cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efx.c (83340B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2005-2013 Solarflare Communications Inc.
      6 */
      7
      8#include <linux/module.h>
      9#include <linux/pci.h>
     10#include <linux/netdevice.h>
     11#include <linux/etherdevice.h>
     12#include <linux/delay.h>
     13#include <linux/notifier.h>
     14#include <linux/ip.h>
     15#include <linux/tcp.h>
     16#include <linux/in.h>
     17#include <linux/ethtool.h>
     18#include <linux/topology.h>
     19#include <linux/gfp.h>
     20#include <linux/aer.h>
     21#include <linux/interrupt.h>
     22#include "net_driver.h"
     23#include "efx.h"
     24#include "nic.h"
     25#include "selftest.h"
     26
     27#include "workarounds.h"
     28
     29/**************************************************************************
     30 *
     31 * Type name strings
     32 *
     33 **************************************************************************
     34 */
     35
     36/* Loopback mode names (see LOOPBACK_MODE()) */
     37const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
     38const char *const ef4_loopback_mode_names[] = {
     39	[LOOPBACK_NONE]		= "NONE",
     40	[LOOPBACK_DATA]		= "DATAPATH",
     41	[LOOPBACK_GMAC]		= "GMAC",
     42	[LOOPBACK_XGMII]	= "XGMII",
     43	[LOOPBACK_XGXS]		= "XGXS",
     44	[LOOPBACK_XAUI]		= "XAUI",
     45	[LOOPBACK_GMII]		= "GMII",
     46	[LOOPBACK_SGMII]	= "SGMII",
     47	[LOOPBACK_XGBR]		= "XGBR",
     48	[LOOPBACK_XFI]		= "XFI",
     49	[LOOPBACK_XAUI_FAR]	= "XAUI_FAR",
     50	[LOOPBACK_GMII_FAR]	= "GMII_FAR",
     51	[LOOPBACK_SGMII_FAR]	= "SGMII_FAR",
     52	[LOOPBACK_XFI_FAR]	= "XFI_FAR",
     53	[LOOPBACK_GPHY]		= "GPHY",
     54	[LOOPBACK_PHYXS]	= "PHYXS",
     55	[LOOPBACK_PCS]		= "PCS",
     56	[LOOPBACK_PMAPMD]	= "PMA/PMD",
     57	[LOOPBACK_XPORT]	= "XPORT",
     58	[LOOPBACK_XGMII_WS]	= "XGMII_WS",
     59	[LOOPBACK_XAUI_WS]	= "XAUI_WS",
     60	[LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
     61	[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
     62	[LOOPBACK_GMII_WS]	= "GMII_WS",
     63	[LOOPBACK_XFI_WS]	= "XFI_WS",
     64	[LOOPBACK_XFI_WS_FAR]	= "XFI_WS_FAR",
     65	[LOOPBACK_PHYXS_WS]	= "PHYXS_WS",
     66};
     67
     68const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
     69const char *const ef4_reset_type_names[] = {
     70	[RESET_TYPE_INVISIBLE]          = "INVISIBLE",
     71	[RESET_TYPE_ALL]                = "ALL",
     72	[RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
     73	[RESET_TYPE_WORLD]              = "WORLD",
     74	[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
     75	[RESET_TYPE_DATAPATH]           = "DATAPATH",
     76	[RESET_TYPE_DISABLE]            = "DISABLE",
     77	[RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
     78	[RESET_TYPE_INT_ERROR]          = "INT_ERROR",
     79	[RESET_TYPE_RX_RECOVERY]        = "RX_RECOVERY",
     80	[RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
     81	[RESET_TYPE_TX_SKIP]            = "TX_SKIP",
     82};
     83
     84/* Reset workqueue. If any NIC has a hardware failure then a reset will be
     85 * queued onto this work queue. This is not a per-nic work queue, because
     86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
     87 */
     88static struct workqueue_struct *reset_workqueue;
     89
     90/* How often and how many times to poll for a reset while waiting for a
     91 * BIST that another function started to complete.
     92 */
     93#define BIST_WAIT_DELAY_MS	100
     94#define BIST_WAIT_DELAY_COUNT	100
     95
     96/**************************************************************************
     97 *
     98 * Configurable values
     99 *
    100 *************************************************************************/
    101
    102/*
    103 * Use separate channels for TX and RX events
    104 *
    105 * Set this to 1 to use separate channels for TX and RX. It allows us
    106 * to control interrupt affinity separately for TX and RX.
    107 *
    108 * This is only used in MSI-X interrupt mode
    109 */
    110bool ef4_separate_tx_channels;
    111module_param(ef4_separate_tx_channels, bool, 0444);
    112MODULE_PARM_DESC(ef4_separate_tx_channels,
    113		 "Use separate channels for TX and RX");
    114
    115/* This is the time (in jiffies) between invocations of the hardware
    116 * monitor.
    117 * On Falcon-based NICs, this will:
    118 * - Check the on-board hardware monitor;
    119 * - Poll the link state and reconfigure the hardware as necessary.
    120 * On Siena-based NICs for power systems with EEH support, this will give EEH a
    121 * chance to start.
    122 */
    123static unsigned int ef4_monitor_interval = 1 * HZ;
    124
    125/* Initial interrupt moderation settings.  They can be modified after
    126 * module load with ethtool.
    127 *
    128 * The default for RX should strike a balance between increasing the
    129 * round-trip latency and reducing overhead.
    130 */
    131static unsigned int rx_irq_mod_usec = 60;
    132
    133/* Initial interrupt moderation settings.  They can be modified after
    134 * module load with ethtool.
    135 *
    136 * This default is chosen to ensure that a 10G link does not go idle
    137 * while a TX queue is stopped after it has become full.  A queue is
    138 * restarted when it drops below half full.  The time this takes (assuming
    139 * worst case 3 descriptors per packet and 1024 descriptors) is
    140 *   512 / 3 * 1.2 = 205 usec.
    141 */
    142static unsigned int tx_irq_mod_usec = 150;
    143
    144/* This is the first interrupt mode to try out of:
    145 * 0 => MSI-X
    146 * 1 => MSI
    147 * 2 => legacy
    148 */
    149static unsigned int interrupt_mode;
    150
    151/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
    152 * i.e. the number of CPUs among which we may distribute simultaneous
    153 * interrupt handling.
    154 *
    155 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
    156 * The default (0) means to assign an interrupt to each core.
    157 */
    158static unsigned int rss_cpus;
    159module_param(rss_cpus, uint, 0444);
    160MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
    161
    162static bool phy_flash_cfg;
    163module_param(phy_flash_cfg, bool, 0644);
    164MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
    165
    166static unsigned irq_adapt_low_thresh = 8000;
    167module_param(irq_adapt_low_thresh, uint, 0644);
    168MODULE_PARM_DESC(irq_adapt_low_thresh,
    169		 "Threshold score for reducing IRQ moderation");
    170
    171static unsigned irq_adapt_high_thresh = 16000;
    172module_param(irq_adapt_high_thresh, uint, 0644);
    173MODULE_PARM_DESC(irq_adapt_high_thresh,
    174		 "Threshold score for increasing IRQ moderation");
    175
    176static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
    177			 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
    178			 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
    179			 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
    180module_param(debug, uint, 0);
    181MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
    182
    183/**************************************************************************
    184 *
    185 * Utility functions and prototypes
    186 *
    187 *************************************************************************/
    188
    189static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
    190static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
    191static void ef4_remove_channel(struct ef4_channel *channel);
    192static void ef4_remove_channels(struct ef4_nic *efx);
    193static const struct ef4_channel_type ef4_default_channel_type;
    194static void ef4_remove_port(struct ef4_nic *efx);
    195static void ef4_init_napi_channel(struct ef4_channel *channel);
    196static void ef4_fini_napi(struct ef4_nic *efx);
    197static void ef4_fini_napi_channel(struct ef4_channel *channel);
    198static void ef4_fini_struct(struct ef4_nic *efx);
    199static void ef4_start_all(struct ef4_nic *efx);
    200static void ef4_stop_all(struct ef4_nic *efx);
    201
    202#define EF4_ASSERT_RESET_SERIALISED(efx)		\
    203	do {						\
    204		if ((efx->state == STATE_READY) ||	\
    205		    (efx->state == STATE_RECOVERY) ||	\
    206		    (efx->state == STATE_DISABLED))	\
    207			ASSERT_RTNL();			\
    208	} while (0)
    209
    210static int ef4_check_disabled(struct ef4_nic *efx)
    211{
    212	if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
    213		netif_err(efx, drv, efx->net_dev,
    214			  "device is disabled due to earlier errors\n");
    215		return -EIO;
    216	}
    217	return 0;
    218}
    219
    220/**************************************************************************
    221 *
    222 * Event queue processing
    223 *
    224 *************************************************************************/
    225
    226/* Process channel's event queue
    227 *
    228 * This function is responsible for processing the event queue of a
    229 * single channel.  The caller must guarantee that this function will
    230 * never be concurrently called more than once on the same channel,
    231 * though different channels may be being processed concurrently.
    232 */
    233static int ef4_process_channel(struct ef4_channel *channel, int budget)
    234{
    235	struct ef4_tx_queue *tx_queue;
    236	int spent;
    237
    238	if (unlikely(!channel->enabled))
    239		return 0;
    240
    241	ef4_for_each_channel_tx_queue(tx_queue, channel) {
    242		tx_queue->pkts_compl = 0;
    243		tx_queue->bytes_compl = 0;
    244	}
    245
    246	spent = ef4_nic_process_eventq(channel, budget);
    247	if (spent && ef4_channel_has_rx_queue(channel)) {
    248		struct ef4_rx_queue *rx_queue =
    249			ef4_channel_get_rx_queue(channel);
    250
    251		ef4_rx_flush_packet(channel);
    252		ef4_fast_push_rx_descriptors(rx_queue, true);
    253	}
    254
    255	/* Update BQL */
    256	ef4_for_each_channel_tx_queue(tx_queue, channel) {
    257		if (tx_queue->bytes_compl) {
    258			netdev_tx_completed_queue(tx_queue->core_txq,
    259				tx_queue->pkts_compl, tx_queue->bytes_compl);
    260		}
    261	}
    262
    263	return spent;
    264}
    265
    266/* NAPI poll handler
    267 *
    268 * NAPI guarantees serialisation of polls of the same device, which
    269 * provides the guarantee required by ef4_process_channel().
    270 */
    271static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
    272{
    273	int step = efx->irq_mod_step_us;
    274
    275	if (channel->irq_mod_score < irq_adapt_low_thresh) {
    276		if (channel->irq_moderation_us > step) {
    277			channel->irq_moderation_us -= step;
    278			efx->type->push_irq_moderation(channel);
    279		}
    280	} else if (channel->irq_mod_score > irq_adapt_high_thresh) {
    281		if (channel->irq_moderation_us <
    282		    efx->irq_rx_moderation_us) {
    283			channel->irq_moderation_us += step;
    284			efx->type->push_irq_moderation(channel);
    285		}
    286	}
    287
    288	channel->irq_count = 0;
    289	channel->irq_mod_score = 0;
    290}
    291
    292static int ef4_poll(struct napi_struct *napi, int budget)
    293{
    294	struct ef4_channel *channel =
    295		container_of(napi, struct ef4_channel, napi_str);
    296	struct ef4_nic *efx = channel->efx;
    297	int spent;
    298
    299	netif_vdbg(efx, intr, efx->net_dev,
    300		   "channel %d NAPI poll executing on CPU %d\n",
    301		   channel->channel, raw_smp_processor_id());
    302
    303	spent = ef4_process_channel(channel, budget);
    304
    305	if (spent < budget) {
    306		if (ef4_channel_has_rx_queue(channel) &&
    307		    efx->irq_rx_adaptive &&
    308		    unlikely(++channel->irq_count == 1000)) {
    309			ef4_update_irq_mod(efx, channel);
    310		}
    311
    312		ef4_filter_rfs_expire(channel);
    313
    314		/* There is no race here; although napi_disable() will
    315		 * only wait for napi_complete(), this isn't a problem
    316		 * since ef4_nic_eventq_read_ack() will have no effect if
    317		 * interrupts have already been disabled.
    318		 */
    319		napi_complete_done(napi, spent);
    320		ef4_nic_eventq_read_ack(channel);
    321	}
    322
    323	return spent;
    324}
    325
    326/* Create event queue
    327 * Event queue memory allocations are done only once.  If the channel
    328 * is reset, the memory buffer will be reused; this guards against
    329 * errors during channel reset and also simplifies interrupt handling.
    330 */
    331static int ef4_probe_eventq(struct ef4_channel *channel)
    332{
    333	struct ef4_nic *efx = channel->efx;
    334	unsigned long entries;
    335
    336	netif_dbg(efx, probe, efx->net_dev,
    337		  "chan %d create event queue\n", channel->channel);
    338
    339	/* Build an event queue with room for one event per tx and rx buffer,
    340	 * plus some extra for link state events and MCDI completions. */
    341	entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
    342	EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
    343	channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
    344
    345	return ef4_nic_probe_eventq(channel);
    346}
    347
    348/* Prepare channel's event queue */
    349static int ef4_init_eventq(struct ef4_channel *channel)
    350{
    351	struct ef4_nic *efx = channel->efx;
    352	int rc;
    353
    354	EF4_WARN_ON_PARANOID(channel->eventq_init);
    355
    356	netif_dbg(efx, drv, efx->net_dev,
    357		  "chan %d init event queue\n", channel->channel);
    358
    359	rc = ef4_nic_init_eventq(channel);
    360	if (rc == 0) {
    361		efx->type->push_irq_moderation(channel);
    362		channel->eventq_read_ptr = 0;
    363		channel->eventq_init = true;
    364	}
    365	return rc;
    366}
    367
    368/* Enable event queue processing and NAPI */
    369void ef4_start_eventq(struct ef4_channel *channel)
    370{
    371	netif_dbg(channel->efx, ifup, channel->efx->net_dev,
    372		  "chan %d start event queue\n", channel->channel);
    373
    374	/* Make sure the NAPI handler sees the enabled flag set */
    375	channel->enabled = true;
    376	smp_wmb();
    377
    378	napi_enable(&channel->napi_str);
    379	ef4_nic_eventq_read_ack(channel);
    380}
    381
    382/* Disable event queue processing and NAPI */
    383void ef4_stop_eventq(struct ef4_channel *channel)
    384{
    385	if (!channel->enabled)
    386		return;
    387
    388	napi_disable(&channel->napi_str);
    389	channel->enabled = false;
    390}
    391
    392static void ef4_fini_eventq(struct ef4_channel *channel)
    393{
    394	if (!channel->eventq_init)
    395		return;
    396
    397	netif_dbg(channel->efx, drv, channel->efx->net_dev,
    398		  "chan %d fini event queue\n", channel->channel);
    399
    400	ef4_nic_fini_eventq(channel);
    401	channel->eventq_init = false;
    402}
    403
    404static void ef4_remove_eventq(struct ef4_channel *channel)
    405{
    406	netif_dbg(channel->efx, drv, channel->efx->net_dev,
    407		  "chan %d remove event queue\n", channel->channel);
    408
    409	ef4_nic_remove_eventq(channel);
    410}
    411
    412/**************************************************************************
    413 *
    414 * Channel handling
    415 *
    416 *************************************************************************/
    417
    418/* Allocate and initialise a channel structure. */
    419static struct ef4_channel *
    420ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
    421{
    422	struct ef4_channel *channel;
    423	struct ef4_rx_queue *rx_queue;
    424	struct ef4_tx_queue *tx_queue;
    425	int j;
    426
    427	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
    428	if (!channel)
    429		return NULL;
    430
    431	channel->efx = efx;
    432	channel->channel = i;
    433	channel->type = &ef4_default_channel_type;
    434
    435	for (j = 0; j < EF4_TXQ_TYPES; j++) {
    436		tx_queue = &channel->tx_queue[j];
    437		tx_queue->efx = efx;
    438		tx_queue->queue = i * EF4_TXQ_TYPES + j;
    439		tx_queue->channel = channel;
    440	}
    441
    442	rx_queue = &channel->rx_queue;
    443	rx_queue->efx = efx;
    444	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
    445
    446	return channel;
    447}
    448
    449/* Allocate and initialise a channel structure, copying parameters
    450 * (but not resources) from an old channel structure.
    451 */
    452static struct ef4_channel *
    453ef4_copy_channel(const struct ef4_channel *old_channel)
    454{
    455	struct ef4_channel *channel;
    456	struct ef4_rx_queue *rx_queue;
    457	struct ef4_tx_queue *tx_queue;
    458	int j;
    459
    460	channel = kmalloc(sizeof(*channel), GFP_KERNEL);
    461	if (!channel)
    462		return NULL;
    463
    464	*channel = *old_channel;
    465
    466	channel->napi_dev = NULL;
    467	INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
    468	channel->napi_str.napi_id = 0;
    469	channel->napi_str.state = 0;
    470	memset(&channel->eventq, 0, sizeof(channel->eventq));
    471
    472	for (j = 0; j < EF4_TXQ_TYPES; j++) {
    473		tx_queue = &channel->tx_queue[j];
    474		if (tx_queue->channel)
    475			tx_queue->channel = channel;
    476		tx_queue->buffer = NULL;
    477		memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
    478	}
    479
    480	rx_queue = &channel->rx_queue;
    481	rx_queue->buffer = NULL;
    482	memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
    483	timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
    484
    485	return channel;
    486}
    487
    488static int ef4_probe_channel(struct ef4_channel *channel)
    489{
    490	struct ef4_tx_queue *tx_queue;
    491	struct ef4_rx_queue *rx_queue;
    492	int rc;
    493
    494	netif_dbg(channel->efx, probe, channel->efx->net_dev,
    495		  "creating channel %d\n", channel->channel);
    496
    497	rc = channel->type->pre_probe(channel);
    498	if (rc)
    499		goto fail;
    500
    501	rc = ef4_probe_eventq(channel);
    502	if (rc)
    503		goto fail;
    504
    505	ef4_for_each_channel_tx_queue(tx_queue, channel) {
    506		rc = ef4_probe_tx_queue(tx_queue);
    507		if (rc)
    508			goto fail;
    509	}
    510
    511	ef4_for_each_channel_rx_queue(rx_queue, channel) {
    512		rc = ef4_probe_rx_queue(rx_queue);
    513		if (rc)
    514			goto fail;
    515	}
    516
    517	return 0;
    518
    519fail:
    520	ef4_remove_channel(channel);
    521	return rc;
    522}
    523
    524static void
    525ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
    526{
    527	struct ef4_nic *efx = channel->efx;
    528	const char *type;
    529	int number;
    530
    531	number = channel->channel;
    532	if (efx->tx_channel_offset == 0) {
    533		type = "";
    534	} else if (channel->channel < efx->tx_channel_offset) {
    535		type = "-rx";
    536	} else {
    537		type = "-tx";
    538		number -= efx->tx_channel_offset;
    539	}
    540	snprintf(buf, len, "%s%s-%d", efx->name, type, number);
    541}
    542
    543static void ef4_set_channel_names(struct ef4_nic *efx)
    544{
    545	struct ef4_channel *channel;
    546
    547	ef4_for_each_channel(channel, efx)
    548		channel->type->get_name(channel,
    549					efx->msi_context[channel->channel].name,
    550					sizeof(efx->msi_context[0].name));
    551}
    552
    553static int ef4_probe_channels(struct ef4_nic *efx)
    554{
    555	struct ef4_channel *channel;
    556	int rc;
    557
    558	/* Restart special buffer allocation */
    559	efx->next_buffer_table = 0;
    560
    561	/* Probe channels in reverse, so that any 'extra' channels
    562	 * use the start of the buffer table. This allows the traffic
    563	 * channels to be resized without moving them or wasting the
    564	 * entries before them.
    565	 */
    566	ef4_for_each_channel_rev(channel, efx) {
    567		rc = ef4_probe_channel(channel);
    568		if (rc) {
    569			netif_err(efx, probe, efx->net_dev,
    570				  "failed to create channel %d\n",
    571				  channel->channel);
    572			goto fail;
    573		}
    574	}
    575	ef4_set_channel_names(efx);
    576
    577	return 0;
    578
    579fail:
    580	ef4_remove_channels(efx);
    581	return rc;
    582}
    583
    584/* Channels are shutdown and reinitialised whilst the NIC is running
    585 * to propagate configuration changes (mtu, checksum offload), or
    586 * to clear hardware error conditions
    587 */
    588static void ef4_start_datapath(struct ef4_nic *efx)
    589{
    590	netdev_features_t old_features = efx->net_dev->features;
    591	bool old_rx_scatter = efx->rx_scatter;
    592	struct ef4_tx_queue *tx_queue;
    593	struct ef4_rx_queue *rx_queue;
    594	struct ef4_channel *channel;
    595	size_t rx_buf_len;
    596
    597	/* Calculate the rx buffer allocation parameters required to
    598	 * support the current MTU, including padding for header
    599	 * alignment and overruns.
    600	 */
    601	efx->rx_dma_len = (efx->rx_prefix_size +
    602			   EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
    603			   efx->type->rx_buffer_padding);
    604	rx_buf_len = (sizeof(struct ef4_rx_page_state) +
    605		      efx->rx_ip_align + efx->rx_dma_len);
    606	if (rx_buf_len <= PAGE_SIZE) {
    607		efx->rx_scatter = efx->type->always_rx_scatter;
    608		efx->rx_buffer_order = 0;
    609	} else if (efx->type->can_rx_scatter) {
    610		BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
    611		BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
    612			     2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
    613				       EF4_RX_BUF_ALIGNMENT) >
    614			     PAGE_SIZE);
    615		efx->rx_scatter = true;
    616		efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
    617		efx->rx_buffer_order = 0;
    618	} else {
    619		efx->rx_scatter = false;
    620		efx->rx_buffer_order = get_order(rx_buf_len);
    621	}
    622
    623	ef4_rx_config_page_split(efx);
    624	if (efx->rx_buffer_order)
    625		netif_dbg(efx, drv, efx->net_dev,
    626			  "RX buf len=%u; page order=%u batch=%u\n",
    627			  efx->rx_dma_len, efx->rx_buffer_order,
    628			  efx->rx_pages_per_batch);
    629	else
    630		netif_dbg(efx, drv, efx->net_dev,
    631			  "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
    632			  efx->rx_dma_len, efx->rx_page_buf_step,
    633			  efx->rx_bufs_per_page, efx->rx_pages_per_batch);
    634
    635	/* Restore previously fixed features in hw_features and remove
    636	 * features which are fixed now
    637	 */
    638	efx->net_dev->hw_features |= efx->net_dev->features;
    639	efx->net_dev->hw_features &= ~efx->fixed_features;
    640	efx->net_dev->features |= efx->fixed_features;
    641	if (efx->net_dev->features != old_features)
    642		netdev_features_change(efx->net_dev);
    643
    644	/* RX filters may also have scatter-enabled flags */
    645	if (efx->rx_scatter != old_rx_scatter)
    646		efx->type->filter_update_rx_scatter(efx);
    647
    648	/* We must keep at least one descriptor in a TX ring empty.
    649	 * We could avoid this when the queue size does not exactly
    650	 * match the hardware ring size, but it's not that important.
    651	 * Therefore we stop the queue when one more skb might fill
    652	 * the ring completely.  We wake it when half way back to
    653	 * empty.
    654	 */
    655	efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
    656	efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
    657
    658	/* Initialise the channels */
    659	ef4_for_each_channel(channel, efx) {
    660		ef4_for_each_channel_tx_queue(tx_queue, channel) {
    661			ef4_init_tx_queue(tx_queue);
    662			atomic_inc(&efx->active_queues);
    663		}
    664
    665		ef4_for_each_channel_rx_queue(rx_queue, channel) {
    666			ef4_init_rx_queue(rx_queue);
    667			atomic_inc(&efx->active_queues);
    668			ef4_stop_eventq(channel);
    669			ef4_fast_push_rx_descriptors(rx_queue, false);
    670			ef4_start_eventq(channel);
    671		}
    672
    673		WARN_ON(channel->rx_pkt_n_frags);
    674	}
    675
    676	if (netif_device_present(efx->net_dev))
    677		netif_tx_wake_all_queues(efx->net_dev);
    678}
    679
    680static void ef4_stop_datapath(struct ef4_nic *efx)
    681{
    682	struct ef4_channel *channel;
    683	struct ef4_tx_queue *tx_queue;
    684	struct ef4_rx_queue *rx_queue;
    685	int rc;
    686
    687	EF4_ASSERT_RESET_SERIALISED(efx);
    688	BUG_ON(efx->port_enabled);
    689
    690	/* Stop RX refill */
    691	ef4_for_each_channel(channel, efx) {
    692		ef4_for_each_channel_rx_queue(rx_queue, channel)
    693			rx_queue->refill_enabled = false;
    694	}
    695
    696	ef4_for_each_channel(channel, efx) {
    697		/* RX packet processing is pipelined, so wait for the
    698		 * NAPI handler to complete.  At least event queue 0
    699		 * might be kept active by non-data events, so don't
    700		 * use napi_synchronize() but actually disable NAPI
    701		 * temporarily.
    702		 */
    703		if (ef4_channel_has_rx_queue(channel)) {
    704			ef4_stop_eventq(channel);
    705			ef4_start_eventq(channel);
    706		}
    707	}
    708
    709	rc = efx->type->fini_dmaq(efx);
    710	if (rc && EF4_WORKAROUND_7803(efx)) {
    711		/* Schedule a reset to recover from the flush failure. The
    712		 * descriptor caches reference memory we're about to free,
    713		 * but falcon_reconfigure_mac_wrapper() won't reconnect
    714		 * the MACs because of the pending reset.
    715		 */
    716		netif_err(efx, drv, efx->net_dev,
    717			  "Resetting to recover from flush failure\n");
    718		ef4_schedule_reset(efx, RESET_TYPE_ALL);
    719	} else if (rc) {
    720		netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
    721	} else {
    722		netif_dbg(efx, drv, efx->net_dev,
    723			  "successfully flushed all queues\n");
    724	}
    725
    726	ef4_for_each_channel(channel, efx) {
    727		ef4_for_each_channel_rx_queue(rx_queue, channel)
    728			ef4_fini_rx_queue(rx_queue);
    729		ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
    730			ef4_fini_tx_queue(tx_queue);
    731	}
    732}
    733
    734static void ef4_remove_channel(struct ef4_channel *channel)
    735{
    736	struct ef4_tx_queue *tx_queue;
    737	struct ef4_rx_queue *rx_queue;
    738
    739	netif_dbg(channel->efx, drv, channel->efx->net_dev,
    740		  "destroy chan %d\n", channel->channel);
    741
    742	ef4_for_each_channel_rx_queue(rx_queue, channel)
    743		ef4_remove_rx_queue(rx_queue);
    744	ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
    745		ef4_remove_tx_queue(tx_queue);
    746	ef4_remove_eventq(channel);
    747	channel->type->post_remove(channel);
    748}
    749
    750static void ef4_remove_channels(struct ef4_nic *efx)
    751{
    752	struct ef4_channel *channel;
    753
    754	ef4_for_each_channel(channel, efx)
    755		ef4_remove_channel(channel);
    756}
    757
    758int
    759ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
    760{
    761	struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
    762	u32 old_rxq_entries, old_txq_entries;
    763	unsigned i, next_buffer_table = 0;
    764	int rc, rc2;
    765
    766	rc = ef4_check_disabled(efx);
    767	if (rc)
    768		return rc;
    769
    770	/* Not all channels should be reallocated. We must avoid
    771	 * reallocating their buffer table entries.
    772	 */
    773	ef4_for_each_channel(channel, efx) {
    774		struct ef4_rx_queue *rx_queue;
    775		struct ef4_tx_queue *tx_queue;
    776
    777		if (channel->type->copy)
    778			continue;
    779		next_buffer_table = max(next_buffer_table,
    780					channel->eventq.index +
    781					channel->eventq.entries);
    782		ef4_for_each_channel_rx_queue(rx_queue, channel)
    783			next_buffer_table = max(next_buffer_table,
    784						rx_queue->rxd.index +
    785						rx_queue->rxd.entries);
    786		ef4_for_each_channel_tx_queue(tx_queue, channel)
    787			next_buffer_table = max(next_buffer_table,
    788						tx_queue->txd.index +
    789						tx_queue->txd.entries);
    790	}
    791
    792	ef4_device_detach_sync(efx);
    793	ef4_stop_all(efx);
    794	ef4_soft_disable_interrupts(efx);
    795
    796	/* Clone channels (where possible) */
    797	memset(other_channel, 0, sizeof(other_channel));
    798	for (i = 0; i < efx->n_channels; i++) {
    799		channel = efx->channel[i];
    800		if (channel->type->copy)
    801			channel = channel->type->copy(channel);
    802		if (!channel) {
    803			rc = -ENOMEM;
    804			goto out;
    805		}
    806		other_channel[i] = channel;
    807	}
    808
    809	/* Swap entry counts and channel pointers */
    810	old_rxq_entries = efx->rxq_entries;
    811	old_txq_entries = efx->txq_entries;
    812	efx->rxq_entries = rxq_entries;
    813	efx->txq_entries = txq_entries;
    814	for (i = 0; i < efx->n_channels; i++) {
    815		swap(efx->channel[i], other_channel[i]);
    816	}
    817
    818	/* Restart buffer table allocation */
    819	efx->next_buffer_table = next_buffer_table;
    820
    821	for (i = 0; i < efx->n_channels; i++) {
    822		channel = efx->channel[i];
    823		if (!channel->type->copy)
    824			continue;
    825		rc = ef4_probe_channel(channel);
    826		if (rc)
    827			goto rollback;
    828		ef4_init_napi_channel(efx->channel[i]);
    829	}
    830
    831out:
    832	/* Destroy unused channel structures */
    833	for (i = 0; i < efx->n_channels; i++) {
    834		channel = other_channel[i];
    835		if (channel && channel->type->copy) {
    836			ef4_fini_napi_channel(channel);
    837			ef4_remove_channel(channel);
    838			kfree(channel);
    839		}
    840	}
    841
    842	rc2 = ef4_soft_enable_interrupts(efx);
    843	if (rc2) {
    844		rc = rc ? rc : rc2;
    845		netif_err(efx, drv, efx->net_dev,
    846			  "unable to restart interrupts on channel reallocation\n");
    847		ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
    848	} else {
    849		ef4_start_all(efx);
    850		netif_device_attach(efx->net_dev);
    851	}
    852	return rc;
    853
    854rollback:
    855	/* Swap back */
    856	efx->rxq_entries = old_rxq_entries;
    857	efx->txq_entries = old_txq_entries;
    858	for (i = 0; i < efx->n_channels; i++) {
    859		swap(efx->channel[i], other_channel[i]);
    860	}
    861	goto out;
    862}
    863
    864void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
    865{
    866	mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
    867}
    868
    869static const struct ef4_channel_type ef4_default_channel_type = {
    870	.pre_probe		= ef4_channel_dummy_op_int,
    871	.post_remove		= ef4_channel_dummy_op_void,
    872	.get_name		= ef4_get_channel_name,
    873	.copy			= ef4_copy_channel,
    874	.keep_eventq		= false,
    875};
    876
    877int ef4_channel_dummy_op_int(struct ef4_channel *channel)
    878{
    879	return 0;
    880}
    881
    882void ef4_channel_dummy_op_void(struct ef4_channel *channel)
    883{
    884}
    885
    886/**************************************************************************
    887 *
    888 * Port handling
    889 *
    890 **************************************************************************/
    891
    892/* This ensures that the kernel is kept informed (via
    893 * netif_carrier_on/off) of the link status, and also maintains the
    894 * link status's stop on the port's TX queue.
    895 */
    896void ef4_link_status_changed(struct ef4_nic *efx)
    897{
    898	struct ef4_link_state *link_state = &efx->link_state;
    899
    900	/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
    901	 * that no events are triggered between unregister_netdev() and the
    902	 * driver unloading. A more general condition is that NETDEV_CHANGE
    903	 * can only be generated between NETDEV_UP and NETDEV_DOWN */
    904	if (!netif_running(efx->net_dev))
    905		return;
    906
    907	if (link_state->up != netif_carrier_ok(efx->net_dev)) {
    908		efx->n_link_state_changes++;
    909
    910		if (link_state->up)
    911			netif_carrier_on(efx->net_dev);
    912		else
    913			netif_carrier_off(efx->net_dev);
    914	}
    915
    916	/* Status message for kernel log */
    917	if (link_state->up)
    918		netif_info(efx, link, efx->net_dev,
    919			   "link up at %uMbps %s-duplex (MTU %d)\n",
    920			   link_state->speed, link_state->fd ? "full" : "half",
    921			   efx->net_dev->mtu);
    922	else
    923		netif_info(efx, link, efx->net_dev, "link down\n");
    924}
    925
    926void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
    927{
    928	efx->link_advertising = advertising;
    929	if (advertising) {
    930		if (advertising & ADVERTISED_Pause)
    931			efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
    932		else
    933			efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
    934		if (advertising & ADVERTISED_Asym_Pause)
    935			efx->wanted_fc ^= EF4_FC_TX;
    936	}
    937}
    938
    939void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
    940{
    941	efx->wanted_fc = wanted_fc;
    942	if (efx->link_advertising) {
    943		if (wanted_fc & EF4_FC_RX)
    944			efx->link_advertising |= (ADVERTISED_Pause |
    945						  ADVERTISED_Asym_Pause);
    946		else
    947			efx->link_advertising &= ~(ADVERTISED_Pause |
    948						   ADVERTISED_Asym_Pause);
    949		if (wanted_fc & EF4_FC_TX)
    950			efx->link_advertising ^= ADVERTISED_Asym_Pause;
    951	}
    952}
    953
    954static void ef4_fini_port(struct ef4_nic *efx);
    955
    956/* We assume that efx->type->reconfigure_mac will always try to sync RX
    957 * filters and therefore needs to read-lock the filter table against freeing
    958 */
    959void ef4_mac_reconfigure(struct ef4_nic *efx)
    960{
    961	down_read(&efx->filter_sem);
    962	efx->type->reconfigure_mac(efx);
    963	up_read(&efx->filter_sem);
    964}
    965
    966/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
    967 * the MAC appropriately. All other PHY configuration changes are pushed
    968 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
    969 * through ef4_monitor().
    970 *
    971 * Callers must hold the mac_lock
    972 */
    973int __ef4_reconfigure_port(struct ef4_nic *efx)
    974{
    975	enum ef4_phy_mode phy_mode;
    976	int rc;
    977
    978	WARN_ON(!mutex_is_locked(&efx->mac_lock));
    979
    980	/* Disable PHY transmit in mac level loopbacks */
    981	phy_mode = efx->phy_mode;
    982	if (LOOPBACK_INTERNAL(efx))
    983		efx->phy_mode |= PHY_MODE_TX_DISABLED;
    984	else
    985		efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
    986
    987	rc = efx->type->reconfigure_port(efx);
    988
    989	if (rc)
    990		efx->phy_mode = phy_mode;
    991
    992	return rc;
    993}
    994
    995/* Reinitialise the MAC to pick up new PHY settings, even if the port is
    996 * disabled. */
    997int ef4_reconfigure_port(struct ef4_nic *efx)
    998{
    999	int rc;
   1000
   1001	EF4_ASSERT_RESET_SERIALISED(efx);
   1002
   1003	mutex_lock(&efx->mac_lock);
   1004	rc = __ef4_reconfigure_port(efx);
   1005	mutex_unlock(&efx->mac_lock);
   1006
   1007	return rc;
   1008}
   1009
   1010/* Asynchronous work item for changing MAC promiscuity and multicast
   1011 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
   1012 * MAC directly. */
   1013static void ef4_mac_work(struct work_struct *data)
   1014{
   1015	struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
   1016
   1017	mutex_lock(&efx->mac_lock);
   1018	if (efx->port_enabled)
   1019		ef4_mac_reconfigure(efx);
   1020	mutex_unlock(&efx->mac_lock);
   1021}
   1022
   1023static int ef4_probe_port(struct ef4_nic *efx)
   1024{
   1025	int rc;
   1026
   1027	netif_dbg(efx, probe, efx->net_dev, "create port\n");
   1028
   1029	if (phy_flash_cfg)
   1030		efx->phy_mode = PHY_MODE_SPECIAL;
   1031
   1032	/* Connect up MAC/PHY operations table */
   1033	rc = efx->type->probe_port(efx);
   1034	if (rc)
   1035		return rc;
   1036
   1037	/* Initialise MAC address to permanent address */
   1038	eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
   1039
   1040	return 0;
   1041}
   1042
   1043static int ef4_init_port(struct ef4_nic *efx)
   1044{
   1045	int rc;
   1046
   1047	netif_dbg(efx, drv, efx->net_dev, "init port\n");
   1048
   1049	mutex_lock(&efx->mac_lock);
   1050
   1051	rc = efx->phy_op->init(efx);
   1052	if (rc)
   1053		goto fail1;
   1054
   1055	efx->port_initialized = true;
   1056
   1057	/* Reconfigure the MAC before creating dma queues (required for
   1058	 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
   1059	ef4_mac_reconfigure(efx);
   1060
   1061	/* Ensure the PHY advertises the correct flow control settings */
   1062	rc = efx->phy_op->reconfigure(efx);
   1063	if (rc && rc != -EPERM)
   1064		goto fail2;
   1065
   1066	mutex_unlock(&efx->mac_lock);
   1067	return 0;
   1068
   1069fail2:
   1070	efx->phy_op->fini(efx);
   1071fail1:
   1072	mutex_unlock(&efx->mac_lock);
   1073	return rc;
   1074}
   1075
   1076static void ef4_start_port(struct ef4_nic *efx)
   1077{
   1078	netif_dbg(efx, ifup, efx->net_dev, "start port\n");
   1079	BUG_ON(efx->port_enabled);
   1080
   1081	mutex_lock(&efx->mac_lock);
   1082	efx->port_enabled = true;
   1083
   1084	/* Ensure MAC ingress/egress is enabled */
   1085	ef4_mac_reconfigure(efx);
   1086
   1087	mutex_unlock(&efx->mac_lock);
   1088}
   1089
   1090/* Cancel work for MAC reconfiguration, periodic hardware monitoring
   1091 * and the async self-test, wait for them to finish and prevent them
   1092 * being scheduled again.  This doesn't cover online resets, which
   1093 * should only be cancelled when removing the device.
   1094 */
   1095static void ef4_stop_port(struct ef4_nic *efx)
   1096{
   1097	netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
   1098
   1099	EF4_ASSERT_RESET_SERIALISED(efx);
   1100
   1101	mutex_lock(&efx->mac_lock);
   1102	efx->port_enabled = false;
   1103	mutex_unlock(&efx->mac_lock);
   1104
   1105	/* Serialise against ef4_set_multicast_list() */
   1106	netif_addr_lock_bh(efx->net_dev);
   1107	netif_addr_unlock_bh(efx->net_dev);
   1108
   1109	cancel_delayed_work_sync(&efx->monitor_work);
   1110	ef4_selftest_async_cancel(efx);
   1111	cancel_work_sync(&efx->mac_work);
   1112}
   1113
   1114static void ef4_fini_port(struct ef4_nic *efx)
   1115{
   1116	netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
   1117
   1118	if (!efx->port_initialized)
   1119		return;
   1120
   1121	efx->phy_op->fini(efx);
   1122	efx->port_initialized = false;
   1123
   1124	efx->link_state.up = false;
   1125	ef4_link_status_changed(efx);
   1126}
   1127
   1128static void ef4_remove_port(struct ef4_nic *efx)
   1129{
   1130	netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
   1131
   1132	efx->type->remove_port(efx);
   1133}
   1134
   1135/**************************************************************************
   1136 *
   1137 * NIC handling
   1138 *
   1139 **************************************************************************/
   1140
   1141static LIST_HEAD(ef4_primary_list);
   1142static LIST_HEAD(ef4_unassociated_list);
   1143
   1144static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
   1145{
   1146	return left->type == right->type &&
   1147		left->vpd_sn && right->vpd_sn &&
   1148		!strcmp(left->vpd_sn, right->vpd_sn);
   1149}
   1150
   1151static void ef4_associate(struct ef4_nic *efx)
   1152{
   1153	struct ef4_nic *other, *next;
   1154
   1155	if (efx->primary == efx) {
   1156		/* Adding primary function; look for secondaries */
   1157
   1158		netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
   1159		list_add_tail(&efx->node, &ef4_primary_list);
   1160
   1161		list_for_each_entry_safe(other, next, &ef4_unassociated_list,
   1162					 node) {
   1163			if (ef4_same_controller(efx, other)) {
   1164				list_del(&other->node);
   1165				netif_dbg(other, probe, other->net_dev,
   1166					  "moving to secondary list of %s %s\n",
   1167					  pci_name(efx->pci_dev),
   1168					  efx->net_dev->name);
   1169				list_add_tail(&other->node,
   1170					      &efx->secondary_list);
   1171				other->primary = efx;
   1172			}
   1173		}
   1174	} else {
   1175		/* Adding secondary function; look for primary */
   1176
   1177		list_for_each_entry(other, &ef4_primary_list, node) {
   1178			if (ef4_same_controller(efx, other)) {
   1179				netif_dbg(efx, probe, efx->net_dev,
   1180					  "adding to secondary list of %s %s\n",
   1181					  pci_name(other->pci_dev),
   1182					  other->net_dev->name);
   1183				list_add_tail(&efx->node,
   1184					      &other->secondary_list);
   1185				efx->primary = other;
   1186				return;
   1187			}
   1188		}
   1189
   1190		netif_dbg(efx, probe, efx->net_dev,
   1191			  "adding to unassociated list\n");
   1192		list_add_tail(&efx->node, &ef4_unassociated_list);
   1193	}
   1194}
   1195
   1196static void ef4_dissociate(struct ef4_nic *efx)
   1197{
   1198	struct ef4_nic *other, *next;
   1199
   1200	list_del(&efx->node);
   1201	efx->primary = NULL;
   1202
   1203	list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
   1204		list_del(&other->node);
   1205		netif_dbg(other, probe, other->net_dev,
   1206			  "moving to unassociated list\n");
   1207		list_add_tail(&other->node, &ef4_unassociated_list);
   1208		other->primary = NULL;
   1209	}
   1210}
   1211
   1212/* This configures the PCI device to enable I/O and DMA. */
   1213static int ef4_init_io(struct ef4_nic *efx)
   1214{
   1215	struct pci_dev *pci_dev = efx->pci_dev;
   1216	dma_addr_t dma_mask = efx->type->max_dma_mask;
   1217	unsigned int mem_map_size = efx->type->mem_map_size(efx);
   1218	int rc, bar;
   1219
   1220	netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
   1221
   1222	bar = efx->type->mem_bar;
   1223
   1224	rc = pci_enable_device(pci_dev);
   1225	if (rc) {
   1226		netif_err(efx, probe, efx->net_dev,
   1227			  "failed to enable PCI device\n");
   1228		goto fail1;
   1229	}
   1230
   1231	pci_set_master(pci_dev);
   1232
   1233	/* Set the PCI DMA mask.  Try all possibilities from our genuine mask
   1234	 * down to 32 bits, because some architectures will allow 40 bit
   1235	 * masks event though they reject 46 bit masks.
   1236	 */
   1237	while (dma_mask > 0x7fffffffUL) {
   1238		rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
   1239		if (rc == 0)
   1240			break;
   1241		dma_mask >>= 1;
   1242	}
   1243	if (rc) {
   1244		netif_err(efx, probe, efx->net_dev,
   1245			  "could not find a suitable DMA mask\n");
   1246		goto fail2;
   1247	}
   1248	netif_dbg(efx, probe, efx->net_dev,
   1249		  "using DMA mask %llx\n", (unsigned long long) dma_mask);
   1250
   1251	efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
   1252	rc = pci_request_region(pci_dev, bar, "sfc");
   1253	if (rc) {
   1254		netif_err(efx, probe, efx->net_dev,
   1255			  "request for memory BAR failed\n");
   1256		rc = -EIO;
   1257		goto fail3;
   1258	}
   1259	efx->membase = ioremap(efx->membase_phys, mem_map_size);
   1260	if (!efx->membase) {
   1261		netif_err(efx, probe, efx->net_dev,
   1262			  "could not map memory BAR at %llx+%x\n",
   1263			  (unsigned long long)efx->membase_phys, mem_map_size);
   1264		rc = -ENOMEM;
   1265		goto fail4;
   1266	}
   1267	netif_dbg(efx, probe, efx->net_dev,
   1268		  "memory BAR at %llx+%x (virtual %p)\n",
   1269		  (unsigned long long)efx->membase_phys, mem_map_size,
   1270		  efx->membase);
   1271
   1272	return 0;
   1273
   1274 fail4:
   1275	pci_release_region(efx->pci_dev, bar);
   1276 fail3:
   1277	efx->membase_phys = 0;
   1278 fail2:
   1279	pci_disable_device(efx->pci_dev);
   1280 fail1:
   1281	return rc;
   1282}
   1283
   1284static void ef4_fini_io(struct ef4_nic *efx)
   1285{
   1286	int bar;
   1287
   1288	netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
   1289
   1290	if (efx->membase) {
   1291		iounmap(efx->membase);
   1292		efx->membase = NULL;
   1293	}
   1294
   1295	if (efx->membase_phys) {
   1296		bar = efx->type->mem_bar;
   1297		pci_release_region(efx->pci_dev, bar);
   1298		efx->membase_phys = 0;
   1299	}
   1300
   1301	/* Don't disable bus-mastering if VFs are assigned */
   1302	if (!pci_vfs_assigned(efx->pci_dev))
   1303		pci_disable_device(efx->pci_dev);
   1304}
   1305
   1306void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
   1307{
   1308	size_t i;
   1309
   1310	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
   1311		efx->rx_indir_table[i] =
   1312			ethtool_rxfh_indir_default(i, efx->rss_spread);
   1313}
   1314
   1315static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
   1316{
   1317	cpumask_var_t thread_mask;
   1318	unsigned int count;
   1319	int cpu;
   1320
   1321	if (rss_cpus) {
   1322		count = rss_cpus;
   1323	} else {
   1324		if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
   1325			netif_warn(efx, probe, efx->net_dev,
   1326				   "RSS disabled due to allocation failure\n");
   1327			return 1;
   1328		}
   1329
   1330		count = 0;
   1331		for_each_online_cpu(cpu) {
   1332			if (!cpumask_test_cpu(cpu, thread_mask)) {
   1333				++count;
   1334				cpumask_or(thread_mask, thread_mask,
   1335					   topology_sibling_cpumask(cpu));
   1336			}
   1337		}
   1338
   1339		free_cpumask_var(thread_mask);
   1340	}
   1341
   1342	if (count > EF4_MAX_RX_QUEUES) {
   1343		netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
   1344			       "Reducing number of rx queues from %u to %u.\n",
   1345			       count, EF4_MAX_RX_QUEUES);
   1346		count = EF4_MAX_RX_QUEUES;
   1347	}
   1348
   1349	return count;
   1350}
   1351
   1352/* Probe the number and type of interrupts we are able to obtain, and
   1353 * the resulting numbers of channels and RX queues.
   1354 */
   1355static int ef4_probe_interrupts(struct ef4_nic *efx)
   1356{
   1357	unsigned int extra_channels = 0;
   1358	unsigned int i, j;
   1359	int rc;
   1360
   1361	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
   1362		if (efx->extra_channel_type[i])
   1363			++extra_channels;
   1364
   1365	if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
   1366		struct msix_entry xentries[EF4_MAX_CHANNELS];
   1367		unsigned int n_channels;
   1368
   1369		n_channels = ef4_wanted_parallelism(efx);
   1370		if (ef4_separate_tx_channels)
   1371			n_channels *= 2;
   1372		n_channels += extra_channels;
   1373		n_channels = min(n_channels, efx->max_channels);
   1374
   1375		for (i = 0; i < n_channels; i++)
   1376			xentries[i].entry = i;
   1377		rc = pci_enable_msix_range(efx->pci_dev,
   1378					   xentries, 1, n_channels);
   1379		if (rc < 0) {
   1380			/* Fall back to single channel MSI */
   1381			efx->interrupt_mode = EF4_INT_MODE_MSI;
   1382			netif_err(efx, drv, efx->net_dev,
   1383				  "could not enable MSI-X\n");
   1384		} else if (rc < n_channels) {
   1385			netif_err(efx, drv, efx->net_dev,
   1386				  "WARNING: Insufficient MSI-X vectors"
   1387				  " available (%d < %u).\n", rc, n_channels);
   1388			netif_err(efx, drv, efx->net_dev,
   1389				  "WARNING: Performance may be reduced.\n");
   1390			n_channels = rc;
   1391		}
   1392
   1393		if (rc > 0) {
   1394			efx->n_channels = n_channels;
   1395			if (n_channels > extra_channels)
   1396				n_channels -= extra_channels;
   1397			if (ef4_separate_tx_channels) {
   1398				efx->n_tx_channels = min(max(n_channels / 2,
   1399							     1U),
   1400							 efx->max_tx_channels);
   1401				efx->n_rx_channels = max(n_channels -
   1402							 efx->n_tx_channels,
   1403							 1U);
   1404			} else {
   1405				efx->n_tx_channels = min(n_channels,
   1406							 efx->max_tx_channels);
   1407				efx->n_rx_channels = n_channels;
   1408			}
   1409			for (i = 0; i < efx->n_channels; i++)
   1410				ef4_get_channel(efx, i)->irq =
   1411					xentries[i].vector;
   1412		}
   1413	}
   1414
   1415	/* Try single interrupt MSI */
   1416	if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
   1417		efx->n_channels = 1;
   1418		efx->n_rx_channels = 1;
   1419		efx->n_tx_channels = 1;
   1420		rc = pci_enable_msi(efx->pci_dev);
   1421		if (rc == 0) {
   1422			ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
   1423		} else {
   1424			netif_err(efx, drv, efx->net_dev,
   1425				  "could not enable MSI\n");
   1426			efx->interrupt_mode = EF4_INT_MODE_LEGACY;
   1427		}
   1428	}
   1429
   1430	/* Assume legacy interrupts */
   1431	if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
   1432		efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
   1433		efx->n_rx_channels = 1;
   1434		efx->n_tx_channels = 1;
   1435		efx->legacy_irq = efx->pci_dev->irq;
   1436	}
   1437
   1438	/* Assign extra channels if possible */
   1439	j = efx->n_channels;
   1440	for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
   1441		if (!efx->extra_channel_type[i])
   1442			continue;
   1443		if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
   1444		    efx->n_channels <= extra_channels) {
   1445			efx->extra_channel_type[i]->handle_no_channel(efx);
   1446		} else {
   1447			--j;
   1448			ef4_get_channel(efx, j)->type =
   1449				efx->extra_channel_type[i];
   1450		}
   1451	}
   1452
   1453	efx->rss_spread = efx->n_rx_channels;
   1454
   1455	return 0;
   1456}
   1457
   1458static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
   1459{
   1460	struct ef4_channel *channel, *end_channel;
   1461	int rc;
   1462
   1463	BUG_ON(efx->state == STATE_DISABLED);
   1464
   1465	efx->irq_soft_enabled = true;
   1466	smp_wmb();
   1467
   1468	ef4_for_each_channel(channel, efx) {
   1469		if (!channel->type->keep_eventq) {
   1470			rc = ef4_init_eventq(channel);
   1471			if (rc)
   1472				goto fail;
   1473		}
   1474		ef4_start_eventq(channel);
   1475	}
   1476
   1477	return 0;
   1478fail:
   1479	end_channel = channel;
   1480	ef4_for_each_channel(channel, efx) {
   1481		if (channel == end_channel)
   1482			break;
   1483		ef4_stop_eventq(channel);
   1484		if (!channel->type->keep_eventq)
   1485			ef4_fini_eventq(channel);
   1486	}
   1487
   1488	return rc;
   1489}
   1490
   1491static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
   1492{
   1493	struct ef4_channel *channel;
   1494
   1495	if (efx->state == STATE_DISABLED)
   1496		return;
   1497
   1498	efx->irq_soft_enabled = false;
   1499	smp_wmb();
   1500
   1501	if (efx->legacy_irq)
   1502		synchronize_irq(efx->legacy_irq);
   1503
   1504	ef4_for_each_channel(channel, efx) {
   1505		if (channel->irq)
   1506			synchronize_irq(channel->irq);
   1507
   1508		ef4_stop_eventq(channel);
   1509		if (!channel->type->keep_eventq)
   1510			ef4_fini_eventq(channel);
   1511	}
   1512}
   1513
   1514static int ef4_enable_interrupts(struct ef4_nic *efx)
   1515{
   1516	struct ef4_channel *channel, *end_channel;
   1517	int rc;
   1518
   1519	BUG_ON(efx->state == STATE_DISABLED);
   1520
   1521	if (efx->eeh_disabled_legacy_irq) {
   1522		enable_irq(efx->legacy_irq);
   1523		efx->eeh_disabled_legacy_irq = false;
   1524	}
   1525
   1526	efx->type->irq_enable_master(efx);
   1527
   1528	ef4_for_each_channel(channel, efx) {
   1529		if (channel->type->keep_eventq) {
   1530			rc = ef4_init_eventq(channel);
   1531			if (rc)
   1532				goto fail;
   1533		}
   1534	}
   1535
   1536	rc = ef4_soft_enable_interrupts(efx);
   1537	if (rc)
   1538		goto fail;
   1539
   1540	return 0;
   1541
   1542fail:
   1543	end_channel = channel;
   1544	ef4_for_each_channel(channel, efx) {
   1545		if (channel == end_channel)
   1546			break;
   1547		if (channel->type->keep_eventq)
   1548			ef4_fini_eventq(channel);
   1549	}
   1550
   1551	efx->type->irq_disable_non_ev(efx);
   1552
   1553	return rc;
   1554}
   1555
   1556static void ef4_disable_interrupts(struct ef4_nic *efx)
   1557{
   1558	struct ef4_channel *channel;
   1559
   1560	ef4_soft_disable_interrupts(efx);
   1561
   1562	ef4_for_each_channel(channel, efx) {
   1563		if (channel->type->keep_eventq)
   1564			ef4_fini_eventq(channel);
   1565	}
   1566
   1567	efx->type->irq_disable_non_ev(efx);
   1568}
   1569
   1570static void ef4_remove_interrupts(struct ef4_nic *efx)
   1571{
   1572	struct ef4_channel *channel;
   1573
   1574	/* Remove MSI/MSI-X interrupts */
   1575	ef4_for_each_channel(channel, efx)
   1576		channel->irq = 0;
   1577	pci_disable_msi(efx->pci_dev);
   1578	pci_disable_msix(efx->pci_dev);
   1579
   1580	/* Remove legacy interrupt */
   1581	efx->legacy_irq = 0;
   1582}
   1583
   1584static void ef4_set_channels(struct ef4_nic *efx)
   1585{
   1586	struct ef4_channel *channel;
   1587	struct ef4_tx_queue *tx_queue;
   1588
   1589	efx->tx_channel_offset =
   1590		ef4_separate_tx_channels ?
   1591		efx->n_channels - efx->n_tx_channels : 0;
   1592
   1593	/* We need to mark which channels really have RX and TX
   1594	 * queues, and adjust the TX queue numbers if we have separate
   1595	 * RX-only and TX-only channels.
   1596	 */
   1597	ef4_for_each_channel(channel, efx) {
   1598		if (channel->channel < efx->n_rx_channels)
   1599			channel->rx_queue.core_index = channel->channel;
   1600		else
   1601			channel->rx_queue.core_index = -1;
   1602
   1603		ef4_for_each_channel_tx_queue(tx_queue, channel)
   1604			tx_queue->queue -= (efx->tx_channel_offset *
   1605					    EF4_TXQ_TYPES);
   1606	}
   1607}
   1608
   1609static int ef4_probe_nic(struct ef4_nic *efx)
   1610{
   1611	int rc;
   1612
   1613	netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
   1614
   1615	/* Carry out hardware-type specific initialisation */
   1616	rc = efx->type->probe(efx);
   1617	if (rc)
   1618		return rc;
   1619
   1620	do {
   1621		if (!efx->max_channels || !efx->max_tx_channels) {
   1622			netif_err(efx, drv, efx->net_dev,
   1623				  "Insufficient resources to allocate"
   1624				  " any channels\n");
   1625			rc = -ENOSPC;
   1626			goto fail1;
   1627		}
   1628
   1629		/* Determine the number of channels and queues by trying
   1630		 * to hook in MSI-X interrupts.
   1631		 */
   1632		rc = ef4_probe_interrupts(efx);
   1633		if (rc)
   1634			goto fail1;
   1635
   1636		ef4_set_channels(efx);
   1637
   1638		/* dimension_resources can fail with EAGAIN */
   1639		rc = efx->type->dimension_resources(efx);
   1640		if (rc != 0 && rc != -EAGAIN)
   1641			goto fail2;
   1642
   1643		if (rc == -EAGAIN)
   1644			/* try again with new max_channels */
   1645			ef4_remove_interrupts(efx);
   1646
   1647	} while (rc == -EAGAIN);
   1648
   1649	if (efx->n_channels > 1)
   1650		netdev_rss_key_fill(&efx->rx_hash_key,
   1651				    sizeof(efx->rx_hash_key));
   1652	ef4_set_default_rx_indir_table(efx);
   1653
   1654	netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
   1655	netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
   1656
   1657	/* Initialise the interrupt moderation settings */
   1658	efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
   1659	ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
   1660				true);
   1661
   1662	return 0;
   1663
   1664fail2:
   1665	ef4_remove_interrupts(efx);
   1666fail1:
   1667	efx->type->remove(efx);
   1668	return rc;
   1669}
   1670
   1671static void ef4_remove_nic(struct ef4_nic *efx)
   1672{
   1673	netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
   1674
   1675	ef4_remove_interrupts(efx);
   1676	efx->type->remove(efx);
   1677}
   1678
   1679static int ef4_probe_filters(struct ef4_nic *efx)
   1680{
   1681	int rc;
   1682
   1683	spin_lock_init(&efx->filter_lock);
   1684	init_rwsem(&efx->filter_sem);
   1685	mutex_lock(&efx->mac_lock);
   1686	down_write(&efx->filter_sem);
   1687	rc = efx->type->filter_table_probe(efx);
   1688	if (rc)
   1689		goto out_unlock;
   1690
   1691#ifdef CONFIG_RFS_ACCEL
   1692	if (efx->type->offload_features & NETIF_F_NTUPLE) {
   1693		struct ef4_channel *channel;
   1694		int i, success = 1;
   1695
   1696		ef4_for_each_channel(channel, efx) {
   1697			channel->rps_flow_id =
   1698				kcalloc(efx->type->max_rx_ip_filters,
   1699					sizeof(*channel->rps_flow_id),
   1700					GFP_KERNEL);
   1701			if (!channel->rps_flow_id)
   1702				success = 0;
   1703			else
   1704				for (i = 0;
   1705				     i < efx->type->max_rx_ip_filters;
   1706				     ++i)
   1707					channel->rps_flow_id[i] =
   1708						RPS_FLOW_ID_INVALID;
   1709		}
   1710
   1711		if (!success) {
   1712			ef4_for_each_channel(channel, efx)
   1713				kfree(channel->rps_flow_id);
   1714			efx->type->filter_table_remove(efx);
   1715			rc = -ENOMEM;
   1716			goto out_unlock;
   1717		}
   1718
   1719		efx->rps_expire_index = efx->rps_expire_channel = 0;
   1720	}
   1721#endif
   1722out_unlock:
   1723	up_write(&efx->filter_sem);
   1724	mutex_unlock(&efx->mac_lock);
   1725	return rc;
   1726}
   1727
   1728static void ef4_remove_filters(struct ef4_nic *efx)
   1729{
   1730#ifdef CONFIG_RFS_ACCEL
   1731	struct ef4_channel *channel;
   1732
   1733	ef4_for_each_channel(channel, efx)
   1734		kfree(channel->rps_flow_id);
   1735#endif
   1736	down_write(&efx->filter_sem);
   1737	efx->type->filter_table_remove(efx);
   1738	up_write(&efx->filter_sem);
   1739}
   1740
   1741static void ef4_restore_filters(struct ef4_nic *efx)
   1742{
   1743	down_read(&efx->filter_sem);
   1744	efx->type->filter_table_restore(efx);
   1745	up_read(&efx->filter_sem);
   1746}
   1747
   1748/**************************************************************************
   1749 *
   1750 * NIC startup/shutdown
   1751 *
   1752 *************************************************************************/
   1753
   1754static int ef4_probe_all(struct ef4_nic *efx)
   1755{
   1756	int rc;
   1757
   1758	rc = ef4_probe_nic(efx);
   1759	if (rc) {
   1760		netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
   1761		goto fail1;
   1762	}
   1763
   1764	rc = ef4_probe_port(efx);
   1765	if (rc) {
   1766		netif_err(efx, probe, efx->net_dev, "failed to create port\n");
   1767		goto fail2;
   1768	}
   1769
   1770	BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
   1771	if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
   1772		rc = -EINVAL;
   1773		goto fail3;
   1774	}
   1775	efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
   1776
   1777	rc = ef4_probe_filters(efx);
   1778	if (rc) {
   1779		netif_err(efx, probe, efx->net_dev,
   1780			  "failed to create filter tables\n");
   1781		goto fail4;
   1782	}
   1783
   1784	rc = ef4_probe_channels(efx);
   1785	if (rc)
   1786		goto fail5;
   1787
   1788	return 0;
   1789
   1790 fail5:
   1791	ef4_remove_filters(efx);
   1792 fail4:
   1793 fail3:
   1794	ef4_remove_port(efx);
   1795 fail2:
   1796	ef4_remove_nic(efx);
   1797 fail1:
   1798	return rc;
   1799}
   1800
   1801/* If the interface is supposed to be running but is not, start
   1802 * the hardware and software data path, regular activity for the port
   1803 * (MAC statistics, link polling, etc.) and schedule the port to be
   1804 * reconfigured.  Interrupts must already be enabled.  This function
   1805 * is safe to call multiple times, so long as the NIC is not disabled.
   1806 * Requires the RTNL lock.
   1807 */
   1808static void ef4_start_all(struct ef4_nic *efx)
   1809{
   1810	EF4_ASSERT_RESET_SERIALISED(efx);
   1811	BUG_ON(efx->state == STATE_DISABLED);
   1812
   1813	/* Check that it is appropriate to restart the interface. All
   1814	 * of these flags are safe to read under just the rtnl lock */
   1815	if (efx->port_enabled || !netif_running(efx->net_dev) ||
   1816	    efx->reset_pending)
   1817		return;
   1818
   1819	ef4_start_port(efx);
   1820	ef4_start_datapath(efx);
   1821
   1822	/* Start the hardware monitor if there is one */
   1823	if (efx->type->monitor != NULL)
   1824		queue_delayed_work(efx->workqueue, &efx->monitor_work,
   1825				   ef4_monitor_interval);
   1826
   1827	efx->type->start_stats(efx);
   1828	efx->type->pull_stats(efx);
   1829	spin_lock_bh(&efx->stats_lock);
   1830	efx->type->update_stats(efx, NULL, NULL);
   1831	spin_unlock_bh(&efx->stats_lock);
   1832}
   1833
   1834/* Quiesce the hardware and software data path, and regular activity
   1835 * for the port without bringing the link down.  Safe to call multiple
   1836 * times with the NIC in almost any state, but interrupts should be
   1837 * enabled.  Requires the RTNL lock.
   1838 */
   1839static void ef4_stop_all(struct ef4_nic *efx)
   1840{
   1841	EF4_ASSERT_RESET_SERIALISED(efx);
   1842
   1843	/* port_enabled can be read safely under the rtnl lock */
   1844	if (!efx->port_enabled)
   1845		return;
   1846
   1847	/* update stats before we go down so we can accurately count
   1848	 * rx_nodesc_drops
   1849	 */
   1850	efx->type->pull_stats(efx);
   1851	spin_lock_bh(&efx->stats_lock);
   1852	efx->type->update_stats(efx, NULL, NULL);
   1853	spin_unlock_bh(&efx->stats_lock);
   1854	efx->type->stop_stats(efx);
   1855	ef4_stop_port(efx);
   1856
   1857	/* Stop the kernel transmit interface.  This is only valid if
   1858	 * the device is stopped or detached; otherwise the watchdog
   1859	 * may fire immediately.
   1860	 */
   1861	WARN_ON(netif_running(efx->net_dev) &&
   1862		netif_device_present(efx->net_dev));
   1863	netif_tx_disable(efx->net_dev);
   1864
   1865	ef4_stop_datapath(efx);
   1866}
   1867
   1868static void ef4_remove_all(struct ef4_nic *efx)
   1869{
   1870	ef4_remove_channels(efx);
   1871	ef4_remove_filters(efx);
   1872	ef4_remove_port(efx);
   1873	ef4_remove_nic(efx);
   1874}
   1875
   1876/**************************************************************************
   1877 *
   1878 * Interrupt moderation
   1879 *
   1880 **************************************************************************/
   1881unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
   1882{
   1883	if (usecs == 0)
   1884		return 0;
   1885	if (usecs * 1000 < efx->timer_quantum_ns)
   1886		return 1; /* never round down to 0 */
   1887	return usecs * 1000 / efx->timer_quantum_ns;
   1888}
   1889
   1890unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
   1891{
   1892	/* We must round up when converting ticks to microseconds
   1893	 * because we round down when converting the other way.
   1894	 */
   1895	return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
   1896}
   1897
   1898/* Set interrupt moderation parameters */
   1899int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
   1900			    unsigned int rx_usecs, bool rx_adaptive,
   1901			    bool rx_may_override_tx)
   1902{
   1903	struct ef4_channel *channel;
   1904	unsigned int timer_max_us;
   1905
   1906	EF4_ASSERT_RESET_SERIALISED(efx);
   1907
   1908	timer_max_us = efx->timer_max_ns / 1000;
   1909
   1910	if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
   1911		return -EINVAL;
   1912
   1913	if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
   1914	    !rx_may_override_tx) {
   1915		netif_err(efx, drv, efx->net_dev, "Channels are shared. "
   1916			  "RX and TX IRQ moderation must be equal\n");
   1917		return -EINVAL;
   1918	}
   1919
   1920	efx->irq_rx_adaptive = rx_adaptive;
   1921	efx->irq_rx_moderation_us = rx_usecs;
   1922	ef4_for_each_channel(channel, efx) {
   1923		if (ef4_channel_has_rx_queue(channel))
   1924			channel->irq_moderation_us = rx_usecs;
   1925		else if (ef4_channel_has_tx_queues(channel))
   1926			channel->irq_moderation_us = tx_usecs;
   1927	}
   1928
   1929	return 0;
   1930}
   1931
   1932void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
   1933			    unsigned int *rx_usecs, bool *rx_adaptive)
   1934{
   1935	*rx_adaptive = efx->irq_rx_adaptive;
   1936	*rx_usecs = efx->irq_rx_moderation_us;
   1937
   1938	/* If channels are shared between RX and TX, so is IRQ
   1939	 * moderation.  Otherwise, IRQ moderation is the same for all
   1940	 * TX channels and is not adaptive.
   1941	 */
   1942	if (efx->tx_channel_offset == 0) {
   1943		*tx_usecs = *rx_usecs;
   1944	} else {
   1945		struct ef4_channel *tx_channel;
   1946
   1947		tx_channel = efx->channel[efx->tx_channel_offset];
   1948		*tx_usecs = tx_channel->irq_moderation_us;
   1949	}
   1950}
   1951
   1952/**************************************************************************
   1953 *
   1954 * Hardware monitor
   1955 *
   1956 **************************************************************************/
   1957
   1958/* Run periodically off the general workqueue */
   1959static void ef4_monitor(struct work_struct *data)
   1960{
   1961	struct ef4_nic *efx = container_of(data, struct ef4_nic,
   1962					   monitor_work.work);
   1963
   1964	netif_vdbg(efx, timer, efx->net_dev,
   1965		   "hardware monitor executing on CPU %d\n",
   1966		   raw_smp_processor_id());
   1967	BUG_ON(efx->type->monitor == NULL);
   1968
   1969	/* If the mac_lock is already held then it is likely a port
   1970	 * reconfiguration is already in place, which will likely do
   1971	 * most of the work of monitor() anyway. */
   1972	if (mutex_trylock(&efx->mac_lock)) {
   1973		if (efx->port_enabled)
   1974			efx->type->monitor(efx);
   1975		mutex_unlock(&efx->mac_lock);
   1976	}
   1977
   1978	queue_delayed_work(efx->workqueue, &efx->monitor_work,
   1979			   ef4_monitor_interval);
   1980}
   1981
   1982/**************************************************************************
   1983 *
   1984 * ioctls
   1985 *
   1986 *************************************************************************/
   1987
   1988/* Net device ioctl
   1989 * Context: process, rtnl_lock() held.
   1990 */
   1991static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
   1992{
   1993	struct ef4_nic *efx = netdev_priv(net_dev);
   1994	struct mii_ioctl_data *data = if_mii(ifr);
   1995
   1996	/* Convert phy_id from older PRTAD/DEVAD format */
   1997	if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
   1998	    (data->phy_id & 0xfc00) == 0x0400)
   1999		data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
   2000
   2001	return mdio_mii_ioctl(&efx->mdio, data, cmd);
   2002}
   2003
   2004/**************************************************************************
   2005 *
   2006 * NAPI interface
   2007 *
   2008 **************************************************************************/
   2009
   2010static void ef4_init_napi_channel(struct ef4_channel *channel)
   2011{
   2012	struct ef4_nic *efx = channel->efx;
   2013
   2014	channel->napi_dev = efx->net_dev;
   2015	netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll, 64);
   2016}
   2017
   2018static void ef4_init_napi(struct ef4_nic *efx)
   2019{
   2020	struct ef4_channel *channel;
   2021
   2022	ef4_for_each_channel(channel, efx)
   2023		ef4_init_napi_channel(channel);
   2024}
   2025
   2026static void ef4_fini_napi_channel(struct ef4_channel *channel)
   2027{
   2028	if (channel->napi_dev)
   2029		netif_napi_del(&channel->napi_str);
   2030
   2031	channel->napi_dev = NULL;
   2032}
   2033
   2034static void ef4_fini_napi(struct ef4_nic *efx)
   2035{
   2036	struct ef4_channel *channel;
   2037
   2038	ef4_for_each_channel(channel, efx)
   2039		ef4_fini_napi_channel(channel);
   2040}
   2041
   2042/**************************************************************************
   2043 *
   2044 * Kernel net device interface
   2045 *
   2046 *************************************************************************/
   2047
   2048/* Context: process, rtnl_lock() held. */
   2049int ef4_net_open(struct net_device *net_dev)
   2050{
   2051	struct ef4_nic *efx = netdev_priv(net_dev);
   2052	int rc;
   2053
   2054	netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
   2055		  raw_smp_processor_id());
   2056
   2057	rc = ef4_check_disabled(efx);
   2058	if (rc)
   2059		return rc;
   2060	if (efx->phy_mode & PHY_MODE_SPECIAL)
   2061		return -EBUSY;
   2062
   2063	/* Notify the kernel of the link state polled during driver load,
   2064	 * before the monitor starts running */
   2065	ef4_link_status_changed(efx);
   2066
   2067	ef4_start_all(efx);
   2068	ef4_selftest_async_start(efx);
   2069	return 0;
   2070}
   2071
   2072/* Context: process, rtnl_lock() held.
   2073 * Note that the kernel will ignore our return code; this method
   2074 * should really be a void.
   2075 */
   2076int ef4_net_stop(struct net_device *net_dev)
   2077{
   2078	struct ef4_nic *efx = netdev_priv(net_dev);
   2079
   2080	netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
   2081		  raw_smp_processor_id());
   2082
   2083	/* Stop the device and flush all the channels */
   2084	ef4_stop_all(efx);
   2085
   2086	return 0;
   2087}
   2088
   2089/* Context: process, dev_base_lock or RTNL held, non-blocking. */
   2090static void ef4_net_stats(struct net_device *net_dev,
   2091			  struct rtnl_link_stats64 *stats)
   2092{
   2093	struct ef4_nic *efx = netdev_priv(net_dev);
   2094
   2095	spin_lock_bh(&efx->stats_lock);
   2096	efx->type->update_stats(efx, NULL, stats);
   2097	spin_unlock_bh(&efx->stats_lock);
   2098}
   2099
   2100/* Context: netif_tx_lock held, BHs disabled. */
   2101static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
   2102{
   2103	struct ef4_nic *efx = netdev_priv(net_dev);
   2104
   2105	netif_err(efx, tx_err, efx->net_dev,
   2106		  "TX stuck with port_enabled=%d: resetting channels\n",
   2107		  efx->port_enabled);
   2108
   2109	ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
   2110}
   2111
   2112
   2113/* Context: process, rtnl_lock() held. */
   2114static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
   2115{
   2116	struct ef4_nic *efx = netdev_priv(net_dev);
   2117	int rc;
   2118
   2119	rc = ef4_check_disabled(efx);
   2120	if (rc)
   2121		return rc;
   2122
   2123	netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
   2124
   2125	ef4_device_detach_sync(efx);
   2126	ef4_stop_all(efx);
   2127
   2128	mutex_lock(&efx->mac_lock);
   2129	net_dev->mtu = new_mtu;
   2130	ef4_mac_reconfigure(efx);
   2131	mutex_unlock(&efx->mac_lock);
   2132
   2133	ef4_start_all(efx);
   2134	netif_device_attach(efx->net_dev);
   2135	return 0;
   2136}
   2137
   2138static int ef4_set_mac_address(struct net_device *net_dev, void *data)
   2139{
   2140	struct ef4_nic *efx = netdev_priv(net_dev);
   2141	struct sockaddr *addr = data;
   2142	u8 *new_addr = addr->sa_data;
   2143	u8 old_addr[6];
   2144	int rc;
   2145
   2146	if (!is_valid_ether_addr(new_addr)) {
   2147		netif_err(efx, drv, efx->net_dev,
   2148			  "invalid ethernet MAC address requested: %pM\n",
   2149			  new_addr);
   2150		return -EADDRNOTAVAIL;
   2151	}
   2152
   2153	/* save old address */
   2154	ether_addr_copy(old_addr, net_dev->dev_addr);
   2155	eth_hw_addr_set(net_dev, new_addr);
   2156	if (efx->type->set_mac_address) {
   2157		rc = efx->type->set_mac_address(efx);
   2158		if (rc) {
   2159			eth_hw_addr_set(net_dev, old_addr);
   2160			return rc;
   2161		}
   2162	}
   2163
   2164	/* Reconfigure the MAC */
   2165	mutex_lock(&efx->mac_lock);
   2166	ef4_mac_reconfigure(efx);
   2167	mutex_unlock(&efx->mac_lock);
   2168
   2169	return 0;
   2170}
   2171
   2172/* Context: netif_addr_lock held, BHs disabled. */
   2173static void ef4_set_rx_mode(struct net_device *net_dev)
   2174{
   2175	struct ef4_nic *efx = netdev_priv(net_dev);
   2176
   2177	if (efx->port_enabled)
   2178		queue_work(efx->workqueue, &efx->mac_work);
   2179	/* Otherwise ef4_start_port() will do this */
   2180}
   2181
   2182static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
   2183{
   2184	struct ef4_nic *efx = netdev_priv(net_dev);
   2185	int rc;
   2186
   2187	/* If disabling RX n-tuple filtering, clear existing filters */
   2188	if (net_dev->features & ~data & NETIF_F_NTUPLE) {
   2189		rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
   2190		if (rc)
   2191			return rc;
   2192	}
   2193
   2194	/* If Rx VLAN filter is changed, update filters via mac_reconfigure */
   2195	if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
   2196		/* ef4_set_rx_mode() will schedule MAC work to update filters
   2197		 * when a new features are finally set in net_dev.
   2198		 */
   2199		ef4_set_rx_mode(net_dev);
   2200	}
   2201
   2202	return 0;
   2203}
   2204
   2205static const struct net_device_ops ef4_netdev_ops = {
   2206	.ndo_open		= ef4_net_open,
   2207	.ndo_stop		= ef4_net_stop,
   2208	.ndo_get_stats64	= ef4_net_stats,
   2209	.ndo_tx_timeout		= ef4_watchdog,
   2210	.ndo_start_xmit		= ef4_hard_start_xmit,
   2211	.ndo_validate_addr	= eth_validate_addr,
   2212	.ndo_eth_ioctl		= ef4_ioctl,
   2213	.ndo_change_mtu		= ef4_change_mtu,
   2214	.ndo_set_mac_address	= ef4_set_mac_address,
   2215	.ndo_set_rx_mode	= ef4_set_rx_mode,
   2216	.ndo_set_features	= ef4_set_features,
   2217	.ndo_setup_tc		= ef4_setup_tc,
   2218#ifdef CONFIG_RFS_ACCEL
   2219	.ndo_rx_flow_steer	= ef4_filter_rfs,
   2220#endif
   2221};
   2222
   2223static void ef4_update_name(struct ef4_nic *efx)
   2224{
   2225	strcpy(efx->name, efx->net_dev->name);
   2226	ef4_mtd_rename(efx);
   2227	ef4_set_channel_names(efx);
   2228}
   2229
   2230static int ef4_netdev_event(struct notifier_block *this,
   2231			    unsigned long event, void *ptr)
   2232{
   2233	struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
   2234
   2235	if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
   2236	    event == NETDEV_CHANGENAME)
   2237		ef4_update_name(netdev_priv(net_dev));
   2238
   2239	return NOTIFY_DONE;
   2240}
   2241
   2242static struct notifier_block ef4_netdev_notifier = {
   2243	.notifier_call = ef4_netdev_event,
   2244};
   2245
   2246static ssize_t
   2247phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
   2248{
   2249	struct ef4_nic *efx = dev_get_drvdata(dev);
   2250	return sprintf(buf, "%d\n", efx->phy_type);
   2251}
   2252static DEVICE_ATTR_RO(phy_type);
   2253
   2254static int ef4_register_netdev(struct ef4_nic *efx)
   2255{
   2256	struct net_device *net_dev = efx->net_dev;
   2257	struct ef4_channel *channel;
   2258	int rc;
   2259
   2260	net_dev->watchdog_timeo = 5 * HZ;
   2261	net_dev->irq = efx->pci_dev->irq;
   2262	net_dev->netdev_ops = &ef4_netdev_ops;
   2263	net_dev->ethtool_ops = &ef4_ethtool_ops;
   2264	netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS);
   2265	net_dev->min_mtu = EF4_MIN_MTU;
   2266	net_dev->max_mtu = EF4_MAX_MTU;
   2267
   2268	rtnl_lock();
   2269
   2270	/* Enable resets to be scheduled and check whether any were
   2271	 * already requested.  If so, the NIC is probably hosed so we
   2272	 * abort.
   2273	 */
   2274	efx->state = STATE_READY;
   2275	smp_mb(); /* ensure we change state before checking reset_pending */
   2276	if (efx->reset_pending) {
   2277		netif_err(efx, probe, efx->net_dev,
   2278			  "aborting probe due to scheduled reset\n");
   2279		rc = -EIO;
   2280		goto fail_locked;
   2281	}
   2282
   2283	rc = dev_alloc_name(net_dev, net_dev->name);
   2284	if (rc < 0)
   2285		goto fail_locked;
   2286	ef4_update_name(efx);
   2287
   2288	/* Always start with carrier off; PHY events will detect the link */
   2289	netif_carrier_off(net_dev);
   2290
   2291	rc = register_netdevice(net_dev);
   2292	if (rc)
   2293		goto fail_locked;
   2294
   2295	ef4_for_each_channel(channel, efx) {
   2296		struct ef4_tx_queue *tx_queue;
   2297		ef4_for_each_channel_tx_queue(tx_queue, channel)
   2298			ef4_init_tx_queue_core_txq(tx_queue);
   2299	}
   2300
   2301	ef4_associate(efx);
   2302
   2303	rtnl_unlock();
   2304
   2305	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
   2306	if (rc) {
   2307		netif_err(efx, drv, efx->net_dev,
   2308			  "failed to init net dev attributes\n");
   2309		goto fail_registered;
   2310	}
   2311	return 0;
   2312
   2313fail_registered:
   2314	rtnl_lock();
   2315	ef4_dissociate(efx);
   2316	unregister_netdevice(net_dev);
   2317fail_locked:
   2318	efx->state = STATE_UNINIT;
   2319	rtnl_unlock();
   2320	netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
   2321	return rc;
   2322}
   2323
   2324static void ef4_unregister_netdev(struct ef4_nic *efx)
   2325{
   2326	if (!efx->net_dev)
   2327		return;
   2328
   2329	BUG_ON(netdev_priv(efx->net_dev) != efx);
   2330
   2331	if (ef4_dev_registered(efx)) {
   2332		strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
   2333		device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
   2334		unregister_netdev(efx->net_dev);
   2335	}
   2336}
   2337
   2338/**************************************************************************
   2339 *
   2340 * Device reset and suspend
   2341 *
   2342 **************************************************************************/
   2343
   2344/* Tears down the entire software state and most of the hardware state
   2345 * before reset.  */
   2346void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
   2347{
   2348	EF4_ASSERT_RESET_SERIALISED(efx);
   2349
   2350	ef4_stop_all(efx);
   2351	ef4_disable_interrupts(efx);
   2352
   2353	mutex_lock(&efx->mac_lock);
   2354	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
   2355	    method != RESET_TYPE_DATAPATH)
   2356		efx->phy_op->fini(efx);
   2357	efx->type->fini(efx);
   2358}
   2359
   2360/* This function will always ensure that the locks acquired in
   2361 * ef4_reset_down() are released. A failure return code indicates
   2362 * that we were unable to reinitialise the hardware, and the
   2363 * driver should be disabled. If ok is false, then the rx and tx
   2364 * engines are not restarted, pending a RESET_DISABLE. */
   2365int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
   2366{
   2367	int rc;
   2368
   2369	EF4_ASSERT_RESET_SERIALISED(efx);
   2370
   2371	/* Ensure that SRAM is initialised even if we're disabling the device */
   2372	rc = efx->type->init(efx);
   2373	if (rc) {
   2374		netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
   2375		goto fail;
   2376	}
   2377
   2378	if (!ok)
   2379		goto fail;
   2380
   2381	if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
   2382	    method != RESET_TYPE_DATAPATH) {
   2383		rc = efx->phy_op->init(efx);
   2384		if (rc)
   2385			goto fail;
   2386		rc = efx->phy_op->reconfigure(efx);
   2387		if (rc && rc != -EPERM)
   2388			netif_err(efx, drv, efx->net_dev,
   2389				  "could not restore PHY settings\n");
   2390	}
   2391
   2392	rc = ef4_enable_interrupts(efx);
   2393	if (rc)
   2394		goto fail;
   2395
   2396	down_read(&efx->filter_sem);
   2397	ef4_restore_filters(efx);
   2398	up_read(&efx->filter_sem);
   2399
   2400	mutex_unlock(&efx->mac_lock);
   2401
   2402	ef4_start_all(efx);
   2403
   2404	return 0;
   2405
   2406fail:
   2407	efx->port_initialized = false;
   2408
   2409	mutex_unlock(&efx->mac_lock);
   2410
   2411	return rc;
   2412}
   2413
   2414/* Reset the NIC using the specified method.  Note that the reset may
   2415 * fail, in which case the card will be left in an unusable state.
   2416 *
   2417 * Caller must hold the rtnl_lock.
   2418 */
   2419int ef4_reset(struct ef4_nic *efx, enum reset_type method)
   2420{
   2421	int rc, rc2;
   2422	bool disabled;
   2423
   2424	netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
   2425		   RESET_TYPE(method));
   2426
   2427	ef4_device_detach_sync(efx);
   2428	ef4_reset_down(efx, method);
   2429
   2430	rc = efx->type->reset(efx, method);
   2431	if (rc) {
   2432		netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
   2433		goto out;
   2434	}
   2435
   2436	/* Clear flags for the scopes we covered.  We assume the NIC and
   2437	 * driver are now quiescent so that there is no race here.
   2438	 */
   2439	if (method < RESET_TYPE_MAX_METHOD)
   2440		efx->reset_pending &= -(1 << (method + 1));
   2441	else /* it doesn't fit into the well-ordered scope hierarchy */
   2442		__clear_bit(method, &efx->reset_pending);
   2443
   2444	/* Reinitialise bus-mastering, which may have been turned off before
   2445	 * the reset was scheduled. This is still appropriate, even in the
   2446	 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
   2447	 * can respond to requests. */
   2448	pci_set_master(efx->pci_dev);
   2449
   2450out:
   2451	/* Leave device stopped if necessary */
   2452	disabled = rc ||
   2453		method == RESET_TYPE_DISABLE ||
   2454		method == RESET_TYPE_RECOVER_OR_DISABLE;
   2455	rc2 = ef4_reset_up(efx, method, !disabled);
   2456	if (rc2) {
   2457		disabled = true;
   2458		if (!rc)
   2459			rc = rc2;
   2460	}
   2461
   2462	if (disabled) {
   2463		dev_close(efx->net_dev);
   2464		netif_err(efx, drv, efx->net_dev, "has been disabled\n");
   2465		efx->state = STATE_DISABLED;
   2466	} else {
   2467		netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
   2468		netif_device_attach(efx->net_dev);
   2469	}
   2470	return rc;
   2471}
   2472
   2473/* Try recovery mechanisms.
   2474 * For now only EEH is supported.
   2475 * Returns 0 if the recovery mechanisms are unsuccessful.
   2476 * Returns a non-zero value otherwise.
   2477 */
   2478int ef4_try_recovery(struct ef4_nic *efx)
   2479{
   2480#ifdef CONFIG_EEH
   2481	/* A PCI error can occur and not be seen by EEH because nothing
   2482	 * happens on the PCI bus. In this case the driver may fail and
   2483	 * schedule a 'recover or reset', leading to this recovery handler.
   2484	 * Manually call the eeh failure check function.
   2485	 */
   2486	struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
   2487	if (eeh_dev_check_failure(eehdev)) {
   2488		/* The EEH mechanisms will handle the error and reset the
   2489		 * device if necessary.
   2490		 */
   2491		return 1;
   2492	}
   2493#endif
   2494	return 0;
   2495}
   2496
   2497/* The worker thread exists so that code that cannot sleep can
   2498 * schedule a reset for later.
   2499 */
   2500static void ef4_reset_work(struct work_struct *data)
   2501{
   2502	struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
   2503	unsigned long pending;
   2504	enum reset_type method;
   2505
   2506	pending = READ_ONCE(efx->reset_pending);
   2507	method = fls(pending) - 1;
   2508
   2509	if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
   2510	     method == RESET_TYPE_RECOVER_OR_ALL) &&
   2511	    ef4_try_recovery(efx))
   2512		return;
   2513
   2514	if (!pending)
   2515		return;
   2516
   2517	rtnl_lock();
   2518
   2519	/* We checked the state in ef4_schedule_reset() but it may
   2520	 * have changed by now.  Now that we have the RTNL lock,
   2521	 * it cannot change again.
   2522	 */
   2523	if (efx->state == STATE_READY)
   2524		(void)ef4_reset(efx, method);
   2525
   2526	rtnl_unlock();
   2527}
   2528
   2529void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
   2530{
   2531	enum reset_type method;
   2532
   2533	if (efx->state == STATE_RECOVERY) {
   2534		netif_dbg(efx, drv, efx->net_dev,
   2535			  "recovering: skip scheduling %s reset\n",
   2536			  RESET_TYPE(type));
   2537		return;
   2538	}
   2539
   2540	switch (type) {
   2541	case RESET_TYPE_INVISIBLE:
   2542	case RESET_TYPE_ALL:
   2543	case RESET_TYPE_RECOVER_OR_ALL:
   2544	case RESET_TYPE_WORLD:
   2545	case RESET_TYPE_DISABLE:
   2546	case RESET_TYPE_RECOVER_OR_DISABLE:
   2547	case RESET_TYPE_DATAPATH:
   2548		method = type;
   2549		netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
   2550			  RESET_TYPE(method));
   2551		break;
   2552	default:
   2553		method = efx->type->map_reset_reason(type);
   2554		netif_dbg(efx, drv, efx->net_dev,
   2555			  "scheduling %s reset for %s\n",
   2556			  RESET_TYPE(method), RESET_TYPE(type));
   2557		break;
   2558	}
   2559
   2560	set_bit(method, &efx->reset_pending);
   2561	smp_mb(); /* ensure we change reset_pending before checking state */
   2562
   2563	/* If we're not READY then just leave the flags set as the cue
   2564	 * to abort probing or reschedule the reset later.
   2565	 */
   2566	if (READ_ONCE(efx->state) != STATE_READY)
   2567		return;
   2568
   2569	queue_work(reset_workqueue, &efx->reset_work);
   2570}
   2571
   2572/**************************************************************************
   2573 *
   2574 * List of NICs we support
   2575 *
   2576 **************************************************************************/
   2577
   2578/* PCI device ID table */
   2579static const struct pci_device_id ef4_pci_table[] = {
   2580	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
   2581		    PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
   2582	 .driver_data = (unsigned long) &falcon_a1_nic_type},
   2583	{PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
   2584		    PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
   2585	 .driver_data = (unsigned long) &falcon_b0_nic_type},
   2586	{0}			/* end of list */
   2587};
   2588
   2589/**************************************************************************
   2590 *
   2591 * Dummy PHY/MAC operations
   2592 *
   2593 * Can be used for some unimplemented operations
   2594 * Needed so all function pointers are valid and do not have to be tested
   2595 * before use
   2596 *
   2597 **************************************************************************/
   2598int ef4_port_dummy_op_int(struct ef4_nic *efx)
   2599{
   2600	return 0;
   2601}
   2602void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
   2603
   2604static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
   2605{
   2606	return false;
   2607}
   2608
   2609static const struct ef4_phy_operations ef4_dummy_phy_operations = {
   2610	.init		 = ef4_port_dummy_op_int,
   2611	.reconfigure	 = ef4_port_dummy_op_int,
   2612	.poll		 = ef4_port_dummy_op_poll,
   2613	.fini		 = ef4_port_dummy_op_void,
   2614};
   2615
   2616/**************************************************************************
   2617 *
   2618 * Data housekeeping
   2619 *
   2620 **************************************************************************/
   2621
   2622/* This zeroes out and then fills in the invariants in a struct
   2623 * ef4_nic (including all sub-structures).
   2624 */
   2625static int ef4_init_struct(struct ef4_nic *efx,
   2626			   struct pci_dev *pci_dev, struct net_device *net_dev)
   2627{
   2628	int i;
   2629
   2630	/* Initialise common structures */
   2631	INIT_LIST_HEAD(&efx->node);
   2632	INIT_LIST_HEAD(&efx->secondary_list);
   2633	spin_lock_init(&efx->biu_lock);
   2634#ifdef CONFIG_SFC_FALCON_MTD
   2635	INIT_LIST_HEAD(&efx->mtd_list);
   2636#endif
   2637	INIT_WORK(&efx->reset_work, ef4_reset_work);
   2638	INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
   2639	INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
   2640	efx->pci_dev = pci_dev;
   2641	efx->msg_enable = debug;
   2642	efx->state = STATE_UNINIT;
   2643	strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
   2644
   2645	efx->net_dev = net_dev;
   2646	efx->rx_prefix_size = efx->type->rx_prefix_size;
   2647	efx->rx_ip_align =
   2648		NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
   2649	efx->rx_packet_hash_offset =
   2650		efx->type->rx_hash_offset - efx->type->rx_prefix_size;
   2651	efx->rx_packet_ts_offset =
   2652		efx->type->rx_ts_offset - efx->type->rx_prefix_size;
   2653	spin_lock_init(&efx->stats_lock);
   2654	mutex_init(&efx->mac_lock);
   2655	efx->phy_op = &ef4_dummy_phy_operations;
   2656	efx->mdio.dev = net_dev;
   2657	INIT_WORK(&efx->mac_work, ef4_mac_work);
   2658	init_waitqueue_head(&efx->flush_wq);
   2659
   2660	for (i = 0; i < EF4_MAX_CHANNELS; i++) {
   2661		efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
   2662		if (!efx->channel[i])
   2663			goto fail;
   2664		efx->msi_context[i].efx = efx;
   2665		efx->msi_context[i].index = i;
   2666	}
   2667
   2668	/* Higher numbered interrupt modes are less capable! */
   2669	efx->interrupt_mode = max(efx->type->max_interrupt_mode,
   2670				  interrupt_mode);
   2671
   2672	/* Would be good to use the net_dev name, but we're too early */
   2673	snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
   2674		 pci_name(pci_dev));
   2675	efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
   2676	if (!efx->workqueue)
   2677		goto fail;
   2678
   2679	return 0;
   2680
   2681fail:
   2682	ef4_fini_struct(efx);
   2683	return -ENOMEM;
   2684}
   2685
   2686static void ef4_fini_struct(struct ef4_nic *efx)
   2687{
   2688	int i;
   2689
   2690	for (i = 0; i < EF4_MAX_CHANNELS; i++)
   2691		kfree(efx->channel[i]);
   2692
   2693	kfree(efx->vpd_sn);
   2694
   2695	if (efx->workqueue) {
   2696		destroy_workqueue(efx->workqueue);
   2697		efx->workqueue = NULL;
   2698	}
   2699}
   2700
   2701void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
   2702{
   2703	u64 n_rx_nodesc_trunc = 0;
   2704	struct ef4_channel *channel;
   2705
   2706	ef4_for_each_channel(channel, efx)
   2707		n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
   2708	stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
   2709	stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
   2710}
   2711
   2712/**************************************************************************
   2713 *
   2714 * PCI interface
   2715 *
   2716 **************************************************************************/
   2717
   2718/* Main body of final NIC shutdown code
   2719 * This is called only at module unload (or hotplug removal).
   2720 */
   2721static void ef4_pci_remove_main(struct ef4_nic *efx)
   2722{
   2723	/* Flush reset_work. It can no longer be scheduled since we
   2724	 * are not READY.
   2725	 */
   2726	BUG_ON(efx->state == STATE_READY);
   2727	cancel_work_sync(&efx->reset_work);
   2728
   2729	ef4_disable_interrupts(efx);
   2730	ef4_nic_fini_interrupt(efx);
   2731	ef4_fini_port(efx);
   2732	efx->type->fini(efx);
   2733	ef4_fini_napi(efx);
   2734	ef4_remove_all(efx);
   2735}
   2736
   2737/* Final NIC shutdown
   2738 * This is called only at module unload (or hotplug removal).  A PF can call
   2739 * this on its VFs to ensure they are unbound first.
   2740 */
   2741static void ef4_pci_remove(struct pci_dev *pci_dev)
   2742{
   2743	struct ef4_nic *efx;
   2744
   2745	efx = pci_get_drvdata(pci_dev);
   2746	if (!efx)
   2747		return;
   2748
   2749	/* Mark the NIC as fini, then stop the interface */
   2750	rtnl_lock();
   2751	ef4_dissociate(efx);
   2752	dev_close(efx->net_dev);
   2753	ef4_disable_interrupts(efx);
   2754	efx->state = STATE_UNINIT;
   2755	rtnl_unlock();
   2756
   2757	ef4_unregister_netdev(efx);
   2758
   2759	ef4_mtd_remove(efx);
   2760
   2761	ef4_pci_remove_main(efx);
   2762
   2763	ef4_fini_io(efx);
   2764	netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
   2765
   2766	ef4_fini_struct(efx);
   2767	free_netdev(efx->net_dev);
   2768
   2769	pci_disable_pcie_error_reporting(pci_dev);
   2770};
   2771
   2772/* NIC VPD information
   2773 * Called during probe to display the part number of the installed NIC.
   2774 */
   2775static void ef4_probe_vpd_strings(struct ef4_nic *efx)
   2776{
   2777	struct pci_dev *dev = efx->pci_dev;
   2778	unsigned int vpd_size, kw_len;
   2779	u8 *vpd_data;
   2780	int start;
   2781
   2782	vpd_data = pci_vpd_alloc(dev, &vpd_size);
   2783	if (IS_ERR(vpd_data)) {
   2784		pci_warn(dev, "Unable to read VPD\n");
   2785		return;
   2786	}
   2787
   2788	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
   2789					     PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
   2790	if (start < 0)
   2791		pci_warn(dev, "Part number not found or incomplete\n");
   2792	else
   2793		pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
   2794
   2795	start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
   2796					     PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
   2797	if (start < 0)
   2798		pci_warn(dev, "Serial number not found or incomplete\n");
   2799	else
   2800		efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
   2801
   2802	kfree(vpd_data);
   2803}
   2804
   2805
   2806/* Main body of NIC initialisation
   2807 * This is called at module load (or hotplug insertion, theoretically).
   2808 */
   2809static int ef4_pci_probe_main(struct ef4_nic *efx)
   2810{
   2811	int rc;
   2812
   2813	/* Do start-of-day initialisation */
   2814	rc = ef4_probe_all(efx);
   2815	if (rc)
   2816		goto fail1;
   2817
   2818	ef4_init_napi(efx);
   2819
   2820	rc = efx->type->init(efx);
   2821	if (rc) {
   2822		netif_err(efx, probe, efx->net_dev,
   2823			  "failed to initialise NIC\n");
   2824		goto fail3;
   2825	}
   2826
   2827	rc = ef4_init_port(efx);
   2828	if (rc) {
   2829		netif_err(efx, probe, efx->net_dev,
   2830			  "failed to initialise port\n");
   2831		goto fail4;
   2832	}
   2833
   2834	rc = ef4_nic_init_interrupt(efx);
   2835	if (rc)
   2836		goto fail5;
   2837	rc = ef4_enable_interrupts(efx);
   2838	if (rc)
   2839		goto fail6;
   2840
   2841	return 0;
   2842
   2843 fail6:
   2844	ef4_nic_fini_interrupt(efx);
   2845 fail5:
   2846	ef4_fini_port(efx);
   2847 fail4:
   2848	efx->type->fini(efx);
   2849 fail3:
   2850	ef4_fini_napi(efx);
   2851	ef4_remove_all(efx);
   2852 fail1:
   2853	return rc;
   2854}
   2855
   2856/* NIC initialisation
   2857 *
   2858 * This is called at module load (or hotplug insertion,
   2859 * theoretically).  It sets up PCI mappings, resets the NIC,
   2860 * sets up and registers the network devices with the kernel and hooks
   2861 * the interrupt service routine.  It does not prepare the device for
   2862 * transmission; this is left to the first time one of the network
   2863 * interfaces is brought up (i.e. ef4_net_open).
   2864 */
   2865static int ef4_pci_probe(struct pci_dev *pci_dev,
   2866			 const struct pci_device_id *entry)
   2867{
   2868	struct net_device *net_dev;
   2869	struct ef4_nic *efx;
   2870	int rc;
   2871
   2872	/* Allocate and initialise a struct net_device and struct ef4_nic */
   2873	net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
   2874				     EF4_MAX_RX_QUEUES);
   2875	if (!net_dev)
   2876		return -ENOMEM;
   2877	efx = netdev_priv(net_dev);
   2878	efx->type = (const struct ef4_nic_type *) entry->driver_data;
   2879	efx->fixed_features |= NETIF_F_HIGHDMA;
   2880
   2881	pci_set_drvdata(pci_dev, efx);
   2882	SET_NETDEV_DEV(net_dev, &pci_dev->dev);
   2883	rc = ef4_init_struct(efx, pci_dev, net_dev);
   2884	if (rc)
   2885		goto fail1;
   2886
   2887	netif_info(efx, probe, efx->net_dev,
   2888		   "Solarflare NIC detected\n");
   2889
   2890	ef4_probe_vpd_strings(efx);
   2891
   2892	/* Set up basic I/O (BAR mappings etc) */
   2893	rc = ef4_init_io(efx);
   2894	if (rc)
   2895		goto fail2;
   2896
   2897	rc = ef4_pci_probe_main(efx);
   2898	if (rc)
   2899		goto fail3;
   2900
   2901	net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
   2902			      NETIF_F_RXCSUM);
   2903	/* Mask for features that also apply to VLAN devices */
   2904	net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
   2905				   NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
   2906
   2907	net_dev->hw_features = net_dev->features & ~efx->fixed_features;
   2908
   2909	/* Disable VLAN filtering by default.  It may be enforced if
   2910	 * the feature is fixed (i.e. VLAN filters are required to
   2911	 * receive VLAN tagged packets due to vPort restrictions).
   2912	 */
   2913	net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
   2914	net_dev->features |= efx->fixed_features;
   2915
   2916	rc = ef4_register_netdev(efx);
   2917	if (rc)
   2918		goto fail4;
   2919
   2920	netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
   2921
   2922	/* Try to create MTDs, but allow this to fail */
   2923	rtnl_lock();
   2924	rc = ef4_mtd_probe(efx);
   2925	rtnl_unlock();
   2926	if (rc && rc != -EPERM)
   2927		netif_warn(efx, probe, efx->net_dev,
   2928			   "failed to create MTDs (%d)\n", rc);
   2929
   2930	rc = pci_enable_pcie_error_reporting(pci_dev);
   2931	if (rc && rc != -EINVAL)
   2932		netif_notice(efx, probe, efx->net_dev,
   2933			     "PCIE error reporting unavailable (%d).\n",
   2934			     rc);
   2935
   2936	return 0;
   2937
   2938 fail4:
   2939	ef4_pci_remove_main(efx);
   2940 fail3:
   2941	ef4_fini_io(efx);
   2942 fail2:
   2943	ef4_fini_struct(efx);
   2944 fail1:
   2945	WARN_ON(rc > 0);
   2946	netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
   2947	free_netdev(net_dev);
   2948	return rc;
   2949}
   2950
   2951static int ef4_pm_freeze(struct device *dev)
   2952{
   2953	struct ef4_nic *efx = dev_get_drvdata(dev);
   2954
   2955	rtnl_lock();
   2956
   2957	if (efx->state != STATE_DISABLED) {
   2958		efx->state = STATE_UNINIT;
   2959
   2960		ef4_device_detach_sync(efx);
   2961
   2962		ef4_stop_all(efx);
   2963		ef4_disable_interrupts(efx);
   2964	}
   2965
   2966	rtnl_unlock();
   2967
   2968	return 0;
   2969}
   2970
   2971static int ef4_pm_thaw(struct device *dev)
   2972{
   2973	int rc;
   2974	struct ef4_nic *efx = dev_get_drvdata(dev);
   2975
   2976	rtnl_lock();
   2977
   2978	if (efx->state != STATE_DISABLED) {
   2979		rc = ef4_enable_interrupts(efx);
   2980		if (rc)
   2981			goto fail;
   2982
   2983		mutex_lock(&efx->mac_lock);
   2984		efx->phy_op->reconfigure(efx);
   2985		mutex_unlock(&efx->mac_lock);
   2986
   2987		ef4_start_all(efx);
   2988
   2989		netif_device_attach(efx->net_dev);
   2990
   2991		efx->state = STATE_READY;
   2992
   2993		efx->type->resume_wol(efx);
   2994	}
   2995
   2996	rtnl_unlock();
   2997
   2998	/* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
   2999	queue_work(reset_workqueue, &efx->reset_work);
   3000
   3001	return 0;
   3002
   3003fail:
   3004	rtnl_unlock();
   3005
   3006	return rc;
   3007}
   3008
   3009static int ef4_pm_poweroff(struct device *dev)
   3010{
   3011	struct pci_dev *pci_dev = to_pci_dev(dev);
   3012	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
   3013
   3014	efx->type->fini(efx);
   3015
   3016	efx->reset_pending = 0;
   3017
   3018	pci_save_state(pci_dev);
   3019	return pci_set_power_state(pci_dev, PCI_D3hot);
   3020}
   3021
   3022/* Used for both resume and restore */
   3023static int ef4_pm_resume(struct device *dev)
   3024{
   3025	struct pci_dev *pci_dev = to_pci_dev(dev);
   3026	struct ef4_nic *efx = pci_get_drvdata(pci_dev);
   3027	int rc;
   3028
   3029	rc = pci_set_power_state(pci_dev, PCI_D0);
   3030	if (rc)
   3031		return rc;
   3032	pci_restore_state(pci_dev);
   3033	rc = pci_enable_device(pci_dev);
   3034	if (rc)
   3035		return rc;
   3036	pci_set_master(efx->pci_dev);
   3037	rc = efx->type->reset(efx, RESET_TYPE_ALL);
   3038	if (rc)
   3039		return rc;
   3040	rc = efx->type->init(efx);
   3041	if (rc)
   3042		return rc;
   3043	rc = ef4_pm_thaw(dev);
   3044	return rc;
   3045}
   3046
   3047static int ef4_pm_suspend(struct device *dev)
   3048{
   3049	int rc;
   3050
   3051	ef4_pm_freeze(dev);
   3052	rc = ef4_pm_poweroff(dev);
   3053	if (rc)
   3054		ef4_pm_resume(dev);
   3055	return rc;
   3056}
   3057
   3058static const struct dev_pm_ops ef4_pm_ops = {
   3059	.suspend	= ef4_pm_suspend,
   3060	.resume		= ef4_pm_resume,
   3061	.freeze		= ef4_pm_freeze,
   3062	.thaw		= ef4_pm_thaw,
   3063	.poweroff	= ef4_pm_poweroff,
   3064	.restore	= ef4_pm_resume,
   3065};
   3066
   3067/* A PCI error affecting this device was detected.
   3068 * At this point MMIO and DMA may be disabled.
   3069 * Stop the software path and request a slot reset.
   3070 */
   3071static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
   3072					      pci_channel_state_t state)
   3073{
   3074	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
   3075	struct ef4_nic *efx = pci_get_drvdata(pdev);
   3076
   3077	if (state == pci_channel_io_perm_failure)
   3078		return PCI_ERS_RESULT_DISCONNECT;
   3079
   3080	rtnl_lock();
   3081
   3082	if (efx->state != STATE_DISABLED) {
   3083		efx->state = STATE_RECOVERY;
   3084		efx->reset_pending = 0;
   3085
   3086		ef4_device_detach_sync(efx);
   3087
   3088		ef4_stop_all(efx);
   3089		ef4_disable_interrupts(efx);
   3090
   3091		status = PCI_ERS_RESULT_NEED_RESET;
   3092	} else {
   3093		/* If the interface is disabled we don't want to do anything
   3094		 * with it.
   3095		 */
   3096		status = PCI_ERS_RESULT_RECOVERED;
   3097	}
   3098
   3099	rtnl_unlock();
   3100
   3101	pci_disable_device(pdev);
   3102
   3103	return status;
   3104}
   3105
   3106/* Fake a successful reset, which will be performed later in ef4_io_resume. */
   3107static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
   3108{
   3109	struct ef4_nic *efx = pci_get_drvdata(pdev);
   3110	pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
   3111
   3112	if (pci_enable_device(pdev)) {
   3113		netif_err(efx, hw, efx->net_dev,
   3114			  "Cannot re-enable PCI device after reset.\n");
   3115		status =  PCI_ERS_RESULT_DISCONNECT;
   3116	}
   3117
   3118	return status;
   3119}
   3120
   3121/* Perform the actual reset and resume I/O operations. */
   3122static void ef4_io_resume(struct pci_dev *pdev)
   3123{
   3124	struct ef4_nic *efx = pci_get_drvdata(pdev);
   3125	int rc;
   3126
   3127	rtnl_lock();
   3128
   3129	if (efx->state == STATE_DISABLED)
   3130		goto out;
   3131
   3132	rc = ef4_reset(efx, RESET_TYPE_ALL);
   3133	if (rc) {
   3134		netif_err(efx, hw, efx->net_dev,
   3135			  "ef4_reset failed after PCI error (%d)\n", rc);
   3136	} else {
   3137		efx->state = STATE_READY;
   3138		netif_dbg(efx, hw, efx->net_dev,
   3139			  "Done resetting and resuming IO after PCI error.\n");
   3140	}
   3141
   3142out:
   3143	rtnl_unlock();
   3144}
   3145
   3146/* For simplicity and reliability, we always require a slot reset and try to
   3147 * reset the hardware when a pci error affecting the device is detected.
   3148 * We leave both the link_reset and mmio_enabled callback unimplemented:
   3149 * with our request for slot reset the mmio_enabled callback will never be
   3150 * called, and the link_reset callback is not used by AER or EEH mechanisms.
   3151 */
   3152static const struct pci_error_handlers ef4_err_handlers = {
   3153	.error_detected = ef4_io_error_detected,
   3154	.slot_reset	= ef4_io_slot_reset,
   3155	.resume		= ef4_io_resume,
   3156};
   3157
   3158static struct pci_driver ef4_pci_driver = {
   3159	.name		= KBUILD_MODNAME,
   3160	.id_table	= ef4_pci_table,
   3161	.probe		= ef4_pci_probe,
   3162	.remove		= ef4_pci_remove,
   3163	.driver.pm	= &ef4_pm_ops,
   3164	.err_handler	= &ef4_err_handlers,
   3165};
   3166
   3167/**************************************************************************
   3168 *
   3169 * Kernel module interface
   3170 *
   3171 *************************************************************************/
   3172
   3173module_param(interrupt_mode, uint, 0444);
   3174MODULE_PARM_DESC(interrupt_mode,
   3175		 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
   3176
   3177static int __init ef4_init_module(void)
   3178{
   3179	int rc;
   3180
   3181	printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
   3182
   3183	rc = register_netdevice_notifier(&ef4_netdev_notifier);
   3184	if (rc)
   3185		goto err_notifier;
   3186
   3187	reset_workqueue = create_singlethread_workqueue("sfc_reset");
   3188	if (!reset_workqueue) {
   3189		rc = -ENOMEM;
   3190		goto err_reset;
   3191	}
   3192
   3193	rc = pci_register_driver(&ef4_pci_driver);
   3194	if (rc < 0)
   3195		goto err_pci;
   3196
   3197	return 0;
   3198
   3199 err_pci:
   3200	destroy_workqueue(reset_workqueue);
   3201 err_reset:
   3202	unregister_netdevice_notifier(&ef4_netdev_notifier);
   3203 err_notifier:
   3204	return rc;
   3205}
   3206
   3207static void __exit ef4_exit_module(void)
   3208{
   3209	printk(KERN_INFO "Solarflare Falcon driver unloading\n");
   3210
   3211	pci_unregister_driver(&ef4_pci_driver);
   3212	destroy_workqueue(reset_workqueue);
   3213	unregister_netdevice_notifier(&ef4_netdev_notifier);
   3214
   3215}
   3216
   3217module_init(ef4_init_module);
   3218module_exit(ef4_exit_module);
   3219
   3220MODULE_AUTHOR("Solarflare Communications and "
   3221	      "Michael Brown <mbrown@fensystems.co.uk>");
   3222MODULE_DESCRIPTION("Solarflare Falcon network driver");
   3223MODULE_LICENSE("GPL");
   3224MODULE_DEVICE_TABLE(pci, ef4_pci_table);
   3225MODULE_VERSION(EF4_DRIVER_VERSION);