cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ef100_nic.c (38948B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2018 Solarflare Communications Inc.
      5 * Copyright 2019-2022 Xilinx Inc.
      6 *
      7 * This program is free software; you can redistribute it and/or modify it
      8 * under the terms of the GNU General Public License version 2 as published
      9 * by the Free Software Foundation, incorporated herein by reference.
     10 */
     11
     12#include "ef100_nic.h"
     13#include "efx_common.h"
     14#include "efx_channels.h"
     15#include "io.h"
     16#include "selftest.h"
     17#include "ef100_regs.h"
     18#include "mcdi.h"
     19#include "mcdi_pcol.h"
     20#include "mcdi_port_common.h"
     21#include "mcdi_functions.h"
     22#include "mcdi_filters.h"
     23#include "ef100_rx.h"
     24#include "ef100_tx.h"
     25#include "ef100_sriov.h"
     26#include "ef100_netdev.h"
     27#include "rx_common.h"
     28
     29#define EF100_MAX_VIS 4096
     30#define EF100_NUM_MCDI_BUFFERS	1
     31#define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
     32
     33#define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
     34
     35/*	MCDI
     36 */
     37static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
     38{
     39	struct ef100_nic_data *nic_data = efx->nic_data;
     40
     41	if (dma_addr)
     42		*dma_addr = nic_data->mcdi_buf.dma_addr +
     43			    bufid * ALIGN(MCDI_BUF_LEN, 256);
     44	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
     45}
     46
     47static int ef100_get_warm_boot_count(struct efx_nic *efx)
     48{
     49	efx_dword_t reg;
     50
     51	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
     52
     53	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
     54		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
     55		efx->state = STATE_DISABLED;
     56		return -ENETDOWN;
     57	} else {
     58		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
     59			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
     60	}
     61}
     62
     63static void ef100_mcdi_request(struct efx_nic *efx,
     64			       const efx_dword_t *hdr, size_t hdr_len,
     65			       const efx_dword_t *sdu, size_t sdu_len)
     66{
     67	dma_addr_t dma_addr;
     68	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
     69
     70	memcpy(pdu, hdr, hdr_len);
     71	memcpy(pdu + hdr_len, sdu, sdu_len);
     72	wmb();
     73
     74	/* The hardware provides 'low' and 'high' (doorbell) registers
     75	 * for passing the 64-bit address of an MCDI request to
     76	 * firmware.  However the dwords are swapped by firmware.  The
     77	 * least significant bits of the doorbell are then 0 for all
     78	 * MCDI requests due to alignment.
     79	 */
     80	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
     81	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
     82}
     83
     84static bool ef100_mcdi_poll_response(struct efx_nic *efx)
     85{
     86	const efx_dword_t hdr =
     87		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
     88
     89	rmb();
     90	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
     91}
     92
     93static void ef100_mcdi_read_response(struct efx_nic *efx,
     94				     efx_dword_t *outbuf, size_t offset,
     95				     size_t outlen)
     96{
     97	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
     98
     99	memcpy(outbuf, pdu + offset, outlen);
    100}
    101
    102static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
    103{
    104	struct ef100_nic_data *nic_data = efx->nic_data;
    105	int rc;
    106
    107	rc = ef100_get_warm_boot_count(efx);
    108	if (rc < 0) {
    109		/* The firmware is presumably in the process of
    110		 * rebooting.  However, we are supposed to report each
    111		 * reboot just once, so we must only do that once we
    112		 * can read and store the updated warm boot count.
    113		 */
    114		return 0;
    115	}
    116
    117	if (rc == nic_data->warm_boot_count)
    118		return 0;
    119
    120	nic_data->warm_boot_count = rc;
    121
    122	return -EIO;
    123}
    124
    125static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
    126{
    127}
    128
    129/*	MCDI calls
    130 */
    131static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
    132{
    133	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
    134	size_t outlen;
    135	int rc;
    136
    137	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
    138
    139	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
    140			  outbuf, sizeof(outbuf), &outlen);
    141	if (rc)
    142		return rc;
    143	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
    144		return -EIO;
    145
    146	ether_addr_copy(mac_address,
    147			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
    148	return 0;
    149}
    150
    151static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
    152{
    153	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
    154	struct ef100_nic_data *nic_data = efx->nic_data;
    155	u8 vi_window_mode;
    156	size_t outlen;
    157	int rc;
    158
    159	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
    160
    161	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
    162			  outbuf, sizeof(outbuf), &outlen);
    163	if (rc)
    164		return rc;
    165	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
    166		netif_err(efx, drv, efx->net_dev,
    167			  "unable to read datapath firmware capabilities\n");
    168		return -EIO;
    169	}
    170
    171	nic_data->datapath_caps = MCDI_DWORD(outbuf,
    172					     GET_CAPABILITIES_OUT_FLAGS1);
    173	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
    174					      GET_CAPABILITIES_V2_OUT_FLAGS2);
    175	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
    176		nic_data->datapath_caps3 = 0;
    177	else
    178		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
    179						      GET_CAPABILITIES_V7_OUT_FLAGS3);
    180
    181	vi_window_mode = MCDI_BYTE(outbuf,
    182				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
    183	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
    184	if (rc)
    185		return rc;
    186
    187	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
    188		struct net_device *net_dev = efx->net_dev;
    189		netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
    190					NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
    191					NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
    192
    193		net_dev->features |= tso;
    194		net_dev->hw_features |= tso;
    195		net_dev->hw_enc_features |= tso;
    196		/* EF100 HW can only offload outer checksums if they are UDP,
    197		 * so for GRE_CSUM we have to use GSO_PARTIAL.
    198		 */
    199		net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
    200	}
    201	efx->num_mac_stats = MCDI_WORD(outbuf,
    202				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
    203	netif_dbg(efx, probe, efx->net_dev,
    204		  "firmware reports num_mac_stats = %u\n",
    205		  efx->num_mac_stats);
    206	return 0;
    207}
    208
    209/*	Event handling
    210 */
    211static int ef100_ev_probe(struct efx_channel *channel)
    212{
    213	/* Allocate an extra descriptor for the QMDA status completion entry */
    214	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
    215				    (channel->eventq_mask + 2) *
    216				    sizeof(efx_qword_t),
    217				    GFP_KERNEL);
    218}
    219
    220static int ef100_ev_init(struct efx_channel *channel)
    221{
    222	struct ef100_nic_data *nic_data = channel->efx->nic_data;
    223
    224	/* initial phase is 0 */
    225	clear_bit(channel->channel, nic_data->evq_phases);
    226
    227	return efx_mcdi_ev_init(channel, false, false);
    228}
    229
    230static void ef100_ev_read_ack(struct efx_channel *channel)
    231{
    232	efx_dword_t evq_prime;
    233
    234	EFX_POPULATE_DWORD_2(evq_prime,
    235			     ERF_GZ_EVQ_ID, channel->channel,
    236			     ERF_GZ_IDX, channel->eventq_read_ptr &
    237					 channel->eventq_mask);
    238
    239	efx_writed(channel->efx, &evq_prime,
    240		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
    241}
    242
    243static int ef100_ev_process(struct efx_channel *channel, int quota)
    244{
    245	struct efx_nic *efx = channel->efx;
    246	struct ef100_nic_data *nic_data;
    247	bool evq_phase, old_evq_phase;
    248	unsigned int read_ptr;
    249	efx_qword_t *p_event;
    250	int spent = 0;
    251	bool ev_phase;
    252	int ev_type;
    253
    254	if (unlikely(!channel->enabled))
    255		return 0;
    256
    257	nic_data = efx->nic_data;
    258	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
    259	old_evq_phase = evq_phase;
    260	read_ptr = channel->eventq_read_ptr;
    261	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
    262
    263	while (spent < quota) {
    264		p_event = efx_event(channel, read_ptr);
    265
    266		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
    267		if (ev_phase != evq_phase)
    268			break;
    269
    270		netif_vdbg(efx, drv, efx->net_dev,
    271			   "processing event on %d " EFX_QWORD_FMT "\n",
    272			   channel->channel, EFX_QWORD_VAL(*p_event));
    273
    274		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
    275
    276		switch (ev_type) {
    277		case ESE_GZ_EF100_EV_RX_PKTS:
    278			efx_ef100_ev_rx(channel, p_event);
    279			++spent;
    280			break;
    281		case ESE_GZ_EF100_EV_MCDI:
    282			efx_mcdi_process_event(channel, p_event);
    283			break;
    284		case ESE_GZ_EF100_EV_TX_COMPLETION:
    285			ef100_ev_tx(channel, p_event);
    286			break;
    287		case ESE_GZ_EF100_EV_DRIVER:
    288			netif_info(efx, drv, efx->net_dev,
    289				   "Driver initiated event " EFX_QWORD_FMT "\n",
    290				   EFX_QWORD_VAL(*p_event));
    291			break;
    292		default:
    293			netif_info(efx, drv, efx->net_dev,
    294				   "Unhandled event " EFX_QWORD_FMT "\n",
    295				   EFX_QWORD_VAL(*p_event));
    296		}
    297
    298		++read_ptr;
    299		if ((read_ptr & channel->eventq_mask) == 0)
    300			evq_phase = !evq_phase;
    301	}
    302
    303	channel->eventq_read_ptr = read_ptr;
    304	if (evq_phase != old_evq_phase)
    305		change_bit(channel->channel, nic_data->evq_phases);
    306
    307	return spent;
    308}
    309
    310static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
    311{
    312	struct efx_msi_context *context = dev_id;
    313	struct efx_nic *efx = context->efx;
    314
    315	netif_vdbg(efx, intr, efx->net_dev,
    316		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
    317
    318	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
    319		/* Note test interrupts */
    320		if (context->index == efx->irq_level)
    321			efx->last_irq_cpu = raw_smp_processor_id();
    322
    323		/* Schedule processing of the channel */
    324		efx_schedule_channel_irq(efx->channel[context->index]);
    325	}
    326
    327	return IRQ_HANDLED;
    328}
    329
    330static int ef100_phy_probe(struct efx_nic *efx)
    331{
    332	struct efx_mcdi_phy_data *phy_data;
    333	int rc;
    334
    335	/* Probe for the PHY */
    336	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
    337	if (!efx->phy_data)
    338		return -ENOMEM;
    339
    340	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
    341	if (rc)
    342		return rc;
    343
    344	/* Populate driver and ethtool settings */
    345	phy_data = efx->phy_data;
    346	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
    347				efx->link_advertising);
    348	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
    349						   false);
    350
    351	/* Default to Autonegotiated flow control if the PHY supports it */
    352	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
    353	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
    354		efx->wanted_fc |= EFX_FC_AUTO;
    355	efx_link_set_wanted_fc(efx, efx->wanted_fc);
    356
    357	/* Push settings to the PHY. Failure is not fatal, the user can try to
    358	 * fix it using ethtool.
    359	 */
    360	rc = efx_mcdi_port_reconfigure(efx);
    361	if (rc && rc != -EPERM)
    362		netif_warn(efx, drv, efx->net_dev,
    363			   "could not initialise PHY settings\n");
    364
    365	return 0;
    366}
    367
    368static int ef100_filter_table_probe(struct efx_nic *efx)
    369{
    370	return efx_mcdi_filter_table_probe(efx, true);
    371}
    372
    373static int ef100_filter_table_up(struct efx_nic *efx)
    374{
    375	int rc;
    376
    377	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
    378	if (rc) {
    379		efx_mcdi_filter_table_down(efx);
    380		return rc;
    381	}
    382
    383	rc = efx_mcdi_filter_add_vlan(efx, 0);
    384	if (rc) {
    385		efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
    386		efx_mcdi_filter_table_down(efx);
    387	}
    388
    389	return rc;
    390}
    391
    392static void ef100_filter_table_down(struct efx_nic *efx)
    393{
    394	efx_mcdi_filter_del_vlan(efx, 0);
    395	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
    396	efx_mcdi_filter_table_down(efx);
    397}
    398
    399/*	Other
    400 */
    401static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
    402{
    403	WARN_ON(!mutex_is_locked(&efx->mac_lock));
    404
    405	efx_mcdi_filter_sync_rx_mode(efx);
    406
    407	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
    408		return efx_mcdi_set_mtu(efx);
    409	return efx_mcdi_set_mac(efx);
    410}
    411
    412static enum reset_type ef100_map_reset_reason(enum reset_type reason)
    413{
    414	if (reason == RESET_TYPE_TX_WATCHDOG)
    415		return reason;
    416	return RESET_TYPE_DISABLE;
    417}
    418
    419static int ef100_map_reset_flags(u32 *flags)
    420{
    421	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
    422	if ((*flags & EF100_RESET_PORT)) {
    423		*flags &= ~EF100_RESET_PORT;
    424		return RESET_TYPE_ALL;
    425	}
    426	if (*flags & ETH_RESET_MGMT) {
    427		*flags &= ~ETH_RESET_MGMT;
    428		return RESET_TYPE_DISABLE;
    429	}
    430
    431	return -EINVAL;
    432}
    433
    434static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
    435{
    436	int rc;
    437
    438	dev_close(efx->net_dev);
    439
    440	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
    441		netif_device_attach(efx->net_dev);
    442		__clear_bit(reset_type, &efx->reset_pending);
    443		rc = dev_open(efx->net_dev, NULL);
    444	} else if (reset_type == RESET_TYPE_ALL) {
    445		rc = efx_mcdi_reset(efx, reset_type);
    446		if (rc)
    447			return rc;
    448
    449		netif_device_attach(efx->net_dev);
    450
    451		rc = dev_open(efx->net_dev, NULL);
    452	} else {
    453		rc = 1;	/* Leave the device closed */
    454	}
    455	return rc;
    456}
    457
    458static void ef100_common_stat_mask(unsigned long *mask)
    459{
    460	__set_bit(EF100_STAT_port_rx_packets, mask);
    461	__set_bit(EF100_STAT_port_tx_packets, mask);
    462	__set_bit(EF100_STAT_port_rx_bytes, mask);
    463	__set_bit(EF100_STAT_port_tx_bytes, mask);
    464	__set_bit(EF100_STAT_port_rx_multicast, mask);
    465	__set_bit(EF100_STAT_port_rx_bad, mask);
    466	__set_bit(EF100_STAT_port_rx_align_error, mask);
    467	__set_bit(EF100_STAT_port_rx_overflow, mask);
    468}
    469
    470static void ef100_ethtool_stat_mask(unsigned long *mask)
    471{
    472	__set_bit(EF100_STAT_port_tx_pause, mask);
    473	__set_bit(EF100_STAT_port_tx_unicast, mask);
    474	__set_bit(EF100_STAT_port_tx_multicast, mask);
    475	__set_bit(EF100_STAT_port_tx_broadcast, mask);
    476	__set_bit(EF100_STAT_port_tx_lt64, mask);
    477	__set_bit(EF100_STAT_port_tx_64, mask);
    478	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
    479	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
    480	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
    481	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
    482	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
    483	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
    484	__set_bit(EF100_STAT_port_rx_good, mask);
    485	__set_bit(EF100_STAT_port_rx_pause, mask);
    486	__set_bit(EF100_STAT_port_rx_unicast, mask);
    487	__set_bit(EF100_STAT_port_rx_broadcast, mask);
    488	__set_bit(EF100_STAT_port_rx_lt64, mask);
    489	__set_bit(EF100_STAT_port_rx_64, mask);
    490	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
    491	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
    492	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
    493	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
    494	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
    495	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
    496	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
    497	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
    498	__set_bit(EF100_STAT_port_rx_length_error, mask);
    499	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
    500	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
    501	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
    502}
    503
    504#define EF100_DMA_STAT(ext_name, mcdi_name)			\
    505	[EF100_STAT_ ## ext_name] =				\
    506	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
    507
    508static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
    509	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
    510	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
    511	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
    512	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
    513	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
    514	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
    515	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
    516	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
    517	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
    518	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
    519	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
    520	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
    521	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
    522	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
    523	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
    524	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
    525	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
    526	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
    527	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
    528	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
    529	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
    530	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
    531	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
    532	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
    533	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
    534	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
    535	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
    536	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
    537	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
    538	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
    539	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
    540	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
    541	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
    542	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
    543	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
    544	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
    545	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
    546	EFX_GENERIC_SW_STAT(rx_noskb_drops),
    547};
    548
    549static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
    550{
    551	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
    552
    553	ef100_ethtool_stat_mask(mask);
    554	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
    555				      mask, names);
    556}
    557
    558static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
    559					struct rtnl_link_stats64 *core_stats)
    560{
    561	struct ef100_nic_data *nic_data = efx->nic_data;
    562	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
    563	size_t stats_count = 0, index;
    564	u64 *stats = nic_data->stats;
    565
    566	ef100_ethtool_stat_mask(mask);
    567
    568	if (full_stats) {
    569		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
    570			if (ef100_stat_desc[index].name) {
    571				*full_stats++ = stats[index];
    572				++stats_count;
    573			}
    574		}
    575	}
    576
    577	if (!core_stats)
    578		return stats_count;
    579
    580	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
    581	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
    582	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
    583	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
    584	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
    585				 stats[GENERIC_STAT_rx_nodesc_trunc] +
    586				 stats[GENERIC_STAT_rx_noskb_drops];
    587	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
    588	core_stats->rx_length_errors =
    589			stats[EF100_STAT_port_rx_gtjumbo] +
    590			stats[EF100_STAT_port_rx_length_error];
    591	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
    592	core_stats->rx_frame_errors =
    593			stats[EF100_STAT_port_rx_align_error];
    594	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
    595	core_stats->rx_errors = (core_stats->rx_length_errors +
    596				 core_stats->rx_crc_errors +
    597				 core_stats->rx_frame_errors);
    598
    599	return stats_count;
    600}
    601
    602static size_t ef100_update_stats(struct efx_nic *efx,
    603				 u64 *full_stats,
    604				 struct rtnl_link_stats64 *core_stats)
    605{
    606	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
    607	struct ef100_nic_data *nic_data = efx->nic_data;
    608	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
    609	u64 *stats = nic_data->stats;
    610
    611	ef100_common_stat_mask(mask);
    612	ef100_ethtool_stat_mask(mask);
    613
    614	if (!mc_stats)
    615		return 0;
    616
    617	efx_nic_copy_stats(efx, mc_stats);
    618	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
    619			     stats, mc_stats, false);
    620
    621	kfree(mc_stats);
    622
    623	return ef100_update_stats_common(efx, full_stats, core_stats);
    624}
    625
    626static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
    627				      struct netdev_phys_item_id *ppid)
    628{
    629	struct ef100_nic_data *nic_data = efx->nic_data;
    630
    631	if (!is_valid_ether_addr(nic_data->port_id))
    632		return -EOPNOTSUPP;
    633
    634	ppid->id_len = ETH_ALEN;
    635	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
    636
    637	return 0;
    638}
    639
    640static int efx_ef100_irq_test_generate(struct efx_nic *efx)
    641{
    642	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
    643
    644	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
    645
    646	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
    647	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
    648				  inbuf, sizeof(inbuf), NULL, 0, NULL);
    649}
    650
    651#define EFX_EF100_TEST 1
    652
    653static void efx_ef100_ev_test_generate(struct efx_channel *channel)
    654{
    655	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
    656	struct efx_nic *efx = channel->efx;
    657	efx_qword_t event;
    658	int rc;
    659
    660	EFX_POPULATE_QWORD_2(event,
    661			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
    662			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
    663
    664	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
    665
    666	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
    667	 * already swapped the data to little-endian order.
    668	 */
    669	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
    670	       sizeof(efx_qword_t));
    671
    672	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
    673			  NULL, 0, NULL);
    674	if (rc && (rc != -ENETDOWN))
    675		goto fail;
    676
    677	return;
    678
    679fail:
    680	WARN_ON(true);
    681	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
    682}
    683
    684static unsigned int ef100_check_caps(const struct efx_nic *efx,
    685				     u8 flag, u32 offset)
    686{
    687	const struct ef100_nic_data *nic_data = efx->nic_data;
    688
    689	switch (offset) {
    690	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
    691		return nic_data->datapath_caps & BIT_ULL(flag);
    692	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
    693		return nic_data->datapath_caps2 & BIT_ULL(flag);
    694	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
    695		return nic_data->datapath_caps3 & BIT_ULL(flag);
    696	default:
    697		return 0;
    698	}
    699}
    700
    701static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
    702{
    703	/* Maximum link speed for Riverhead is 100G */
    704	return 10 * EFX_RECYCLE_RING_SIZE_10G;
    705}
    706
    707/*	NIC level access functions
    708 */
    709#define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
    710	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
    711	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
    712	NETIF_F_HW_VLAN_CTAG_TX)
    713
    714const struct efx_nic_type ef100_pf_nic_type = {
    715	.revision = EFX_REV_EF100,
    716	.is_vf = false,
    717	.probe = ef100_probe_pf,
    718	.offload_features = EF100_OFFLOAD_FEATURES,
    719	.mcdi_max_ver = 2,
    720	.mcdi_request = ef100_mcdi_request,
    721	.mcdi_poll_response = ef100_mcdi_poll_response,
    722	.mcdi_read_response = ef100_mcdi_read_response,
    723	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
    724	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
    725	.irq_enable_master = efx_port_dummy_op_void,
    726	.irq_test_generate = efx_ef100_irq_test_generate,
    727	.irq_disable_non_ev = efx_port_dummy_op_void,
    728	.push_irq_moderation = efx_channel_dummy_op_void,
    729	.min_interrupt_mode = EFX_INT_MODE_MSIX,
    730	.map_reset_reason = ef100_map_reset_reason,
    731	.map_reset_flags = ef100_map_reset_flags,
    732	.reset = ef100_reset,
    733
    734	.check_caps = ef100_check_caps,
    735
    736	.ev_probe = ef100_ev_probe,
    737	.ev_init = ef100_ev_init,
    738	.ev_fini = efx_mcdi_ev_fini,
    739	.ev_remove = efx_mcdi_ev_remove,
    740	.irq_handle_msi = ef100_msi_interrupt,
    741	.ev_process = ef100_ev_process,
    742	.ev_read_ack = ef100_ev_read_ack,
    743	.ev_test_generate = efx_ef100_ev_test_generate,
    744	.tx_probe = ef100_tx_probe,
    745	.tx_init = ef100_tx_init,
    746	.tx_write = ef100_tx_write,
    747	.tx_enqueue = ef100_enqueue_skb,
    748	.rx_probe = efx_mcdi_rx_probe,
    749	.rx_init = efx_mcdi_rx_init,
    750	.rx_remove = efx_mcdi_rx_remove,
    751	.rx_write = ef100_rx_write,
    752	.rx_packet = __ef100_rx_packet,
    753	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
    754	.fini_dmaq = efx_fini_dmaq,
    755	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
    756	.filter_table_probe = ef100_filter_table_up,
    757	.filter_table_restore = efx_mcdi_filter_table_restore,
    758	.filter_table_remove = ef100_filter_table_down,
    759	.filter_insert = efx_mcdi_filter_insert,
    760	.filter_remove_safe = efx_mcdi_filter_remove_safe,
    761	.filter_get_safe = efx_mcdi_filter_get_safe,
    762	.filter_clear_rx = efx_mcdi_filter_clear_rx,
    763	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
    764	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
    765	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
    766#ifdef CONFIG_RFS_ACCEL
    767	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
    768#endif
    769
    770	.get_phys_port_id = efx_ef100_get_phys_port_id,
    771
    772	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
    773	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
    774	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
    775	.rx_hash_key_size = 40,
    776	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
    777	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
    778	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
    779	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
    780	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
    781	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
    782
    783	.reconfigure_mac = ef100_reconfigure_mac,
    784	.reconfigure_port = efx_mcdi_port_reconfigure,
    785	.test_nvram = efx_new_mcdi_nvram_test_all,
    786	.describe_stats = ef100_describe_stats,
    787	.start_stats = efx_mcdi_mac_start_stats,
    788	.update_stats = ef100_update_stats,
    789	.pull_stats = efx_mcdi_mac_pull_stats,
    790	.stop_stats = efx_mcdi_mac_stop_stats,
    791#ifdef CONFIG_SFC_SRIOV
    792	.sriov_configure = efx_ef100_sriov_configure,
    793#endif
    794
    795	/* Per-type bar/size configuration not used on ef100. Location of
    796	 * registers is defined by extended capabilities.
    797	 */
    798	.mem_bar = NULL,
    799	.mem_map_size = NULL,
    800
    801};
    802
    803const struct efx_nic_type ef100_vf_nic_type = {
    804	.revision = EFX_REV_EF100,
    805	.is_vf = true,
    806	.probe = ef100_probe_vf,
    807	.offload_features = EF100_OFFLOAD_FEATURES,
    808	.mcdi_max_ver = 2,
    809	.mcdi_request = ef100_mcdi_request,
    810	.mcdi_poll_response = ef100_mcdi_poll_response,
    811	.mcdi_read_response = ef100_mcdi_read_response,
    812	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
    813	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
    814	.irq_enable_master = efx_port_dummy_op_void,
    815	.irq_test_generate = efx_ef100_irq_test_generate,
    816	.irq_disable_non_ev = efx_port_dummy_op_void,
    817	.push_irq_moderation = efx_channel_dummy_op_void,
    818	.min_interrupt_mode = EFX_INT_MODE_MSIX,
    819	.map_reset_reason = ef100_map_reset_reason,
    820	.map_reset_flags = ef100_map_reset_flags,
    821	.reset = ef100_reset,
    822	.check_caps = ef100_check_caps,
    823	.ev_probe = ef100_ev_probe,
    824	.ev_init = ef100_ev_init,
    825	.ev_fini = efx_mcdi_ev_fini,
    826	.ev_remove = efx_mcdi_ev_remove,
    827	.irq_handle_msi = ef100_msi_interrupt,
    828	.ev_process = ef100_ev_process,
    829	.ev_read_ack = ef100_ev_read_ack,
    830	.ev_test_generate = efx_ef100_ev_test_generate,
    831	.tx_probe = ef100_tx_probe,
    832	.tx_init = ef100_tx_init,
    833	.tx_write = ef100_tx_write,
    834	.tx_enqueue = ef100_enqueue_skb,
    835	.rx_probe = efx_mcdi_rx_probe,
    836	.rx_init = efx_mcdi_rx_init,
    837	.rx_remove = efx_mcdi_rx_remove,
    838	.rx_write = ef100_rx_write,
    839	.rx_packet = __ef100_rx_packet,
    840	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
    841	.fini_dmaq = efx_fini_dmaq,
    842	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
    843	.filter_table_probe = ef100_filter_table_up,
    844	.filter_table_restore = efx_mcdi_filter_table_restore,
    845	.filter_table_remove = ef100_filter_table_down,
    846	.filter_insert = efx_mcdi_filter_insert,
    847	.filter_remove_safe = efx_mcdi_filter_remove_safe,
    848	.filter_get_safe = efx_mcdi_filter_get_safe,
    849	.filter_clear_rx = efx_mcdi_filter_clear_rx,
    850	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
    851	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
    852	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
    853#ifdef CONFIG_RFS_ACCEL
    854	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
    855#endif
    856
    857	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
    858	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
    859	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
    860	.rx_hash_key_size = 40,
    861	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
    862	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
    863	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
    864	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
    865
    866	.reconfigure_mac = ef100_reconfigure_mac,
    867	.test_nvram = efx_new_mcdi_nvram_test_all,
    868	.describe_stats = ef100_describe_stats,
    869	.start_stats = efx_mcdi_mac_start_stats,
    870	.update_stats = ef100_update_stats,
    871	.pull_stats = efx_mcdi_mac_pull_stats,
    872	.stop_stats = efx_mcdi_mac_stop_stats,
    873
    874	.mem_bar = NULL,
    875	.mem_map_size = NULL,
    876
    877};
    878
    879static int compare_versions(const char *a, const char *b)
    880{
    881	int a_major, a_minor, a_point, a_patch;
    882	int b_major, b_minor, b_point, b_patch;
    883	int a_matched, b_matched;
    884
    885	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
    886	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
    887
    888	if (a_matched == 4 && b_matched != 4)
    889		return +1;
    890
    891	if (a_matched != 4 && b_matched == 4)
    892		return -1;
    893
    894	if (a_matched != 4 && b_matched != 4)
    895		return 0;
    896
    897	if (a_major != b_major)
    898		return a_major - b_major;
    899
    900	if (a_minor != b_minor)
    901		return a_minor - b_minor;
    902
    903	if (a_point != b_point)
    904		return a_point - b_point;
    905
    906	return a_patch - b_patch;
    907}
    908
    909enum ef100_tlv_state_machine {
    910	EF100_TLV_TYPE,
    911	EF100_TLV_TYPE_CONT,
    912	EF100_TLV_LENGTH,
    913	EF100_TLV_VALUE
    914};
    915
    916struct ef100_tlv_state {
    917	enum ef100_tlv_state_machine state;
    918	u64 value;
    919	u32 value_offset;
    920	u16 type;
    921	u8 len;
    922};
    923
    924static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
    925{
    926	switch (state->state) {
    927	case EF100_TLV_TYPE:
    928		state->type = byte & 0x7f;
    929		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
    930					     : EF100_TLV_LENGTH;
    931		/* Clear ready to read in a new entry */
    932		state->value = 0;
    933		state->value_offset = 0;
    934		return 0;
    935	case EF100_TLV_TYPE_CONT:
    936		state->type |= byte << 7;
    937		state->state = EF100_TLV_LENGTH;
    938		return 0;
    939	case EF100_TLV_LENGTH:
    940		state->len = byte;
    941		/* We only handle TLVs that fit in a u64 */
    942		if (state->len > sizeof(state->value))
    943			return -EOPNOTSUPP;
    944		/* len may be zero, implying a value of zero */
    945		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
    946		return 0;
    947	case EF100_TLV_VALUE:
    948		state->value |= ((u64)byte) << (state->value_offset * 8);
    949		state->value_offset++;
    950		if (state->value_offset >= state->len)
    951			state->state = EF100_TLV_TYPE;
    952		return 0;
    953	default: /* state machine error, can't happen */
    954		WARN_ON_ONCE(1);
    955		return -EIO;
    956	}
    957}
    958
    959static int ef100_process_design_param(struct efx_nic *efx,
    960				      const struct ef100_tlv_state *reader)
    961{
    962	struct ef100_nic_data *nic_data = efx->nic_data;
    963
    964	switch (reader->type) {
    965	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
    966		return 0;
    967	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
    968		/* Driver doesn't support timestamping yet, so we don't care */
    969		return 0;
    970	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
    971		/* Driver doesn't support unsolicited-event credits yet, so
    972		 * we don't care
    973		 */
    974		return 0;
    975	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
    976		/* Driver doesn't manage the NMMU (so we don't care) */
    977		return 0;
    978	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
    979		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
    980		 * protocol checksum validation
    981		 */
    982		return 0;
    983	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
    984		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
    985		return 0;
    986	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
    987		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
    988		if (!reader->value) {
    989			netif_err(efx, probe, efx->net_dev,
    990				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
    991			return -EOPNOTSUPP;
    992		}
    993		return 0;
    994	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
    995	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
    996		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
    997		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
    998		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
    999		 * This is very unlikely to fail.
   1000		 */
   1001		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
   1002		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
   1003			netif_err(efx, probe, efx->net_dev,
   1004				  "%s size granularity is %llu, can't guarantee safety\n",
   1005				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
   1006				  reader->value);
   1007			return -EOPNOTSUPP;
   1008		}
   1009		return 0;
   1010	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
   1011		nic_data->tso_max_payload_len = min_t(u64, reader->value,
   1012						      GSO_LEGACY_MAX_SIZE);
   1013		netif_set_tso_max_size(efx->net_dev,
   1014				       nic_data->tso_max_payload_len);
   1015		return 0;
   1016	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
   1017		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
   1018		netif_set_tso_max_segs(efx->net_dev,
   1019				       nic_data->tso_max_payload_num_segs);
   1020		return 0;
   1021	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
   1022		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
   1023		return 0;
   1024	case ESE_EF100_DP_GZ_COMPAT:
   1025		if (reader->value) {
   1026			netif_err(efx, probe, efx->net_dev,
   1027				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
   1028				  reader->value);
   1029			return -EOPNOTSUPP;
   1030		}
   1031		return 0;
   1032	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
   1033		/* Driver doesn't use mem2mem transfers */
   1034		return 0;
   1035	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
   1036		/* Driver doesn't currently use EVQ_TIMER */
   1037		return 0;
   1038	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
   1039		/* Driver doesn't manage the NMMU (so we don't care) */
   1040		return 0;
   1041	case ESE_EF100_DP_GZ_VI_STRIDES:
   1042		/* We never try to set the VI stride, and we don't rely on
   1043		 * being able to find VIs past VI 0 until after we've learned
   1044		 * the current stride from MC_CMD_GET_CAPABILITIES.
   1045		 * So the value of this shouldn't matter.
   1046		 */
   1047		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
   1048			netif_dbg(efx, probe, efx->net_dev,
   1049				  "NIC has other than default VI_STRIDES (mask "
   1050				  "%#llx), early probing might use wrong one\n",
   1051				  reader->value);
   1052		return 0;
   1053	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
   1054		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
   1055		 * care whether it indicates runt or overlength for any given
   1056		 * packet, so we don't care about this parameter.
   1057		 */
   1058		return 0;
   1059	default:
   1060		/* Host interface says "Drivers should ignore design parameters
   1061		 * that they do not recognise."
   1062		 */
   1063		netif_dbg(efx, probe, efx->net_dev,
   1064			  "Ignoring unrecognised design parameter %u\n",
   1065			  reader->type);
   1066		return 0;
   1067	}
   1068}
   1069
   1070static int ef100_check_design_params(struct efx_nic *efx)
   1071{
   1072	struct ef100_tlv_state reader = {};
   1073	u32 total_len, offset = 0;
   1074	efx_dword_t reg;
   1075	int rc = 0, i;
   1076	u32 data;
   1077
   1078	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
   1079	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
   1080	netif_dbg(efx, probe, efx->net_dev, "%u bytes of design parameters\n",
   1081		  total_len);
   1082	while (offset < total_len) {
   1083		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
   1084		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
   1085		for (i = 0; i < sizeof(data); i++) {
   1086			rc = ef100_tlv_feed(&reader, data);
   1087			/* Got a complete value? */
   1088			if (!rc && reader.state == EF100_TLV_TYPE)
   1089				rc = ef100_process_design_param(efx, &reader);
   1090			if (rc)
   1091				goto out;
   1092			data >>= 8;
   1093			offset++;
   1094		}
   1095	}
   1096	/* Check we didn't end halfway through a TLV entry, which could either
   1097	 * mean that the TLV stream is truncated or just that it's corrupted
   1098	 * and our state machine is out of sync.
   1099	 */
   1100	if (reader.state != EF100_TLV_TYPE) {
   1101		if (reader.state == EF100_TLV_TYPE_CONT)
   1102			netif_err(efx, probe, efx->net_dev,
   1103				  "truncated design parameter (incomplete type %u)\n",
   1104				  reader.type);
   1105		else
   1106			netif_err(efx, probe, efx->net_dev,
   1107				  "truncated design parameter %u\n",
   1108				  reader.type);
   1109		rc = -EIO;
   1110	}
   1111out:
   1112	return rc;
   1113}
   1114
   1115/*	NIC probe and remove
   1116 */
   1117static int ef100_probe_main(struct efx_nic *efx)
   1118{
   1119	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
   1120	struct net_device *net_dev = efx->net_dev;
   1121	struct ef100_nic_data *nic_data;
   1122	char fw_version[32];
   1123	int i, rc;
   1124
   1125	if (WARN_ON(bar_size == 0))
   1126		return -EIO;
   1127
   1128	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
   1129	if (!nic_data)
   1130		return -ENOMEM;
   1131	efx->nic_data = nic_data;
   1132	nic_data->efx = efx;
   1133	net_dev->features |= efx->type->offload_features;
   1134	net_dev->hw_features |= efx->type->offload_features;
   1135	net_dev->hw_enc_features |= efx->type->offload_features;
   1136	net_dev->vlan_features |= NETIF_F_HW_CSUM | NETIF_F_SG |
   1137				  NETIF_F_HIGHDMA | NETIF_F_ALL_TSO;
   1138
   1139	/* Populate design-parameter defaults */
   1140	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
   1141	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
   1142	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
   1143	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
   1144	netif_set_tso_max_segs(net_dev,
   1145			       ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS_DEFAULT);
   1146	/* Read design parameters */
   1147	rc = ef100_check_design_params(efx);
   1148	if (rc) {
   1149		netif_err(efx, probe, efx->net_dev,
   1150			  "Unsupported design parameters\n");
   1151		goto fail;
   1152	}
   1153
   1154	/* we assume later that we can copy from this buffer in dwords */
   1155	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
   1156
   1157	/* MCDI buffers must be 256 byte aligned. */
   1158	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
   1159				  GFP_KERNEL);
   1160	if (rc)
   1161		goto fail;
   1162
   1163	/* Get the MC's warm boot count.  In case it's rebooting right
   1164	 * now, be prepared to retry.
   1165	 */
   1166	i = 0;
   1167	for (;;) {
   1168		rc = ef100_get_warm_boot_count(efx);
   1169		if (rc >= 0)
   1170			break;
   1171		if (++i == 5)
   1172			goto fail;
   1173		ssleep(1);
   1174	}
   1175	nic_data->warm_boot_count = rc;
   1176
   1177	/* In case we're recovering from a crash (kexec), we want to
   1178	 * cancel any outstanding request by the previous user of this
   1179	 * function.  We send a special message using the least
   1180	 * significant bits of the 'high' (doorbell) register.
   1181	 */
   1182	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
   1183
   1184	/* Post-IO section. */
   1185
   1186	rc = efx_mcdi_init(efx);
   1187	if (!rc && efx->mcdi->fn_flags &
   1188		   (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
   1189		netif_info(efx, probe, efx->net_dev,
   1190			   "No network port on this PCI function");
   1191		rc = -ENODEV;
   1192	}
   1193	if (rc)
   1194		goto fail;
   1195	/* Reset (most) configuration for this function */
   1196	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
   1197	if (rc)
   1198		goto fail;
   1199	/* Enable event logging */
   1200	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
   1201	if (rc)
   1202		goto fail;
   1203
   1204	rc = efx_get_pf_index(efx, &nic_data->pf_index);
   1205	if (rc)
   1206		goto fail;
   1207
   1208	rc = efx_ef100_init_datapath_caps(efx);
   1209	if (rc < 0)
   1210		goto fail;
   1211
   1212	efx->max_vis = EF100_MAX_VIS;
   1213
   1214	rc = efx_mcdi_port_get_number(efx);
   1215	if (rc < 0)
   1216		goto fail;
   1217	efx->port_num = rc;
   1218
   1219	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
   1220	netif_dbg(efx, drv, efx->net_dev, "Firmware version %s\n", fw_version);
   1221
   1222	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
   1223		netif_info(efx, drv, efx->net_dev, "Firmware uses old event descriptors\n");
   1224		rc = -EINVAL;
   1225		goto fail;
   1226	}
   1227
   1228	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
   1229		netif_info(efx, drv, efx->net_dev, "Firmware uses unsolicited-event credits\n");
   1230		rc = -EINVAL;
   1231		goto fail;
   1232	}
   1233
   1234	rc = ef100_phy_probe(efx);
   1235	if (rc)
   1236		goto fail;
   1237
   1238	down_write(&efx->filter_sem);
   1239	rc = ef100_filter_table_probe(efx);
   1240	up_write(&efx->filter_sem);
   1241	if (rc)
   1242		goto fail;
   1243
   1244	netdev_rss_key_fill(efx->rss_context.rx_hash_key,
   1245			    sizeof(efx->rss_context.rx_hash_key));
   1246
   1247	/* Don't fail init if RSS setup doesn't work. */
   1248	efx_mcdi_push_default_indir_table(efx, efx->n_rx_channels);
   1249
   1250	rc = ef100_register_netdev(efx);
   1251	if (rc)
   1252		goto fail;
   1253
   1254	return 0;
   1255fail:
   1256	return rc;
   1257}
   1258
   1259int ef100_probe_pf(struct efx_nic *efx)
   1260{
   1261	struct net_device *net_dev = efx->net_dev;
   1262	struct ef100_nic_data *nic_data;
   1263	int rc = ef100_probe_main(efx);
   1264
   1265	if (rc)
   1266		goto fail;
   1267
   1268	nic_data = efx->nic_data;
   1269	rc = ef100_get_mac_address(efx, net_dev->perm_addr);
   1270	if (rc)
   1271		goto fail;
   1272	/* Assign MAC address */
   1273	eth_hw_addr_set(net_dev, net_dev->perm_addr);
   1274	memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
   1275
   1276	return 0;
   1277
   1278fail:
   1279	return rc;
   1280}
   1281
   1282int ef100_probe_vf(struct efx_nic *efx)
   1283{
   1284	return ef100_probe_main(efx);
   1285}
   1286
   1287void ef100_remove(struct efx_nic *efx)
   1288{
   1289	struct ef100_nic_data *nic_data = efx->nic_data;
   1290
   1291	ef100_unregister_netdev(efx);
   1292
   1293	down_write(&efx->filter_sem);
   1294	efx_mcdi_filter_table_remove(efx);
   1295	up_write(&efx->filter_sem);
   1296	efx_fini_channels(efx);
   1297	kfree(efx->phy_data);
   1298	efx->phy_data = NULL;
   1299	efx_mcdi_detach(efx);
   1300	efx_mcdi_fini(efx);
   1301	if (nic_data)
   1302		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
   1303	kfree(nic_data);
   1304	efx->nic_data = NULL;
   1305}