cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

falcon.c (86618B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/****************************************************************************
      3 * Driver for Solarflare network controllers and boards
      4 * Copyright 2005-2006 Fen Systems Ltd.
      5 * Copyright 2006-2013 Solarflare Communications Inc.
      6 */
      7
      8#include <linux/bitops.h>
      9#include <linux/delay.h>
     10#include <linux/pci.h>
     11#include <linux/module.h>
     12#include <linux/seq_file.h>
     13#include <linux/i2c.h>
     14#include <linux/mii.h>
     15#include <linux/slab.h>
     16#include <linux/sched/signal.h>
     17
     18#include "net_driver.h"
     19#include "bitfield.h"
     20#include "efx.h"
     21#include "nic.h"
     22#include "farch_regs.h"
     23#include "io.h"
     24#include "phy.h"
     25#include "workarounds.h"
     26#include "selftest.h"
     27#include "mdio_10g.h"
     28
     29/* Hardware control for SFC4000 (aka Falcon). */
     30
     31/**************************************************************************
     32 *
     33 * NIC stats
     34 *
     35 **************************************************************************
     36 */
     37
     38#define FALCON_MAC_STATS_SIZE 0x100
     39
     40#define XgRxOctets_offset 0x0
     41#define XgRxOctets_WIDTH 48
     42#define XgRxOctetsOK_offset 0x8
     43#define XgRxOctetsOK_WIDTH 48
     44#define XgRxPkts_offset 0x10
     45#define XgRxPkts_WIDTH 32
     46#define XgRxPktsOK_offset 0x14
     47#define XgRxPktsOK_WIDTH 32
     48#define XgRxBroadcastPkts_offset 0x18
     49#define XgRxBroadcastPkts_WIDTH 32
     50#define XgRxMulticastPkts_offset 0x1C
     51#define XgRxMulticastPkts_WIDTH 32
     52#define XgRxUnicastPkts_offset 0x20
     53#define XgRxUnicastPkts_WIDTH 32
     54#define XgRxUndersizePkts_offset 0x24
     55#define XgRxUndersizePkts_WIDTH 32
     56#define XgRxOversizePkts_offset 0x28
     57#define XgRxOversizePkts_WIDTH 32
     58#define XgRxJabberPkts_offset 0x2C
     59#define XgRxJabberPkts_WIDTH 32
     60#define XgRxUndersizeFCSerrorPkts_offset 0x30
     61#define XgRxUndersizeFCSerrorPkts_WIDTH 32
     62#define XgRxDropEvents_offset 0x34
     63#define XgRxDropEvents_WIDTH 32
     64#define XgRxFCSerrorPkts_offset 0x38
     65#define XgRxFCSerrorPkts_WIDTH 32
     66#define XgRxAlignError_offset 0x3C
     67#define XgRxAlignError_WIDTH 32
     68#define XgRxSymbolError_offset 0x40
     69#define XgRxSymbolError_WIDTH 32
     70#define XgRxInternalMACError_offset 0x44
     71#define XgRxInternalMACError_WIDTH 32
     72#define XgRxControlPkts_offset 0x48
     73#define XgRxControlPkts_WIDTH 32
     74#define XgRxPausePkts_offset 0x4C
     75#define XgRxPausePkts_WIDTH 32
     76#define XgRxPkts64Octets_offset 0x50
     77#define XgRxPkts64Octets_WIDTH 32
     78#define XgRxPkts65to127Octets_offset 0x54
     79#define XgRxPkts65to127Octets_WIDTH 32
     80#define XgRxPkts128to255Octets_offset 0x58
     81#define XgRxPkts128to255Octets_WIDTH 32
     82#define XgRxPkts256to511Octets_offset 0x5C
     83#define XgRxPkts256to511Octets_WIDTH 32
     84#define XgRxPkts512to1023Octets_offset 0x60
     85#define XgRxPkts512to1023Octets_WIDTH 32
     86#define XgRxPkts1024to15xxOctets_offset 0x64
     87#define XgRxPkts1024to15xxOctets_WIDTH 32
     88#define XgRxPkts15xxtoMaxOctets_offset 0x68
     89#define XgRxPkts15xxtoMaxOctets_WIDTH 32
     90#define XgRxLengthError_offset 0x6C
     91#define XgRxLengthError_WIDTH 32
     92#define XgTxPkts_offset 0x80
     93#define XgTxPkts_WIDTH 32
     94#define XgTxOctets_offset 0x88
     95#define XgTxOctets_WIDTH 48
     96#define XgTxMulticastPkts_offset 0x90
     97#define XgTxMulticastPkts_WIDTH 32
     98#define XgTxBroadcastPkts_offset 0x94
     99#define XgTxBroadcastPkts_WIDTH 32
    100#define XgTxUnicastPkts_offset 0x98
    101#define XgTxUnicastPkts_WIDTH 32
    102#define XgTxControlPkts_offset 0x9C
    103#define XgTxControlPkts_WIDTH 32
    104#define XgTxPausePkts_offset 0xA0
    105#define XgTxPausePkts_WIDTH 32
    106#define XgTxPkts64Octets_offset 0xA4
    107#define XgTxPkts64Octets_WIDTH 32
    108#define XgTxPkts65to127Octets_offset 0xA8
    109#define XgTxPkts65to127Octets_WIDTH 32
    110#define XgTxPkts128to255Octets_offset 0xAC
    111#define XgTxPkts128to255Octets_WIDTH 32
    112#define XgTxPkts256to511Octets_offset 0xB0
    113#define XgTxPkts256to511Octets_WIDTH 32
    114#define XgTxPkts512to1023Octets_offset 0xB4
    115#define XgTxPkts512to1023Octets_WIDTH 32
    116#define XgTxPkts1024to15xxOctets_offset 0xB8
    117#define XgTxPkts1024to15xxOctets_WIDTH 32
    118#define XgTxPkts1519toMaxOctets_offset 0xBC
    119#define XgTxPkts1519toMaxOctets_WIDTH 32
    120#define XgTxUndersizePkts_offset 0xC0
    121#define XgTxUndersizePkts_WIDTH 32
    122#define XgTxOversizePkts_offset 0xC4
    123#define XgTxOversizePkts_WIDTH 32
    124#define XgTxNonTcpUdpPkt_offset 0xC8
    125#define XgTxNonTcpUdpPkt_WIDTH 16
    126#define XgTxMacSrcErrPkt_offset 0xCC
    127#define XgTxMacSrcErrPkt_WIDTH 16
    128#define XgTxIpSrcErrPkt_offset 0xD0
    129#define XgTxIpSrcErrPkt_WIDTH 16
    130#define XgDmaDone_offset 0xD4
    131#define XgDmaDone_WIDTH 32
    132
    133#define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
    134	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
    135
    136#define FALCON_DMA_STAT(ext_name, hw_name)				\
    137	[FALCON_STAT_ ## ext_name] =					\
    138	{ #ext_name,							\
    139	  /* 48-bit stats are zero-padded to 64 on DMA */		\
    140	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
    141	  hw_name ## _ ## offset }
    142#define FALCON_OTHER_STAT(ext_name)					\
    143	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
    144#define GENERIC_SW_STAT(ext_name)				\
    145	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
    146
    147static const struct ef4_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
    148	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
    149	FALCON_DMA_STAT(tx_packets, XgTxPkts),
    150	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
    151	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
    152	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
    153	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
    154	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
    155	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
    156	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
    157	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
    158	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
    159	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
    160	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
    161	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
    162	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
    163	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
    164	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
    165	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
    166	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
    167	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
    168	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
    169	FALCON_OTHER_STAT(rx_bad_bytes),
    170	FALCON_DMA_STAT(rx_packets, XgRxPkts),
    171	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
    172	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
    173	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
    174	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
    175	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
    176	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
    177	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
    178	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
    179	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
    180	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
    181	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
    182	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
    183	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
    184	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
    185	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
    186	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
    187	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
    188	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
    189	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
    190	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
    191	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
    192	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
    193	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
    194	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
    195	GENERIC_SW_STAT(rx_nodesc_trunc),
    196	GENERIC_SW_STAT(rx_noskb_drops),
    197};
    198static const unsigned long falcon_stat_mask[] = {
    199	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
    200};
    201
    202/**************************************************************************
    203 *
    204 * Basic SPI command set and bit definitions
    205 *
    206 *************************************************************************/
    207
    208#define SPI_WRSR 0x01		/* Write status register */
    209#define SPI_WRITE 0x02		/* Write data to memory array */
    210#define SPI_READ 0x03		/* Read data from memory array */
    211#define SPI_WRDI 0x04		/* Reset write enable latch */
    212#define SPI_RDSR 0x05		/* Read status register */
    213#define SPI_WREN 0x06		/* Set write enable latch */
    214#define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
    215
    216#define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
    217#define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
    218#define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
    219#define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
    220#define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
    221#define SPI_STATUS_NRDY 0x01	/* Device busy flag */
    222
    223/**************************************************************************
    224 *
    225 * Non-volatile memory layout
    226 *
    227 **************************************************************************
    228 */
    229
    230/* SFC4000 flash is partitioned into:
    231 *     0-0x400       chip and board config (see struct falcon_nvconfig)
    232 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
    233 *     0x8000-end    boot code (mapped to PCI expansion ROM)
    234 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
    235 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
    236 *     0-0x400       chip and board config
    237 *     configurable  VPD
    238 *     0x800-0x1800  boot config
    239 * Aside from the chip and board config, all of these are optional and may
    240 * be absent or truncated depending on the devices used.
    241 */
    242#define FALCON_NVCONFIG_END 0x400U
    243#define FALCON_FLASH_BOOTCODE_START 0x8000U
    244#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
    245#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
    246
    247/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
    248struct falcon_nvconfig_board_v2 {
    249	__le16 nports;
    250	u8 port0_phy_addr;
    251	u8 port0_phy_type;
    252	u8 port1_phy_addr;
    253	u8 port1_phy_type;
    254	__le16 asic_sub_revision;
    255	__le16 board_revision;
    256} __packed;
    257
    258/* Board configuration v3 extra information */
    259struct falcon_nvconfig_board_v3 {
    260	__le32 spi_device_type[2];
    261} __packed;
    262
    263/* Bit numbers for spi_device_type */
    264#define SPI_DEV_TYPE_SIZE_LBN 0
    265#define SPI_DEV_TYPE_SIZE_WIDTH 5
    266#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
    267#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
    268#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
    269#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
    270#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
    271#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
    272#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
    273#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
    274#define SPI_DEV_TYPE_FIELD(type, field)					\
    275	(((type) >> EF4_LOW_BIT(field)) & EF4_MASK32(EF4_WIDTH(field)))
    276
    277#define FALCON_NVCONFIG_OFFSET 0x300
    278
    279#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
    280struct falcon_nvconfig {
    281	ef4_oword_t ee_vpd_cfg_reg;			/* 0x300 */
    282	u8 mac_address[2][8];			/* 0x310 */
    283	ef4_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
    284	ef4_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
    285	ef4_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
    286	ef4_oword_t hw_init_reg;			/* 0x350 */
    287	ef4_oword_t nic_stat_reg;			/* 0x360 */
    288	ef4_oword_t glb_ctl_reg;			/* 0x370 */
    289	ef4_oword_t srm_cfg_reg;			/* 0x380 */
    290	ef4_oword_t spare_reg;				/* 0x390 */
    291	__le16 board_magic_num;			/* 0x3A0 */
    292	__le16 board_struct_ver;
    293	__le16 board_checksum;
    294	struct falcon_nvconfig_board_v2 board_v2;
    295	ef4_oword_t ee_base_page_reg;			/* 0x3B0 */
    296	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
    297} __packed;
    298
    299/*************************************************************************/
    300
    301static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method);
    302static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx);
    303
    304static const unsigned int
    305/* "Large" EEPROM device: Atmel AT25640 or similar
    306 * 8 KB, 16-bit address, 32 B write block */
    307large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
    308		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
    309		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
    310/* Default flash device: Atmel AT25F1024
    311 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
    312default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
    313		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
    314		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
    315		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
    316		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
    317
    318/**************************************************************************
    319 *
    320 * I2C bus - this is a bit-bashing interface using GPIO pins
    321 * Note that it uses the output enables to tristate the outputs
    322 * SDA is the data pin and SCL is the clock
    323 *
    324 **************************************************************************
    325 */
    326static void falcon_setsda(void *data, int state)
    327{
    328	struct ef4_nic *efx = (struct ef4_nic *)data;
    329	ef4_oword_t reg;
    330
    331	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
    332	EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
    333	ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
    334}
    335
    336static void falcon_setscl(void *data, int state)
    337{
    338	struct ef4_nic *efx = (struct ef4_nic *)data;
    339	ef4_oword_t reg;
    340
    341	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
    342	EF4_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
    343	ef4_writeo(efx, &reg, FR_AB_GPIO_CTL);
    344}
    345
    346static int falcon_getsda(void *data)
    347{
    348	struct ef4_nic *efx = (struct ef4_nic *)data;
    349	ef4_oword_t reg;
    350
    351	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
    352	return EF4_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
    353}
    354
    355static int falcon_getscl(void *data)
    356{
    357	struct ef4_nic *efx = (struct ef4_nic *)data;
    358	ef4_oword_t reg;
    359
    360	ef4_reado(efx, &reg, FR_AB_GPIO_CTL);
    361	return EF4_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
    362}
    363
    364static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
    365	.setsda		= falcon_setsda,
    366	.setscl		= falcon_setscl,
    367	.getsda		= falcon_getsda,
    368	.getscl		= falcon_getscl,
    369	.udelay		= 5,
    370	/* Wait up to 50 ms for slave to let us pull SCL high */
    371	.timeout	= DIV_ROUND_UP(HZ, 20),
    372};
    373
    374static void falcon_push_irq_moderation(struct ef4_channel *channel)
    375{
    376	ef4_dword_t timer_cmd;
    377	struct ef4_nic *efx = channel->efx;
    378
    379	/* Set timer register */
    380	if (channel->irq_moderation_us) {
    381		unsigned int ticks;
    382
    383		ticks = ef4_usecs_to_ticks(efx, channel->irq_moderation_us);
    384		EF4_POPULATE_DWORD_2(timer_cmd,
    385				     FRF_AB_TC_TIMER_MODE,
    386				     FFE_BB_TIMER_MODE_INT_HLDOFF,
    387				     FRF_AB_TC_TIMER_VAL,
    388				     ticks - 1);
    389	} else {
    390		EF4_POPULATE_DWORD_2(timer_cmd,
    391				     FRF_AB_TC_TIMER_MODE,
    392				     FFE_BB_TIMER_MODE_DIS,
    393				     FRF_AB_TC_TIMER_VAL, 0);
    394	}
    395	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
    396	ef4_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
    397			       channel->channel);
    398}
    399
    400static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx);
    401
    402static void falcon_prepare_flush(struct ef4_nic *efx)
    403{
    404	falcon_deconfigure_mac_wrapper(efx);
    405
    406	/* Wait for the tx and rx fifo's to get to the next packet boundary
    407	 * (~1ms without back-pressure), then to drain the remainder of the
    408	 * fifo's at data path speeds (negligible), with a healthy margin. */
    409	msleep(10);
    410}
    411
    412/* Acknowledge a legacy interrupt from Falcon
    413 *
    414 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
    415 *
    416 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
    417 * BIU. Interrupt acknowledge is read sensitive so must write instead
    418 * (then read to ensure the BIU collector is flushed)
    419 *
    420 * NB most hardware supports MSI interrupts
    421 */
    422static inline void falcon_irq_ack_a1(struct ef4_nic *efx)
    423{
    424	ef4_dword_t reg;
    425
    426	EF4_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
    427	ef4_writed(efx, &reg, FR_AA_INT_ACK_KER);
    428	ef4_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
    429}
    430
    431static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
    432{
    433	struct ef4_nic *efx = dev_id;
    434	ef4_oword_t *int_ker = efx->irq_status.addr;
    435	int syserr;
    436	int queues;
    437
    438	/* Check to see if this is our interrupt.  If it isn't, we
    439	 * exit without having touched the hardware.
    440	 */
    441	if (unlikely(EF4_OWORD_IS_ZERO(*int_ker))) {
    442		netif_vdbg(efx, intr, efx->net_dev,
    443			   "IRQ %d on CPU %d not for me\n", irq,
    444			   raw_smp_processor_id());
    445		return IRQ_NONE;
    446	}
    447	efx->last_irq_cpu = raw_smp_processor_id();
    448	netif_vdbg(efx, intr, efx->net_dev,
    449		   "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n",
    450		   irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker));
    451
    452	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
    453		return IRQ_HANDLED;
    454
    455	/* Check to see if we have a serious error condition */
    456	syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
    457	if (unlikely(syserr))
    458		return ef4_farch_fatal_interrupt(efx);
    459
    460	/* Determine interrupting queues, clear interrupt status
    461	 * register and acknowledge the device interrupt.
    462	 */
    463	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EF4_MAX_CHANNELS);
    464	queues = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
    465	EF4_ZERO_OWORD(*int_ker);
    466	wmb(); /* Ensure the vector is cleared before interrupt ack */
    467	falcon_irq_ack_a1(efx);
    468
    469	if (queues & 1)
    470		ef4_schedule_channel_irq(ef4_get_channel(efx, 0));
    471	if (queues & 2)
    472		ef4_schedule_channel_irq(ef4_get_channel(efx, 1));
    473	return IRQ_HANDLED;
    474}
    475
    476/**************************************************************************
    477 *
    478 * RSS
    479 *
    480 **************************************************************************
    481 */
    482static int dummy_rx_push_rss_config(struct ef4_nic *efx, bool user,
    483				    const u32 *rx_indir_table)
    484{
    485	(void) efx;
    486	(void) user;
    487	(void) rx_indir_table;
    488	return -ENOSYS;
    489}
    490
    491static int falcon_b0_rx_push_rss_config(struct ef4_nic *efx, bool user,
    492					const u32 *rx_indir_table)
    493{
    494	ef4_oword_t temp;
    495
    496	(void) user;
    497	/* Set hash key for IPv4 */
    498	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
    499	ef4_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
    500
    501	memcpy(efx->rx_indir_table, rx_indir_table,
    502	       sizeof(efx->rx_indir_table));
    503	ef4_farch_rx_push_indir_table(efx);
    504	return 0;
    505}
    506
    507/**************************************************************************
    508 *
    509 * EEPROM/flash
    510 *
    511 **************************************************************************
    512 */
    513
    514#define FALCON_SPI_MAX_LEN sizeof(ef4_oword_t)
    515
    516static int falcon_spi_poll(struct ef4_nic *efx)
    517{
    518	ef4_oword_t reg;
    519	ef4_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
    520	return EF4_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
    521}
    522
    523/* Wait for SPI command completion */
    524static int falcon_spi_wait(struct ef4_nic *efx)
    525{
    526	/* Most commands will finish quickly, so we start polling at
    527	 * very short intervals.  Sometimes the command may have to
    528	 * wait for VPD or expansion ROM access outside of our
    529	 * control, so we allow up to 100 ms. */
    530	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
    531	int i;
    532
    533	for (i = 0; i < 10; i++) {
    534		if (!falcon_spi_poll(efx))
    535			return 0;
    536		udelay(10);
    537	}
    538
    539	for (;;) {
    540		if (!falcon_spi_poll(efx))
    541			return 0;
    542		if (time_after_eq(jiffies, timeout)) {
    543			netif_err(efx, hw, efx->net_dev,
    544				  "timed out waiting for SPI\n");
    545			return -ETIMEDOUT;
    546		}
    547		schedule_timeout_uninterruptible(1);
    548	}
    549}
    550
    551static int
    552falcon_spi_cmd(struct ef4_nic *efx, const struct falcon_spi_device *spi,
    553	       unsigned int command, int address,
    554	       const void *in, void *out, size_t len)
    555{
    556	bool addressed = (address >= 0);
    557	bool reading = (out != NULL);
    558	ef4_oword_t reg;
    559	int rc;
    560
    561	/* Input validation */
    562	if (len > FALCON_SPI_MAX_LEN)
    563		return -EINVAL;
    564
    565	/* Check that previous command is not still running */
    566	rc = falcon_spi_poll(efx);
    567	if (rc)
    568		return rc;
    569
    570	/* Program address register, if we have an address */
    571	if (addressed) {
    572		EF4_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
    573		ef4_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
    574	}
    575
    576	/* Program data register, if we have data */
    577	if (in != NULL) {
    578		memcpy(&reg, in, len);
    579		ef4_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
    580	}
    581
    582	/* Issue read/write command */
    583	EF4_POPULATE_OWORD_7(reg,
    584			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
    585			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
    586			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
    587			     FRF_AB_EE_SPI_HCMD_READ, reading,
    588			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
    589			     FRF_AB_EE_SPI_HCMD_ADBCNT,
    590			     (addressed ? spi->addr_len : 0),
    591			     FRF_AB_EE_SPI_HCMD_ENC, command);
    592	ef4_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
    593
    594	/* Wait for read/write to complete */
    595	rc = falcon_spi_wait(efx);
    596	if (rc)
    597		return rc;
    598
    599	/* Read data */
    600	if (out != NULL) {
    601		ef4_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
    602		memcpy(out, &reg, len);
    603	}
    604
    605	return 0;
    606}
    607
    608static inline u8
    609falcon_spi_munge_command(const struct falcon_spi_device *spi,
    610			 const u8 command, const unsigned int address)
    611{
    612	return command | (((address >> 8) & spi->munge_address) << 3);
    613}
    614
    615static int
    616falcon_spi_read(struct ef4_nic *efx, const struct falcon_spi_device *spi,
    617		loff_t start, size_t len, size_t *retlen, u8 *buffer)
    618{
    619	size_t block_len, pos = 0;
    620	unsigned int command;
    621	int rc = 0;
    622
    623	while (pos < len) {
    624		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
    625
    626		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
    627		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
    628				    buffer + pos, block_len);
    629		if (rc)
    630			break;
    631		pos += block_len;
    632
    633		/* Avoid locking up the system */
    634		cond_resched();
    635		if (signal_pending(current)) {
    636			rc = -EINTR;
    637			break;
    638		}
    639	}
    640
    641	if (retlen)
    642		*retlen = pos;
    643	return rc;
    644}
    645
    646#ifdef CONFIG_SFC_FALCON_MTD
    647
    648struct falcon_mtd_partition {
    649	struct ef4_mtd_partition common;
    650	const struct falcon_spi_device *spi;
    651	size_t offset;
    652};
    653
    654#define to_falcon_mtd_partition(mtd)				\
    655	container_of(mtd, struct falcon_mtd_partition, common.mtd)
    656
    657static size_t
    658falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
    659{
    660	return min(FALCON_SPI_MAX_LEN,
    661		   (spi->block_size - (start & (spi->block_size - 1))));
    662}
    663
    664/* Wait up to 10 ms for buffered write completion */
    665static int
    666falcon_spi_wait_write(struct ef4_nic *efx, const struct falcon_spi_device *spi)
    667{
    668	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
    669	u8 status;
    670	int rc;
    671
    672	for (;;) {
    673		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
    674				    &status, sizeof(status));
    675		if (rc)
    676			return rc;
    677		if (!(status & SPI_STATUS_NRDY))
    678			return 0;
    679		if (time_after_eq(jiffies, timeout)) {
    680			netif_err(efx, hw, efx->net_dev,
    681				  "SPI write timeout on device %d"
    682				  " last status=0x%02x\n",
    683				  spi->device_id, status);
    684			return -ETIMEDOUT;
    685		}
    686		schedule_timeout_uninterruptible(1);
    687	}
    688}
    689
    690static int
    691falcon_spi_write(struct ef4_nic *efx, const struct falcon_spi_device *spi,
    692		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
    693{
    694	u8 verify_buffer[FALCON_SPI_MAX_LEN];
    695	size_t block_len, pos = 0;
    696	unsigned int command;
    697	int rc = 0;
    698
    699	while (pos < len) {
    700		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
    701		if (rc)
    702			break;
    703
    704		block_len = min(len - pos,
    705				falcon_spi_write_limit(spi, start + pos));
    706		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
    707		rc = falcon_spi_cmd(efx, spi, command, start + pos,
    708				    buffer + pos, NULL, block_len);
    709		if (rc)
    710			break;
    711
    712		rc = falcon_spi_wait_write(efx, spi);
    713		if (rc)
    714			break;
    715
    716		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
    717		rc = falcon_spi_cmd(efx, spi, command, start + pos,
    718				    NULL, verify_buffer, block_len);
    719		if (memcmp(verify_buffer, buffer + pos, block_len)) {
    720			rc = -EIO;
    721			break;
    722		}
    723
    724		pos += block_len;
    725
    726		/* Avoid locking up the system */
    727		cond_resched();
    728		if (signal_pending(current)) {
    729			rc = -EINTR;
    730			break;
    731		}
    732	}
    733
    734	if (retlen)
    735		*retlen = pos;
    736	return rc;
    737}
    738
    739static int
    740falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
    741{
    742	const struct falcon_spi_device *spi = part->spi;
    743	struct ef4_nic *efx = part->common.mtd.priv;
    744	u8 status;
    745	int rc, i;
    746
    747	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
    748	for (i = 0; i < 40; i++) {
    749		__set_current_state(uninterruptible ?
    750				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
    751		schedule_timeout(HZ / 10);
    752		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
    753				    &status, sizeof(status));
    754		if (rc)
    755			return rc;
    756		if (!(status & SPI_STATUS_NRDY))
    757			return 0;
    758		if (signal_pending(current))
    759			return -EINTR;
    760	}
    761	pr_err("%s: timed out waiting for %s\n",
    762	       part->common.name, part->common.dev_type_name);
    763	return -ETIMEDOUT;
    764}
    765
    766static int
    767falcon_spi_unlock(struct ef4_nic *efx, const struct falcon_spi_device *spi)
    768{
    769	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
    770				SPI_STATUS_BP0);
    771	u8 status;
    772	int rc;
    773
    774	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
    775			    &status, sizeof(status));
    776	if (rc)
    777		return rc;
    778
    779	if (!(status & unlock_mask))
    780		return 0; /* already unlocked */
    781
    782	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
    783	if (rc)
    784		return rc;
    785	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
    786	if (rc)
    787		return rc;
    788
    789	status &= ~unlock_mask;
    790	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
    791			    NULL, sizeof(status));
    792	if (rc)
    793		return rc;
    794	rc = falcon_spi_wait_write(efx, spi);
    795	if (rc)
    796		return rc;
    797
    798	return 0;
    799}
    800
    801#define FALCON_SPI_VERIFY_BUF_LEN 16
    802
    803static int
    804falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
    805{
    806	const struct falcon_spi_device *spi = part->spi;
    807	struct ef4_nic *efx = part->common.mtd.priv;
    808	unsigned pos, block_len;
    809	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
    810	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
    811	int rc;
    812
    813	if (len != spi->erase_size)
    814		return -EINVAL;
    815
    816	if (spi->erase_command == 0)
    817		return -EOPNOTSUPP;
    818
    819	rc = falcon_spi_unlock(efx, spi);
    820	if (rc)
    821		return rc;
    822	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
    823	if (rc)
    824		return rc;
    825	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
    826			    NULL, 0);
    827	if (rc)
    828		return rc;
    829	rc = falcon_spi_slow_wait(part, false);
    830
    831	/* Verify the entire region has been wiped */
    832	memset(empty, 0xff, sizeof(empty));
    833	for (pos = 0; pos < len; pos += block_len) {
    834		block_len = min(len - pos, sizeof(buffer));
    835		rc = falcon_spi_read(efx, spi, start + pos, block_len,
    836				     NULL, buffer);
    837		if (rc)
    838			return rc;
    839		if (memcmp(empty, buffer, block_len))
    840			return -EIO;
    841
    842		/* Avoid locking up the system */
    843		cond_resched();
    844		if (signal_pending(current))
    845			return -EINTR;
    846	}
    847
    848	return rc;
    849}
    850
    851static void falcon_mtd_rename(struct ef4_mtd_partition *part)
    852{
    853	struct ef4_nic *efx = part->mtd.priv;
    854
    855	snprintf(part->name, sizeof(part->name), "%s %s",
    856		 efx->name, part->type_name);
    857}
    858
    859static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
    860			   size_t len, size_t *retlen, u8 *buffer)
    861{
    862	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
    863	struct ef4_nic *efx = mtd->priv;
    864	struct falcon_nic_data *nic_data = efx->nic_data;
    865	int rc;
    866
    867	rc = mutex_lock_interruptible(&nic_data->spi_lock);
    868	if (rc)
    869		return rc;
    870	rc = falcon_spi_read(efx, part->spi, part->offset + start,
    871			     len, retlen, buffer);
    872	mutex_unlock(&nic_data->spi_lock);
    873	return rc;
    874}
    875
    876static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
    877{
    878	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
    879	struct ef4_nic *efx = mtd->priv;
    880	struct falcon_nic_data *nic_data = efx->nic_data;
    881	int rc;
    882
    883	rc = mutex_lock_interruptible(&nic_data->spi_lock);
    884	if (rc)
    885		return rc;
    886	rc = falcon_spi_erase(part, part->offset + start, len);
    887	mutex_unlock(&nic_data->spi_lock);
    888	return rc;
    889}
    890
    891static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
    892			    size_t len, size_t *retlen, const u8 *buffer)
    893{
    894	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
    895	struct ef4_nic *efx = mtd->priv;
    896	struct falcon_nic_data *nic_data = efx->nic_data;
    897	int rc;
    898
    899	rc = mutex_lock_interruptible(&nic_data->spi_lock);
    900	if (rc)
    901		return rc;
    902	rc = falcon_spi_write(efx, part->spi, part->offset + start,
    903			      len, retlen, buffer);
    904	mutex_unlock(&nic_data->spi_lock);
    905	return rc;
    906}
    907
    908static int falcon_mtd_sync(struct mtd_info *mtd)
    909{
    910	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
    911	struct ef4_nic *efx = mtd->priv;
    912	struct falcon_nic_data *nic_data = efx->nic_data;
    913	int rc;
    914
    915	mutex_lock(&nic_data->spi_lock);
    916	rc = falcon_spi_slow_wait(part, true);
    917	mutex_unlock(&nic_data->spi_lock);
    918	return rc;
    919}
    920
    921static int falcon_mtd_probe(struct ef4_nic *efx)
    922{
    923	struct falcon_nic_data *nic_data = efx->nic_data;
    924	struct falcon_mtd_partition *parts;
    925	struct falcon_spi_device *spi;
    926	size_t n_parts;
    927	int rc = -ENODEV;
    928
    929	ASSERT_RTNL();
    930
    931	/* Allocate space for maximum number of partitions */
    932	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
    933	if (!parts)
    934		return -ENOMEM;
    935	n_parts = 0;
    936
    937	spi = &nic_data->spi_flash;
    938	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
    939		parts[n_parts].spi = spi;
    940		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
    941		parts[n_parts].common.dev_type_name = "flash";
    942		parts[n_parts].common.type_name = "sfc_flash_bootrom";
    943		parts[n_parts].common.mtd.type = MTD_NORFLASH;
    944		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
    945		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
    946		parts[n_parts].common.mtd.erasesize = spi->erase_size;
    947		n_parts++;
    948	}
    949
    950	spi = &nic_data->spi_eeprom;
    951	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
    952		parts[n_parts].spi = spi;
    953		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
    954		parts[n_parts].common.dev_type_name = "EEPROM";
    955		parts[n_parts].common.type_name = "sfc_bootconfig";
    956		parts[n_parts].common.mtd.type = MTD_RAM;
    957		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
    958		parts[n_parts].common.mtd.size =
    959			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
    960			FALCON_EEPROM_BOOTCONFIG_START;
    961		parts[n_parts].common.mtd.erasesize = spi->erase_size;
    962		n_parts++;
    963	}
    964
    965	rc = ef4_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
    966	if (rc)
    967		kfree(parts);
    968	return rc;
    969}
    970
    971#endif /* CONFIG_SFC_FALCON_MTD */
    972
    973/**************************************************************************
    974 *
    975 * XMAC operations
    976 *
    977 **************************************************************************
    978 */
    979
    980/* Configure the XAUI driver that is an output from Falcon */
    981static void falcon_setup_xaui(struct ef4_nic *efx)
    982{
    983	ef4_oword_t sdctl, txdrv;
    984
    985	/* Move the XAUI into low power, unless there is no PHY, in
    986	 * which case the XAUI will have to drive a cable. */
    987	if (efx->phy_type == PHY_TYPE_NONE)
    988		return;
    989
    990	ef4_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
    991	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
    992	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
    993	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
    994	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
    995	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
    996	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
    997	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
    998	EF4_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
    999	ef4_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
   1000
   1001	EF4_POPULATE_OWORD_8(txdrv,
   1002			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
   1003			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
   1004			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
   1005			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
   1006			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
   1007			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
   1008			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
   1009			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
   1010	ef4_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
   1011}
   1012
   1013int falcon_reset_xaui(struct ef4_nic *efx)
   1014{
   1015	struct falcon_nic_data *nic_data = efx->nic_data;
   1016	ef4_oword_t reg;
   1017	int count;
   1018
   1019	/* Don't fetch MAC statistics over an XMAC reset */
   1020	WARN_ON(nic_data->stats_disable_count == 0);
   1021
   1022	/* Start reset sequence */
   1023	EF4_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
   1024	ef4_writeo(efx, &reg, FR_AB_XX_PWR_RST);
   1025
   1026	/* Wait up to 10 ms for completion, then reinitialise */
   1027	for (count = 0; count < 1000; count++) {
   1028		ef4_reado(efx, &reg, FR_AB_XX_PWR_RST);
   1029		if (EF4_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
   1030		    EF4_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
   1031			falcon_setup_xaui(efx);
   1032			return 0;
   1033		}
   1034		udelay(10);
   1035	}
   1036	netif_err(efx, hw, efx->net_dev,
   1037		  "timed out waiting for XAUI/XGXS reset\n");
   1038	return -ETIMEDOUT;
   1039}
   1040
   1041static void falcon_ack_status_intr(struct ef4_nic *efx)
   1042{
   1043	struct falcon_nic_data *nic_data = efx->nic_data;
   1044	ef4_oword_t reg;
   1045
   1046	if ((ef4_nic_rev(efx) != EF4_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
   1047		return;
   1048
   1049	/* We expect xgmii faults if the wireside link is down */
   1050	if (!efx->link_state.up)
   1051		return;
   1052
   1053	/* We can only use this interrupt to signal the negative edge of
   1054	 * xaui_align [we have to poll the positive edge]. */
   1055	if (nic_data->xmac_poll_required)
   1056		return;
   1057
   1058	ef4_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
   1059}
   1060
   1061static bool falcon_xgxs_link_ok(struct ef4_nic *efx)
   1062{
   1063	ef4_oword_t reg;
   1064	bool align_done, link_ok = false;
   1065	int sync_status;
   1066
   1067	/* Read link status */
   1068	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
   1069
   1070	align_done = EF4_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
   1071	sync_status = EF4_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
   1072	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
   1073		link_ok = true;
   1074
   1075	/* Clear link status ready for next read */
   1076	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
   1077	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
   1078	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
   1079	ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
   1080
   1081	return link_ok;
   1082}
   1083
   1084static bool falcon_xmac_link_ok(struct ef4_nic *efx)
   1085{
   1086	/*
   1087	 * Check MAC's XGXS link status except when using XGMII loopback
   1088	 * which bypasses the XGXS block.
   1089	 * If possible, check PHY's XGXS link status except when using
   1090	 * MAC loopback.
   1091	 */
   1092	return (efx->loopback_mode == LOOPBACK_XGMII ||
   1093		falcon_xgxs_link_ok(efx)) &&
   1094		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
   1095		 LOOPBACK_INTERNAL(efx) ||
   1096		 ef4_mdio_phyxgxs_lane_sync(efx));
   1097}
   1098
   1099static void falcon_reconfigure_xmac_core(struct ef4_nic *efx)
   1100{
   1101	unsigned int max_frame_len;
   1102	ef4_oword_t reg;
   1103	bool rx_fc = !!(efx->link_state.fc & EF4_FC_RX);
   1104	bool tx_fc = !!(efx->link_state.fc & EF4_FC_TX);
   1105
   1106	/* Configure MAC  - cut-thru mode is hard wired on */
   1107	EF4_POPULATE_OWORD_3(reg,
   1108			     FRF_AB_XM_RX_JUMBO_MODE, 1,
   1109			     FRF_AB_XM_TX_STAT_EN, 1,
   1110			     FRF_AB_XM_RX_STAT_EN, 1);
   1111	ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
   1112
   1113	/* Configure TX */
   1114	EF4_POPULATE_OWORD_6(reg,
   1115			     FRF_AB_XM_TXEN, 1,
   1116			     FRF_AB_XM_TX_PRMBL, 1,
   1117			     FRF_AB_XM_AUTO_PAD, 1,
   1118			     FRF_AB_XM_TXCRC, 1,
   1119			     FRF_AB_XM_FCNTL, tx_fc,
   1120			     FRF_AB_XM_IPG, 0x3);
   1121	ef4_writeo(efx, &reg, FR_AB_XM_TX_CFG);
   1122
   1123	/* Configure RX */
   1124	EF4_POPULATE_OWORD_5(reg,
   1125			     FRF_AB_XM_RXEN, 1,
   1126			     FRF_AB_XM_AUTO_DEPAD, 0,
   1127			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
   1128			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
   1129			     FRF_AB_XM_PASS_CRC_ERR, 1);
   1130	ef4_writeo(efx, &reg, FR_AB_XM_RX_CFG);
   1131
   1132	/* Set frame length */
   1133	max_frame_len = EF4_MAX_FRAME_LEN(efx->net_dev->mtu);
   1134	EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
   1135	ef4_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
   1136	EF4_POPULATE_OWORD_2(reg,
   1137			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
   1138			     FRF_AB_XM_TX_JUMBO_MODE, 1);
   1139	ef4_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
   1140
   1141	EF4_POPULATE_OWORD_2(reg,
   1142			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
   1143			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
   1144	ef4_writeo(efx, &reg, FR_AB_XM_FC);
   1145
   1146	/* Set MAC address */
   1147	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
   1148	ef4_writeo(efx, &reg, FR_AB_XM_ADR_LO);
   1149	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
   1150	ef4_writeo(efx, &reg, FR_AB_XM_ADR_HI);
   1151}
   1152
   1153static void falcon_reconfigure_xgxs_core(struct ef4_nic *efx)
   1154{
   1155	ef4_oword_t reg;
   1156	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
   1157	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
   1158	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
   1159	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
   1160
   1161	/* XGXS block is flaky and will need to be reset if moving
   1162	 * into our out of XGMII, XGXS or XAUI loopbacks. */
   1163	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
   1164	old_xgxs_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
   1165	old_xgmii_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
   1166
   1167	ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
   1168	old_xaui_loopback = EF4_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
   1169
   1170	/* The PHY driver may have turned XAUI off */
   1171	if ((xgxs_loopback != old_xgxs_loopback) ||
   1172	    (xaui_loopback != old_xaui_loopback) ||
   1173	    (xgmii_loopback != old_xgmii_loopback))
   1174		falcon_reset_xaui(efx);
   1175
   1176	ef4_reado(efx, &reg, FR_AB_XX_CORE_STAT);
   1177	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
   1178			    (xgxs_loopback || xaui_loopback) ?
   1179			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
   1180	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
   1181	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
   1182	ef4_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
   1183
   1184	ef4_reado(efx, &reg, FR_AB_XX_SD_CTL);
   1185	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
   1186	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
   1187	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
   1188	EF4_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
   1189	ef4_writeo(efx, &reg, FR_AB_XX_SD_CTL);
   1190}
   1191
   1192
   1193/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
   1194static bool falcon_xmac_link_ok_retry(struct ef4_nic *efx, int tries)
   1195{
   1196	bool mac_up = falcon_xmac_link_ok(efx);
   1197
   1198	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
   1199	    ef4_phy_mode_disabled(efx->phy_mode))
   1200		/* XAUI link is expected to be down */
   1201		return mac_up;
   1202
   1203	falcon_stop_nic_stats(efx);
   1204
   1205	while (!mac_up && tries) {
   1206		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
   1207		falcon_reset_xaui(efx);
   1208		udelay(200);
   1209
   1210		mac_up = falcon_xmac_link_ok(efx);
   1211		--tries;
   1212	}
   1213
   1214	falcon_start_nic_stats(efx);
   1215
   1216	return mac_up;
   1217}
   1218
   1219static bool falcon_xmac_check_fault(struct ef4_nic *efx)
   1220{
   1221	return !falcon_xmac_link_ok_retry(efx, 5);
   1222}
   1223
   1224static int falcon_reconfigure_xmac(struct ef4_nic *efx)
   1225{
   1226	struct falcon_nic_data *nic_data = efx->nic_data;
   1227
   1228	ef4_farch_filter_sync_rx_mode(efx);
   1229
   1230	falcon_reconfigure_xgxs_core(efx);
   1231	falcon_reconfigure_xmac_core(efx);
   1232
   1233	falcon_reconfigure_mac_wrapper(efx);
   1234
   1235	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
   1236	falcon_ack_status_intr(efx);
   1237
   1238	return 0;
   1239}
   1240
   1241static void falcon_poll_xmac(struct ef4_nic *efx)
   1242{
   1243	struct falcon_nic_data *nic_data = efx->nic_data;
   1244
   1245	/* We expect xgmii faults if the wireside link is down */
   1246	if (!efx->link_state.up || !nic_data->xmac_poll_required)
   1247		return;
   1248
   1249	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
   1250	falcon_ack_status_intr(efx);
   1251}
   1252
   1253/**************************************************************************
   1254 *
   1255 * MAC wrapper
   1256 *
   1257 **************************************************************************
   1258 */
   1259
   1260static void falcon_push_multicast_hash(struct ef4_nic *efx)
   1261{
   1262	union ef4_multicast_hash *mc_hash = &efx->multicast_hash;
   1263
   1264	WARN_ON(!mutex_is_locked(&efx->mac_lock));
   1265
   1266	ef4_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
   1267	ef4_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
   1268}
   1269
   1270static void falcon_reset_macs(struct ef4_nic *efx)
   1271{
   1272	struct falcon_nic_data *nic_data = efx->nic_data;
   1273	ef4_oword_t reg, mac_ctrl;
   1274	int count;
   1275
   1276	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) {
   1277		/* It's not safe to use GLB_CTL_REG to reset the
   1278		 * macs, so instead use the internal MAC resets
   1279		 */
   1280		EF4_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
   1281		ef4_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
   1282
   1283		for (count = 0; count < 10000; count++) {
   1284			ef4_reado(efx, &reg, FR_AB_XM_GLB_CFG);
   1285			if (EF4_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
   1286			    0)
   1287				return;
   1288			udelay(10);
   1289		}
   1290
   1291		netif_err(efx, hw, efx->net_dev,
   1292			  "timed out waiting for XMAC core reset\n");
   1293	}
   1294
   1295	/* Mac stats will fail whist the TX fifo is draining */
   1296	WARN_ON(nic_data->stats_disable_count == 0);
   1297
   1298	ef4_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
   1299	EF4_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
   1300	ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
   1301
   1302	ef4_reado(efx, &reg, FR_AB_GLB_CTL);
   1303	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
   1304	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
   1305	EF4_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
   1306	ef4_writeo(efx, &reg, FR_AB_GLB_CTL);
   1307
   1308	count = 0;
   1309	while (1) {
   1310		ef4_reado(efx, &reg, FR_AB_GLB_CTL);
   1311		if (!EF4_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
   1312		    !EF4_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
   1313		    !EF4_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
   1314			netif_dbg(efx, hw, efx->net_dev,
   1315				  "Completed MAC reset after %d loops\n",
   1316				  count);
   1317			break;
   1318		}
   1319		if (count > 20) {
   1320			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
   1321			break;
   1322		}
   1323		count++;
   1324		udelay(10);
   1325	}
   1326
   1327	/* Ensure the correct MAC is selected before statistics
   1328	 * are re-enabled by the caller */
   1329	ef4_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
   1330
   1331	falcon_setup_xaui(efx);
   1332}
   1333
   1334static void falcon_drain_tx_fifo(struct ef4_nic *efx)
   1335{
   1336	ef4_oword_t reg;
   1337
   1338	if ((ef4_nic_rev(efx) < EF4_REV_FALCON_B0) ||
   1339	    (efx->loopback_mode != LOOPBACK_NONE))
   1340		return;
   1341
   1342	ef4_reado(efx, &reg, FR_AB_MAC_CTRL);
   1343	/* There is no point in draining more than once */
   1344	if (EF4_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
   1345		return;
   1346
   1347	falcon_reset_macs(efx);
   1348}
   1349
   1350static void falcon_deconfigure_mac_wrapper(struct ef4_nic *efx)
   1351{
   1352	ef4_oword_t reg;
   1353
   1354	if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0)
   1355		return;
   1356
   1357	/* Isolate the MAC -> RX */
   1358	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
   1359	EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
   1360	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
   1361
   1362	/* Isolate TX -> MAC */
   1363	falcon_drain_tx_fifo(efx);
   1364}
   1365
   1366static void falcon_reconfigure_mac_wrapper(struct ef4_nic *efx)
   1367{
   1368	struct ef4_link_state *link_state = &efx->link_state;
   1369	ef4_oword_t reg;
   1370	int link_speed, isolate;
   1371
   1372	isolate = !!READ_ONCE(efx->reset_pending);
   1373
   1374	switch (link_state->speed) {
   1375	case 10000: link_speed = 3; break;
   1376	case 1000:  link_speed = 2; break;
   1377	case 100:   link_speed = 1; break;
   1378	default:    link_speed = 0; break;
   1379	}
   1380
   1381	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
   1382	 * as advertised.  Disable to ensure packets are not
   1383	 * indefinitely held and TX queue can be flushed at any point
   1384	 * while the link is down. */
   1385	EF4_POPULATE_OWORD_5(reg,
   1386			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
   1387			     FRF_AB_MAC_BCAD_ACPT, 1,
   1388			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
   1389			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
   1390			     FRF_AB_MAC_SPEED, link_speed);
   1391	/* On B0, MAC backpressure can be disabled and packets get
   1392	 * discarded. */
   1393	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
   1394		EF4_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
   1395				    !link_state->up || isolate);
   1396	}
   1397
   1398	ef4_writeo(efx, &reg, FR_AB_MAC_CTRL);
   1399
   1400	/* Restore the multicast hash registers. */
   1401	falcon_push_multicast_hash(efx);
   1402
   1403	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
   1404	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
   1405	 * initialisation but it may read back as 0) */
   1406	EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
   1407	/* Unisolate the MAC -> RX */
   1408	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
   1409		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
   1410	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
   1411}
   1412
   1413static void falcon_stats_request(struct ef4_nic *efx)
   1414{
   1415	struct falcon_nic_data *nic_data = efx->nic_data;
   1416	ef4_oword_t reg;
   1417
   1418	WARN_ON(nic_data->stats_pending);
   1419	WARN_ON(nic_data->stats_disable_count);
   1420
   1421	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
   1422	nic_data->stats_pending = true;
   1423	wmb(); /* ensure done flag is clear */
   1424
   1425	/* Initiate DMA transfer of stats */
   1426	EF4_POPULATE_OWORD_2(reg,
   1427			     FRF_AB_MAC_STAT_DMA_CMD, 1,
   1428			     FRF_AB_MAC_STAT_DMA_ADR,
   1429			     efx->stats_buffer.dma_addr);
   1430	ef4_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
   1431
   1432	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
   1433}
   1434
   1435static void falcon_stats_complete(struct ef4_nic *efx)
   1436{
   1437	struct falcon_nic_data *nic_data = efx->nic_data;
   1438
   1439	if (!nic_data->stats_pending)
   1440		return;
   1441
   1442	nic_data->stats_pending = false;
   1443	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
   1444		rmb(); /* read the done flag before the stats */
   1445		ef4_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
   1446				     falcon_stat_mask, nic_data->stats,
   1447				     efx->stats_buffer.addr, true);
   1448	} else {
   1449		netif_err(efx, hw, efx->net_dev,
   1450			  "timed out waiting for statistics\n");
   1451	}
   1452}
   1453
   1454static void falcon_stats_timer_func(struct timer_list *t)
   1455{
   1456	struct falcon_nic_data *nic_data = from_timer(nic_data, t,
   1457						      stats_timer);
   1458	struct ef4_nic *efx = nic_data->efx;
   1459
   1460	spin_lock(&efx->stats_lock);
   1461
   1462	falcon_stats_complete(efx);
   1463	if (nic_data->stats_disable_count == 0)
   1464		falcon_stats_request(efx);
   1465
   1466	spin_unlock(&efx->stats_lock);
   1467}
   1468
   1469static bool falcon_loopback_link_poll(struct ef4_nic *efx)
   1470{
   1471	struct ef4_link_state old_state = efx->link_state;
   1472
   1473	WARN_ON(!mutex_is_locked(&efx->mac_lock));
   1474	WARN_ON(!LOOPBACK_INTERNAL(efx));
   1475
   1476	efx->link_state.fd = true;
   1477	efx->link_state.fc = efx->wanted_fc;
   1478	efx->link_state.up = true;
   1479	efx->link_state.speed = 10000;
   1480
   1481	return !ef4_link_state_equal(&efx->link_state, &old_state);
   1482}
   1483
   1484static int falcon_reconfigure_port(struct ef4_nic *efx)
   1485{
   1486	int rc;
   1487
   1488	WARN_ON(ef4_nic_rev(efx) > EF4_REV_FALCON_B0);
   1489
   1490	/* Poll the PHY link state *before* reconfiguring it. This means we
   1491	 * will pick up the correct speed (in loopback) to select the correct
   1492	 * MAC.
   1493	 */
   1494	if (LOOPBACK_INTERNAL(efx))
   1495		falcon_loopback_link_poll(efx);
   1496	else
   1497		efx->phy_op->poll(efx);
   1498
   1499	falcon_stop_nic_stats(efx);
   1500	falcon_deconfigure_mac_wrapper(efx);
   1501
   1502	falcon_reset_macs(efx);
   1503
   1504	efx->phy_op->reconfigure(efx);
   1505	rc = falcon_reconfigure_xmac(efx);
   1506	BUG_ON(rc);
   1507
   1508	falcon_start_nic_stats(efx);
   1509
   1510	/* Synchronise efx->link_state with the kernel */
   1511	ef4_link_status_changed(efx);
   1512
   1513	return 0;
   1514}
   1515
   1516/* TX flow control may automatically turn itself off if the link
   1517 * partner (intermittently) stops responding to pause frames. There
   1518 * isn't any indication that this has happened, so the best we do is
   1519 * leave it up to the user to spot this and fix it by cycling transmit
   1520 * flow control on this end.
   1521 */
   1522
   1523static void falcon_a1_prepare_enable_fc_tx(struct ef4_nic *efx)
   1524{
   1525	/* Schedule a reset to recover */
   1526	ef4_schedule_reset(efx, RESET_TYPE_INVISIBLE);
   1527}
   1528
   1529static void falcon_b0_prepare_enable_fc_tx(struct ef4_nic *efx)
   1530{
   1531	/* Recover by resetting the EM block */
   1532	falcon_stop_nic_stats(efx);
   1533	falcon_drain_tx_fifo(efx);
   1534	falcon_reconfigure_xmac(efx);
   1535	falcon_start_nic_stats(efx);
   1536}
   1537
   1538/**************************************************************************
   1539 *
   1540 * PHY access via GMII
   1541 *
   1542 **************************************************************************
   1543 */
   1544
   1545/* Wait for GMII access to complete */
   1546static int falcon_gmii_wait(struct ef4_nic *efx)
   1547{
   1548	ef4_oword_t md_stat;
   1549	int count;
   1550
   1551	/* wait up to 50ms - taken max from datasheet */
   1552	for (count = 0; count < 5000; count++) {
   1553		ef4_reado(efx, &md_stat, FR_AB_MD_STAT);
   1554		if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
   1555			if (EF4_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
   1556			    EF4_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
   1557				netif_err(efx, hw, efx->net_dev,
   1558					  "error from GMII access "
   1559					  EF4_OWORD_FMT"\n",
   1560					  EF4_OWORD_VAL(md_stat));
   1561				return -EIO;
   1562			}
   1563			return 0;
   1564		}
   1565		udelay(10);
   1566	}
   1567	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
   1568	return -ETIMEDOUT;
   1569}
   1570
   1571/* Write an MDIO register of a PHY connected to Falcon. */
   1572static int falcon_mdio_write(struct net_device *net_dev,
   1573			     int prtad, int devad, u16 addr, u16 value)
   1574{
   1575	struct ef4_nic *efx = netdev_priv(net_dev);
   1576	struct falcon_nic_data *nic_data = efx->nic_data;
   1577	ef4_oword_t reg;
   1578	int rc;
   1579
   1580	netif_vdbg(efx, hw, efx->net_dev,
   1581		   "writing MDIO %d register %d.%d with 0x%04x\n",
   1582		    prtad, devad, addr, value);
   1583
   1584	mutex_lock(&nic_data->mdio_lock);
   1585
   1586	/* Check MDIO not currently being accessed */
   1587	rc = falcon_gmii_wait(efx);
   1588	if (rc)
   1589		goto out;
   1590
   1591	/* Write the address/ID register */
   1592	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
   1593	ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
   1594
   1595	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
   1596			     FRF_AB_MD_DEV_ADR, devad);
   1597	ef4_writeo(efx, &reg, FR_AB_MD_ID);
   1598
   1599	/* Write data */
   1600	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
   1601	ef4_writeo(efx, &reg, FR_AB_MD_TXD);
   1602
   1603	EF4_POPULATE_OWORD_2(reg,
   1604			     FRF_AB_MD_WRC, 1,
   1605			     FRF_AB_MD_GC, 0);
   1606	ef4_writeo(efx, &reg, FR_AB_MD_CS);
   1607
   1608	/* Wait for data to be written */
   1609	rc = falcon_gmii_wait(efx);
   1610	if (rc) {
   1611		/* Abort the write operation */
   1612		EF4_POPULATE_OWORD_2(reg,
   1613				     FRF_AB_MD_WRC, 0,
   1614				     FRF_AB_MD_GC, 1);
   1615		ef4_writeo(efx, &reg, FR_AB_MD_CS);
   1616		udelay(10);
   1617	}
   1618
   1619out:
   1620	mutex_unlock(&nic_data->mdio_lock);
   1621	return rc;
   1622}
   1623
   1624/* Read an MDIO register of a PHY connected to Falcon. */
   1625static int falcon_mdio_read(struct net_device *net_dev,
   1626			    int prtad, int devad, u16 addr)
   1627{
   1628	struct ef4_nic *efx = netdev_priv(net_dev);
   1629	struct falcon_nic_data *nic_data = efx->nic_data;
   1630	ef4_oword_t reg;
   1631	int rc;
   1632
   1633	mutex_lock(&nic_data->mdio_lock);
   1634
   1635	/* Check MDIO not currently being accessed */
   1636	rc = falcon_gmii_wait(efx);
   1637	if (rc)
   1638		goto out;
   1639
   1640	EF4_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
   1641	ef4_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
   1642
   1643	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
   1644			     FRF_AB_MD_DEV_ADR, devad);
   1645	ef4_writeo(efx, &reg, FR_AB_MD_ID);
   1646
   1647	/* Request data to be read */
   1648	EF4_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
   1649	ef4_writeo(efx, &reg, FR_AB_MD_CS);
   1650
   1651	/* Wait for data to become available */
   1652	rc = falcon_gmii_wait(efx);
   1653	if (rc == 0) {
   1654		ef4_reado(efx, &reg, FR_AB_MD_RXD);
   1655		rc = EF4_OWORD_FIELD(reg, FRF_AB_MD_RXD);
   1656		netif_vdbg(efx, hw, efx->net_dev,
   1657			   "read from MDIO %d register %d.%d, got %04x\n",
   1658			   prtad, devad, addr, rc);
   1659	} else {
   1660		/* Abort the read operation */
   1661		EF4_POPULATE_OWORD_2(reg,
   1662				     FRF_AB_MD_RIC, 0,
   1663				     FRF_AB_MD_GC, 1);
   1664		ef4_writeo(efx, &reg, FR_AB_MD_CS);
   1665
   1666		netif_dbg(efx, hw, efx->net_dev,
   1667			  "read from MDIO %d register %d.%d, got error %d\n",
   1668			  prtad, devad, addr, rc);
   1669	}
   1670
   1671out:
   1672	mutex_unlock(&nic_data->mdio_lock);
   1673	return rc;
   1674}
   1675
   1676/* This call is responsible for hooking in the MAC and PHY operations */
   1677static int falcon_probe_port(struct ef4_nic *efx)
   1678{
   1679	struct falcon_nic_data *nic_data = efx->nic_data;
   1680	int rc;
   1681
   1682	switch (efx->phy_type) {
   1683	case PHY_TYPE_SFX7101:
   1684		efx->phy_op = &falcon_sfx7101_phy_ops;
   1685		break;
   1686	case PHY_TYPE_QT2022C2:
   1687	case PHY_TYPE_QT2025C:
   1688		efx->phy_op = &falcon_qt202x_phy_ops;
   1689		break;
   1690	case PHY_TYPE_TXC43128:
   1691		efx->phy_op = &falcon_txc_phy_ops;
   1692		break;
   1693	default:
   1694		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
   1695			  efx->phy_type);
   1696		return -ENODEV;
   1697	}
   1698
   1699	/* Fill out MDIO structure and loopback modes */
   1700	mutex_init(&nic_data->mdio_lock);
   1701	efx->mdio.mdio_read = falcon_mdio_read;
   1702	efx->mdio.mdio_write = falcon_mdio_write;
   1703	rc = efx->phy_op->probe(efx);
   1704	if (rc != 0)
   1705		return rc;
   1706
   1707	/* Initial assumption */
   1708	efx->link_state.speed = 10000;
   1709	efx->link_state.fd = true;
   1710
   1711	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
   1712	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0)
   1713		efx->wanted_fc = EF4_FC_RX | EF4_FC_TX;
   1714	else
   1715		efx->wanted_fc = EF4_FC_RX;
   1716	if (efx->mdio.mmds & MDIO_DEVS_AN)
   1717		efx->wanted_fc |= EF4_FC_AUTO;
   1718
   1719	/* Allocate buffer for stats */
   1720	rc = ef4_nic_alloc_buffer(efx, &efx->stats_buffer,
   1721				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
   1722	if (rc)
   1723		return rc;
   1724	netif_dbg(efx, probe, efx->net_dev,
   1725		  "stats buffer at %llx (virt %p phys %llx)\n",
   1726		  (u64)efx->stats_buffer.dma_addr,
   1727		  efx->stats_buffer.addr,
   1728		  (u64)virt_to_phys(efx->stats_buffer.addr));
   1729
   1730	return 0;
   1731}
   1732
   1733static void falcon_remove_port(struct ef4_nic *efx)
   1734{
   1735	efx->phy_op->remove(efx);
   1736	ef4_nic_free_buffer(efx, &efx->stats_buffer);
   1737}
   1738
   1739/* Global events are basically PHY events */
   1740static bool
   1741falcon_handle_global_event(struct ef4_channel *channel, ef4_qword_t *event)
   1742{
   1743	struct ef4_nic *efx = channel->efx;
   1744	struct falcon_nic_data *nic_data = efx->nic_data;
   1745
   1746	if (EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
   1747	    EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
   1748	    EF4_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
   1749		/* Ignored */
   1750		return true;
   1751
   1752	if ((ef4_nic_rev(efx) == EF4_REV_FALCON_B0) &&
   1753	    EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
   1754		nic_data->xmac_poll_required = true;
   1755		return true;
   1756	}
   1757
   1758	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ?
   1759	    EF4_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
   1760	    EF4_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
   1761		netif_err(efx, rx_err, efx->net_dev,
   1762			  "channel %d seen global RX_RESET event. Resetting.\n",
   1763			  channel->channel);
   1764
   1765		atomic_inc(&efx->rx_reset);
   1766		ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ?
   1767				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
   1768		return true;
   1769	}
   1770
   1771	return false;
   1772}
   1773
   1774/**************************************************************************
   1775 *
   1776 * Falcon test code
   1777 *
   1778 **************************************************************************/
   1779
   1780static int
   1781falcon_read_nvram(struct ef4_nic *efx, struct falcon_nvconfig *nvconfig_out)
   1782{
   1783	struct falcon_nic_data *nic_data = efx->nic_data;
   1784	struct falcon_nvconfig *nvconfig;
   1785	struct falcon_spi_device *spi;
   1786	void *region;
   1787	int rc, magic_num, struct_ver;
   1788	__le16 *word, *limit;
   1789	u32 csum;
   1790
   1791	if (falcon_spi_present(&nic_data->spi_flash))
   1792		spi = &nic_data->spi_flash;
   1793	else if (falcon_spi_present(&nic_data->spi_eeprom))
   1794		spi = &nic_data->spi_eeprom;
   1795	else
   1796		return -EINVAL;
   1797
   1798	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
   1799	if (!region)
   1800		return -ENOMEM;
   1801	nvconfig = region + FALCON_NVCONFIG_OFFSET;
   1802
   1803	mutex_lock(&nic_data->spi_lock);
   1804	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
   1805	mutex_unlock(&nic_data->spi_lock);
   1806	if (rc) {
   1807		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
   1808			  falcon_spi_present(&nic_data->spi_flash) ?
   1809			  "flash" : "EEPROM");
   1810		rc = -EIO;
   1811		goto out;
   1812	}
   1813
   1814	magic_num = le16_to_cpu(nvconfig->board_magic_num);
   1815	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
   1816
   1817	rc = -EINVAL;
   1818	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
   1819		netif_err(efx, hw, efx->net_dev,
   1820			  "NVRAM bad magic 0x%x\n", magic_num);
   1821		goto out;
   1822	}
   1823	if (struct_ver < 2) {
   1824		netif_err(efx, hw, efx->net_dev,
   1825			  "NVRAM has ancient version 0x%x\n", struct_ver);
   1826		goto out;
   1827	} else if (struct_ver < 4) {
   1828		word = &nvconfig->board_magic_num;
   1829		limit = (__le16 *) (nvconfig + 1);
   1830	} else {
   1831		word = region;
   1832		limit = region + FALCON_NVCONFIG_END;
   1833	}
   1834	for (csum = 0; word < limit; ++word)
   1835		csum += le16_to_cpu(*word);
   1836
   1837	if (~csum & 0xffff) {
   1838		netif_err(efx, hw, efx->net_dev,
   1839			  "NVRAM has incorrect checksum\n");
   1840		goto out;
   1841	}
   1842
   1843	rc = 0;
   1844	if (nvconfig_out)
   1845		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
   1846
   1847 out:
   1848	kfree(region);
   1849	return rc;
   1850}
   1851
   1852static int falcon_test_nvram(struct ef4_nic *efx)
   1853{
   1854	return falcon_read_nvram(efx, NULL);
   1855}
   1856
   1857static const struct ef4_farch_register_test falcon_b0_register_tests[] = {
   1858	{ FR_AZ_ADR_REGION,
   1859	  EF4_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
   1860	{ FR_AZ_RX_CFG,
   1861	  EF4_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
   1862	{ FR_AZ_TX_CFG,
   1863	  EF4_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
   1864	{ FR_AZ_TX_RESERVED,
   1865	  EF4_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
   1866	{ FR_AB_MAC_CTRL,
   1867	  EF4_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
   1868	{ FR_AZ_SRM_TX_DC_CFG,
   1869	  EF4_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
   1870	{ FR_AZ_RX_DC_CFG,
   1871	  EF4_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
   1872	{ FR_AZ_RX_DC_PF_WM,
   1873	  EF4_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
   1874	{ FR_BZ_DP_CTRL,
   1875	  EF4_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
   1876	{ FR_AB_GM_CFG2,
   1877	  EF4_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
   1878	{ FR_AB_GMF_CFG0,
   1879	  EF4_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
   1880	{ FR_AB_XM_GLB_CFG,
   1881	  EF4_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
   1882	{ FR_AB_XM_TX_CFG,
   1883	  EF4_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
   1884	{ FR_AB_XM_RX_CFG,
   1885	  EF4_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
   1886	{ FR_AB_XM_RX_PARAM,
   1887	  EF4_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
   1888	{ FR_AB_XM_FC,
   1889	  EF4_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
   1890	{ FR_AB_XM_ADR_LO,
   1891	  EF4_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
   1892	{ FR_AB_XX_SD_CTL,
   1893	  EF4_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
   1894};
   1895
   1896static int
   1897falcon_b0_test_chip(struct ef4_nic *efx, struct ef4_self_tests *tests)
   1898{
   1899	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
   1900	int rc, rc2;
   1901
   1902	mutex_lock(&efx->mac_lock);
   1903	if (efx->loopback_modes) {
   1904		/* We need the 312 clock from the PHY to test the XMAC
   1905		 * registers, so move into XGMII loopback if available */
   1906		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
   1907			efx->loopback_mode = LOOPBACK_XGMII;
   1908		else
   1909			efx->loopback_mode = __ffs(efx->loopback_modes);
   1910	}
   1911	__ef4_reconfigure_port(efx);
   1912	mutex_unlock(&efx->mac_lock);
   1913
   1914	ef4_reset_down(efx, reset_method);
   1915
   1916	tests->registers =
   1917		ef4_farch_test_registers(efx, falcon_b0_register_tests,
   1918					 ARRAY_SIZE(falcon_b0_register_tests))
   1919		? -1 : 1;
   1920
   1921	rc = falcon_reset_hw(efx, reset_method);
   1922	rc2 = ef4_reset_up(efx, reset_method, rc == 0);
   1923	return rc ? rc : rc2;
   1924}
   1925
   1926/**************************************************************************
   1927 *
   1928 * Device reset
   1929 *
   1930 **************************************************************************
   1931 */
   1932
   1933static enum reset_type falcon_map_reset_reason(enum reset_type reason)
   1934{
   1935	switch (reason) {
   1936	case RESET_TYPE_RX_RECOVERY:
   1937	case RESET_TYPE_DMA_ERROR:
   1938	case RESET_TYPE_TX_SKIP:
   1939		/* These can occasionally occur due to hardware bugs.
   1940		 * We try to reset without disrupting the link.
   1941		 */
   1942		return RESET_TYPE_INVISIBLE;
   1943	default:
   1944		return RESET_TYPE_ALL;
   1945	}
   1946}
   1947
   1948static int falcon_map_reset_flags(u32 *flags)
   1949{
   1950	enum {
   1951		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
   1952					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
   1953		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
   1954		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
   1955	};
   1956
   1957	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
   1958		*flags &= ~FALCON_RESET_WORLD;
   1959		return RESET_TYPE_WORLD;
   1960	}
   1961
   1962	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
   1963		*flags &= ~FALCON_RESET_ALL;
   1964		return RESET_TYPE_ALL;
   1965	}
   1966
   1967	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
   1968		*flags &= ~FALCON_RESET_INVISIBLE;
   1969		return RESET_TYPE_INVISIBLE;
   1970	}
   1971
   1972	return -EINVAL;
   1973}
   1974
   1975/* Resets NIC to known state.  This routine must be called in process
   1976 * context and is allowed to sleep. */
   1977static int __falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
   1978{
   1979	struct falcon_nic_data *nic_data = efx->nic_data;
   1980	ef4_oword_t glb_ctl_reg_ker;
   1981	int rc;
   1982
   1983	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
   1984		  RESET_TYPE(method));
   1985
   1986	/* Initiate device reset */
   1987	if (method == RESET_TYPE_WORLD) {
   1988		rc = pci_save_state(efx->pci_dev);
   1989		if (rc) {
   1990			netif_err(efx, drv, efx->net_dev,
   1991				  "failed to backup PCI state of primary "
   1992				  "function prior to hardware reset\n");
   1993			goto fail1;
   1994		}
   1995		if (ef4_nic_is_dual_func(efx)) {
   1996			rc = pci_save_state(nic_data->pci_dev2);
   1997			if (rc) {
   1998				netif_err(efx, drv, efx->net_dev,
   1999					  "failed to backup PCI state of "
   2000					  "secondary function prior to "
   2001					  "hardware reset\n");
   2002				goto fail2;
   2003			}
   2004		}
   2005
   2006		EF4_POPULATE_OWORD_2(glb_ctl_reg_ker,
   2007				     FRF_AB_EXT_PHY_RST_DUR,
   2008				     FFE_AB_EXT_PHY_RST_DUR_10240US,
   2009				     FRF_AB_SWRST, 1);
   2010	} else {
   2011		EF4_POPULATE_OWORD_7(glb_ctl_reg_ker,
   2012				     /* exclude PHY from "invisible" reset */
   2013				     FRF_AB_EXT_PHY_RST_CTL,
   2014				     method == RESET_TYPE_INVISIBLE,
   2015				     /* exclude EEPROM/flash and PCIe */
   2016				     FRF_AB_PCIE_CORE_RST_CTL, 1,
   2017				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
   2018				     FRF_AB_PCIE_SD_RST_CTL, 1,
   2019				     FRF_AB_EE_RST_CTL, 1,
   2020				     FRF_AB_EXT_PHY_RST_DUR,
   2021				     FFE_AB_EXT_PHY_RST_DUR_10240US,
   2022				     FRF_AB_SWRST, 1);
   2023	}
   2024	ef4_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
   2025
   2026	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
   2027	schedule_timeout_uninterruptible(HZ / 20);
   2028
   2029	/* Restore PCI configuration if needed */
   2030	if (method == RESET_TYPE_WORLD) {
   2031		if (ef4_nic_is_dual_func(efx))
   2032			pci_restore_state(nic_data->pci_dev2);
   2033		pci_restore_state(efx->pci_dev);
   2034		netif_dbg(efx, drv, efx->net_dev,
   2035			  "successfully restored PCI config\n");
   2036	}
   2037
   2038	/* Assert that reset complete */
   2039	ef4_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
   2040	if (EF4_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
   2041		rc = -ETIMEDOUT;
   2042		netif_err(efx, hw, efx->net_dev,
   2043			  "timed out waiting for hardware reset\n");
   2044		goto fail3;
   2045	}
   2046	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
   2047
   2048	return 0;
   2049
   2050	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
   2051fail2:
   2052	pci_restore_state(efx->pci_dev);
   2053fail1:
   2054fail3:
   2055	return rc;
   2056}
   2057
   2058static int falcon_reset_hw(struct ef4_nic *efx, enum reset_type method)
   2059{
   2060	struct falcon_nic_data *nic_data = efx->nic_data;
   2061	int rc;
   2062
   2063	mutex_lock(&nic_data->spi_lock);
   2064	rc = __falcon_reset_hw(efx, method);
   2065	mutex_unlock(&nic_data->spi_lock);
   2066
   2067	return rc;
   2068}
   2069
   2070static void falcon_monitor(struct ef4_nic *efx)
   2071{
   2072	bool link_changed;
   2073	int rc;
   2074
   2075	BUG_ON(!mutex_is_locked(&efx->mac_lock));
   2076
   2077	rc = falcon_board(efx)->type->monitor(efx);
   2078	if (rc) {
   2079		netif_err(efx, hw, efx->net_dev,
   2080			  "Board sensor %s; shutting down PHY\n",
   2081			  (rc == -ERANGE) ? "reported fault" : "failed");
   2082		efx->phy_mode |= PHY_MODE_LOW_POWER;
   2083		rc = __ef4_reconfigure_port(efx);
   2084		WARN_ON(rc);
   2085	}
   2086
   2087	if (LOOPBACK_INTERNAL(efx))
   2088		link_changed = falcon_loopback_link_poll(efx);
   2089	else
   2090		link_changed = efx->phy_op->poll(efx);
   2091
   2092	if (link_changed) {
   2093		falcon_stop_nic_stats(efx);
   2094		falcon_deconfigure_mac_wrapper(efx);
   2095
   2096		falcon_reset_macs(efx);
   2097		rc = falcon_reconfigure_xmac(efx);
   2098		BUG_ON(rc);
   2099
   2100		falcon_start_nic_stats(efx);
   2101
   2102		ef4_link_status_changed(efx);
   2103	}
   2104
   2105	falcon_poll_xmac(efx);
   2106}
   2107
   2108/* Zeroes out the SRAM contents.  This routine must be called in
   2109 * process context and is allowed to sleep.
   2110 */
   2111static int falcon_reset_sram(struct ef4_nic *efx)
   2112{
   2113	ef4_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
   2114	int count;
   2115
   2116	/* Set the SRAM wake/sleep GPIO appropriately. */
   2117	ef4_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
   2118	EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
   2119	EF4_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
   2120	ef4_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
   2121
   2122	/* Initiate SRAM reset */
   2123	EF4_POPULATE_OWORD_2(srm_cfg_reg_ker,
   2124			     FRF_AZ_SRM_INIT_EN, 1,
   2125			     FRF_AZ_SRM_NB_SZ, 0);
   2126	ef4_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
   2127
   2128	/* Wait for SRAM reset to complete */
   2129	count = 0;
   2130	do {
   2131		netif_dbg(efx, hw, efx->net_dev,
   2132			  "waiting for SRAM reset (attempt %d)...\n", count);
   2133
   2134		/* SRAM reset is slow; expect around 16ms */
   2135		schedule_timeout_uninterruptible(HZ / 50);
   2136
   2137		/* Check for reset complete */
   2138		ef4_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
   2139		if (!EF4_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
   2140			netif_dbg(efx, hw, efx->net_dev,
   2141				  "SRAM reset complete\n");
   2142
   2143			return 0;
   2144		}
   2145	} while (++count < 20);	/* wait up to 0.4 sec */
   2146
   2147	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
   2148	return -ETIMEDOUT;
   2149}
   2150
   2151static void falcon_spi_device_init(struct ef4_nic *efx,
   2152				  struct falcon_spi_device *spi_device,
   2153				  unsigned int device_id, u32 device_type)
   2154{
   2155	if (device_type != 0) {
   2156		spi_device->device_id = device_id;
   2157		spi_device->size =
   2158			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
   2159		spi_device->addr_len =
   2160			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
   2161		spi_device->munge_address = (spi_device->size == 1 << 9 &&
   2162					     spi_device->addr_len == 1);
   2163		spi_device->erase_command =
   2164			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
   2165		spi_device->erase_size =
   2166			1 << SPI_DEV_TYPE_FIELD(device_type,
   2167						SPI_DEV_TYPE_ERASE_SIZE);
   2168		spi_device->block_size =
   2169			1 << SPI_DEV_TYPE_FIELD(device_type,
   2170						SPI_DEV_TYPE_BLOCK_SIZE);
   2171	} else {
   2172		spi_device->size = 0;
   2173	}
   2174}
   2175
   2176/* Extract non-volatile configuration */
   2177static int falcon_probe_nvconfig(struct ef4_nic *efx)
   2178{
   2179	struct falcon_nic_data *nic_data = efx->nic_data;
   2180	struct falcon_nvconfig *nvconfig;
   2181	int rc;
   2182
   2183	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
   2184	if (!nvconfig)
   2185		return -ENOMEM;
   2186
   2187	rc = falcon_read_nvram(efx, nvconfig);
   2188	if (rc)
   2189		goto out;
   2190
   2191	efx->phy_type = nvconfig->board_v2.port0_phy_type;
   2192	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
   2193
   2194	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
   2195		falcon_spi_device_init(
   2196			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
   2197			le32_to_cpu(nvconfig->board_v3
   2198				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
   2199		falcon_spi_device_init(
   2200			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
   2201			le32_to_cpu(nvconfig->board_v3
   2202				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
   2203	}
   2204
   2205	/* Read the MAC addresses */
   2206	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
   2207
   2208	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
   2209		  efx->phy_type, efx->mdio.prtad);
   2210
   2211	rc = falcon_probe_board(efx,
   2212				le16_to_cpu(nvconfig->board_v2.board_revision));
   2213out:
   2214	kfree(nvconfig);
   2215	return rc;
   2216}
   2217
   2218static int falcon_dimension_resources(struct ef4_nic *efx)
   2219{
   2220	efx->rx_dc_base = 0x20000;
   2221	efx->tx_dc_base = 0x26000;
   2222	return 0;
   2223}
   2224
   2225/* Probe all SPI devices on the NIC */
   2226static void falcon_probe_spi_devices(struct ef4_nic *efx)
   2227{
   2228	struct falcon_nic_data *nic_data = efx->nic_data;
   2229	ef4_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
   2230	int boot_dev;
   2231
   2232	ef4_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
   2233	ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
   2234	ef4_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
   2235
   2236	if (EF4_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
   2237		boot_dev = (EF4_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
   2238			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
   2239		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
   2240			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
   2241			  "flash" : "EEPROM");
   2242	} else {
   2243		/* Disable VPD and set clock dividers to safe
   2244		 * values for initial programming. */
   2245		boot_dev = -1;
   2246		netif_dbg(efx, probe, efx->net_dev,
   2247			  "Booted from internal ASIC settings;"
   2248			  " setting SPI config\n");
   2249		EF4_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
   2250				     /* 125 MHz / 7 ~= 20 MHz */
   2251				     FRF_AB_EE_SF_CLOCK_DIV, 7,
   2252				     /* 125 MHz / 63 ~= 2 MHz */
   2253				     FRF_AB_EE_EE_CLOCK_DIV, 63);
   2254		ef4_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
   2255	}
   2256
   2257	mutex_init(&nic_data->spi_lock);
   2258
   2259	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
   2260		falcon_spi_device_init(efx, &nic_data->spi_flash,
   2261				       FFE_AB_SPI_DEVICE_FLASH,
   2262				       default_flash_type);
   2263	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
   2264		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
   2265				       FFE_AB_SPI_DEVICE_EEPROM,
   2266				       large_eeprom_type);
   2267}
   2268
   2269static unsigned int falcon_a1_mem_map_size(struct ef4_nic *efx)
   2270{
   2271	return 0x20000;
   2272}
   2273
   2274static unsigned int falcon_b0_mem_map_size(struct ef4_nic *efx)
   2275{
   2276	/* Map everything up to and including the RSS indirection table.
   2277	 * The PCI core takes care of mapping the MSI-X tables.
   2278	 */
   2279	return FR_BZ_RX_INDIRECTION_TBL +
   2280		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
   2281}
   2282
   2283static int falcon_probe_nic(struct ef4_nic *efx)
   2284{
   2285	struct falcon_nic_data *nic_data;
   2286	struct falcon_board *board;
   2287	int rc;
   2288
   2289	efx->primary = efx; /* only one usable function per controller */
   2290
   2291	/* Allocate storage for hardware specific data */
   2292	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
   2293	if (!nic_data)
   2294		return -ENOMEM;
   2295	efx->nic_data = nic_data;
   2296	nic_data->efx = efx;
   2297
   2298	rc = -ENODEV;
   2299
   2300	if (ef4_farch_fpga_ver(efx) != 0) {
   2301		netif_err(efx, probe, efx->net_dev,
   2302			  "Falcon FPGA not supported\n");
   2303		goto fail1;
   2304	}
   2305
   2306	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
   2307		ef4_oword_t nic_stat;
   2308		struct pci_dev *dev;
   2309		u8 pci_rev = efx->pci_dev->revision;
   2310
   2311		if ((pci_rev == 0xff) || (pci_rev == 0)) {
   2312			netif_err(efx, probe, efx->net_dev,
   2313				  "Falcon rev A0 not supported\n");
   2314			goto fail1;
   2315		}
   2316		ef4_reado(efx, &nic_stat, FR_AB_NIC_STAT);
   2317		if (EF4_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
   2318			netif_err(efx, probe, efx->net_dev,
   2319				  "Falcon rev A1 1G not supported\n");
   2320			goto fail1;
   2321		}
   2322		if (EF4_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
   2323			netif_err(efx, probe, efx->net_dev,
   2324				  "Falcon rev A1 PCI-X not supported\n");
   2325			goto fail1;
   2326		}
   2327
   2328		dev = pci_dev_get(efx->pci_dev);
   2329		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
   2330					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
   2331					     dev))) {
   2332			if (dev->bus == efx->pci_dev->bus &&
   2333			    dev->devfn == efx->pci_dev->devfn + 1) {
   2334				nic_data->pci_dev2 = dev;
   2335				break;
   2336			}
   2337		}
   2338		if (!nic_data->pci_dev2) {
   2339			netif_err(efx, probe, efx->net_dev,
   2340				  "failed to find secondary function\n");
   2341			rc = -ENODEV;
   2342			goto fail2;
   2343		}
   2344	}
   2345
   2346	/* Now we can reset the NIC */
   2347	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
   2348	if (rc) {
   2349		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
   2350		goto fail3;
   2351	}
   2352
   2353	/* Allocate memory for INT_KER */
   2354	rc = ef4_nic_alloc_buffer(efx, &efx->irq_status, sizeof(ef4_oword_t),
   2355				  GFP_KERNEL);
   2356	if (rc)
   2357		goto fail4;
   2358	BUG_ON(efx->irq_status.dma_addr & 0x0f);
   2359
   2360	netif_dbg(efx, probe, efx->net_dev,
   2361		  "INT_KER at %llx (virt %p phys %llx)\n",
   2362		  (u64)efx->irq_status.dma_addr,
   2363		  efx->irq_status.addr,
   2364		  (u64)virt_to_phys(efx->irq_status.addr));
   2365
   2366	falcon_probe_spi_devices(efx);
   2367
   2368	/* Read in the non-volatile configuration */
   2369	rc = falcon_probe_nvconfig(efx);
   2370	if (rc) {
   2371		if (rc == -EINVAL)
   2372			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
   2373		goto fail5;
   2374	}
   2375
   2376	efx->max_channels = (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1 ? 4 :
   2377			     EF4_MAX_CHANNELS);
   2378	efx->max_tx_channels = efx->max_channels;
   2379	efx->timer_quantum_ns = 4968; /* 621 cycles */
   2380	efx->timer_max_ns = efx->type->timer_period_max *
   2381			    efx->timer_quantum_ns;
   2382
   2383	/* Initialise I2C adapter */
   2384	board = falcon_board(efx);
   2385	board->i2c_adap.owner = THIS_MODULE;
   2386	board->i2c_data = falcon_i2c_bit_operations;
   2387	board->i2c_data.data = efx;
   2388	board->i2c_adap.algo_data = &board->i2c_data;
   2389	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
   2390	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
   2391		sizeof(board->i2c_adap.name));
   2392	rc = i2c_bit_add_bus(&board->i2c_adap);
   2393	if (rc)
   2394		goto fail5;
   2395
   2396	rc = falcon_board(efx)->type->init(efx);
   2397	if (rc) {
   2398		netif_err(efx, probe, efx->net_dev,
   2399			  "failed to initialise board\n");
   2400		goto fail6;
   2401	}
   2402
   2403	nic_data->stats_disable_count = 1;
   2404	timer_setup(&nic_data->stats_timer, falcon_stats_timer_func, 0);
   2405
   2406	return 0;
   2407
   2408 fail6:
   2409	i2c_del_adapter(&board->i2c_adap);
   2410	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
   2411 fail5:
   2412	ef4_nic_free_buffer(efx, &efx->irq_status);
   2413 fail4:
   2414 fail3:
   2415	if (nic_data->pci_dev2) {
   2416		pci_dev_put(nic_data->pci_dev2);
   2417		nic_data->pci_dev2 = NULL;
   2418	}
   2419 fail2:
   2420 fail1:
   2421	kfree(efx->nic_data);
   2422	return rc;
   2423}
   2424
   2425static void falcon_init_rx_cfg(struct ef4_nic *efx)
   2426{
   2427	/* RX control FIFO thresholds (32 entries) */
   2428	const unsigned ctrl_xon_thr = 20;
   2429	const unsigned ctrl_xoff_thr = 25;
   2430	ef4_oword_t reg;
   2431
   2432	ef4_reado(efx, &reg, FR_AZ_RX_CFG);
   2433	if (ef4_nic_rev(efx) <= EF4_REV_FALCON_A1) {
   2434		/* Data FIFO size is 5.5K.  The RX DMA engine only
   2435		 * supports scattering for user-mode queues, but will
   2436		 * split DMA writes at intervals of RX_USR_BUF_SIZE
   2437		 * (32-byte units) even for kernel-mode queues.  We
   2438		 * set it to be so large that that never happens.
   2439		 */
   2440		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
   2441		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
   2442				    (3 * 4096) >> 5);
   2443		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
   2444		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
   2445		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
   2446		EF4_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
   2447	} else {
   2448		/* Data FIFO size is 80K; register fields moved */
   2449		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
   2450		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
   2451				    EF4_RX_USR_BUF_SIZE >> 5);
   2452		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
   2453		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
   2454		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
   2455		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
   2456		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
   2457		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
   2458
   2459		/* Enable hash insertion. This is broken for the
   2460		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
   2461		 * IPv4 hashes. */
   2462		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
   2463		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
   2464		EF4_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
   2465	}
   2466	/* Always enable XOFF signal from RX FIFO.  We enable
   2467	 * or disable transmission of pause frames at the MAC. */
   2468	EF4_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
   2469	ef4_writeo(efx, &reg, FR_AZ_RX_CFG);
   2470}
   2471
   2472/* This call performs hardware-specific global initialisation, such as
   2473 * defining the descriptor cache sizes and number of RSS channels.
   2474 * It does not set up any buffers, descriptor rings or event queues.
   2475 */
   2476static int falcon_init_nic(struct ef4_nic *efx)
   2477{
   2478	ef4_oword_t temp;
   2479	int rc;
   2480
   2481	/* Use on-chip SRAM */
   2482	ef4_reado(efx, &temp, FR_AB_NIC_STAT);
   2483	EF4_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
   2484	ef4_writeo(efx, &temp, FR_AB_NIC_STAT);
   2485
   2486	rc = falcon_reset_sram(efx);
   2487	if (rc)
   2488		return rc;
   2489
   2490	/* Clear the parity enables on the TX data fifos as
   2491	 * they produce false parity errors because of timing issues
   2492	 */
   2493	if (EF4_WORKAROUND_5129(efx)) {
   2494		ef4_reado(efx, &temp, FR_AZ_CSR_SPARE);
   2495		EF4_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
   2496		ef4_writeo(efx, &temp, FR_AZ_CSR_SPARE);
   2497	}
   2498
   2499	if (EF4_WORKAROUND_7244(efx)) {
   2500		ef4_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
   2501		EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
   2502		EF4_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
   2503		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
   2504		EF4_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
   2505		ef4_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
   2506	}
   2507
   2508	/* XXX This is documented only for Falcon A0/A1 */
   2509	/* Setup RX.  Wait for descriptor is broken and must
   2510	 * be disabled.  RXDP recovery shouldn't be needed, but is.
   2511	 */
   2512	ef4_reado(efx, &temp, FR_AA_RX_SELF_RST);
   2513	EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
   2514	EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
   2515	if (EF4_WORKAROUND_5583(efx))
   2516		EF4_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
   2517	ef4_writeo(efx, &temp, FR_AA_RX_SELF_RST);
   2518
   2519	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
   2520	 * descriptors (which is bad).
   2521	 */
   2522	ef4_reado(efx, &temp, FR_AZ_TX_CFG);
   2523	EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
   2524	ef4_writeo(efx, &temp, FR_AZ_TX_CFG);
   2525
   2526	falcon_init_rx_cfg(efx);
   2527
   2528	if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) {
   2529		falcon_b0_rx_push_rss_config(efx, false, efx->rx_indir_table);
   2530
   2531		/* Set destination of both TX and RX Flush events */
   2532		EF4_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
   2533		ef4_writeo(efx, &temp, FR_BZ_DP_CTRL);
   2534	}
   2535
   2536	ef4_farch_init_common(efx);
   2537
   2538	return 0;
   2539}
   2540
   2541static void falcon_remove_nic(struct ef4_nic *efx)
   2542{
   2543	struct falcon_nic_data *nic_data = efx->nic_data;
   2544	struct falcon_board *board = falcon_board(efx);
   2545
   2546	board->type->fini(efx);
   2547
   2548	/* Remove I2C adapter and clear it in preparation for a retry */
   2549	i2c_del_adapter(&board->i2c_adap);
   2550	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
   2551
   2552	ef4_nic_free_buffer(efx, &efx->irq_status);
   2553
   2554	__falcon_reset_hw(efx, RESET_TYPE_ALL);
   2555
   2556	/* Release the second function after the reset */
   2557	if (nic_data->pci_dev2) {
   2558		pci_dev_put(nic_data->pci_dev2);
   2559		nic_data->pci_dev2 = NULL;
   2560	}
   2561
   2562	/* Tear down the private nic state */
   2563	kfree(efx->nic_data);
   2564	efx->nic_data = NULL;
   2565}
   2566
   2567static size_t falcon_describe_nic_stats(struct ef4_nic *efx, u8 *names)
   2568{
   2569	return ef4_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
   2570				      falcon_stat_mask, names);
   2571}
   2572
   2573static size_t falcon_update_nic_stats(struct ef4_nic *efx, u64 *full_stats,
   2574				      struct rtnl_link_stats64 *core_stats)
   2575{
   2576	struct falcon_nic_data *nic_data = efx->nic_data;
   2577	u64 *stats = nic_data->stats;
   2578	ef4_oword_t cnt;
   2579
   2580	if (!nic_data->stats_disable_count) {
   2581		ef4_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
   2582		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
   2583			EF4_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
   2584
   2585		if (nic_data->stats_pending &&
   2586		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
   2587			nic_data->stats_pending = false;
   2588			rmb(); /* read the done flag before the stats */
   2589			ef4_nic_update_stats(
   2590				falcon_stat_desc, FALCON_STAT_COUNT,
   2591				falcon_stat_mask,
   2592				stats, efx->stats_buffer.addr, true);
   2593		}
   2594
   2595		/* Update derived statistic */
   2596		ef4_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
   2597				     stats[FALCON_STAT_rx_bytes] -
   2598				     stats[FALCON_STAT_rx_good_bytes] -
   2599				     stats[FALCON_STAT_rx_control] * 64);
   2600		ef4_update_sw_stats(efx, stats);
   2601	}
   2602
   2603	if (full_stats)
   2604		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
   2605
   2606	if (core_stats) {
   2607		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
   2608		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
   2609		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
   2610		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
   2611		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
   2612					 stats[GENERIC_STAT_rx_nodesc_trunc] +
   2613					 stats[GENERIC_STAT_rx_noskb_drops];
   2614		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
   2615		core_stats->rx_length_errors =
   2616			stats[FALCON_STAT_rx_gtjumbo] +
   2617			stats[FALCON_STAT_rx_length_error];
   2618		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
   2619		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
   2620		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
   2621
   2622		core_stats->rx_errors = (core_stats->rx_length_errors +
   2623					 core_stats->rx_crc_errors +
   2624					 core_stats->rx_frame_errors +
   2625					 stats[FALCON_STAT_rx_symbol_error]);
   2626	}
   2627
   2628	return FALCON_STAT_COUNT;
   2629}
   2630
   2631void falcon_start_nic_stats(struct ef4_nic *efx)
   2632{
   2633	struct falcon_nic_data *nic_data = efx->nic_data;
   2634
   2635	spin_lock_bh(&efx->stats_lock);
   2636	if (--nic_data->stats_disable_count == 0)
   2637		falcon_stats_request(efx);
   2638	spin_unlock_bh(&efx->stats_lock);
   2639}
   2640
   2641/* We don't acutally pull stats on falcon. Wait 10ms so that
   2642 * they arrive when we call this just after start_stats
   2643 */
   2644static void falcon_pull_nic_stats(struct ef4_nic *efx)
   2645{
   2646	msleep(10);
   2647}
   2648
   2649void falcon_stop_nic_stats(struct ef4_nic *efx)
   2650{
   2651	struct falcon_nic_data *nic_data = efx->nic_data;
   2652	int i;
   2653
   2654	might_sleep();
   2655
   2656	spin_lock_bh(&efx->stats_lock);
   2657	++nic_data->stats_disable_count;
   2658	spin_unlock_bh(&efx->stats_lock);
   2659
   2660	del_timer_sync(&nic_data->stats_timer);
   2661
   2662	/* Wait enough time for the most recent transfer to
   2663	 * complete. */
   2664	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
   2665		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
   2666			break;
   2667		msleep(1);
   2668	}
   2669
   2670	spin_lock_bh(&efx->stats_lock);
   2671	falcon_stats_complete(efx);
   2672	spin_unlock_bh(&efx->stats_lock);
   2673}
   2674
   2675static void falcon_set_id_led(struct ef4_nic *efx, enum ef4_led_mode mode)
   2676{
   2677	falcon_board(efx)->type->set_id_led(efx, mode);
   2678}
   2679
   2680/**************************************************************************
   2681 *
   2682 * Wake on LAN
   2683 *
   2684 **************************************************************************
   2685 */
   2686
   2687static void falcon_get_wol(struct ef4_nic *efx, struct ethtool_wolinfo *wol)
   2688{
   2689	wol->supported = 0;
   2690	wol->wolopts = 0;
   2691	memset(&wol->sopass, 0, sizeof(wol->sopass));
   2692}
   2693
   2694static int falcon_set_wol(struct ef4_nic *efx, u32 type)
   2695{
   2696	if (type != 0)
   2697		return -EINVAL;
   2698	return 0;
   2699}
   2700
   2701/**************************************************************************
   2702 *
   2703 * Revision-dependent attributes used by efx.c and nic.c
   2704 *
   2705 **************************************************************************
   2706 */
   2707
   2708const struct ef4_nic_type falcon_a1_nic_type = {
   2709	.mem_bar = EF4_MEM_BAR,
   2710	.mem_map_size = falcon_a1_mem_map_size,
   2711	.probe = falcon_probe_nic,
   2712	.remove = falcon_remove_nic,
   2713	.init = falcon_init_nic,
   2714	.dimension_resources = falcon_dimension_resources,
   2715	.fini = falcon_irq_ack_a1,
   2716	.monitor = falcon_monitor,
   2717	.map_reset_reason = falcon_map_reset_reason,
   2718	.map_reset_flags = falcon_map_reset_flags,
   2719	.reset = falcon_reset_hw,
   2720	.probe_port = falcon_probe_port,
   2721	.remove_port = falcon_remove_port,
   2722	.handle_global_event = falcon_handle_global_event,
   2723	.fini_dmaq = ef4_farch_fini_dmaq,
   2724	.prepare_flush = falcon_prepare_flush,
   2725	.finish_flush = ef4_port_dummy_op_void,
   2726	.prepare_flr = ef4_port_dummy_op_void,
   2727	.finish_flr = ef4_farch_finish_flr,
   2728	.describe_stats = falcon_describe_nic_stats,
   2729	.update_stats = falcon_update_nic_stats,
   2730	.start_stats = falcon_start_nic_stats,
   2731	.pull_stats = falcon_pull_nic_stats,
   2732	.stop_stats = falcon_stop_nic_stats,
   2733	.set_id_led = falcon_set_id_led,
   2734	.push_irq_moderation = falcon_push_irq_moderation,
   2735	.reconfigure_port = falcon_reconfigure_port,
   2736	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
   2737	.reconfigure_mac = falcon_reconfigure_xmac,
   2738	.check_mac_fault = falcon_xmac_check_fault,
   2739	.get_wol = falcon_get_wol,
   2740	.set_wol = falcon_set_wol,
   2741	.resume_wol = ef4_port_dummy_op_void,
   2742	.test_nvram = falcon_test_nvram,
   2743	.irq_enable_master = ef4_farch_irq_enable_master,
   2744	.irq_test_generate = ef4_farch_irq_test_generate,
   2745	.irq_disable_non_ev = ef4_farch_irq_disable_master,
   2746	.irq_handle_msi = ef4_farch_msi_interrupt,
   2747	.irq_handle_legacy = falcon_legacy_interrupt_a1,
   2748	.tx_probe = ef4_farch_tx_probe,
   2749	.tx_init = ef4_farch_tx_init,
   2750	.tx_remove = ef4_farch_tx_remove,
   2751	.tx_write = ef4_farch_tx_write,
   2752	.tx_limit_len = ef4_farch_tx_limit_len,
   2753	.rx_push_rss_config = dummy_rx_push_rss_config,
   2754	.rx_probe = ef4_farch_rx_probe,
   2755	.rx_init = ef4_farch_rx_init,
   2756	.rx_remove = ef4_farch_rx_remove,
   2757	.rx_write = ef4_farch_rx_write,
   2758	.rx_defer_refill = ef4_farch_rx_defer_refill,
   2759	.ev_probe = ef4_farch_ev_probe,
   2760	.ev_init = ef4_farch_ev_init,
   2761	.ev_fini = ef4_farch_ev_fini,
   2762	.ev_remove = ef4_farch_ev_remove,
   2763	.ev_process = ef4_farch_ev_process,
   2764	.ev_read_ack = ef4_farch_ev_read_ack,
   2765	.ev_test_generate = ef4_farch_ev_test_generate,
   2766
   2767	/* We don't expose the filter table on Falcon A1 as it is not
   2768	 * mapped into function 0, but these implementations still
   2769	 * work with a degenerate case of all tables set to size 0.
   2770	 */
   2771	.filter_table_probe = ef4_farch_filter_table_probe,
   2772	.filter_table_restore = ef4_farch_filter_table_restore,
   2773	.filter_table_remove = ef4_farch_filter_table_remove,
   2774	.filter_insert = ef4_farch_filter_insert,
   2775	.filter_remove_safe = ef4_farch_filter_remove_safe,
   2776	.filter_get_safe = ef4_farch_filter_get_safe,
   2777	.filter_clear_rx = ef4_farch_filter_clear_rx,
   2778	.filter_count_rx_used = ef4_farch_filter_count_rx_used,
   2779	.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
   2780	.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
   2781
   2782#ifdef CONFIG_SFC_FALCON_MTD
   2783	.mtd_probe = falcon_mtd_probe,
   2784	.mtd_rename = falcon_mtd_rename,
   2785	.mtd_read = falcon_mtd_read,
   2786	.mtd_erase = falcon_mtd_erase,
   2787	.mtd_write = falcon_mtd_write,
   2788	.mtd_sync = falcon_mtd_sync,
   2789#endif
   2790
   2791	.revision = EF4_REV_FALCON_A1,
   2792	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
   2793	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
   2794	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
   2795	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
   2796	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
   2797	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
   2798	.rx_buffer_padding = 0x24,
   2799	.can_rx_scatter = false,
   2800	.max_interrupt_mode = EF4_INT_MODE_MSI,
   2801	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
   2802	.offload_features = NETIF_F_IP_CSUM,
   2803};
   2804
   2805const struct ef4_nic_type falcon_b0_nic_type = {
   2806	.mem_bar = EF4_MEM_BAR,
   2807	.mem_map_size = falcon_b0_mem_map_size,
   2808	.probe = falcon_probe_nic,
   2809	.remove = falcon_remove_nic,
   2810	.init = falcon_init_nic,
   2811	.dimension_resources = falcon_dimension_resources,
   2812	.fini = ef4_port_dummy_op_void,
   2813	.monitor = falcon_monitor,
   2814	.map_reset_reason = falcon_map_reset_reason,
   2815	.map_reset_flags = falcon_map_reset_flags,
   2816	.reset = falcon_reset_hw,
   2817	.probe_port = falcon_probe_port,
   2818	.remove_port = falcon_remove_port,
   2819	.handle_global_event = falcon_handle_global_event,
   2820	.fini_dmaq = ef4_farch_fini_dmaq,
   2821	.prepare_flush = falcon_prepare_flush,
   2822	.finish_flush = ef4_port_dummy_op_void,
   2823	.prepare_flr = ef4_port_dummy_op_void,
   2824	.finish_flr = ef4_farch_finish_flr,
   2825	.describe_stats = falcon_describe_nic_stats,
   2826	.update_stats = falcon_update_nic_stats,
   2827	.start_stats = falcon_start_nic_stats,
   2828	.pull_stats = falcon_pull_nic_stats,
   2829	.stop_stats = falcon_stop_nic_stats,
   2830	.set_id_led = falcon_set_id_led,
   2831	.push_irq_moderation = falcon_push_irq_moderation,
   2832	.reconfigure_port = falcon_reconfigure_port,
   2833	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
   2834	.reconfigure_mac = falcon_reconfigure_xmac,
   2835	.check_mac_fault = falcon_xmac_check_fault,
   2836	.get_wol = falcon_get_wol,
   2837	.set_wol = falcon_set_wol,
   2838	.resume_wol = ef4_port_dummy_op_void,
   2839	.test_chip = falcon_b0_test_chip,
   2840	.test_nvram = falcon_test_nvram,
   2841	.irq_enable_master = ef4_farch_irq_enable_master,
   2842	.irq_test_generate = ef4_farch_irq_test_generate,
   2843	.irq_disable_non_ev = ef4_farch_irq_disable_master,
   2844	.irq_handle_msi = ef4_farch_msi_interrupt,
   2845	.irq_handle_legacy = ef4_farch_legacy_interrupt,
   2846	.tx_probe = ef4_farch_tx_probe,
   2847	.tx_init = ef4_farch_tx_init,
   2848	.tx_remove = ef4_farch_tx_remove,
   2849	.tx_write = ef4_farch_tx_write,
   2850	.tx_limit_len = ef4_farch_tx_limit_len,
   2851	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
   2852	.rx_probe = ef4_farch_rx_probe,
   2853	.rx_init = ef4_farch_rx_init,
   2854	.rx_remove = ef4_farch_rx_remove,
   2855	.rx_write = ef4_farch_rx_write,
   2856	.rx_defer_refill = ef4_farch_rx_defer_refill,
   2857	.ev_probe = ef4_farch_ev_probe,
   2858	.ev_init = ef4_farch_ev_init,
   2859	.ev_fini = ef4_farch_ev_fini,
   2860	.ev_remove = ef4_farch_ev_remove,
   2861	.ev_process = ef4_farch_ev_process,
   2862	.ev_read_ack = ef4_farch_ev_read_ack,
   2863	.ev_test_generate = ef4_farch_ev_test_generate,
   2864	.filter_table_probe = ef4_farch_filter_table_probe,
   2865	.filter_table_restore = ef4_farch_filter_table_restore,
   2866	.filter_table_remove = ef4_farch_filter_table_remove,
   2867	.filter_update_rx_scatter = ef4_farch_filter_update_rx_scatter,
   2868	.filter_insert = ef4_farch_filter_insert,
   2869	.filter_remove_safe = ef4_farch_filter_remove_safe,
   2870	.filter_get_safe = ef4_farch_filter_get_safe,
   2871	.filter_clear_rx = ef4_farch_filter_clear_rx,
   2872	.filter_count_rx_used = ef4_farch_filter_count_rx_used,
   2873	.filter_get_rx_id_limit = ef4_farch_filter_get_rx_id_limit,
   2874	.filter_get_rx_ids = ef4_farch_filter_get_rx_ids,
   2875#ifdef CONFIG_RFS_ACCEL
   2876	.filter_rfs_insert = ef4_farch_filter_rfs_insert,
   2877	.filter_rfs_expire_one = ef4_farch_filter_rfs_expire_one,
   2878#endif
   2879#ifdef CONFIG_SFC_FALCON_MTD
   2880	.mtd_probe = falcon_mtd_probe,
   2881	.mtd_rename = falcon_mtd_rename,
   2882	.mtd_read = falcon_mtd_read,
   2883	.mtd_erase = falcon_mtd_erase,
   2884	.mtd_write = falcon_mtd_write,
   2885	.mtd_sync = falcon_mtd_sync,
   2886#endif
   2887
   2888	.revision = EF4_REV_FALCON_B0,
   2889	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
   2890	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
   2891	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
   2892	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
   2893	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
   2894	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
   2895	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
   2896	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
   2897	.rx_buffer_padding = 0,
   2898	.can_rx_scatter = true,
   2899	.max_interrupt_mode = EF4_INT_MODE_MSIX,
   2900	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
   2901	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
   2902	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
   2903};