cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efx_common.c (38972B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2018 Solarflare Communications Inc.
      5 *
      6 * This program is free software; you can redistribute it and/or modify it
      7 * under the terms of the GNU General Public License version 2 as published
      8 * by the Free Software Foundation, incorporated herein by reference.
      9 */
     10
     11#include "net_driver.h"
     12#include <linux/filter.h>
     13#include <linux/module.h>
     14#include <linux/netdevice.h>
     15#include <net/gre.h>
     16#include "efx_common.h"
     17#include "efx_channels.h"
     18#include "efx.h"
     19#include "mcdi.h"
     20#include "selftest.h"
     21#include "rx_common.h"
     22#include "tx_common.h"
     23#include "nic.h"
     24#include "mcdi_port_common.h"
     25#include "io.h"
     26#include "mcdi_pcol.h"
     27
     28static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
     29			     NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
     30			     NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
     31			     NETIF_MSG_TX_ERR | NETIF_MSG_HW);
     32module_param(debug, uint, 0);
     33MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
     34
     35/* This is the time (in jiffies) between invocations of the hardware
     36 * monitor.
     37 * On Falcon-based NICs, this will:
     38 * - Check the on-board hardware monitor;
     39 * - Poll the link state and reconfigure the hardware as necessary.
     40 * On Siena-based NICs for power systems with EEH support, this will give EEH a
     41 * chance to start.
     42 */
     43static unsigned int efx_monitor_interval = 1 * HZ;
     44
     45/* How often and how many times to poll for a reset while waiting for a
     46 * BIST that another function started to complete.
     47 */
     48#define BIST_WAIT_DELAY_MS	100
     49#define BIST_WAIT_DELAY_COUNT	100
     50
     51/* Default stats update time */
     52#define STATS_PERIOD_MS_DEFAULT 1000
     53
     54static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
     55static const char *const efx_reset_type_names[] = {
     56	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
     57	[RESET_TYPE_ALL]                = "ALL",
     58	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
     59	[RESET_TYPE_WORLD]              = "WORLD",
     60	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
     61	[RESET_TYPE_DATAPATH]           = "DATAPATH",
     62	[RESET_TYPE_MC_BIST]		= "MC_BIST",
     63	[RESET_TYPE_DISABLE]            = "DISABLE",
     64	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
     65	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
     66	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
     67	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
     68	[RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
     69	[RESET_TYPE_MCDI_TIMEOUT]	= "MCDI_TIMEOUT (FLR)",
     70};
     71
     72#define RESET_TYPE(type) \
     73	STRING_TABLE_LOOKUP(type, efx_reset_type)
     74
     75/* Loopback mode names (see LOOPBACK_MODE()) */
     76const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
     77const char *const efx_loopback_mode_names[] = {
     78	[LOOPBACK_NONE]		= "NONE",
     79	[LOOPBACK_DATA]		= "DATAPATH",
     80	[LOOPBACK_GMAC]		= "GMAC",
     81	[LOOPBACK_XGMII]	= "XGMII",
     82	[LOOPBACK_XGXS]		= "XGXS",
     83	[LOOPBACK_XAUI]		= "XAUI",
     84	[LOOPBACK_GMII]		= "GMII",
     85	[LOOPBACK_SGMII]	= "SGMII",
     86	[LOOPBACK_XGBR]		= "XGBR",
     87	[LOOPBACK_XFI]		= "XFI",
     88	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
     89	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
     90	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
     91	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
     92	[LOOPBACK_GPHY]		= "GPHY",
     93	[LOOPBACK_PHYXS]	= "PHYXS",
     94	[LOOPBACK_PCS]		= "PCS",
     95	[LOOPBACK_PMAPMD]	= "PMA/PMD",
     96	[LOOPBACK_XPORT]	= "XPORT",
     97	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
     98	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
     99	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
    100	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
    101	[LOOPBACK_GMII_WS]	= "GMII_WS",
    102	[LOOPBACK_XFI_WS]	= "XFI_WS",
    103	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
    104	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
    105};
    106
    107/* Reset workqueue. If any NIC has a hardware failure then a reset will be
    108 * queued onto this work queue. This is not a per-nic work queue, because
    109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
    110 */
    111static struct workqueue_struct *reset_workqueue;
    112
    113int efx_create_reset_workqueue(void)
    114{
    115	reset_workqueue = create_singlethread_workqueue("sfc_reset");
    116	if (!reset_workqueue) {
    117		printk(KERN_ERR "Failed to create reset workqueue\n");
    118		return -ENOMEM;
    119	}
    120
    121	return 0;
    122}
    123
    124void efx_queue_reset_work(struct efx_nic *efx)
    125{
    126	queue_work(reset_workqueue, &efx->reset_work);
    127}
    128
    129void efx_flush_reset_workqueue(struct efx_nic *efx)
    130{
    131	cancel_work_sync(&efx->reset_work);
    132}
    133
    134void efx_destroy_reset_workqueue(void)
    135{
    136	if (reset_workqueue) {
    137		destroy_workqueue(reset_workqueue);
    138		reset_workqueue = NULL;
    139	}
    140}
    141
    142/* We assume that efx->type->reconfigure_mac will always try to sync RX
    143 * filters and therefore needs to read-lock the filter table against freeing
    144 */
    145void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
    146{
    147	if (efx->type->reconfigure_mac) {
    148		down_read(&efx->filter_sem);
    149		efx->type->reconfigure_mac(efx, mtu_only);
    150		up_read(&efx->filter_sem);
    151	}
    152}
    153
    154/* Asynchronous work item for changing MAC promiscuity and multicast
    155 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
    156 * MAC directly.
    157 */
    158static void efx_mac_work(struct work_struct *data)
    159{
    160	struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
    161
    162	mutex_lock(&efx->mac_lock);
    163	if (efx->port_enabled)
    164		efx_mac_reconfigure(efx, false);
    165	mutex_unlock(&efx->mac_lock);
    166}
    167
    168int efx_set_mac_address(struct net_device *net_dev, void *data)
    169{
    170	struct efx_nic *efx = netdev_priv(net_dev);
    171	struct sockaddr *addr = data;
    172	u8 *new_addr = addr->sa_data;
    173	u8 old_addr[6];
    174	int rc;
    175
    176	if (!is_valid_ether_addr(new_addr)) {
    177		netif_err(efx, drv, efx->net_dev,
    178			  "invalid ethernet MAC address requested: %pM\n",
    179			  new_addr);
    180		return -EADDRNOTAVAIL;
    181	}
    182
    183	/* save old address */
    184	ether_addr_copy(old_addr, net_dev->dev_addr);
    185	eth_hw_addr_set(net_dev, new_addr);
    186	if (efx->type->set_mac_address) {
    187		rc = efx->type->set_mac_address(efx);
    188		if (rc) {
    189			eth_hw_addr_set(net_dev, old_addr);
    190			return rc;
    191		}
    192	}
    193
    194	/* Reconfigure the MAC */
    195	mutex_lock(&efx->mac_lock);
    196	efx_mac_reconfigure(efx, false);
    197	mutex_unlock(&efx->mac_lock);
    198
    199	return 0;
    200}
    201
    202/* Context: netif_addr_lock held, BHs disabled. */
    203void efx_set_rx_mode(struct net_device *net_dev)
    204{
    205	struct efx_nic *efx = netdev_priv(net_dev);
    206
    207	if (efx->port_enabled)
    208		queue_work(efx->workqueue, &efx->mac_work);
    209	/* Otherwise efx_start_port() will do this */
    210}
    211
    212int efx_set_features(struct net_device *net_dev, netdev_features_t data)
    213{
    214	struct efx_nic *efx = netdev_priv(net_dev);
    215	int rc;
    216
    217	/* If disabling RX n-tuple filtering, clear existing filters */
    218	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
    219		rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
    220		if (rc)
    221			return rc;
    222	}
    223
    224	/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
    225	 * If rx-fcs is changed, mac_reconfigure updates that too.
    226	 */
    227	if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
    228					  NETIF_F_RXFCS)) {
    229		/* efx_set_rx_mode() will schedule MAC work to update filters
    230		 * when a new features are finally set in net_dev.
    231		 */
    232		efx_set_rx_mode(net_dev);
    233	}
    234
    235	return 0;
    236}
    237
    238/* This ensures that the kernel is kept informed (via
    239 * netif_carrier_on/off) of the link status, and also maintains the
    240 * link status's stop on the port's TX queue.
    241 */
    242void efx_link_status_changed(struct efx_nic *efx)
    243{
    244	struct efx_link_state *link_state = &efx->link_state;
    245
    246	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
    247	 * that no events are triggered between unregister_netdev() and the
    248	 * driver unloading. A more general condition is that NETDEV_CHANGE
    249	 * can only be generated between NETDEV_UP and NETDEV_DOWN
    250	 */
    251	if (!netif_running(efx->net_dev))
    252		return;
    253
    254	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
    255		efx->n_link_state_changes++;
    256
    257		if (link_state->up)
    258			netif_carrier_on(efx->net_dev);
    259		else
    260			netif_carrier_off(efx->net_dev);
    261	}
    262
    263	/* Status message for kernel log */
    264	if (link_state->up)
    265		netif_info(efx, link, efx->net_dev,
    266			   "link up at %uMbps %s-duplex (MTU %d)\n",
    267			   link_state->speed, link_state->fd ? "full" : "half",
    268			   efx->net_dev->mtu);
    269	else
    270		netif_info(efx, link, efx->net_dev, "link down\n");
    271}
    272
    273unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
    274{
    275	/* The maximum MTU that we can fit in a single page, allowing for
    276	 * framing, overhead and XDP headroom + tailroom.
    277	 */
    278	int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
    279		       efx->rx_prefix_size + efx->type->rx_buffer_padding +
    280		       efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
    281
    282	return PAGE_SIZE - overhead;
    283}
    284
    285/* Context: process, rtnl_lock() held. */
    286int efx_change_mtu(struct net_device *net_dev, int new_mtu)
    287{
    288	struct efx_nic *efx = netdev_priv(net_dev);
    289	int rc;
    290
    291	rc = efx_check_disabled(efx);
    292	if (rc)
    293		return rc;
    294
    295	if (rtnl_dereference(efx->xdp_prog) &&
    296	    new_mtu > efx_xdp_max_mtu(efx)) {
    297		netif_err(efx, drv, efx->net_dev,
    298			  "Requested MTU of %d too big for XDP (max: %d)\n",
    299			  new_mtu, efx_xdp_max_mtu(efx));
    300		return -EINVAL;
    301	}
    302
    303	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
    304
    305	efx_device_detach_sync(efx);
    306	efx_stop_all(efx);
    307
    308	mutex_lock(&efx->mac_lock);
    309	net_dev->mtu = new_mtu;
    310	efx_mac_reconfigure(efx, true);
    311	mutex_unlock(&efx->mac_lock);
    312
    313	efx_start_all(efx);
    314	efx_device_attach_if_not_resetting(efx);
    315	return 0;
    316}
    317
    318/**************************************************************************
    319 *
    320 * Hardware monitor
    321 *
    322 **************************************************************************/
    323
    324/* Run periodically off the general workqueue */
    325static void efx_monitor(struct work_struct *data)
    326{
    327	struct efx_nic *efx = container_of(data, struct efx_nic,
    328					   monitor_work.work);
    329
    330	netif_vdbg(efx, timer, efx->net_dev,
    331		   "hardware monitor executing on CPU %d\n",
    332		   raw_smp_processor_id());
    333	BUG_ON(efx->type->monitor == NULL);
    334
    335	/* If the mac_lock is already held then it is likely a port
    336	 * reconfiguration is already in place, which will likely do
    337	 * most of the work of monitor() anyway.
    338	 */
    339	if (mutex_trylock(&efx->mac_lock)) {
    340		if (efx->port_enabled && efx->type->monitor)
    341			efx->type->monitor(efx);
    342		mutex_unlock(&efx->mac_lock);
    343	}
    344
    345	efx_start_monitor(efx);
    346}
    347
    348void efx_start_monitor(struct efx_nic *efx)
    349{
    350	if (efx->type->monitor)
    351		queue_delayed_work(efx->workqueue, &efx->monitor_work,
    352				   efx_monitor_interval);
    353}
    354
    355/**************************************************************************
    356 *
    357 * Event queue processing
    358 *
    359 *************************************************************************/
    360
    361/* Channels are shutdown and reinitialised whilst the NIC is running
    362 * to propagate configuration changes (mtu, checksum offload), or
    363 * to clear hardware error conditions
    364 */
    365static void efx_start_datapath(struct efx_nic *efx)
    366{
    367	netdev_features_t old_features = efx->net_dev->features;
    368	bool old_rx_scatter = efx->rx_scatter;
    369	size_t rx_buf_len;
    370
    371	/* Calculate the rx buffer allocation parameters required to
    372	 * support the current MTU, including padding for header
    373	 * alignment and overruns.
    374	 */
    375	efx->rx_dma_len = (efx->rx_prefix_size +
    376			   EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
    377			   efx->type->rx_buffer_padding);
    378	rx_buf_len = (sizeof(struct efx_rx_page_state)   + EFX_XDP_HEADROOM +
    379		      efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
    380
    381	if (rx_buf_len <= PAGE_SIZE) {
    382		efx->rx_scatter = efx->type->always_rx_scatter;
    383		efx->rx_buffer_order = 0;
    384	} else if (efx->type->can_rx_scatter) {
    385		BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
    386		BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
    387			     2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
    388				       EFX_RX_BUF_ALIGNMENT) >
    389			     PAGE_SIZE);
    390		efx->rx_scatter = true;
    391		efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
    392		efx->rx_buffer_order = 0;
    393	} else {
    394		efx->rx_scatter = false;
    395		efx->rx_buffer_order = get_order(rx_buf_len);
    396	}
    397
    398	efx_rx_config_page_split(efx);
    399	if (efx->rx_buffer_order)
    400		netif_dbg(efx, drv, efx->net_dev,
    401			  "RX buf len=%u; page order=%u batch=%u\n",
    402			  efx->rx_dma_len, efx->rx_buffer_order,
    403			  efx->rx_pages_per_batch);
    404	else
    405		netif_dbg(efx, drv, efx->net_dev,
    406			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
    407			  efx->rx_dma_len, efx->rx_page_buf_step,
    408			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
    409
    410	/* Restore previously fixed features in hw_features and remove
    411	 * features which are fixed now
    412	 */
    413	efx->net_dev->hw_features |= efx->net_dev->features;
    414	efx->net_dev->hw_features &= ~efx->fixed_features;
    415	efx->net_dev->features |= efx->fixed_features;
    416	if (efx->net_dev->features != old_features)
    417		netdev_features_change(efx->net_dev);
    418
    419	/* RX filters may also have scatter-enabled flags */
    420	if ((efx->rx_scatter != old_rx_scatter) &&
    421	    efx->type->filter_update_rx_scatter)
    422		efx->type->filter_update_rx_scatter(efx);
    423
    424	/* We must keep at least one descriptor in a TX ring empty.
    425	 * We could avoid this when the queue size does not exactly
    426	 * match the hardware ring size, but it's not that important.
    427	 * Therefore we stop the queue when one more skb might fill
    428	 * the ring completely.  We wake it when half way back to
    429	 * empty.
    430	 */
    431	efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
    432	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
    433
    434	/* Initialise the channels */
    435	efx_start_channels(efx);
    436
    437	efx_ptp_start_datapath(efx);
    438
    439	if (netif_device_present(efx->net_dev))
    440		netif_tx_wake_all_queues(efx->net_dev);
    441}
    442
    443static void efx_stop_datapath(struct efx_nic *efx)
    444{
    445	EFX_ASSERT_RESET_SERIALISED(efx);
    446	BUG_ON(efx->port_enabled);
    447
    448	efx_ptp_stop_datapath(efx);
    449
    450	efx_stop_channels(efx);
    451}
    452
    453/**************************************************************************
    454 *
    455 * Port handling
    456 *
    457 **************************************************************************/
    458
    459/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
    460 * force the Autoneg bit on.
    461 */
    462void efx_link_clear_advertising(struct efx_nic *efx)
    463{
    464	bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
    465	efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
    466}
    467
    468void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
    469{
    470	efx->wanted_fc = wanted_fc;
    471	if (efx->link_advertising[0]) {
    472		if (wanted_fc & EFX_FC_RX)
    473			efx->link_advertising[0] |= (ADVERTISED_Pause |
    474						     ADVERTISED_Asym_Pause);
    475		else
    476			efx->link_advertising[0] &= ~(ADVERTISED_Pause |
    477						      ADVERTISED_Asym_Pause);
    478		if (wanted_fc & EFX_FC_TX)
    479			efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
    480	}
    481}
    482
    483static void efx_start_port(struct efx_nic *efx)
    484{
    485	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
    486	BUG_ON(efx->port_enabled);
    487
    488	mutex_lock(&efx->mac_lock);
    489	efx->port_enabled = true;
    490
    491	/* Ensure MAC ingress/egress is enabled */
    492	efx_mac_reconfigure(efx, false);
    493
    494	mutex_unlock(&efx->mac_lock);
    495}
    496
    497/* Cancel work for MAC reconfiguration, periodic hardware monitoring
    498 * and the async self-test, wait for them to finish and prevent them
    499 * being scheduled again.  This doesn't cover online resets, which
    500 * should only be cancelled when removing the device.
    501 */
    502static void efx_stop_port(struct efx_nic *efx)
    503{
    504	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
    505
    506	EFX_ASSERT_RESET_SERIALISED(efx);
    507
    508	mutex_lock(&efx->mac_lock);
    509	efx->port_enabled = false;
    510	mutex_unlock(&efx->mac_lock);
    511
    512	/* Serialise against efx_set_multicast_list() */
    513	netif_addr_lock_bh(efx->net_dev);
    514	netif_addr_unlock_bh(efx->net_dev);
    515
    516	cancel_delayed_work_sync(&efx->monitor_work);
    517	efx_selftest_async_cancel(efx);
    518	cancel_work_sync(&efx->mac_work);
    519}
    520
    521/* If the interface is supposed to be running but is not, start
    522 * the hardware and software data path, regular activity for the port
    523 * (MAC statistics, link polling, etc.) and schedule the port to be
    524 * reconfigured.  Interrupts must already be enabled.  This function
    525 * is safe to call multiple times, so long as the NIC is not disabled.
    526 * Requires the RTNL lock.
    527 */
    528void efx_start_all(struct efx_nic *efx)
    529{
    530	EFX_ASSERT_RESET_SERIALISED(efx);
    531	BUG_ON(efx->state == STATE_DISABLED);
    532
    533	/* Check that it is appropriate to restart the interface. All
    534	 * of these flags are safe to read under just the rtnl lock
    535	 */
    536	if (efx->port_enabled || !netif_running(efx->net_dev) ||
    537	    efx->reset_pending)
    538		return;
    539
    540	efx_start_port(efx);
    541	efx_start_datapath(efx);
    542
    543	/* Start the hardware monitor if there is one */
    544	efx_start_monitor(efx);
    545
    546	/* Link state detection is normally event-driven; we have
    547	 * to poll now because we could have missed a change
    548	 */
    549	mutex_lock(&efx->mac_lock);
    550	if (efx_mcdi_phy_poll(efx))
    551		efx_link_status_changed(efx);
    552	mutex_unlock(&efx->mac_lock);
    553
    554	if (efx->type->start_stats) {
    555		efx->type->start_stats(efx);
    556		efx->type->pull_stats(efx);
    557		spin_lock_bh(&efx->stats_lock);
    558		efx->type->update_stats(efx, NULL, NULL);
    559		spin_unlock_bh(&efx->stats_lock);
    560	}
    561}
    562
    563/* Quiesce the hardware and software data path, and regular activity
    564 * for the port without bringing the link down.  Safe to call multiple
    565 * times with the NIC in almost any state, but interrupts should be
    566 * enabled.  Requires the RTNL lock.
    567 */
    568void efx_stop_all(struct efx_nic *efx)
    569{
    570	EFX_ASSERT_RESET_SERIALISED(efx);
    571
    572	/* port_enabled can be read safely under the rtnl lock */
    573	if (!efx->port_enabled)
    574		return;
    575
    576	if (efx->type->update_stats) {
    577		/* update stats before we go down so we can accurately count
    578		 * rx_nodesc_drops
    579		 */
    580		efx->type->pull_stats(efx);
    581		spin_lock_bh(&efx->stats_lock);
    582		efx->type->update_stats(efx, NULL, NULL);
    583		spin_unlock_bh(&efx->stats_lock);
    584		efx->type->stop_stats(efx);
    585	}
    586
    587	efx_stop_port(efx);
    588
    589	/* Stop the kernel transmit interface.  This is only valid if
    590	 * the device is stopped or detached; otherwise the watchdog
    591	 * may fire immediately.
    592	 */
    593	WARN_ON(netif_running(efx->net_dev) &&
    594		netif_device_present(efx->net_dev));
    595	netif_tx_disable(efx->net_dev);
    596
    597	efx_stop_datapath(efx);
    598}
    599
    600/* Context: process, dev_base_lock or RTNL held, non-blocking. */
    601void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
    602{
    603	struct efx_nic *efx = netdev_priv(net_dev);
    604
    605	spin_lock_bh(&efx->stats_lock);
    606	efx_nic_update_stats_atomic(efx, NULL, stats);
    607	spin_unlock_bh(&efx->stats_lock);
    608}
    609
    610/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
    611 * the MAC appropriately. All other PHY configuration changes are pushed
    612 * through phy_op->set_settings(), and pushed asynchronously to the MAC
    613 * through efx_monitor().
    614 *
    615 * Callers must hold the mac_lock
    616 */
    617int __efx_reconfigure_port(struct efx_nic *efx)
    618{
    619	enum efx_phy_mode phy_mode;
    620	int rc = 0;
    621
    622	WARN_ON(!mutex_is_locked(&efx->mac_lock));
    623
    624	/* Disable PHY transmit in mac level loopbacks */
    625	phy_mode = efx->phy_mode;
    626	if (LOOPBACK_INTERNAL(efx))
    627		efx->phy_mode |= PHY_MODE_TX_DISABLED;
    628	else
    629		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
    630
    631	if (efx->type->reconfigure_port)
    632		rc = efx->type->reconfigure_port(efx);
    633
    634	if (rc)
    635		efx->phy_mode = phy_mode;
    636
    637	return rc;
    638}
    639
    640/* Reinitialise the MAC to pick up new PHY settings, even if the port is
    641 * disabled.
    642 */
    643int efx_reconfigure_port(struct efx_nic *efx)
    644{
    645	int rc;
    646
    647	EFX_ASSERT_RESET_SERIALISED(efx);
    648
    649	mutex_lock(&efx->mac_lock);
    650	rc = __efx_reconfigure_port(efx);
    651	mutex_unlock(&efx->mac_lock);
    652
    653	return rc;
    654}
    655
    656/**************************************************************************
    657 *
    658 * Device reset and suspend
    659 *
    660 **************************************************************************/
    661
    662static void efx_wait_for_bist_end(struct efx_nic *efx)
    663{
    664	int i;
    665
    666	for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
    667		if (efx_mcdi_poll_reboot(efx))
    668			goto out;
    669		msleep(BIST_WAIT_DELAY_MS);
    670	}
    671
    672	netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
    673out:
    674	/* Either way unset the BIST flag. If we found no reboot we probably
    675	 * won't recover, but we should try.
    676	 */
    677	efx->mc_bist_for_other_fn = false;
    678}
    679
    680/* Try recovery mechanisms.
    681 * For now only EEH is supported.
    682 * Returns 0 if the recovery mechanisms are unsuccessful.
    683 * Returns a non-zero value otherwise.
    684 */
    685int efx_try_recovery(struct efx_nic *efx)
    686{
    687#ifdef CONFIG_EEH
    688	/* A PCI error can occur and not be seen by EEH because nothing
    689	 * happens on the PCI bus. In this case the driver may fail and
    690	 * schedule a 'recover or reset', leading to this recovery handler.
    691	 * Manually call the eeh failure check function.
    692	 */
    693	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
    694	if (eeh_dev_check_failure(eehdev)) {
    695		/* The EEH mechanisms will handle the error and reset the
    696		 * device if necessary.
    697		 */
    698		return 1;
    699	}
    700#endif
    701	return 0;
    702}
    703
    704/* Tears down the entire software state and most of the hardware state
    705 * before reset.
    706 */
    707void efx_reset_down(struct efx_nic *efx, enum reset_type method)
    708{
    709	EFX_ASSERT_RESET_SERIALISED(efx);
    710
    711	if (method == RESET_TYPE_MCDI_TIMEOUT)
    712		efx->type->prepare_flr(efx);
    713
    714	efx_stop_all(efx);
    715	efx_disable_interrupts(efx);
    716
    717	mutex_lock(&efx->mac_lock);
    718	down_write(&efx->filter_sem);
    719	mutex_lock(&efx->rss_lock);
    720	efx->type->fini(efx);
    721}
    722
    723/* Context: netif_tx_lock held, BHs disabled. */
    724void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
    725{
    726	struct efx_nic *efx = netdev_priv(net_dev);
    727
    728	netif_err(efx, tx_err, efx->net_dev,
    729		  "TX stuck with port_enabled=%d: resetting channels\n",
    730		  efx->port_enabled);
    731
    732	efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
    733}
    734
    735/* This function will always ensure that the locks acquired in
    736 * efx_reset_down() are released. A failure return code indicates
    737 * that we were unable to reinitialise the hardware, and the
    738 * driver should be disabled. If ok is false, then the rx and tx
    739 * engines are not restarted, pending a RESET_DISABLE.
    740 */
    741int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
    742{
    743	int rc;
    744
    745	EFX_ASSERT_RESET_SERIALISED(efx);
    746
    747	if (method == RESET_TYPE_MCDI_TIMEOUT)
    748		efx->type->finish_flr(efx);
    749
    750	/* Ensure that SRAM is initialised even if we're disabling the device */
    751	rc = efx->type->init(efx);
    752	if (rc) {
    753		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
    754		goto fail;
    755	}
    756
    757	if (!ok)
    758		goto fail;
    759
    760	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
    761	    method != RESET_TYPE_DATAPATH) {
    762		rc = efx_mcdi_port_reconfigure(efx);
    763		if (rc && rc != -EPERM)
    764			netif_err(efx, drv, efx->net_dev,
    765				  "could not restore PHY settings\n");
    766	}
    767
    768	rc = efx_enable_interrupts(efx);
    769	if (rc)
    770		goto fail;
    771
    772#ifdef CONFIG_SFC_SRIOV
    773	rc = efx->type->vswitching_restore(efx);
    774	if (rc) /* not fatal; the PF will still work fine */
    775		netif_warn(efx, probe, efx->net_dev,
    776			   "failed to restore vswitching rc=%d;"
    777			   " VFs may not function\n", rc);
    778#endif
    779
    780	if (efx->type->rx_restore_rss_contexts)
    781		efx->type->rx_restore_rss_contexts(efx);
    782	mutex_unlock(&efx->rss_lock);
    783	efx->type->filter_table_restore(efx);
    784	up_write(&efx->filter_sem);
    785	if (efx->type->sriov_reset)
    786		efx->type->sriov_reset(efx);
    787
    788	mutex_unlock(&efx->mac_lock);
    789
    790	efx_start_all(efx);
    791
    792	if (efx->type->udp_tnl_push_ports)
    793		efx->type->udp_tnl_push_ports(efx);
    794
    795	return 0;
    796
    797fail:
    798	efx->port_initialized = false;
    799
    800	mutex_unlock(&efx->rss_lock);
    801	up_write(&efx->filter_sem);
    802	mutex_unlock(&efx->mac_lock);
    803
    804	return rc;
    805}
    806
    807/* Reset the NIC using the specified method.  Note that the reset may
    808 * fail, in which case the card will be left in an unusable state.
    809 *
    810 * Caller must hold the rtnl_lock.
    811 */
    812int efx_reset(struct efx_nic *efx, enum reset_type method)
    813{
    814	int rc, rc2 = 0;
    815	bool disabled;
    816
    817	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
    818		   RESET_TYPE(method));
    819
    820	efx_device_detach_sync(efx);
    821	/* efx_reset_down() grabs locks that prevent recovery on EF100.
    822	 * EF100 reset is handled in the efx_nic_type callback below.
    823	 */
    824	if (efx_nic_rev(efx) != EFX_REV_EF100)
    825		efx_reset_down(efx, method);
    826
    827	rc = efx->type->reset(efx, method);
    828	if (rc) {
    829		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
    830		goto out;
    831	}
    832
    833	/* Clear flags for the scopes we covered.  We assume the NIC and
    834	 * driver are now quiescent so that there is no race here.
    835	 */
    836	if (method < RESET_TYPE_MAX_METHOD)
    837		efx->reset_pending &= -(1 << (method + 1));
    838	else /* it doesn't fit into the well-ordered scope hierarchy */
    839		__clear_bit(method, &efx->reset_pending);
    840
    841	/* Reinitialise bus-mastering, which may have been turned off before
    842	 * the reset was scheduled. This is still appropriate, even in the
    843	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
    844	 * can respond to requests.
    845	 */
    846	pci_set_master(efx->pci_dev);
    847
    848out:
    849	/* Leave device stopped if necessary */
    850	disabled = rc ||
    851		method == RESET_TYPE_DISABLE ||
    852		method == RESET_TYPE_RECOVER_OR_DISABLE;
    853	if (efx_nic_rev(efx) != EFX_REV_EF100)
    854		rc2 = efx_reset_up(efx, method, !disabled);
    855	if (rc2) {
    856		disabled = true;
    857		if (!rc)
    858			rc = rc2;
    859	}
    860
    861	if (disabled) {
    862		dev_close(efx->net_dev);
    863		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
    864		efx->state = STATE_DISABLED;
    865	} else {
    866		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
    867		efx_device_attach_if_not_resetting(efx);
    868	}
    869	return rc;
    870}
    871
    872/* The worker thread exists so that code that cannot sleep can
    873 * schedule a reset for later.
    874 */
    875static void efx_reset_work(struct work_struct *data)
    876{
    877	struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
    878	unsigned long pending;
    879	enum reset_type method;
    880
    881	pending = READ_ONCE(efx->reset_pending);
    882	method = fls(pending) - 1;
    883
    884	if (method == RESET_TYPE_MC_BIST)
    885		efx_wait_for_bist_end(efx);
    886
    887	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
    888	     method == RESET_TYPE_RECOVER_OR_ALL) &&
    889	    efx_try_recovery(efx))
    890		return;
    891
    892	if (!pending)
    893		return;
    894
    895	rtnl_lock();
    896
    897	/* We checked the state in efx_schedule_reset() but it may
    898	 * have changed by now.  Now that we have the RTNL lock,
    899	 * it cannot change again.
    900	 */
    901	if (efx->state == STATE_READY)
    902		(void)efx_reset(efx, method);
    903
    904	rtnl_unlock();
    905}
    906
    907void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
    908{
    909	enum reset_type method;
    910
    911	if (efx->state == STATE_RECOVERY) {
    912		netif_dbg(efx, drv, efx->net_dev,
    913			  "recovering: skip scheduling %s reset\n",
    914			  RESET_TYPE(type));
    915		return;
    916	}
    917
    918	switch (type) {
    919	case RESET_TYPE_INVISIBLE:
    920	case RESET_TYPE_ALL:
    921	case RESET_TYPE_RECOVER_OR_ALL:
    922	case RESET_TYPE_WORLD:
    923	case RESET_TYPE_DISABLE:
    924	case RESET_TYPE_RECOVER_OR_DISABLE:
    925	case RESET_TYPE_DATAPATH:
    926	case RESET_TYPE_MC_BIST:
    927	case RESET_TYPE_MCDI_TIMEOUT:
    928		method = type;
    929		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
    930			  RESET_TYPE(method));
    931		break;
    932	default:
    933		method = efx->type->map_reset_reason(type);
    934		netif_dbg(efx, drv, efx->net_dev,
    935			  "scheduling %s reset for %s\n",
    936			  RESET_TYPE(method), RESET_TYPE(type));
    937		break;
    938	}
    939
    940	set_bit(method, &efx->reset_pending);
    941	smp_mb(); /* ensure we change reset_pending before checking state */
    942
    943	/* If we're not READY then just leave the flags set as the cue
    944	 * to abort probing or reschedule the reset later.
    945	 */
    946	if (READ_ONCE(efx->state) != STATE_READY)
    947		return;
    948
    949	/* efx_process_channel() will no longer read events once a
    950	 * reset is scheduled. So switch back to poll'd MCDI completions.
    951	 */
    952	efx_mcdi_mode_poll(efx);
    953
    954	efx_queue_reset_work(efx);
    955}
    956
    957/**************************************************************************
    958 *
    959 * Dummy NIC operations
    960 *
    961 * Can be used for some unimplemented operations
    962 * Needed so all function pointers are valid and do not have to be tested
    963 * before use
    964 *
    965 **************************************************************************/
    966int efx_port_dummy_op_int(struct efx_nic *efx)
    967{
    968	return 0;
    969}
    970void efx_port_dummy_op_void(struct efx_nic *efx) {}
    971
    972/**************************************************************************
    973 *
    974 * Data housekeeping
    975 *
    976 **************************************************************************/
    977
    978/* This zeroes out and then fills in the invariants in a struct
    979 * efx_nic (including all sub-structures).
    980 */
    981int efx_init_struct(struct efx_nic *efx,
    982		    struct pci_dev *pci_dev, struct net_device *net_dev)
    983{
    984	int rc = -ENOMEM;
    985
    986	/* Initialise common structures */
    987	INIT_LIST_HEAD(&efx->node);
    988	INIT_LIST_HEAD(&efx->secondary_list);
    989	spin_lock_init(&efx->biu_lock);
    990#ifdef CONFIG_SFC_MTD
    991	INIT_LIST_HEAD(&efx->mtd_list);
    992#endif
    993	INIT_WORK(&efx->reset_work, efx_reset_work);
    994	INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
    995	efx_selftest_async_init(efx);
    996	efx->pci_dev = pci_dev;
    997	efx->msg_enable = debug;
    998	efx->state = STATE_UNINIT;
    999	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
   1000
   1001	efx->net_dev = net_dev;
   1002	efx->rx_prefix_size = efx->type->rx_prefix_size;
   1003	efx->rx_ip_align =
   1004		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
   1005	efx->rx_packet_hash_offset =
   1006		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
   1007	efx->rx_packet_ts_offset =
   1008		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
   1009	INIT_LIST_HEAD(&efx->rss_context.list);
   1010	efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
   1011	mutex_init(&efx->rss_lock);
   1012	efx->vport_id = EVB_PORT_ID_ASSIGNED;
   1013	spin_lock_init(&efx->stats_lock);
   1014	efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
   1015	efx->num_mac_stats = MC_CMD_MAC_NSTATS;
   1016	BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
   1017	mutex_init(&efx->mac_lock);
   1018	init_rwsem(&efx->filter_sem);
   1019#ifdef CONFIG_RFS_ACCEL
   1020	mutex_init(&efx->rps_mutex);
   1021	spin_lock_init(&efx->rps_hash_lock);
   1022	/* Failure to allocate is not fatal, but may degrade ARFS performance */
   1023	efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
   1024				      sizeof(*efx->rps_hash_table), GFP_KERNEL);
   1025#endif
   1026	efx->mdio.dev = net_dev;
   1027	INIT_WORK(&efx->mac_work, efx_mac_work);
   1028	init_waitqueue_head(&efx->flush_wq);
   1029
   1030	efx->tx_queues_per_channel = 1;
   1031	efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
   1032	efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
   1033
   1034	efx->mem_bar = UINT_MAX;
   1035
   1036	rc = efx_init_channels(efx);
   1037	if (rc)
   1038		goto fail;
   1039
   1040	/* Would be good to use the net_dev name, but we're too early */
   1041	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
   1042		 pci_name(pci_dev));
   1043	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
   1044	if (!efx->workqueue) {
   1045		rc = -ENOMEM;
   1046		goto fail;
   1047	}
   1048
   1049	return 0;
   1050
   1051fail:
   1052	efx_fini_struct(efx);
   1053	return rc;
   1054}
   1055
   1056void efx_fini_struct(struct efx_nic *efx)
   1057{
   1058#ifdef CONFIG_RFS_ACCEL
   1059	kfree(efx->rps_hash_table);
   1060#endif
   1061
   1062	efx_fini_channels(efx);
   1063
   1064	kfree(efx->vpd_sn);
   1065
   1066	if (efx->workqueue) {
   1067		destroy_workqueue(efx->workqueue);
   1068		efx->workqueue = NULL;
   1069	}
   1070}
   1071
   1072/* This configures the PCI device to enable I/O and DMA. */
   1073int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
   1074		unsigned int mem_map_size)
   1075{
   1076	struct pci_dev *pci_dev = efx->pci_dev;
   1077	int rc;
   1078
   1079	efx->mem_bar = UINT_MAX;
   1080
   1081	netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
   1082
   1083	rc = pci_enable_device(pci_dev);
   1084	if (rc) {
   1085		netif_err(efx, probe, efx->net_dev,
   1086			  "failed to enable PCI device\n");
   1087		goto fail1;
   1088	}
   1089
   1090	pci_set_master(pci_dev);
   1091
   1092	rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
   1093	if (rc) {
   1094		netif_err(efx, probe, efx->net_dev,
   1095			  "could not find a suitable DMA mask\n");
   1096		goto fail2;
   1097	}
   1098	netif_dbg(efx, probe, efx->net_dev,
   1099		  "using DMA mask %llx\n", (unsigned long long)dma_mask);
   1100
   1101	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
   1102	if (!efx->membase_phys) {
   1103		netif_err(efx, probe, efx->net_dev,
   1104			  "ERROR: No BAR%d mapping from the BIOS. "
   1105			  "Try pci=realloc on the kernel command line\n", bar);
   1106		rc = -ENODEV;
   1107		goto fail3;
   1108	}
   1109
   1110	rc = pci_request_region(pci_dev, bar, "sfc");
   1111	if (rc) {
   1112		netif_err(efx, probe, efx->net_dev,
   1113			  "request for memory BAR[%d] failed\n", bar);
   1114		rc = -EIO;
   1115		goto fail3;
   1116	}
   1117	efx->mem_bar = bar;
   1118	efx->membase = ioremap(efx->membase_phys, mem_map_size);
   1119	if (!efx->membase) {
   1120		netif_err(efx, probe, efx->net_dev,
   1121			  "could not map memory BAR[%d] at %llx+%x\n", bar,
   1122			  (unsigned long long)efx->membase_phys, mem_map_size);
   1123		rc = -ENOMEM;
   1124		goto fail4;
   1125	}
   1126	netif_dbg(efx, probe, efx->net_dev,
   1127		  "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
   1128		  (unsigned long long)efx->membase_phys, mem_map_size,
   1129		  efx->membase);
   1130
   1131	return 0;
   1132
   1133fail4:
   1134	pci_release_region(efx->pci_dev, bar);
   1135fail3:
   1136	efx->membase_phys = 0;
   1137fail2:
   1138	pci_disable_device(efx->pci_dev);
   1139fail1:
   1140	return rc;
   1141}
   1142
   1143void efx_fini_io(struct efx_nic *efx)
   1144{
   1145	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
   1146
   1147	if (efx->membase) {
   1148		iounmap(efx->membase);
   1149		efx->membase = NULL;
   1150	}
   1151
   1152	if (efx->membase_phys) {
   1153		pci_release_region(efx->pci_dev, efx->mem_bar);
   1154		efx->membase_phys = 0;
   1155		efx->mem_bar = UINT_MAX;
   1156	}
   1157
   1158	/* Don't disable bus-mastering if VFs are assigned */
   1159	if (!pci_vfs_assigned(efx->pci_dev))
   1160		pci_disable_device(efx->pci_dev);
   1161}
   1162
   1163#ifdef CONFIG_SFC_MCDI_LOGGING
   1164static ssize_t mcdi_logging_show(struct device *dev,
   1165				 struct device_attribute *attr,
   1166				 char *buf)
   1167{
   1168	struct efx_nic *efx = dev_get_drvdata(dev);
   1169	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
   1170
   1171	return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
   1172}
   1173
   1174static ssize_t mcdi_logging_store(struct device *dev,
   1175				  struct device_attribute *attr,
   1176				  const char *buf, size_t count)
   1177{
   1178	struct efx_nic *efx = dev_get_drvdata(dev);
   1179	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
   1180	bool enable = count > 0 && *buf != '0';
   1181
   1182	mcdi->logging_enabled = enable;
   1183	return count;
   1184}
   1185
   1186static DEVICE_ATTR_RW(mcdi_logging);
   1187
   1188void efx_init_mcdi_logging(struct efx_nic *efx)
   1189{
   1190	int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
   1191
   1192	if (rc) {
   1193		netif_warn(efx, drv, efx->net_dev,
   1194			   "failed to init net dev attributes\n");
   1195	}
   1196}
   1197
   1198void efx_fini_mcdi_logging(struct efx_nic *efx)
   1199{
   1200	device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
   1201}
   1202#endif
   1203
   1204/* A PCI error affecting this device was detected.
   1205 * At this point MMIO and DMA may be disabled.
   1206 * Stop the software path and request a slot reset.
   1207 */
   1208static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
   1209					      pci_channel_state_t state)
   1210{
   1211	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
   1212	struct efx_nic *efx = pci_get_drvdata(pdev);
   1213
   1214	if (state == pci_channel_io_perm_failure)
   1215		return PCI_ERS_RESULT_DISCONNECT;
   1216
   1217	rtnl_lock();
   1218
   1219	if (efx->state != STATE_DISABLED) {
   1220		efx->state = STATE_RECOVERY;
   1221		efx->reset_pending = 0;
   1222
   1223		efx_device_detach_sync(efx);
   1224
   1225		efx_stop_all(efx);
   1226		efx_disable_interrupts(efx);
   1227
   1228		status = PCI_ERS_RESULT_NEED_RESET;
   1229	} else {
   1230		/* If the interface is disabled we don't want to do anything
   1231		 * with it.
   1232		 */
   1233		status = PCI_ERS_RESULT_RECOVERED;
   1234	}
   1235
   1236	rtnl_unlock();
   1237
   1238	pci_disable_device(pdev);
   1239
   1240	return status;
   1241}
   1242
   1243/* Fake a successful reset, which will be performed later in efx_io_resume. */
   1244static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
   1245{
   1246	struct efx_nic *efx = pci_get_drvdata(pdev);
   1247	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
   1248
   1249	if (pci_enable_device(pdev)) {
   1250		netif_err(efx, hw, efx->net_dev,
   1251			  "Cannot re-enable PCI device after reset.\n");
   1252		status =  PCI_ERS_RESULT_DISCONNECT;
   1253	}
   1254
   1255	return status;
   1256}
   1257
   1258/* Perform the actual reset and resume I/O operations. */
   1259static void efx_io_resume(struct pci_dev *pdev)
   1260{
   1261	struct efx_nic *efx = pci_get_drvdata(pdev);
   1262	int rc;
   1263
   1264	rtnl_lock();
   1265
   1266	if (efx->state == STATE_DISABLED)
   1267		goto out;
   1268
   1269	rc = efx_reset(efx, RESET_TYPE_ALL);
   1270	if (rc) {
   1271		netif_err(efx, hw, efx->net_dev,
   1272			  "efx_reset failed after PCI error (%d)\n", rc);
   1273	} else {
   1274		efx->state = STATE_READY;
   1275		netif_dbg(efx, hw, efx->net_dev,
   1276			  "Done resetting and resuming IO after PCI error.\n");
   1277	}
   1278
   1279out:
   1280	rtnl_unlock();
   1281}
   1282
   1283/* For simplicity and reliability, we always require a slot reset and try to
   1284 * reset the hardware when a pci error affecting the device is detected.
   1285 * We leave both the link_reset and mmio_enabled callback unimplemented:
   1286 * with our request for slot reset the mmio_enabled callback will never be
   1287 * called, and the link_reset callback is not used by AER or EEH mechanisms.
   1288 */
   1289const struct pci_error_handlers efx_err_handlers = {
   1290	.error_detected = efx_io_error_detected,
   1291	.slot_reset	= efx_io_slot_reset,
   1292	.resume		= efx_io_resume,
   1293};
   1294
   1295/* Determine whether the NIC will be able to handle TX offloads for a given
   1296 * encapsulated packet.
   1297 */
   1298static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
   1299{
   1300	struct gre_base_hdr *greh;
   1301	__be16 dst_port;
   1302	u8 ipproto;
   1303
   1304	/* Does the NIC support encap offloads?
   1305	 * If not, we should never get here, because we shouldn't have
   1306	 * advertised encap offload feature flags in the first place.
   1307	 */
   1308	if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
   1309		return false;
   1310
   1311	/* Determine encapsulation protocol in use */
   1312	switch (skb->protocol) {
   1313	case htons(ETH_P_IP):
   1314		ipproto = ip_hdr(skb)->protocol;
   1315		break;
   1316	case htons(ETH_P_IPV6):
   1317		/* If there are extension headers, this will cause us to
   1318		 * think we can't offload something that we maybe could have.
   1319		 */
   1320		ipproto = ipv6_hdr(skb)->nexthdr;
   1321		break;
   1322	default:
   1323		/* Not IP, so can't offload it */
   1324		return false;
   1325	}
   1326	switch (ipproto) {
   1327	case IPPROTO_GRE:
   1328		/* We support NVGRE but not IP over GRE or random gretaps.
   1329		 * Specifically, the NIC will accept GRE as encapsulated if
   1330		 * the inner protocol is Ethernet, but only handle it
   1331		 * correctly if the GRE header is 8 bytes long.  Moreover,
   1332		 * it will not update the Checksum or Sequence Number fields
   1333		 * if they are present.  (The Routing Present flag,
   1334		 * GRE_ROUTING, cannot be set else the header would be more
   1335		 * than 8 bytes long; so we don't have to worry about it.)
   1336		 */
   1337		if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
   1338			return false;
   1339		if (ntohs(skb->inner_protocol) != ETH_P_TEB)
   1340			return false;
   1341		if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
   1342			return false;
   1343		greh = (struct gre_base_hdr *)skb_transport_header(skb);
   1344		return !(greh->flags & (GRE_CSUM | GRE_SEQ));
   1345	case IPPROTO_UDP:
   1346		/* If the port is registered for a UDP tunnel, we assume the
   1347		 * packet is for that tunnel, and the NIC will handle it as
   1348		 * such.  If not, the NIC won't know what to do with it.
   1349		 */
   1350		dst_port = udp_hdr(skb)->dest;
   1351		return efx->type->udp_tnl_has_port(efx, dst_port);
   1352	default:
   1353		return false;
   1354	}
   1355}
   1356
   1357netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
   1358				     netdev_features_t features)
   1359{
   1360	struct efx_nic *efx = netdev_priv(dev);
   1361
   1362	if (skb->encapsulation) {
   1363		if (features & NETIF_F_GSO_MASK)
   1364			/* Hardware can only do TSO with at most 208 bytes
   1365			 * of headers.
   1366			 */
   1367			if (skb_inner_transport_offset(skb) >
   1368			    EFX_TSO2_MAX_HDRLEN)
   1369				features &= ~(NETIF_F_GSO_MASK);
   1370		if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
   1371			if (!efx_can_encap_offloads(efx, skb))
   1372				features &= ~(NETIF_F_GSO_MASK |
   1373					      NETIF_F_CSUM_MASK);
   1374	}
   1375	return features;
   1376}
   1377
   1378int efx_get_phys_port_id(struct net_device *net_dev,
   1379			 struct netdev_phys_item_id *ppid)
   1380{
   1381	struct efx_nic *efx = netdev_priv(net_dev);
   1382
   1383	if (efx->type->get_phys_port_id)
   1384		return efx->type->get_phys_port_id(efx, ppid);
   1385	else
   1386		return -EOPNOTSUPP;
   1387}
   1388
   1389int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
   1390{
   1391	struct efx_nic *efx = netdev_priv(net_dev);
   1392
   1393	if (snprintf(name, len, "p%u", efx->port_num) >= len)
   1394		return -EINVAL;
   1395	return 0;
   1396}