
    504	if (adpt->automatic) {
    505		/* If it's set to automatic, then update our local values */
    506		adpt->rx_flow_control = phydev->pause;
    507		adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
    508	}
    509	mac |= adpt->rx_flow_control ? RXFC : 0;
    510	mac |= adpt->tx_flow_control ? TXFC : 0;
    511
    512	/* setup link speed */
    513	mac &= ~SPEED_MASK;
    514	if (phydev->speed == SPEED_1000) {
    515		mac |= SPEED(2);
    516		csr1 |= FREQ_MODE;
    517	} else {
    518		mac |= SPEED(1);
    519		csr1 &= ~FREQ_MODE;
    520	}
    521
    522	if (phydev->duplex == DUPLEX_FULL)
    523		mac |= FULLD;
    524	else
    525		mac &= ~FULLD;
    526
    527	/* other parameters */
    528	mac |= (CRCE | PCRCE);
    529	mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
    530	mac |= BROAD_EN;
    531	mac |= FLCHK;
    532	mac &= ~RX_CHKSUM_EN;
    533	mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
    534		 DEBUG_MODE | SINGLE_PAUSE_MODE);
    535
    536	/* Enable single-pause-frame mode if requested.
    537	 *
    538	 * If enabled, the EMAC will send a single pause frame when the RX
    539	 * queue is full.  This normally leads to packet loss because
    540	 * the pause frame disables the remote MAC only for 33ms (the quanta),
    541	 * and then the remote MAC continues sending packets even though
    542	 * the RX queue is still full.
    543	 *
    544	 * If disabled, the EMAC sends a pause frame every 31ms until the RX
    545	 * queue is no longer full.  Normally, this is the preferred
    546	 * method of operation.  However, when the system is hung (e.g.
    547	 * cores are halted), the EMAC interrupt handler is never called
    548	 * and so the RX queue fills up quickly and stays full.  The resuling
    549	 * non-stop "flood" of pause frames sometimes has the effect of
    550	 * disabling nearby switches.  In some cases, other nearby switches
    551	 * are also affected, shutting down the entire network.
    552	 *
    553	 * The user can enable or disable single-pause-frame mode
    554	 * via ethtool.
    555	 */
    556	mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
    557
    558	writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
    559
    560	writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
    561
    562	/* enable interrupt read clear, low power sleep mode and
    563	 * the irq moderators
    564	 */
    565
    566	writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
    567	writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
    568			IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
    569
    570	emac_mac_mode_config(adpt);
    571
    572	emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
    573			  (HEADER_ENABLE | HEADER_CNT_EN), 0);
    574}
    575
    576void emac_mac_stop(struct emac_adapter *adpt)
    577{
    578	emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
    579	emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
    580	emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
    581	usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
    582}
    583
    584/* Free all descriptors of given transmit queue */
    585static void emac_tx_q_descs_free(struct emac_adapter *adpt)
    586{
    587	struct emac_tx_queue *tx_q = &adpt->tx_q;
    588	unsigned int i;
    589	size_t size;
    590
    591	/* ring already cleared, nothing to do */
    592	if (!tx_q->tpd.tpbuff)
    593		return;
    594
    595	for (i = 0; i < tx_q->tpd.count; i++) {
    596		struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
    597
    598		if (tpbuf->dma_addr) {
    599			dma_unmap_single(adpt->netdev->dev.parent,
    600					 tpbuf->dma_addr, tpbuf->length,
    601					 DMA_TO_DEVICE);
    602			tpbuf->dma_addr = 0;
    603		}
    604		if (tpbuf->skb) {
    605			dev_kfree_skb_any(tpbuf->skb);
    606			tpbuf->skb = NULL;
    607		}
    608	}
    609
    610	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
    611	memset(tx_q->tpd.tpbuff, 0, size);
    612
    613	/* clear the descriptor ring */
    614	memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
    615
    616	tx_q->tpd.consume_idx = 0;
    617	tx_q->tpd.produce_idx = 0;
    618}
    619
    620/* Free all descriptors of given receive queue */
    621static void emac_rx_q_free_descs(struct emac_adapter *adpt)
    622{
    623	struct device *dev = adpt->netdev->dev.parent;
    624	struct emac_rx_queue *rx_q = &adpt->rx_q;
    625	unsigned int i;
    626	size_t size;
    627
    628	/* ring already cleared, nothing to do */
    629	if (!rx_q->rfd.rfbuff)
    630		return;
    631
    632	for (i = 0; i < rx_q->rfd.count; i++) {
    633		struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
    634
    635		if (rfbuf->dma_addr) {
    636			dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
    637					 DMA_FROM_DEVICE);
    638			rfbuf->dma_addr = 0;
    639		}
    640		if (rfbuf->skb) {
    641			dev_kfree_skb(rfbuf->skb);
    642			rfbuf->skb = NULL;
    643		}
    644	}
    645
    646	size =  sizeof(struct emac_buffer) * rx_q->rfd.count;
    647	memset(rx_q->rfd.rfbuff, 0, size);
    648
    649	/* clear the descriptor rings */
    650	memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
    651	rx_q->rrd.produce_idx = 0;
    652	rx_q->rrd.consume_idx = 0;
    653
    654	memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
    655	rx_q->rfd.produce_idx = 0;
    656	rx_q->rfd.consume_idx = 0;
    657}
    658
    659/* Free all buffers associated with given transmit queue */
    660static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
    661{
    662	struct emac_tx_queue *tx_q = &adpt->tx_q;
    663
    664	emac_tx_q_descs_free(adpt);
    665
    666	kfree(tx_q->tpd.tpbuff);
    667	tx_q->tpd.tpbuff = NULL;
    668	tx_q->tpd.v_addr = NULL;
    669	tx_q->tpd.dma_addr = 0;
    670	tx_q->tpd.size = 0;
    671}
    672
    673/* Allocate TX descriptor ring for the given transmit queue */
    674static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
    675				struct emac_tx_queue *tx_q)
    676{
    677	struct emac_ring_header *ring_header = &adpt->ring_header;
    678	int node = dev_to_node(adpt->netdev->dev.parent);
    679	size_t size;
    680
    681	size = sizeof(struct emac_buffer) * tx_q->tpd.count;
    682	tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
    683	if (!tx_q->tpd.tpbuff)
    684		return -ENOMEM;
    685
    686	tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
    687	tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
    688	tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
    689	ring_header->used += ALIGN(tx_q->tpd.size, 8);
    690	tx_q->tpd.produce_idx = 0;
    691	tx_q->tpd.consume_idx = 0;
    692
    693	return 0;
    694}
    695
    696/* Free all buffers associated with given transmit queue */
    697static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
    698{
    699	struct emac_rx_queue *rx_q = &adpt->rx_q;
    700
    701	emac_rx_q_free_descs(adpt);
    702
    703	kfree(rx_q->rfd.rfbuff);
    704	rx_q->rfd.rfbuff   = NULL;
    705
    706	rx_q->rfd.v_addr   = NULL;
    707	rx_q->rfd.dma_addr = 0;
    708	rx_q->rfd.size     = 0;
    709
    710	rx_q->rrd.v_addr   = NULL;
    711	rx_q->rrd.dma_addr = 0;
    712	rx_q->rrd.size     = 0;
    713}
    714
    715/* Allocate RX descriptor rings for the given receive queue */
    716static int emac_rx_descs_alloc(struct emac_adapter *adpt)
    717{
    718	struct emac_ring_header *ring_header = &adpt->ring_header;
    719	int node = dev_to_node(adpt->netdev->dev.parent);
    720	struct emac_rx_queue *rx_q = &adpt->rx_q;
    721	size_t size;
    722
    723	size = sizeof(struct emac_buffer) * rx_q->rfd.count;
    724	rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
    725	if (!rx_q->rfd.rfbuff)
    726		return -ENOMEM;
    727
    728	rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
    729	rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
    730
    731	rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
    732	rx_q->rrd.v_addr   = ring_header->v_addr + ring_header->used;
    733	ring_header->used += ALIGN(rx_q->rrd.size, 8);
    734
    735	rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
    736	rx_q->rfd.v_addr   = ring_header->v_addr + ring_header->used;
    737	ring_header->used += ALIGN(rx_q->rfd.size, 8);
    738
    739	rx_q->rrd.produce_idx = 0;
    740	rx_q->rrd.consume_idx = 0;
    741
    742	rx_q->rfd.produce_idx = 0;
    743	rx_q->rfd.consume_idx = 0;
    744
    745	return 0;
    746}
    747
    748/* Allocate all TX and RX descriptor rings */
    749int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
    750{
    751	struct emac_ring_header *ring_header = &adpt->ring_header;
    752	struct device *dev = adpt->netdev->dev.parent;
    753	unsigned int num_tx_descs = adpt->tx_desc_cnt;
    754	unsigned int num_rx_descs = adpt->rx_desc_cnt;
    755	int ret;
    756
    757	adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
    758
    759	adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
    760	adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
    761
    762	/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
    763	 * hence the additional padding bytes are allocated.
    764	 */
    765	ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
    766			    num_rx_descs * (adpt->rfd_size * 4) +
    767			    num_rx_descs * (adpt->rrd_size * 4) +
    768			    8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
    769
    770	ring_header->used = 0;
    771	ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
    772						 &ring_header->dma_addr,
    773						 GFP_KERNEL);
    774	if (!ring_header->v_addr)
    775		return -ENOMEM;
    776
    777	ring_header->used = ALIGN(ring_header->dma_addr, 8) -
    778							ring_header->dma_addr;
    779
    780	ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
    781	if (ret) {
    782		netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
    783		goto err_alloc_tx;
    784	}
    785
    786	ret = emac_rx_descs_alloc(adpt);
    787	if (ret) {
    788		netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
    789		goto err_alloc_rx;
    790	}
    791
    792	return 0;
    793
    794err_alloc_rx:
    795	emac_tx_q_bufs_free(adpt);
    796err_alloc_tx:
    797	dma_free_coherent(dev, ring_header->size,
    798			  ring_header->v_addr, ring_header->dma_addr);
    799
    800	ring_header->v_addr   = NULL;
    801	ring_header->dma_addr = 0;
    802	ring_header->size     = 0;
    803	ring_header->used     = 0;
    804
    805	return ret;
    806}
    807
    808/* Free all TX and RX descriptor rings */
    809void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
    810{
    811	struct emac_ring_header *ring_header = &adpt->ring_header;
    812	struct device *dev = adpt->netdev->dev.parent;
    813
    814	emac_tx_q_bufs_free(adpt);
    815	emac_rx_q_bufs_free(adpt);
    816
    817	dma_free_coherent(dev, ring_header->size,
    818			  ring_header->v_addr, ring_header->dma_addr);
    819
    820	ring_header->v_addr   = NULL;
    821	ring_header->dma_addr = 0;
    822	ring_header->size     = 0;
    823	ring_header->used     = 0;
    824}
    825
    826/* Initialize descriptor rings */
    827static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
    828{
    829	unsigned int i;
    830
    831	adpt->tx_q.tpd.produce_idx = 0;
    832	adpt->tx_q.tpd.consume_idx = 0;
    833	for (i = 0; i < adpt->tx_q.tpd.count; i++)
    834		adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
    835
    836	adpt->rx_q.rrd.produce_idx = 0;
    837	adpt->rx_q.rrd.consume_idx = 0;
    838	adpt->rx_q.rfd.produce_idx = 0;
    839	adpt->rx_q.rfd.consume_idx = 0;
    840	for (i = 0; i < adpt->rx_q.rfd.count; i++)
    841		adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
    842}
    843
    844/* Produce new receive free descriptor */
    845static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
    846				   struct emac_rx_queue *rx_q,
    847				   dma_addr_t addr)
    848{
    849	u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
    850
    851	*(hw_rfd++) = lower_32_bits(addr);
    852	*hw_rfd = upper_32_bits(addr);
    853
    854	if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
    855		rx_q->rfd.produce_idx = 0;
    856}
    857
    858/* Fill up receive queue's RFD with preallocated receive buffers */
    859static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
    860				    struct emac_rx_queue *rx_q)
    861{
    862	struct emac_buffer *curr_rxbuf;
    863	struct emac_buffer *next_rxbuf;
    864	unsigned int count = 0;
    865	u32 next_produce_idx;
    866
    867	next_produce_idx = rx_q->rfd.produce_idx + 1;
    868	if (next_produce_idx == rx_q->rfd.count)
    869		next_produce_idx = 0;
    870
    871	curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
    872	next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
    873
    874	/* this always has a blank rx_buffer*/
    875	while (!next_rxbuf->dma_addr) {
    876		struct sk_buff *skb;
    877		int ret;
    878
    879		skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
    880		if (!skb)
    881			break;
    882
    883		curr_rxbuf->dma_addr =
    884			dma_map_single(adpt->netdev->dev.parent, skb->data,
    885				       adpt->rxbuf_size, DMA_FROM_DEVICE);
    886
    887		ret = dma_mapping_error(adpt->netdev->dev.parent,
    888					curr_rxbuf->dma_addr);
    889		if (ret) {
    890			dev_kfree_skb(skb);
    891			break;
    892		}
    893		curr_rxbuf->skb = skb;
    894		curr_rxbuf->length = adpt->rxbuf_size;
    895
    896		emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
    897		next_produce_idx = rx_q->rfd.produce_idx + 1;
    898		if (next_produce_idx == rx_q->rfd.count)
    899			next_produce_idx = 0;
    900
    901		curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
    902		next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
    903		count++;
    904	}
    905
    906	if (count) {
    907		u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
    908				rx_q->produce_mask;
    909		emac_reg_update32(adpt->base + rx_q->produce_reg,
    910				  rx_q->produce_mask, prod_idx);
    911	}
    912}
    913
    914static void emac_adjust_link(struct net_device *netdev)
    915{
    916	struct emac_adapter *adpt = netdev_priv(netdev);
    917	struct phy_device *phydev = netdev->phydev;
    918
    919	if (phydev->link) {
    920		emac_mac_start(adpt);
    921		emac_sgmii_link_change(adpt, true);
    922	} else {
    923		emac_sgmii_link_change(adpt, false);
    924		emac_mac_stop(adpt);
    925	}
    926
    927	phy_print_status(phydev);
    928}
    929
    930/* Bringup the interface/HW */
    931int emac_mac_up(struct emac_adapter *adpt)
    932{
    933	struct net_device *netdev = adpt->netdev;
    934	int ret;
    935
    936	emac_mac_rx_tx_ring_reset_all(adpt);
    937	emac_mac_config(adpt);
    938	emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
    939
    940	adpt->phydev->irq = PHY_POLL;
    941	ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
    942				 PHY_INTERFACE_MODE_SGMII);
    943	if (ret) {
    944		netdev_err(adpt->netdev, "could not connect phy\n");
    945		return ret;
    946	}
    947
    948	phy_attached_print(adpt->phydev, NULL);
    949
    950	/* enable mac irq */
    951	writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
    952	writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
    953
    954	phy_start(adpt->phydev);
    955
    956	napi_enable(&adpt->rx_q.napi);
    957	netif_start_queue(netdev);
    958
    959	return 0;
    960}
    961
    962/* Bring down the interface/HW */
    963void emac_mac_down(struct emac_adapter *adpt)
    964{
    965	struct net_device *netdev = adpt->netdev;
    966
    967	netif_stop_queue(netdev);
    968	napi_disable(&adpt->rx_q.napi);
    969
    970	phy_stop(adpt->phydev);
    971
    972	/* Interrupts must be disabled before the PHY is disconnected, to
    973	 * avoid a race condition where adjust_link is null when we get
    974	 * an interrupt.
    975	 */
    976	writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
    977	writel(0, adpt->base + EMAC_INT_MASK);
    978	synchronize_irq(adpt->irq.irq);
    979
    980	phy_disconnect(adpt->phydev);
    981
    982	emac_mac_reset(adpt);
    983
    984	emac_tx_q_descs_free(adpt);
    985	netdev_reset_queue(adpt->netdev);
    986	emac_rx_q_free_descs(adpt);
    987}
    988
    989/* Consume next received packet descriptor */
    990static bool emac_rx_process_rrd(struct emac_adapter *adpt,
    991				struct emac_rx_queue *rx_q,
    992				struct emac_rrd *rrd)
    993{
    994	u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
    995
    996	rrd->word[3] = *(hw_rrd + 3);
    997
    998	if (!RRD_UPDT(rrd))
    999		return false;
   1000
   1001	rrd->word[4] = 0;
   1002	rrd->word[5] = 0;
   1003
   1004	rrd->word[0] = *(hw_rrd++);
   1005	rrd->word[1] = *(hw_rrd++);
   1006	rrd->word[2] = *(hw_rrd++);
   1007
   1008	if (unlikely(RRD_NOR(rrd) != 1)) {
   1009		netdev_err(adpt->netdev,
   1010			   "error: multi-RFD not support yet! nor:%lu\n",
   1011			   RRD_NOR(rrd));
   1012	}
   1013
   1014	/* mark rrd as processed */
   1015	RRD_UPDT_SET(rrd, 0);
   1016	*hw_rrd = rrd->word[3];
   1017
   1018	if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
   1019		rx_q->rrd.consume_idx = 0;
   1020
   1021	return true;
   1022}
   1023
   1024/* Produce new transmit descriptor */
   1025static void emac_tx_tpd_create(struct emac_adapter *adpt,
   1026			       struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
   1027{
   1028	u32 *hw_tpd;
   1029
   1030	tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
   1031	hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
   1032
   1033	if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
   1034		tx_q->tpd.produce_idx = 0;
   1035
   1036	*(hw_tpd++) = tpd->word[0];
   1037	*(hw_tpd++) = tpd->word[1];
   1038	*(hw_tpd++) = tpd->word[2];
   1039	*hw_tpd = tpd->word[3];
   1040}
   1041
   1042/* Mark the last transmit descriptor as such (for the transmit packet) */
   1043static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
   1044				  struct emac_tx_queue *tx_q)
   1045{
   1046	u32 *hw_tpd =
   1047		EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
   1048	u32 tmp_tpd;
   1049
   1050	tmp_tpd = *(hw_tpd + 1);
   1051	tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
   1052	*(hw_tpd + 1) = tmp_tpd;
   1053}
   1054
   1055static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
   1056{
   1057	struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
   1058	u32 consume_idx = RRD_SI(rrd);
   1059	unsigned int i;
   1060
   1061	for (i = 0; i < RRD_NOR(rrd); i++) {
   1062		rfbuf[consume_idx].skb = NULL;
   1063		if (++consume_idx == rx_q->rfd.count)
   1064			consume_idx = 0;
   1065	}
   1066
   1067	rx_q->rfd.consume_idx = consume_idx;
   1068	rx_q->rfd.process_idx = consume_idx;
   1069}
   1070
   1071/* Push the received skb to upper layers */
   1072static void emac_receive_skb(struct emac_rx_queue *rx_q,
   1073			     struct sk_buff *skb,
   1074			     u16 vlan_tag, bool vlan_flag)
   1075{
   1076	if (vlan_flag) {
   1077		u16 vlan;
   1078
   1079		EMAC_TAG_TO_VLAN(vlan_tag, vlan);
   1080		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
   1081	}
   1082
   1083	napi_gro_receive(&rx_q->napi, skb);
   1084}
   1085
   1086/* Process receive event */
   1087void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
   1088			 int *num_pkts, int max_pkts)
   1089{
   1090	u32 proc_idx, hw_consume_idx, num_consume_pkts;
   1091	struct net_device *netdev  = adpt->netdev;
   1092	struct emac_buffer *rfbuf;
   1093	unsigned int count = 0;
   1094	struct emac_rrd rrd;
   1095	struct sk_buff *skb;
   1096	u32 reg;
   1097
   1098	reg = readl_relaxed(adpt->base + rx_q->consume_reg);
   1099
   1100	hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
   1101	num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
   1102		(hw_consume_idx -  rx_q->rrd.consume_idx) :
   1103		(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
   1104
   1105	do {
   1106		if (!num_consume_pkts)
   1107			break;
   1108
   1109		if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
   1110			break;
   1111
   1112		if (likely(RRD_NOR(&rrd) == 1)) {
   1113			/* good receive */
   1114			rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
   1115			dma_unmap_single(adpt->netdev->dev.parent,
   1116					 rfbuf->dma_addr, rfbuf->length,
   1117					 DMA_FROM_DEVICE);
   1118			rfbuf->dma_addr = 0;
   1119			skb = rfbuf->skb;
   1120		} else {
   1121			netdev_err(adpt->netdev,
   1122				   "error: multi-RFD not support yet!\n");
   1123			break;
   1124		}
   1125		emac_rx_rfd_clean(rx_q, &rrd);
   1126		num_consume_pkts--;
   1127		count++;
   1128
   1129		/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
   1130		 * with DF set are marked as error), drop packets based on the
   1131		 * error mask rather than the summary bit (ignoring L4F errors)
   1132		 */
   1133		if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
   1134			netif_dbg(adpt, rx_status, adpt->netdev,
   1135				  "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
   1136				  rrd.word[0], rrd.word[1],
   1137				  rrd.word[2], rrd.word[3]);
   1138
   1139			dev_kfree_skb(skb);
   1140			continue;
   1141		}
   1142
   1143		skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
   1144		skb->dev = netdev;
   1145		skb->protocol = eth_type_trans(skb, skb->dev);
   1146		if (netdev->features & NETIF_F_RXCSUM)
   1147			skb->ip_summed = RRD_L4F(&rrd) ?
   1148					  CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
   1149		else
   1150			skb_checksum_none_assert(skb);
   1151
   1152		emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
   1153				 (bool)RRD_CVTAG(&rrd));
   1154
   1155		(*num_pkts)++;
   1156	} while (*num_pkts < max_pkts);
   1157
   1158	if (count) {
   1159		proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
   1160				rx_q->process_mask;
   1161		emac_reg_update32(adpt->base + rx_q->process_reg,
   1162				  rx_q->process_mask, proc_idx);
   1163		emac_mac_rx_descs_refill(adpt, rx_q);
   1164	}
   1165}
   1166
   1167/* get the number of free transmit descriptors */
   1168static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
   1169{
   1170	u32 produce_idx = tx_q->tpd.produce_idx;
   1171	u32 consume_idx = tx_q->tpd.consume_idx;
   1172
   1173	return (consume_idx > produce_idx) ?
   1174		(consume_idx - produce_idx - 1) :
   1175		(tx_q->tpd.count + consume_idx - produce_idx - 1);
   1176}
   1177
   1178/* Process transmit event */
   1179void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
   1180{
   1181	u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
   1182	u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
   1183	struct emac_buffer *tpbuf;
   1184
   1185	hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
   1186
   1187	while (tx_q->tpd.consume_idx != hw_consume_idx) {
   1188		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
   1189		if (tpbuf->dma_addr) {
   1190			dma_unmap_page(adpt->netdev->dev.parent,
   1191				       tpbuf->dma_addr, tpbuf->length,
   1192				       DMA_TO_DEVICE);
   1193			tpbuf->dma_addr = 0;
   1194		}
   1195
   1196		if (tpbuf->skb) {
   1197			pkts_compl++;
   1198			bytes_compl += tpbuf->skb->len;
   1199			dev_consume_skb_irq(tpbuf->skb);
   1200			tpbuf->skb = NULL;
   1201		}
   1202
   1203		if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
   1204			tx_q->tpd.consume_idx = 0;
   1205	}
   1206
   1207	netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
   1208
   1209	if (netif_queue_stopped(adpt->netdev))
   1210		if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
   1211			netif_wake_queue(adpt->netdev);
   1212}
   1213
   1214/* Initialize all queue data structures */
   1215void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
   1216				  struct emac_adapter *adpt)
   1217{
   1218	adpt->rx_q.netdev = adpt->netdev;
   1219
   1220	adpt->rx_q.produce_reg  = EMAC_MAILBOX_0;
   1221	adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
   1222	adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
   1223
   1224	adpt->rx_q.process_reg  = EMAC_MAILBOX_0;
   1225	adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
   1226	adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
   1227
   1228	adpt->rx_q.consume_reg  = EMAC_MAILBOX_3;
   1229	adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
   1230	adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
   1231
   1232	adpt->rx_q.irq          = &adpt->irq;
   1233	adpt->rx_q.intr         = adpt->irq.mask & ISR_RX_PKT;
   1234
   1235	adpt->tx_q.produce_reg  = EMAC_MAILBOX_15;
   1236	adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
   1237	adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
   1238
   1239	adpt->tx_q.consume_reg  = EMAC_MAILBOX_2;
   1240	adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
   1241	adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
   1242}
   1243
   1244/* Fill up transmit descriptors with TSO and Checksum offload information */
   1245static int emac_tso_csum(struct emac_adapter *adpt,
   1246			 struct emac_tx_queue *tx_q,
   1247			 struct sk_buff *skb,
   1248			 struct emac_tpd *tpd)
   1249{
   1250	unsigned int hdr_len;
   1251	int ret;
   1252
   1253	if (skb_is_gso(skb)) {
   1254		if (skb_header_cloned(skb)) {
   1255			ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
   1256			if (unlikely(ret))
   1257				return ret;
   1258		}
   1259
   1260		if (skb->protocol == htons(ETH_P_IP)) {
   1261			u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
   1262				       + ntohs(ip_hdr(skb)->tot_len);
   1263			if (skb->len > pkt_len)
   1264				pskb_trim(skb, pkt_len);
   1265		}
   1266
   1267		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
   1268		if (unlikely(skb->len == hdr_len)) {
   1269			/* we only need to do csum */
   1270			netif_warn(adpt, tx_err, adpt->netdev,
   1271				   "tso not needed for packet with 0 data\n");
   1272			goto do_csum;
   1273		}
   1274
   1275		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
   1276			ip_hdr(skb)->check = 0;
   1277			tcp_hdr(skb)->check =
   1278				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
   1279						   ip_hdr(skb)->daddr,
   1280						   0, IPPROTO_TCP, 0);
   1281			TPD_IPV4_SET(tpd, 1);
   1282		}
   1283
   1284		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
   1285			/* ipv6 tso need an extra tpd */
   1286			struct emac_tpd extra_tpd;
   1287
   1288			memset(tpd, 0, sizeof(*tpd));
   1289			memset(&extra_tpd, 0, sizeof(extra_tpd));
   1290
   1291			tcp_v6_gso_csum_prep(skb);
   1292
   1293			TPD_PKT_LEN_SET(&extra_tpd, skb->len);
   1294			TPD_LSO_SET(&extra_tpd, 1);
   1295			TPD_LSOV_SET(&extra_tpd, 1);
   1296			emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
   1297			TPD_LSOV_SET(tpd, 1);
   1298		}
   1299
   1300		TPD_LSO_SET(tpd, 1);
   1301		TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
   1302		TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
   1303		return 0;
   1304	}
   1305
   1306do_csum:
   1307	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
   1308		unsigned int css, cso;
   1309
   1310		cso = skb_transport_offset(skb);
   1311		if (unlikely(cso & 0x1)) {
   1312			netdev_err(adpt->netdev,
   1313				   "error: payload offset should be even\n");
   1314			return -EINVAL;
   1315		}
   1316		css = cso + skb->csum_offset;
   1317
   1318		TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
   1319		TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
   1320		TPD_CSX_SET(tpd, 1);
   1321	}
   1322
   1323	return 0;
   1324}
   1325
   1326/* Fill up transmit descriptors */
   1327static void emac_tx_fill_tpd(struct emac_adapter *adpt,
   1328			     struct emac_tx_queue *tx_q, struct sk_buff *skb,
   1329			     struct emac_tpd *tpd)
   1330{
   1331	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
   1332	unsigned int first = tx_q->tpd.produce_idx;
   1333	unsigned int len = skb_headlen(skb);
   1334	struct emac_buffer *tpbuf = NULL;
   1335	unsigned int mapped_len = 0;
   1336	unsigned int i;
   1337	int count = 0;
   1338	int ret;
   1339
   1340	/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
   1341	if (TPD_LSO(tpd)) {
   1342		mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
   1343
   1344		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
   1345		tpbuf->length = mapped_len;
   1346		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
   1347					       virt_to_page(skb->data),
   1348					       offset_in_page(skb->data),
   1349					       tpbuf->length,
   1350					       DMA_TO_DEVICE);
   1351		ret = dma_mapping_error(adpt->netdev->dev.parent,
   1352					tpbuf->dma_addr);
   1353		if (ret)
   1354			goto error;
   1355
   1356		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
   1357		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
   1358		TPD_BUF_LEN_SET(tpd, tpbuf->length);
   1359		emac_tx_tpd_create(adpt, tx_q, tpd);
   1360		count++;
   1361	}
   1362
   1363	if (mapped_len < len) {
   1364		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
   1365		tpbuf->length = len - mapped_len;
   1366		tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
   1367					       virt_to_page(skb->data +
   1368							    mapped_len),
   1369					       offset_in_page(skb->data +
   1370							      mapped_len),
   1371					       tpbuf->length, DMA_TO_DEVICE);
   1372		ret = dma_mapping_error(adpt->netdev->dev.parent,
   1373					tpbuf->dma_addr);
   1374		if (ret)
   1375			goto error;
   1376
   1377		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
   1378		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
   1379		TPD_BUF_LEN_SET(tpd, tpbuf->length);
   1380		emac_tx_tpd_create(adpt, tx_q, tpd);
   1381		count++;
   1382	}
   1383
   1384	for (i = 0; i < nr_frags; i++) {
   1385		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
   1386
   1387		tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
   1388		tpbuf->length = skb_frag_size(frag);
   1389		tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
   1390						   frag, 0, tpbuf->length,
   1391						   DMA_TO_DEVICE);
   1392		ret = dma_mapping_error(adpt->netdev->dev.parent,
   1393					tpbuf->dma_addr);
   1394		if (ret)
   1395			goto error;
   1396
   1397		TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
   1398		TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
   1399		TPD_BUF_LEN_SET(tpd, tpbuf->length);
   1400		emac_tx_tpd_create(adpt, tx_q, tpd);
   1401		count++;
   1402	}
   1403
   1404	/* The last tpd */
   1405	wmb();
   1406	emac_tx_tpd_mark_last(adpt, tx_q);
   1407
   1408	/* The last buffer info contain the skb address,
   1409	 * so it will be freed after unmap
   1410	 */
   1411	tpbuf->skb = skb;
   1412
   1413	return;
   1414
   1415error:
   1416	/* One of the memory mappings failed, so undo everything */
   1417	tx_q->tpd.produce_idx = first;
   1418
   1419	while (count--) {
   1420		tpbuf = GET_TPD_BUFFER(tx_q, first);
   1421		dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
   1422			       tpbuf->length, DMA_TO_DEVICE);
   1423		tpbuf->dma_addr = 0;
   1424		tpbuf->length = 0;
   1425
   1426		if (++first == tx_q->tpd.count)
   1427			first = 0;
   1428	}
   1429
   1430	dev_kfree_skb(skb);
   1431}
   1432
   1433/* Transmit the packet using specified transmit queue */
   1434netdev_tx_t emac_mac_tx_buf_send(struct emac_adapter *adpt,
   1435				 struct emac_tx_queue *tx_q,
   1436				 struct sk_buff *skb)
   1437{
   1438	struct emac_tpd tpd;
   1439	u32 prod_idx;
   1440	int len;
   1441
   1442	memset(&tpd, 0, sizeof(tpd));
   1443
   1444	if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
   1445		dev_kfree_skb_any(skb);
   1446		return NETDEV_TX_OK;
   1447	}
   1448
   1449	if (skb_vlan_tag_present(skb)) {
   1450		u16 tag;
   1451
   1452		EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
   1453		TPD_CVLAN_TAG_SET(&tpd, tag);
   1454		TPD_INSTC_SET(&tpd, 1);
   1455	}
   1456
   1457	if (skb_network_offset(skb) != ETH_HLEN)
   1458		TPD_TYP_SET(&tpd, 1);
   1459
   1460	len = skb->len;
   1461	emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
   1462
   1463	netdev_sent_queue(adpt->netdev, len);
   1464
   1465	/* Make sure the are enough free descriptors to hold one
   1466	 * maximum-sized SKB.  We need one desc for each fragment,
   1467	 * one for the checksum (emac_tso_csum), one for TSO, and
   1468	 * and one for the SKB header.
   1469	 */
   1470	if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
   1471		netif_stop_queue(adpt->netdev);
   1472
   1473	/* update produce idx */
   1474	prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
   1475		    tx_q->produce_mask;
   1476	emac_reg_update32(adpt->base + tx_q->produce_reg,
   1477			  tx_q->produce_mask, prod_idx);
   1478
   1479	return NETDEV_TX_OK;
   1480}